Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50     /* given values */
51     int n;
52     int m1, m2;
53     int p1, p2;
54     /* derived values */
55     int dot;
56     int vco;
57     int m;
58     int p;
59 } intel_clock_t;
60
61 typedef struct {
62     int min, max;
63 } intel_range_t;
64
65 typedef struct {
66     int dot_limit;
67     int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM                  2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74     intel_p2_t      p2;
75     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76                       int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN              25000
80 #define I8XX_DOT_MAX             350000
81 #define I8XX_VCO_MIN             930000
82 #define I8XX_VCO_MAX            1400000
83 #define I8XX_N_MIN                    3
84 #define I8XX_N_MAX                   16
85 #define I8XX_M_MIN                   96
86 #define I8XX_M_MAX                  140
87 #define I8XX_M1_MIN                  18
88 #define I8XX_M1_MAX                  26
89 #define I8XX_M2_MIN                   6
90 #define I8XX_M2_MAX                  16
91 #define I8XX_P_MIN                    4
92 #define I8XX_P_MAX                  128
93 #define I8XX_P1_MIN                   2
94 #define I8XX_P1_MAX                  33
95 #define I8XX_P1_LVDS_MIN              1
96 #define I8XX_P1_LVDS_MAX              6
97 #define I8XX_P2_SLOW                  4
98 #define I8XX_P2_FAST                  2
99 #define I8XX_P2_LVDS_SLOW             14
100 #define I8XX_P2_LVDS_FAST             7
101 #define I8XX_P2_SLOW_LIMIT       165000
102
103 #define I9XX_DOT_MIN              20000
104 #define I9XX_DOT_MAX             400000
105 #define I9XX_VCO_MIN            1400000
106 #define I9XX_VCO_MAX            2800000
107 #define PINEVIEW_VCO_MIN                1700000
108 #define PINEVIEW_VCO_MAX                3500000
109 #define I9XX_N_MIN                    1
110 #define I9XX_N_MAX                    6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN                3
113 #define PINEVIEW_N_MAX                6
114 #define I9XX_M_MIN                   70
115 #define I9XX_M_MAX                  120
116 #define PINEVIEW_M_MIN                2
117 #define PINEVIEW_M_MAX              256
118 #define I9XX_M1_MIN                  10
119 #define I9XX_M1_MAX                  22
120 #define I9XX_M2_MIN                   5
121 #define I9XX_M2_MAX                   9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN               0
124 #define PINEVIEW_M1_MAX               0
125 #define PINEVIEW_M2_MIN               0
126 #define PINEVIEW_M2_MAX               254
127 #define I9XX_P_SDVO_DAC_MIN           5
128 #define I9XX_P_SDVO_DAC_MAX          80
129 #define I9XX_P_LVDS_MIN               7
130 #define I9XX_P_LVDS_MAX              98
131 #define PINEVIEW_P_LVDS_MIN                   7
132 #define PINEVIEW_P_LVDS_MAX                  112
133 #define I9XX_P1_MIN                   1
134 #define I9XX_P1_MAX                   8
135 #define I9XX_P2_SDVO_DAC_SLOW                10
136 #define I9XX_P2_SDVO_DAC_FAST                 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
138 #define I9XX_P2_LVDS_SLOW                    14
139 #define I9XX_P2_LVDS_FAST                     7
140 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN           25000
144 #define G4X_DOT_SDVO_MAX           270000
145 #define G4X_VCO_MIN                1750000
146 #define G4X_VCO_MAX                3500000
147 #define G4X_N_SDVO_MIN             1
148 #define G4X_N_SDVO_MAX             4
149 #define G4X_M_SDVO_MIN             104
150 #define G4X_M_SDVO_MAX             138
151 #define G4X_M1_SDVO_MIN            17
152 #define G4X_M1_SDVO_MAX            23
153 #define G4X_M2_SDVO_MIN            5
154 #define G4X_M2_SDVO_MAX            11
155 #define G4X_P_SDVO_MIN             10
156 #define G4X_P_SDVO_MAX             30
157 #define G4X_P1_SDVO_MIN            1
158 #define G4X_P1_SDVO_MAX            3
159 #define G4X_P2_SDVO_SLOW           10
160 #define G4X_P2_SDVO_FAST           10
161 #define G4X_P2_SDVO_LIMIT          270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN           22000
165 #define G4X_DOT_HDMI_DAC_MAX           400000
166 #define G4X_N_HDMI_DAC_MIN             1
167 #define G4X_N_HDMI_DAC_MAX             4
168 #define G4X_M_HDMI_DAC_MIN             104
169 #define G4X_M_HDMI_DAC_MAX             138
170 #define G4X_M1_HDMI_DAC_MIN            16
171 #define G4X_M1_HDMI_DAC_MAX            23
172 #define G4X_M2_HDMI_DAC_MIN            5
173 #define G4X_M2_HDMI_DAC_MAX            11
174 #define G4X_P_HDMI_DAC_MIN             5
175 #define G4X_P_HDMI_DAC_MAX             80
176 #define G4X_P1_HDMI_DAC_MIN            1
177 #define G4X_P1_HDMI_DAC_MAX            8
178 #define G4X_P2_HDMI_DAC_SLOW           10
179 #define G4X_P2_HDMI_DAC_FAST           5
180 #define G4X_P2_HDMI_DAC_LIMIT          165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN           161670
222 #define G4X_DOT_DISPLAY_PORT_MAX           227000
223 #define G4X_N_DISPLAY_PORT_MIN             1
224 #define G4X_N_DISPLAY_PORT_MAX             2
225 #define G4X_M_DISPLAY_PORT_MIN             97
226 #define G4X_M_DISPLAY_PORT_MAX             108
227 #define G4X_M1_DISPLAY_PORT_MIN            0x10
228 #define G4X_M1_DISPLAY_PORT_MAX            0x12
229 #define G4X_M2_DISPLAY_PORT_MIN            0x05
230 #define G4X_M2_DISPLAY_PORT_MAX            0x06
231 #define G4X_P_DISPLAY_PORT_MIN             10
232 #define G4X_P_DISPLAY_PORT_MAX             20
233 #define G4X_P1_DISPLAY_PORT_MIN            1
234 #define G4X_P1_DISPLAY_PORT_MAX            2
235 #define G4X_P2_DISPLAY_PORT_SLOW           10
236 #define G4X_P2_DISPLAY_PORT_FAST           10
237 #define G4X_P2_DISPLAY_PORT_LIMIT          0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241    N/M1/M2, so here the range value for them is (actual_value-2).
242  */
243 #define IRONLAKE_DOT_MIN         25000
244 #define IRONLAKE_DOT_MAX         350000
245 #define IRONLAKE_VCO_MIN         1760000
246 #define IRONLAKE_VCO_MAX         3510000
247 #define IRONLAKE_M1_MIN          12
248 #define IRONLAKE_M1_MAX          22
249 #define IRONLAKE_M2_MIN          5
250 #define IRONLAKE_M2_MAX          9
251 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN      1
257 #define IRONLAKE_DAC_N_MAX      5
258 #define IRONLAKE_DAC_M_MIN      79
259 #define IRONLAKE_DAC_M_MAX      127
260 #define IRONLAKE_DAC_P_MIN      5
261 #define IRONLAKE_DAC_P_MAX      80
262 #define IRONLAKE_DAC_P1_MIN     1
263 #define IRONLAKE_DAC_P1_MAX     8
264 #define IRONLAKE_DAC_P2_SLOW    10
265 #define IRONLAKE_DAC_P2_FAST    5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN   1
269 #define IRONLAKE_LVDS_S_N_MAX   3
270 #define IRONLAKE_LVDS_S_M_MIN   79
271 #define IRONLAKE_LVDS_S_M_MAX   118
272 #define IRONLAKE_LVDS_S_P_MIN   28
273 #define IRONLAKE_LVDS_S_P_MAX   112
274 #define IRONLAKE_LVDS_S_P1_MIN  2
275 #define IRONLAKE_LVDS_S_P1_MAX  8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN   1
281 #define IRONLAKE_LVDS_D_N_MAX   3
282 #define IRONLAKE_LVDS_D_M_MIN   79
283 #define IRONLAKE_LVDS_D_M_MAX   127
284 #define IRONLAKE_LVDS_D_P_MIN   14
285 #define IRONLAKE_LVDS_D_P_MAX   56
286 #define IRONLAKE_LVDS_D_P1_MIN  2
287 #define IRONLAKE_LVDS_D_P1_MAX  8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN               1
317 #define IRONLAKE_DP_N_MAX               2
318 #define IRONLAKE_DP_M_MIN               81
319 #define IRONLAKE_DP_M_MAX               90
320 #define IRONLAKE_DP_P_MIN               10
321 #define IRONLAKE_DP_P_MAX               20
322 #define IRONLAKE_DP_P2_FAST             10
323 #define IRONLAKE_DP_P2_SLOW             10
324 #define IRONLAKE_DP_P2_LIMIT            0
325 #define IRONLAKE_DP_P1_MIN              1
326 #define IRONLAKE_DP_P1_MAX              2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333                     int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336                         int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340                       int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343                            int target, int refclk, intel_clock_t *best_clock);
344
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
347 {
348         if (IS_GEN5(dev)) {
349                 struct drm_i915_private *dev_priv = dev->dev_private;
350                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
351         } else
352                 return 27;
353 }
354
355 static const intel_limit_t intel_limits_i8xx_dvo = {
356         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
357         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
358         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
359         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
360         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
361         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
362         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
363         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
364         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
365                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
366         .find_pll = intel_find_best_PLL,
367 };
368
369 static const intel_limit_t intel_limits_i8xx_lvds = {
370         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
371         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
372         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
373         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
374         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
375         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
376         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
377         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
378         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
379                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
380         .find_pll = intel_find_best_PLL,
381 };
382         
383 static const intel_limit_t intel_limits_i9xx_sdvo = {
384         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
385         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
386         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
387         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
388         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
389         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
390         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
391         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
392         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
393                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
394         .find_pll = intel_find_best_PLL,
395 };
396
397 static const intel_limit_t intel_limits_i9xx_lvds = {
398         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
399         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
400         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
401         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
402         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
403         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
404         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
405         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
406         /* The single-channel range is 25-112Mhz, and dual-channel
407          * is 80-224Mhz.  Prefer single channel as much as possible.
408          */
409         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
410                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
411         .find_pll = intel_find_best_PLL,
412 };
413
414     /* below parameter and function is for G4X Chipset Family*/
415 static const intel_limit_t intel_limits_g4x_sdvo = {
416         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
417         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
418         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
419         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
420         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
421         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
422         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
423         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
424         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
425                  .p2_slow = G4X_P2_SDVO_SLOW,
426                  .p2_fast = G4X_P2_SDVO_FAST
427         },
428         .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_hdmi = {
432         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
433         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
434         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
435         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
436         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
437         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
438         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
439         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
440         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
441                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
442                  .p2_fast = G4X_P2_HDMI_DAC_FAST
443         },
444         .find_pll = intel_g4x_find_best_PLL,
445 };
446
447 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
448         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
449                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
450         .vco = { .min = G4X_VCO_MIN,
451                  .max = G4X_VCO_MAX },
452         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
453                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
454         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
455                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
456         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
457                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
458         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
459                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
460         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
461                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
462         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
463                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
464         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
465                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
466                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
467         },
468         .find_pll = intel_g4x_find_best_PLL,
469 };
470
471 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
472         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
473                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
474         .vco = { .min = G4X_VCO_MIN,
475                  .max = G4X_VCO_MAX },
476         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
477                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
478         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
479                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
480         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
481                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
482         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
483                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
484         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
485                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
486         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
487                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
488         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
489                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
490                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
491         },
492         .find_pll = intel_g4x_find_best_PLL,
493 };
494
495 static const intel_limit_t intel_limits_g4x_display_port = {
496         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
497                  .max = G4X_DOT_DISPLAY_PORT_MAX },
498         .vco = { .min = G4X_VCO_MIN,
499                  .max = G4X_VCO_MAX},
500         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
501                  .max = G4X_N_DISPLAY_PORT_MAX },
502         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
503                  .max = G4X_M_DISPLAY_PORT_MAX },
504         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
505                  .max = G4X_M1_DISPLAY_PORT_MAX },
506         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
507                  .max = G4X_M2_DISPLAY_PORT_MAX },
508         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
509                  .max = G4X_P_DISPLAY_PORT_MAX },
510         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
511                  .max = G4X_P1_DISPLAY_PORT_MAX},
512         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
513                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
514                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
515         .find_pll = intel_find_pll_g4x_dp,
516 };
517
518 static const intel_limit_t intel_limits_pineview_sdvo = {
519         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
520         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
521         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
522         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
523         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
524         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
525         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
526         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
527         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
528                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
529         .find_pll = intel_find_best_PLL,
530 };
531
532 static const intel_limit_t intel_limits_pineview_lvds = {
533         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
534         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
535         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
536         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
537         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
538         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
539         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
540         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
541         /* Pineview only supports single-channel mode. */
542         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
543                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
544         .find_pll = intel_find_best_PLL,
545 };
546
547 static const intel_limit_t intel_limits_ironlake_dac = {
548         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
549         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
550         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
551         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
552         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
553         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
554         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
555         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
556         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
557                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
558                  .p2_fast = IRONLAKE_DAC_P2_FAST },
559         .find_pll = intel_g4x_find_best_PLL,
560 };
561
562 static const intel_limit_t intel_limits_ironlake_single_lvds = {
563         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
564         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
565         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
566         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
567         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
568         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
569         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
570         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
571         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
572                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
573                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
574         .find_pll = intel_g4x_find_best_PLL,
575 };
576
577 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
578         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
579         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
580         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
581         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
582         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
583         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
584         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
585         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
586         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
587                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
588                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
589         .find_pll = intel_g4x_find_best_PLL,
590 };
591
592 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
593         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
594         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
595         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
596         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
597         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
598         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
599         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
600         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
601         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
602                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
603                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
604         .find_pll = intel_g4x_find_best_PLL,
605 };
606
607 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
608         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
609         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
610         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
611         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
612         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
613         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
614         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
615         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
616         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
617                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
618                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
619         .find_pll = intel_g4x_find_best_PLL,
620 };
621
622 static const intel_limit_t intel_limits_ironlake_display_port = {
623         .dot = { .min = IRONLAKE_DOT_MIN,
624                  .max = IRONLAKE_DOT_MAX },
625         .vco = { .min = IRONLAKE_VCO_MIN,
626                  .max = IRONLAKE_VCO_MAX},
627         .n   = { .min = IRONLAKE_DP_N_MIN,
628                  .max = IRONLAKE_DP_N_MAX },
629         .m   = { .min = IRONLAKE_DP_M_MIN,
630                  .max = IRONLAKE_DP_M_MAX },
631         .m1  = { .min = IRONLAKE_M1_MIN,
632                  .max = IRONLAKE_M1_MAX },
633         .m2  = { .min = IRONLAKE_M2_MIN,
634                  .max = IRONLAKE_M2_MAX },
635         .p   = { .min = IRONLAKE_DP_P_MIN,
636                  .max = IRONLAKE_DP_P_MAX },
637         .p1  = { .min = IRONLAKE_DP_P1_MIN,
638                  .max = IRONLAKE_DP_P1_MAX},
639         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
640                  .p2_slow = IRONLAKE_DP_P2_SLOW,
641                  .p2_fast = IRONLAKE_DP_P2_FAST },
642         .find_pll = intel_find_pll_ironlake_dp,
643 };
644
645 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
646 {
647         struct drm_device *dev = crtc->dev;
648         struct drm_i915_private *dev_priv = dev->dev_private;
649         const intel_limit_t *limit;
650         int refclk = 120;
651
652         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
654                         refclk = 100;
655
656                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
657                     LVDS_CLKB_POWER_UP) {
658                         /* LVDS dual channel */
659                         if (refclk == 100)
660                                 limit = &intel_limits_ironlake_dual_lvds_100m;
661                         else
662                                 limit = &intel_limits_ironlake_dual_lvds;
663                 } else {
664                         if (refclk == 100)
665                                 limit = &intel_limits_ironlake_single_lvds_100m;
666                         else
667                                 limit = &intel_limits_ironlake_single_lvds;
668                 }
669         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
670                         HAS_eDP)
671                 limit = &intel_limits_ironlake_display_port;
672         else
673                 limit = &intel_limits_ironlake_dac;
674
675         return limit;
676 }
677
678 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
679 {
680         struct drm_device *dev = crtc->dev;
681         struct drm_i915_private *dev_priv = dev->dev_private;
682         const intel_limit_t *limit;
683
684         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
685                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
686                     LVDS_CLKB_POWER_UP)
687                         /* LVDS with dual channel */
688                         limit = &intel_limits_g4x_dual_channel_lvds;
689                 else
690                         /* LVDS with dual channel */
691                         limit = &intel_limits_g4x_single_channel_lvds;
692         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
693                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
694                 limit = &intel_limits_g4x_hdmi;
695         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
696                 limit = &intel_limits_g4x_sdvo;
697         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
698                 limit = &intel_limits_g4x_display_port;
699         } else /* The option is for other outputs */
700                 limit = &intel_limits_i9xx_sdvo;
701
702         return limit;
703 }
704
705 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
706 {
707         struct drm_device *dev = crtc->dev;
708         const intel_limit_t *limit;
709
710         if (HAS_PCH_SPLIT(dev))
711                 limit = intel_ironlake_limit(crtc);
712         else if (IS_G4X(dev)) {
713                 limit = intel_g4x_limit(crtc);
714         } else if (IS_PINEVIEW(dev)) {
715                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
716                         limit = &intel_limits_pineview_lvds;
717                 else
718                         limit = &intel_limits_pineview_sdvo;
719         } else if (!IS_GEN2(dev)) {
720                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
721                         limit = &intel_limits_i9xx_lvds;
722                 else
723                         limit = &intel_limits_i9xx_sdvo;
724         } else {
725                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
726                         limit = &intel_limits_i8xx_lvds;
727                 else
728                         limit = &intel_limits_i8xx_dvo;
729         }
730         return limit;
731 }
732
733 /* m1 is reserved as 0 in Pineview, n is a ring counter */
734 static void pineview_clock(int refclk, intel_clock_t *clock)
735 {
736         clock->m = clock->m2 + 2;
737         clock->p = clock->p1 * clock->p2;
738         clock->vco = refclk * clock->m / clock->n;
739         clock->dot = clock->vco / clock->p;
740 }
741
742 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
743 {
744         if (IS_PINEVIEW(dev)) {
745                 pineview_clock(refclk, clock);
746                 return;
747         }
748         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
749         clock->p = clock->p1 * clock->p2;
750         clock->vco = refclk * clock->m / (clock->n + 2);
751         clock->dot = clock->vco / clock->p;
752 }
753
754 /**
755  * Returns whether any output on the specified pipe is of the specified type
756  */
757 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
758 {
759         struct drm_device *dev = crtc->dev;
760         struct drm_mode_config *mode_config = &dev->mode_config;
761         struct intel_encoder *encoder;
762
763         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
764                 if (encoder->base.crtc == crtc && encoder->type == type)
765                         return true;
766
767         return false;
768 }
769
770 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
771 /**
772  * Returns whether the given set of divisors are valid for a given refclk with
773  * the given connectors.
774  */
775
776 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
777 {
778         const intel_limit_t *limit = intel_limit (crtc);
779         struct drm_device *dev = crtc->dev;
780
781         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
782                 INTELPllInvalid ("p1 out of range\n");
783         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
784                 INTELPllInvalid ("p out of range\n");
785         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
786                 INTELPllInvalid ("m2 out of range\n");
787         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
788                 INTELPllInvalid ("m1 out of range\n");
789         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
790                 INTELPllInvalid ("m1 <= m2\n");
791         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
792                 INTELPllInvalid ("m out of range\n");
793         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
794                 INTELPllInvalid ("n out of range\n");
795         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
796                 INTELPllInvalid ("vco out of range\n");
797         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
798          * connector, etc., rather than just a single range.
799          */
800         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
801                 INTELPllInvalid ("dot out of range\n");
802
803         return true;
804 }
805
806 static bool
807 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
808                     int target, int refclk, intel_clock_t *best_clock)
809
810 {
811         struct drm_device *dev = crtc->dev;
812         struct drm_i915_private *dev_priv = dev->dev_private;
813         intel_clock_t clock;
814         int err = target;
815
816         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
817             (I915_READ(LVDS)) != 0) {
818                 /*
819                  * For LVDS, if the panel is on, just rely on its current
820                  * settings for dual-channel.  We haven't figured out how to
821                  * reliably set up different single/dual channel state, if we
822                  * even can.
823                  */
824                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
825                     LVDS_CLKB_POWER_UP)
826                         clock.p2 = limit->p2.p2_fast;
827                 else
828                         clock.p2 = limit->p2.p2_slow;
829         } else {
830                 if (target < limit->p2.dot_limit)
831                         clock.p2 = limit->p2.p2_slow;
832                 else
833                         clock.p2 = limit->p2.p2_fast;
834         }
835
836         memset (best_clock, 0, sizeof (*best_clock));
837
838         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
839              clock.m1++) {
840                 for (clock.m2 = limit->m2.min;
841                      clock.m2 <= limit->m2.max; clock.m2++) {
842                         /* m1 is always 0 in Pineview */
843                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
844                                 break;
845                         for (clock.n = limit->n.min;
846                              clock.n <= limit->n.max; clock.n++) {
847                                 for (clock.p1 = limit->p1.min;
848                                         clock.p1 <= limit->p1.max; clock.p1++) {
849                                         int this_err;
850
851                                         intel_clock(dev, refclk, &clock);
852
853                                         if (!intel_PLL_is_valid(crtc, &clock))
854                                                 continue;
855
856                                         this_err = abs(clock.dot - target);
857                                         if (this_err < err) {
858                                                 *best_clock = clock;
859                                                 err = this_err;
860                                         }
861                                 }
862                         }
863                 }
864         }
865
866         return (err != target);
867 }
868
869 static bool
870 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
871                         int target, int refclk, intel_clock_t *best_clock)
872 {
873         struct drm_device *dev = crtc->dev;
874         struct drm_i915_private *dev_priv = dev->dev_private;
875         intel_clock_t clock;
876         int max_n;
877         bool found;
878         /* approximately equals target * 0.00585 */
879         int err_most = (target >> 8) + (target >> 9);
880         found = false;
881
882         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
883                 int lvds_reg;
884
885                 if (HAS_PCH_SPLIT(dev))
886                         lvds_reg = PCH_LVDS;
887                 else
888                         lvds_reg = LVDS;
889                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
890                     LVDS_CLKB_POWER_UP)
891                         clock.p2 = limit->p2.p2_fast;
892                 else
893                         clock.p2 = limit->p2.p2_slow;
894         } else {
895                 if (target < limit->p2.dot_limit)
896                         clock.p2 = limit->p2.p2_slow;
897                 else
898                         clock.p2 = limit->p2.p2_fast;
899         }
900
901         memset(best_clock, 0, sizeof(*best_clock));
902         max_n = limit->n.max;
903         /* based on hardware requirement, prefer smaller n to precision */
904         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
905                 /* based on hardware requirement, prefere larger m1,m2 */
906                 for (clock.m1 = limit->m1.max;
907                      clock.m1 >= limit->m1.min; clock.m1--) {
908                         for (clock.m2 = limit->m2.max;
909                              clock.m2 >= limit->m2.min; clock.m2--) {
910                                 for (clock.p1 = limit->p1.max;
911                                      clock.p1 >= limit->p1.min; clock.p1--) {
912                                         int this_err;
913
914                                         intel_clock(dev, refclk, &clock);
915                                         if (!intel_PLL_is_valid(crtc, &clock))
916                                                 continue;
917                                         this_err = abs(clock.dot - target) ;
918                                         if (this_err < err_most) {
919                                                 *best_clock = clock;
920                                                 err_most = this_err;
921                                                 max_n = clock.n;
922                                                 found = true;
923                                         }
924                                 }
925                         }
926                 }
927         }
928         return found;
929 }
930
931 static bool
932 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
933                            int target, int refclk, intel_clock_t *best_clock)
934 {
935         struct drm_device *dev = crtc->dev;
936         intel_clock_t clock;
937
938         if (target < 200000) {
939                 clock.n = 1;
940                 clock.p1 = 2;
941                 clock.p2 = 10;
942                 clock.m1 = 12;
943                 clock.m2 = 9;
944         } else {
945                 clock.n = 2;
946                 clock.p1 = 1;
947                 clock.p2 = 10;
948                 clock.m1 = 14;
949                 clock.m2 = 8;
950         }
951         intel_clock(dev, refclk, &clock);
952         memcpy(best_clock, &clock, sizeof(intel_clock_t));
953         return true;
954 }
955
956 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
957 static bool
958 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
959                       int target, int refclk, intel_clock_t *best_clock)
960 {
961         intel_clock_t clock;
962         if (target < 200000) {
963                 clock.p1 = 2;
964                 clock.p2 = 10;
965                 clock.n = 2;
966                 clock.m1 = 23;
967                 clock.m2 = 8;
968         } else {
969                 clock.p1 = 1;
970                 clock.p2 = 10;
971                 clock.n = 1;
972                 clock.m1 = 14;
973                 clock.m2 = 2;
974         }
975         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
976         clock.p = (clock.p1 * clock.p2);
977         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
978         clock.vco = 0;
979         memcpy(best_clock, &clock, sizeof(intel_clock_t));
980         return true;
981 }
982
983 /**
984  * intel_wait_for_vblank - wait for vblank on a given pipe
985  * @dev: drm device
986  * @pipe: pipe to wait for
987  *
988  * Wait for vblank to occur on a given pipe.  Needed for various bits of
989  * mode setting code.
990  */
991 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
992 {
993         struct drm_i915_private *dev_priv = dev->dev_private;
994         int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
995
996         /* Clear existing vblank status. Note this will clear any other
997          * sticky status fields as well.
998          *
999          * This races with i915_driver_irq_handler() with the result
1000          * that either function could miss a vblank event.  Here it is not
1001          * fatal, as we will either wait upon the next vblank interrupt or
1002          * timeout.  Generally speaking intel_wait_for_vblank() is only
1003          * called during modeset at which time the GPU should be idle and
1004          * should *not* be performing page flips and thus not waiting on
1005          * vblanks...
1006          * Currently, the result of us stealing a vblank from the irq
1007          * handler is that a single frame will be skipped during swapbuffers.
1008          */
1009         I915_WRITE(pipestat_reg,
1010                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1011
1012         /* Wait for vblank interrupt bit to set */
1013         if (wait_for(I915_READ(pipestat_reg) &
1014                      PIPE_VBLANK_INTERRUPT_STATUS,
1015                      50))
1016                 DRM_DEBUG_KMS("vblank wait timed out\n");
1017 }
1018
1019 /*
1020  * intel_wait_for_pipe_off - wait for pipe to turn off
1021  * @dev: drm device
1022  * @pipe: pipe to wait for
1023  *
1024  * After disabling a pipe, we can't wait for vblank in the usual way,
1025  * spinning on the vblank interrupt status bit, since we won't actually
1026  * see an interrupt when the pipe is disabled.
1027  *
1028  * On Gen4 and above:
1029  *   wait for the pipe register state bit to turn off
1030  *
1031  * Otherwise:
1032  *   wait for the display line value to settle (it usually
1033  *   ends up stopping at the start of the next frame).
1034  *
1035  */
1036 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1037 {
1038         struct drm_i915_private *dev_priv = dev->dev_private;
1039
1040         if (INTEL_INFO(dev)->gen >= 4) {
1041                 int reg = PIPECONF(pipe);
1042
1043                 /* Wait for the Pipe State to go off */
1044                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1045                              100))
1046                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1047         } else {
1048                 u32 last_line;
1049                 int reg = PIPEDSL(pipe);
1050                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1051
1052                 /* Wait for the display line to settle */
1053                 do {
1054                         last_line = I915_READ(reg) & DSL_LINEMASK;
1055                         mdelay(5);
1056                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1057                          time_after(timeout, jiffies));
1058                 if (time_after(jiffies, timeout))
1059                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1060         }
1061 }
1062
1063 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1064 {
1065         struct drm_device *dev = crtc->dev;
1066         struct drm_i915_private *dev_priv = dev->dev_private;
1067         struct drm_framebuffer *fb = crtc->fb;
1068         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1069         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1070         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1071         int plane, i;
1072         u32 fbc_ctl, fbc_ctl2;
1073
1074         if (fb->pitch == dev_priv->cfb_pitch &&
1075             obj_priv->fence_reg == dev_priv->cfb_fence &&
1076             intel_crtc->plane == dev_priv->cfb_plane &&
1077             I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1078                 return;
1079
1080         i8xx_disable_fbc(dev);
1081
1082         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1083
1084         if (fb->pitch < dev_priv->cfb_pitch)
1085                 dev_priv->cfb_pitch = fb->pitch;
1086
1087         /* FBC_CTL wants 64B units */
1088         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1089         dev_priv->cfb_fence = obj_priv->fence_reg;
1090         dev_priv->cfb_plane = intel_crtc->plane;
1091         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1092
1093         /* Clear old tags */
1094         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1095                 I915_WRITE(FBC_TAG + (i * 4), 0);
1096
1097         /* Set it up... */
1098         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1099         if (obj_priv->tiling_mode != I915_TILING_NONE)
1100                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1101         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1102         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1103
1104         /* enable it... */
1105         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1106         if (IS_I945GM(dev))
1107                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1108         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1109         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1110         if (obj_priv->tiling_mode != I915_TILING_NONE)
1111                 fbc_ctl |= dev_priv->cfb_fence;
1112         I915_WRITE(FBC_CONTROL, fbc_ctl);
1113
1114         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1115                       dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1116 }
1117
1118 void i8xx_disable_fbc(struct drm_device *dev)
1119 {
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121         u32 fbc_ctl;
1122
1123         /* Disable compression */
1124         fbc_ctl = I915_READ(FBC_CONTROL);
1125         if ((fbc_ctl & FBC_CTL_EN) == 0)
1126                 return;
1127
1128         fbc_ctl &= ~FBC_CTL_EN;
1129         I915_WRITE(FBC_CONTROL, fbc_ctl);
1130
1131         /* Wait for compressing bit to clear */
1132         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1133                 DRM_DEBUG_KMS("FBC idle timed out\n");
1134                 return;
1135         }
1136
1137         DRM_DEBUG_KMS("disabled FBC\n");
1138 }
1139
1140 static bool i8xx_fbc_enabled(struct drm_device *dev)
1141 {
1142         struct drm_i915_private *dev_priv = dev->dev_private;
1143
1144         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1145 }
1146
1147 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1148 {
1149         struct drm_device *dev = crtc->dev;
1150         struct drm_i915_private *dev_priv = dev->dev_private;
1151         struct drm_framebuffer *fb = crtc->fb;
1152         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1153         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1154         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1155         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1156         unsigned long stall_watermark = 200;
1157         u32 dpfc_ctl;
1158
1159         dpfc_ctl = I915_READ(DPFC_CONTROL);
1160         if (dpfc_ctl & DPFC_CTL_EN) {
1161                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1162                     dev_priv->cfb_fence == obj_priv->fence_reg &&
1163                     dev_priv->cfb_plane == intel_crtc->plane &&
1164                     dev_priv->cfb_y == crtc->y)
1165                         return;
1166
1167                 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1168                 POSTING_READ(DPFC_CONTROL);
1169                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1170         }
1171
1172         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1173         dev_priv->cfb_fence = obj_priv->fence_reg;
1174         dev_priv->cfb_plane = intel_crtc->plane;
1175         dev_priv->cfb_y = crtc->y;
1176
1177         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1178         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1179                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1180                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1181         } else {
1182                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1183         }
1184
1185         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1186                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1187                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1188         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1189
1190         /* enable it... */
1191         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1192
1193         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1194 }
1195
1196 void g4x_disable_fbc(struct drm_device *dev)
1197 {
1198         struct drm_i915_private *dev_priv = dev->dev_private;
1199         u32 dpfc_ctl;
1200
1201         /* Disable compression */
1202         dpfc_ctl = I915_READ(DPFC_CONTROL);
1203         if (dpfc_ctl & DPFC_CTL_EN) {
1204                 dpfc_ctl &= ~DPFC_CTL_EN;
1205                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1206
1207                 DRM_DEBUG_KMS("disabled FBC\n");
1208         }
1209 }
1210
1211 static bool g4x_fbc_enabled(struct drm_device *dev)
1212 {
1213         struct drm_i915_private *dev_priv = dev->dev_private;
1214
1215         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1216 }
1217
1218 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1219 {
1220         struct drm_device *dev = crtc->dev;
1221         struct drm_i915_private *dev_priv = dev->dev_private;
1222         struct drm_framebuffer *fb = crtc->fb;
1223         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1224         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1225         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1226         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1227         unsigned long stall_watermark = 200;
1228         u32 dpfc_ctl;
1229
1230         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1231         if (dpfc_ctl & DPFC_CTL_EN) {
1232                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1233                     dev_priv->cfb_fence == obj_priv->fence_reg &&
1234                     dev_priv->cfb_plane == intel_crtc->plane &&
1235                     dev_priv->cfb_offset == obj_priv->gtt_offset &&
1236                     dev_priv->cfb_y == crtc->y)
1237                         return;
1238
1239                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1240                 POSTING_READ(ILK_DPFC_CONTROL);
1241                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1242         }
1243
1244         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1245         dev_priv->cfb_fence = obj_priv->fence_reg;
1246         dev_priv->cfb_plane = intel_crtc->plane;
1247         dev_priv->cfb_offset = obj_priv->gtt_offset;
1248         dev_priv->cfb_y = crtc->y;
1249
1250         dpfc_ctl &= DPFC_RESERVED;
1251         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1252         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1253                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1254                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1255         } else {
1256                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1257         }
1258
1259         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1260                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1261                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1262         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1263         I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1264         /* enable it... */
1265         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1266
1267         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1268 }
1269
1270 void ironlake_disable_fbc(struct drm_device *dev)
1271 {
1272         struct drm_i915_private *dev_priv = dev->dev_private;
1273         u32 dpfc_ctl;
1274
1275         /* Disable compression */
1276         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1277         if (dpfc_ctl & DPFC_CTL_EN) {
1278                 dpfc_ctl &= ~DPFC_CTL_EN;
1279                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1280
1281                 DRM_DEBUG_KMS("disabled FBC\n");
1282         }
1283 }
1284
1285 static bool ironlake_fbc_enabled(struct drm_device *dev)
1286 {
1287         struct drm_i915_private *dev_priv = dev->dev_private;
1288
1289         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1290 }
1291
1292 bool intel_fbc_enabled(struct drm_device *dev)
1293 {
1294         struct drm_i915_private *dev_priv = dev->dev_private;
1295
1296         if (!dev_priv->display.fbc_enabled)
1297                 return false;
1298
1299         return dev_priv->display.fbc_enabled(dev);
1300 }
1301
1302 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1303 {
1304         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1305
1306         if (!dev_priv->display.enable_fbc)
1307                 return;
1308
1309         dev_priv->display.enable_fbc(crtc, interval);
1310 }
1311
1312 void intel_disable_fbc(struct drm_device *dev)
1313 {
1314         struct drm_i915_private *dev_priv = dev->dev_private;
1315
1316         if (!dev_priv->display.disable_fbc)
1317                 return;
1318
1319         dev_priv->display.disable_fbc(dev);
1320 }
1321
1322 /**
1323  * intel_update_fbc - enable/disable FBC as needed
1324  * @dev: the drm_device
1325  *
1326  * Set up the framebuffer compression hardware at mode set time.  We
1327  * enable it if possible:
1328  *   - plane A only (on pre-965)
1329  *   - no pixel mulitply/line duplication
1330  *   - no alpha buffer discard
1331  *   - no dual wide
1332  *   - framebuffer <= 2048 in width, 1536 in height
1333  *
1334  * We can't assume that any compression will take place (worst case),
1335  * so the compressed buffer has to be the same size as the uncompressed
1336  * one.  It also must reside (along with the line length buffer) in
1337  * stolen memory.
1338  *
1339  * We need to enable/disable FBC on a global basis.
1340  */
1341 static void intel_update_fbc(struct drm_device *dev)
1342 {
1343         struct drm_i915_private *dev_priv = dev->dev_private;
1344         struct drm_crtc *crtc = NULL, *tmp_crtc;
1345         struct intel_crtc *intel_crtc;
1346         struct drm_framebuffer *fb;
1347         struct intel_framebuffer *intel_fb;
1348         struct drm_i915_gem_object *obj_priv;
1349
1350         DRM_DEBUG_KMS("\n");
1351
1352         if (!i915_powersave)
1353                 return;
1354
1355         if (!I915_HAS_FBC(dev))
1356                 return;
1357
1358         /*
1359          * If FBC is already on, we just have to verify that we can
1360          * keep it that way...
1361          * Need to disable if:
1362          *   - more than one pipe is active
1363          *   - changing FBC params (stride, fence, mode)
1364          *   - new fb is too large to fit in compressed buffer
1365          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1366          */
1367         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1368                 if (tmp_crtc->enabled) {
1369                         if (crtc) {
1370                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1371                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1372                                 goto out_disable;
1373                         }
1374                         crtc = tmp_crtc;
1375                 }
1376         }
1377
1378         if (!crtc || crtc->fb == NULL) {
1379                 DRM_DEBUG_KMS("no output, disabling\n");
1380                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1381                 goto out_disable;
1382         }
1383
1384         intel_crtc = to_intel_crtc(crtc);
1385         fb = crtc->fb;
1386         intel_fb = to_intel_framebuffer(fb);
1387         obj_priv = to_intel_bo(intel_fb->obj);
1388
1389         if (intel_fb->obj->size > dev_priv->cfb_size) {
1390                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1391                               "compression\n");
1392                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1393                 goto out_disable;
1394         }
1395         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1396             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1397                 DRM_DEBUG_KMS("mode incompatible with compression, "
1398                               "disabling\n");
1399                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1400                 goto out_disable;
1401         }
1402         if ((crtc->mode.hdisplay > 2048) ||
1403             (crtc->mode.vdisplay > 1536)) {
1404                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1405                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1406                 goto out_disable;
1407         }
1408         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1409                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1410                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1411                 goto out_disable;
1412         }
1413         if (obj_priv->tiling_mode != I915_TILING_X) {
1414                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1415                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1416                 goto out_disable;
1417         }
1418
1419         /* If the kernel debugger is active, always disable compression */
1420         if (in_dbg_master())
1421                 goto out_disable;
1422
1423         intel_enable_fbc(crtc, 500);
1424         return;
1425
1426 out_disable:
1427         /* Multiple disables should be harmless */
1428         if (intel_fbc_enabled(dev)) {
1429                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1430                 intel_disable_fbc(dev);
1431         }
1432 }
1433
1434 int
1435 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1436                            struct drm_gem_object *obj,
1437                            bool pipelined)
1438 {
1439         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1440         u32 alignment;
1441         int ret;
1442
1443         switch (obj_priv->tiling_mode) {
1444         case I915_TILING_NONE:
1445                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1446                         alignment = 128 * 1024;
1447                 else if (INTEL_INFO(dev)->gen >= 4)
1448                         alignment = 4 * 1024;
1449                 else
1450                         alignment = 64 * 1024;
1451                 break;
1452         case I915_TILING_X:
1453                 /* pin() will align the object as required by fence */
1454                 alignment = 0;
1455                 break;
1456         case I915_TILING_Y:
1457                 /* FIXME: Is this true? */
1458                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1459                 return -EINVAL;
1460         default:
1461                 BUG();
1462         }
1463
1464         ret = i915_gem_object_pin(obj, alignment);
1465         if (ret)
1466                 return ret;
1467
1468         ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1469         if (ret)
1470                 goto err_unpin;
1471
1472         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1473          * fence, whereas 965+ only requires a fence if using
1474          * framebuffer compression.  For simplicity, we always install
1475          * a fence as the cost is not that onerous.
1476          */
1477         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1478             obj_priv->tiling_mode != I915_TILING_NONE) {
1479                 ret = i915_gem_object_get_fence_reg(obj, false);
1480                 if (ret)
1481                         goto err_unpin;
1482         }
1483
1484         return 0;
1485
1486 err_unpin:
1487         i915_gem_object_unpin(obj);
1488         return ret;
1489 }
1490
1491 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1492 static int
1493 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1494                            int x, int y, enum mode_set_atomic state)
1495 {
1496         struct drm_device *dev = crtc->dev;
1497         struct drm_i915_private *dev_priv = dev->dev_private;
1498         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1499         struct intel_framebuffer *intel_fb;
1500         struct drm_i915_gem_object *obj_priv;
1501         struct drm_gem_object *obj;
1502         int plane = intel_crtc->plane;
1503         unsigned long Start, Offset;
1504         u32 dspcntr;
1505         u32 reg;
1506
1507         switch (plane) {
1508         case 0:
1509         case 1:
1510                 break;
1511         default:
1512                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1513                 return -EINVAL;
1514         }
1515
1516         intel_fb = to_intel_framebuffer(fb);
1517         obj = intel_fb->obj;
1518         obj_priv = to_intel_bo(obj);
1519
1520         reg = DSPCNTR(plane);
1521         dspcntr = I915_READ(reg);
1522         /* Mask out pixel format bits in case we change it */
1523         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1524         switch (fb->bits_per_pixel) {
1525         case 8:
1526                 dspcntr |= DISPPLANE_8BPP;
1527                 break;
1528         case 16:
1529                 if (fb->depth == 15)
1530                         dspcntr |= DISPPLANE_15_16BPP;
1531                 else
1532                         dspcntr |= DISPPLANE_16BPP;
1533                 break;
1534         case 24:
1535         case 32:
1536                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1537                 break;
1538         default:
1539                 DRM_ERROR("Unknown color depth\n");
1540                 return -EINVAL;
1541         }
1542         if (INTEL_INFO(dev)->gen >= 4) {
1543                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1544                         dspcntr |= DISPPLANE_TILED;
1545                 else
1546                         dspcntr &= ~DISPPLANE_TILED;
1547         }
1548
1549         if (HAS_PCH_SPLIT(dev))
1550                 /* must disable */
1551                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1552
1553         I915_WRITE(reg, dspcntr);
1554
1555         Start = obj_priv->gtt_offset;
1556         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1557
1558         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1559                       Start, Offset, x, y, fb->pitch);
1560         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1561         if (INTEL_INFO(dev)->gen >= 4) {
1562                 I915_WRITE(DSPSURF(plane), Start);
1563                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1564                 I915_WRITE(DSPADDR(plane), Offset);
1565         } else
1566                 I915_WRITE(DSPADDR(plane), Start + Offset);
1567         POSTING_READ(reg);
1568
1569         intel_update_fbc(dev);
1570         intel_increase_pllclock(crtc);
1571
1572         return 0;
1573 }
1574
1575 static int
1576 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1577                     struct drm_framebuffer *old_fb)
1578 {
1579         struct drm_device *dev = crtc->dev;
1580         struct drm_i915_master_private *master_priv;
1581         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1582         int ret;
1583
1584         /* no fb bound */
1585         if (!crtc->fb) {
1586                 DRM_DEBUG_KMS("No FB bound\n");
1587                 return 0;
1588         }
1589
1590         switch (intel_crtc->plane) {
1591         case 0:
1592         case 1:
1593                 break;
1594         default:
1595                 return -EINVAL;
1596         }
1597
1598         mutex_lock(&dev->struct_mutex);
1599         ret = intel_pin_and_fence_fb_obj(dev,
1600                                          to_intel_framebuffer(crtc->fb)->obj,
1601                                          false);
1602         if (ret != 0) {
1603                 mutex_unlock(&dev->struct_mutex);
1604                 return ret;
1605         }
1606
1607         if (old_fb) {
1608                 struct drm_i915_private *dev_priv = dev->dev_private;
1609                 struct drm_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1610                 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1611
1612                 wait_event(dev_priv->pending_flip_queue,
1613                            atomic_read(&obj_priv->pending_flip) == 0);
1614         }
1615
1616         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1617                                          LEAVE_ATOMIC_MODE_SET);
1618         if (ret) {
1619                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1620                 mutex_unlock(&dev->struct_mutex);
1621                 return ret;
1622         }
1623
1624         if (old_fb)
1625                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1626
1627         mutex_unlock(&dev->struct_mutex);
1628
1629         if (!dev->primary->master)
1630                 return 0;
1631
1632         master_priv = dev->primary->master->driver_priv;
1633         if (!master_priv->sarea_priv)
1634                 return 0;
1635
1636         if (intel_crtc->pipe) {
1637                 master_priv->sarea_priv->pipeB_x = x;
1638                 master_priv->sarea_priv->pipeB_y = y;
1639         } else {
1640                 master_priv->sarea_priv->pipeA_x = x;
1641                 master_priv->sarea_priv->pipeA_y = y;
1642         }
1643
1644         return 0;
1645 }
1646
1647 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1648 {
1649         struct drm_device *dev = crtc->dev;
1650         struct drm_i915_private *dev_priv = dev->dev_private;
1651         u32 dpa_ctl;
1652
1653         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1654         dpa_ctl = I915_READ(DP_A);
1655         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1656
1657         if (clock < 200000) {
1658                 u32 temp;
1659                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1660                 /* workaround for 160Mhz:
1661                    1) program 0x4600c bits 15:0 = 0x8124
1662                    2) program 0x46010 bit 0 = 1
1663                    3) program 0x46034 bit 24 = 1
1664                    4) program 0x64000 bit 14 = 1
1665                    */
1666                 temp = I915_READ(0x4600c);
1667                 temp &= 0xffff0000;
1668                 I915_WRITE(0x4600c, temp | 0x8124);
1669
1670                 temp = I915_READ(0x46010);
1671                 I915_WRITE(0x46010, temp | 1);
1672
1673                 temp = I915_READ(0x46034);
1674                 I915_WRITE(0x46034, temp | (1 << 24));
1675         } else {
1676                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1677         }
1678         I915_WRITE(DP_A, dpa_ctl);
1679
1680         POSTING_READ(DP_A);
1681         udelay(500);
1682 }
1683
1684 /* The FDI link training functions for ILK/Ibexpeak. */
1685 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1686 {
1687         struct drm_device *dev = crtc->dev;
1688         struct drm_i915_private *dev_priv = dev->dev_private;
1689         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1690         int pipe = intel_crtc->pipe;
1691         u32 reg, temp, tries;
1692
1693         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1694            for train result */
1695         reg = FDI_RX_IMR(pipe);
1696         temp = I915_READ(reg);
1697         temp &= ~FDI_RX_SYMBOL_LOCK;
1698         temp &= ~FDI_RX_BIT_LOCK;
1699         I915_WRITE(reg, temp);
1700         I915_READ(reg);
1701         udelay(150);
1702
1703         /* enable CPU FDI TX and PCH FDI RX */
1704         reg = FDI_TX_CTL(pipe);
1705         temp = I915_READ(reg);
1706         temp &= ~(7 << 19);
1707         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1708         temp &= ~FDI_LINK_TRAIN_NONE;
1709         temp |= FDI_LINK_TRAIN_PATTERN_1;
1710         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1711
1712         reg = FDI_RX_CTL(pipe);
1713         temp = I915_READ(reg);
1714         temp &= ~FDI_LINK_TRAIN_NONE;
1715         temp |= FDI_LINK_TRAIN_PATTERN_1;
1716         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1717
1718         POSTING_READ(reg);
1719         udelay(150);
1720
1721         /* Ironlake workaround, enable clock pointer after FDI enable*/
1722         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_ENABLE);
1723
1724         reg = FDI_RX_IIR(pipe);
1725         for (tries = 0; tries < 5; tries++) {
1726                 temp = I915_READ(reg);
1727                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1728
1729                 if ((temp & FDI_RX_BIT_LOCK)) {
1730                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1731                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1732                         break;
1733                 }
1734         }
1735         if (tries == 5)
1736                 DRM_ERROR("FDI train 1 fail!\n");
1737
1738         /* Train 2 */
1739         reg = FDI_TX_CTL(pipe);
1740         temp = I915_READ(reg);
1741         temp &= ~FDI_LINK_TRAIN_NONE;
1742         temp |= FDI_LINK_TRAIN_PATTERN_2;
1743         I915_WRITE(reg, temp);
1744
1745         reg = FDI_RX_CTL(pipe);
1746         temp = I915_READ(reg);
1747         temp &= ~FDI_LINK_TRAIN_NONE;
1748         temp |= FDI_LINK_TRAIN_PATTERN_2;
1749         I915_WRITE(reg, temp);
1750
1751         POSTING_READ(reg);
1752         udelay(150);
1753
1754         reg = FDI_RX_IIR(pipe);
1755         for (tries = 0; tries < 5; tries++) {
1756                 temp = I915_READ(reg);
1757                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1758
1759                 if (temp & FDI_RX_SYMBOL_LOCK) {
1760                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1761                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1762                         break;
1763                 }
1764         }
1765         if (tries == 5)
1766                 DRM_ERROR("FDI train 2 fail!\n");
1767
1768         DRM_DEBUG_KMS("FDI train done\n");
1769
1770         /* enable normal train */
1771         reg = FDI_TX_CTL(pipe);
1772         temp = I915_READ(reg);
1773         temp &= ~FDI_LINK_TRAIN_NONE;
1774         temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1775         I915_WRITE(reg, temp);
1776
1777         reg = FDI_RX_CTL(pipe);
1778         temp = I915_READ(reg);
1779         if (HAS_PCH_CPT(dev)) {
1780                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1781                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1782         } else {
1783                 temp &= ~FDI_LINK_TRAIN_NONE;
1784                 temp |= FDI_LINK_TRAIN_NONE;
1785         }
1786         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1787
1788         /* wait one idle pattern time */
1789         POSTING_READ(reg);
1790         udelay(1000);
1791 }
1792
1793 static const int const snb_b_fdi_train_param [] = {
1794         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1795         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1796         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1797         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1798 };
1799
1800 /* The FDI link training functions for SNB/Cougarpoint. */
1801 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1802 {
1803         struct drm_device *dev = crtc->dev;
1804         struct drm_i915_private *dev_priv = dev->dev_private;
1805         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1806         int pipe = intel_crtc->pipe;
1807         u32 reg, temp, i;
1808
1809         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1810            for train result */
1811         reg = FDI_RX_IMR(pipe);
1812         temp = I915_READ(reg);
1813         temp &= ~FDI_RX_SYMBOL_LOCK;
1814         temp &= ~FDI_RX_BIT_LOCK;
1815         I915_WRITE(reg, temp);
1816
1817         POSTING_READ(reg);
1818         udelay(150);
1819
1820         /* enable CPU FDI TX and PCH FDI RX */
1821         reg = FDI_TX_CTL(pipe);
1822         temp = I915_READ(reg);
1823         temp &= ~(7 << 19);
1824         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1825         temp &= ~FDI_LINK_TRAIN_NONE;
1826         temp |= FDI_LINK_TRAIN_PATTERN_1;
1827         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1828         /* SNB-B */
1829         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1830         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1831
1832         reg = FDI_RX_CTL(pipe);
1833         temp = I915_READ(reg);
1834         if (HAS_PCH_CPT(dev)) {
1835                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1836                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1837         } else {
1838                 temp &= ~FDI_LINK_TRAIN_NONE;
1839                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1840         }
1841         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1842
1843         POSTING_READ(reg);
1844         udelay(150);
1845
1846         for (i = 0; i < 4; i++ ) {
1847                 reg = FDI_TX_CTL(pipe);
1848                 temp = I915_READ(reg);
1849                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1850                 temp |= snb_b_fdi_train_param[i];
1851                 I915_WRITE(reg, temp);
1852
1853                 POSTING_READ(reg);
1854                 udelay(500);
1855
1856                 reg = FDI_RX_IIR(pipe);
1857                 temp = I915_READ(reg);
1858                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1859
1860                 if (temp & FDI_RX_BIT_LOCK) {
1861                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1862                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1863                         break;
1864                 }
1865         }
1866         if (i == 4)
1867                 DRM_ERROR("FDI train 1 fail!\n");
1868
1869         /* Train 2 */
1870         reg = FDI_TX_CTL(pipe);
1871         temp = I915_READ(reg);
1872         temp &= ~FDI_LINK_TRAIN_NONE;
1873         temp |= FDI_LINK_TRAIN_PATTERN_2;
1874         if (IS_GEN6(dev)) {
1875                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1876                 /* SNB-B */
1877                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1878         }
1879         I915_WRITE(reg, temp);
1880
1881         reg = FDI_RX_CTL(pipe);
1882         temp = I915_READ(reg);
1883         if (HAS_PCH_CPT(dev)) {
1884                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1885                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1886         } else {
1887                 temp &= ~FDI_LINK_TRAIN_NONE;
1888                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1889         }
1890         I915_WRITE(reg, temp);
1891
1892         POSTING_READ(reg);
1893         udelay(150);
1894
1895         for (i = 0; i < 4; i++ ) {
1896                 reg = FDI_TX_CTL(pipe);
1897                 temp = I915_READ(reg);
1898                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1899                 temp |= snb_b_fdi_train_param[i];
1900                 I915_WRITE(reg, temp);
1901
1902                 POSTING_READ(reg);
1903                 udelay(500);
1904
1905                 reg = FDI_RX_IIR(pipe);
1906                 temp = I915_READ(reg);
1907                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1908
1909                 if (temp & FDI_RX_SYMBOL_LOCK) {
1910                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1911                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1912                         break;
1913                 }
1914         }
1915         if (i == 4)
1916                 DRM_ERROR("FDI train 2 fail!\n");
1917
1918         DRM_DEBUG_KMS("FDI train done.\n");
1919 }
1920
1921 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1922 {
1923         struct drm_device *dev = crtc->dev;
1924         struct drm_i915_private *dev_priv = dev->dev_private;
1925         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1926         int pipe = intel_crtc->pipe;
1927         u32 reg, temp;
1928
1929         /* Write the TU size bits so error detection works */
1930         I915_WRITE(FDI_RX_TUSIZE1(pipe),
1931                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1932
1933         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1934         reg = FDI_RX_CTL(pipe);
1935         temp = I915_READ(reg);
1936         temp &= ~((0x7 << 19) | (0x7 << 16));
1937         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1938         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1939         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1940
1941         POSTING_READ(reg);
1942         udelay(200);
1943
1944         /* Switch from Rawclk to PCDclk */
1945         temp = I915_READ(reg);
1946         I915_WRITE(reg, temp | FDI_PCDCLK);
1947
1948         POSTING_READ(reg);
1949         udelay(200);
1950
1951         /* Enable CPU FDI TX PLL, always on for Ironlake */
1952         reg = FDI_TX_CTL(pipe);
1953         temp = I915_READ(reg);
1954         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1955                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1956
1957                 POSTING_READ(reg);
1958                 udelay(100);
1959         }
1960 }
1961
1962 static void intel_flush_display_plane(struct drm_device *dev,
1963                                       int plane)
1964 {
1965         struct drm_i915_private *dev_priv = dev->dev_private;
1966         u32 reg = DSPADDR(plane);
1967         I915_WRITE(reg, I915_READ(reg));
1968 }
1969
1970 /*
1971  * When we disable a pipe, we need to clear any pending scanline wait events
1972  * to avoid hanging the ring, which we assume we are waiting on.
1973  */
1974 static void intel_clear_scanline_wait(struct drm_device *dev)
1975 {
1976         struct drm_i915_private *dev_priv = dev->dev_private;
1977         u32 tmp;
1978
1979         if (IS_GEN2(dev))
1980                 /* Can't break the hang on i8xx */
1981                 return;
1982
1983         tmp = I915_READ(PRB0_CTL);
1984         if (tmp & RING_WAIT) {
1985                 I915_WRITE(PRB0_CTL, tmp);
1986                 POSTING_READ(PRB0_CTL);
1987         }
1988 }
1989
1990 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
1991 {
1992         struct drm_i915_gem_object *obj_priv;
1993         struct drm_i915_private *dev_priv;
1994
1995         if (crtc->fb == NULL)
1996                 return;
1997
1998         obj_priv = to_intel_bo(to_intel_framebuffer(crtc->fb)->obj);
1999         dev_priv = crtc->dev->dev_private;
2000         wait_event(dev_priv->pending_flip_queue,
2001                    atomic_read(&obj_priv->pending_flip) == 0);
2002 }
2003
2004 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2005 {
2006         struct drm_device *dev = crtc->dev;
2007         struct drm_i915_private *dev_priv = dev->dev_private;
2008         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2009         int pipe = intel_crtc->pipe;
2010         int plane = intel_crtc->plane;
2011         u32 reg, temp;
2012
2013         if (intel_crtc->active)
2014                 return;
2015
2016         intel_crtc->active = true;
2017         intel_update_watermarks(dev);
2018
2019         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2020                 temp = I915_READ(PCH_LVDS);
2021                 if ((temp & LVDS_PORT_EN) == 0)
2022                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2023         }
2024
2025         ironlake_fdi_enable(crtc);
2026
2027         /* Enable panel fitting for LVDS */
2028         if (dev_priv->pch_pf_size &&
2029             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2030                 /* Force use of hard-coded filter coefficients
2031                  * as some pre-programmed values are broken,
2032                  * e.g. x201.
2033                  */
2034                 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
2035                            PF_ENABLE | PF_FILTER_MED_3x3);
2036                 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
2037                            dev_priv->pch_pf_pos);
2038                 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
2039                            dev_priv->pch_pf_size);
2040         }
2041
2042         /* Enable CPU pipe */
2043         reg = PIPECONF(pipe);
2044         temp = I915_READ(reg);
2045         if ((temp & PIPECONF_ENABLE) == 0) {
2046                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2047                 POSTING_READ(reg);
2048                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2049         }
2050
2051         /* configure and enable CPU plane */
2052         reg = DSPCNTR(plane);
2053         temp = I915_READ(reg);
2054         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2055                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2056                 intel_flush_display_plane(dev, plane);
2057         }
2058
2059         /* For PCH output, training FDI link */
2060         if (IS_GEN6(dev))
2061                 gen6_fdi_link_train(crtc);
2062         else
2063                 ironlake_fdi_link_train(crtc);
2064
2065         /* enable PCH DPLL */
2066         reg = PCH_DPLL(pipe);
2067         temp = I915_READ(reg);
2068         if ((temp & DPLL_VCO_ENABLE) == 0) {
2069                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2070                 POSTING_READ(reg);
2071                 udelay(200);
2072         }
2073
2074         if (HAS_PCH_CPT(dev)) {
2075                 /* Be sure PCH DPLL SEL is set */
2076                 temp = I915_READ(PCH_DPLL_SEL);
2077                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2078                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2079                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2080                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2081                 I915_WRITE(PCH_DPLL_SEL, temp);
2082         }
2083
2084         /* set transcoder timing */
2085         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2086         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2087         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2088
2089         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2090         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2091         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2092
2093         /* For PCH DP, enable TRANS_DP_CTL */
2094         if (HAS_PCH_CPT(dev) &&
2095             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2096                 reg = TRANS_DP_CTL(pipe);
2097                 temp = I915_READ(reg);
2098                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2099                           TRANS_DP_SYNC_MASK);
2100                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2101                          TRANS_DP_ENH_FRAMING);
2102
2103                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2104                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2105                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2106                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2107
2108                 switch (intel_trans_dp_port_sel(crtc)) {
2109                 case PCH_DP_B:
2110                         temp |= TRANS_DP_PORT_SEL_B;
2111                         break;
2112                 case PCH_DP_C:
2113                         temp |= TRANS_DP_PORT_SEL_C;
2114                         break;
2115                 case PCH_DP_D:
2116                         temp |= TRANS_DP_PORT_SEL_D;
2117                         break;
2118                 default:
2119                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2120                         temp |= TRANS_DP_PORT_SEL_B;
2121                         break;
2122                 }
2123
2124                 I915_WRITE(reg, temp);
2125         }
2126
2127         /* enable PCH transcoder */
2128         reg = TRANSCONF(pipe);
2129         temp = I915_READ(reg);
2130         /*
2131          * make the BPC in transcoder be consistent with
2132          * that in pipeconf reg.
2133          */
2134         temp &= ~PIPE_BPC_MASK;
2135         temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2136         I915_WRITE(reg, temp | TRANS_ENABLE);
2137         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2138                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
2139
2140         intel_crtc_load_lut(crtc);
2141         intel_update_fbc(dev);
2142         intel_crtc_update_cursor(crtc, true);
2143 }
2144
2145 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2146 {
2147         struct drm_device *dev = crtc->dev;
2148         struct drm_i915_private *dev_priv = dev->dev_private;
2149         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2150         int pipe = intel_crtc->pipe;
2151         int plane = intel_crtc->plane;
2152         u32 reg, temp;
2153
2154         if (!intel_crtc->active)
2155                 return;
2156
2157         intel_crtc_wait_for_pending_flips(crtc);
2158         drm_vblank_off(dev, pipe);
2159         intel_crtc_update_cursor(crtc, false);
2160
2161         /* Disable display plane */
2162         reg = DSPCNTR(plane);
2163         temp = I915_READ(reg);
2164         if (temp & DISPLAY_PLANE_ENABLE) {
2165                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2166                 intel_flush_display_plane(dev, plane);
2167         }
2168
2169         if (dev_priv->cfb_plane == plane &&
2170             dev_priv->display.disable_fbc)
2171                 dev_priv->display.disable_fbc(dev);
2172
2173         /* disable cpu pipe, disable after all planes disabled */
2174         reg = PIPECONF(pipe);
2175         temp = I915_READ(reg);
2176         if (temp & PIPECONF_ENABLE) {
2177                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2178                 POSTING_READ(reg);
2179                 /* wait for cpu pipe off, pipe state */
2180                 intel_wait_for_pipe_off(dev, intel_crtc->pipe);
2181         }
2182
2183         /* Disable PF */
2184         I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2185         I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2186
2187         /* disable CPU FDI tx and PCH FDI rx */
2188         reg = FDI_TX_CTL(pipe);
2189         temp = I915_READ(reg);
2190         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2191         POSTING_READ(reg);
2192
2193         reg = FDI_RX_CTL(pipe);
2194         temp = I915_READ(reg);
2195         temp &= ~(0x7 << 16);
2196         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2197         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2198
2199         POSTING_READ(reg);
2200         udelay(100);
2201
2202         /* Ironlake workaround, disable clock pointer after downing FDI */
2203         I915_WRITE(FDI_RX_CHICKEN(pipe),
2204                    I915_READ(FDI_RX_CHICKEN(pipe) &
2205                              ~FDI_RX_PHASE_SYNC_POINTER_ENABLE));
2206
2207         /* still set train pattern 1 */
2208         reg = FDI_TX_CTL(pipe);
2209         temp = I915_READ(reg);
2210         temp &= ~FDI_LINK_TRAIN_NONE;
2211         temp |= FDI_LINK_TRAIN_PATTERN_1;
2212         I915_WRITE(reg, temp);
2213
2214         reg = FDI_RX_CTL(pipe);
2215         temp = I915_READ(reg);
2216         if (HAS_PCH_CPT(dev)) {
2217                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2218                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2219         } else {
2220                 temp &= ~FDI_LINK_TRAIN_NONE;
2221                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2222         }
2223         /* BPC in FDI rx is consistent with that in PIPECONF */
2224         temp &= ~(0x07 << 16);
2225         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2226         I915_WRITE(reg, temp);
2227
2228         POSTING_READ(reg);
2229         udelay(100);
2230
2231         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2232                 temp = I915_READ(PCH_LVDS);
2233                 if (temp & LVDS_PORT_EN) {
2234                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2235                         POSTING_READ(PCH_LVDS);
2236                         udelay(100);
2237                 }
2238         }
2239
2240         /* disable PCH transcoder */
2241         reg = TRANSCONF(plane);
2242         temp = I915_READ(reg);
2243         if (temp & TRANS_ENABLE) {
2244                 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2245                 /* wait for PCH transcoder off, transcoder state */
2246                 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2247                         DRM_ERROR("failed to disable transcoder\n");
2248         }
2249
2250         if (HAS_PCH_CPT(dev)) {
2251                 /* disable TRANS_DP_CTL */
2252                 reg = TRANS_DP_CTL(pipe);
2253                 temp = I915_READ(reg);
2254                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2255                 I915_WRITE(reg, temp);
2256
2257                 /* disable DPLL_SEL */
2258                 temp = I915_READ(PCH_DPLL_SEL);
2259                 if (pipe == 0)
2260                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2261                 else
2262                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2263                 I915_WRITE(PCH_DPLL_SEL, temp);
2264         }
2265
2266         /* disable PCH DPLL */
2267         reg = PCH_DPLL(pipe);
2268         temp = I915_READ(reg);
2269         I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2270
2271         /* Switch from PCDclk to Rawclk */
2272         reg = FDI_RX_CTL(pipe);
2273         temp = I915_READ(reg);
2274         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2275
2276         /* Disable CPU FDI TX PLL */
2277         reg = FDI_TX_CTL(pipe);
2278         temp = I915_READ(reg);
2279         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2280
2281         POSTING_READ(reg);
2282         udelay(100);
2283
2284         reg = FDI_RX_CTL(pipe);
2285         temp = I915_READ(reg);
2286         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2287
2288         /* Wait for the clocks to turn off. */
2289         POSTING_READ(reg);
2290         udelay(100);
2291
2292         intel_crtc->active = false;
2293         intel_update_watermarks(dev);
2294         intel_update_fbc(dev);
2295         intel_clear_scanline_wait(dev);
2296 }
2297
2298 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2299 {
2300         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2301         int pipe = intel_crtc->pipe;
2302         int plane = intel_crtc->plane;
2303
2304         /* XXX: When our outputs are all unaware of DPMS modes other than off
2305          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2306          */
2307         switch (mode) {
2308         case DRM_MODE_DPMS_ON:
2309         case DRM_MODE_DPMS_STANDBY:
2310         case DRM_MODE_DPMS_SUSPEND:
2311                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2312                 ironlake_crtc_enable(crtc);
2313                 break;
2314
2315         case DRM_MODE_DPMS_OFF:
2316                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2317                 ironlake_crtc_disable(crtc);
2318                 break;
2319         }
2320 }
2321
2322 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2323 {
2324         if (!enable && intel_crtc->overlay) {
2325                 struct drm_device *dev = intel_crtc->base.dev;
2326
2327                 mutex_lock(&dev->struct_mutex);
2328                 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2329                 mutex_unlock(&dev->struct_mutex);
2330         }
2331
2332         /* Let userspace switch the overlay on again. In most cases userspace
2333          * has to recompute where to put it anyway.
2334          */
2335 }
2336
2337 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2338 {
2339         struct drm_device *dev = crtc->dev;
2340         struct drm_i915_private *dev_priv = dev->dev_private;
2341         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2342         int pipe = intel_crtc->pipe;
2343         int plane = intel_crtc->plane;
2344         u32 reg, temp;
2345
2346         if (intel_crtc->active)
2347                 return;
2348
2349         intel_crtc->active = true;
2350         intel_update_watermarks(dev);
2351
2352         /* Enable the DPLL */
2353         reg = DPLL(pipe);
2354         temp = I915_READ(reg);
2355         if ((temp & DPLL_VCO_ENABLE) == 0) {
2356                 I915_WRITE(reg, temp);
2357
2358                 /* Wait for the clocks to stabilize. */
2359                 POSTING_READ(reg);
2360                 udelay(150);
2361
2362                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2363
2364                 /* Wait for the clocks to stabilize. */
2365                 POSTING_READ(reg);
2366                 udelay(150);
2367
2368                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2369
2370                 /* Wait for the clocks to stabilize. */
2371                 POSTING_READ(reg);
2372                 udelay(150);
2373         }
2374
2375         /* Enable the pipe */
2376         reg = PIPECONF(pipe);
2377         temp = I915_READ(reg);
2378         if ((temp & PIPECONF_ENABLE) == 0)
2379                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2380
2381         /* Enable the plane */
2382         reg = DSPCNTR(plane);
2383         temp = I915_READ(reg);
2384         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2385                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2386                 intel_flush_display_plane(dev, plane);
2387         }
2388
2389         intel_crtc_load_lut(crtc);
2390         intel_update_fbc(dev);
2391
2392         /* Give the overlay scaler a chance to enable if it's on this pipe */
2393         intel_crtc_dpms_overlay(intel_crtc, true);
2394         intel_crtc_update_cursor(crtc, true);
2395 }
2396
2397 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2398 {
2399         struct drm_device *dev = crtc->dev;
2400         struct drm_i915_private *dev_priv = dev->dev_private;
2401         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2402         int pipe = intel_crtc->pipe;
2403         int plane = intel_crtc->plane;
2404         u32 reg, temp;
2405
2406         if (!intel_crtc->active)
2407                 return;
2408
2409         /* Give the overlay scaler a chance to disable if it's on this pipe */
2410         intel_crtc_wait_for_pending_flips(crtc);
2411         drm_vblank_off(dev, pipe);
2412         intel_crtc_dpms_overlay(intel_crtc, false);
2413         intel_crtc_update_cursor(crtc, false);
2414
2415         if (dev_priv->cfb_plane == plane &&
2416             dev_priv->display.disable_fbc)
2417                 dev_priv->display.disable_fbc(dev);
2418
2419         /* Disable display plane */
2420         reg = DSPCNTR(plane);
2421         temp = I915_READ(reg);
2422         if (temp & DISPLAY_PLANE_ENABLE) {
2423                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2424                 /* Flush the plane changes */
2425                 intel_flush_display_plane(dev, plane);
2426
2427                 /* Wait for vblank for the disable to take effect */
2428                 if (IS_GEN2(dev))
2429                         intel_wait_for_vblank(dev, pipe);
2430         }
2431
2432         /* Don't disable pipe A or pipe A PLLs if needed */
2433         if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2434                 goto done;
2435
2436         /* Next, disable display pipes */
2437         reg = PIPECONF(pipe);
2438         temp = I915_READ(reg);
2439         if (temp & PIPECONF_ENABLE) {
2440                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2441
2442                 /* Wait for the pipe to turn off */
2443                 POSTING_READ(reg);
2444                 intel_wait_for_pipe_off(dev, pipe);
2445         }
2446
2447         reg = DPLL(pipe);
2448         temp = I915_READ(reg);
2449         if (temp & DPLL_VCO_ENABLE) {
2450                 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2451
2452                 /* Wait for the clocks to turn off. */
2453                 POSTING_READ(reg);
2454                 udelay(150);
2455         }
2456
2457 done:
2458         intel_crtc->active = false;
2459         intel_update_fbc(dev);
2460         intel_update_watermarks(dev);
2461         intel_clear_scanline_wait(dev);
2462 }
2463
2464 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2465 {
2466         /* XXX: When our outputs are all unaware of DPMS modes other than off
2467          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2468          */
2469         switch (mode) {
2470         case DRM_MODE_DPMS_ON:
2471         case DRM_MODE_DPMS_STANDBY:
2472         case DRM_MODE_DPMS_SUSPEND:
2473                 i9xx_crtc_enable(crtc);
2474                 break;
2475         case DRM_MODE_DPMS_OFF:
2476                 i9xx_crtc_disable(crtc);
2477                 break;
2478         }
2479 }
2480
2481 /**
2482  * Sets the power management mode of the pipe and plane.
2483  */
2484 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2485 {
2486         struct drm_device *dev = crtc->dev;
2487         struct drm_i915_private *dev_priv = dev->dev_private;
2488         struct drm_i915_master_private *master_priv;
2489         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2490         int pipe = intel_crtc->pipe;
2491         bool enabled;
2492
2493         if (intel_crtc->dpms_mode == mode)
2494                 return;
2495
2496         intel_crtc->dpms_mode = mode;
2497
2498         dev_priv->display.dpms(crtc, mode);
2499
2500         if (!dev->primary->master)
2501                 return;
2502
2503         master_priv = dev->primary->master->driver_priv;
2504         if (!master_priv->sarea_priv)
2505                 return;
2506
2507         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2508
2509         switch (pipe) {
2510         case 0:
2511                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2512                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2513                 break;
2514         case 1:
2515                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2516                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2517                 break;
2518         default:
2519                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2520                 break;
2521         }
2522 }
2523
2524 static void intel_crtc_disable(struct drm_crtc *crtc)
2525 {
2526         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2527         struct drm_device *dev = crtc->dev;
2528
2529         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2530
2531         if (crtc->fb) {
2532                 mutex_lock(&dev->struct_mutex);
2533                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2534                 mutex_unlock(&dev->struct_mutex);
2535         }
2536 }
2537
2538 /* Prepare for a mode set.
2539  *
2540  * Note we could be a lot smarter here.  We need to figure out which outputs
2541  * will be enabled, which disabled (in short, how the config will changes)
2542  * and perform the minimum necessary steps to accomplish that, e.g. updating
2543  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2544  * panel fitting is in the proper state, etc.
2545  */
2546 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2547 {
2548         i9xx_crtc_disable(crtc);
2549 }
2550
2551 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2552 {
2553         i9xx_crtc_enable(crtc);
2554 }
2555
2556 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2557 {
2558         ironlake_crtc_disable(crtc);
2559 }
2560
2561 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2562 {
2563         ironlake_crtc_enable(crtc);
2564 }
2565
2566 void intel_encoder_prepare (struct drm_encoder *encoder)
2567 {
2568         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2569         /* lvds has its own version of prepare see intel_lvds_prepare */
2570         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2571 }
2572
2573 void intel_encoder_commit (struct drm_encoder *encoder)
2574 {
2575         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2576         /* lvds has its own version of commit see intel_lvds_commit */
2577         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2578 }
2579
2580 void intel_encoder_destroy(struct drm_encoder *encoder)
2581 {
2582         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2583
2584         drm_encoder_cleanup(encoder);
2585         kfree(intel_encoder);
2586 }
2587
2588 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2589                                   struct drm_display_mode *mode,
2590                                   struct drm_display_mode *adjusted_mode)
2591 {
2592         struct drm_device *dev = crtc->dev;
2593
2594         if (HAS_PCH_SPLIT(dev)) {
2595                 /* FDI link clock is fixed at 2.7G */
2596                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2597                         return false;
2598         }
2599
2600         /* XXX some encoders set the crtcinfo, others don't.
2601          * Obviously we need some form of conflict resolution here...
2602          */
2603         if (adjusted_mode->crtc_htotal == 0)
2604                 drm_mode_set_crtcinfo(adjusted_mode, 0);
2605
2606         return true;
2607 }
2608
2609 static int i945_get_display_clock_speed(struct drm_device *dev)
2610 {
2611         return 400000;
2612 }
2613
2614 static int i915_get_display_clock_speed(struct drm_device *dev)
2615 {
2616         return 333000;
2617 }
2618
2619 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2620 {
2621         return 200000;
2622 }
2623
2624 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2625 {
2626         u16 gcfgc = 0;
2627
2628         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2629
2630         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2631                 return 133000;
2632         else {
2633                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2634                 case GC_DISPLAY_CLOCK_333_MHZ:
2635                         return 333000;
2636                 default:
2637                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2638                         return 190000;
2639                 }
2640         }
2641 }
2642
2643 static int i865_get_display_clock_speed(struct drm_device *dev)
2644 {
2645         return 266000;
2646 }
2647
2648 static int i855_get_display_clock_speed(struct drm_device *dev)
2649 {
2650         u16 hpllcc = 0;
2651         /* Assume that the hardware is in the high speed state.  This
2652          * should be the default.
2653          */
2654         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2655         case GC_CLOCK_133_200:
2656         case GC_CLOCK_100_200:
2657                 return 200000;
2658         case GC_CLOCK_166_250:
2659                 return 250000;
2660         case GC_CLOCK_100_133:
2661                 return 133000;
2662         }
2663
2664         /* Shouldn't happen */
2665         return 0;
2666 }
2667
2668 static int i830_get_display_clock_speed(struct drm_device *dev)
2669 {
2670         return 133000;
2671 }
2672
2673 struct fdi_m_n {
2674         u32        tu;
2675         u32        gmch_m;
2676         u32        gmch_n;
2677         u32        link_m;
2678         u32        link_n;
2679 };
2680
2681 static void
2682 fdi_reduce_ratio(u32 *num, u32 *den)
2683 {
2684         while (*num > 0xffffff || *den > 0xffffff) {
2685                 *num >>= 1;
2686                 *den >>= 1;
2687         }
2688 }
2689
2690 #define DATA_N 0x800000
2691 #define LINK_N 0x80000
2692
2693 static void
2694 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2695                      int link_clock, struct fdi_m_n *m_n)
2696 {
2697         u64 temp;
2698
2699         m_n->tu = 64; /* default size */
2700
2701         temp = (u64) DATA_N * pixel_clock;
2702         temp = div_u64(temp, link_clock);
2703         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2704         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2705         m_n->gmch_n = DATA_N;
2706         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2707
2708         temp = (u64) LINK_N * pixel_clock;
2709         m_n->link_m = div_u64(temp, link_clock);
2710         m_n->link_n = LINK_N;
2711         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2712 }
2713
2714
2715 struct intel_watermark_params {
2716         unsigned long fifo_size;
2717         unsigned long max_wm;
2718         unsigned long default_wm;
2719         unsigned long guard_size;
2720         unsigned long cacheline_size;
2721 };
2722
2723 /* Pineview has different values for various configs */
2724 static struct intel_watermark_params pineview_display_wm = {
2725         PINEVIEW_DISPLAY_FIFO,
2726         PINEVIEW_MAX_WM,
2727         PINEVIEW_DFT_WM,
2728         PINEVIEW_GUARD_WM,
2729         PINEVIEW_FIFO_LINE_SIZE
2730 };
2731 static struct intel_watermark_params pineview_display_hplloff_wm = {
2732         PINEVIEW_DISPLAY_FIFO,
2733         PINEVIEW_MAX_WM,
2734         PINEVIEW_DFT_HPLLOFF_WM,
2735         PINEVIEW_GUARD_WM,
2736         PINEVIEW_FIFO_LINE_SIZE
2737 };
2738 static struct intel_watermark_params pineview_cursor_wm = {
2739         PINEVIEW_CURSOR_FIFO,
2740         PINEVIEW_CURSOR_MAX_WM,
2741         PINEVIEW_CURSOR_DFT_WM,
2742         PINEVIEW_CURSOR_GUARD_WM,
2743         PINEVIEW_FIFO_LINE_SIZE,
2744 };
2745 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2746         PINEVIEW_CURSOR_FIFO,
2747         PINEVIEW_CURSOR_MAX_WM,
2748         PINEVIEW_CURSOR_DFT_WM,
2749         PINEVIEW_CURSOR_GUARD_WM,
2750         PINEVIEW_FIFO_LINE_SIZE
2751 };
2752 static struct intel_watermark_params g4x_wm_info = {
2753         G4X_FIFO_SIZE,
2754         G4X_MAX_WM,
2755         G4X_MAX_WM,
2756         2,
2757         G4X_FIFO_LINE_SIZE,
2758 };
2759 static struct intel_watermark_params g4x_cursor_wm_info = {
2760         I965_CURSOR_FIFO,
2761         I965_CURSOR_MAX_WM,
2762         I965_CURSOR_DFT_WM,
2763         2,
2764         G4X_FIFO_LINE_SIZE,
2765 };
2766 static struct intel_watermark_params i965_cursor_wm_info = {
2767         I965_CURSOR_FIFO,
2768         I965_CURSOR_MAX_WM,
2769         I965_CURSOR_DFT_WM,
2770         2,
2771         I915_FIFO_LINE_SIZE,
2772 };
2773 static struct intel_watermark_params i945_wm_info = {
2774         I945_FIFO_SIZE,
2775         I915_MAX_WM,
2776         1,
2777         2,
2778         I915_FIFO_LINE_SIZE
2779 };
2780 static struct intel_watermark_params i915_wm_info = {
2781         I915_FIFO_SIZE,
2782         I915_MAX_WM,
2783         1,
2784         2,
2785         I915_FIFO_LINE_SIZE
2786 };
2787 static struct intel_watermark_params i855_wm_info = {
2788         I855GM_FIFO_SIZE,
2789         I915_MAX_WM,
2790         1,
2791         2,
2792         I830_FIFO_LINE_SIZE
2793 };
2794 static struct intel_watermark_params i830_wm_info = {
2795         I830_FIFO_SIZE,
2796         I915_MAX_WM,
2797         1,
2798         2,
2799         I830_FIFO_LINE_SIZE
2800 };
2801
2802 static struct intel_watermark_params ironlake_display_wm_info = {
2803         ILK_DISPLAY_FIFO,
2804         ILK_DISPLAY_MAXWM,
2805         ILK_DISPLAY_DFTWM,
2806         2,
2807         ILK_FIFO_LINE_SIZE
2808 };
2809
2810 static struct intel_watermark_params ironlake_cursor_wm_info = {
2811         ILK_CURSOR_FIFO,
2812         ILK_CURSOR_MAXWM,
2813         ILK_CURSOR_DFTWM,
2814         2,
2815         ILK_FIFO_LINE_SIZE
2816 };
2817
2818 static struct intel_watermark_params ironlake_display_srwm_info = {
2819         ILK_DISPLAY_SR_FIFO,
2820         ILK_DISPLAY_MAX_SRWM,
2821         ILK_DISPLAY_DFT_SRWM,
2822         2,
2823         ILK_FIFO_LINE_SIZE
2824 };
2825
2826 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2827         ILK_CURSOR_SR_FIFO,
2828         ILK_CURSOR_MAX_SRWM,
2829         ILK_CURSOR_DFT_SRWM,
2830         2,
2831         ILK_FIFO_LINE_SIZE
2832 };
2833
2834 /**
2835  * intel_calculate_wm - calculate watermark level
2836  * @clock_in_khz: pixel clock
2837  * @wm: chip FIFO params
2838  * @pixel_size: display pixel size
2839  * @latency_ns: memory latency for the platform
2840  *
2841  * Calculate the watermark level (the level at which the display plane will
2842  * start fetching from memory again).  Each chip has a different display
2843  * FIFO size and allocation, so the caller needs to figure that out and pass
2844  * in the correct intel_watermark_params structure.
2845  *
2846  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2847  * on the pixel size.  When it reaches the watermark level, it'll start
2848  * fetching FIFO line sized based chunks from memory until the FIFO fills
2849  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2850  * will occur, and a display engine hang could result.
2851  */
2852 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2853                                         struct intel_watermark_params *wm,
2854                                         int pixel_size,
2855                                         unsigned long latency_ns)
2856 {
2857         long entries_required, wm_size;
2858
2859         /*
2860          * Note: we need to make sure we don't overflow for various clock &
2861          * latency values.
2862          * clocks go from a few thousand to several hundred thousand.
2863          * latency is usually a few thousand
2864          */
2865         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2866                 1000;
2867         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2868
2869         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2870
2871         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2872
2873         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2874
2875         /* Don't promote wm_size to unsigned... */
2876         if (wm_size > (long)wm->max_wm)
2877                 wm_size = wm->max_wm;
2878         if (wm_size <= 0)
2879                 wm_size = wm->default_wm;
2880         return wm_size;
2881 }
2882
2883 struct cxsr_latency {
2884         int is_desktop;
2885         int is_ddr3;
2886         unsigned long fsb_freq;
2887         unsigned long mem_freq;
2888         unsigned long display_sr;
2889         unsigned long display_hpll_disable;
2890         unsigned long cursor_sr;
2891         unsigned long cursor_hpll_disable;
2892 };
2893
2894 static const struct cxsr_latency cxsr_latency_table[] = {
2895         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2896         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2897         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2898         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
2899         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
2900
2901         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2902         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2903         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2904         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
2905         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
2906
2907         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2908         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2909         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2910         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
2911         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
2912
2913         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2914         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2915         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2916         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
2917         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
2918
2919         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2920         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2921         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2922         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
2923         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
2924
2925         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2926         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2927         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2928         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
2929         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
2930 };
2931
2932 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2933                                                          int is_ddr3,
2934                                                          int fsb,
2935                                                          int mem)
2936 {
2937         const struct cxsr_latency *latency;
2938         int i;
2939
2940         if (fsb == 0 || mem == 0)
2941                 return NULL;
2942
2943         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2944                 latency = &cxsr_latency_table[i];
2945                 if (is_desktop == latency->is_desktop &&
2946                     is_ddr3 == latency->is_ddr3 &&
2947                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2948                         return latency;
2949         }
2950
2951         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2952
2953         return NULL;
2954 }
2955
2956 static void pineview_disable_cxsr(struct drm_device *dev)
2957 {
2958         struct drm_i915_private *dev_priv = dev->dev_private;
2959
2960         /* deactivate cxsr */
2961         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2962 }
2963
2964 /*
2965  * Latency for FIFO fetches is dependent on several factors:
2966  *   - memory configuration (speed, channels)
2967  *   - chipset
2968  *   - current MCH state
2969  * It can be fairly high in some situations, so here we assume a fairly
2970  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2971  * set this value too high, the FIFO will fetch frequently to stay full)
2972  * and power consumption (set it too low to save power and we might see
2973  * FIFO underruns and display "flicker").
2974  *
2975  * A value of 5us seems to be a good balance; safe for very low end
2976  * platforms but not overly aggressive on lower latency configs.
2977  */
2978 static const int latency_ns = 5000;
2979
2980 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2981 {
2982         struct drm_i915_private *dev_priv = dev->dev_private;
2983         uint32_t dsparb = I915_READ(DSPARB);
2984         int size;
2985
2986         size = dsparb & 0x7f;
2987         if (plane)
2988                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
2989
2990         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2991                       plane ? "B" : "A", size);
2992
2993         return size;
2994 }
2995
2996 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2997 {
2998         struct drm_i915_private *dev_priv = dev->dev_private;
2999         uint32_t dsparb = I915_READ(DSPARB);
3000         int size;
3001
3002         size = dsparb & 0x1ff;
3003         if (plane)
3004                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3005         size >>= 1; /* Convert to cachelines */
3006
3007         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3008                       plane ? "B" : "A", size);
3009
3010         return size;
3011 }
3012
3013 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3014 {
3015         struct drm_i915_private *dev_priv = dev->dev_private;
3016         uint32_t dsparb = I915_READ(DSPARB);
3017         int size;
3018
3019         size = dsparb & 0x7f;
3020         size >>= 2; /* Convert to cachelines */
3021
3022         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3023                       plane ? "B" : "A",
3024                       size);
3025
3026         return size;
3027 }
3028
3029 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3030 {
3031         struct drm_i915_private *dev_priv = dev->dev_private;
3032         uint32_t dsparb = I915_READ(DSPARB);
3033         int size;
3034
3035         size = dsparb & 0x7f;
3036         size >>= 1; /* Convert to cachelines */
3037
3038         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3039                       plane ? "B" : "A", size);
3040
3041         return size;
3042 }
3043
3044 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
3045                                int planeb_clock, int sr_hdisplay, int unused,
3046                                int pixel_size)
3047 {
3048         struct drm_i915_private *dev_priv = dev->dev_private;
3049         const struct cxsr_latency *latency;
3050         u32 reg;
3051         unsigned long wm;
3052         int sr_clock;
3053
3054         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3055                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3056         if (!latency) {
3057                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3058                 pineview_disable_cxsr(dev);
3059                 return;
3060         }
3061
3062         if (!planea_clock || !planeb_clock) {
3063                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3064
3065                 /* Display SR */
3066                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3067                                         pixel_size, latency->display_sr);
3068                 reg = I915_READ(DSPFW1);
3069                 reg &= ~DSPFW_SR_MASK;
3070                 reg |= wm << DSPFW_SR_SHIFT;
3071                 I915_WRITE(DSPFW1, reg);
3072                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3073
3074                 /* cursor SR */
3075                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3076                                         pixel_size, latency->cursor_sr);
3077                 reg = I915_READ(DSPFW3);
3078                 reg &= ~DSPFW_CURSOR_SR_MASK;
3079                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3080                 I915_WRITE(DSPFW3, reg);
3081
3082                 /* Display HPLL off SR */
3083                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3084                                         pixel_size, latency->display_hpll_disable);
3085                 reg = I915_READ(DSPFW3);
3086                 reg &= ~DSPFW_HPLL_SR_MASK;
3087                 reg |= wm & DSPFW_HPLL_SR_MASK;
3088                 I915_WRITE(DSPFW3, reg);
3089
3090                 /* cursor HPLL off SR */
3091                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3092                                         pixel_size, latency->cursor_hpll_disable);
3093                 reg = I915_READ(DSPFW3);
3094                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3095                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3096                 I915_WRITE(DSPFW3, reg);
3097                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3098
3099                 /* activate cxsr */
3100                 I915_WRITE(DSPFW3,
3101                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3102                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3103         } else {
3104                 pineview_disable_cxsr(dev);
3105                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3106         }
3107 }
3108
3109 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
3110                           int planeb_clock, int sr_hdisplay, int sr_htotal,
3111                           int pixel_size)
3112 {
3113         struct drm_i915_private *dev_priv = dev->dev_private;
3114         int total_size, cacheline_size;
3115         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3116         struct intel_watermark_params planea_params, planeb_params;
3117         unsigned long line_time_us;
3118         int sr_clock, sr_entries = 0, entries_required;
3119
3120         /* Create copies of the base settings for each pipe */
3121         planea_params = planeb_params = g4x_wm_info;
3122
3123         /* Grab a couple of global values before we overwrite them */
3124         total_size = planea_params.fifo_size;
3125         cacheline_size = planea_params.cacheline_size;
3126
3127         /*
3128          * Note: we need to make sure we don't overflow for various clock &
3129          * latency values.
3130          * clocks go from a few thousand to several hundred thousand.
3131          * latency is usually a few thousand
3132          */
3133         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3134                 1000;
3135         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3136         planea_wm = entries_required + planea_params.guard_size;
3137
3138         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3139                 1000;
3140         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3141         planeb_wm = entries_required + planeb_params.guard_size;
3142
3143         cursora_wm = cursorb_wm = 16;
3144         cursor_sr = 32;
3145
3146         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3147
3148         /* Calc sr entries for one plane configs */
3149         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3150                 /* self-refresh has much higher latency */
3151                 static const int sr_latency_ns = 12000;
3152
3153                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3154                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3155
3156                 /* Use ns/us then divide to preserve precision */
3157                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3158                         pixel_size * sr_hdisplay;
3159                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3160
3161                 entries_required = (((sr_latency_ns / line_time_us) +
3162                                      1000) / 1000) * pixel_size * 64;
3163                 entries_required = DIV_ROUND_UP(entries_required,
3164                                                 g4x_cursor_wm_info.cacheline_size);
3165                 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3166
3167                 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3168                         cursor_sr = g4x_cursor_wm_info.max_wm;
3169                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3170                               "cursor %d\n", sr_entries, cursor_sr);
3171
3172                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3173         } else {
3174                 /* Turn off self refresh if both pipes are enabled */
3175                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3176                            & ~FW_BLC_SELF_EN);
3177         }
3178
3179         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3180                   planea_wm, planeb_wm, sr_entries);
3181
3182         planea_wm &= 0x3f;
3183         planeb_wm &= 0x3f;
3184
3185         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3186                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3187                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3188         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3189                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3190         /* HPLL off in SR has some issues on G4x... disable it */
3191         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3192                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3193 }
3194
3195 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3196                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3197                            int pixel_size)
3198 {
3199         struct drm_i915_private *dev_priv = dev->dev_private;
3200         unsigned long line_time_us;
3201         int sr_clock, sr_entries, srwm = 1;
3202         int cursor_sr = 16;
3203
3204         /* Calc sr entries for one plane configs */
3205         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3206                 /* self-refresh has much higher latency */
3207                 static const int sr_latency_ns = 12000;
3208
3209                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3210                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3211
3212                 /* Use ns/us then divide to preserve precision */
3213                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3214                         pixel_size * sr_hdisplay;
3215                 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3216                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3217                 srwm = I965_FIFO_SIZE - sr_entries;
3218                 if (srwm < 0)
3219                         srwm = 1;
3220                 srwm &= 0x1ff;
3221
3222                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3223                         pixel_size * 64;
3224                 sr_entries = DIV_ROUND_UP(sr_entries,
3225                                           i965_cursor_wm_info.cacheline_size);
3226                 cursor_sr = i965_cursor_wm_info.fifo_size -
3227                         (sr_entries + i965_cursor_wm_info.guard_size);
3228
3229                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3230                         cursor_sr = i965_cursor_wm_info.max_wm;
3231
3232                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3233                               "cursor %d\n", srwm, cursor_sr);
3234
3235                 if (IS_CRESTLINE(dev))
3236                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3237         } else {
3238                 /* Turn off self refresh if both pipes are enabled */
3239                 if (IS_CRESTLINE(dev))
3240                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3241                                    & ~FW_BLC_SELF_EN);
3242         }
3243
3244         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3245                       srwm);
3246
3247         /* 965 has limitations... */
3248         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3249                    (8 << 0));
3250         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3251         /* update cursor SR watermark */
3252         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3253 }
3254
3255 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3256                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3257                            int pixel_size)
3258 {
3259         struct drm_i915_private *dev_priv = dev->dev_private;
3260         uint32_t fwater_lo;
3261         uint32_t fwater_hi;
3262         int total_size, cacheline_size, cwm, srwm = 1;
3263         int planea_wm, planeb_wm;
3264         struct intel_watermark_params planea_params, planeb_params;
3265         unsigned long line_time_us;
3266         int sr_clock, sr_entries = 0;
3267
3268         /* Create copies of the base settings for each pipe */
3269         if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3270                 planea_params = planeb_params = i945_wm_info;
3271         else if (!IS_GEN2(dev))
3272                 planea_params = planeb_params = i915_wm_info;
3273         else
3274                 planea_params = planeb_params = i855_wm_info;
3275
3276         /* Grab a couple of global values before we overwrite them */
3277         total_size = planea_params.fifo_size;
3278         cacheline_size = planea_params.cacheline_size;
3279
3280         /* Update per-plane FIFO sizes */
3281         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3282         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3283
3284         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3285                                        pixel_size, latency_ns);
3286         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3287                                        pixel_size, latency_ns);
3288         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3289
3290         /*
3291          * Overlay gets an aggressive default since video jitter is bad.
3292          */
3293         cwm = 2;
3294
3295         /* Calc sr entries for one plane configs */
3296         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3297             (!planea_clock || !planeb_clock)) {
3298                 /* self-refresh has much higher latency */
3299                 static const int sr_latency_ns = 6000;
3300
3301                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3302                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3303
3304                 /* Use ns/us then divide to preserve precision */
3305                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3306                         pixel_size * sr_hdisplay;
3307                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3308                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3309                 srwm = total_size - sr_entries;
3310                 if (srwm < 0)
3311                         srwm = 1;
3312
3313                 if (IS_I945G(dev) || IS_I945GM(dev))
3314                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3315                 else if (IS_I915GM(dev)) {
3316                         /* 915M has a smaller SRWM field */
3317                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3318                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3319                 }
3320         } else {
3321                 /* Turn off self refresh if both pipes are enabled */
3322                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3323                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3324                                    & ~FW_BLC_SELF_EN);
3325                 } else if (IS_I915GM(dev)) {
3326                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3327                 }
3328         }
3329
3330         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3331                       planea_wm, planeb_wm, cwm, srwm);
3332
3333         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3334         fwater_hi = (cwm & 0x1f);
3335
3336         /* Set request length to 8 cachelines per fetch */
3337         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3338         fwater_hi = fwater_hi | (1 << 8);
3339
3340         I915_WRITE(FW_BLC, fwater_lo);
3341         I915_WRITE(FW_BLC2, fwater_hi);
3342 }
3343
3344 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3345                            int unused2, int unused3, int pixel_size)
3346 {
3347         struct drm_i915_private *dev_priv = dev->dev_private;
3348         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3349         int planea_wm;
3350
3351         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3352
3353         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3354                                        pixel_size, latency_ns);
3355         fwater_lo |= (3<<8) | planea_wm;
3356
3357         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3358
3359         I915_WRITE(FW_BLC, fwater_lo);
3360 }
3361
3362 #define ILK_LP0_PLANE_LATENCY           700
3363 #define ILK_LP0_CURSOR_LATENCY          1300
3364
3365 static bool ironlake_compute_wm0(struct drm_device *dev,
3366                                  int pipe,
3367                                  int *plane_wm,
3368                                  int *cursor_wm)
3369 {
3370         struct drm_crtc *crtc;
3371         int htotal, hdisplay, clock, pixel_size = 0;
3372         int line_time_us, line_count, entries;
3373
3374         crtc = intel_get_crtc_for_pipe(dev, pipe);
3375         if (crtc->fb == NULL || !crtc->enabled)
3376                 return false;
3377
3378         htotal = crtc->mode.htotal;
3379         hdisplay = crtc->mode.hdisplay;
3380         clock = crtc->mode.clock;
3381         pixel_size = crtc->fb->bits_per_pixel / 8;
3382
3383         /* Use the small buffer method to calculate plane watermark */
3384         entries = ((clock * pixel_size / 1000) * ILK_LP0_PLANE_LATENCY) / 1000;
3385         entries = DIV_ROUND_UP(entries,
3386                                ironlake_display_wm_info.cacheline_size);
3387         *plane_wm = entries + ironlake_display_wm_info.guard_size;
3388         if (*plane_wm > (int)ironlake_display_wm_info.max_wm)
3389                 *plane_wm = ironlake_display_wm_info.max_wm;
3390
3391         /* Use the large buffer method to calculate cursor watermark */
3392         line_time_us = ((htotal * 1000) / clock);
3393         line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3394         entries = line_count * 64 * pixel_size;
3395         entries = DIV_ROUND_UP(entries,
3396                                ironlake_cursor_wm_info.cacheline_size);
3397         *cursor_wm = entries + ironlake_cursor_wm_info.guard_size;
3398         if (*cursor_wm > ironlake_cursor_wm_info.max_wm)
3399                 *cursor_wm = ironlake_cursor_wm_info.max_wm;
3400
3401         return true;
3402 }
3403
3404 static void ironlake_update_wm(struct drm_device *dev,
3405                                int planea_clock, int planeb_clock,
3406                                int sr_hdisplay, int sr_htotal,
3407                                int pixel_size)
3408 {
3409         struct drm_i915_private *dev_priv = dev->dev_private;
3410         int plane_wm, cursor_wm, enabled;
3411         int tmp;
3412
3413         enabled = 0;
3414         if (ironlake_compute_wm0(dev, 0, &plane_wm, &cursor_wm)) {
3415                 I915_WRITE(WM0_PIPEA_ILK,
3416                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3417                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3418                               " plane %d, " "cursor: %d\n",
3419                               plane_wm, cursor_wm);
3420                 enabled++;
3421         }
3422
3423         if (ironlake_compute_wm0(dev, 1, &plane_wm, &cursor_wm)) {
3424                 I915_WRITE(WM0_PIPEB_ILK,
3425                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3426                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3427                               " plane %d, cursor: %d\n",
3428                               plane_wm, cursor_wm);
3429                 enabled++;
3430         }
3431
3432         /*
3433          * Calculate and update the self-refresh watermark only when one
3434          * display plane is used.
3435          */
3436         tmp = 0;
3437         if (enabled == 1 && /* XXX disabled due to buggy implmentation? */ 0) {
3438                 unsigned long line_time_us;
3439                 int small, large, plane_fbc;
3440                 int sr_clock, entries;
3441                 int line_count, line_size;
3442                 /* Read the self-refresh latency. The unit is 0.5us */
3443                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3444
3445                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3446                 line_time_us = (sr_htotal * 1000) / sr_clock;
3447
3448                 /* Use ns/us then divide to preserve precision */
3449                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3450                         / 1000;
3451                 line_size = sr_hdisplay * pixel_size;
3452
3453                 /* Use the minimum of the small and large buffer method for primary */
3454                 small = ((sr_clock * pixel_size / 1000) * (ilk_sr_latency * 500)) / 1000;
3455                 large = line_count * line_size;
3456
3457                 entries = DIV_ROUND_UP(min(small, large),
3458                                        ironlake_display_srwm_info.cacheline_size);
3459
3460                 plane_fbc = entries * 64;
3461                 plane_fbc = DIV_ROUND_UP(plane_fbc, line_size);
3462
3463                 plane_wm = entries + ironlake_display_srwm_info.guard_size;
3464                 if (plane_wm > (int)ironlake_display_srwm_info.max_wm)
3465                         plane_wm = ironlake_display_srwm_info.max_wm;
3466
3467                 /* calculate the self-refresh watermark for display cursor */
3468                 entries = line_count * pixel_size * 64;
3469                 entries = DIV_ROUND_UP(entries,
3470                                        ironlake_cursor_srwm_info.cacheline_size);
3471
3472                 cursor_wm = entries + ironlake_cursor_srwm_info.guard_size;
3473                 if (cursor_wm > (int)ironlake_cursor_srwm_info.max_wm)
3474                         cursor_wm = ironlake_cursor_srwm_info.max_wm;
3475
3476                 /* configure watermark and enable self-refresh */
3477                 tmp = (WM1_LP_SR_EN |
3478                        (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3479                        (plane_fbc << WM1_LP_FBC_SHIFT) |
3480                        (plane_wm << WM1_LP_SR_SHIFT) |
3481                        cursor_wm);
3482                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3483                               " cursor %d\n", plane_wm, plane_fbc, cursor_wm);
3484         }
3485         I915_WRITE(WM1_LP_ILK, tmp);
3486         /* XXX setup WM2 and WM3 */
3487 }
3488
3489 /**
3490  * intel_update_watermarks - update FIFO watermark values based on current modes
3491  *
3492  * Calculate watermark values for the various WM regs based on current mode
3493  * and plane configuration.
3494  *
3495  * There are several cases to deal with here:
3496  *   - normal (i.e. non-self-refresh)
3497  *   - self-refresh (SR) mode
3498  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3499  *   - lines are small relative to FIFO size (buffer can hold more than 2
3500  *     lines), so need to account for TLB latency
3501  *
3502  *   The normal calculation is:
3503  *     watermark = dotclock * bytes per pixel * latency
3504  *   where latency is platform & configuration dependent (we assume pessimal
3505  *   values here).
3506  *
3507  *   The SR calculation is:
3508  *     watermark = (trunc(latency/line time)+1) * surface width *
3509  *       bytes per pixel
3510  *   where
3511  *     line time = htotal / dotclock
3512  *     surface width = hdisplay for normal plane and 64 for cursor
3513  *   and latency is assumed to be high, as above.
3514  *
3515  * The final value programmed to the register should always be rounded up,
3516  * and include an extra 2 entries to account for clock crossings.
3517  *
3518  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3519  * to set the non-SR watermarks to 8.
3520  */
3521 static void intel_update_watermarks(struct drm_device *dev)
3522 {
3523         struct drm_i915_private *dev_priv = dev->dev_private;
3524         struct drm_crtc *crtc;
3525         int sr_hdisplay = 0;
3526         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3527         int enabled = 0, pixel_size = 0;
3528         int sr_htotal = 0;
3529
3530         if (!dev_priv->display.update_wm)
3531                 return;
3532
3533         /* Get the clock config from both planes */
3534         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3535                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3536                 if (intel_crtc->active) {
3537                         enabled++;
3538                         if (intel_crtc->plane == 0) {
3539                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3540                                               intel_crtc->pipe, crtc->mode.clock);
3541                                 planea_clock = crtc->mode.clock;
3542                         } else {
3543                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3544                                               intel_crtc->pipe, crtc->mode.clock);
3545                                 planeb_clock = crtc->mode.clock;
3546                         }
3547                         sr_hdisplay = crtc->mode.hdisplay;
3548                         sr_clock = crtc->mode.clock;
3549                         sr_htotal = crtc->mode.htotal;
3550                         if (crtc->fb)
3551                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3552                         else
3553                                 pixel_size = 4; /* by default */
3554                 }
3555         }
3556
3557         if (enabled <= 0)
3558                 return;
3559
3560         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3561                                     sr_hdisplay, sr_htotal, pixel_size);
3562 }
3563
3564 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3565                                struct drm_display_mode *mode,
3566                                struct drm_display_mode *adjusted_mode,
3567                                int x, int y,
3568                                struct drm_framebuffer *old_fb)
3569 {
3570         struct drm_device *dev = crtc->dev;
3571         struct drm_i915_private *dev_priv = dev->dev_private;
3572         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3573         int pipe = intel_crtc->pipe;
3574         int plane = intel_crtc->plane;
3575         u32 fp_reg, dpll_reg;
3576         int refclk, num_connectors = 0;
3577         intel_clock_t clock, reduced_clock;
3578         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3579         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3580         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3581         struct intel_encoder *has_edp_encoder = NULL;
3582         struct drm_mode_config *mode_config = &dev->mode_config;
3583         struct intel_encoder *encoder;
3584         const intel_limit_t *limit;
3585         int ret;
3586         struct fdi_m_n m_n = {0};
3587         u32 reg, temp;
3588         int target_clock;
3589
3590         drm_vblank_pre_modeset(dev, pipe);
3591
3592         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3593                 if (encoder->base.crtc != crtc)
3594                         continue;
3595
3596                 switch (encoder->type) {
3597                 case INTEL_OUTPUT_LVDS:
3598                         is_lvds = true;
3599                         break;
3600                 case INTEL_OUTPUT_SDVO:
3601                 case INTEL_OUTPUT_HDMI:
3602                         is_sdvo = true;
3603                         if (encoder->needs_tv_clock)
3604                                 is_tv = true;
3605                         break;
3606                 case INTEL_OUTPUT_DVO:
3607                         is_dvo = true;
3608                         break;
3609                 case INTEL_OUTPUT_TVOUT:
3610                         is_tv = true;
3611                         break;
3612                 case INTEL_OUTPUT_ANALOG:
3613                         is_crt = true;
3614                         break;
3615                 case INTEL_OUTPUT_DISPLAYPORT:
3616                         is_dp = true;
3617                         break;
3618                 case INTEL_OUTPUT_EDP:
3619                         has_edp_encoder = encoder;
3620                         break;
3621                 }
3622
3623                 num_connectors++;
3624         }
3625
3626         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3627                 refclk = dev_priv->lvds_ssc_freq * 1000;
3628                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3629                               refclk / 1000);
3630         } else if (!IS_GEN2(dev)) {
3631                 refclk = 96000;
3632                 if (HAS_PCH_SPLIT(dev) &&
3633                     (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)))
3634                         refclk = 120000; /* 120Mhz refclk */
3635         } else {
3636                 refclk = 48000;
3637         }
3638
3639         /*
3640          * Returns a set of divisors for the desired target clock with the given
3641          * refclk, or FALSE.  The returned values represent the clock equation:
3642          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3643          */
3644         limit = intel_limit(crtc);
3645         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3646         if (!ok) {
3647                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3648                 drm_vblank_post_modeset(dev, pipe);
3649                 return -EINVAL;
3650         }
3651
3652         /* Ensure that the cursor is valid for the new mode before changing... */
3653         intel_crtc_update_cursor(crtc, true);
3654
3655         if (is_lvds && dev_priv->lvds_downclock_avail) {
3656                 has_reduced_clock = limit->find_pll(limit, crtc,
3657                                                     dev_priv->lvds_downclock,
3658                                                     refclk,
3659                                                     &reduced_clock);
3660                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3661                         /*
3662                          * If the different P is found, it means that we can't
3663                          * switch the display clock by using the FP0/FP1.
3664                          * In such case we will disable the LVDS downclock
3665                          * feature.
3666                          */
3667                         DRM_DEBUG_KMS("Different P is found for "
3668                                       "LVDS clock/downclock\n");
3669                         has_reduced_clock = 0;
3670                 }
3671         }
3672         /* SDVO TV has fixed PLL values depend on its clock range,
3673            this mirrors vbios setting. */
3674         if (is_sdvo && is_tv) {
3675                 if (adjusted_mode->clock >= 100000
3676                     && adjusted_mode->clock < 140500) {
3677                         clock.p1 = 2;
3678                         clock.p2 = 10;
3679                         clock.n = 3;
3680                         clock.m1 = 16;
3681                         clock.m2 = 8;
3682                 } else if (adjusted_mode->clock >= 140500
3683                            && adjusted_mode->clock <= 200000) {
3684                         clock.p1 = 1;
3685                         clock.p2 = 10;
3686                         clock.n = 6;
3687                         clock.m1 = 12;
3688                         clock.m2 = 8;
3689                 }
3690         }
3691
3692         /* FDI link */
3693         if (HAS_PCH_SPLIT(dev)) {
3694                 int lane = 0, link_bw, bpp;
3695                 /* CPU eDP doesn't require FDI link, so just set DP M/N
3696                    according to current link config */
3697                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&encoder->base)) {
3698                         target_clock = mode->clock;
3699                         intel_edp_link_config(has_edp_encoder,
3700                                               &lane, &link_bw);
3701                 } else {
3702                         /* [e]DP over FDI requires target mode clock
3703                            instead of link clock */
3704                         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3705                                 target_clock = mode->clock;
3706                         else
3707                                 target_clock = adjusted_mode->clock;
3708
3709                         /* FDI is a binary signal running at ~2.7GHz, encoding
3710                          * each output octet as 10 bits. The actual frequency
3711                          * is stored as a divider into a 100MHz clock, and the
3712                          * mode pixel clock is stored in units of 1KHz.
3713                          * Hence the bw of each lane in terms of the mode signal
3714                          * is:
3715                          */
3716                         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3717                 }
3718
3719                 /* determine panel color depth */
3720                 temp = I915_READ(PIPECONF(pipe));
3721                 temp &= ~PIPE_BPC_MASK;
3722                 if (is_lvds) {
3723                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3724                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3725                                 temp |= PIPE_8BPC;
3726                         else
3727                                 temp |= PIPE_6BPC;
3728                 } else if (has_edp_encoder) {
3729                         switch (dev_priv->edp.bpp/3) {
3730                         case 8:
3731                                 temp |= PIPE_8BPC;
3732                                 break;
3733                         case 10:
3734                                 temp |= PIPE_10BPC;
3735                                 break;
3736                         case 6:
3737                                 temp |= PIPE_6BPC;
3738                                 break;
3739                         case 12:
3740                                 temp |= PIPE_12BPC;
3741                                 break;
3742                         }
3743                 } else
3744                         temp |= PIPE_8BPC;
3745                 I915_WRITE(PIPECONF(pipe), temp);
3746
3747                 switch (temp & PIPE_BPC_MASK) {
3748                 case PIPE_8BPC:
3749                         bpp = 24;
3750                         break;
3751                 case PIPE_10BPC:
3752                         bpp = 30;
3753                         break;
3754                 case PIPE_6BPC:
3755                         bpp = 18;
3756                         break;
3757                 case PIPE_12BPC:
3758                         bpp = 36;
3759                         break;
3760                 default:
3761                         DRM_ERROR("unknown pipe bpc value\n");
3762                         bpp = 24;
3763                 }
3764
3765                 if (!lane) {
3766                         /* 
3767                          * Account for spread spectrum to avoid
3768                          * oversubscribing the link. Max center spread
3769                          * is 2.5%; use 5% for safety's sake.
3770                          */
3771                         u32 bps = target_clock * bpp * 21 / 20;
3772                         lane = bps / (link_bw * 8) + 1;
3773                 }
3774
3775                 intel_crtc->fdi_lanes = lane;
3776
3777                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3778         }
3779
3780         /* Ironlake: try to setup display ref clock before DPLL
3781          * enabling. This is only under driver's control after
3782          * PCH B stepping, previous chipset stepping should be
3783          * ignoring this setting.
3784          */
3785         if (HAS_PCH_SPLIT(dev)) {
3786                 temp = I915_READ(PCH_DREF_CONTROL);
3787                 /* Always enable nonspread source */
3788                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3789                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3790                 temp &= ~DREF_SSC_SOURCE_MASK;
3791                 temp |= DREF_SSC_SOURCE_ENABLE;
3792                 I915_WRITE(PCH_DREF_CONTROL, temp);
3793
3794                 POSTING_READ(PCH_DREF_CONTROL);
3795                 udelay(200);
3796
3797                 if (has_edp_encoder) {
3798                         if (dev_priv->lvds_use_ssc) {
3799                                 temp |= DREF_SSC1_ENABLE;
3800                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3801
3802                                 POSTING_READ(PCH_DREF_CONTROL);
3803                                 udelay(200);
3804                         }
3805                         temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3806
3807                         /* Enable CPU source on CPU attached eDP */
3808                         if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3809                                 if (dev_priv->lvds_use_ssc)
3810                                         temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3811                                 else
3812                                         temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3813                         } else {
3814                                 /* Enable SSC on PCH eDP if needed */
3815                                 if (dev_priv->lvds_use_ssc) {
3816                                         DRM_ERROR("enabling SSC on PCH\n");
3817                                         temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
3818                                 }
3819                         }
3820                         I915_WRITE(PCH_DREF_CONTROL, temp);
3821                         POSTING_READ(PCH_DREF_CONTROL);
3822                         udelay(200);
3823                 }
3824         }
3825
3826         if (IS_PINEVIEW(dev)) {
3827                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3828                 if (has_reduced_clock)
3829                         fp2 = (1 << reduced_clock.n) << 16 |
3830                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3831         } else {
3832                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3833                 if (has_reduced_clock)
3834                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3835                                 reduced_clock.m2;
3836         }
3837
3838         dpll = 0;
3839         if (!HAS_PCH_SPLIT(dev))
3840                 dpll = DPLL_VGA_MODE_DIS;
3841
3842         if (!IS_GEN2(dev)) {
3843                 if (is_lvds)
3844                         dpll |= DPLLB_MODE_LVDS;
3845                 else
3846                         dpll |= DPLLB_MODE_DAC_SERIAL;
3847                 if (is_sdvo) {
3848                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3849                         if (pixel_multiplier > 1) {
3850                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3851                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3852                                 else if (HAS_PCH_SPLIT(dev))
3853                                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3854                         }
3855                         dpll |= DPLL_DVO_HIGH_SPEED;
3856                 }
3857                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3858                         dpll |= DPLL_DVO_HIGH_SPEED;
3859
3860                 /* compute bitmask from p1 value */
3861                 if (IS_PINEVIEW(dev))
3862                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3863                 else {
3864                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3865                         /* also FPA1 */
3866                         if (HAS_PCH_SPLIT(dev))
3867                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3868                         if (IS_G4X(dev) && has_reduced_clock)
3869                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3870                 }
3871                 switch (clock.p2) {
3872                 case 5:
3873                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3874                         break;
3875                 case 7:
3876                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3877                         break;
3878                 case 10:
3879                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3880                         break;
3881                 case 14:
3882                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3883                         break;
3884                 }
3885                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
3886                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3887         } else {
3888                 if (is_lvds) {
3889                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3890                 } else {
3891                         if (clock.p1 == 2)
3892                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3893                         else
3894                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3895                         if (clock.p2 == 4)
3896                                 dpll |= PLL_P2_DIVIDE_BY_4;
3897                 }
3898         }
3899
3900         if (is_sdvo && is_tv)
3901                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3902         else if (is_tv)
3903                 /* XXX: just matching BIOS for now */
3904                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3905                 dpll |= 3;
3906         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3907                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3908         else
3909                 dpll |= PLL_REF_INPUT_DREFCLK;
3910
3911         /* setup pipeconf */
3912         pipeconf = I915_READ(PIPECONF(pipe));
3913
3914         /* Set up the display plane register */
3915         dspcntr = DISPPLANE_GAMMA_ENABLE;
3916
3917         /* Ironlake's plane is forced to pipe, bit 24 is to
3918            enable color space conversion */
3919         if (!HAS_PCH_SPLIT(dev)) {
3920                 if (pipe == 0)
3921                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3922                 else
3923                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3924         }
3925
3926         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3927                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3928                  * core speed.
3929                  *
3930                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3931                  * pipe == 0 check?
3932                  */
3933                 if (mode->clock >
3934                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3935                         pipeconf |= PIPECONF_DOUBLE_WIDE;
3936                 else
3937                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3938         }
3939
3940         dspcntr |= DISPLAY_PLANE_ENABLE;
3941         pipeconf |= PIPECONF_ENABLE;
3942         dpll |= DPLL_VCO_ENABLE;
3943
3944         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3945         drm_mode_debug_printmodeline(mode);
3946
3947         /* assign to Ironlake registers */
3948         if (HAS_PCH_SPLIT(dev)) {
3949                 fp_reg = PCH_FP0(pipe);
3950                 dpll_reg = PCH_DPLL(pipe);
3951         } else {
3952                 fp_reg = FP0(pipe);
3953                 dpll_reg = DPLL(pipe);
3954         }
3955
3956         /* PCH eDP needs FDI, but CPU eDP does not */
3957         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3958                 I915_WRITE(fp_reg, fp);
3959                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3960
3961                 POSTING_READ(dpll_reg);
3962                 udelay(150);
3963         }
3964
3965         /* enable transcoder DPLL */
3966         if (HAS_PCH_CPT(dev)) {
3967                 temp = I915_READ(PCH_DPLL_SEL);
3968                 if (pipe == 0)
3969                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
3970                 else
3971                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
3972                 I915_WRITE(PCH_DPLL_SEL, temp);
3973
3974                 POSTING_READ(PCH_DPLL_SEL);
3975                 udelay(150);
3976         }
3977
3978         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3979          * This is an exception to the general rule that mode_set doesn't turn
3980          * things on.
3981          */
3982         if (is_lvds) {
3983                 reg = LVDS;
3984                 if (HAS_PCH_SPLIT(dev))
3985                         reg = PCH_LVDS;
3986
3987                 temp = I915_READ(reg);
3988                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3989                 if (pipe == 1) {
3990                         if (HAS_PCH_CPT(dev))
3991                                 temp |= PORT_TRANS_B_SEL_CPT;
3992                         else
3993                                 temp |= LVDS_PIPEB_SELECT;
3994                 } else {
3995                         if (HAS_PCH_CPT(dev))
3996                                 temp &= ~PORT_TRANS_SEL_MASK;
3997                         else
3998                                 temp &= ~LVDS_PIPEB_SELECT;
3999                 }
4000                 /* set the corresponsding LVDS_BORDER bit */
4001                 temp |= dev_priv->lvds_border_bits;
4002                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4003                  * set the DPLLs for dual-channel mode or not.
4004                  */
4005                 if (clock.p2 == 7)
4006                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4007                 else
4008                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4009
4010                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4011                  * appropriately here, but we need to look more thoroughly into how
4012                  * panels behave in the two modes.
4013                  */
4014                 /* set the dithering flag on non-PCH LVDS as needed */
4015                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4016                         if (dev_priv->lvds_dither)
4017                                 temp |= LVDS_ENABLE_DITHER;
4018                         else
4019                                 temp &= ~LVDS_ENABLE_DITHER;
4020                 }
4021                 I915_WRITE(reg, temp);
4022         }
4023
4024         /* set the dithering flag and clear for anything other than a panel. */
4025         if (HAS_PCH_SPLIT(dev)) {
4026                 pipeconf &= ~PIPECONF_DITHER_EN;
4027                 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4028                 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
4029                         pipeconf |= PIPECONF_DITHER_EN;
4030                         pipeconf |= PIPECONF_DITHER_TYPE_ST1;
4031                 }
4032         }
4033
4034         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4035                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4036         } else if (HAS_PCH_SPLIT(dev)) {
4037                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4038                 if (pipe == 0) {
4039                         I915_WRITE(TRANSA_DATA_M1, 0);
4040                         I915_WRITE(TRANSA_DATA_N1, 0);
4041                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
4042                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
4043                 } else {
4044                         I915_WRITE(TRANSB_DATA_M1, 0);
4045                         I915_WRITE(TRANSB_DATA_N1, 0);
4046                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
4047                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
4048                 }
4049         }
4050
4051         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4052                 I915_WRITE(fp_reg, fp);
4053                 I915_WRITE(dpll_reg, dpll);
4054
4055                 /* Wait for the clocks to stabilize. */
4056                 POSTING_READ(dpll_reg);
4057                 udelay(150);
4058
4059                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4060                         temp = 0;
4061                         if (is_sdvo) {
4062                                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4063                                 if (temp > 1)
4064                                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4065                                 else
4066                                         temp = 0;
4067                         }
4068                         I915_WRITE(DPLL_MD(pipe), temp);
4069                 } else {
4070                         /* write it again -- the BIOS does, after all */
4071                         I915_WRITE(dpll_reg, dpll);
4072                 }
4073
4074                 /* Wait for the clocks to stabilize. */
4075                 POSTING_READ(dpll_reg);
4076                 udelay(150);
4077         }
4078
4079         intel_crtc->lowfreq_avail = false;
4080         if (is_lvds && has_reduced_clock && i915_powersave) {
4081                 I915_WRITE(fp_reg + 4, fp2);
4082                 intel_crtc->lowfreq_avail = true;
4083                 if (HAS_PIPE_CXSR(dev)) {
4084                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4085                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4086                 }
4087         } else {
4088                 I915_WRITE(fp_reg + 4, fp);
4089                 if (HAS_PIPE_CXSR(dev)) {
4090                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4091                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4092                 }
4093         }
4094
4095         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4096                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4097                 /* the chip adds 2 halflines automatically */
4098                 adjusted_mode->crtc_vdisplay -= 1;
4099                 adjusted_mode->crtc_vtotal -= 1;
4100                 adjusted_mode->crtc_vblank_start -= 1;
4101                 adjusted_mode->crtc_vblank_end -= 1;
4102                 adjusted_mode->crtc_vsync_end -= 1;
4103                 adjusted_mode->crtc_vsync_start -= 1;
4104         } else
4105                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4106
4107         I915_WRITE(HTOTAL(pipe),
4108                    (adjusted_mode->crtc_hdisplay - 1) |
4109                    ((adjusted_mode->crtc_htotal - 1) << 16));
4110         I915_WRITE(HBLANK(pipe),
4111                    (adjusted_mode->crtc_hblank_start - 1) |
4112                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4113         I915_WRITE(HSYNC(pipe),
4114                    (adjusted_mode->crtc_hsync_start - 1) |
4115                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4116
4117         I915_WRITE(VTOTAL(pipe),
4118                    (adjusted_mode->crtc_vdisplay - 1) |
4119                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4120         I915_WRITE(VBLANK(pipe),
4121                    (adjusted_mode->crtc_vblank_start - 1) |
4122                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4123         I915_WRITE(VSYNC(pipe),
4124                    (adjusted_mode->crtc_vsync_start - 1) |
4125                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4126
4127         /* pipesrc and dspsize control the size that is scaled from,
4128          * which should always be the user's requested size.
4129          */
4130         if (!HAS_PCH_SPLIT(dev)) {
4131                 I915_WRITE(DSPSIZE(plane),
4132                            ((mode->vdisplay - 1) << 16) |
4133                            (mode->hdisplay - 1));
4134                 I915_WRITE(DSPPOS(plane), 0);
4135         }
4136         I915_WRITE(PIPESRC(pipe),
4137                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4138
4139         if (HAS_PCH_SPLIT(dev)) {
4140                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4141                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4142                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4143                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4144
4145                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4146                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4147                 }
4148         }
4149
4150         I915_WRITE(PIPECONF(pipe), pipeconf);
4151         POSTING_READ(PIPECONF(pipe));
4152
4153         intel_wait_for_vblank(dev, pipe);
4154
4155         if (IS_GEN5(dev)) {
4156                 /* enable address swizzle for tiling buffer */
4157                 temp = I915_READ(DISP_ARB_CTL);
4158                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4159         }
4160
4161         I915_WRITE(DSPCNTR(plane), dspcntr);
4162
4163         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4164
4165         intel_update_watermarks(dev);
4166
4167         drm_vblank_post_modeset(dev, pipe);
4168
4169         return ret;
4170 }
4171
4172 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4173 void intel_crtc_load_lut(struct drm_crtc *crtc)
4174 {
4175         struct drm_device *dev = crtc->dev;
4176         struct drm_i915_private *dev_priv = dev->dev_private;
4177         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4178         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4179         int i;
4180
4181         /* The clocks have to be on to load the palette. */
4182         if (!crtc->enabled)
4183                 return;
4184
4185         /* use legacy palette for Ironlake */
4186         if (HAS_PCH_SPLIT(dev))
4187                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4188                                                    LGC_PALETTE_B;
4189
4190         for (i = 0; i < 256; i++) {
4191                 I915_WRITE(palreg + 4 * i,
4192                            (intel_crtc->lut_r[i] << 16) |
4193                            (intel_crtc->lut_g[i] << 8) |
4194                            intel_crtc->lut_b[i]);
4195         }
4196 }
4197
4198 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4199 {
4200         struct drm_device *dev = crtc->dev;
4201         struct drm_i915_private *dev_priv = dev->dev_private;
4202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4203         bool visible = base != 0;
4204         u32 cntl;
4205
4206         if (intel_crtc->cursor_visible == visible)
4207                 return;
4208
4209         cntl = I915_READ(CURACNTR);
4210         if (visible) {
4211                 /* On these chipsets we can only modify the base whilst
4212                  * the cursor is disabled.
4213                  */
4214                 I915_WRITE(CURABASE, base);
4215
4216                 cntl &= ~(CURSOR_FORMAT_MASK);
4217                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4218                 cntl |= CURSOR_ENABLE |
4219                         CURSOR_GAMMA_ENABLE |
4220                         CURSOR_FORMAT_ARGB;
4221         } else
4222                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4223         I915_WRITE(CURACNTR, cntl);
4224
4225         intel_crtc->cursor_visible = visible;
4226 }
4227
4228 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4229 {
4230         struct drm_device *dev = crtc->dev;
4231         struct drm_i915_private *dev_priv = dev->dev_private;
4232         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4233         int pipe = intel_crtc->pipe;
4234         bool visible = base != 0;
4235
4236         if (intel_crtc->cursor_visible != visible) {
4237                 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4238                 if (base) {
4239                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4240                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4241                         cntl |= pipe << 28; /* Connect to correct pipe */
4242                 } else {
4243                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4244                         cntl |= CURSOR_MODE_DISABLE;
4245                 }
4246                 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4247
4248                 intel_crtc->cursor_visible = visible;
4249         }
4250         /* and commit changes on next vblank */
4251         I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4252 }
4253
4254 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4255 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4256                                      bool on)
4257 {
4258         struct drm_device *dev = crtc->dev;
4259         struct drm_i915_private *dev_priv = dev->dev_private;
4260         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4261         int pipe = intel_crtc->pipe;
4262         int x = intel_crtc->cursor_x;
4263         int y = intel_crtc->cursor_y;
4264         u32 base, pos;
4265         bool visible;
4266
4267         pos = 0;
4268
4269         if (on && crtc->enabled && crtc->fb) {
4270                 base = intel_crtc->cursor_addr;
4271                 if (x > (int) crtc->fb->width)
4272                         base = 0;
4273
4274                 if (y > (int) crtc->fb->height)
4275                         base = 0;
4276         } else
4277                 base = 0;
4278
4279         if (x < 0) {
4280                 if (x + intel_crtc->cursor_width < 0)
4281                         base = 0;
4282
4283                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4284                 x = -x;
4285         }
4286         pos |= x << CURSOR_X_SHIFT;
4287
4288         if (y < 0) {
4289                 if (y + intel_crtc->cursor_height < 0)
4290                         base = 0;
4291
4292                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4293                 y = -y;
4294         }
4295         pos |= y << CURSOR_Y_SHIFT;
4296
4297         visible = base != 0;
4298         if (!visible && !intel_crtc->cursor_visible)
4299                 return;
4300
4301         I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4302         if (IS_845G(dev) || IS_I865G(dev))
4303                 i845_update_cursor(crtc, base);
4304         else
4305                 i9xx_update_cursor(crtc, base);
4306
4307         if (visible)
4308                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4309 }
4310
4311 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4312                                  struct drm_file *file_priv,
4313                                  uint32_t handle,
4314                                  uint32_t width, uint32_t height)
4315 {
4316         struct drm_device *dev = crtc->dev;
4317         struct drm_i915_private *dev_priv = dev->dev_private;
4318         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4319         struct drm_gem_object *bo;
4320         struct drm_i915_gem_object *obj_priv;
4321         uint32_t addr;
4322         int ret;
4323
4324         DRM_DEBUG_KMS("\n");
4325
4326         /* if we want to turn off the cursor ignore width and height */
4327         if (!handle) {
4328                 DRM_DEBUG_KMS("cursor off\n");
4329                 addr = 0;
4330                 bo = NULL;
4331                 mutex_lock(&dev->struct_mutex);
4332                 goto finish;
4333         }
4334
4335         /* Currently we only support 64x64 cursors */
4336         if (width != 64 || height != 64) {
4337                 DRM_ERROR("we currently only support 64x64 cursors\n");
4338                 return -EINVAL;
4339         }
4340
4341         bo = drm_gem_object_lookup(dev, file_priv, handle);
4342         if (!bo)
4343                 return -ENOENT;
4344
4345         obj_priv = to_intel_bo(bo);
4346
4347         if (bo->size < width * height * 4) {
4348                 DRM_ERROR("buffer is to small\n");
4349                 ret = -ENOMEM;
4350                 goto fail;
4351         }
4352
4353         /* we only need to pin inside GTT if cursor is non-phy */
4354         mutex_lock(&dev->struct_mutex);
4355         if (!dev_priv->info->cursor_needs_physical) {
4356                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4357                 if (ret) {
4358                         DRM_ERROR("failed to pin cursor bo\n");
4359                         goto fail_locked;
4360                 }
4361
4362                 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4363                 if (ret) {
4364                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4365                         goto fail_unpin;
4366                 }
4367
4368                 addr = obj_priv->gtt_offset;
4369         } else {
4370                 int align = IS_I830(dev) ? 16 * 1024 : 256;
4371                 ret = i915_gem_attach_phys_object(dev, bo,
4372                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4373                                                   align);
4374                 if (ret) {
4375                         DRM_ERROR("failed to attach phys object\n");
4376                         goto fail_locked;
4377                 }
4378                 addr = obj_priv->phys_obj->handle->busaddr;
4379         }
4380
4381         if (IS_GEN2(dev))
4382                 I915_WRITE(CURSIZE, (height << 12) | width);
4383
4384  finish:
4385         if (intel_crtc->cursor_bo) {
4386                 if (dev_priv->info->cursor_needs_physical) {
4387                         if (intel_crtc->cursor_bo != bo)
4388                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4389                 } else
4390                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4391                 drm_gem_object_unreference(intel_crtc->cursor_bo);
4392         }
4393
4394         mutex_unlock(&dev->struct_mutex);
4395
4396         intel_crtc->cursor_addr = addr;
4397         intel_crtc->cursor_bo = bo;
4398         intel_crtc->cursor_width = width;
4399         intel_crtc->cursor_height = height;
4400
4401         intel_crtc_update_cursor(crtc, true);
4402
4403         return 0;
4404 fail_unpin:
4405         i915_gem_object_unpin(bo);
4406 fail_locked:
4407         mutex_unlock(&dev->struct_mutex);
4408 fail:
4409         drm_gem_object_unreference_unlocked(bo);
4410         return ret;
4411 }
4412
4413 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4414 {
4415         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4416
4417         intel_crtc->cursor_x = x;
4418         intel_crtc->cursor_y = y;
4419
4420         intel_crtc_update_cursor(crtc, true);
4421
4422         return 0;
4423 }
4424
4425 /** Sets the color ramps on behalf of RandR */
4426 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4427                                  u16 blue, int regno)
4428 {
4429         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4430
4431         intel_crtc->lut_r[regno] = red >> 8;
4432         intel_crtc->lut_g[regno] = green >> 8;
4433         intel_crtc->lut_b[regno] = blue >> 8;
4434 }
4435
4436 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4437                              u16 *blue, int regno)
4438 {
4439         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4440
4441         *red = intel_crtc->lut_r[regno] << 8;
4442         *green = intel_crtc->lut_g[regno] << 8;
4443         *blue = intel_crtc->lut_b[regno] << 8;
4444 }
4445
4446 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4447                                  u16 *blue, uint32_t start, uint32_t size)
4448 {
4449         int end = (start + size > 256) ? 256 : start + size, i;
4450         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4451
4452         for (i = start; i < end; i++) {
4453                 intel_crtc->lut_r[i] = red[i] >> 8;
4454                 intel_crtc->lut_g[i] = green[i] >> 8;
4455                 intel_crtc->lut_b[i] = blue[i] >> 8;
4456         }
4457
4458         intel_crtc_load_lut(crtc);
4459 }
4460
4461 /**
4462  * Get a pipe with a simple mode set on it for doing load-based monitor
4463  * detection.
4464  *
4465  * It will be up to the load-detect code to adjust the pipe as appropriate for
4466  * its requirements.  The pipe will be connected to no other encoders.
4467  *
4468  * Currently this code will only succeed if there is a pipe with no encoders
4469  * configured for it.  In the future, it could choose to temporarily disable
4470  * some outputs to free up a pipe for its use.
4471  *
4472  * \return crtc, or NULL if no pipes are available.
4473  */
4474
4475 /* VESA 640x480x72Hz mode to set on the pipe */
4476 static struct drm_display_mode load_detect_mode = {
4477         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4478                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4479 };
4480
4481 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4482                                             struct drm_connector *connector,
4483                                             struct drm_display_mode *mode,
4484                                             int *dpms_mode)
4485 {
4486         struct intel_crtc *intel_crtc;
4487         struct drm_crtc *possible_crtc;
4488         struct drm_crtc *supported_crtc =NULL;
4489         struct drm_encoder *encoder = &intel_encoder->base;
4490         struct drm_crtc *crtc = NULL;
4491         struct drm_device *dev = encoder->dev;
4492         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4493         struct drm_crtc_helper_funcs *crtc_funcs;
4494         int i = -1;
4495
4496         /*
4497          * Algorithm gets a little messy:
4498          *   - if the connector already has an assigned crtc, use it (but make
4499          *     sure it's on first)
4500          *   - try to find the first unused crtc that can drive this connector,
4501          *     and use that if we find one
4502          *   - if there are no unused crtcs available, try to use the first
4503          *     one we found that supports the connector
4504          */
4505
4506         /* See if we already have a CRTC for this connector */
4507         if (encoder->crtc) {
4508                 crtc = encoder->crtc;
4509                 /* Make sure the crtc and connector are running */
4510                 intel_crtc = to_intel_crtc(crtc);
4511                 *dpms_mode = intel_crtc->dpms_mode;
4512                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4513                         crtc_funcs = crtc->helper_private;
4514                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4515                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4516                 }
4517                 return crtc;
4518         }
4519
4520         /* Find an unused one (if possible) */
4521         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4522                 i++;
4523                 if (!(encoder->possible_crtcs & (1 << i)))
4524                         continue;
4525                 if (!possible_crtc->enabled) {
4526                         crtc = possible_crtc;
4527                         break;
4528                 }
4529                 if (!supported_crtc)
4530                         supported_crtc = possible_crtc;
4531         }
4532
4533         /*
4534          * If we didn't find an unused CRTC, don't use any.
4535          */
4536         if (!crtc) {
4537                 return NULL;
4538         }
4539
4540         encoder->crtc = crtc;
4541         connector->encoder = encoder;
4542         intel_encoder->load_detect_temp = true;
4543
4544         intel_crtc = to_intel_crtc(crtc);
4545         *dpms_mode = intel_crtc->dpms_mode;
4546
4547         if (!crtc->enabled) {
4548                 if (!mode)
4549                         mode = &load_detect_mode;
4550                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4551         } else {
4552                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4553                         crtc_funcs = crtc->helper_private;
4554                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4555                 }
4556
4557                 /* Add this connector to the crtc */
4558                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4559                 encoder_funcs->commit(encoder);
4560         }
4561         /* let the connector get through one full cycle before testing */
4562         intel_wait_for_vblank(dev, intel_crtc->pipe);
4563
4564         return crtc;
4565 }
4566
4567 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4568                                     struct drm_connector *connector, int dpms_mode)
4569 {
4570         struct drm_encoder *encoder = &intel_encoder->base;
4571         struct drm_device *dev = encoder->dev;
4572         struct drm_crtc *crtc = encoder->crtc;
4573         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4574         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4575
4576         if (intel_encoder->load_detect_temp) {
4577                 encoder->crtc = NULL;
4578                 connector->encoder = NULL;
4579                 intel_encoder->load_detect_temp = false;
4580                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4581                 drm_helper_disable_unused_functions(dev);
4582         }
4583
4584         /* Switch crtc and encoder back off if necessary */
4585         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4586                 if (encoder->crtc == crtc)
4587                         encoder_funcs->dpms(encoder, dpms_mode);
4588                 crtc_funcs->dpms(crtc, dpms_mode);
4589         }
4590 }
4591
4592 /* Returns the clock of the currently programmed mode of the given pipe. */
4593 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4594 {
4595         struct drm_i915_private *dev_priv = dev->dev_private;
4596         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4597         int pipe = intel_crtc->pipe;
4598         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4599         u32 fp;
4600         intel_clock_t clock;
4601
4602         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4603                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4604         else
4605                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4606
4607         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4608         if (IS_PINEVIEW(dev)) {
4609                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4610                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4611         } else {
4612                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4613                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4614         }
4615
4616         if (!IS_GEN2(dev)) {
4617                 if (IS_PINEVIEW(dev))
4618                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4619                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4620                 else
4621                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4622                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4623
4624                 switch (dpll & DPLL_MODE_MASK) {
4625                 case DPLLB_MODE_DAC_SERIAL:
4626                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4627                                 5 : 10;
4628                         break;
4629                 case DPLLB_MODE_LVDS:
4630                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4631                                 7 : 14;
4632                         break;
4633                 default:
4634                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4635                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4636                         return 0;
4637                 }
4638
4639                 /* XXX: Handle the 100Mhz refclk */
4640                 intel_clock(dev, 96000, &clock);
4641         } else {
4642                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4643
4644                 if (is_lvds) {
4645                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4646                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4647                         clock.p2 = 14;
4648
4649                         if ((dpll & PLL_REF_INPUT_MASK) ==
4650                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4651                                 /* XXX: might not be 66MHz */
4652                                 intel_clock(dev, 66000, &clock);
4653                         } else
4654                                 intel_clock(dev, 48000, &clock);
4655                 } else {
4656                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4657                                 clock.p1 = 2;
4658                         else {
4659                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4660                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4661                         }
4662                         if (dpll & PLL_P2_DIVIDE_BY_4)
4663                                 clock.p2 = 4;
4664                         else
4665                                 clock.p2 = 2;
4666
4667                         intel_clock(dev, 48000, &clock);
4668                 }
4669         }
4670
4671         /* XXX: It would be nice to validate the clocks, but we can't reuse
4672          * i830PllIsValid() because it relies on the xf86_config connector
4673          * configuration being accurate, which it isn't necessarily.
4674          */
4675
4676         return clock.dot;
4677 }
4678
4679 /** Returns the currently programmed mode of the given pipe. */
4680 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4681                                              struct drm_crtc *crtc)
4682 {
4683         struct drm_i915_private *dev_priv = dev->dev_private;
4684         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4685         int pipe = intel_crtc->pipe;
4686         struct drm_display_mode *mode;
4687         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4688         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4689         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4690         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4691
4692         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4693         if (!mode)
4694                 return NULL;
4695
4696         mode->clock = intel_crtc_clock_get(dev, crtc);
4697         mode->hdisplay = (htot & 0xffff) + 1;
4698         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4699         mode->hsync_start = (hsync & 0xffff) + 1;
4700         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4701         mode->vdisplay = (vtot & 0xffff) + 1;
4702         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4703         mode->vsync_start = (vsync & 0xffff) + 1;
4704         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4705
4706         drm_mode_set_name(mode);
4707         drm_mode_set_crtcinfo(mode, 0);
4708
4709         return mode;
4710 }
4711
4712 #define GPU_IDLE_TIMEOUT 500 /* ms */
4713
4714 /* When this timer fires, we've been idle for awhile */
4715 static void intel_gpu_idle_timer(unsigned long arg)
4716 {
4717         struct drm_device *dev = (struct drm_device *)arg;
4718         drm_i915_private_t *dev_priv = dev->dev_private;
4719
4720         dev_priv->busy = false;
4721
4722         queue_work(dev_priv->wq, &dev_priv->idle_work);
4723 }
4724
4725 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4726
4727 static void intel_crtc_idle_timer(unsigned long arg)
4728 {
4729         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4730         struct drm_crtc *crtc = &intel_crtc->base;
4731         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4732
4733         intel_crtc->busy = false;
4734
4735         queue_work(dev_priv->wq, &dev_priv->idle_work);
4736 }
4737
4738 static void intel_increase_pllclock(struct drm_crtc *crtc)
4739 {
4740         struct drm_device *dev = crtc->dev;
4741         drm_i915_private_t *dev_priv = dev->dev_private;
4742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4743         int pipe = intel_crtc->pipe;
4744         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4745         int dpll = I915_READ(dpll_reg);
4746
4747         if (HAS_PCH_SPLIT(dev))
4748                 return;
4749
4750         if (!dev_priv->lvds_downclock_avail)
4751                 return;
4752
4753         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4754                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4755
4756                 /* Unlock panel regs */
4757                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4758                            PANEL_UNLOCK_REGS);
4759
4760                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4761                 I915_WRITE(dpll_reg, dpll);
4762                 dpll = I915_READ(dpll_reg);
4763                 intel_wait_for_vblank(dev, pipe);
4764                 dpll = I915_READ(dpll_reg);
4765                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4766                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4767
4768                 /* ...and lock them again */
4769                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4770         }
4771
4772         /* Schedule downclock */
4773         mod_timer(&intel_crtc->idle_timer, jiffies +
4774                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4775 }
4776
4777 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4778 {
4779         struct drm_device *dev = crtc->dev;
4780         drm_i915_private_t *dev_priv = dev->dev_private;
4781         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4782         int pipe = intel_crtc->pipe;
4783         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4784         int dpll = I915_READ(dpll_reg);
4785
4786         if (HAS_PCH_SPLIT(dev))
4787                 return;
4788
4789         if (!dev_priv->lvds_downclock_avail)
4790                 return;
4791
4792         /*
4793          * Since this is called by a timer, we should never get here in
4794          * the manual case.
4795          */
4796         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4797                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4798
4799                 /* Unlock panel regs */
4800                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4801                            PANEL_UNLOCK_REGS);
4802
4803                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4804                 I915_WRITE(dpll_reg, dpll);
4805                 dpll = I915_READ(dpll_reg);
4806                 intel_wait_for_vblank(dev, pipe);
4807                 dpll = I915_READ(dpll_reg);
4808                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4809                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4810
4811                 /* ...and lock them again */
4812                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4813         }
4814
4815 }
4816
4817 /**
4818  * intel_idle_update - adjust clocks for idleness
4819  * @work: work struct
4820  *
4821  * Either the GPU or display (or both) went idle.  Check the busy status
4822  * here and adjust the CRTC and GPU clocks as necessary.
4823  */
4824 static void intel_idle_update(struct work_struct *work)
4825 {
4826         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4827                                                     idle_work);
4828         struct drm_device *dev = dev_priv->dev;
4829         struct drm_crtc *crtc;
4830         struct intel_crtc *intel_crtc;
4831         int enabled = 0;
4832
4833         if (!i915_powersave)
4834                 return;
4835
4836         mutex_lock(&dev->struct_mutex);
4837
4838         i915_update_gfx_val(dev_priv);
4839
4840         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4841                 /* Skip inactive CRTCs */
4842                 if (!crtc->fb)
4843                         continue;
4844
4845                 enabled++;
4846                 intel_crtc = to_intel_crtc(crtc);
4847                 if (!intel_crtc->busy)
4848                         intel_decrease_pllclock(crtc);
4849         }
4850
4851         if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4852                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4853                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4854         }
4855
4856         mutex_unlock(&dev->struct_mutex);
4857 }
4858
4859 /**
4860  * intel_mark_busy - mark the GPU and possibly the display busy
4861  * @dev: drm device
4862  * @obj: object we're operating on
4863  *
4864  * Callers can use this function to indicate that the GPU is busy processing
4865  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4866  * buffer), we'll also mark the display as busy, so we know to increase its
4867  * clock frequency.
4868  */
4869 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4870 {
4871         drm_i915_private_t *dev_priv = dev->dev_private;
4872         struct drm_crtc *crtc = NULL;
4873         struct intel_framebuffer *intel_fb;
4874         struct intel_crtc *intel_crtc;
4875
4876         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4877                 return;
4878
4879         if (!dev_priv->busy) {
4880                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4881                         u32 fw_blc_self;
4882
4883                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4884                         fw_blc_self = I915_READ(FW_BLC_SELF);
4885                         fw_blc_self &= ~FW_BLC_SELF_EN;
4886                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4887                 }
4888                 dev_priv->busy = true;
4889         } else
4890                 mod_timer(&dev_priv->idle_timer, jiffies +
4891                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4892
4893         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4894                 if (!crtc->fb)
4895                         continue;
4896
4897                 intel_crtc = to_intel_crtc(crtc);
4898                 intel_fb = to_intel_framebuffer(crtc->fb);
4899                 if (intel_fb->obj == obj) {
4900                         if (!intel_crtc->busy) {
4901                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4902                                         u32 fw_blc_self;
4903
4904                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4905                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4906                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4907                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4908                                 }
4909                                 /* Non-busy -> busy, upclock */
4910                                 intel_increase_pllclock(crtc);
4911                                 intel_crtc->busy = true;
4912                         } else {
4913                                 /* Busy -> busy, put off timer */
4914                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4915                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4916                         }
4917                 }
4918         }
4919 }
4920
4921 static void intel_crtc_destroy(struct drm_crtc *crtc)
4922 {
4923         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4924         struct drm_device *dev = crtc->dev;
4925         struct intel_unpin_work *work;
4926         unsigned long flags;
4927
4928         spin_lock_irqsave(&dev->event_lock, flags);
4929         work = intel_crtc->unpin_work;
4930         intel_crtc->unpin_work = NULL;
4931         spin_unlock_irqrestore(&dev->event_lock, flags);
4932
4933         if (work) {
4934                 cancel_work_sync(&work->work);
4935                 kfree(work);
4936         }
4937
4938         drm_crtc_cleanup(crtc);
4939
4940         kfree(intel_crtc);
4941 }
4942
4943 static void intel_unpin_work_fn(struct work_struct *__work)
4944 {
4945         struct intel_unpin_work *work =
4946                 container_of(__work, struct intel_unpin_work, work);
4947
4948         mutex_lock(&work->dev->struct_mutex);
4949         i915_gem_object_unpin(work->old_fb_obj);
4950         drm_gem_object_unreference(work->pending_flip_obj);
4951         drm_gem_object_unreference(work->old_fb_obj);
4952         mutex_unlock(&work->dev->struct_mutex);
4953         kfree(work);
4954 }
4955
4956 static void do_intel_finish_page_flip(struct drm_device *dev,
4957                                       struct drm_crtc *crtc)
4958 {
4959         drm_i915_private_t *dev_priv = dev->dev_private;
4960         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4961         struct intel_unpin_work *work;
4962         struct drm_i915_gem_object *obj_priv;
4963         struct drm_pending_vblank_event *e;
4964         struct timeval now;
4965         unsigned long flags;
4966
4967         /* Ignore early vblank irqs */
4968         if (intel_crtc == NULL)
4969                 return;
4970
4971         spin_lock_irqsave(&dev->event_lock, flags);
4972         work = intel_crtc->unpin_work;
4973         if (work == NULL || !work->pending) {
4974                 spin_unlock_irqrestore(&dev->event_lock, flags);
4975                 return;
4976         }
4977
4978         intel_crtc->unpin_work = NULL;
4979         drm_vblank_put(dev, intel_crtc->pipe);
4980
4981         if (work->event) {
4982                 e = work->event;
4983                 do_gettimeofday(&now);
4984                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4985                 e->event.tv_sec = now.tv_sec;
4986                 e->event.tv_usec = now.tv_usec;
4987                 list_add_tail(&e->base.link,
4988                               &e->base.file_priv->event_list);
4989                 wake_up_interruptible(&e->base.file_priv->event_wait);
4990         }
4991
4992         spin_unlock_irqrestore(&dev->event_lock, flags);
4993
4994         obj_priv = to_intel_bo(work->old_fb_obj);
4995         atomic_clear_mask(1 << intel_crtc->plane,
4996                           &obj_priv->pending_flip.counter);
4997         if (atomic_read(&obj_priv->pending_flip) == 0)
4998                 wake_up(&dev_priv->pending_flip_queue);
4999         schedule_work(&work->work);
5000
5001         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5002 }
5003
5004 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5005 {
5006         drm_i915_private_t *dev_priv = dev->dev_private;
5007         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5008
5009         do_intel_finish_page_flip(dev, crtc);
5010 }
5011
5012 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5013 {
5014         drm_i915_private_t *dev_priv = dev->dev_private;
5015         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5016
5017         do_intel_finish_page_flip(dev, crtc);
5018 }
5019
5020 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5021 {
5022         drm_i915_private_t *dev_priv = dev->dev_private;
5023         struct intel_crtc *intel_crtc =
5024                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5025         unsigned long flags;
5026
5027         spin_lock_irqsave(&dev->event_lock, flags);
5028         if (intel_crtc->unpin_work) {
5029                 if ((++intel_crtc->unpin_work->pending) > 1)
5030                         DRM_ERROR("Prepared flip multiple times\n");
5031         } else {
5032                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5033         }
5034         spin_unlock_irqrestore(&dev->event_lock, flags);
5035 }
5036
5037 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5038                                 struct drm_framebuffer *fb,
5039                                 struct drm_pending_vblank_event *event)
5040 {
5041         struct drm_device *dev = crtc->dev;
5042         struct drm_i915_private *dev_priv = dev->dev_private;
5043         struct intel_framebuffer *intel_fb;
5044         struct drm_i915_gem_object *obj_priv;
5045         struct drm_gem_object *obj;
5046         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5047         struct intel_unpin_work *work;
5048         unsigned long flags, offset;
5049         int pipe = intel_crtc->pipe;
5050         u32 pf, pipesrc;
5051         int ret;
5052
5053         work = kzalloc(sizeof *work, GFP_KERNEL);
5054         if (work == NULL)
5055                 return -ENOMEM;
5056
5057         work->event = event;
5058         work->dev = crtc->dev;
5059         intel_fb = to_intel_framebuffer(crtc->fb);
5060         work->old_fb_obj = intel_fb->obj;
5061         INIT_WORK(&work->work, intel_unpin_work_fn);
5062
5063         /* We borrow the event spin lock for protecting unpin_work */
5064         spin_lock_irqsave(&dev->event_lock, flags);
5065         if (intel_crtc->unpin_work) {
5066                 spin_unlock_irqrestore(&dev->event_lock, flags);
5067                 kfree(work);
5068
5069                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5070                 return -EBUSY;
5071         }
5072         intel_crtc->unpin_work = work;
5073         spin_unlock_irqrestore(&dev->event_lock, flags);
5074
5075         intel_fb = to_intel_framebuffer(fb);
5076         obj = intel_fb->obj;
5077
5078         mutex_lock(&dev->struct_mutex);
5079         ret = intel_pin_and_fence_fb_obj(dev, obj, true);
5080         if (ret)
5081                 goto cleanup_work;
5082
5083         /* Reference the objects for the scheduled work. */
5084         drm_gem_object_reference(work->old_fb_obj);
5085         drm_gem_object_reference(obj);
5086
5087         crtc->fb = fb;
5088
5089         ret = drm_vblank_get(dev, intel_crtc->pipe);
5090         if (ret)
5091                 goto cleanup_objs;
5092
5093         /* Block clients from rendering to the new back buffer until
5094          * the flip occurs and the object is no longer visible.
5095          */
5096         atomic_add(1 << intel_crtc->plane,
5097                    &to_intel_bo(work->old_fb_obj)->pending_flip);
5098
5099         work->pending_flip_obj = obj;
5100         obj_priv = to_intel_bo(obj);
5101
5102         if (IS_GEN3(dev) || IS_GEN2(dev)) {
5103                 u32 flip_mask;
5104
5105                 /* Can't queue multiple flips, so wait for the previous
5106                  * one to finish before executing the next.
5107                  */
5108                 BEGIN_LP_RING(2);
5109                 if (intel_crtc->plane)
5110                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5111                 else
5112                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5113                 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5114                 OUT_RING(MI_NOOP);
5115                 ADVANCE_LP_RING();
5116         }
5117
5118         work->enable_stall_check = true;
5119
5120         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5121         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5122
5123         BEGIN_LP_RING(4);
5124         switch(INTEL_INFO(dev)->gen) {
5125         case 2:
5126                 OUT_RING(MI_DISPLAY_FLIP |
5127                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5128                 OUT_RING(fb->pitch);
5129                 OUT_RING(obj_priv->gtt_offset + offset);
5130                 OUT_RING(MI_NOOP);
5131                 break;
5132
5133         case 3:
5134                 OUT_RING(MI_DISPLAY_FLIP_I915 |
5135                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5136                 OUT_RING(fb->pitch);
5137                 OUT_RING(obj_priv->gtt_offset + offset);
5138                 OUT_RING(MI_NOOP);
5139                 break;
5140
5141         case 4:
5142         case 5:
5143                 /* i965+ uses the linear or tiled offsets from the
5144                  * Display Registers (which do not change across a page-flip)
5145                  * so we need only reprogram the base address.
5146                  */
5147                 OUT_RING(MI_DISPLAY_FLIP |
5148                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5149                 OUT_RING(fb->pitch);
5150                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
5151
5152                 /* XXX Enabling the panel-fitter across page-flip is so far
5153                  * untested on non-native modes, so ignore it for now.
5154                  * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5155                  */
5156                 pf = 0;
5157                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5158                 OUT_RING(pf | pipesrc);
5159                 break;
5160
5161         case 6:
5162                 OUT_RING(MI_DISPLAY_FLIP |
5163                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5164                 OUT_RING(fb->pitch | obj_priv->tiling_mode);
5165                 OUT_RING(obj_priv->gtt_offset);
5166
5167                 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5168                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5169                 OUT_RING(pf | pipesrc);
5170                 break;
5171         }
5172         ADVANCE_LP_RING();
5173
5174         mutex_unlock(&dev->struct_mutex);
5175
5176         trace_i915_flip_request(intel_crtc->plane, obj);
5177
5178         return 0;
5179
5180 cleanup_objs:
5181         drm_gem_object_unreference(work->old_fb_obj);
5182         drm_gem_object_unreference(obj);
5183 cleanup_work:
5184         mutex_unlock(&dev->struct_mutex);
5185
5186         spin_lock_irqsave(&dev->event_lock, flags);
5187         intel_crtc->unpin_work = NULL;
5188         spin_unlock_irqrestore(&dev->event_lock, flags);
5189
5190         kfree(work);
5191
5192         return ret;
5193 }
5194
5195 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5196         .dpms = intel_crtc_dpms,
5197         .mode_fixup = intel_crtc_mode_fixup,
5198         .mode_set = intel_crtc_mode_set,
5199         .mode_set_base = intel_pipe_set_base,
5200         .mode_set_base_atomic = intel_pipe_set_base_atomic,
5201         .load_lut = intel_crtc_load_lut,
5202         .disable = intel_crtc_disable,
5203 };
5204
5205 static const struct drm_crtc_funcs intel_crtc_funcs = {
5206         .cursor_set = intel_crtc_cursor_set,
5207         .cursor_move = intel_crtc_cursor_move,
5208         .gamma_set = intel_crtc_gamma_set,
5209         .set_config = drm_crtc_helper_set_config,
5210         .destroy = intel_crtc_destroy,
5211         .page_flip = intel_crtc_page_flip,
5212 };
5213
5214
5215 static void intel_crtc_init(struct drm_device *dev, int pipe)
5216 {
5217         drm_i915_private_t *dev_priv = dev->dev_private;
5218         struct intel_crtc *intel_crtc;
5219         int i;
5220
5221         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5222         if (intel_crtc == NULL)
5223                 return;
5224
5225         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5226
5227         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5228         for (i = 0; i < 256; i++) {
5229                 intel_crtc->lut_r[i] = i;
5230                 intel_crtc->lut_g[i] = i;
5231                 intel_crtc->lut_b[i] = i;
5232         }
5233
5234         /* Swap pipes & planes for FBC on pre-965 */
5235         intel_crtc->pipe = pipe;
5236         intel_crtc->plane = pipe;
5237         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5238                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5239                 intel_crtc->plane = !pipe;
5240         }
5241
5242         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5243                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5244         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5245         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5246
5247         intel_crtc->cursor_addr = 0;
5248         intel_crtc->dpms_mode = -1;
5249         intel_crtc->active = true; /* force the pipe off on setup_init_config */
5250
5251         if (HAS_PCH_SPLIT(dev)) {
5252                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5253                 intel_helper_funcs.commit = ironlake_crtc_commit;
5254         } else {
5255                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5256                 intel_helper_funcs.commit = i9xx_crtc_commit;
5257         }
5258
5259         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5260
5261         intel_crtc->busy = false;
5262
5263         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5264                     (unsigned long)intel_crtc);
5265 }
5266
5267 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5268                                 struct drm_file *file_priv)
5269 {
5270         drm_i915_private_t *dev_priv = dev->dev_private;
5271         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5272         struct drm_mode_object *drmmode_obj;
5273         struct intel_crtc *crtc;
5274
5275         if (!dev_priv) {
5276                 DRM_ERROR("called with no initialization\n");
5277                 return -EINVAL;
5278         }
5279
5280         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5281                         DRM_MODE_OBJECT_CRTC);
5282
5283         if (!drmmode_obj) {
5284                 DRM_ERROR("no such CRTC id\n");
5285                 return -EINVAL;
5286         }
5287
5288         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5289         pipe_from_crtc_id->pipe = crtc->pipe;
5290
5291         return 0;
5292 }
5293
5294 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5295 {
5296         struct intel_encoder *encoder;
5297         int index_mask = 0;
5298         int entry = 0;
5299
5300         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5301                 if (type_mask & encoder->clone_mask)
5302                         index_mask |= (1 << entry);
5303                 entry++;
5304         }
5305
5306         return index_mask;
5307 }
5308
5309 static void intel_setup_outputs(struct drm_device *dev)
5310 {
5311         struct drm_i915_private *dev_priv = dev->dev_private;
5312         struct intel_encoder *encoder;
5313         bool dpd_is_edp = false;
5314
5315         if (IS_MOBILE(dev) && !IS_I830(dev))
5316                 intel_lvds_init(dev);
5317
5318         if (HAS_PCH_SPLIT(dev)) {
5319                 dpd_is_edp = intel_dpd_is_edp(dev);
5320
5321                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5322                         intel_dp_init(dev, DP_A);
5323
5324                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5325                         intel_dp_init(dev, PCH_DP_D);
5326         }
5327
5328         intel_crt_init(dev);
5329
5330         if (HAS_PCH_SPLIT(dev)) {
5331                 int found;
5332
5333                 if (I915_READ(HDMIB) & PORT_DETECTED) {
5334                         /* PCH SDVOB multiplex with HDMIB */
5335                         found = intel_sdvo_init(dev, PCH_SDVOB);
5336                         if (!found)
5337                                 intel_hdmi_init(dev, HDMIB);
5338                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5339                                 intel_dp_init(dev, PCH_DP_B);
5340                 }
5341
5342                 if (I915_READ(HDMIC) & PORT_DETECTED)
5343                         intel_hdmi_init(dev, HDMIC);
5344
5345                 if (I915_READ(HDMID) & PORT_DETECTED)
5346                         intel_hdmi_init(dev, HDMID);
5347
5348                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5349                         intel_dp_init(dev, PCH_DP_C);
5350
5351                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5352                         intel_dp_init(dev, PCH_DP_D);
5353
5354         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5355                 bool found = false;
5356
5357                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5358                         DRM_DEBUG_KMS("probing SDVOB\n");
5359                         found = intel_sdvo_init(dev, SDVOB);
5360                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5361                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5362                                 intel_hdmi_init(dev, SDVOB);
5363                         }
5364
5365                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5366                                 DRM_DEBUG_KMS("probing DP_B\n");
5367                                 intel_dp_init(dev, DP_B);
5368                         }
5369                 }
5370
5371                 /* Before G4X SDVOC doesn't have its own detect register */
5372
5373                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5374                         DRM_DEBUG_KMS("probing SDVOC\n");
5375                         found = intel_sdvo_init(dev, SDVOC);
5376                 }
5377
5378                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5379
5380                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5381                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5382                                 intel_hdmi_init(dev, SDVOC);
5383                         }
5384                         if (SUPPORTS_INTEGRATED_DP(dev)) {
5385                                 DRM_DEBUG_KMS("probing DP_C\n");
5386                                 intel_dp_init(dev, DP_C);
5387                         }
5388                 }
5389
5390                 if (SUPPORTS_INTEGRATED_DP(dev) &&
5391                     (I915_READ(DP_D) & DP_DETECTED)) {
5392                         DRM_DEBUG_KMS("probing DP_D\n");
5393                         intel_dp_init(dev, DP_D);
5394                 }
5395         } else if (IS_GEN2(dev))
5396                 intel_dvo_init(dev);
5397
5398         if (SUPPORTS_TV(dev))
5399                 intel_tv_init(dev);
5400
5401         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5402                 encoder->base.possible_crtcs = encoder->crtc_mask;
5403                 encoder->base.possible_clones =
5404                         intel_encoder_clones(dev, encoder->clone_mask);
5405         }
5406 }
5407
5408 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5409 {
5410         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5411
5412         drm_framebuffer_cleanup(fb);
5413         drm_gem_object_unreference_unlocked(intel_fb->obj);
5414
5415         kfree(intel_fb);
5416 }
5417
5418 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5419                                                 struct drm_file *file_priv,
5420                                                 unsigned int *handle)
5421 {
5422         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5423         struct drm_gem_object *object = intel_fb->obj;
5424
5425         return drm_gem_handle_create(file_priv, object, handle);
5426 }
5427
5428 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5429         .destroy = intel_user_framebuffer_destroy,
5430         .create_handle = intel_user_framebuffer_create_handle,
5431 };
5432
5433 int intel_framebuffer_init(struct drm_device *dev,
5434                            struct intel_framebuffer *intel_fb,
5435                            struct drm_mode_fb_cmd *mode_cmd,
5436                            struct drm_gem_object *obj)
5437 {
5438         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5439         int ret;
5440
5441         if (obj_priv->tiling_mode == I915_TILING_Y)
5442                 return -EINVAL;
5443
5444         if (mode_cmd->pitch & 63)
5445                 return -EINVAL;
5446
5447         switch (mode_cmd->bpp) {
5448         case 8:
5449         case 16:
5450         case 24:
5451         case 32:
5452                 break;
5453         default:
5454                 return -EINVAL;
5455         }
5456
5457         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5458         if (ret) {
5459                 DRM_ERROR("framebuffer init failed %d\n", ret);
5460                 return ret;
5461         }
5462
5463         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5464         intel_fb->obj = obj;
5465         return 0;
5466 }
5467
5468 static struct drm_framebuffer *
5469 intel_user_framebuffer_create(struct drm_device *dev,
5470                               struct drm_file *filp,
5471                               struct drm_mode_fb_cmd *mode_cmd)
5472 {
5473         struct drm_gem_object *obj;
5474         struct intel_framebuffer *intel_fb;
5475         int ret;
5476
5477         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5478         if (!obj)
5479                 return ERR_PTR(-ENOENT);
5480
5481         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5482         if (!intel_fb)
5483                 return ERR_PTR(-ENOMEM);
5484
5485         ret = intel_framebuffer_init(dev, intel_fb,
5486                                      mode_cmd, obj);
5487         if (ret) {
5488                 drm_gem_object_unreference_unlocked(obj);
5489                 kfree(intel_fb);
5490                 return ERR_PTR(ret);
5491         }
5492
5493         return &intel_fb->base;
5494 }
5495
5496 static const struct drm_mode_config_funcs intel_mode_funcs = {
5497         .fb_create = intel_user_framebuffer_create,
5498         .output_poll_changed = intel_fb_output_poll_changed,
5499 };
5500
5501 static struct drm_gem_object *
5502 intel_alloc_context_page(struct drm_device *dev)
5503 {
5504         struct drm_gem_object *ctx;
5505         int ret;
5506
5507         ctx = i915_gem_alloc_object(dev, 4096);
5508         if (!ctx) {
5509                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5510                 return NULL;
5511         }
5512
5513         mutex_lock(&dev->struct_mutex);
5514         ret = i915_gem_object_pin(ctx, 4096);
5515         if (ret) {
5516                 DRM_ERROR("failed to pin power context: %d\n", ret);
5517                 goto err_unref;
5518         }
5519
5520         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5521         if (ret) {
5522                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5523                 goto err_unpin;
5524         }
5525         mutex_unlock(&dev->struct_mutex);
5526
5527         return ctx;
5528
5529 err_unpin:
5530         i915_gem_object_unpin(ctx);
5531 err_unref:
5532         drm_gem_object_unreference(ctx);
5533         mutex_unlock(&dev->struct_mutex);
5534         return NULL;
5535 }
5536
5537 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5538 {
5539         struct drm_i915_private *dev_priv = dev->dev_private;
5540         u16 rgvswctl;
5541
5542         rgvswctl = I915_READ16(MEMSWCTL);
5543         if (rgvswctl & MEMCTL_CMD_STS) {
5544                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5545                 return false; /* still busy with another command */
5546         }
5547
5548         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5549                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5550         I915_WRITE16(MEMSWCTL, rgvswctl);
5551         POSTING_READ16(MEMSWCTL);
5552
5553         rgvswctl |= MEMCTL_CMD_STS;
5554         I915_WRITE16(MEMSWCTL, rgvswctl);
5555
5556         return true;
5557 }
5558
5559 void ironlake_enable_drps(struct drm_device *dev)
5560 {
5561         struct drm_i915_private *dev_priv = dev->dev_private;
5562         u32 rgvmodectl = I915_READ(MEMMODECTL);
5563         u8 fmax, fmin, fstart, vstart;
5564
5565         /* Enable temp reporting */
5566         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5567         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5568
5569         /* 100ms RC evaluation intervals */
5570         I915_WRITE(RCUPEI, 100000);
5571         I915_WRITE(RCDNEI, 100000);
5572
5573         /* Set max/min thresholds to 90ms and 80ms respectively */
5574         I915_WRITE(RCBMAXAVG, 90000);
5575         I915_WRITE(RCBMINAVG, 80000);
5576
5577         I915_WRITE(MEMIHYST, 1);
5578
5579         /* Set up min, max, and cur for interrupt handling */
5580         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5581         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5582         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5583                 MEMMODE_FSTART_SHIFT;
5584         fstart = fmax;
5585
5586         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5587                 PXVFREQ_PX_SHIFT;
5588
5589         dev_priv->fmax = fstart; /* IPS callback will increase this */
5590         dev_priv->fstart = fstart;
5591
5592         dev_priv->max_delay = fmax;
5593         dev_priv->min_delay = fmin;
5594         dev_priv->cur_delay = fstart;
5595
5596         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5597                          fstart);
5598
5599         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5600
5601         /*
5602          * Interrupts will be enabled in ironlake_irq_postinstall
5603          */
5604
5605         I915_WRITE(VIDSTART, vstart);
5606         POSTING_READ(VIDSTART);
5607
5608         rgvmodectl |= MEMMODE_SWMODE_EN;
5609         I915_WRITE(MEMMODECTL, rgvmodectl);
5610
5611         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5612                 DRM_ERROR("stuck trying to change perf mode\n");
5613         msleep(1);
5614
5615         ironlake_set_drps(dev, fstart);
5616
5617         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5618                 I915_READ(0x112e0);
5619         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5620         dev_priv->last_count2 = I915_READ(0x112f4);
5621         getrawmonotonic(&dev_priv->last_time2);
5622 }
5623
5624 void ironlake_disable_drps(struct drm_device *dev)
5625 {
5626         struct drm_i915_private *dev_priv = dev->dev_private;
5627         u16 rgvswctl = I915_READ16(MEMSWCTL);
5628
5629         /* Ack interrupts, disable EFC interrupt */
5630         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5631         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5632         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5633         I915_WRITE(DEIIR, DE_PCU_EVENT);
5634         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5635
5636         /* Go back to the starting frequency */
5637         ironlake_set_drps(dev, dev_priv->fstart);
5638         msleep(1);
5639         rgvswctl |= MEMCTL_CMD_STS;
5640         I915_WRITE(MEMSWCTL, rgvswctl);
5641         msleep(1);
5642
5643 }
5644
5645 static unsigned long intel_pxfreq(u32 vidfreq)
5646 {
5647         unsigned long freq;
5648         int div = (vidfreq & 0x3f0000) >> 16;
5649         int post = (vidfreq & 0x3000) >> 12;
5650         int pre = (vidfreq & 0x7);
5651
5652         if (!pre)
5653                 return 0;
5654
5655         freq = ((div * 133333) / ((1<<post) * pre));
5656
5657         return freq;
5658 }
5659
5660 void intel_init_emon(struct drm_device *dev)
5661 {
5662         struct drm_i915_private *dev_priv = dev->dev_private;
5663         u32 lcfuse;
5664         u8 pxw[16];
5665         int i;
5666
5667         /* Disable to program */
5668         I915_WRITE(ECR, 0);
5669         POSTING_READ(ECR);
5670
5671         /* Program energy weights for various events */
5672         I915_WRITE(SDEW, 0x15040d00);
5673         I915_WRITE(CSIEW0, 0x007f0000);
5674         I915_WRITE(CSIEW1, 0x1e220004);
5675         I915_WRITE(CSIEW2, 0x04000004);
5676
5677         for (i = 0; i < 5; i++)
5678                 I915_WRITE(PEW + (i * 4), 0);
5679         for (i = 0; i < 3; i++)
5680                 I915_WRITE(DEW + (i * 4), 0);
5681
5682         /* Program P-state weights to account for frequency power adjustment */
5683         for (i = 0; i < 16; i++) {
5684                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5685                 unsigned long freq = intel_pxfreq(pxvidfreq);
5686                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5687                         PXVFREQ_PX_SHIFT;
5688                 unsigned long val;
5689
5690                 val = vid * vid;
5691                 val *= (freq / 1000);
5692                 val *= 255;
5693                 val /= (127*127*900);
5694                 if (val > 0xff)
5695                         DRM_ERROR("bad pxval: %ld\n", val);
5696                 pxw[i] = val;
5697         }
5698         /* Render standby states get 0 weight */
5699         pxw[14] = 0;
5700         pxw[15] = 0;
5701
5702         for (i = 0; i < 4; i++) {
5703                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5704                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5705                 I915_WRITE(PXW + (i * 4), val);
5706         }
5707
5708         /* Adjust magic regs to magic values (more experimental results) */
5709         I915_WRITE(OGW0, 0);
5710         I915_WRITE(OGW1, 0);
5711         I915_WRITE(EG0, 0x00007f00);
5712         I915_WRITE(EG1, 0x0000000e);
5713         I915_WRITE(EG2, 0x000e0000);
5714         I915_WRITE(EG3, 0x68000300);
5715         I915_WRITE(EG4, 0x42000000);
5716         I915_WRITE(EG5, 0x00140031);
5717         I915_WRITE(EG6, 0);
5718         I915_WRITE(EG7, 0);
5719
5720         for (i = 0; i < 8; i++)
5721                 I915_WRITE(PXWL + (i * 4), 0);
5722
5723         /* Enable PMON + select events */
5724         I915_WRITE(ECR, 0x80000019);
5725
5726         lcfuse = I915_READ(LCFUSE02);
5727
5728         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5729 }
5730
5731 void intel_init_clock_gating(struct drm_device *dev)
5732 {
5733         struct drm_i915_private *dev_priv = dev->dev_private;
5734
5735         /*
5736          * Disable clock gating reported to work incorrectly according to the
5737          * specs, but enable as much else as we can.
5738          */
5739         if (HAS_PCH_SPLIT(dev)) {
5740                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5741
5742                 if (IS_GEN5(dev)) {
5743                         /* Required for FBC */
5744                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5745                         /* Required for CxSR */
5746                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5747
5748                         I915_WRITE(PCH_3DCGDIS0,
5749                                    MARIUNIT_CLOCK_GATE_DISABLE |
5750                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5751                 }
5752
5753                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5754
5755                 /*
5756                  * On Ibex Peak and Cougar Point, we need to disable clock
5757                  * gating for the panel power sequencer or it will fail to
5758                  * start up when no ports are active.
5759                  */
5760                 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5761
5762                 /*
5763                  * According to the spec the following bits should be set in
5764                  * order to enable memory self-refresh
5765                  * The bit 22/21 of 0x42004
5766                  * The bit 5 of 0x42020
5767                  * The bit 15 of 0x45000
5768                  */
5769                 if (IS_GEN5(dev)) {
5770                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5771                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5772                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5773                         I915_WRITE(ILK_DSPCLK_GATE,
5774                                         (I915_READ(ILK_DSPCLK_GATE) |
5775                                                 ILK_DPARB_CLK_GATE));
5776                         I915_WRITE(DISP_ARB_CTL,
5777                                         (I915_READ(DISP_ARB_CTL) |
5778                                                 DISP_FBC_WM_DIS));
5779                 I915_WRITE(WM3_LP_ILK, 0);
5780                 I915_WRITE(WM2_LP_ILK, 0);
5781                 I915_WRITE(WM1_LP_ILK, 0);
5782                 }
5783                 /*
5784                  * Based on the document from hardware guys the following bits
5785                  * should be set unconditionally in order to enable FBC.
5786                  * The bit 22 of 0x42000
5787                  * The bit 22 of 0x42004
5788                  * The bit 7,8,9 of 0x42020.
5789                  */
5790                 if (IS_IRONLAKE_M(dev)) {
5791                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5792                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5793                                    ILK_FBCQ_DIS);
5794                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5795                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5796                                    ILK_DPARB_GATE);
5797                         I915_WRITE(ILK_DSPCLK_GATE,
5798                                    I915_READ(ILK_DSPCLK_GATE) |
5799                                    ILK_DPFC_DIS1 |
5800                                    ILK_DPFC_DIS2 |
5801                                    ILK_CLK_FBC);
5802                 }
5803                 return;
5804         } else if (IS_G4X(dev)) {
5805                 uint32_t dspclk_gate;
5806                 I915_WRITE(RENCLK_GATE_D1, 0);
5807                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5808                        GS_UNIT_CLOCK_GATE_DISABLE |
5809                        CL_UNIT_CLOCK_GATE_DISABLE);
5810                 I915_WRITE(RAMCLK_GATE_D, 0);
5811                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5812                         OVRUNIT_CLOCK_GATE_DISABLE |
5813                         OVCUNIT_CLOCK_GATE_DISABLE;
5814                 if (IS_GM45(dev))
5815                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5816                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5817         } else if (IS_CRESTLINE(dev)) {
5818                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5819                 I915_WRITE(RENCLK_GATE_D2, 0);
5820                 I915_WRITE(DSPCLK_GATE_D, 0);
5821                 I915_WRITE(RAMCLK_GATE_D, 0);
5822                 I915_WRITE16(DEUC, 0);
5823         } else if (IS_BROADWATER(dev)) {
5824                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5825                        I965_RCC_CLOCK_GATE_DISABLE |
5826                        I965_RCPB_CLOCK_GATE_DISABLE |
5827                        I965_ISC_CLOCK_GATE_DISABLE |
5828                        I965_FBC_CLOCK_GATE_DISABLE);
5829                 I915_WRITE(RENCLK_GATE_D2, 0);
5830         } else if (IS_GEN3(dev)) {
5831                 u32 dstate = I915_READ(D_STATE);
5832
5833                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5834                         DSTATE_DOT_CLOCK_GATING;
5835                 I915_WRITE(D_STATE, dstate);
5836         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5837                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5838         } else if (IS_I830(dev)) {
5839                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5840         }
5841
5842         /*
5843          * GPU can automatically power down the render unit if given a page
5844          * to save state.
5845          */
5846         if (IS_IRONLAKE_M(dev)) {
5847                 if (dev_priv->renderctx == NULL)
5848                         dev_priv->renderctx = intel_alloc_context_page(dev);
5849                 if (dev_priv->renderctx) {
5850                         struct drm_i915_gem_object *obj_priv;
5851                         obj_priv = to_intel_bo(dev_priv->renderctx);
5852                         if (obj_priv) {
5853                                 BEGIN_LP_RING(4);
5854                                 OUT_RING(MI_SET_CONTEXT);
5855                                 OUT_RING(obj_priv->gtt_offset |
5856                                                 MI_MM_SPACE_GTT |
5857                                                 MI_SAVE_EXT_STATE_EN |
5858                                                 MI_RESTORE_EXT_STATE_EN |
5859                                                 MI_RESTORE_INHIBIT);
5860                                 OUT_RING(MI_NOOP);
5861                                 OUT_RING(MI_FLUSH);
5862                                 ADVANCE_LP_RING();
5863                         }
5864                 } else
5865                         DRM_DEBUG_KMS("Failed to allocate render context."
5866                                        "Disable RC6\n");
5867         }
5868
5869         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5870                 struct drm_i915_gem_object *obj_priv = NULL;
5871
5872                 if (dev_priv->pwrctx) {
5873                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5874                 } else {
5875                         struct drm_gem_object *pwrctx;
5876
5877                         pwrctx = intel_alloc_context_page(dev);
5878                         if (pwrctx) {
5879                                 dev_priv->pwrctx = pwrctx;
5880                                 obj_priv = to_intel_bo(pwrctx);
5881                         }
5882                 }
5883
5884                 if (obj_priv) {
5885                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5886                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5887                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5888                 }
5889         }
5890 }
5891
5892 /* Set up chip specific display functions */
5893 static void intel_init_display(struct drm_device *dev)
5894 {
5895         struct drm_i915_private *dev_priv = dev->dev_private;
5896
5897         /* We always want a DPMS function */
5898         if (HAS_PCH_SPLIT(dev))
5899                 dev_priv->display.dpms = ironlake_crtc_dpms;
5900         else
5901                 dev_priv->display.dpms = i9xx_crtc_dpms;
5902
5903         if (I915_HAS_FBC(dev)) {
5904                 if (IS_IRONLAKE_M(dev)) {
5905                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5906                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
5907                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5908                 } else if (IS_GM45(dev)) {
5909                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5910                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5911                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5912                 } else if (IS_CRESTLINE(dev)) {
5913                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5914                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5915                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5916                 }
5917                 /* 855GM needs testing */
5918         }
5919
5920         /* Returns the core display clock speed */
5921         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5922                 dev_priv->display.get_display_clock_speed =
5923                         i945_get_display_clock_speed;
5924         else if (IS_I915G(dev))
5925                 dev_priv->display.get_display_clock_speed =
5926                         i915_get_display_clock_speed;
5927         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5928                 dev_priv->display.get_display_clock_speed =
5929                         i9xx_misc_get_display_clock_speed;
5930         else if (IS_I915GM(dev))
5931                 dev_priv->display.get_display_clock_speed =
5932                         i915gm_get_display_clock_speed;
5933         else if (IS_I865G(dev))
5934                 dev_priv->display.get_display_clock_speed =
5935                         i865_get_display_clock_speed;
5936         else if (IS_I85X(dev))
5937                 dev_priv->display.get_display_clock_speed =
5938                         i855_get_display_clock_speed;
5939         else /* 852, 830 */
5940                 dev_priv->display.get_display_clock_speed =
5941                         i830_get_display_clock_speed;
5942
5943         /* For FIFO watermark updates */
5944         if (HAS_PCH_SPLIT(dev)) {
5945                 if (IS_GEN5(dev)) {
5946                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5947                                 dev_priv->display.update_wm = ironlake_update_wm;
5948                         else {
5949                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5950                                               "Disable CxSR\n");
5951                                 dev_priv->display.update_wm = NULL;
5952                         }
5953                 } else
5954                         dev_priv->display.update_wm = NULL;
5955         } else if (IS_PINEVIEW(dev)) {
5956                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5957                                             dev_priv->is_ddr3,
5958                                             dev_priv->fsb_freq,
5959                                             dev_priv->mem_freq)) {
5960                         DRM_INFO("failed to find known CxSR latency "
5961                                  "(found ddr%s fsb freq %d, mem freq %d), "
5962                                  "disabling CxSR\n",
5963                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
5964                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5965                         /* Disable CxSR and never update its watermark again */
5966                         pineview_disable_cxsr(dev);
5967                         dev_priv->display.update_wm = NULL;
5968                 } else
5969                         dev_priv->display.update_wm = pineview_update_wm;
5970         } else if (IS_G4X(dev))
5971                 dev_priv->display.update_wm = g4x_update_wm;
5972         else if (IS_GEN4(dev))
5973                 dev_priv->display.update_wm = i965_update_wm;
5974         else if (IS_GEN3(dev)) {
5975                 dev_priv->display.update_wm = i9xx_update_wm;
5976                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5977         } else if (IS_I85X(dev)) {
5978                 dev_priv->display.update_wm = i9xx_update_wm;
5979                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5980         } else {
5981                 dev_priv->display.update_wm = i830_update_wm;
5982                 if (IS_845G(dev))
5983                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5984                 else
5985                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5986         }
5987 }
5988
5989 /*
5990  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5991  * resume, or other times.  This quirk makes sure that's the case for
5992  * affected systems.
5993  */
5994 static void quirk_pipea_force (struct drm_device *dev)
5995 {
5996         struct drm_i915_private *dev_priv = dev->dev_private;
5997
5998         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
5999         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
6000 }
6001
6002 struct intel_quirk {
6003         int device;
6004         int subsystem_vendor;
6005         int subsystem_device;
6006         void (*hook)(struct drm_device *dev);
6007 };
6008
6009 struct intel_quirk intel_quirks[] = {
6010         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
6011         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
6012         /* HP Mini needs pipe A force quirk (LP: #322104) */
6013         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
6014
6015         /* Thinkpad R31 needs pipe A force quirk */
6016         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6017         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6018         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6019
6020         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6021         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
6022         /* ThinkPad X40 needs pipe A force quirk */
6023
6024         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6025         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6026
6027         /* 855 & before need to leave pipe A & dpll A up */
6028         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6029         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6030 };
6031
6032 static void intel_init_quirks(struct drm_device *dev)
6033 {
6034         struct pci_dev *d = dev->pdev;
6035         int i;
6036
6037         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6038                 struct intel_quirk *q = &intel_quirks[i];
6039
6040                 if (d->device == q->device &&
6041                     (d->subsystem_vendor == q->subsystem_vendor ||
6042                      q->subsystem_vendor == PCI_ANY_ID) &&
6043                     (d->subsystem_device == q->subsystem_device ||
6044                      q->subsystem_device == PCI_ANY_ID))
6045                         q->hook(dev);
6046         }
6047 }
6048
6049 /* Disable the VGA plane that we never use */
6050 static void i915_disable_vga(struct drm_device *dev)
6051 {
6052         struct drm_i915_private *dev_priv = dev->dev_private;
6053         u8 sr1;
6054         u32 vga_reg;
6055
6056         if (HAS_PCH_SPLIT(dev))
6057                 vga_reg = CPU_VGACNTRL;
6058         else
6059                 vga_reg = VGACNTRL;
6060
6061         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6062         outb(1, VGA_SR_INDEX);
6063         sr1 = inb(VGA_SR_DATA);
6064         outb(sr1 | 1<<5, VGA_SR_DATA);
6065         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6066         udelay(300);
6067
6068         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6069         POSTING_READ(vga_reg);
6070 }
6071
6072 void intel_modeset_init(struct drm_device *dev)
6073 {
6074         struct drm_i915_private *dev_priv = dev->dev_private;
6075         int i;
6076
6077         drm_mode_config_init(dev);
6078
6079         dev->mode_config.min_width = 0;
6080         dev->mode_config.min_height = 0;
6081
6082         dev->mode_config.funcs = (void *)&intel_mode_funcs;
6083
6084         intel_init_quirks(dev);
6085
6086         intel_init_display(dev);
6087
6088         if (IS_GEN2(dev)) {
6089                 dev->mode_config.max_width = 2048;
6090                 dev->mode_config.max_height = 2048;
6091         } else if (IS_GEN3(dev)) {
6092                 dev->mode_config.max_width = 4096;
6093                 dev->mode_config.max_height = 4096;
6094         } else {
6095                 dev->mode_config.max_width = 8192;
6096                 dev->mode_config.max_height = 8192;
6097         }
6098
6099         /* set memory base */
6100         if (IS_GEN2(dev))
6101                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6102         else
6103                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6104
6105         if (IS_MOBILE(dev) || !IS_GEN2(dev))
6106                 dev_priv->num_pipe = 2;
6107         else
6108                 dev_priv->num_pipe = 1;
6109         DRM_DEBUG_KMS("%d display pipe%s available.\n",
6110                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6111
6112         for (i = 0; i < dev_priv->num_pipe; i++) {
6113                 intel_crtc_init(dev, i);
6114         }
6115
6116         intel_setup_outputs(dev);
6117
6118         intel_init_clock_gating(dev);
6119
6120         /* Just disable it once at startup */
6121         i915_disable_vga(dev);
6122
6123         if (IS_IRONLAKE_M(dev)) {
6124                 ironlake_enable_drps(dev);
6125                 intel_init_emon(dev);
6126         }
6127
6128         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6129         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6130                     (unsigned long)dev);
6131
6132         intel_setup_overlay(dev);
6133 }
6134
6135 void intel_modeset_cleanup(struct drm_device *dev)
6136 {
6137         struct drm_i915_private *dev_priv = dev->dev_private;
6138         struct drm_crtc *crtc;
6139         struct intel_crtc *intel_crtc;
6140
6141         drm_kms_helper_poll_fini(dev);
6142         mutex_lock(&dev->struct_mutex);
6143
6144         intel_unregister_dsm_handler();
6145
6146
6147         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6148                 /* Skip inactive CRTCs */
6149                 if (!crtc->fb)
6150                         continue;
6151
6152                 intel_crtc = to_intel_crtc(crtc);
6153                 intel_increase_pllclock(crtc);
6154         }
6155
6156         if (dev_priv->display.disable_fbc)
6157                 dev_priv->display.disable_fbc(dev);
6158
6159         if (dev_priv->renderctx) {
6160                 struct drm_i915_gem_object *obj_priv;
6161
6162                 obj_priv = to_intel_bo(dev_priv->renderctx);
6163                 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6164                 I915_READ(CCID);
6165                 i915_gem_object_unpin(dev_priv->renderctx);
6166                 drm_gem_object_unreference(dev_priv->renderctx);
6167         }
6168
6169         if (dev_priv->pwrctx) {
6170                 struct drm_i915_gem_object *obj_priv;
6171
6172                 obj_priv = to_intel_bo(dev_priv->pwrctx);
6173                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6174                 I915_READ(PWRCTXA);
6175                 i915_gem_object_unpin(dev_priv->pwrctx);
6176                 drm_gem_object_unreference(dev_priv->pwrctx);
6177         }
6178
6179         if (IS_IRONLAKE_M(dev))
6180                 ironlake_disable_drps(dev);
6181
6182         mutex_unlock(&dev->struct_mutex);
6183
6184         /* Disable the irq before mode object teardown, for the irq might
6185          * enqueue unpin/hotplug work. */
6186         drm_irq_uninstall(dev);
6187         cancel_work_sync(&dev_priv->hotplug_work);
6188
6189         /* Shut off idle work before the crtcs get freed. */
6190         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6191                 intel_crtc = to_intel_crtc(crtc);
6192                 del_timer_sync(&intel_crtc->idle_timer);
6193         }
6194         del_timer_sync(&dev_priv->idle_timer);
6195         cancel_work_sync(&dev_priv->idle_work);
6196
6197         drm_mode_config_cleanup(dev);
6198 }
6199
6200 /*
6201  * Return which encoder is currently attached for connector.
6202  */
6203 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6204 {
6205         return &intel_attached_encoder(connector)->base;
6206 }
6207
6208 void intel_connector_attach_encoder(struct intel_connector *connector,
6209                                     struct intel_encoder *encoder)
6210 {
6211         connector->encoder = encoder;
6212         drm_mode_connector_attach_encoder(&connector->base,
6213                                           &encoder->base);
6214 }
6215
6216 /*
6217  * set vga decode state - true == enable VGA decode
6218  */
6219 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6220 {
6221         struct drm_i915_private *dev_priv = dev->dev_private;
6222         u16 gmch_ctrl;
6223
6224         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6225         if (state)
6226                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6227         else
6228                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6229         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6230         return 0;
6231 }