Merge branches 'perf-urgent-for-linus' and 'sched-urgent-for-linus' of git://git...
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_update_watermarks(struct drm_device *dev);
48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50
51 typedef struct {
52         /* given values */
53         int n;
54         int m1, m2;
55         int p1, p2;
56         /* derived values */
57         int     dot;
58         int     vco;
59         int     m;
60         int     p;
61 } intel_clock_t;
62
63 typedef struct {
64         int     min, max;
65 } intel_range_t;
66
67 typedef struct {
68         int     dot_limit;
69         int     p2_slow, p2_fast;
70 } intel_p2_t;
71
72 #define INTEL_P2_NUM                  2
73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit {
75         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
76         intel_p2_t          p2;
77         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78                         int, int, intel_clock_t *);
79 };
80
81 /* FDI */
82 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
83
84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86                     int target, int refclk, intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89                         int target, int refclk, intel_clock_t *best_clock);
90
91 static bool
92 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
93                       int target, int refclk, intel_clock_t *best_clock);
94 static bool
95 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96                            int target, int refclk, intel_clock_t *best_clock);
97
98 static inline u32 /* units of 100MHz */
99 intel_fdi_link_freq(struct drm_device *dev)
100 {
101         if (IS_GEN5(dev)) {
102                 struct drm_i915_private *dev_priv = dev->dev_private;
103                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
104         } else
105                 return 27;
106 }
107
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109         .dot = { .min = 25000, .max = 350000 },
110         .vco = { .min = 930000, .max = 1400000 },
111         .n = { .min = 3, .max = 16 },
112         .m = { .min = 96, .max = 140 },
113         .m1 = { .min = 18, .max = 26 },
114         .m2 = { .min = 6, .max = 16 },
115         .p = { .min = 4, .max = 128 },
116         .p1 = { .min = 2, .max = 33 },
117         .p2 = { .dot_limit = 165000,
118                 .p2_slow = 4, .p2_fast = 2 },
119         .find_pll = intel_find_best_PLL,
120 };
121
122 static const intel_limit_t intel_limits_i8xx_lvds = {
123         .dot = { .min = 25000, .max = 350000 },
124         .vco = { .min = 930000, .max = 1400000 },
125         .n = { .min = 3, .max = 16 },
126         .m = { .min = 96, .max = 140 },
127         .m1 = { .min = 18, .max = 26 },
128         .m2 = { .min = 6, .max = 16 },
129         .p = { .min = 4, .max = 128 },
130         .p1 = { .min = 1, .max = 6 },
131         .p2 = { .dot_limit = 165000,
132                 .p2_slow = 14, .p2_fast = 7 },
133         .find_pll = intel_find_best_PLL,
134 };
135
136 static const intel_limit_t intel_limits_i9xx_sdvo = {
137         .dot = { .min = 20000, .max = 400000 },
138         .vco = { .min = 1400000, .max = 2800000 },
139         .n = { .min = 1, .max = 6 },
140         .m = { .min = 70, .max = 120 },
141         .m1 = { .min = 10, .max = 22 },
142         .m2 = { .min = 5, .max = 9 },
143         .p = { .min = 5, .max = 80 },
144         .p1 = { .min = 1, .max = 8 },
145         .p2 = { .dot_limit = 200000,
146                 .p2_slow = 10, .p2_fast = 5 },
147         .find_pll = intel_find_best_PLL,
148 };
149
150 static const intel_limit_t intel_limits_i9xx_lvds = {
151         .dot = { .min = 20000, .max = 400000 },
152         .vco = { .min = 1400000, .max = 2800000 },
153         .n = { .min = 1, .max = 6 },
154         .m = { .min = 70, .max = 120 },
155         .m1 = { .min = 10, .max = 22 },
156         .m2 = { .min = 5, .max = 9 },
157         .p = { .min = 7, .max = 98 },
158         .p1 = { .min = 1, .max = 8 },
159         .p2 = { .dot_limit = 112000,
160                 .p2_slow = 14, .p2_fast = 7 },
161         .find_pll = intel_find_best_PLL,
162 };
163
164
165 static const intel_limit_t intel_limits_g4x_sdvo = {
166         .dot = { .min = 25000, .max = 270000 },
167         .vco = { .min = 1750000, .max = 3500000},
168         .n = { .min = 1, .max = 4 },
169         .m = { .min = 104, .max = 138 },
170         .m1 = { .min = 17, .max = 23 },
171         .m2 = { .min = 5, .max = 11 },
172         .p = { .min = 10, .max = 30 },
173         .p1 = { .min = 1, .max = 3},
174         .p2 = { .dot_limit = 270000,
175                 .p2_slow = 10,
176                 .p2_fast = 10
177         },
178         .find_pll = intel_g4x_find_best_PLL,
179 };
180
181 static const intel_limit_t intel_limits_g4x_hdmi = {
182         .dot = { .min = 22000, .max = 400000 },
183         .vco = { .min = 1750000, .max = 3500000},
184         .n = { .min = 1, .max = 4 },
185         .m = { .min = 104, .max = 138 },
186         .m1 = { .min = 16, .max = 23 },
187         .m2 = { .min = 5, .max = 11 },
188         .p = { .min = 5, .max = 80 },
189         .p1 = { .min = 1, .max = 8},
190         .p2 = { .dot_limit = 165000,
191                 .p2_slow = 10, .p2_fast = 5 },
192         .find_pll = intel_g4x_find_best_PLL,
193 };
194
195 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
196         .dot = { .min = 20000, .max = 115000 },
197         .vco = { .min = 1750000, .max = 3500000 },
198         .n = { .min = 1, .max = 3 },
199         .m = { .min = 104, .max = 138 },
200         .m1 = { .min = 17, .max = 23 },
201         .m2 = { .min = 5, .max = 11 },
202         .p = { .min = 28, .max = 112 },
203         .p1 = { .min = 2, .max = 8 },
204         .p2 = { .dot_limit = 0,
205                 .p2_slow = 14, .p2_fast = 14
206         },
207         .find_pll = intel_g4x_find_best_PLL,
208 };
209
210 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
211         .dot = { .min = 80000, .max = 224000 },
212         .vco = { .min = 1750000, .max = 3500000 },
213         .n = { .min = 1, .max = 3 },
214         .m = { .min = 104, .max = 138 },
215         .m1 = { .min = 17, .max = 23 },
216         .m2 = { .min = 5, .max = 11 },
217         .p = { .min = 14, .max = 42 },
218         .p1 = { .min = 2, .max = 6 },
219         .p2 = { .dot_limit = 0,
220                 .p2_slow = 7, .p2_fast = 7
221         },
222         .find_pll = intel_g4x_find_best_PLL,
223 };
224
225 static const intel_limit_t intel_limits_g4x_display_port = {
226         .dot = { .min = 161670, .max = 227000 },
227         .vco = { .min = 1750000, .max = 3500000},
228         .n = { .min = 1, .max = 2 },
229         .m = { .min = 97, .max = 108 },
230         .m1 = { .min = 0x10, .max = 0x12 },
231         .m2 = { .min = 0x05, .max = 0x06 },
232         .p = { .min = 10, .max = 20 },
233         .p1 = { .min = 1, .max = 2},
234         .p2 = { .dot_limit = 0,
235                 .p2_slow = 10, .p2_fast = 10 },
236         .find_pll = intel_find_pll_g4x_dp,
237 };
238
239 static const intel_limit_t intel_limits_pineview_sdvo = {
240         .dot = { .min = 20000, .max = 400000},
241         .vco = { .min = 1700000, .max = 3500000 },
242         /* Pineview's Ncounter is a ring counter */
243         .n = { .min = 3, .max = 6 },
244         .m = { .min = 2, .max = 256 },
245         /* Pineview only has one combined m divider, which we treat as m2. */
246         .m1 = { .min = 0, .max = 0 },
247         .m2 = { .min = 0, .max = 254 },
248         .p = { .min = 5, .max = 80 },
249         .p1 = { .min = 1, .max = 8 },
250         .p2 = { .dot_limit = 200000,
251                 .p2_slow = 10, .p2_fast = 5 },
252         .find_pll = intel_find_best_PLL,
253 };
254
255 static const intel_limit_t intel_limits_pineview_lvds = {
256         .dot = { .min = 20000, .max = 400000 },
257         .vco = { .min = 1700000, .max = 3500000 },
258         .n = { .min = 3, .max = 6 },
259         .m = { .min = 2, .max = 256 },
260         .m1 = { .min = 0, .max = 0 },
261         .m2 = { .min = 0, .max = 254 },
262         .p = { .min = 7, .max = 112 },
263         .p1 = { .min = 1, .max = 8 },
264         .p2 = { .dot_limit = 112000,
265                 .p2_slow = 14, .p2_fast = 14 },
266         .find_pll = intel_find_best_PLL,
267 };
268
269 /* Ironlake / Sandybridge
270  *
271  * We calculate clock using (register_value + 2) for N/M1/M2, so here
272  * the range value for them is (actual_value - 2).
273  */
274 static const intel_limit_t intel_limits_ironlake_dac = {
275         .dot = { .min = 25000, .max = 350000 },
276         .vco = { .min = 1760000, .max = 3510000 },
277         .n = { .min = 1, .max = 5 },
278         .m = { .min = 79, .max = 127 },
279         .m1 = { .min = 12, .max = 22 },
280         .m2 = { .min = 5, .max = 9 },
281         .p = { .min = 5, .max = 80 },
282         .p1 = { .min = 1, .max = 8 },
283         .p2 = { .dot_limit = 225000,
284                 .p2_slow = 10, .p2_fast = 5 },
285         .find_pll = intel_g4x_find_best_PLL,
286 };
287
288 static const intel_limit_t intel_limits_ironlake_single_lvds = {
289         .dot = { .min = 25000, .max = 350000 },
290         .vco = { .min = 1760000, .max = 3510000 },
291         .n = { .min = 1, .max = 3 },
292         .m = { .min = 79, .max = 118 },
293         .m1 = { .min = 12, .max = 22 },
294         .m2 = { .min = 5, .max = 9 },
295         .p = { .min = 28, .max = 112 },
296         .p1 = { .min = 2, .max = 8 },
297         .p2 = { .dot_limit = 225000,
298                 .p2_slow = 14, .p2_fast = 14 },
299         .find_pll = intel_g4x_find_best_PLL,
300 };
301
302 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
303         .dot = { .min = 25000, .max = 350000 },
304         .vco = { .min = 1760000, .max = 3510000 },
305         .n = { .min = 1, .max = 3 },
306         .m = { .min = 79, .max = 127 },
307         .m1 = { .min = 12, .max = 22 },
308         .m2 = { .min = 5, .max = 9 },
309         .p = { .min = 14, .max = 56 },
310         .p1 = { .min = 2, .max = 8 },
311         .p2 = { .dot_limit = 225000,
312                 .p2_slow = 7, .p2_fast = 7 },
313         .find_pll = intel_g4x_find_best_PLL,
314 };
315
316 /* LVDS 100mhz refclk limits. */
317 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
318         .dot = { .min = 25000, .max = 350000 },
319         .vco = { .min = 1760000, .max = 3510000 },
320         .n = { .min = 1, .max = 2 },
321         .m = { .min = 79, .max = 126 },
322         .m1 = { .min = 12, .max = 22 },
323         .m2 = { .min = 5, .max = 9 },
324         .p = { .min = 28, .max = 112 },
325         .p1 = { .min = 2, .max = 8 },
326         .p2 = { .dot_limit = 225000,
327                 .p2_slow = 14, .p2_fast = 14 },
328         .find_pll = intel_g4x_find_best_PLL,
329 };
330
331 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
332         .dot = { .min = 25000, .max = 350000 },
333         .vco = { .min = 1760000, .max = 3510000 },
334         .n = { .min = 1, .max = 3 },
335         .m = { .min = 79, .max = 126 },
336         .m1 = { .min = 12, .max = 22 },
337         .m2 = { .min = 5, .max = 9 },
338         .p = { .min = 14, .max = 42 },
339         .p1 = { .min = 2, .max = 6 },
340         .p2 = { .dot_limit = 225000,
341                 .p2_slow = 7, .p2_fast = 7 },
342         .find_pll = intel_g4x_find_best_PLL,
343 };
344
345 static const intel_limit_t intel_limits_ironlake_display_port = {
346         .dot = { .min = 25000, .max = 350000 },
347         .vco = { .min = 1760000, .max = 3510000},
348         .n = { .min = 1, .max = 2 },
349         .m = { .min = 81, .max = 90 },
350         .m1 = { .min = 12, .max = 22 },
351         .m2 = { .min = 5, .max = 9 },
352         .p = { .min = 10, .max = 20 },
353         .p1 = { .min = 1, .max = 2},
354         .p2 = { .dot_limit = 0,
355                 .p2_slow = 10, .p2_fast = 10 },
356         .find_pll = intel_find_pll_ironlake_dp,
357 };
358
359 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
360                                                 int refclk)
361 {
362         struct drm_device *dev = crtc->dev;
363         struct drm_i915_private *dev_priv = dev->dev_private;
364         const intel_limit_t *limit;
365
366         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
367                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
368                     LVDS_CLKB_POWER_UP) {
369                         /* LVDS dual channel */
370                         if (refclk == 100000)
371                                 limit = &intel_limits_ironlake_dual_lvds_100m;
372                         else
373                                 limit = &intel_limits_ironlake_dual_lvds;
374                 } else {
375                         if (refclk == 100000)
376                                 limit = &intel_limits_ironlake_single_lvds_100m;
377                         else
378                                 limit = &intel_limits_ironlake_single_lvds;
379                 }
380         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
381                         HAS_eDP)
382                 limit = &intel_limits_ironlake_display_port;
383         else
384                 limit = &intel_limits_ironlake_dac;
385
386         return limit;
387 }
388
389 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
390 {
391         struct drm_device *dev = crtc->dev;
392         struct drm_i915_private *dev_priv = dev->dev_private;
393         const intel_limit_t *limit;
394
395         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
396                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
397                     LVDS_CLKB_POWER_UP)
398                         /* LVDS with dual channel */
399                         limit = &intel_limits_g4x_dual_channel_lvds;
400                 else
401                         /* LVDS with dual channel */
402                         limit = &intel_limits_g4x_single_channel_lvds;
403         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
404                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
405                 limit = &intel_limits_g4x_hdmi;
406         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
407                 limit = &intel_limits_g4x_sdvo;
408         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
409                 limit = &intel_limits_g4x_display_port;
410         } else /* The option is for other outputs */
411                 limit = &intel_limits_i9xx_sdvo;
412
413         return limit;
414 }
415
416 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
417 {
418         struct drm_device *dev = crtc->dev;
419         const intel_limit_t *limit;
420
421         if (HAS_PCH_SPLIT(dev))
422                 limit = intel_ironlake_limit(crtc, refclk);
423         else if (IS_G4X(dev)) {
424                 limit = intel_g4x_limit(crtc);
425         } else if (IS_PINEVIEW(dev)) {
426                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
427                         limit = &intel_limits_pineview_lvds;
428                 else
429                         limit = &intel_limits_pineview_sdvo;
430         } else if (!IS_GEN2(dev)) {
431                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
432                         limit = &intel_limits_i9xx_lvds;
433                 else
434                         limit = &intel_limits_i9xx_sdvo;
435         } else {
436                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
437                         limit = &intel_limits_i8xx_lvds;
438                 else
439                         limit = &intel_limits_i8xx_dvo;
440         }
441         return limit;
442 }
443
444 /* m1 is reserved as 0 in Pineview, n is a ring counter */
445 static void pineview_clock(int refclk, intel_clock_t *clock)
446 {
447         clock->m = clock->m2 + 2;
448         clock->p = clock->p1 * clock->p2;
449         clock->vco = refclk * clock->m / clock->n;
450         clock->dot = clock->vco / clock->p;
451 }
452
453 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
454 {
455         if (IS_PINEVIEW(dev)) {
456                 pineview_clock(refclk, clock);
457                 return;
458         }
459         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
460         clock->p = clock->p1 * clock->p2;
461         clock->vco = refclk * clock->m / (clock->n + 2);
462         clock->dot = clock->vco / clock->p;
463 }
464
465 /**
466  * Returns whether any output on the specified pipe is of the specified type
467  */
468 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
469 {
470         struct drm_device *dev = crtc->dev;
471         struct drm_mode_config *mode_config = &dev->mode_config;
472         struct intel_encoder *encoder;
473
474         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
475                 if (encoder->base.crtc == crtc && encoder->type == type)
476                         return true;
477
478         return false;
479 }
480
481 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
482 /**
483  * Returns whether the given set of divisors are valid for a given refclk with
484  * the given connectors.
485  */
486
487 static bool intel_PLL_is_valid(struct drm_device *dev,
488                                const intel_limit_t *limit,
489                                const intel_clock_t *clock)
490 {
491         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
492                 INTELPllInvalid("p1 out of range\n");
493         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
494                 INTELPllInvalid("p out of range\n");
495         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
496                 INTELPllInvalid("m2 out of range\n");
497         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
498                 INTELPllInvalid("m1 out of range\n");
499         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
500                 INTELPllInvalid("m1 <= m2\n");
501         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
502                 INTELPllInvalid("m out of range\n");
503         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
504                 INTELPllInvalid("n out of range\n");
505         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
506                 INTELPllInvalid("vco out of range\n");
507         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
508          * connector, etc., rather than just a single range.
509          */
510         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
511                 INTELPllInvalid("dot out of range\n");
512
513         return true;
514 }
515
516 static bool
517 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
518                     int target, int refclk, intel_clock_t *best_clock)
519
520 {
521         struct drm_device *dev = crtc->dev;
522         struct drm_i915_private *dev_priv = dev->dev_private;
523         intel_clock_t clock;
524         int err = target;
525
526         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
527             (I915_READ(LVDS)) != 0) {
528                 /*
529                  * For LVDS, if the panel is on, just rely on its current
530                  * settings for dual-channel.  We haven't figured out how to
531                  * reliably set up different single/dual channel state, if we
532                  * even can.
533                  */
534                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
535                     LVDS_CLKB_POWER_UP)
536                         clock.p2 = limit->p2.p2_fast;
537                 else
538                         clock.p2 = limit->p2.p2_slow;
539         } else {
540                 if (target < limit->p2.dot_limit)
541                         clock.p2 = limit->p2.p2_slow;
542                 else
543                         clock.p2 = limit->p2.p2_fast;
544         }
545
546         memset(best_clock, 0, sizeof(*best_clock));
547
548         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
549              clock.m1++) {
550                 for (clock.m2 = limit->m2.min;
551                      clock.m2 <= limit->m2.max; clock.m2++) {
552                         /* m1 is always 0 in Pineview */
553                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
554                                 break;
555                         for (clock.n = limit->n.min;
556                              clock.n <= limit->n.max; clock.n++) {
557                                 for (clock.p1 = limit->p1.min;
558                                         clock.p1 <= limit->p1.max; clock.p1++) {
559                                         int this_err;
560
561                                         intel_clock(dev, refclk, &clock);
562                                         if (!intel_PLL_is_valid(dev, limit,
563                                                                 &clock))
564                                                 continue;
565
566                                         this_err = abs(clock.dot - target);
567                                         if (this_err < err) {
568                                                 *best_clock = clock;
569                                                 err = this_err;
570                                         }
571                                 }
572                         }
573                 }
574         }
575
576         return (err != target);
577 }
578
579 static bool
580 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
581                         int target, int refclk, intel_clock_t *best_clock)
582 {
583         struct drm_device *dev = crtc->dev;
584         struct drm_i915_private *dev_priv = dev->dev_private;
585         intel_clock_t clock;
586         int max_n;
587         bool found;
588         /* approximately equals target * 0.00585 */
589         int err_most = (target >> 8) + (target >> 9);
590         found = false;
591
592         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
593                 int lvds_reg;
594
595                 if (HAS_PCH_SPLIT(dev))
596                         lvds_reg = PCH_LVDS;
597                 else
598                         lvds_reg = LVDS;
599                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
600                     LVDS_CLKB_POWER_UP)
601                         clock.p2 = limit->p2.p2_fast;
602                 else
603                         clock.p2 = limit->p2.p2_slow;
604         } else {
605                 if (target < limit->p2.dot_limit)
606                         clock.p2 = limit->p2.p2_slow;
607                 else
608                         clock.p2 = limit->p2.p2_fast;
609         }
610
611         memset(best_clock, 0, sizeof(*best_clock));
612         max_n = limit->n.max;
613         /* based on hardware requirement, prefer smaller n to precision */
614         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
615                 /* based on hardware requirement, prefere larger m1,m2 */
616                 for (clock.m1 = limit->m1.max;
617                      clock.m1 >= limit->m1.min; clock.m1--) {
618                         for (clock.m2 = limit->m2.max;
619                              clock.m2 >= limit->m2.min; clock.m2--) {
620                                 for (clock.p1 = limit->p1.max;
621                                      clock.p1 >= limit->p1.min; clock.p1--) {
622                                         int this_err;
623
624                                         intel_clock(dev, refclk, &clock);
625                                         if (!intel_PLL_is_valid(dev, limit,
626                                                                 &clock))
627                                                 continue;
628
629                                         this_err = abs(clock.dot - target);
630                                         if (this_err < err_most) {
631                                                 *best_clock = clock;
632                                                 err_most = this_err;
633                                                 max_n = clock.n;
634                                                 found = true;
635                                         }
636                                 }
637                         }
638                 }
639         }
640         return found;
641 }
642
643 static bool
644 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
645                            int target, int refclk, intel_clock_t *best_clock)
646 {
647         struct drm_device *dev = crtc->dev;
648         intel_clock_t clock;
649
650         if (target < 200000) {
651                 clock.n = 1;
652                 clock.p1 = 2;
653                 clock.p2 = 10;
654                 clock.m1 = 12;
655                 clock.m2 = 9;
656         } else {
657                 clock.n = 2;
658                 clock.p1 = 1;
659                 clock.p2 = 10;
660                 clock.m1 = 14;
661                 clock.m2 = 8;
662         }
663         intel_clock(dev, refclk, &clock);
664         memcpy(best_clock, &clock, sizeof(intel_clock_t));
665         return true;
666 }
667
668 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
669 static bool
670 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
671                       int target, int refclk, intel_clock_t *best_clock)
672 {
673         intel_clock_t clock;
674         if (target < 200000) {
675                 clock.p1 = 2;
676                 clock.p2 = 10;
677                 clock.n = 2;
678                 clock.m1 = 23;
679                 clock.m2 = 8;
680         } else {
681                 clock.p1 = 1;
682                 clock.p2 = 10;
683                 clock.n = 1;
684                 clock.m1 = 14;
685                 clock.m2 = 2;
686         }
687         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
688         clock.p = (clock.p1 * clock.p2);
689         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
690         clock.vco = 0;
691         memcpy(best_clock, &clock, sizeof(intel_clock_t));
692         return true;
693 }
694
695 /**
696  * intel_wait_for_vblank - wait for vblank on a given pipe
697  * @dev: drm device
698  * @pipe: pipe to wait for
699  *
700  * Wait for vblank to occur on a given pipe.  Needed for various bits of
701  * mode setting code.
702  */
703 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
704 {
705         struct drm_i915_private *dev_priv = dev->dev_private;
706         int pipestat_reg = PIPESTAT(pipe);
707
708         /* Clear existing vblank status. Note this will clear any other
709          * sticky status fields as well.
710          *
711          * This races with i915_driver_irq_handler() with the result
712          * that either function could miss a vblank event.  Here it is not
713          * fatal, as we will either wait upon the next vblank interrupt or
714          * timeout.  Generally speaking intel_wait_for_vblank() is only
715          * called during modeset at which time the GPU should be idle and
716          * should *not* be performing page flips and thus not waiting on
717          * vblanks...
718          * Currently, the result of us stealing a vblank from the irq
719          * handler is that a single frame will be skipped during swapbuffers.
720          */
721         I915_WRITE(pipestat_reg,
722                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
723
724         /* Wait for vblank interrupt bit to set */
725         if (wait_for(I915_READ(pipestat_reg) &
726                      PIPE_VBLANK_INTERRUPT_STATUS,
727                      50))
728                 DRM_DEBUG_KMS("vblank wait timed out\n");
729 }
730
731 /*
732  * intel_wait_for_pipe_off - wait for pipe to turn off
733  * @dev: drm device
734  * @pipe: pipe to wait for
735  *
736  * After disabling a pipe, we can't wait for vblank in the usual way,
737  * spinning on the vblank interrupt status bit, since we won't actually
738  * see an interrupt when the pipe is disabled.
739  *
740  * On Gen4 and above:
741  *   wait for the pipe register state bit to turn off
742  *
743  * Otherwise:
744  *   wait for the display line value to settle (it usually
745  *   ends up stopping at the start of the next frame).
746  *
747  */
748 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
749 {
750         struct drm_i915_private *dev_priv = dev->dev_private;
751
752         if (INTEL_INFO(dev)->gen >= 4) {
753                 int reg = PIPECONF(pipe);
754
755                 /* Wait for the Pipe State to go off */
756                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
757                              100))
758                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
759         } else {
760                 u32 last_line;
761                 int reg = PIPEDSL(pipe);
762                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
763
764                 /* Wait for the display line to settle */
765                 do {
766                         last_line = I915_READ(reg) & DSL_LINEMASK;
767                         mdelay(5);
768                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
769                          time_after(timeout, jiffies));
770                 if (time_after(jiffies, timeout))
771                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
772         }
773 }
774
775 static const char *state_string(bool enabled)
776 {
777         return enabled ? "on" : "off";
778 }
779
780 /* Only for pre-ILK configs */
781 static void assert_pll(struct drm_i915_private *dev_priv,
782                        enum pipe pipe, bool state)
783 {
784         int reg;
785         u32 val;
786         bool cur_state;
787
788         reg = DPLL(pipe);
789         val = I915_READ(reg);
790         cur_state = !!(val & DPLL_VCO_ENABLE);
791         WARN(cur_state != state,
792              "PLL state assertion failure (expected %s, current %s)\n",
793              state_string(state), state_string(cur_state));
794 }
795 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
796 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
797
798 /* For ILK+ */
799 static void assert_pch_pll(struct drm_i915_private *dev_priv,
800                            enum pipe pipe, bool state)
801 {
802         int reg;
803         u32 val;
804         bool cur_state;
805
806         if (HAS_PCH_CPT(dev_priv->dev)) {
807                 u32 pch_dpll;
808
809                 pch_dpll = I915_READ(PCH_DPLL_SEL);
810
811                 /* Make sure the selected PLL is enabled to the transcoder */
812                 WARN(!((pch_dpll >> (4 * pipe)) & 8),
813                      "transcoder %d PLL not enabled\n", pipe);
814
815                 /* Convert the transcoder pipe number to a pll pipe number */
816                 pipe = (pch_dpll >> (4 * pipe)) & 1;
817         }
818
819         reg = PCH_DPLL(pipe);
820         val = I915_READ(reg);
821         cur_state = !!(val & DPLL_VCO_ENABLE);
822         WARN(cur_state != state,
823              "PCH PLL state assertion failure (expected %s, current %s)\n",
824              state_string(state), state_string(cur_state));
825 }
826 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
827 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
828
829 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
830                           enum pipe pipe, bool state)
831 {
832         int reg;
833         u32 val;
834         bool cur_state;
835
836         reg = FDI_TX_CTL(pipe);
837         val = I915_READ(reg);
838         cur_state = !!(val & FDI_TX_ENABLE);
839         WARN(cur_state != state,
840              "FDI TX state assertion failure (expected %s, current %s)\n",
841              state_string(state), state_string(cur_state));
842 }
843 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
844 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
845
846 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
847                           enum pipe pipe, bool state)
848 {
849         int reg;
850         u32 val;
851         bool cur_state;
852
853         reg = FDI_RX_CTL(pipe);
854         val = I915_READ(reg);
855         cur_state = !!(val & FDI_RX_ENABLE);
856         WARN(cur_state != state,
857              "FDI RX state assertion failure (expected %s, current %s)\n",
858              state_string(state), state_string(cur_state));
859 }
860 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
861 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
862
863 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
864                                       enum pipe pipe)
865 {
866         int reg;
867         u32 val;
868
869         /* ILK FDI PLL is always enabled */
870         if (dev_priv->info->gen == 5)
871                 return;
872
873         reg = FDI_TX_CTL(pipe);
874         val = I915_READ(reg);
875         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
876 }
877
878 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
879                                       enum pipe pipe)
880 {
881         int reg;
882         u32 val;
883
884         reg = FDI_RX_CTL(pipe);
885         val = I915_READ(reg);
886         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
887 }
888
889 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
890                                   enum pipe pipe)
891 {
892         int pp_reg, lvds_reg;
893         u32 val;
894         enum pipe panel_pipe = PIPE_A;
895         bool locked = true;
896
897         if (HAS_PCH_SPLIT(dev_priv->dev)) {
898                 pp_reg = PCH_PP_CONTROL;
899                 lvds_reg = PCH_LVDS;
900         } else {
901                 pp_reg = PP_CONTROL;
902                 lvds_reg = LVDS;
903         }
904
905         val = I915_READ(pp_reg);
906         if (!(val & PANEL_POWER_ON) ||
907             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
908                 locked = false;
909
910         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
911                 panel_pipe = PIPE_B;
912
913         WARN(panel_pipe == pipe && locked,
914              "panel assertion failure, pipe %c regs locked\n",
915              pipe_name(pipe));
916 }
917
918 static void assert_pipe(struct drm_i915_private *dev_priv,
919                         enum pipe pipe, bool state)
920 {
921         int reg;
922         u32 val;
923         bool cur_state;
924
925         reg = PIPECONF(pipe);
926         val = I915_READ(reg);
927         cur_state = !!(val & PIPECONF_ENABLE);
928         WARN(cur_state != state,
929              "pipe %c assertion failure (expected %s, current %s)\n",
930              pipe_name(pipe), state_string(state), state_string(cur_state));
931 }
932 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
933 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
934
935 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
936                                  enum plane plane)
937 {
938         int reg;
939         u32 val;
940
941         reg = DSPCNTR(plane);
942         val = I915_READ(reg);
943         WARN(!(val & DISPLAY_PLANE_ENABLE),
944              "plane %c assertion failure, should be active but is disabled\n",
945              plane_name(plane));
946 }
947
948 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
949                                    enum pipe pipe)
950 {
951         int reg, i;
952         u32 val;
953         int cur_pipe;
954
955         /* Planes are fixed to pipes on ILK+ */
956         if (HAS_PCH_SPLIT(dev_priv->dev))
957                 return;
958
959         /* Need to check both planes against the pipe */
960         for (i = 0; i < 2; i++) {
961                 reg = DSPCNTR(i);
962                 val = I915_READ(reg);
963                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
964                         DISPPLANE_SEL_PIPE_SHIFT;
965                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
966                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
967                      plane_name(i), pipe_name(pipe));
968         }
969 }
970
971 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
972 {
973         u32 val;
974         bool enabled;
975
976         val = I915_READ(PCH_DREF_CONTROL);
977         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
978                             DREF_SUPERSPREAD_SOURCE_MASK));
979         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
980 }
981
982 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
983                                        enum pipe pipe)
984 {
985         int reg;
986         u32 val;
987         bool enabled;
988
989         reg = TRANSCONF(pipe);
990         val = I915_READ(reg);
991         enabled = !!(val & TRANS_ENABLE);
992         WARN(enabled,
993              "transcoder assertion failed, should be off on pipe %c but is still active\n",
994              pipe_name(pipe));
995 }
996
997 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
998                             enum pipe pipe, u32 port_sel, u32 val)
999 {
1000         if ((val & DP_PORT_EN) == 0)
1001                 return false;
1002
1003         if (HAS_PCH_CPT(dev_priv->dev)) {
1004                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1005                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1006                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1007                         return false;
1008         } else {
1009                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1010                         return false;
1011         }
1012         return true;
1013 }
1014
1015 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1016                               enum pipe pipe, u32 val)
1017 {
1018         if ((val & PORT_ENABLE) == 0)
1019                 return false;
1020
1021         if (HAS_PCH_CPT(dev_priv->dev)) {
1022                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1023                         return false;
1024         } else {
1025                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1026                         return false;
1027         }
1028         return true;
1029 }
1030
1031 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1032                               enum pipe pipe, u32 val)
1033 {
1034         if ((val & LVDS_PORT_EN) == 0)
1035                 return false;
1036
1037         if (HAS_PCH_CPT(dev_priv->dev)) {
1038                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1039                         return false;
1040         } else {
1041                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1042                         return false;
1043         }
1044         return true;
1045 }
1046
1047 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1048                               enum pipe pipe, u32 val)
1049 {
1050         if ((val & ADPA_DAC_ENABLE) == 0)
1051                 return false;
1052         if (HAS_PCH_CPT(dev_priv->dev)) {
1053                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1054                         return false;
1055         } else {
1056                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1057                         return false;
1058         }
1059         return true;
1060 }
1061
1062 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1063                                    enum pipe pipe, int reg, u32 port_sel)
1064 {
1065         u32 val = I915_READ(reg);
1066         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1067              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1068              reg, pipe_name(pipe));
1069 }
1070
1071 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1072                                      enum pipe pipe, int reg)
1073 {
1074         u32 val = I915_READ(reg);
1075         WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1076              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1077              reg, pipe_name(pipe));
1078 }
1079
1080 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1081                                       enum pipe pipe)
1082 {
1083         int reg;
1084         u32 val;
1085
1086         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1087         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1088         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1089
1090         reg = PCH_ADPA;
1091         val = I915_READ(reg);
1092         WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1093              "PCH VGA enabled on transcoder %c, should be disabled\n",
1094              pipe_name(pipe));
1095
1096         reg = PCH_LVDS;
1097         val = I915_READ(reg);
1098         WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1099              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1100              pipe_name(pipe));
1101
1102         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1103         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1104         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1105 }
1106
1107 /**
1108  * intel_enable_pll - enable a PLL
1109  * @dev_priv: i915 private structure
1110  * @pipe: pipe PLL to enable
1111  *
1112  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1113  * make sure the PLL reg is writable first though, since the panel write
1114  * protect mechanism may be enabled.
1115  *
1116  * Note!  This is for pre-ILK only.
1117  */
1118 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1119 {
1120         int reg;
1121         u32 val;
1122
1123         /* No really, not for ILK+ */
1124         BUG_ON(dev_priv->info->gen >= 5);
1125
1126         /* PLL is protected by panel, make sure we can write it */
1127         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1128                 assert_panel_unlocked(dev_priv, pipe);
1129
1130         reg = DPLL(pipe);
1131         val = I915_READ(reg);
1132         val |= DPLL_VCO_ENABLE;
1133
1134         /* We do this three times for luck */
1135         I915_WRITE(reg, val);
1136         POSTING_READ(reg);
1137         udelay(150); /* wait for warmup */
1138         I915_WRITE(reg, val);
1139         POSTING_READ(reg);
1140         udelay(150); /* wait for warmup */
1141         I915_WRITE(reg, val);
1142         POSTING_READ(reg);
1143         udelay(150); /* wait for warmup */
1144 }
1145
1146 /**
1147  * intel_disable_pll - disable a PLL
1148  * @dev_priv: i915 private structure
1149  * @pipe: pipe PLL to disable
1150  *
1151  * Disable the PLL for @pipe, making sure the pipe is off first.
1152  *
1153  * Note!  This is for pre-ILK only.
1154  */
1155 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1156 {
1157         int reg;
1158         u32 val;
1159
1160         /* Don't disable pipe A or pipe A PLLs if needed */
1161         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1162                 return;
1163
1164         /* Make sure the pipe isn't still relying on us */
1165         assert_pipe_disabled(dev_priv, pipe);
1166
1167         reg = DPLL(pipe);
1168         val = I915_READ(reg);
1169         val &= ~DPLL_VCO_ENABLE;
1170         I915_WRITE(reg, val);
1171         POSTING_READ(reg);
1172 }
1173
1174 /**
1175  * intel_enable_pch_pll - enable PCH PLL
1176  * @dev_priv: i915 private structure
1177  * @pipe: pipe PLL to enable
1178  *
1179  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1180  * drives the transcoder clock.
1181  */
1182 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1183                                  enum pipe pipe)
1184 {
1185         int reg;
1186         u32 val;
1187
1188         if (pipe > 1)
1189                 return;
1190
1191         /* PCH only available on ILK+ */
1192         BUG_ON(dev_priv->info->gen < 5);
1193
1194         /* PCH refclock must be enabled first */
1195         assert_pch_refclk_enabled(dev_priv);
1196
1197         reg = PCH_DPLL(pipe);
1198         val = I915_READ(reg);
1199         val |= DPLL_VCO_ENABLE;
1200         I915_WRITE(reg, val);
1201         POSTING_READ(reg);
1202         udelay(200);
1203 }
1204
1205 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1206                                   enum pipe pipe)
1207 {
1208         int reg;
1209         u32 val;
1210
1211         if (pipe > 1)
1212                 return;
1213
1214         /* PCH only available on ILK+ */
1215         BUG_ON(dev_priv->info->gen < 5);
1216
1217         /* Make sure transcoder isn't still depending on us */
1218         assert_transcoder_disabled(dev_priv, pipe);
1219
1220         reg = PCH_DPLL(pipe);
1221         val = I915_READ(reg);
1222         val &= ~DPLL_VCO_ENABLE;
1223         I915_WRITE(reg, val);
1224         POSTING_READ(reg);
1225         udelay(200);
1226 }
1227
1228 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1229                                     enum pipe pipe)
1230 {
1231         int reg;
1232         u32 val;
1233
1234         /* PCH only available on ILK+ */
1235         BUG_ON(dev_priv->info->gen < 5);
1236
1237         /* Make sure PCH DPLL is enabled */
1238         assert_pch_pll_enabled(dev_priv, pipe);
1239
1240         /* FDI must be feeding us bits for PCH ports */
1241         assert_fdi_tx_enabled(dev_priv, pipe);
1242         assert_fdi_rx_enabled(dev_priv, pipe);
1243
1244         reg = TRANSCONF(pipe);
1245         val = I915_READ(reg);
1246
1247         if (HAS_PCH_IBX(dev_priv->dev)) {
1248                 /*
1249                  * make the BPC in transcoder be consistent with
1250                  * that in pipeconf reg.
1251                  */
1252                 val &= ~PIPE_BPC_MASK;
1253                 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1254         }
1255         I915_WRITE(reg, val | TRANS_ENABLE);
1256         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1257                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1258 }
1259
1260 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1261                                      enum pipe pipe)
1262 {
1263         int reg;
1264         u32 val;
1265
1266         /* FDI relies on the transcoder */
1267         assert_fdi_tx_disabled(dev_priv, pipe);
1268         assert_fdi_rx_disabled(dev_priv, pipe);
1269
1270         /* Ports must be off as well */
1271         assert_pch_ports_disabled(dev_priv, pipe);
1272
1273         reg = TRANSCONF(pipe);
1274         val = I915_READ(reg);
1275         val &= ~TRANS_ENABLE;
1276         I915_WRITE(reg, val);
1277         /* wait for PCH transcoder off, transcoder state */
1278         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1279                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1280 }
1281
1282 /**
1283  * intel_enable_pipe - enable a pipe, asserting requirements
1284  * @dev_priv: i915 private structure
1285  * @pipe: pipe to enable
1286  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1287  *
1288  * Enable @pipe, making sure that various hardware specific requirements
1289  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1290  *
1291  * @pipe should be %PIPE_A or %PIPE_B.
1292  *
1293  * Will wait until the pipe is actually running (i.e. first vblank) before
1294  * returning.
1295  */
1296 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1297                               bool pch_port)
1298 {
1299         int reg;
1300         u32 val;
1301
1302         /*
1303          * A pipe without a PLL won't actually be able to drive bits from
1304          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1305          * need the check.
1306          */
1307         if (!HAS_PCH_SPLIT(dev_priv->dev))
1308                 assert_pll_enabled(dev_priv, pipe);
1309         else {
1310                 if (pch_port) {
1311                         /* if driving the PCH, we need FDI enabled */
1312                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1313                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1314                 }
1315                 /* FIXME: assert CPU port conditions for SNB+ */
1316         }
1317
1318         reg = PIPECONF(pipe);
1319         val = I915_READ(reg);
1320         if (val & PIPECONF_ENABLE)
1321                 return;
1322
1323         I915_WRITE(reg, val | PIPECONF_ENABLE);
1324         intel_wait_for_vblank(dev_priv->dev, pipe);
1325 }
1326
1327 /**
1328  * intel_disable_pipe - disable a pipe, asserting requirements
1329  * @dev_priv: i915 private structure
1330  * @pipe: pipe to disable
1331  *
1332  * Disable @pipe, making sure that various hardware specific requirements
1333  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1334  *
1335  * @pipe should be %PIPE_A or %PIPE_B.
1336  *
1337  * Will wait until the pipe has shut down before returning.
1338  */
1339 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1340                                enum pipe pipe)
1341 {
1342         int reg;
1343         u32 val;
1344
1345         /*
1346          * Make sure planes won't keep trying to pump pixels to us,
1347          * or we might hang the display.
1348          */
1349         assert_planes_disabled(dev_priv, pipe);
1350
1351         /* Don't disable pipe A or pipe A PLLs if needed */
1352         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1353                 return;
1354
1355         reg = PIPECONF(pipe);
1356         val = I915_READ(reg);
1357         if ((val & PIPECONF_ENABLE) == 0)
1358                 return;
1359
1360         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1361         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1362 }
1363
1364 /*
1365  * Plane regs are double buffered, going from enabled->disabled needs a
1366  * trigger in order to latch.  The display address reg provides this.
1367  */
1368 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1369                                       enum plane plane)
1370 {
1371         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1372         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1373 }
1374
1375 /**
1376  * intel_enable_plane - enable a display plane on a given pipe
1377  * @dev_priv: i915 private structure
1378  * @plane: plane to enable
1379  * @pipe: pipe being fed
1380  *
1381  * Enable @plane on @pipe, making sure that @pipe is running first.
1382  */
1383 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1384                                enum plane plane, enum pipe pipe)
1385 {
1386         int reg;
1387         u32 val;
1388
1389         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1390         assert_pipe_enabled(dev_priv, pipe);
1391
1392         reg = DSPCNTR(plane);
1393         val = I915_READ(reg);
1394         if (val & DISPLAY_PLANE_ENABLE)
1395                 return;
1396
1397         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1398         intel_flush_display_plane(dev_priv, plane);
1399         intel_wait_for_vblank(dev_priv->dev, pipe);
1400 }
1401
1402 /**
1403  * intel_disable_plane - disable a display plane
1404  * @dev_priv: i915 private structure
1405  * @plane: plane to disable
1406  * @pipe: pipe consuming the data
1407  *
1408  * Disable @plane; should be an independent operation.
1409  */
1410 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1411                                 enum plane plane, enum pipe pipe)
1412 {
1413         int reg;
1414         u32 val;
1415
1416         reg = DSPCNTR(plane);
1417         val = I915_READ(reg);
1418         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1419                 return;
1420
1421         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1422         intel_flush_display_plane(dev_priv, plane);
1423         intel_wait_for_vblank(dev_priv->dev, pipe);
1424 }
1425
1426 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1427                            enum pipe pipe, int reg, u32 port_sel)
1428 {
1429         u32 val = I915_READ(reg);
1430         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1431                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1432                 I915_WRITE(reg, val & ~DP_PORT_EN);
1433         }
1434 }
1435
1436 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1437                              enum pipe pipe, int reg)
1438 {
1439         u32 val = I915_READ(reg);
1440         if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1441                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1442                               reg, pipe);
1443                 I915_WRITE(reg, val & ~PORT_ENABLE);
1444         }
1445 }
1446
1447 /* Disable any ports connected to this transcoder */
1448 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1449                                     enum pipe pipe)
1450 {
1451         u32 reg, val;
1452
1453         val = I915_READ(PCH_PP_CONTROL);
1454         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1455
1456         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1457         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1458         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1459
1460         reg = PCH_ADPA;
1461         val = I915_READ(reg);
1462         if (adpa_pipe_enabled(dev_priv, val, pipe))
1463                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1464
1465         reg = PCH_LVDS;
1466         val = I915_READ(reg);
1467         if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1468                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1469                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1470                 POSTING_READ(reg);
1471                 udelay(100);
1472         }
1473
1474         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1475         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1476         disable_pch_hdmi(dev_priv, pipe, HDMID);
1477 }
1478
1479 static void i8xx_disable_fbc(struct drm_device *dev)
1480 {
1481         struct drm_i915_private *dev_priv = dev->dev_private;
1482         u32 fbc_ctl;
1483
1484         /* Disable compression */
1485         fbc_ctl = I915_READ(FBC_CONTROL);
1486         if ((fbc_ctl & FBC_CTL_EN) == 0)
1487                 return;
1488
1489         fbc_ctl &= ~FBC_CTL_EN;
1490         I915_WRITE(FBC_CONTROL, fbc_ctl);
1491
1492         /* Wait for compressing bit to clear */
1493         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1494                 DRM_DEBUG_KMS("FBC idle timed out\n");
1495                 return;
1496         }
1497
1498         DRM_DEBUG_KMS("disabled FBC\n");
1499 }
1500
1501 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1502 {
1503         struct drm_device *dev = crtc->dev;
1504         struct drm_i915_private *dev_priv = dev->dev_private;
1505         struct drm_framebuffer *fb = crtc->fb;
1506         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1507         struct drm_i915_gem_object *obj = intel_fb->obj;
1508         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1509         int cfb_pitch;
1510         int plane, i;
1511         u32 fbc_ctl, fbc_ctl2;
1512
1513         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1514         if (fb->pitch < cfb_pitch)
1515                 cfb_pitch = fb->pitch;
1516
1517         /* FBC_CTL wants 64B units */
1518         cfb_pitch = (cfb_pitch / 64) - 1;
1519         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1520
1521         /* Clear old tags */
1522         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1523                 I915_WRITE(FBC_TAG + (i * 4), 0);
1524
1525         /* Set it up... */
1526         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1527         fbc_ctl2 |= plane;
1528         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1529         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1530
1531         /* enable it... */
1532         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1533         if (IS_I945GM(dev))
1534                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1535         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1536         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1537         fbc_ctl |= obj->fence_reg;
1538         I915_WRITE(FBC_CONTROL, fbc_ctl);
1539
1540         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1541                       cfb_pitch, crtc->y, intel_crtc->plane);
1542 }
1543
1544 static bool i8xx_fbc_enabled(struct drm_device *dev)
1545 {
1546         struct drm_i915_private *dev_priv = dev->dev_private;
1547
1548         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1549 }
1550
1551 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1552 {
1553         struct drm_device *dev = crtc->dev;
1554         struct drm_i915_private *dev_priv = dev->dev_private;
1555         struct drm_framebuffer *fb = crtc->fb;
1556         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1557         struct drm_i915_gem_object *obj = intel_fb->obj;
1558         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1559         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1560         unsigned long stall_watermark = 200;
1561         u32 dpfc_ctl;
1562
1563         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1564         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1565         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1566
1567         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1568                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1569                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1570         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1571
1572         /* enable it... */
1573         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1574
1575         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1576 }
1577
1578 static void g4x_disable_fbc(struct drm_device *dev)
1579 {
1580         struct drm_i915_private *dev_priv = dev->dev_private;
1581         u32 dpfc_ctl;
1582
1583         /* Disable compression */
1584         dpfc_ctl = I915_READ(DPFC_CONTROL);
1585         if (dpfc_ctl & DPFC_CTL_EN) {
1586                 dpfc_ctl &= ~DPFC_CTL_EN;
1587                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1588
1589                 DRM_DEBUG_KMS("disabled FBC\n");
1590         }
1591 }
1592
1593 static bool g4x_fbc_enabled(struct drm_device *dev)
1594 {
1595         struct drm_i915_private *dev_priv = dev->dev_private;
1596
1597         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1598 }
1599
1600 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1601 {
1602         struct drm_i915_private *dev_priv = dev->dev_private;
1603         u32 blt_ecoskpd;
1604
1605         /* Make sure blitter notifies FBC of writes */
1606         gen6_gt_force_wake_get(dev_priv);
1607         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1608         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1609                 GEN6_BLITTER_LOCK_SHIFT;
1610         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1611         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1612         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1613         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1614                          GEN6_BLITTER_LOCK_SHIFT);
1615         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1616         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1617         gen6_gt_force_wake_put(dev_priv);
1618 }
1619
1620 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1621 {
1622         struct drm_device *dev = crtc->dev;
1623         struct drm_i915_private *dev_priv = dev->dev_private;
1624         struct drm_framebuffer *fb = crtc->fb;
1625         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1626         struct drm_i915_gem_object *obj = intel_fb->obj;
1627         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1628         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1629         unsigned long stall_watermark = 200;
1630         u32 dpfc_ctl;
1631
1632         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1633         dpfc_ctl &= DPFC_RESERVED;
1634         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1635         /* Set persistent mode for front-buffer rendering, ala X. */
1636         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1637         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1638         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1639
1640         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1641                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1642                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1643         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1644         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1645         /* enable it... */
1646         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1647
1648         if (IS_GEN6(dev)) {
1649                 I915_WRITE(SNB_DPFC_CTL_SA,
1650                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1651                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1652                 sandybridge_blit_fbc_update(dev);
1653         }
1654
1655         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1656 }
1657
1658 static void ironlake_disable_fbc(struct drm_device *dev)
1659 {
1660         struct drm_i915_private *dev_priv = dev->dev_private;
1661         u32 dpfc_ctl;
1662
1663         /* Disable compression */
1664         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1665         if (dpfc_ctl & DPFC_CTL_EN) {
1666                 dpfc_ctl &= ~DPFC_CTL_EN;
1667                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1668
1669                 DRM_DEBUG_KMS("disabled FBC\n");
1670         }
1671 }
1672
1673 static bool ironlake_fbc_enabled(struct drm_device *dev)
1674 {
1675         struct drm_i915_private *dev_priv = dev->dev_private;
1676
1677         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1678 }
1679
1680 bool intel_fbc_enabled(struct drm_device *dev)
1681 {
1682         struct drm_i915_private *dev_priv = dev->dev_private;
1683
1684         if (!dev_priv->display.fbc_enabled)
1685                 return false;
1686
1687         return dev_priv->display.fbc_enabled(dev);
1688 }
1689
1690 static void intel_fbc_work_fn(struct work_struct *__work)
1691 {
1692         struct intel_fbc_work *work =
1693                 container_of(to_delayed_work(__work),
1694                              struct intel_fbc_work, work);
1695         struct drm_device *dev = work->crtc->dev;
1696         struct drm_i915_private *dev_priv = dev->dev_private;
1697
1698         mutex_lock(&dev->struct_mutex);
1699         if (work == dev_priv->fbc_work) {
1700                 /* Double check that we haven't switched fb without cancelling
1701                  * the prior work.
1702                  */
1703                 if (work->crtc->fb == work->fb) {
1704                         dev_priv->display.enable_fbc(work->crtc,
1705                                                      work->interval);
1706
1707                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1708                         dev_priv->cfb_fb = work->crtc->fb->base.id;
1709                         dev_priv->cfb_y = work->crtc->y;
1710                 }
1711
1712                 dev_priv->fbc_work = NULL;
1713         }
1714         mutex_unlock(&dev->struct_mutex);
1715
1716         kfree(work);
1717 }
1718
1719 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1720 {
1721         if (dev_priv->fbc_work == NULL)
1722                 return;
1723
1724         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1725
1726         /* Synchronisation is provided by struct_mutex and checking of
1727          * dev_priv->fbc_work, so we can perform the cancellation
1728          * entirely asynchronously.
1729          */
1730         if (cancel_delayed_work(&dev_priv->fbc_work->work))
1731                 /* tasklet was killed before being run, clean up */
1732                 kfree(dev_priv->fbc_work);
1733
1734         /* Mark the work as no longer wanted so that if it does
1735          * wake-up (because the work was already running and waiting
1736          * for our mutex), it will discover that is no longer
1737          * necessary to run.
1738          */
1739         dev_priv->fbc_work = NULL;
1740 }
1741
1742 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1743 {
1744         struct intel_fbc_work *work;
1745         struct drm_device *dev = crtc->dev;
1746         struct drm_i915_private *dev_priv = dev->dev_private;
1747
1748         if (!dev_priv->display.enable_fbc)
1749                 return;
1750
1751         intel_cancel_fbc_work(dev_priv);
1752
1753         work = kzalloc(sizeof *work, GFP_KERNEL);
1754         if (work == NULL) {
1755                 dev_priv->display.enable_fbc(crtc, interval);
1756                 return;
1757         }
1758
1759         work->crtc = crtc;
1760         work->fb = crtc->fb;
1761         work->interval = interval;
1762         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1763
1764         dev_priv->fbc_work = work;
1765
1766         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1767
1768         /* Delay the actual enabling to let pageflipping cease and the
1769          * display to settle before starting the compression. Note that
1770          * this delay also serves a second purpose: it allows for a
1771          * vblank to pass after disabling the FBC before we attempt
1772          * to modify the control registers.
1773          *
1774          * A more complicated solution would involve tracking vblanks
1775          * following the termination of the page-flipping sequence
1776          * and indeed performing the enable as a co-routine and not
1777          * waiting synchronously upon the vblank.
1778          */
1779         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1780 }
1781
1782 void intel_disable_fbc(struct drm_device *dev)
1783 {
1784         struct drm_i915_private *dev_priv = dev->dev_private;
1785
1786         intel_cancel_fbc_work(dev_priv);
1787
1788         if (!dev_priv->display.disable_fbc)
1789                 return;
1790
1791         dev_priv->display.disable_fbc(dev);
1792         dev_priv->cfb_plane = -1;
1793 }
1794
1795 /**
1796  * intel_update_fbc - enable/disable FBC as needed
1797  * @dev: the drm_device
1798  *
1799  * Set up the framebuffer compression hardware at mode set time.  We
1800  * enable it if possible:
1801  *   - plane A only (on pre-965)
1802  *   - no pixel mulitply/line duplication
1803  *   - no alpha buffer discard
1804  *   - no dual wide
1805  *   - framebuffer <= 2048 in width, 1536 in height
1806  *
1807  * We can't assume that any compression will take place (worst case),
1808  * so the compressed buffer has to be the same size as the uncompressed
1809  * one.  It also must reside (along with the line length buffer) in
1810  * stolen memory.
1811  *
1812  * We need to enable/disable FBC on a global basis.
1813  */
1814 static void intel_update_fbc(struct drm_device *dev)
1815 {
1816         struct drm_i915_private *dev_priv = dev->dev_private;
1817         struct drm_crtc *crtc = NULL, *tmp_crtc;
1818         struct intel_crtc *intel_crtc;
1819         struct drm_framebuffer *fb;
1820         struct intel_framebuffer *intel_fb;
1821         struct drm_i915_gem_object *obj;
1822         int enable_fbc;
1823
1824         DRM_DEBUG_KMS("\n");
1825
1826         if (!i915_powersave)
1827                 return;
1828
1829         if (!I915_HAS_FBC(dev))
1830                 return;
1831
1832         /*
1833          * If FBC is already on, we just have to verify that we can
1834          * keep it that way...
1835          * Need to disable if:
1836          *   - more than one pipe is active
1837          *   - changing FBC params (stride, fence, mode)
1838          *   - new fb is too large to fit in compressed buffer
1839          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1840          */
1841         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1842                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1843                         if (crtc) {
1844                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1845                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1846                                 goto out_disable;
1847                         }
1848                         crtc = tmp_crtc;
1849                 }
1850         }
1851
1852         if (!crtc || crtc->fb == NULL) {
1853                 DRM_DEBUG_KMS("no output, disabling\n");
1854                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1855                 goto out_disable;
1856         }
1857
1858         intel_crtc = to_intel_crtc(crtc);
1859         fb = crtc->fb;
1860         intel_fb = to_intel_framebuffer(fb);
1861         obj = intel_fb->obj;
1862
1863         enable_fbc = i915_enable_fbc;
1864         if (enable_fbc < 0) {
1865                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1866                 enable_fbc = 1;
1867                 if (INTEL_INFO(dev)->gen <= 5)
1868                         enable_fbc = 0;
1869         }
1870         if (!enable_fbc) {
1871                 DRM_DEBUG_KMS("fbc disabled per module param\n");
1872                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1873                 goto out_disable;
1874         }
1875         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1876                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1877                               "compression\n");
1878                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1879                 goto out_disable;
1880         }
1881         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1882             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1883                 DRM_DEBUG_KMS("mode incompatible with compression, "
1884                               "disabling\n");
1885                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1886                 goto out_disable;
1887         }
1888         if ((crtc->mode.hdisplay > 2048) ||
1889             (crtc->mode.vdisplay > 1536)) {
1890                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1891                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1892                 goto out_disable;
1893         }
1894         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1895                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1896                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1897                 goto out_disable;
1898         }
1899
1900         /* The use of a CPU fence is mandatory in order to detect writes
1901          * by the CPU to the scanout and trigger updates to the FBC.
1902          */
1903         if (obj->tiling_mode != I915_TILING_X ||
1904             obj->fence_reg == I915_FENCE_REG_NONE) {
1905                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1906                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1907                 goto out_disable;
1908         }
1909
1910         /* If the kernel debugger is active, always disable compression */
1911         if (in_dbg_master())
1912                 goto out_disable;
1913
1914         /* If the scanout has not changed, don't modify the FBC settings.
1915          * Note that we make the fundamental assumption that the fb->obj
1916          * cannot be unpinned (and have its GTT offset and fence revoked)
1917          * without first being decoupled from the scanout and FBC disabled.
1918          */
1919         if (dev_priv->cfb_plane == intel_crtc->plane &&
1920             dev_priv->cfb_fb == fb->base.id &&
1921             dev_priv->cfb_y == crtc->y)
1922                 return;
1923
1924         if (intel_fbc_enabled(dev)) {
1925                 /* We update FBC along two paths, after changing fb/crtc
1926                  * configuration (modeswitching) and after page-flipping
1927                  * finishes. For the latter, we know that not only did
1928                  * we disable the FBC at the start of the page-flip
1929                  * sequence, but also more than one vblank has passed.
1930                  *
1931                  * For the former case of modeswitching, it is possible
1932                  * to switch between two FBC valid configurations
1933                  * instantaneously so we do need to disable the FBC
1934                  * before we can modify its control registers. We also
1935                  * have to wait for the next vblank for that to take
1936                  * effect. However, since we delay enabling FBC we can
1937                  * assume that a vblank has passed since disabling and
1938                  * that we can safely alter the registers in the deferred
1939                  * callback.
1940                  *
1941                  * In the scenario that we go from a valid to invalid
1942                  * and then back to valid FBC configuration we have
1943                  * no strict enforcement that a vblank occurred since
1944                  * disabling the FBC. However, along all current pipe
1945                  * disabling paths we do need to wait for a vblank at
1946                  * some point. And we wait before enabling FBC anyway.
1947                  */
1948                 DRM_DEBUG_KMS("disabling active FBC for update\n");
1949                 intel_disable_fbc(dev);
1950         }
1951
1952         intel_enable_fbc(crtc, 500);
1953         return;
1954
1955 out_disable:
1956         /* Multiple disables should be harmless */
1957         if (intel_fbc_enabled(dev)) {
1958                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1959                 intel_disable_fbc(dev);
1960         }
1961 }
1962
1963 int
1964 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1965                            struct drm_i915_gem_object *obj,
1966                            struct intel_ring_buffer *pipelined)
1967 {
1968         struct drm_i915_private *dev_priv = dev->dev_private;
1969         u32 alignment;
1970         int ret;
1971
1972         switch (obj->tiling_mode) {
1973         case I915_TILING_NONE:
1974                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1975                         alignment = 128 * 1024;
1976                 else if (INTEL_INFO(dev)->gen >= 4)
1977                         alignment = 4 * 1024;
1978                 else
1979                         alignment = 64 * 1024;
1980                 break;
1981         case I915_TILING_X:
1982                 /* pin() will align the object as required by fence */
1983                 alignment = 0;
1984                 break;
1985         case I915_TILING_Y:
1986                 /* FIXME: Is this true? */
1987                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1988                 return -EINVAL;
1989         default:
1990                 BUG();
1991         }
1992
1993         dev_priv->mm.interruptible = false;
1994         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1995         if (ret)
1996                 goto err_interruptible;
1997
1998         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1999          * fence, whereas 965+ only requires a fence if using
2000          * framebuffer compression.  For simplicity, we always install
2001          * a fence as the cost is not that onerous.
2002          */
2003         if (obj->tiling_mode != I915_TILING_NONE) {
2004                 ret = i915_gem_object_get_fence(obj, pipelined);
2005                 if (ret)
2006                         goto err_unpin;
2007         }
2008
2009         dev_priv->mm.interruptible = true;
2010         return 0;
2011
2012 err_unpin:
2013         i915_gem_object_unpin(obj);
2014 err_interruptible:
2015         dev_priv->mm.interruptible = true;
2016         return ret;
2017 }
2018
2019 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2020                              int x, int y)
2021 {
2022         struct drm_device *dev = crtc->dev;
2023         struct drm_i915_private *dev_priv = dev->dev_private;
2024         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2025         struct intel_framebuffer *intel_fb;
2026         struct drm_i915_gem_object *obj;
2027         int plane = intel_crtc->plane;
2028         unsigned long Start, Offset;
2029         u32 dspcntr;
2030         u32 reg;
2031
2032         switch (plane) {
2033         case 0:
2034         case 1:
2035                 break;
2036         default:
2037                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2038                 return -EINVAL;
2039         }
2040
2041         intel_fb = to_intel_framebuffer(fb);
2042         obj = intel_fb->obj;
2043
2044         reg = DSPCNTR(plane);
2045         dspcntr = I915_READ(reg);
2046         /* Mask out pixel format bits in case we change it */
2047         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2048         switch (fb->bits_per_pixel) {
2049         case 8:
2050                 dspcntr |= DISPPLANE_8BPP;
2051                 break;
2052         case 16:
2053                 if (fb->depth == 15)
2054                         dspcntr |= DISPPLANE_15_16BPP;
2055                 else
2056                         dspcntr |= DISPPLANE_16BPP;
2057                 break;
2058         case 24:
2059         case 32:
2060                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2061                 break;
2062         default:
2063                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2064                 return -EINVAL;
2065         }
2066         if (INTEL_INFO(dev)->gen >= 4) {
2067                 if (obj->tiling_mode != I915_TILING_NONE)
2068                         dspcntr |= DISPPLANE_TILED;
2069                 else
2070                         dspcntr &= ~DISPPLANE_TILED;
2071         }
2072
2073         I915_WRITE(reg, dspcntr);
2074
2075         Start = obj->gtt_offset;
2076         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2077
2078         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2079                       Start, Offset, x, y, fb->pitch);
2080         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2081         if (INTEL_INFO(dev)->gen >= 4) {
2082                 I915_WRITE(DSPSURF(plane), Start);
2083                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2084                 I915_WRITE(DSPADDR(plane), Offset);
2085         } else
2086                 I915_WRITE(DSPADDR(plane), Start + Offset);
2087         POSTING_READ(reg);
2088
2089         return 0;
2090 }
2091
2092 static int ironlake_update_plane(struct drm_crtc *crtc,
2093                                  struct drm_framebuffer *fb, int x, int y)
2094 {
2095         struct drm_device *dev = crtc->dev;
2096         struct drm_i915_private *dev_priv = dev->dev_private;
2097         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2098         struct intel_framebuffer *intel_fb;
2099         struct drm_i915_gem_object *obj;
2100         int plane = intel_crtc->plane;
2101         unsigned long Start, Offset;
2102         u32 dspcntr;
2103         u32 reg;
2104
2105         switch (plane) {
2106         case 0:
2107         case 1:
2108         case 2:
2109                 break;
2110         default:
2111                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2112                 return -EINVAL;
2113         }
2114
2115         intel_fb = to_intel_framebuffer(fb);
2116         obj = intel_fb->obj;
2117
2118         reg = DSPCNTR(plane);
2119         dspcntr = I915_READ(reg);
2120         /* Mask out pixel format bits in case we change it */
2121         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2122         switch (fb->bits_per_pixel) {
2123         case 8:
2124                 dspcntr |= DISPPLANE_8BPP;
2125                 break;
2126         case 16:
2127                 if (fb->depth != 16)
2128                         return -EINVAL;
2129
2130                 dspcntr |= DISPPLANE_16BPP;
2131                 break;
2132         case 24:
2133         case 32:
2134                 if (fb->depth == 24)
2135                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2136                 else if (fb->depth == 30)
2137                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2138                 else
2139                         return -EINVAL;
2140                 break;
2141         default:
2142                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2143                 return -EINVAL;
2144         }
2145
2146         if (obj->tiling_mode != I915_TILING_NONE)
2147                 dspcntr |= DISPPLANE_TILED;
2148         else
2149                 dspcntr &= ~DISPPLANE_TILED;
2150
2151         /* must disable */
2152         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2153
2154         I915_WRITE(reg, dspcntr);
2155
2156         Start = obj->gtt_offset;
2157         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2158
2159         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2160                       Start, Offset, x, y, fb->pitch);
2161         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2162         I915_WRITE(DSPSURF(plane), Start);
2163         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2164         I915_WRITE(DSPADDR(plane), Offset);
2165         POSTING_READ(reg);
2166
2167         return 0;
2168 }
2169
2170 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2171 static int
2172 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2173                            int x, int y, enum mode_set_atomic state)
2174 {
2175         struct drm_device *dev = crtc->dev;
2176         struct drm_i915_private *dev_priv = dev->dev_private;
2177         int ret;
2178
2179         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2180         if (ret)
2181                 return ret;
2182
2183         intel_update_fbc(dev);
2184         intel_increase_pllclock(crtc);
2185
2186         return 0;
2187 }
2188
2189 static int
2190 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2191                     struct drm_framebuffer *old_fb)
2192 {
2193         struct drm_device *dev = crtc->dev;
2194         struct drm_i915_master_private *master_priv;
2195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2196         int ret;
2197
2198         /* no fb bound */
2199         if (!crtc->fb) {
2200                 DRM_ERROR("No FB bound\n");
2201                 return 0;
2202         }
2203
2204         switch (intel_crtc->plane) {
2205         case 0:
2206         case 1:
2207                 break;
2208         case 2:
2209                 if (IS_IVYBRIDGE(dev))
2210                         break;
2211                 /* fall through otherwise */
2212         default:
2213                 DRM_ERROR("no plane for crtc\n");
2214                 return -EINVAL;
2215         }
2216
2217         mutex_lock(&dev->struct_mutex);
2218         ret = intel_pin_and_fence_fb_obj(dev,
2219                                          to_intel_framebuffer(crtc->fb)->obj,
2220                                          NULL);
2221         if (ret != 0) {
2222                 mutex_unlock(&dev->struct_mutex);
2223                 DRM_ERROR("pin & fence failed\n");
2224                 return ret;
2225         }
2226
2227         if (old_fb) {
2228                 struct drm_i915_private *dev_priv = dev->dev_private;
2229                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2230
2231                 wait_event(dev_priv->pending_flip_queue,
2232                            atomic_read(&dev_priv->mm.wedged) ||
2233                            atomic_read(&obj->pending_flip) == 0);
2234
2235                 /* Big Hammer, we also need to ensure that any pending
2236                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2237                  * current scanout is retired before unpinning the old
2238                  * framebuffer.
2239                  *
2240                  * This should only fail upon a hung GPU, in which case we
2241                  * can safely continue.
2242                  */
2243                 ret = i915_gem_object_finish_gpu(obj);
2244                 (void) ret;
2245         }
2246
2247         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2248                                          LEAVE_ATOMIC_MODE_SET);
2249         if (ret) {
2250                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2251                 mutex_unlock(&dev->struct_mutex);
2252                 DRM_ERROR("failed to update base address\n");
2253                 return ret;
2254         }
2255
2256         if (old_fb) {
2257                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2258                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2259         }
2260
2261         mutex_unlock(&dev->struct_mutex);
2262
2263         if (!dev->primary->master)
2264                 return 0;
2265
2266         master_priv = dev->primary->master->driver_priv;
2267         if (!master_priv->sarea_priv)
2268                 return 0;
2269
2270         if (intel_crtc->pipe) {
2271                 master_priv->sarea_priv->pipeB_x = x;
2272                 master_priv->sarea_priv->pipeB_y = y;
2273         } else {
2274                 master_priv->sarea_priv->pipeA_x = x;
2275                 master_priv->sarea_priv->pipeA_y = y;
2276         }
2277
2278         return 0;
2279 }
2280
2281 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2282 {
2283         struct drm_device *dev = crtc->dev;
2284         struct drm_i915_private *dev_priv = dev->dev_private;
2285         u32 dpa_ctl;
2286
2287         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2288         dpa_ctl = I915_READ(DP_A);
2289         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2290
2291         if (clock < 200000) {
2292                 u32 temp;
2293                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2294                 /* workaround for 160Mhz:
2295                    1) program 0x4600c bits 15:0 = 0x8124
2296                    2) program 0x46010 bit 0 = 1
2297                    3) program 0x46034 bit 24 = 1
2298                    4) program 0x64000 bit 14 = 1
2299                    */
2300                 temp = I915_READ(0x4600c);
2301                 temp &= 0xffff0000;
2302                 I915_WRITE(0x4600c, temp | 0x8124);
2303
2304                 temp = I915_READ(0x46010);
2305                 I915_WRITE(0x46010, temp | 1);
2306
2307                 temp = I915_READ(0x46034);
2308                 I915_WRITE(0x46034, temp | (1 << 24));
2309         } else {
2310                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2311         }
2312         I915_WRITE(DP_A, dpa_ctl);
2313
2314         POSTING_READ(DP_A);
2315         udelay(500);
2316 }
2317
2318 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2319 {
2320         struct drm_device *dev = crtc->dev;
2321         struct drm_i915_private *dev_priv = dev->dev_private;
2322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323         int pipe = intel_crtc->pipe;
2324         u32 reg, temp;
2325
2326         /* enable normal train */
2327         reg = FDI_TX_CTL(pipe);
2328         temp = I915_READ(reg);
2329         if (IS_IVYBRIDGE(dev)) {
2330                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2331                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2332         } else {
2333                 temp &= ~FDI_LINK_TRAIN_NONE;
2334                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2335         }
2336         I915_WRITE(reg, temp);
2337
2338         reg = FDI_RX_CTL(pipe);
2339         temp = I915_READ(reg);
2340         if (HAS_PCH_CPT(dev)) {
2341                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2342                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2343         } else {
2344                 temp &= ~FDI_LINK_TRAIN_NONE;
2345                 temp |= FDI_LINK_TRAIN_NONE;
2346         }
2347         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2348
2349         /* wait one idle pattern time */
2350         POSTING_READ(reg);
2351         udelay(1000);
2352
2353         /* IVB wants error correction enabled */
2354         if (IS_IVYBRIDGE(dev))
2355                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2356                            FDI_FE_ERRC_ENABLE);
2357 }
2358
2359 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2360 {
2361         struct drm_i915_private *dev_priv = dev->dev_private;
2362         u32 flags = I915_READ(SOUTH_CHICKEN1);
2363
2364         flags |= FDI_PHASE_SYNC_OVR(pipe);
2365         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2366         flags |= FDI_PHASE_SYNC_EN(pipe);
2367         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2368         POSTING_READ(SOUTH_CHICKEN1);
2369 }
2370
2371 /* The FDI link training functions for ILK/Ibexpeak. */
2372 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2373 {
2374         struct drm_device *dev = crtc->dev;
2375         struct drm_i915_private *dev_priv = dev->dev_private;
2376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2377         int pipe = intel_crtc->pipe;
2378         int plane = intel_crtc->plane;
2379         u32 reg, temp, tries;
2380
2381         /* FDI needs bits from pipe & plane first */
2382         assert_pipe_enabled(dev_priv, pipe);
2383         assert_plane_enabled(dev_priv, plane);
2384
2385         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2386            for train result */
2387         reg = FDI_RX_IMR(pipe);
2388         temp = I915_READ(reg);
2389         temp &= ~FDI_RX_SYMBOL_LOCK;
2390         temp &= ~FDI_RX_BIT_LOCK;
2391         I915_WRITE(reg, temp);
2392         I915_READ(reg);
2393         udelay(150);
2394
2395         /* enable CPU FDI TX and PCH FDI RX */
2396         reg = FDI_TX_CTL(pipe);
2397         temp = I915_READ(reg);
2398         temp &= ~(7 << 19);
2399         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2400         temp &= ~FDI_LINK_TRAIN_NONE;
2401         temp |= FDI_LINK_TRAIN_PATTERN_1;
2402         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2403
2404         reg = FDI_RX_CTL(pipe);
2405         temp = I915_READ(reg);
2406         temp &= ~FDI_LINK_TRAIN_NONE;
2407         temp |= FDI_LINK_TRAIN_PATTERN_1;
2408         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2409
2410         POSTING_READ(reg);
2411         udelay(150);
2412
2413         /* Ironlake workaround, enable clock pointer after FDI enable*/
2414         if (HAS_PCH_IBX(dev)) {
2415                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2416                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2417                            FDI_RX_PHASE_SYNC_POINTER_EN);
2418         }
2419
2420         reg = FDI_RX_IIR(pipe);
2421         for (tries = 0; tries < 5; tries++) {
2422                 temp = I915_READ(reg);
2423                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2424
2425                 if ((temp & FDI_RX_BIT_LOCK)) {
2426                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2427                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2428                         break;
2429                 }
2430         }
2431         if (tries == 5)
2432                 DRM_ERROR("FDI train 1 fail!\n");
2433
2434         /* Train 2 */
2435         reg = FDI_TX_CTL(pipe);
2436         temp = I915_READ(reg);
2437         temp &= ~FDI_LINK_TRAIN_NONE;
2438         temp |= FDI_LINK_TRAIN_PATTERN_2;
2439         I915_WRITE(reg, temp);
2440
2441         reg = FDI_RX_CTL(pipe);
2442         temp = I915_READ(reg);
2443         temp &= ~FDI_LINK_TRAIN_NONE;
2444         temp |= FDI_LINK_TRAIN_PATTERN_2;
2445         I915_WRITE(reg, temp);
2446
2447         POSTING_READ(reg);
2448         udelay(150);
2449
2450         reg = FDI_RX_IIR(pipe);
2451         for (tries = 0; tries < 5; tries++) {
2452                 temp = I915_READ(reg);
2453                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2454
2455                 if (temp & FDI_RX_SYMBOL_LOCK) {
2456                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2457                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2458                         break;
2459                 }
2460         }
2461         if (tries == 5)
2462                 DRM_ERROR("FDI train 2 fail!\n");
2463
2464         DRM_DEBUG_KMS("FDI train done\n");
2465
2466 }
2467
2468 static const int snb_b_fdi_train_param[] = {
2469         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2470         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2471         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2472         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2473 };
2474
2475 /* The FDI link training functions for SNB/Cougarpoint. */
2476 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2477 {
2478         struct drm_device *dev = crtc->dev;
2479         struct drm_i915_private *dev_priv = dev->dev_private;
2480         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2481         int pipe = intel_crtc->pipe;
2482         u32 reg, temp, i;
2483
2484         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2485            for train result */
2486         reg = FDI_RX_IMR(pipe);
2487         temp = I915_READ(reg);
2488         temp &= ~FDI_RX_SYMBOL_LOCK;
2489         temp &= ~FDI_RX_BIT_LOCK;
2490         I915_WRITE(reg, temp);
2491
2492         POSTING_READ(reg);
2493         udelay(150);
2494
2495         /* enable CPU FDI TX and PCH FDI RX */
2496         reg = FDI_TX_CTL(pipe);
2497         temp = I915_READ(reg);
2498         temp &= ~(7 << 19);
2499         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2500         temp &= ~FDI_LINK_TRAIN_NONE;
2501         temp |= FDI_LINK_TRAIN_PATTERN_1;
2502         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503         /* SNB-B */
2504         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2505         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2506
2507         reg = FDI_RX_CTL(pipe);
2508         temp = I915_READ(reg);
2509         if (HAS_PCH_CPT(dev)) {
2510                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2511                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2512         } else {
2513                 temp &= ~FDI_LINK_TRAIN_NONE;
2514                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2515         }
2516         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2517
2518         POSTING_READ(reg);
2519         udelay(150);
2520
2521         if (HAS_PCH_CPT(dev))
2522                 cpt_phase_pointer_enable(dev, pipe);
2523
2524         for (i = 0; i < 4; i++) {
2525                 reg = FDI_TX_CTL(pipe);
2526                 temp = I915_READ(reg);
2527                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2528                 temp |= snb_b_fdi_train_param[i];
2529                 I915_WRITE(reg, temp);
2530
2531                 POSTING_READ(reg);
2532                 udelay(500);
2533
2534                 reg = FDI_RX_IIR(pipe);
2535                 temp = I915_READ(reg);
2536                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537
2538                 if (temp & FDI_RX_BIT_LOCK) {
2539                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2540                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2541                         break;
2542                 }
2543         }
2544         if (i == 4)
2545                 DRM_ERROR("FDI train 1 fail!\n");
2546
2547         /* Train 2 */
2548         reg = FDI_TX_CTL(pipe);
2549         temp = I915_READ(reg);
2550         temp &= ~FDI_LINK_TRAIN_NONE;
2551         temp |= FDI_LINK_TRAIN_PATTERN_2;
2552         if (IS_GEN6(dev)) {
2553                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2554                 /* SNB-B */
2555                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2556         }
2557         I915_WRITE(reg, temp);
2558
2559         reg = FDI_RX_CTL(pipe);
2560         temp = I915_READ(reg);
2561         if (HAS_PCH_CPT(dev)) {
2562                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2563                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2564         } else {
2565                 temp &= ~FDI_LINK_TRAIN_NONE;
2566                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2567         }
2568         I915_WRITE(reg, temp);
2569
2570         POSTING_READ(reg);
2571         udelay(150);
2572
2573         for (i = 0; i < 4; i++) {
2574                 reg = FDI_TX_CTL(pipe);
2575                 temp = I915_READ(reg);
2576                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2577                 temp |= snb_b_fdi_train_param[i];
2578                 I915_WRITE(reg, temp);
2579
2580                 POSTING_READ(reg);
2581                 udelay(500);
2582
2583                 reg = FDI_RX_IIR(pipe);
2584                 temp = I915_READ(reg);
2585                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2586
2587                 if (temp & FDI_RX_SYMBOL_LOCK) {
2588                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2589                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2590                         break;
2591                 }
2592         }
2593         if (i == 4)
2594                 DRM_ERROR("FDI train 2 fail!\n");
2595
2596         DRM_DEBUG_KMS("FDI train done.\n");
2597 }
2598
2599 /* Manual link training for Ivy Bridge A0 parts */
2600 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2601 {
2602         struct drm_device *dev = crtc->dev;
2603         struct drm_i915_private *dev_priv = dev->dev_private;
2604         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2605         int pipe = intel_crtc->pipe;
2606         u32 reg, temp, i;
2607
2608         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2609            for train result */
2610         reg = FDI_RX_IMR(pipe);
2611         temp = I915_READ(reg);
2612         temp &= ~FDI_RX_SYMBOL_LOCK;
2613         temp &= ~FDI_RX_BIT_LOCK;
2614         I915_WRITE(reg, temp);
2615
2616         POSTING_READ(reg);
2617         udelay(150);
2618
2619         /* enable CPU FDI TX and PCH FDI RX */
2620         reg = FDI_TX_CTL(pipe);
2621         temp = I915_READ(reg);
2622         temp &= ~(7 << 19);
2623         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2624         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2625         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2626         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2627         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2628         temp |= FDI_COMPOSITE_SYNC;
2629         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2630
2631         reg = FDI_RX_CTL(pipe);
2632         temp = I915_READ(reg);
2633         temp &= ~FDI_LINK_TRAIN_AUTO;
2634         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2636         temp |= FDI_COMPOSITE_SYNC;
2637         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2638
2639         POSTING_READ(reg);
2640         udelay(150);
2641
2642         if (HAS_PCH_CPT(dev))
2643                 cpt_phase_pointer_enable(dev, pipe);
2644
2645         for (i = 0; i < 4; i++) {
2646                 reg = FDI_TX_CTL(pipe);
2647                 temp = I915_READ(reg);
2648                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2649                 temp |= snb_b_fdi_train_param[i];
2650                 I915_WRITE(reg, temp);
2651
2652                 POSTING_READ(reg);
2653                 udelay(500);
2654
2655                 reg = FDI_RX_IIR(pipe);
2656                 temp = I915_READ(reg);
2657                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2658
2659                 if (temp & FDI_RX_BIT_LOCK ||
2660                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2661                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2662                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2663                         break;
2664                 }
2665         }
2666         if (i == 4)
2667                 DRM_ERROR("FDI train 1 fail!\n");
2668
2669         /* Train 2 */
2670         reg = FDI_TX_CTL(pipe);
2671         temp = I915_READ(reg);
2672         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2673         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2674         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2675         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2676         I915_WRITE(reg, temp);
2677
2678         reg = FDI_RX_CTL(pipe);
2679         temp = I915_READ(reg);
2680         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2681         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2682         I915_WRITE(reg, temp);
2683
2684         POSTING_READ(reg);
2685         udelay(150);
2686
2687         for (i = 0; i < 4; i++) {
2688                 reg = FDI_TX_CTL(pipe);
2689                 temp = I915_READ(reg);
2690                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2691                 temp |= snb_b_fdi_train_param[i];
2692                 I915_WRITE(reg, temp);
2693
2694                 POSTING_READ(reg);
2695                 udelay(500);
2696
2697                 reg = FDI_RX_IIR(pipe);
2698                 temp = I915_READ(reg);
2699                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2700
2701                 if (temp & FDI_RX_SYMBOL_LOCK) {
2702                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2703                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2704                         break;
2705                 }
2706         }
2707         if (i == 4)
2708                 DRM_ERROR("FDI train 2 fail!\n");
2709
2710         DRM_DEBUG_KMS("FDI train done.\n");
2711 }
2712
2713 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2714 {
2715         struct drm_device *dev = crtc->dev;
2716         struct drm_i915_private *dev_priv = dev->dev_private;
2717         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2718         int pipe = intel_crtc->pipe;
2719         u32 reg, temp;
2720
2721         /* Write the TU size bits so error detection works */
2722         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2723                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2724
2725         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2726         reg = FDI_RX_CTL(pipe);
2727         temp = I915_READ(reg);
2728         temp &= ~((0x7 << 19) | (0x7 << 16));
2729         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2730         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2731         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2732
2733         POSTING_READ(reg);
2734         udelay(200);
2735
2736         /* Switch from Rawclk to PCDclk */
2737         temp = I915_READ(reg);
2738         I915_WRITE(reg, temp | FDI_PCDCLK);
2739
2740         POSTING_READ(reg);
2741         udelay(200);
2742
2743         /* Enable CPU FDI TX PLL, always on for Ironlake */
2744         reg = FDI_TX_CTL(pipe);
2745         temp = I915_READ(reg);
2746         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2747                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2748
2749                 POSTING_READ(reg);
2750                 udelay(100);
2751         }
2752 }
2753
2754 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2755 {
2756         struct drm_i915_private *dev_priv = dev->dev_private;
2757         u32 flags = I915_READ(SOUTH_CHICKEN1);
2758
2759         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2760         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2761         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2762         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2763         POSTING_READ(SOUTH_CHICKEN1);
2764 }
2765 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2766 {
2767         struct drm_device *dev = crtc->dev;
2768         struct drm_i915_private *dev_priv = dev->dev_private;
2769         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2770         int pipe = intel_crtc->pipe;
2771         u32 reg, temp;
2772
2773         /* disable CPU FDI tx and PCH FDI rx */
2774         reg = FDI_TX_CTL(pipe);
2775         temp = I915_READ(reg);
2776         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2777         POSTING_READ(reg);
2778
2779         reg = FDI_RX_CTL(pipe);
2780         temp = I915_READ(reg);
2781         temp &= ~(0x7 << 16);
2782         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2783         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2784
2785         POSTING_READ(reg);
2786         udelay(100);
2787
2788         /* Ironlake workaround, disable clock pointer after downing FDI */
2789         if (HAS_PCH_IBX(dev)) {
2790                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2791                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2792                            I915_READ(FDI_RX_CHICKEN(pipe) &
2793                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2794         } else if (HAS_PCH_CPT(dev)) {
2795                 cpt_phase_pointer_disable(dev, pipe);
2796         }
2797
2798         /* still set train pattern 1 */
2799         reg = FDI_TX_CTL(pipe);
2800         temp = I915_READ(reg);
2801         temp &= ~FDI_LINK_TRAIN_NONE;
2802         temp |= FDI_LINK_TRAIN_PATTERN_1;
2803         I915_WRITE(reg, temp);
2804
2805         reg = FDI_RX_CTL(pipe);
2806         temp = I915_READ(reg);
2807         if (HAS_PCH_CPT(dev)) {
2808                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2809                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2810         } else {
2811                 temp &= ~FDI_LINK_TRAIN_NONE;
2812                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2813         }
2814         /* BPC in FDI rx is consistent with that in PIPECONF */
2815         temp &= ~(0x07 << 16);
2816         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2817         I915_WRITE(reg, temp);
2818
2819         POSTING_READ(reg);
2820         udelay(100);
2821 }
2822
2823 /*
2824  * When we disable a pipe, we need to clear any pending scanline wait events
2825  * to avoid hanging the ring, which we assume we are waiting on.
2826  */
2827 static void intel_clear_scanline_wait(struct drm_device *dev)
2828 {
2829         struct drm_i915_private *dev_priv = dev->dev_private;
2830         struct intel_ring_buffer *ring;
2831         u32 tmp;
2832
2833         if (IS_GEN2(dev))
2834                 /* Can't break the hang on i8xx */
2835                 return;
2836
2837         ring = LP_RING(dev_priv);
2838         tmp = I915_READ_CTL(ring);
2839         if (tmp & RING_WAIT)
2840                 I915_WRITE_CTL(ring, tmp);
2841 }
2842
2843 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2844 {
2845         struct drm_i915_gem_object *obj;
2846         struct drm_i915_private *dev_priv;
2847
2848         if (crtc->fb == NULL)
2849                 return;
2850
2851         obj = to_intel_framebuffer(crtc->fb)->obj;
2852         dev_priv = crtc->dev->dev_private;
2853         wait_event(dev_priv->pending_flip_queue,
2854                    atomic_read(&obj->pending_flip) == 0);
2855 }
2856
2857 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2858 {
2859         struct drm_device *dev = crtc->dev;
2860         struct drm_mode_config *mode_config = &dev->mode_config;
2861         struct intel_encoder *encoder;
2862
2863         /*
2864          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2865          * must be driven by its own crtc; no sharing is possible.
2866          */
2867         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2868                 if (encoder->base.crtc != crtc)
2869                         continue;
2870
2871                 switch (encoder->type) {
2872                 case INTEL_OUTPUT_EDP:
2873                         if (!intel_encoder_is_pch_edp(&encoder->base))
2874                                 return false;
2875                         continue;
2876                 }
2877         }
2878
2879         return true;
2880 }
2881
2882 /*
2883  * Enable PCH resources required for PCH ports:
2884  *   - PCH PLLs
2885  *   - FDI training & RX/TX
2886  *   - update transcoder timings
2887  *   - DP transcoding bits
2888  *   - transcoder
2889  */
2890 static void ironlake_pch_enable(struct drm_crtc *crtc)
2891 {
2892         struct drm_device *dev = crtc->dev;
2893         struct drm_i915_private *dev_priv = dev->dev_private;
2894         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2895         int pipe = intel_crtc->pipe;
2896         u32 reg, temp, transc_sel;
2897
2898         /* For PCH output, training FDI link */
2899         dev_priv->display.fdi_link_train(crtc);
2900
2901         intel_enable_pch_pll(dev_priv, pipe);
2902
2903         if (HAS_PCH_CPT(dev)) {
2904                 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2905                         TRANSC_DPLLB_SEL;
2906
2907                 /* Be sure PCH DPLL SEL is set */
2908                 temp = I915_READ(PCH_DPLL_SEL);
2909                 if (pipe == 0) {
2910                         temp &= ~(TRANSA_DPLLB_SEL);
2911                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2912                 } else if (pipe == 1) {
2913                         temp &= ~(TRANSB_DPLLB_SEL);
2914                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2915                 } else if (pipe == 2) {
2916                         temp &= ~(TRANSC_DPLLB_SEL);
2917                         temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2918                 }
2919                 I915_WRITE(PCH_DPLL_SEL, temp);
2920         }
2921
2922         /* set transcoder timing, panel must allow it */
2923         assert_panel_unlocked(dev_priv, pipe);
2924         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2925         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2926         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2927
2928         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2929         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2930         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2931
2932         intel_fdi_normal_train(crtc);
2933
2934         /* For PCH DP, enable TRANS_DP_CTL */
2935         if (HAS_PCH_CPT(dev) &&
2936             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2937              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2938                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2939                 reg = TRANS_DP_CTL(pipe);
2940                 temp = I915_READ(reg);
2941                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2942                           TRANS_DP_SYNC_MASK |
2943                           TRANS_DP_BPC_MASK);
2944                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2945                          TRANS_DP_ENH_FRAMING);
2946                 temp |= bpc << 9; /* same format but at 11:9 */
2947
2948                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2949                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2950                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2951                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2952
2953                 switch (intel_trans_dp_port_sel(crtc)) {
2954                 case PCH_DP_B:
2955                         temp |= TRANS_DP_PORT_SEL_B;
2956                         break;
2957                 case PCH_DP_C:
2958                         temp |= TRANS_DP_PORT_SEL_C;
2959                         break;
2960                 case PCH_DP_D:
2961                         temp |= TRANS_DP_PORT_SEL_D;
2962                         break;
2963                 default:
2964                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2965                         temp |= TRANS_DP_PORT_SEL_B;
2966                         break;
2967                 }
2968
2969                 I915_WRITE(reg, temp);
2970         }
2971
2972         intel_enable_transcoder(dev_priv, pipe);
2973 }
2974
2975 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2976 {
2977         struct drm_i915_private *dev_priv = dev->dev_private;
2978         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2979         u32 temp;
2980
2981         temp = I915_READ(dslreg);
2982         udelay(500);
2983         if (wait_for(I915_READ(dslreg) != temp, 5)) {
2984                 /* Without this, mode sets may fail silently on FDI */
2985                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2986                 udelay(250);
2987                 I915_WRITE(tc2reg, 0);
2988                 if (wait_for(I915_READ(dslreg) != temp, 5))
2989                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2990         }
2991 }
2992
2993 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2994 {
2995         struct drm_device *dev = crtc->dev;
2996         struct drm_i915_private *dev_priv = dev->dev_private;
2997         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2998         int pipe = intel_crtc->pipe;
2999         int plane = intel_crtc->plane;
3000         u32 temp;
3001         bool is_pch_port;
3002
3003         if (intel_crtc->active)
3004                 return;
3005
3006         intel_crtc->active = true;
3007         intel_update_watermarks(dev);
3008
3009         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3010                 temp = I915_READ(PCH_LVDS);
3011                 if ((temp & LVDS_PORT_EN) == 0)
3012                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3013         }
3014
3015         is_pch_port = intel_crtc_driving_pch(crtc);
3016
3017         if (is_pch_port)
3018                 ironlake_fdi_pll_enable(crtc);
3019         else
3020                 ironlake_fdi_disable(crtc);
3021
3022         /* Enable panel fitting for LVDS */
3023         if (dev_priv->pch_pf_size &&
3024             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3025                 /* Force use of hard-coded filter coefficients
3026                  * as some pre-programmed values are broken,
3027                  * e.g. x201.
3028                  */
3029                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3030                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3031                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3032         }
3033
3034         /*
3035          * On ILK+ LUT must be loaded before the pipe is running but with
3036          * clocks enabled
3037          */
3038         intel_crtc_load_lut(crtc);
3039
3040         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3041         intel_enable_plane(dev_priv, plane, pipe);
3042
3043         if (is_pch_port)
3044                 ironlake_pch_enable(crtc);
3045
3046         mutex_lock(&dev->struct_mutex);
3047         intel_update_fbc(dev);
3048         mutex_unlock(&dev->struct_mutex);
3049
3050         intel_crtc_update_cursor(crtc, true);
3051 }
3052
3053 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3054 {
3055         struct drm_device *dev = crtc->dev;
3056         struct drm_i915_private *dev_priv = dev->dev_private;
3057         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3058         int pipe = intel_crtc->pipe;
3059         int plane = intel_crtc->plane;
3060         u32 reg, temp;
3061
3062         if (!intel_crtc->active)
3063                 return;
3064
3065         intel_crtc_wait_for_pending_flips(crtc);
3066         drm_vblank_off(dev, pipe);
3067         intel_crtc_update_cursor(crtc, false);
3068
3069         intel_disable_plane(dev_priv, plane, pipe);
3070
3071         if (dev_priv->cfb_plane == plane)
3072                 intel_disable_fbc(dev);
3073
3074         intel_disable_pipe(dev_priv, pipe);
3075
3076         /* Disable PF */
3077         I915_WRITE(PF_CTL(pipe), 0);
3078         I915_WRITE(PF_WIN_SZ(pipe), 0);
3079
3080         ironlake_fdi_disable(crtc);
3081
3082         /* This is a horrible layering violation; we should be doing this in
3083          * the connector/encoder ->prepare instead, but we don't always have
3084          * enough information there about the config to know whether it will
3085          * actually be necessary or just cause undesired flicker.
3086          */
3087         intel_disable_pch_ports(dev_priv, pipe);
3088
3089         intel_disable_transcoder(dev_priv, pipe);
3090
3091         if (HAS_PCH_CPT(dev)) {
3092                 /* disable TRANS_DP_CTL */
3093                 reg = TRANS_DP_CTL(pipe);
3094                 temp = I915_READ(reg);
3095                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3096                 temp |= TRANS_DP_PORT_SEL_NONE;
3097                 I915_WRITE(reg, temp);
3098
3099                 /* disable DPLL_SEL */
3100                 temp = I915_READ(PCH_DPLL_SEL);
3101                 switch (pipe) {
3102                 case 0:
3103                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3104                         break;
3105                 case 1:
3106                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3107                         break;
3108                 case 2:
3109                         /* C shares PLL A or B */
3110                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3111                         break;
3112                 default:
3113                         BUG(); /* wtf */
3114                 }
3115                 I915_WRITE(PCH_DPLL_SEL, temp);
3116         }
3117
3118         /* disable PCH DPLL */
3119         if (!intel_crtc->no_pll)
3120                 intel_disable_pch_pll(dev_priv, pipe);
3121
3122         /* Switch from PCDclk to Rawclk */
3123         reg = FDI_RX_CTL(pipe);
3124         temp = I915_READ(reg);
3125         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3126
3127         /* Disable CPU FDI TX PLL */
3128         reg = FDI_TX_CTL(pipe);
3129         temp = I915_READ(reg);
3130         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3131
3132         POSTING_READ(reg);
3133         udelay(100);
3134
3135         reg = FDI_RX_CTL(pipe);
3136         temp = I915_READ(reg);
3137         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3138
3139         /* Wait for the clocks to turn off. */
3140         POSTING_READ(reg);
3141         udelay(100);
3142
3143         intel_crtc->active = false;
3144         intel_update_watermarks(dev);
3145
3146         mutex_lock(&dev->struct_mutex);
3147         intel_update_fbc(dev);
3148         intel_clear_scanline_wait(dev);
3149         mutex_unlock(&dev->struct_mutex);
3150 }
3151
3152 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3153 {
3154         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3155         int pipe = intel_crtc->pipe;
3156         int plane = intel_crtc->plane;
3157
3158         /* XXX: When our outputs are all unaware of DPMS modes other than off
3159          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3160          */
3161         switch (mode) {
3162         case DRM_MODE_DPMS_ON:
3163         case DRM_MODE_DPMS_STANDBY:
3164         case DRM_MODE_DPMS_SUSPEND:
3165                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3166                 ironlake_crtc_enable(crtc);
3167                 break;
3168
3169         case DRM_MODE_DPMS_OFF:
3170                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3171                 ironlake_crtc_disable(crtc);
3172                 break;
3173         }
3174 }
3175
3176 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3177 {
3178         if (!enable && intel_crtc->overlay) {
3179                 struct drm_device *dev = intel_crtc->base.dev;
3180                 struct drm_i915_private *dev_priv = dev->dev_private;
3181
3182                 mutex_lock(&dev->struct_mutex);
3183                 dev_priv->mm.interruptible = false;
3184                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3185                 dev_priv->mm.interruptible = true;
3186                 mutex_unlock(&dev->struct_mutex);
3187         }
3188
3189         /* Let userspace switch the overlay on again. In most cases userspace
3190          * has to recompute where to put it anyway.
3191          */
3192 }
3193
3194 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3195 {
3196         struct drm_device *dev = crtc->dev;
3197         struct drm_i915_private *dev_priv = dev->dev_private;
3198         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3199         int pipe = intel_crtc->pipe;
3200         int plane = intel_crtc->plane;
3201
3202         if (intel_crtc->active)
3203                 return;
3204
3205         intel_crtc->active = true;
3206         intel_update_watermarks(dev);
3207
3208         intel_enable_pll(dev_priv, pipe);
3209         intel_enable_pipe(dev_priv, pipe, false);
3210         intel_enable_plane(dev_priv, plane, pipe);
3211
3212         intel_crtc_load_lut(crtc);
3213         intel_update_fbc(dev);
3214
3215         /* Give the overlay scaler a chance to enable if it's on this pipe */
3216         intel_crtc_dpms_overlay(intel_crtc, true);
3217         intel_crtc_update_cursor(crtc, true);
3218 }
3219
3220 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3221 {
3222         struct drm_device *dev = crtc->dev;
3223         struct drm_i915_private *dev_priv = dev->dev_private;
3224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3225         int pipe = intel_crtc->pipe;
3226         int plane = intel_crtc->plane;
3227
3228         if (!intel_crtc->active)
3229                 return;
3230
3231         /* Give the overlay scaler a chance to disable if it's on this pipe */
3232         intel_crtc_wait_for_pending_flips(crtc);
3233         drm_vblank_off(dev, pipe);
3234         intel_crtc_dpms_overlay(intel_crtc, false);
3235         intel_crtc_update_cursor(crtc, false);
3236
3237         if (dev_priv->cfb_plane == plane)
3238                 intel_disable_fbc(dev);
3239
3240         intel_disable_plane(dev_priv, plane, pipe);
3241         intel_disable_pipe(dev_priv, pipe);
3242         intel_disable_pll(dev_priv, pipe);
3243
3244         intel_crtc->active = false;
3245         intel_update_fbc(dev);
3246         intel_update_watermarks(dev);
3247         intel_clear_scanline_wait(dev);
3248 }
3249
3250 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3251 {
3252         /* XXX: When our outputs are all unaware of DPMS modes other than off
3253          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3254          */
3255         switch (mode) {
3256         case DRM_MODE_DPMS_ON:
3257         case DRM_MODE_DPMS_STANDBY:
3258         case DRM_MODE_DPMS_SUSPEND:
3259                 i9xx_crtc_enable(crtc);
3260                 break;
3261         case DRM_MODE_DPMS_OFF:
3262                 i9xx_crtc_disable(crtc);
3263                 break;
3264         }
3265 }
3266
3267 /**
3268  * Sets the power management mode of the pipe and plane.
3269  */
3270 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3271 {
3272         struct drm_device *dev = crtc->dev;
3273         struct drm_i915_private *dev_priv = dev->dev_private;
3274         struct drm_i915_master_private *master_priv;
3275         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3276         int pipe = intel_crtc->pipe;
3277         bool enabled;
3278
3279         if (intel_crtc->dpms_mode == mode)
3280                 return;
3281
3282         intel_crtc->dpms_mode = mode;
3283
3284         dev_priv->display.dpms(crtc, mode);
3285
3286         if (!dev->primary->master)
3287                 return;
3288
3289         master_priv = dev->primary->master->driver_priv;
3290         if (!master_priv->sarea_priv)
3291                 return;
3292
3293         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3294
3295         switch (pipe) {
3296         case 0:
3297                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3298                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3299                 break;
3300         case 1:
3301                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3302                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3303                 break;
3304         default:
3305                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3306                 break;
3307         }
3308 }
3309
3310 static void intel_crtc_disable(struct drm_crtc *crtc)
3311 {
3312         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3313         struct drm_device *dev = crtc->dev;
3314
3315         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3316
3317         if (crtc->fb) {
3318                 mutex_lock(&dev->struct_mutex);
3319                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3320                 mutex_unlock(&dev->struct_mutex);
3321         }
3322 }
3323
3324 /* Prepare for a mode set.
3325  *
3326  * Note we could be a lot smarter here.  We need to figure out which outputs
3327  * will be enabled, which disabled (in short, how the config will changes)
3328  * and perform the minimum necessary steps to accomplish that, e.g. updating
3329  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3330  * panel fitting is in the proper state, etc.
3331  */
3332 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3333 {
3334         i9xx_crtc_disable(crtc);
3335 }
3336
3337 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3338 {
3339         i9xx_crtc_enable(crtc);
3340 }
3341
3342 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3343 {
3344         ironlake_crtc_disable(crtc);
3345 }
3346
3347 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3348 {
3349         ironlake_crtc_enable(crtc);
3350 }
3351
3352 void intel_encoder_prepare(struct drm_encoder *encoder)
3353 {
3354         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3355         /* lvds has its own version of prepare see intel_lvds_prepare */
3356         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3357 }
3358
3359 void intel_encoder_commit(struct drm_encoder *encoder)
3360 {
3361         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3362         struct drm_device *dev = encoder->dev;
3363         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3364         struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3365
3366         /* lvds has its own version of commit see intel_lvds_commit */
3367         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3368
3369         if (HAS_PCH_CPT(dev))
3370                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3371 }
3372
3373 void intel_encoder_destroy(struct drm_encoder *encoder)
3374 {
3375         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3376
3377         drm_encoder_cleanup(encoder);
3378         kfree(intel_encoder);
3379 }
3380
3381 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3382                                   struct drm_display_mode *mode,
3383                                   struct drm_display_mode *adjusted_mode)
3384 {
3385         struct drm_device *dev = crtc->dev;
3386
3387         if (HAS_PCH_SPLIT(dev)) {
3388                 /* FDI link clock is fixed at 2.7G */
3389                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3390                         return false;
3391         }
3392
3393         /* XXX some encoders set the crtcinfo, others don't.
3394          * Obviously we need some form of conflict resolution here...
3395          */
3396         if (adjusted_mode->crtc_htotal == 0)
3397                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3398
3399         return true;
3400 }
3401
3402 static int i945_get_display_clock_speed(struct drm_device *dev)
3403 {
3404         return 400000;
3405 }
3406
3407 static int i915_get_display_clock_speed(struct drm_device *dev)
3408 {
3409         return 333000;
3410 }
3411
3412 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3413 {
3414         return 200000;
3415 }
3416
3417 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3418 {
3419         u16 gcfgc = 0;
3420
3421         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3422
3423         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3424                 return 133000;
3425         else {
3426                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3427                 case GC_DISPLAY_CLOCK_333_MHZ:
3428                         return 333000;
3429                 default:
3430                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3431                         return 190000;
3432                 }
3433         }
3434 }
3435
3436 static int i865_get_display_clock_speed(struct drm_device *dev)
3437 {
3438         return 266000;
3439 }
3440
3441 static int i855_get_display_clock_speed(struct drm_device *dev)
3442 {
3443         u16 hpllcc = 0;
3444         /* Assume that the hardware is in the high speed state.  This
3445          * should be the default.
3446          */
3447         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3448         case GC_CLOCK_133_200:
3449         case GC_CLOCK_100_200:
3450                 return 200000;
3451         case GC_CLOCK_166_250:
3452                 return 250000;
3453         case GC_CLOCK_100_133:
3454                 return 133000;
3455         }
3456
3457         /* Shouldn't happen */
3458         return 0;
3459 }
3460
3461 static int i830_get_display_clock_speed(struct drm_device *dev)
3462 {
3463         return 133000;
3464 }
3465
3466 struct fdi_m_n {
3467         u32        tu;
3468         u32        gmch_m;
3469         u32        gmch_n;
3470         u32        link_m;
3471         u32        link_n;
3472 };
3473
3474 static void
3475 fdi_reduce_ratio(u32 *num, u32 *den)
3476 {
3477         while (*num > 0xffffff || *den > 0xffffff) {
3478                 *num >>= 1;
3479                 *den >>= 1;
3480         }
3481 }
3482
3483 static void
3484 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3485                      int link_clock, struct fdi_m_n *m_n)
3486 {
3487         m_n->tu = 64; /* default size */
3488
3489         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3490         m_n->gmch_m = bits_per_pixel * pixel_clock;
3491         m_n->gmch_n = link_clock * nlanes * 8;
3492         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3493
3494         m_n->link_m = pixel_clock;
3495         m_n->link_n = link_clock;
3496         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3497 }
3498
3499
3500 struct intel_watermark_params {
3501         unsigned long fifo_size;
3502         unsigned long max_wm;
3503         unsigned long default_wm;
3504         unsigned long guard_size;
3505         unsigned long cacheline_size;
3506 };
3507
3508 /* Pineview has different values for various configs */
3509 static const struct intel_watermark_params pineview_display_wm = {
3510         PINEVIEW_DISPLAY_FIFO,
3511         PINEVIEW_MAX_WM,
3512         PINEVIEW_DFT_WM,
3513         PINEVIEW_GUARD_WM,
3514         PINEVIEW_FIFO_LINE_SIZE
3515 };
3516 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3517         PINEVIEW_DISPLAY_FIFO,
3518         PINEVIEW_MAX_WM,
3519         PINEVIEW_DFT_HPLLOFF_WM,
3520         PINEVIEW_GUARD_WM,
3521         PINEVIEW_FIFO_LINE_SIZE
3522 };
3523 static const struct intel_watermark_params pineview_cursor_wm = {
3524         PINEVIEW_CURSOR_FIFO,
3525         PINEVIEW_CURSOR_MAX_WM,
3526         PINEVIEW_CURSOR_DFT_WM,
3527         PINEVIEW_CURSOR_GUARD_WM,
3528         PINEVIEW_FIFO_LINE_SIZE,
3529 };
3530 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3531         PINEVIEW_CURSOR_FIFO,
3532         PINEVIEW_CURSOR_MAX_WM,
3533         PINEVIEW_CURSOR_DFT_WM,
3534         PINEVIEW_CURSOR_GUARD_WM,
3535         PINEVIEW_FIFO_LINE_SIZE
3536 };
3537 static const struct intel_watermark_params g4x_wm_info = {
3538         G4X_FIFO_SIZE,
3539         G4X_MAX_WM,
3540         G4X_MAX_WM,
3541         2,
3542         G4X_FIFO_LINE_SIZE,
3543 };
3544 static const struct intel_watermark_params g4x_cursor_wm_info = {
3545         I965_CURSOR_FIFO,
3546         I965_CURSOR_MAX_WM,
3547         I965_CURSOR_DFT_WM,
3548         2,
3549         G4X_FIFO_LINE_SIZE,
3550 };
3551 static const struct intel_watermark_params i965_cursor_wm_info = {
3552         I965_CURSOR_FIFO,
3553         I965_CURSOR_MAX_WM,
3554         I965_CURSOR_DFT_WM,
3555         2,
3556         I915_FIFO_LINE_SIZE,
3557 };
3558 static const struct intel_watermark_params i945_wm_info = {
3559         I945_FIFO_SIZE,
3560         I915_MAX_WM,
3561         1,
3562         2,
3563         I915_FIFO_LINE_SIZE
3564 };
3565 static const struct intel_watermark_params i915_wm_info = {
3566         I915_FIFO_SIZE,
3567         I915_MAX_WM,
3568         1,
3569         2,
3570         I915_FIFO_LINE_SIZE
3571 };
3572 static const struct intel_watermark_params i855_wm_info = {
3573         I855GM_FIFO_SIZE,
3574         I915_MAX_WM,
3575         1,
3576         2,
3577         I830_FIFO_LINE_SIZE
3578 };
3579 static const struct intel_watermark_params i830_wm_info = {
3580         I830_FIFO_SIZE,
3581         I915_MAX_WM,
3582         1,
3583         2,
3584         I830_FIFO_LINE_SIZE
3585 };
3586
3587 static const struct intel_watermark_params ironlake_display_wm_info = {
3588         ILK_DISPLAY_FIFO,
3589         ILK_DISPLAY_MAXWM,
3590         ILK_DISPLAY_DFTWM,
3591         2,
3592         ILK_FIFO_LINE_SIZE
3593 };
3594 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3595         ILK_CURSOR_FIFO,
3596         ILK_CURSOR_MAXWM,
3597         ILK_CURSOR_DFTWM,
3598         2,
3599         ILK_FIFO_LINE_SIZE
3600 };
3601 static const struct intel_watermark_params ironlake_display_srwm_info = {
3602         ILK_DISPLAY_SR_FIFO,
3603         ILK_DISPLAY_MAX_SRWM,
3604         ILK_DISPLAY_DFT_SRWM,
3605         2,
3606         ILK_FIFO_LINE_SIZE
3607 };
3608 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3609         ILK_CURSOR_SR_FIFO,
3610         ILK_CURSOR_MAX_SRWM,
3611         ILK_CURSOR_DFT_SRWM,
3612         2,
3613         ILK_FIFO_LINE_SIZE
3614 };
3615
3616 static const struct intel_watermark_params sandybridge_display_wm_info = {
3617         SNB_DISPLAY_FIFO,
3618         SNB_DISPLAY_MAXWM,
3619         SNB_DISPLAY_DFTWM,
3620         2,
3621         SNB_FIFO_LINE_SIZE
3622 };
3623 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3624         SNB_CURSOR_FIFO,
3625         SNB_CURSOR_MAXWM,
3626         SNB_CURSOR_DFTWM,
3627         2,
3628         SNB_FIFO_LINE_SIZE
3629 };
3630 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3631         SNB_DISPLAY_SR_FIFO,
3632         SNB_DISPLAY_MAX_SRWM,
3633         SNB_DISPLAY_DFT_SRWM,
3634         2,
3635         SNB_FIFO_LINE_SIZE
3636 };
3637 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3638         SNB_CURSOR_SR_FIFO,
3639         SNB_CURSOR_MAX_SRWM,
3640         SNB_CURSOR_DFT_SRWM,
3641         2,
3642         SNB_FIFO_LINE_SIZE
3643 };
3644
3645
3646 /**
3647  * intel_calculate_wm - calculate watermark level
3648  * @clock_in_khz: pixel clock
3649  * @wm: chip FIFO params
3650  * @pixel_size: display pixel size
3651  * @latency_ns: memory latency for the platform
3652  *
3653  * Calculate the watermark level (the level at which the display plane will
3654  * start fetching from memory again).  Each chip has a different display
3655  * FIFO size and allocation, so the caller needs to figure that out and pass
3656  * in the correct intel_watermark_params structure.
3657  *
3658  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3659  * on the pixel size.  When it reaches the watermark level, it'll start
3660  * fetching FIFO line sized based chunks from memory until the FIFO fills
3661  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3662  * will occur, and a display engine hang could result.
3663  */
3664 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3665                                         const struct intel_watermark_params *wm,
3666                                         int fifo_size,
3667                                         int pixel_size,
3668                                         unsigned long latency_ns)
3669 {
3670         long entries_required, wm_size;
3671
3672         /*
3673          * Note: we need to make sure we don't overflow for various clock &
3674          * latency values.
3675          * clocks go from a few thousand to several hundred thousand.
3676          * latency is usually a few thousand
3677          */
3678         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3679                 1000;
3680         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3681
3682         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3683
3684         wm_size = fifo_size - (entries_required + wm->guard_size);
3685
3686         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3687
3688         /* Don't promote wm_size to unsigned... */
3689         if (wm_size > (long)wm->max_wm)
3690                 wm_size = wm->max_wm;
3691         if (wm_size <= 0)
3692                 wm_size = wm->default_wm;
3693         return wm_size;
3694 }
3695
3696 struct cxsr_latency {
3697         int is_desktop;
3698         int is_ddr3;
3699         unsigned long fsb_freq;
3700         unsigned long mem_freq;
3701         unsigned long display_sr;
3702         unsigned long display_hpll_disable;
3703         unsigned long cursor_sr;
3704         unsigned long cursor_hpll_disable;
3705 };
3706
3707 static const struct cxsr_latency cxsr_latency_table[] = {
3708         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3709         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3710         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3711         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3712         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3713
3714         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3715         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3716         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3717         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3718         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3719
3720         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3721         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3722         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3723         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3724         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3725
3726         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3727         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3728         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3729         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3730         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3731
3732         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3733         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3734         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3735         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3736         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3737
3738         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3739         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3740         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3741         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3742         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3743 };
3744
3745 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3746                                                          int is_ddr3,
3747                                                          int fsb,
3748                                                          int mem)
3749 {
3750         const struct cxsr_latency *latency;
3751         int i;
3752
3753         if (fsb == 0 || mem == 0)
3754                 return NULL;
3755
3756         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3757                 latency = &cxsr_latency_table[i];
3758                 if (is_desktop == latency->is_desktop &&
3759                     is_ddr3 == latency->is_ddr3 &&
3760                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3761                         return latency;
3762         }
3763
3764         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3765
3766         return NULL;
3767 }
3768
3769 static void pineview_disable_cxsr(struct drm_device *dev)
3770 {
3771         struct drm_i915_private *dev_priv = dev->dev_private;
3772
3773         /* deactivate cxsr */
3774         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3775 }
3776
3777 /*
3778  * Latency for FIFO fetches is dependent on several factors:
3779  *   - memory configuration (speed, channels)
3780  *   - chipset
3781  *   - current MCH state
3782  * It can be fairly high in some situations, so here we assume a fairly
3783  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3784  * set this value too high, the FIFO will fetch frequently to stay full)
3785  * and power consumption (set it too low to save power and we might see
3786  * FIFO underruns and display "flicker").
3787  *
3788  * A value of 5us seems to be a good balance; safe for very low end
3789  * platforms but not overly aggressive on lower latency configs.
3790  */
3791 static const int latency_ns = 5000;
3792
3793 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3794 {
3795         struct drm_i915_private *dev_priv = dev->dev_private;
3796         uint32_t dsparb = I915_READ(DSPARB);
3797         int size;
3798
3799         size = dsparb & 0x7f;
3800         if (plane)
3801                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3802
3803         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3804                       plane ? "B" : "A", size);
3805
3806         return size;
3807 }
3808
3809 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3810 {
3811         struct drm_i915_private *dev_priv = dev->dev_private;
3812         uint32_t dsparb = I915_READ(DSPARB);
3813         int size;
3814
3815         size = dsparb & 0x1ff;
3816         if (plane)
3817                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3818         size >>= 1; /* Convert to cachelines */
3819
3820         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3821                       plane ? "B" : "A", size);
3822
3823         return size;
3824 }
3825
3826 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3827 {
3828         struct drm_i915_private *dev_priv = dev->dev_private;
3829         uint32_t dsparb = I915_READ(DSPARB);
3830         int size;
3831
3832         size = dsparb & 0x7f;
3833         size >>= 2; /* Convert to cachelines */
3834
3835         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3836                       plane ? "B" : "A",
3837                       size);
3838
3839         return size;
3840 }
3841
3842 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3843 {
3844         struct drm_i915_private *dev_priv = dev->dev_private;
3845         uint32_t dsparb = I915_READ(DSPARB);
3846         int size;
3847
3848         size = dsparb & 0x7f;
3849         size >>= 1; /* Convert to cachelines */
3850
3851         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3852                       plane ? "B" : "A", size);
3853
3854         return size;
3855 }
3856
3857 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3858 {
3859         struct drm_crtc *crtc, *enabled = NULL;
3860
3861         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3862                 if (crtc->enabled && crtc->fb) {
3863                         if (enabled)
3864                                 return NULL;
3865                         enabled = crtc;
3866                 }
3867         }
3868
3869         return enabled;
3870 }
3871
3872 static void pineview_update_wm(struct drm_device *dev)
3873 {
3874         struct drm_i915_private *dev_priv = dev->dev_private;
3875         struct drm_crtc *crtc;
3876         const struct cxsr_latency *latency;
3877         u32 reg;
3878         unsigned long wm;
3879
3880         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3881                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3882         if (!latency) {
3883                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3884                 pineview_disable_cxsr(dev);
3885                 return;
3886         }
3887
3888         crtc = single_enabled_crtc(dev);
3889         if (crtc) {
3890                 int clock = crtc->mode.clock;
3891                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3892
3893                 /* Display SR */
3894                 wm = intel_calculate_wm(clock, &pineview_display_wm,
3895                                         pineview_display_wm.fifo_size,
3896                                         pixel_size, latency->display_sr);
3897                 reg = I915_READ(DSPFW1);
3898                 reg &= ~DSPFW_SR_MASK;
3899                 reg |= wm << DSPFW_SR_SHIFT;
3900                 I915_WRITE(DSPFW1, reg);
3901                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3902
3903                 /* cursor SR */
3904                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3905                                         pineview_display_wm.fifo_size,
3906                                         pixel_size, latency->cursor_sr);
3907                 reg = I915_READ(DSPFW3);
3908                 reg &= ~DSPFW_CURSOR_SR_MASK;
3909                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3910                 I915_WRITE(DSPFW3, reg);
3911
3912                 /* Display HPLL off SR */
3913                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3914                                         pineview_display_hplloff_wm.fifo_size,
3915                                         pixel_size, latency->display_hpll_disable);
3916                 reg = I915_READ(DSPFW3);
3917                 reg &= ~DSPFW_HPLL_SR_MASK;
3918                 reg |= wm & DSPFW_HPLL_SR_MASK;
3919                 I915_WRITE(DSPFW3, reg);
3920
3921                 /* cursor HPLL off SR */
3922                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3923                                         pineview_display_hplloff_wm.fifo_size,
3924                                         pixel_size, latency->cursor_hpll_disable);
3925                 reg = I915_READ(DSPFW3);
3926                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3927                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3928                 I915_WRITE(DSPFW3, reg);
3929                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3930
3931                 /* activate cxsr */
3932                 I915_WRITE(DSPFW3,
3933                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3934                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3935         } else {
3936                 pineview_disable_cxsr(dev);
3937                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3938         }
3939 }
3940
3941 static bool g4x_compute_wm0(struct drm_device *dev,
3942                             int plane,
3943                             const struct intel_watermark_params *display,
3944                             int display_latency_ns,
3945                             const struct intel_watermark_params *cursor,
3946                             int cursor_latency_ns,
3947                             int *plane_wm,
3948                             int *cursor_wm)
3949 {
3950         struct drm_crtc *crtc;
3951         int htotal, hdisplay, clock, pixel_size;
3952         int line_time_us, line_count;
3953         int entries, tlb_miss;
3954
3955         crtc = intel_get_crtc_for_plane(dev, plane);
3956         if (crtc->fb == NULL || !crtc->enabled) {
3957                 *cursor_wm = cursor->guard_size;
3958                 *plane_wm = display->guard_size;
3959                 return false;
3960         }
3961
3962         htotal = crtc->mode.htotal;
3963         hdisplay = crtc->mode.hdisplay;
3964         clock = crtc->mode.clock;
3965         pixel_size = crtc->fb->bits_per_pixel / 8;
3966
3967         /* Use the small buffer method to calculate plane watermark */
3968         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3969         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3970         if (tlb_miss > 0)
3971                 entries += tlb_miss;
3972         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3973         *plane_wm = entries + display->guard_size;
3974         if (*plane_wm > (int)display->max_wm)
3975                 *plane_wm = display->max_wm;
3976
3977         /* Use the large buffer method to calculate cursor watermark */
3978         line_time_us = ((htotal * 1000) / clock);
3979         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3980         entries = line_count * 64 * pixel_size;
3981         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3982         if (tlb_miss > 0)
3983                 entries += tlb_miss;
3984         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3985         *cursor_wm = entries + cursor->guard_size;
3986         if (*cursor_wm > (int)cursor->max_wm)
3987                 *cursor_wm = (int)cursor->max_wm;
3988
3989         return true;
3990 }
3991
3992 /*
3993  * Check the wm result.
3994  *
3995  * If any calculated watermark values is larger than the maximum value that
3996  * can be programmed into the associated watermark register, that watermark
3997  * must be disabled.
3998  */
3999 static bool g4x_check_srwm(struct drm_device *dev,
4000                            int display_wm, int cursor_wm,
4001                            const struct intel_watermark_params *display,
4002                            const struct intel_watermark_params *cursor)
4003 {
4004         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4005                       display_wm, cursor_wm);
4006
4007         if (display_wm > display->max_wm) {
4008                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4009                               display_wm, display->max_wm);
4010                 return false;
4011         }
4012
4013         if (cursor_wm > cursor->max_wm) {
4014                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4015                               cursor_wm, cursor->max_wm);
4016                 return false;
4017         }
4018
4019         if (!(display_wm || cursor_wm)) {
4020                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4021                 return false;
4022         }
4023
4024         return true;
4025 }
4026
4027 static bool g4x_compute_srwm(struct drm_device *dev,
4028                              int plane,
4029                              int latency_ns,
4030                              const struct intel_watermark_params *display,
4031                              const struct intel_watermark_params *cursor,
4032                              int *display_wm, int *cursor_wm)
4033 {
4034         struct drm_crtc *crtc;
4035         int hdisplay, htotal, pixel_size, clock;
4036         unsigned long line_time_us;
4037         int line_count, line_size;
4038         int small, large;
4039         int entries;
4040
4041         if (!latency_ns) {
4042                 *display_wm = *cursor_wm = 0;
4043                 return false;
4044         }
4045
4046         crtc = intel_get_crtc_for_plane(dev, plane);
4047         hdisplay = crtc->mode.hdisplay;
4048         htotal = crtc->mode.htotal;
4049         clock = crtc->mode.clock;
4050         pixel_size = crtc->fb->bits_per_pixel / 8;
4051
4052         line_time_us = (htotal * 1000) / clock;
4053         line_count = (latency_ns / line_time_us + 1000) / 1000;
4054         line_size = hdisplay * pixel_size;
4055
4056         /* Use the minimum of the small and large buffer method for primary */
4057         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4058         large = line_count * line_size;
4059
4060         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4061         *display_wm = entries + display->guard_size;
4062
4063         /* calculate the self-refresh watermark for display cursor */
4064         entries = line_count * pixel_size * 64;
4065         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4066         *cursor_wm = entries + cursor->guard_size;
4067
4068         return g4x_check_srwm(dev,
4069                               *display_wm, *cursor_wm,
4070                               display, cursor);
4071 }
4072
4073 #define single_plane_enabled(mask) is_power_of_2(mask)
4074
4075 static void g4x_update_wm(struct drm_device *dev)
4076 {
4077         static const int sr_latency_ns = 12000;
4078         struct drm_i915_private *dev_priv = dev->dev_private;
4079         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4080         int plane_sr, cursor_sr;
4081         unsigned int enabled = 0;
4082
4083         if (g4x_compute_wm0(dev, 0,
4084                             &g4x_wm_info, latency_ns,
4085                             &g4x_cursor_wm_info, latency_ns,
4086                             &planea_wm, &cursora_wm))
4087                 enabled |= 1;
4088
4089         if (g4x_compute_wm0(dev, 1,
4090                             &g4x_wm_info, latency_ns,
4091                             &g4x_cursor_wm_info, latency_ns,
4092                             &planeb_wm, &cursorb_wm))
4093                 enabled |= 2;
4094
4095         plane_sr = cursor_sr = 0;
4096         if (single_plane_enabled(enabled) &&
4097             g4x_compute_srwm(dev, ffs(enabled) - 1,
4098                              sr_latency_ns,
4099                              &g4x_wm_info,
4100                              &g4x_cursor_wm_info,
4101                              &plane_sr, &cursor_sr))
4102                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4103         else
4104                 I915_WRITE(FW_BLC_SELF,
4105                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4106
4107         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4108                       planea_wm, cursora_wm,
4109                       planeb_wm, cursorb_wm,
4110                       plane_sr, cursor_sr);
4111
4112         I915_WRITE(DSPFW1,
4113                    (plane_sr << DSPFW_SR_SHIFT) |
4114                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4115                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
4116                    planea_wm);
4117         I915_WRITE(DSPFW2,
4118                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4119                    (cursora_wm << DSPFW_CURSORA_SHIFT));
4120         /* HPLL off in SR has some issues on G4x... disable it */
4121         I915_WRITE(DSPFW3,
4122                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4123                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4124 }
4125
4126 static void i965_update_wm(struct drm_device *dev)
4127 {
4128         struct drm_i915_private *dev_priv = dev->dev_private;
4129         struct drm_crtc *crtc;
4130         int srwm = 1;
4131         int cursor_sr = 16;
4132
4133         /* Calc sr entries for one plane configs */
4134         crtc = single_enabled_crtc(dev);
4135         if (crtc) {
4136                 /* self-refresh has much higher latency */
4137                 static const int sr_latency_ns = 12000;
4138                 int clock = crtc->mode.clock;
4139                 int htotal = crtc->mode.htotal;
4140                 int hdisplay = crtc->mode.hdisplay;
4141                 int pixel_size = crtc->fb->bits_per_pixel / 8;
4142                 unsigned long line_time_us;
4143                 int entries;
4144
4145                 line_time_us = ((htotal * 1000) / clock);
4146
4147                 /* Use ns/us then divide to preserve precision */
4148                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4149                         pixel_size * hdisplay;
4150                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4151                 srwm = I965_FIFO_SIZE - entries;
4152                 if (srwm < 0)
4153                         srwm = 1;
4154                 srwm &= 0x1ff;
4155                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4156                               entries, srwm);
4157
4158                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4159                         pixel_size * 64;
4160                 entries = DIV_ROUND_UP(entries,
4161                                           i965_cursor_wm_info.cacheline_size);
4162                 cursor_sr = i965_cursor_wm_info.fifo_size -
4163                         (entries + i965_cursor_wm_info.guard_size);
4164
4165                 if (cursor_sr > i965_cursor_wm_info.max_wm)
4166                         cursor_sr = i965_cursor_wm_info.max_wm;
4167
4168                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4169                               "cursor %d\n", srwm, cursor_sr);
4170
4171                 if (IS_CRESTLINE(dev))
4172                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4173         } else {
4174                 /* Turn off self refresh if both pipes are enabled */
4175                 if (IS_CRESTLINE(dev))
4176                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4177                                    & ~FW_BLC_SELF_EN);
4178         }
4179
4180         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4181                       srwm);
4182
4183         /* 965 has limitations... */
4184         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4185                    (8 << 16) | (8 << 8) | (8 << 0));
4186         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4187         /* update cursor SR watermark */
4188         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4189 }
4190
4191 static void i9xx_update_wm(struct drm_device *dev)
4192 {
4193         struct drm_i915_private *dev_priv = dev->dev_private;
4194         const struct intel_watermark_params *wm_info;
4195         uint32_t fwater_lo;
4196         uint32_t fwater_hi;
4197         int cwm, srwm = 1;
4198         int fifo_size;
4199         int planea_wm, planeb_wm;
4200         struct drm_crtc *crtc, *enabled = NULL;
4201
4202         if (IS_I945GM(dev))
4203                 wm_info = &i945_wm_info;
4204         else if (!IS_GEN2(dev))
4205                 wm_info = &i915_wm_info;
4206         else
4207                 wm_info = &i855_wm_info;
4208
4209         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4210         crtc = intel_get_crtc_for_plane(dev, 0);
4211         if (crtc->enabled && crtc->fb) {
4212                 planea_wm = intel_calculate_wm(crtc->mode.clock,
4213                                                wm_info, fifo_size,
4214                                                crtc->fb->bits_per_pixel / 8,
4215                                                latency_ns);
4216                 enabled = crtc;
4217         } else
4218                 planea_wm = fifo_size - wm_info->guard_size;
4219
4220         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4221         crtc = intel_get_crtc_for_plane(dev, 1);
4222         if (crtc->enabled && crtc->fb) {
4223                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4224                                                wm_info, fifo_size,
4225                                                crtc->fb->bits_per_pixel / 8,
4226                                                latency_ns);
4227                 if (enabled == NULL)
4228                         enabled = crtc;
4229                 else
4230                         enabled = NULL;
4231         } else
4232                 planeb_wm = fifo_size - wm_info->guard_size;
4233
4234         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4235
4236         /*
4237          * Overlay gets an aggressive default since video jitter is bad.
4238          */
4239         cwm = 2;
4240
4241         /* Play safe and disable self-refresh before adjusting watermarks. */
4242         if (IS_I945G(dev) || IS_I945GM(dev))
4243                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4244         else if (IS_I915GM(dev))
4245                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4246
4247         /* Calc sr entries for one plane configs */
4248         if (HAS_FW_BLC(dev) && enabled) {
4249                 /* self-refresh has much higher latency */
4250                 static const int sr_latency_ns = 6000;
4251                 int clock = enabled->mode.clock;
4252                 int htotal = enabled->mode.htotal;
4253                 int hdisplay = enabled->mode.hdisplay;
4254                 int pixel_size = enabled->fb->bits_per_pixel / 8;
4255                 unsigned long line_time_us;
4256                 int entries;
4257
4258                 line_time_us = (htotal * 1000) / clock;
4259
4260                 /* Use ns/us then divide to preserve precision */
4261                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4262                         pixel_size * hdisplay;
4263                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4264                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4265                 srwm = wm_info->fifo_size - entries;
4266                 if (srwm < 0)
4267                         srwm = 1;
4268
4269                 if (IS_I945G(dev) || IS_I945GM(dev))
4270                         I915_WRITE(FW_BLC_SELF,
4271                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4272                 else if (IS_I915GM(dev))
4273                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4274         }
4275
4276         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4277                       planea_wm, planeb_wm, cwm, srwm);
4278
4279         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4280         fwater_hi = (cwm & 0x1f);
4281
4282         /* Set request length to 8 cachelines per fetch */
4283         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4284         fwater_hi = fwater_hi | (1 << 8);
4285
4286         I915_WRITE(FW_BLC, fwater_lo);
4287         I915_WRITE(FW_BLC2, fwater_hi);
4288
4289         if (HAS_FW_BLC(dev)) {
4290                 if (enabled) {
4291                         if (IS_I945G(dev) || IS_I945GM(dev))
4292                                 I915_WRITE(FW_BLC_SELF,
4293                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4294                         else if (IS_I915GM(dev))
4295                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4296                         DRM_DEBUG_KMS("memory self refresh enabled\n");
4297                 } else
4298                         DRM_DEBUG_KMS("memory self refresh disabled\n");
4299         }
4300 }
4301
4302 static void i830_update_wm(struct drm_device *dev)
4303 {
4304         struct drm_i915_private *dev_priv = dev->dev_private;
4305         struct drm_crtc *crtc;
4306         uint32_t fwater_lo;
4307         int planea_wm;
4308
4309         crtc = single_enabled_crtc(dev);
4310         if (crtc == NULL)
4311                 return;
4312
4313         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4314                                        dev_priv->display.get_fifo_size(dev, 0),
4315                                        crtc->fb->bits_per_pixel / 8,
4316                                        latency_ns);
4317         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4318         fwater_lo |= (3<<8) | planea_wm;
4319
4320         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4321
4322         I915_WRITE(FW_BLC, fwater_lo);
4323 }
4324
4325 #define ILK_LP0_PLANE_LATENCY           700
4326 #define ILK_LP0_CURSOR_LATENCY          1300
4327
4328 /*
4329  * Check the wm result.
4330  *
4331  * If any calculated watermark values is larger than the maximum value that
4332  * can be programmed into the associated watermark register, that watermark
4333  * must be disabled.
4334  */
4335 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4336                                 int fbc_wm, int display_wm, int cursor_wm,
4337                                 const struct intel_watermark_params *display,
4338                                 const struct intel_watermark_params *cursor)
4339 {
4340         struct drm_i915_private *dev_priv = dev->dev_private;
4341
4342         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4343                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4344
4345         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4346                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4347                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4348
4349                 /* fbc has it's own way to disable FBC WM */
4350                 I915_WRITE(DISP_ARB_CTL,
4351                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4352                 return false;
4353         }
4354
4355         if (display_wm > display->max_wm) {
4356                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4357                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4358                 return false;
4359         }
4360
4361         if (cursor_wm > cursor->max_wm) {
4362                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4363                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4364                 return false;
4365         }
4366
4367         if (!(fbc_wm || display_wm || cursor_wm)) {
4368                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4369                 return false;
4370         }
4371
4372         return true;
4373 }
4374
4375 /*
4376  * Compute watermark values of WM[1-3],
4377  */
4378 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4379                                   int latency_ns,
4380                                   const struct intel_watermark_params *display,
4381                                   const struct intel_watermark_params *cursor,
4382                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4383 {
4384         struct drm_crtc *crtc;
4385         unsigned long line_time_us;
4386         int hdisplay, htotal, pixel_size, clock;
4387         int line_count, line_size;
4388         int small, large;
4389         int entries;
4390
4391         if (!latency_ns) {
4392                 *fbc_wm = *display_wm = *cursor_wm = 0;
4393                 return false;
4394         }
4395
4396         crtc = intel_get_crtc_for_plane(dev, plane);
4397         hdisplay = crtc->mode.hdisplay;
4398         htotal = crtc->mode.htotal;
4399         clock = crtc->mode.clock;
4400         pixel_size = crtc->fb->bits_per_pixel / 8;
4401
4402         line_time_us = (htotal * 1000) / clock;
4403         line_count = (latency_ns / line_time_us + 1000) / 1000;
4404         line_size = hdisplay * pixel_size;
4405
4406         /* Use the minimum of the small and large buffer method for primary */
4407         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4408         large = line_count * line_size;
4409
4410         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4411         *display_wm = entries + display->guard_size;
4412
4413         /*
4414          * Spec says:
4415          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4416          */
4417         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4418
4419         /* calculate the self-refresh watermark for display cursor */
4420         entries = line_count * pixel_size * 64;
4421         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4422         *cursor_wm = entries + cursor->guard_size;
4423
4424         return ironlake_check_srwm(dev, level,
4425                                    *fbc_wm, *display_wm, *cursor_wm,
4426                                    display, cursor);
4427 }
4428
4429 static void ironlake_update_wm(struct drm_device *dev)
4430 {
4431         struct drm_i915_private *dev_priv = dev->dev_private;
4432         int fbc_wm, plane_wm, cursor_wm;
4433         unsigned int enabled;
4434
4435         enabled = 0;
4436         if (g4x_compute_wm0(dev, 0,
4437                             &ironlake_display_wm_info,
4438                             ILK_LP0_PLANE_LATENCY,
4439                             &ironlake_cursor_wm_info,
4440                             ILK_LP0_CURSOR_LATENCY,
4441                             &plane_wm, &cursor_wm)) {
4442                 I915_WRITE(WM0_PIPEA_ILK,
4443                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4444                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4445                               " plane %d, " "cursor: %d\n",
4446                               plane_wm, cursor_wm);
4447                 enabled |= 1;
4448         }
4449
4450         if (g4x_compute_wm0(dev, 1,
4451                             &ironlake_display_wm_info,
4452                             ILK_LP0_PLANE_LATENCY,
4453                             &ironlake_cursor_wm_info,
4454                             ILK_LP0_CURSOR_LATENCY,
4455                             &plane_wm, &cursor_wm)) {
4456                 I915_WRITE(WM0_PIPEB_ILK,
4457                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4458                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4459                               " plane %d, cursor: %d\n",
4460                               plane_wm, cursor_wm);
4461                 enabled |= 2;
4462         }
4463
4464         /*
4465          * Calculate and update the self-refresh watermark only when one
4466          * display plane is used.
4467          */
4468         I915_WRITE(WM3_LP_ILK, 0);
4469         I915_WRITE(WM2_LP_ILK, 0);
4470         I915_WRITE(WM1_LP_ILK, 0);
4471
4472         if (!single_plane_enabled(enabled))
4473                 return;
4474         enabled = ffs(enabled) - 1;
4475
4476         /* WM1 */
4477         if (!ironlake_compute_srwm(dev, 1, enabled,
4478                                    ILK_READ_WM1_LATENCY() * 500,
4479                                    &ironlake_display_srwm_info,
4480                                    &ironlake_cursor_srwm_info,
4481                                    &fbc_wm, &plane_wm, &cursor_wm))
4482                 return;
4483
4484         I915_WRITE(WM1_LP_ILK,
4485                    WM1_LP_SR_EN |
4486                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4487                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4488                    (plane_wm << WM1_LP_SR_SHIFT) |
4489                    cursor_wm);
4490
4491         /* WM2 */
4492         if (!ironlake_compute_srwm(dev, 2, enabled,
4493                                    ILK_READ_WM2_LATENCY() * 500,
4494                                    &ironlake_display_srwm_info,
4495                                    &ironlake_cursor_srwm_info,
4496                                    &fbc_wm, &plane_wm, &cursor_wm))
4497                 return;
4498
4499         I915_WRITE(WM2_LP_ILK,
4500                    WM2_LP_EN |
4501                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4502                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4503                    (plane_wm << WM1_LP_SR_SHIFT) |
4504                    cursor_wm);
4505
4506         /*
4507          * WM3 is unsupported on ILK, probably because we don't have latency
4508          * data for that power state
4509          */
4510 }
4511
4512 static void sandybridge_update_wm(struct drm_device *dev)
4513 {
4514         struct drm_i915_private *dev_priv = dev->dev_private;
4515         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4516         int fbc_wm, plane_wm, cursor_wm;
4517         unsigned int enabled;
4518
4519         enabled = 0;
4520         if (g4x_compute_wm0(dev, 0,
4521                             &sandybridge_display_wm_info, latency,
4522                             &sandybridge_cursor_wm_info, latency,
4523                             &plane_wm, &cursor_wm)) {
4524                 I915_WRITE(WM0_PIPEA_ILK,
4525                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4526                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4527                               " plane %d, " "cursor: %d\n",
4528                               plane_wm, cursor_wm);
4529                 enabled |= 1;
4530         }
4531
4532         if (g4x_compute_wm0(dev, 1,
4533                             &sandybridge_display_wm_info, latency,
4534                             &sandybridge_cursor_wm_info, latency,
4535                             &plane_wm, &cursor_wm)) {
4536                 I915_WRITE(WM0_PIPEB_ILK,
4537                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4538                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4539                               " plane %d, cursor: %d\n",
4540                               plane_wm, cursor_wm);
4541                 enabled |= 2;
4542         }
4543
4544         /* IVB has 3 pipes */
4545         if (IS_IVYBRIDGE(dev) &&
4546             g4x_compute_wm0(dev, 2,
4547                             &sandybridge_display_wm_info, latency,
4548                             &sandybridge_cursor_wm_info, latency,
4549                             &plane_wm, &cursor_wm)) {
4550                 I915_WRITE(WM0_PIPEC_IVB,
4551                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4552                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4553                               " plane %d, cursor: %d\n",
4554                               plane_wm, cursor_wm);
4555                 enabled |= 3;
4556         }
4557
4558         /*
4559          * Calculate and update the self-refresh watermark only when one
4560          * display plane is used.
4561          *
4562          * SNB support 3 levels of watermark.
4563          *
4564          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4565          * and disabled in the descending order
4566          *
4567          */
4568         I915_WRITE(WM3_LP_ILK, 0);
4569         I915_WRITE(WM2_LP_ILK, 0);
4570         I915_WRITE(WM1_LP_ILK, 0);
4571
4572         if (!single_plane_enabled(enabled))
4573                 return;
4574         enabled = ffs(enabled) - 1;
4575
4576         /* WM1 */
4577         if (!ironlake_compute_srwm(dev, 1, enabled,
4578                                    SNB_READ_WM1_LATENCY() * 500,
4579                                    &sandybridge_display_srwm_info,
4580                                    &sandybridge_cursor_srwm_info,
4581                                    &fbc_wm, &plane_wm, &cursor_wm))
4582                 return;
4583
4584         I915_WRITE(WM1_LP_ILK,
4585                    WM1_LP_SR_EN |
4586                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4587                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4588                    (plane_wm << WM1_LP_SR_SHIFT) |
4589                    cursor_wm);
4590
4591         /* WM2 */
4592         if (!ironlake_compute_srwm(dev, 2, enabled,
4593                                    SNB_READ_WM2_LATENCY() * 500,
4594                                    &sandybridge_display_srwm_info,
4595                                    &sandybridge_cursor_srwm_info,
4596                                    &fbc_wm, &plane_wm, &cursor_wm))
4597                 return;
4598
4599         I915_WRITE(WM2_LP_ILK,
4600                    WM2_LP_EN |
4601                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4602                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4603                    (plane_wm << WM1_LP_SR_SHIFT) |
4604                    cursor_wm);
4605
4606         /* WM3 */
4607         if (!ironlake_compute_srwm(dev, 3, enabled,
4608                                    SNB_READ_WM3_LATENCY() * 500,
4609                                    &sandybridge_display_srwm_info,
4610                                    &sandybridge_cursor_srwm_info,
4611                                    &fbc_wm, &plane_wm, &cursor_wm))
4612                 return;
4613
4614         I915_WRITE(WM3_LP_ILK,
4615                    WM3_LP_EN |
4616                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4617                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4618                    (plane_wm << WM1_LP_SR_SHIFT) |
4619                    cursor_wm);
4620 }
4621
4622 /**
4623  * intel_update_watermarks - update FIFO watermark values based on current modes
4624  *
4625  * Calculate watermark values for the various WM regs based on current mode
4626  * and plane configuration.
4627  *
4628  * There are several cases to deal with here:
4629  *   - normal (i.e. non-self-refresh)
4630  *   - self-refresh (SR) mode
4631  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4632  *   - lines are small relative to FIFO size (buffer can hold more than 2
4633  *     lines), so need to account for TLB latency
4634  *
4635  *   The normal calculation is:
4636  *     watermark = dotclock * bytes per pixel * latency
4637  *   where latency is platform & configuration dependent (we assume pessimal
4638  *   values here).
4639  *
4640  *   The SR calculation is:
4641  *     watermark = (trunc(latency/line time)+1) * surface width *
4642  *       bytes per pixel
4643  *   where
4644  *     line time = htotal / dotclock
4645  *     surface width = hdisplay for normal plane and 64 for cursor
4646  *   and latency is assumed to be high, as above.
4647  *
4648  * The final value programmed to the register should always be rounded up,
4649  * and include an extra 2 entries to account for clock crossings.
4650  *
4651  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4652  * to set the non-SR watermarks to 8.
4653  */
4654 static void intel_update_watermarks(struct drm_device *dev)
4655 {
4656         struct drm_i915_private *dev_priv = dev->dev_private;
4657
4658         if (dev_priv->display.update_wm)
4659                 dev_priv->display.update_wm(dev);
4660 }
4661
4662 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4663 {
4664         if (i915_panel_use_ssc >= 0)
4665                 return i915_panel_use_ssc != 0;
4666         return dev_priv->lvds_use_ssc
4667                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4668 }
4669
4670 /**
4671  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4672  * @crtc: CRTC structure
4673  * @mode: requested mode
4674  *
4675  * A pipe may be connected to one or more outputs.  Based on the depth of the
4676  * attached framebuffer, choose a good color depth to use on the pipe.
4677  *
4678  * If possible, match the pipe depth to the fb depth.  In some cases, this
4679  * isn't ideal, because the connected output supports a lesser or restricted
4680  * set of depths.  Resolve that here:
4681  *    LVDS typically supports only 6bpc, so clamp down in that case
4682  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4683  *    Displays may support a restricted set as well, check EDID and clamp as
4684  *      appropriate.
4685  *    DP may want to dither down to 6bpc to fit larger modes
4686  *
4687  * RETURNS:
4688  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4689  * true if they don't match).
4690  */
4691 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4692                                          unsigned int *pipe_bpp,
4693                                          struct drm_display_mode *mode)
4694 {
4695         struct drm_device *dev = crtc->dev;
4696         struct drm_i915_private *dev_priv = dev->dev_private;
4697         struct drm_encoder *encoder;
4698         struct drm_connector *connector;
4699         unsigned int display_bpc = UINT_MAX, bpc;
4700
4701         /* Walk the encoders & connectors on this crtc, get min bpc */
4702         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4703                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4704
4705                 if (encoder->crtc != crtc)
4706                         continue;
4707
4708                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4709                         unsigned int lvds_bpc;
4710
4711                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4712                             LVDS_A3_POWER_UP)
4713                                 lvds_bpc = 8;
4714                         else
4715                                 lvds_bpc = 6;
4716
4717                         if (lvds_bpc < display_bpc) {
4718                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4719                                 display_bpc = lvds_bpc;
4720                         }
4721                         continue;
4722                 }
4723
4724                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4725                         /* Use VBT settings if we have an eDP panel */
4726                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4727
4728                         if (edp_bpc < display_bpc) {
4729                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4730                                 display_bpc = edp_bpc;
4731                         }
4732                         continue;
4733                 }
4734
4735                 /* Not one of the known troublemakers, check the EDID */
4736                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4737                                     head) {
4738                         if (connector->encoder != encoder)
4739                                 continue;
4740
4741                         /* Don't use an invalid EDID bpc value */
4742                         if (connector->display_info.bpc &&
4743                             connector->display_info.bpc < display_bpc) {
4744                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4745                                 display_bpc = connector->display_info.bpc;
4746                         }
4747                 }
4748
4749                 /*
4750                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4751                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4752                  */
4753                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4754                         if (display_bpc > 8 && display_bpc < 12) {
4755                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4756                                 display_bpc = 12;
4757                         } else {
4758                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4759                                 display_bpc = 8;
4760                         }
4761                 }
4762         }
4763
4764         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4765                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4766                 display_bpc = 6;
4767         }
4768
4769         /*
4770          * We could just drive the pipe at the highest bpc all the time and
4771          * enable dithering as needed, but that costs bandwidth.  So choose
4772          * the minimum value that expresses the full color range of the fb but
4773          * also stays within the max display bpc discovered above.
4774          */
4775
4776         switch (crtc->fb->depth) {
4777         case 8:
4778                 bpc = 8; /* since we go through a colormap */
4779                 break;
4780         case 15:
4781         case 16:
4782                 bpc = 6; /* min is 18bpp */
4783                 break;
4784         case 24:
4785                 bpc = 8;
4786                 break;
4787         case 30:
4788                 bpc = 10;
4789                 break;
4790         case 48:
4791                 bpc = 12;
4792                 break;
4793         default:
4794                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4795                 bpc = min((unsigned int)8, display_bpc);
4796                 break;
4797         }
4798
4799         display_bpc = min(display_bpc, bpc);
4800
4801         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4802                       bpc, display_bpc);
4803
4804         *pipe_bpp = display_bpc * 3;
4805
4806         return display_bpc != bpc;
4807 }
4808
4809 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4810                               struct drm_display_mode *mode,
4811                               struct drm_display_mode *adjusted_mode,
4812                               int x, int y,
4813                               struct drm_framebuffer *old_fb)
4814 {
4815         struct drm_device *dev = crtc->dev;
4816         struct drm_i915_private *dev_priv = dev->dev_private;
4817         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4818         int pipe = intel_crtc->pipe;
4819         int plane = intel_crtc->plane;
4820         int refclk, num_connectors = 0;
4821         intel_clock_t clock, reduced_clock;
4822         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4823         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4824         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4825         struct drm_mode_config *mode_config = &dev->mode_config;
4826         struct intel_encoder *encoder;
4827         const intel_limit_t *limit;
4828         int ret;
4829         u32 temp;
4830         u32 lvds_sync = 0;
4831
4832         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4833                 if (encoder->base.crtc != crtc)
4834                         continue;
4835
4836                 switch (encoder->type) {
4837                 case INTEL_OUTPUT_LVDS:
4838                         is_lvds = true;
4839                         break;
4840                 case INTEL_OUTPUT_SDVO:
4841                 case INTEL_OUTPUT_HDMI:
4842                         is_sdvo = true;
4843                         if (encoder->needs_tv_clock)
4844                                 is_tv = true;
4845                         break;
4846                 case INTEL_OUTPUT_DVO:
4847                         is_dvo = true;
4848                         break;
4849                 case INTEL_OUTPUT_TVOUT:
4850                         is_tv = true;
4851                         break;
4852                 case INTEL_OUTPUT_ANALOG:
4853                         is_crt = true;
4854                         break;
4855                 case INTEL_OUTPUT_DISPLAYPORT:
4856                         is_dp = true;
4857                         break;
4858                 }
4859
4860                 num_connectors++;
4861         }
4862
4863         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4864                 refclk = dev_priv->lvds_ssc_freq * 1000;
4865                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4866                               refclk / 1000);
4867         } else if (!IS_GEN2(dev)) {
4868                 refclk = 96000;
4869         } else {
4870                 refclk = 48000;
4871         }
4872
4873         /*
4874          * Returns a set of divisors for the desired target clock with the given
4875          * refclk, or FALSE.  The returned values represent the clock equation:
4876          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4877          */
4878         limit = intel_limit(crtc, refclk);
4879         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4880         if (!ok) {
4881                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4882                 return -EINVAL;
4883         }
4884
4885         /* Ensure that the cursor is valid for the new mode before changing... */
4886         intel_crtc_update_cursor(crtc, true);
4887
4888         if (is_lvds && dev_priv->lvds_downclock_avail) {
4889                 has_reduced_clock = limit->find_pll(limit, crtc,
4890                                                     dev_priv->lvds_downclock,
4891                                                     refclk,
4892                                                     &reduced_clock);
4893                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4894                         /*
4895                          * If the different P is found, it means that we can't
4896                          * switch the display clock by using the FP0/FP1.
4897                          * In such case we will disable the LVDS downclock
4898                          * feature.
4899                          */
4900                         DRM_DEBUG_KMS("Different P is found for "
4901                                       "LVDS clock/downclock\n");
4902                         has_reduced_clock = 0;
4903                 }
4904         }
4905         /* SDVO TV has fixed PLL values depend on its clock range,
4906            this mirrors vbios setting. */
4907         if (is_sdvo && is_tv) {
4908                 if (adjusted_mode->clock >= 100000
4909                     && adjusted_mode->clock < 140500) {
4910                         clock.p1 = 2;
4911                         clock.p2 = 10;
4912                         clock.n = 3;
4913                         clock.m1 = 16;
4914                         clock.m2 = 8;
4915                 } else if (adjusted_mode->clock >= 140500
4916                            && adjusted_mode->clock <= 200000) {
4917                         clock.p1 = 1;
4918                         clock.p2 = 10;
4919                         clock.n = 6;
4920                         clock.m1 = 12;
4921                         clock.m2 = 8;
4922                 }
4923         }
4924
4925         if (IS_PINEVIEW(dev)) {
4926                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4927                 if (has_reduced_clock)
4928                         fp2 = (1 << reduced_clock.n) << 16 |
4929                                 reduced_clock.m1 << 8 | reduced_clock.m2;
4930         } else {
4931                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4932                 if (has_reduced_clock)
4933                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4934                                 reduced_clock.m2;
4935         }
4936
4937         dpll = DPLL_VGA_MODE_DIS;
4938
4939         if (!IS_GEN2(dev)) {
4940                 if (is_lvds)
4941                         dpll |= DPLLB_MODE_LVDS;
4942                 else
4943                         dpll |= DPLLB_MODE_DAC_SERIAL;
4944                 if (is_sdvo) {
4945                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4946                         if (pixel_multiplier > 1) {
4947                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4948                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4949                         }
4950                         dpll |= DPLL_DVO_HIGH_SPEED;
4951                 }
4952                 if (is_dp)
4953                         dpll |= DPLL_DVO_HIGH_SPEED;
4954
4955                 /* compute bitmask from p1 value */
4956                 if (IS_PINEVIEW(dev))
4957                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4958                 else {
4959                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4960                         if (IS_G4X(dev) && has_reduced_clock)
4961                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4962                 }
4963                 switch (clock.p2) {
4964                 case 5:
4965                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4966                         break;
4967                 case 7:
4968                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4969                         break;
4970                 case 10:
4971                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4972                         break;
4973                 case 14:
4974                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4975                         break;
4976                 }
4977                 if (INTEL_INFO(dev)->gen >= 4)
4978                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4979         } else {
4980                 if (is_lvds) {
4981                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4982                 } else {
4983                         if (clock.p1 == 2)
4984                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
4985                         else
4986                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4987                         if (clock.p2 == 4)
4988                                 dpll |= PLL_P2_DIVIDE_BY_4;
4989                 }
4990         }
4991
4992         if (is_sdvo && is_tv)
4993                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4994         else if (is_tv)
4995                 /* XXX: just matching BIOS for now */
4996                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4997                 dpll |= 3;
4998         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4999                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5000         else
5001                 dpll |= PLL_REF_INPUT_DREFCLK;
5002
5003         /* setup pipeconf */
5004         pipeconf = I915_READ(PIPECONF(pipe));
5005
5006         /* Set up the display plane register */
5007         dspcntr = DISPPLANE_GAMMA_ENABLE;
5008
5009         /* Ironlake's plane is forced to pipe, bit 24 is to
5010            enable color space conversion */
5011         if (pipe == 0)
5012                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5013         else
5014                 dspcntr |= DISPPLANE_SEL_PIPE_B;
5015
5016         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5017                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5018                  * core speed.
5019                  *
5020                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5021                  * pipe == 0 check?
5022                  */
5023                 if (mode->clock >
5024                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5025                         pipeconf |= PIPECONF_DOUBLE_WIDE;
5026                 else
5027                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5028         }
5029
5030         /* default to 8bpc */
5031         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5032         if (is_dp) {
5033                 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5034                         pipeconf |= PIPECONF_BPP_6 |
5035                                     PIPECONF_DITHER_EN |
5036                                     PIPECONF_DITHER_TYPE_SP;
5037                 }
5038         }
5039
5040         dpll |= DPLL_VCO_ENABLE;
5041
5042         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5043         drm_mode_debug_printmodeline(mode);
5044
5045         I915_WRITE(FP0(pipe), fp);
5046         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5047
5048         POSTING_READ(DPLL(pipe));
5049         udelay(150);
5050
5051         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5052          * This is an exception to the general rule that mode_set doesn't turn
5053          * things on.
5054          */
5055         if (is_lvds) {
5056                 temp = I915_READ(LVDS);
5057                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5058                 if (pipe == 1) {
5059                         temp |= LVDS_PIPEB_SELECT;
5060                 } else {
5061                         temp &= ~LVDS_PIPEB_SELECT;
5062                 }
5063                 /* set the corresponsding LVDS_BORDER bit */
5064                 temp |= dev_priv->lvds_border_bits;
5065                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5066                  * set the DPLLs for dual-channel mode or not.
5067                  */
5068                 if (clock.p2 == 7)
5069                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5070                 else
5071                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5072
5073                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5074                  * appropriately here, but we need to look more thoroughly into how
5075                  * panels behave in the two modes.
5076                  */
5077                 /* set the dithering flag on LVDS as needed */
5078                 if (INTEL_INFO(dev)->gen >= 4) {
5079                         if (dev_priv->lvds_dither)
5080                                 temp |= LVDS_ENABLE_DITHER;
5081                         else
5082                                 temp &= ~LVDS_ENABLE_DITHER;
5083                 }
5084                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5085                         lvds_sync |= LVDS_HSYNC_POLARITY;
5086                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5087                         lvds_sync |= LVDS_VSYNC_POLARITY;
5088                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5089                     != lvds_sync) {
5090                         char flags[2] = "-+";
5091                         DRM_INFO("Changing LVDS panel from "
5092                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5093                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5094                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5095                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5096                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5097                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5098                         temp |= lvds_sync;
5099                 }
5100                 I915_WRITE(LVDS, temp);
5101         }
5102
5103         if (is_dp) {
5104                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5105         }
5106
5107         I915_WRITE(DPLL(pipe), dpll);
5108
5109         /* Wait for the clocks to stabilize. */
5110         POSTING_READ(DPLL(pipe));
5111         udelay(150);
5112
5113         if (INTEL_INFO(dev)->gen >= 4) {
5114                 temp = 0;
5115                 if (is_sdvo) {
5116                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5117                         if (temp > 1)
5118                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5119                         else
5120                                 temp = 0;
5121                 }
5122                 I915_WRITE(DPLL_MD(pipe), temp);
5123         } else {
5124                 /* The pixel multiplier can only be updated once the
5125                  * DPLL is enabled and the clocks are stable.
5126                  *
5127                  * So write it again.
5128                  */
5129                 I915_WRITE(DPLL(pipe), dpll);
5130         }
5131
5132         intel_crtc->lowfreq_avail = false;
5133         if (is_lvds && has_reduced_clock && i915_powersave) {
5134                 I915_WRITE(FP1(pipe), fp2);
5135                 intel_crtc->lowfreq_avail = true;
5136                 if (HAS_PIPE_CXSR(dev)) {
5137                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5138                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5139                 }
5140         } else {
5141                 I915_WRITE(FP1(pipe), fp);
5142                 if (HAS_PIPE_CXSR(dev)) {
5143                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5144                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5145                 }
5146         }
5147
5148         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5149                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5150                 /* the chip adds 2 halflines automatically */
5151                 adjusted_mode->crtc_vdisplay -= 1;
5152                 adjusted_mode->crtc_vtotal -= 1;
5153                 adjusted_mode->crtc_vblank_start -= 1;
5154                 adjusted_mode->crtc_vblank_end -= 1;
5155                 adjusted_mode->crtc_vsync_end -= 1;
5156                 adjusted_mode->crtc_vsync_start -= 1;
5157         } else
5158                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5159
5160         I915_WRITE(HTOTAL(pipe),
5161                    (adjusted_mode->crtc_hdisplay - 1) |
5162                    ((adjusted_mode->crtc_htotal - 1) << 16));
5163         I915_WRITE(HBLANK(pipe),
5164                    (adjusted_mode->crtc_hblank_start - 1) |
5165                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5166         I915_WRITE(HSYNC(pipe),
5167                    (adjusted_mode->crtc_hsync_start - 1) |
5168                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5169
5170         I915_WRITE(VTOTAL(pipe),
5171                    (adjusted_mode->crtc_vdisplay - 1) |
5172                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5173         I915_WRITE(VBLANK(pipe),
5174                    (adjusted_mode->crtc_vblank_start - 1) |
5175                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5176         I915_WRITE(VSYNC(pipe),
5177                    (adjusted_mode->crtc_vsync_start - 1) |
5178                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5179
5180         /* pipesrc and dspsize control the size that is scaled from,
5181          * which should always be the user's requested size.
5182          */
5183         I915_WRITE(DSPSIZE(plane),
5184                    ((mode->vdisplay - 1) << 16) |
5185                    (mode->hdisplay - 1));
5186         I915_WRITE(DSPPOS(plane), 0);
5187         I915_WRITE(PIPESRC(pipe),
5188                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5189
5190         I915_WRITE(PIPECONF(pipe), pipeconf);
5191         POSTING_READ(PIPECONF(pipe));
5192         intel_enable_pipe(dev_priv, pipe, false);
5193
5194         intel_wait_for_vblank(dev, pipe);
5195
5196         I915_WRITE(DSPCNTR(plane), dspcntr);
5197         POSTING_READ(DSPCNTR(plane));
5198         intel_enable_plane(dev_priv, plane, pipe);
5199
5200         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5201
5202         intel_update_watermarks(dev);
5203
5204         return ret;
5205 }
5206
5207 /*
5208  * Initialize reference clocks when the driver loads
5209  */
5210 void ironlake_init_pch_refclk(struct drm_device *dev)
5211 {
5212         struct drm_i915_private *dev_priv = dev->dev_private;
5213         struct drm_mode_config *mode_config = &dev->mode_config;
5214         struct intel_encoder *encoder;
5215         u32 temp;
5216         bool has_lvds = false;
5217         bool has_cpu_edp = false;
5218         bool has_pch_edp = false;
5219         bool has_panel = false;
5220         bool has_ck505 = false;
5221         bool can_ssc = false;
5222
5223         /* We need to take the global config into account */
5224         list_for_each_entry(encoder, &mode_config->encoder_list,
5225                             base.head) {
5226                 switch (encoder->type) {
5227                 case INTEL_OUTPUT_LVDS:
5228                         has_panel = true;
5229                         has_lvds = true;
5230                         break;
5231                 case INTEL_OUTPUT_EDP:
5232                         has_panel = true;
5233                         if (intel_encoder_is_pch_edp(&encoder->base))
5234                                 has_pch_edp = true;
5235                         else
5236                                 has_cpu_edp = true;
5237                         break;
5238                 }
5239         }
5240
5241         if (HAS_PCH_IBX(dev)) {
5242                 has_ck505 = dev_priv->display_clock_mode;
5243                 can_ssc = has_ck505;
5244         } else {
5245                 has_ck505 = false;
5246                 can_ssc = true;
5247         }
5248
5249         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5250                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5251                       has_ck505);
5252
5253         /* Ironlake: try to setup display ref clock before DPLL
5254          * enabling. This is only under driver's control after
5255          * PCH B stepping, previous chipset stepping should be
5256          * ignoring this setting.
5257          */
5258         temp = I915_READ(PCH_DREF_CONTROL);
5259         /* Always enable nonspread source */
5260         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5261
5262         if (has_ck505)
5263                 temp |= DREF_NONSPREAD_CK505_ENABLE;
5264         else
5265                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5266
5267         if (has_panel) {
5268                 temp &= ~DREF_SSC_SOURCE_MASK;
5269                 temp |= DREF_SSC_SOURCE_ENABLE;
5270
5271                 /* SSC must be turned on before enabling the CPU output  */
5272                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5273                         DRM_DEBUG_KMS("Using SSC on panel\n");
5274                         temp |= DREF_SSC1_ENABLE;
5275                 }
5276
5277                 /* Get SSC going before enabling the outputs */
5278                 I915_WRITE(PCH_DREF_CONTROL, temp);
5279                 POSTING_READ(PCH_DREF_CONTROL);
5280                 udelay(200);
5281
5282                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5283
5284                 /* Enable CPU source on CPU attached eDP */
5285                 if (has_cpu_edp) {
5286                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5287                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5288                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5289                         }
5290                         else
5291                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5292                 } else
5293                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5294
5295                 I915_WRITE(PCH_DREF_CONTROL, temp);
5296                 POSTING_READ(PCH_DREF_CONTROL);
5297                 udelay(200);
5298         } else {
5299                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5300
5301                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5302
5303                 /* Turn off CPU output */
5304                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5305
5306                 I915_WRITE(PCH_DREF_CONTROL, temp);
5307                 POSTING_READ(PCH_DREF_CONTROL);
5308                 udelay(200);
5309
5310                 /* Turn off the SSC source */
5311                 temp &= ~DREF_SSC_SOURCE_MASK;
5312                 temp |= DREF_SSC_SOURCE_DISABLE;
5313
5314                 /* Turn off SSC1 */
5315                 temp &= ~ DREF_SSC1_ENABLE;
5316
5317                 I915_WRITE(PCH_DREF_CONTROL, temp);
5318                 POSTING_READ(PCH_DREF_CONTROL);
5319                 udelay(200);
5320         }
5321 }
5322
5323 static int ironlake_get_refclk(struct drm_crtc *crtc)
5324 {
5325         struct drm_device *dev = crtc->dev;
5326         struct drm_i915_private *dev_priv = dev->dev_private;
5327         struct intel_encoder *encoder;
5328         struct drm_mode_config *mode_config = &dev->mode_config;
5329         struct intel_encoder *edp_encoder = NULL;
5330         int num_connectors = 0;
5331         bool is_lvds = false;
5332
5333         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5334                 if (encoder->base.crtc != crtc)
5335                         continue;
5336
5337                 switch (encoder->type) {
5338                 case INTEL_OUTPUT_LVDS:
5339                         is_lvds = true;
5340                         break;
5341                 case INTEL_OUTPUT_EDP:
5342                         edp_encoder = encoder;
5343                         break;
5344                 }
5345                 num_connectors++;
5346         }
5347
5348         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5349                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5350                               dev_priv->lvds_ssc_freq);
5351                 return dev_priv->lvds_ssc_freq * 1000;
5352         }
5353
5354         return 120000;
5355 }
5356
5357 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5358                                   struct drm_display_mode *mode,
5359                                   struct drm_display_mode *adjusted_mode,
5360                                   int x, int y,
5361                                   struct drm_framebuffer *old_fb)
5362 {
5363         struct drm_device *dev = crtc->dev;
5364         struct drm_i915_private *dev_priv = dev->dev_private;
5365         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5366         int pipe = intel_crtc->pipe;
5367         int plane = intel_crtc->plane;
5368         int refclk, num_connectors = 0;
5369         intel_clock_t clock, reduced_clock;
5370         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5371         bool ok, has_reduced_clock = false, is_sdvo = false;
5372         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5373         struct intel_encoder *has_edp_encoder = NULL;
5374         struct drm_mode_config *mode_config = &dev->mode_config;
5375         struct intel_encoder *encoder;
5376         const intel_limit_t *limit;
5377         int ret;
5378         struct fdi_m_n m_n = {0};
5379         u32 temp;
5380         u32 lvds_sync = 0;
5381         int target_clock, pixel_multiplier, lane, link_bw, factor;
5382         unsigned int pipe_bpp;
5383         bool dither;
5384
5385         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5386                 if (encoder->base.crtc != crtc)
5387                         continue;
5388
5389                 switch (encoder->type) {
5390                 case INTEL_OUTPUT_LVDS:
5391                         is_lvds = true;
5392                         break;
5393                 case INTEL_OUTPUT_SDVO:
5394                 case INTEL_OUTPUT_HDMI:
5395                         is_sdvo = true;
5396                         if (encoder->needs_tv_clock)
5397                                 is_tv = true;
5398                         break;
5399                 case INTEL_OUTPUT_TVOUT:
5400                         is_tv = true;
5401                         break;
5402                 case INTEL_OUTPUT_ANALOG:
5403                         is_crt = true;
5404                         break;
5405                 case INTEL_OUTPUT_DISPLAYPORT:
5406                         is_dp = true;
5407                         break;
5408                 case INTEL_OUTPUT_EDP:
5409                         has_edp_encoder = encoder;
5410                         break;
5411                 }
5412
5413                 num_connectors++;
5414         }
5415
5416         refclk = ironlake_get_refclk(crtc);
5417
5418         /*
5419          * Returns a set of divisors for the desired target clock with the given
5420          * refclk, or FALSE.  The returned values represent the clock equation:
5421          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5422          */
5423         limit = intel_limit(crtc, refclk);
5424         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5425         if (!ok) {
5426                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5427                 return -EINVAL;
5428         }
5429
5430         /* Ensure that the cursor is valid for the new mode before changing... */
5431         intel_crtc_update_cursor(crtc, true);
5432
5433         if (is_lvds && dev_priv->lvds_downclock_avail) {
5434                 has_reduced_clock = limit->find_pll(limit, crtc,
5435                                                     dev_priv->lvds_downclock,
5436                                                     refclk,
5437                                                     &reduced_clock);
5438                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5439                         /*
5440                          * If the different P is found, it means that we can't
5441                          * switch the display clock by using the FP0/FP1.
5442                          * In such case we will disable the LVDS downclock
5443                          * feature.
5444                          */
5445                         DRM_DEBUG_KMS("Different P is found for "
5446                                       "LVDS clock/downclock\n");
5447                         has_reduced_clock = 0;
5448                 }
5449         }
5450         /* SDVO TV has fixed PLL values depend on its clock range,
5451            this mirrors vbios setting. */
5452         if (is_sdvo && is_tv) {
5453                 if (adjusted_mode->clock >= 100000
5454                     && adjusted_mode->clock < 140500) {
5455                         clock.p1 = 2;
5456                         clock.p2 = 10;
5457                         clock.n = 3;
5458                         clock.m1 = 16;
5459                         clock.m2 = 8;
5460                 } else if (adjusted_mode->clock >= 140500
5461                            && adjusted_mode->clock <= 200000) {
5462                         clock.p1 = 1;
5463                         clock.p2 = 10;
5464                         clock.n = 6;
5465                         clock.m1 = 12;
5466                         clock.m2 = 8;
5467                 }
5468         }
5469
5470         /* FDI link */
5471         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5472         lane = 0;
5473         /* CPU eDP doesn't require FDI link, so just set DP M/N
5474            according to current link config */
5475         if (has_edp_encoder &&
5476             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5477                 target_clock = mode->clock;
5478                 intel_edp_link_config(has_edp_encoder,
5479                                       &lane, &link_bw);
5480         } else {
5481                 /* [e]DP over FDI requires target mode clock
5482                    instead of link clock */
5483                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5484                         target_clock = mode->clock;
5485                 else
5486                         target_clock = adjusted_mode->clock;
5487
5488                 /* FDI is a binary signal running at ~2.7GHz, encoding
5489                  * each output octet as 10 bits. The actual frequency
5490                  * is stored as a divider into a 100MHz clock, and the
5491                  * mode pixel clock is stored in units of 1KHz.
5492                  * Hence the bw of each lane in terms of the mode signal
5493                  * is:
5494                  */
5495                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5496         }
5497
5498         /* determine panel color depth */
5499         temp = I915_READ(PIPECONF(pipe));
5500         temp &= ~PIPE_BPC_MASK;
5501         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5502         switch (pipe_bpp) {
5503         case 18:
5504                 temp |= PIPE_6BPC;
5505                 break;
5506         case 24:
5507                 temp |= PIPE_8BPC;
5508                 break;
5509         case 30:
5510                 temp |= PIPE_10BPC;
5511                 break;
5512         case 36:
5513                 temp |= PIPE_12BPC;
5514                 break;
5515         default:
5516                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5517                         pipe_bpp);
5518                 temp |= PIPE_8BPC;
5519                 pipe_bpp = 24;
5520                 break;
5521         }
5522
5523         intel_crtc->bpp = pipe_bpp;
5524         I915_WRITE(PIPECONF(pipe), temp);
5525
5526         if (!lane) {
5527                 /*
5528                  * Account for spread spectrum to avoid
5529                  * oversubscribing the link. Max center spread
5530                  * is 2.5%; use 5% for safety's sake.
5531                  */
5532                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5533                 lane = bps / (link_bw * 8) + 1;
5534         }
5535
5536         intel_crtc->fdi_lanes = lane;
5537
5538         if (pixel_multiplier > 1)
5539                 link_bw *= pixel_multiplier;
5540         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5541                              &m_n);
5542
5543         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5544         if (has_reduced_clock)
5545                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5546                         reduced_clock.m2;
5547
5548         /* Enable autotuning of the PLL clock (if permissible) */
5549         factor = 21;
5550         if (is_lvds) {
5551                 if ((intel_panel_use_ssc(dev_priv) &&
5552                      dev_priv->lvds_ssc_freq == 100) ||
5553                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5554                         factor = 25;
5555         } else if (is_sdvo && is_tv)
5556                 factor = 20;
5557
5558         if (clock.m < factor * clock.n)
5559                 fp |= FP_CB_TUNE;
5560
5561         dpll = 0;
5562
5563         if (is_lvds)
5564                 dpll |= DPLLB_MODE_LVDS;
5565         else
5566                 dpll |= DPLLB_MODE_DAC_SERIAL;
5567         if (is_sdvo) {
5568                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5569                 if (pixel_multiplier > 1) {
5570                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5571                 }
5572                 dpll |= DPLL_DVO_HIGH_SPEED;
5573         }
5574         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5575                 dpll |= DPLL_DVO_HIGH_SPEED;
5576
5577         /* compute bitmask from p1 value */
5578         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5579         /* also FPA1 */
5580         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5581
5582         switch (clock.p2) {
5583         case 5:
5584                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5585                 break;
5586         case 7:
5587                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5588                 break;
5589         case 10:
5590                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5591                 break;
5592         case 14:
5593                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5594                 break;
5595         }
5596
5597         if (is_sdvo && is_tv)
5598                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5599         else if (is_tv)
5600                 /* XXX: just matching BIOS for now */
5601                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5602                 dpll |= 3;
5603         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5604                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5605         else
5606                 dpll |= PLL_REF_INPUT_DREFCLK;
5607
5608         /* setup pipeconf */
5609         pipeconf = I915_READ(PIPECONF(pipe));
5610
5611         /* Set up the display plane register */
5612         dspcntr = DISPPLANE_GAMMA_ENABLE;
5613
5614         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5615         drm_mode_debug_printmodeline(mode);
5616
5617         /* PCH eDP needs FDI, but CPU eDP does not */
5618         if (!intel_crtc->no_pll) {
5619                 if (!has_edp_encoder ||
5620                     intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5621                         I915_WRITE(PCH_FP0(pipe), fp);
5622                         I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5623
5624                         POSTING_READ(PCH_DPLL(pipe));
5625                         udelay(150);
5626                 }
5627         } else {
5628                 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5629                     fp == I915_READ(PCH_FP0(0))) {
5630                         intel_crtc->use_pll_a = true;
5631                         DRM_DEBUG_KMS("using pipe a dpll\n");
5632                 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5633                            fp == I915_READ(PCH_FP0(1))) {
5634                         intel_crtc->use_pll_a = false;
5635                         DRM_DEBUG_KMS("using pipe b dpll\n");
5636                 } else {
5637                         DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5638                         return -EINVAL;
5639                 }
5640         }
5641
5642         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5643          * This is an exception to the general rule that mode_set doesn't turn
5644          * things on.
5645          */
5646         if (is_lvds) {
5647                 temp = I915_READ(PCH_LVDS);
5648                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5649                 if (HAS_PCH_CPT(dev))
5650                         temp |= PORT_TRANS_SEL_CPT(pipe);
5651                 else if (pipe == 1)
5652                         temp |= LVDS_PIPEB_SELECT;
5653                 else
5654                         temp &= ~LVDS_PIPEB_SELECT;
5655
5656                 /* set the corresponsding LVDS_BORDER bit */
5657                 temp |= dev_priv->lvds_border_bits;
5658                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5659                  * set the DPLLs for dual-channel mode or not.
5660                  */
5661                 if (clock.p2 == 7)
5662                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5663                 else
5664                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5665
5666                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5667                  * appropriately here, but we need to look more thoroughly into how
5668                  * panels behave in the two modes.
5669                  */
5670                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5671                         lvds_sync |= LVDS_HSYNC_POLARITY;
5672                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5673                         lvds_sync |= LVDS_VSYNC_POLARITY;
5674                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5675                     != lvds_sync) {
5676                         char flags[2] = "-+";
5677                         DRM_INFO("Changing LVDS panel from "
5678                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5679                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5680                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5681                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5682                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5683                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5684                         temp |= lvds_sync;
5685                 }
5686                 I915_WRITE(PCH_LVDS, temp);
5687         }
5688
5689         pipeconf &= ~PIPECONF_DITHER_EN;
5690         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5691         if ((is_lvds && dev_priv->lvds_dither) || dither) {
5692                 pipeconf |= PIPECONF_DITHER_EN;
5693                 pipeconf |= PIPECONF_DITHER_TYPE_SP;
5694         }
5695         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5696                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5697         } else {
5698                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5699                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5700                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5701                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5702                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5703         }
5704
5705         if (!intel_crtc->no_pll &&
5706             (!has_edp_encoder ||
5707              intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
5708                 I915_WRITE(PCH_DPLL(pipe), dpll);
5709
5710                 /* Wait for the clocks to stabilize. */
5711                 POSTING_READ(PCH_DPLL(pipe));
5712                 udelay(150);
5713
5714                 /* The pixel multiplier can only be updated once the
5715                  * DPLL is enabled and the clocks are stable.
5716                  *
5717                  * So write it again.
5718                  */
5719                 I915_WRITE(PCH_DPLL(pipe), dpll);
5720         }
5721
5722         intel_crtc->lowfreq_avail = false;
5723         if (!intel_crtc->no_pll) {
5724                 if (is_lvds && has_reduced_clock && i915_powersave) {
5725                         I915_WRITE(PCH_FP1(pipe), fp2);
5726                         intel_crtc->lowfreq_avail = true;
5727                         if (HAS_PIPE_CXSR(dev)) {
5728                                 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5729                                 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5730                         }
5731                 } else {
5732                         I915_WRITE(PCH_FP1(pipe), fp);
5733                         if (HAS_PIPE_CXSR(dev)) {
5734                                 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5735                                 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5736                         }
5737                 }
5738         }
5739
5740         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5741                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5742                 /* the chip adds 2 halflines automatically */
5743                 adjusted_mode->crtc_vdisplay -= 1;
5744                 adjusted_mode->crtc_vtotal -= 1;
5745                 adjusted_mode->crtc_vblank_start -= 1;
5746                 adjusted_mode->crtc_vblank_end -= 1;
5747                 adjusted_mode->crtc_vsync_end -= 1;
5748                 adjusted_mode->crtc_vsync_start -= 1;
5749         } else
5750                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5751
5752         I915_WRITE(HTOTAL(pipe),
5753                    (adjusted_mode->crtc_hdisplay - 1) |
5754                    ((adjusted_mode->crtc_htotal - 1) << 16));
5755         I915_WRITE(HBLANK(pipe),
5756                    (adjusted_mode->crtc_hblank_start - 1) |
5757                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5758         I915_WRITE(HSYNC(pipe),
5759                    (adjusted_mode->crtc_hsync_start - 1) |
5760                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5761
5762         I915_WRITE(VTOTAL(pipe),
5763                    (adjusted_mode->crtc_vdisplay - 1) |
5764                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5765         I915_WRITE(VBLANK(pipe),
5766                    (adjusted_mode->crtc_vblank_start - 1) |
5767                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5768         I915_WRITE(VSYNC(pipe),
5769                    (adjusted_mode->crtc_vsync_start - 1) |
5770                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5771
5772         /* pipesrc controls the size that is scaled from, which should
5773          * always be the user's requested size.
5774          */
5775         I915_WRITE(PIPESRC(pipe),
5776                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5777
5778         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5779         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5780         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5781         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5782
5783         if (has_edp_encoder &&
5784             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5785                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5786         }
5787
5788         I915_WRITE(PIPECONF(pipe), pipeconf);
5789         POSTING_READ(PIPECONF(pipe));
5790
5791         intel_wait_for_vblank(dev, pipe);
5792
5793         if (IS_GEN5(dev)) {
5794                 /* enable address swizzle for tiling buffer */
5795                 temp = I915_READ(DISP_ARB_CTL);
5796                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5797         }
5798
5799         I915_WRITE(DSPCNTR(plane), dspcntr);
5800         POSTING_READ(DSPCNTR(plane));
5801
5802         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5803
5804         intel_update_watermarks(dev);
5805
5806         return ret;
5807 }
5808
5809 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5810                                struct drm_display_mode *mode,
5811                                struct drm_display_mode *adjusted_mode,
5812                                int x, int y,
5813                                struct drm_framebuffer *old_fb)
5814 {
5815         struct drm_device *dev = crtc->dev;
5816         struct drm_i915_private *dev_priv = dev->dev_private;
5817         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5818         int pipe = intel_crtc->pipe;
5819         int ret;
5820
5821         drm_vblank_pre_modeset(dev, pipe);
5822
5823         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5824                                               x, y, old_fb);
5825
5826         drm_vblank_post_modeset(dev, pipe);
5827
5828         intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
5829
5830         return ret;
5831 }
5832
5833 static void g4x_write_eld(struct drm_connector *connector,
5834                           struct drm_crtc *crtc)
5835 {
5836         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5837         uint8_t *eld = connector->eld;
5838         uint32_t eldv;
5839         uint32_t len;
5840         uint32_t i;
5841
5842         i = I915_READ(G4X_AUD_VID_DID);
5843
5844         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5845                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5846         else
5847                 eldv = G4X_ELDV_DEVCTG;
5848
5849         i = I915_READ(G4X_AUD_CNTL_ST);
5850         i &= ~(eldv | G4X_ELD_ADDR);
5851         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5852         I915_WRITE(G4X_AUD_CNTL_ST, i);
5853
5854         if (!eld[0])
5855                 return;
5856
5857         len = min_t(uint8_t, eld[2], len);
5858         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5859         for (i = 0; i < len; i++)
5860                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5861
5862         i = I915_READ(G4X_AUD_CNTL_ST);
5863         i |= eldv;
5864         I915_WRITE(G4X_AUD_CNTL_ST, i);
5865 }
5866
5867 static void ironlake_write_eld(struct drm_connector *connector,
5868                                      struct drm_crtc *crtc)
5869 {
5870         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5871         uint8_t *eld = connector->eld;
5872         uint32_t eldv;
5873         uint32_t i;
5874         int len;
5875         int hdmiw_hdmiedid;
5876         int aud_cntl_st;
5877         int aud_cntrl_st2;
5878
5879         if (IS_IVYBRIDGE(connector->dev)) {
5880                 hdmiw_hdmiedid = GEN7_HDMIW_HDMIEDID_A;
5881                 aud_cntl_st = GEN7_AUD_CNTRL_ST_A;
5882                 aud_cntrl_st2 = GEN7_AUD_CNTRL_ST2;
5883         } else {
5884                 hdmiw_hdmiedid = GEN5_HDMIW_HDMIEDID_A;
5885                 aud_cntl_st = GEN5_AUD_CNTL_ST_A;
5886                 aud_cntrl_st2 = GEN5_AUD_CNTL_ST2;
5887         }
5888
5889         i = to_intel_crtc(crtc)->pipe;
5890         hdmiw_hdmiedid += i * 0x100;
5891         aud_cntl_st += i * 0x100;
5892
5893         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
5894
5895         i = I915_READ(aud_cntl_st);
5896         i = (i >> 29) & 0x3;            /* DIP_Port_Select, 0x1 = PortB */
5897         if (!i) {
5898                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5899                 /* operate blindly on all ports */
5900                 eldv = GEN5_ELD_VALIDB;
5901                 eldv |= GEN5_ELD_VALIDB << 4;
5902                 eldv |= GEN5_ELD_VALIDB << 8;
5903         } else {
5904                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5905                 eldv = GEN5_ELD_VALIDB << ((i - 1) * 4);
5906         }
5907
5908         i = I915_READ(aud_cntrl_st2);
5909         i &= ~eldv;
5910         I915_WRITE(aud_cntrl_st2, i);
5911
5912         if (!eld[0])
5913                 return;
5914
5915         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5916                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5917                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5918         }
5919
5920         i = I915_READ(aud_cntl_st);
5921         i &= ~GEN5_ELD_ADDRESS;
5922         I915_WRITE(aud_cntl_st, i);
5923
5924         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5925         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5926         for (i = 0; i < len; i++)
5927                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5928
5929         i = I915_READ(aud_cntrl_st2);
5930         i |= eldv;
5931         I915_WRITE(aud_cntrl_st2, i);
5932 }
5933
5934 void intel_write_eld(struct drm_encoder *encoder,
5935                      struct drm_display_mode *mode)
5936 {
5937         struct drm_crtc *crtc = encoder->crtc;
5938         struct drm_connector *connector;
5939         struct drm_device *dev = encoder->dev;
5940         struct drm_i915_private *dev_priv = dev->dev_private;
5941
5942         connector = drm_select_eld(encoder, mode);
5943         if (!connector)
5944                 return;
5945
5946         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5947                          connector->base.id,
5948                          drm_get_connector_name(connector),
5949                          connector->encoder->base.id,
5950                          drm_get_encoder_name(connector->encoder));
5951
5952         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5953
5954         if (dev_priv->display.write_eld)
5955                 dev_priv->display.write_eld(connector, crtc);
5956 }
5957
5958 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5959 void intel_crtc_load_lut(struct drm_crtc *crtc)
5960 {
5961         struct drm_device *dev = crtc->dev;
5962         struct drm_i915_private *dev_priv = dev->dev_private;
5963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5964         int palreg = PALETTE(intel_crtc->pipe);
5965         int i;
5966
5967         /* The clocks have to be on to load the palette. */
5968         if (!crtc->enabled)
5969                 return;
5970
5971         /* use legacy palette for Ironlake */
5972         if (HAS_PCH_SPLIT(dev))
5973                 palreg = LGC_PALETTE(intel_crtc->pipe);
5974
5975         for (i = 0; i < 256; i++) {
5976                 I915_WRITE(palreg + 4 * i,
5977                            (intel_crtc->lut_r[i] << 16) |
5978                            (intel_crtc->lut_g[i] << 8) |
5979                            intel_crtc->lut_b[i]);
5980         }
5981 }
5982
5983 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5984 {
5985         struct drm_device *dev = crtc->dev;
5986         struct drm_i915_private *dev_priv = dev->dev_private;
5987         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5988         bool visible = base != 0;
5989         u32 cntl;
5990
5991         if (intel_crtc->cursor_visible == visible)
5992                 return;
5993
5994         cntl = I915_READ(_CURACNTR);
5995         if (visible) {
5996                 /* On these chipsets we can only modify the base whilst
5997                  * the cursor is disabled.
5998                  */
5999                 I915_WRITE(_CURABASE, base);
6000
6001                 cntl &= ~(CURSOR_FORMAT_MASK);
6002                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6003                 cntl |= CURSOR_ENABLE |
6004                         CURSOR_GAMMA_ENABLE |
6005                         CURSOR_FORMAT_ARGB;
6006         } else
6007                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6008         I915_WRITE(_CURACNTR, cntl);
6009
6010         intel_crtc->cursor_visible = visible;
6011 }
6012
6013 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6014 {
6015         struct drm_device *dev = crtc->dev;
6016         struct drm_i915_private *dev_priv = dev->dev_private;
6017         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6018         int pipe = intel_crtc->pipe;
6019         bool visible = base != 0;
6020
6021         if (intel_crtc->cursor_visible != visible) {
6022                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6023                 if (base) {
6024                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6025                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6026                         cntl |= pipe << 28; /* Connect to correct pipe */
6027                 } else {
6028                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6029                         cntl |= CURSOR_MODE_DISABLE;
6030                 }
6031                 I915_WRITE(CURCNTR(pipe), cntl);
6032
6033                 intel_crtc->cursor_visible = visible;
6034         }
6035         /* and commit changes on next vblank */
6036         I915_WRITE(CURBASE(pipe), base);
6037 }
6038
6039 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6040 {
6041         struct drm_device *dev = crtc->dev;
6042         struct drm_i915_private *dev_priv = dev->dev_private;
6043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6044         int pipe = intel_crtc->pipe;
6045         bool visible = base != 0;
6046
6047         if (intel_crtc->cursor_visible != visible) {
6048                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6049                 if (base) {
6050                         cntl &= ~CURSOR_MODE;
6051                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6052                 } else {
6053                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6054                         cntl |= CURSOR_MODE_DISABLE;
6055                 }
6056                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6057
6058                 intel_crtc->cursor_visible = visible;
6059         }
6060         /* and commit changes on next vblank */
6061         I915_WRITE(CURBASE_IVB(pipe), base);
6062 }
6063
6064 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6065 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6066                                      bool on)
6067 {
6068         struct drm_device *dev = crtc->dev;
6069         struct drm_i915_private *dev_priv = dev->dev_private;
6070         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6071         int pipe = intel_crtc->pipe;
6072         int x = intel_crtc->cursor_x;
6073         int y = intel_crtc->cursor_y;
6074         u32 base, pos;
6075         bool visible;
6076
6077         pos = 0;
6078
6079         if (on && crtc->enabled && crtc->fb) {
6080                 base = intel_crtc->cursor_addr;
6081                 if (x > (int) crtc->fb->width)
6082                         base = 0;
6083
6084                 if (y > (int) crtc->fb->height)
6085                         base = 0;
6086         } else
6087                 base = 0;
6088
6089         if (x < 0) {
6090                 if (x + intel_crtc->cursor_width < 0)
6091                         base = 0;
6092
6093                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6094                 x = -x;
6095         }
6096         pos |= x << CURSOR_X_SHIFT;
6097
6098         if (y < 0) {
6099                 if (y + intel_crtc->cursor_height < 0)
6100                         base = 0;
6101
6102                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6103                 y = -y;
6104         }
6105         pos |= y << CURSOR_Y_SHIFT;
6106
6107         visible = base != 0;
6108         if (!visible && !intel_crtc->cursor_visible)
6109                 return;
6110
6111         if (IS_IVYBRIDGE(dev)) {
6112                 I915_WRITE(CURPOS_IVB(pipe), pos);
6113                 ivb_update_cursor(crtc, base);
6114         } else {
6115                 I915_WRITE(CURPOS(pipe), pos);
6116                 if (IS_845G(dev) || IS_I865G(dev))
6117                         i845_update_cursor(crtc, base);
6118                 else
6119                         i9xx_update_cursor(crtc, base);
6120         }
6121
6122         if (visible)
6123                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6124 }
6125
6126 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6127                                  struct drm_file *file,
6128                                  uint32_t handle,
6129                                  uint32_t width, uint32_t height)
6130 {
6131         struct drm_device *dev = crtc->dev;
6132         struct drm_i915_private *dev_priv = dev->dev_private;
6133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6134         struct drm_i915_gem_object *obj;
6135         uint32_t addr;
6136         int ret;
6137
6138         DRM_DEBUG_KMS("\n");
6139
6140         /* if we want to turn off the cursor ignore width and height */
6141         if (!handle) {
6142                 DRM_DEBUG_KMS("cursor off\n");
6143                 addr = 0;
6144                 obj = NULL;
6145                 mutex_lock(&dev->struct_mutex);
6146                 goto finish;
6147         }
6148
6149         /* Currently we only support 64x64 cursors */
6150         if (width != 64 || height != 64) {
6151                 DRM_ERROR("we currently only support 64x64 cursors\n");
6152                 return -EINVAL;
6153         }
6154
6155         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6156         if (&obj->base == NULL)
6157                 return -ENOENT;
6158
6159         if (obj->base.size < width * height * 4) {
6160                 DRM_ERROR("buffer is to small\n");
6161                 ret = -ENOMEM;
6162                 goto fail;
6163         }
6164
6165         /* we only need to pin inside GTT if cursor is non-phy */
6166         mutex_lock(&dev->struct_mutex);
6167         if (!dev_priv->info->cursor_needs_physical) {
6168                 if (obj->tiling_mode) {
6169                         DRM_ERROR("cursor cannot be tiled\n");
6170                         ret = -EINVAL;
6171                         goto fail_locked;
6172                 }
6173
6174                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6175                 if (ret) {
6176                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6177                         goto fail_locked;
6178                 }
6179
6180                 ret = i915_gem_object_put_fence(obj);
6181                 if (ret) {
6182                         DRM_ERROR("failed to release fence for cursor");
6183                         goto fail_unpin;
6184                 }
6185
6186                 addr = obj->gtt_offset;
6187         } else {
6188                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6189                 ret = i915_gem_attach_phys_object(dev, obj,
6190                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6191                                                   align);
6192                 if (ret) {
6193                         DRM_ERROR("failed to attach phys object\n");
6194                         goto fail_locked;
6195                 }
6196                 addr = obj->phys_obj->handle->busaddr;
6197         }
6198
6199         if (IS_GEN2(dev))
6200                 I915_WRITE(CURSIZE, (height << 12) | width);
6201
6202  finish:
6203         if (intel_crtc->cursor_bo) {
6204                 if (dev_priv->info->cursor_needs_physical) {
6205                         if (intel_crtc->cursor_bo != obj)
6206                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6207                 } else
6208                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6209                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6210         }
6211
6212         mutex_unlock(&dev->struct_mutex);
6213
6214         intel_crtc->cursor_addr = addr;
6215         intel_crtc->cursor_bo = obj;
6216         intel_crtc->cursor_width = width;
6217         intel_crtc->cursor_height = height;
6218
6219         intel_crtc_update_cursor(crtc, true);
6220
6221         return 0;
6222 fail_unpin:
6223         i915_gem_object_unpin(obj);
6224 fail_locked:
6225         mutex_unlock(&dev->struct_mutex);
6226 fail:
6227         drm_gem_object_unreference_unlocked(&obj->base);
6228         return ret;
6229 }
6230
6231 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6232 {
6233         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6234
6235         intel_crtc->cursor_x = x;
6236         intel_crtc->cursor_y = y;
6237
6238         intel_crtc_update_cursor(crtc, true);
6239
6240         return 0;
6241 }
6242
6243 /** Sets the color ramps on behalf of RandR */
6244 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6245                                  u16 blue, int regno)
6246 {
6247         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6248
6249         intel_crtc->lut_r[regno] = red >> 8;
6250         intel_crtc->lut_g[regno] = green >> 8;
6251         intel_crtc->lut_b[regno] = blue >> 8;
6252 }
6253
6254 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6255                              u16 *blue, int regno)
6256 {
6257         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6258
6259         *red = intel_crtc->lut_r[regno] << 8;
6260         *green = intel_crtc->lut_g[regno] << 8;
6261         *blue = intel_crtc->lut_b[regno] << 8;
6262 }
6263
6264 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6265                                  u16 *blue, uint32_t start, uint32_t size)
6266 {
6267         int end = (start + size > 256) ? 256 : start + size, i;
6268         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6269
6270         for (i = start; i < end; i++) {
6271                 intel_crtc->lut_r[i] = red[i] >> 8;
6272                 intel_crtc->lut_g[i] = green[i] >> 8;
6273                 intel_crtc->lut_b[i] = blue[i] >> 8;
6274         }
6275
6276         intel_crtc_load_lut(crtc);
6277 }
6278
6279 /**
6280  * Get a pipe with a simple mode set on it for doing load-based monitor
6281  * detection.
6282  *
6283  * It will be up to the load-detect code to adjust the pipe as appropriate for
6284  * its requirements.  The pipe will be connected to no other encoders.
6285  *
6286  * Currently this code will only succeed if there is a pipe with no encoders
6287  * configured for it.  In the future, it could choose to temporarily disable
6288  * some outputs to free up a pipe for its use.
6289  *
6290  * \return crtc, or NULL if no pipes are available.
6291  */
6292
6293 /* VESA 640x480x72Hz mode to set on the pipe */
6294 static struct drm_display_mode load_detect_mode = {
6295         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6296                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6297 };
6298
6299 static struct drm_framebuffer *
6300 intel_framebuffer_create(struct drm_device *dev,
6301                          struct drm_mode_fb_cmd *mode_cmd,
6302                          struct drm_i915_gem_object *obj)
6303 {
6304         struct intel_framebuffer *intel_fb;
6305         int ret;
6306
6307         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6308         if (!intel_fb) {
6309                 drm_gem_object_unreference_unlocked(&obj->base);
6310                 return ERR_PTR(-ENOMEM);
6311         }
6312
6313         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6314         if (ret) {
6315                 drm_gem_object_unreference_unlocked(&obj->base);
6316                 kfree(intel_fb);
6317                 return ERR_PTR(ret);
6318         }
6319
6320         return &intel_fb->base;
6321 }
6322
6323 static u32
6324 intel_framebuffer_pitch_for_width(int width, int bpp)
6325 {
6326         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6327         return ALIGN(pitch, 64);
6328 }
6329
6330 static u32
6331 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6332 {
6333         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6334         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6335 }
6336
6337 static struct drm_framebuffer *
6338 intel_framebuffer_create_for_mode(struct drm_device *dev,
6339                                   struct drm_display_mode *mode,
6340                                   int depth, int bpp)
6341 {
6342         struct drm_i915_gem_object *obj;
6343         struct drm_mode_fb_cmd mode_cmd;
6344
6345         obj = i915_gem_alloc_object(dev,
6346                                     intel_framebuffer_size_for_mode(mode, bpp));
6347         if (obj == NULL)
6348                 return ERR_PTR(-ENOMEM);
6349
6350         mode_cmd.width = mode->hdisplay;
6351         mode_cmd.height = mode->vdisplay;
6352         mode_cmd.depth = depth;
6353         mode_cmd.bpp = bpp;
6354         mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
6355
6356         return intel_framebuffer_create(dev, &mode_cmd, obj);
6357 }
6358
6359 static struct drm_framebuffer *
6360 mode_fits_in_fbdev(struct drm_device *dev,
6361                    struct drm_display_mode *mode)
6362 {
6363         struct drm_i915_private *dev_priv = dev->dev_private;
6364         struct drm_i915_gem_object *obj;
6365         struct drm_framebuffer *fb;
6366
6367         if (dev_priv->fbdev == NULL)
6368                 return NULL;
6369
6370         obj = dev_priv->fbdev->ifb.obj;
6371         if (obj == NULL)
6372                 return NULL;
6373
6374         fb = &dev_priv->fbdev->ifb.base;
6375         if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
6376                                                           fb->bits_per_pixel))
6377                 return NULL;
6378
6379         if (obj->base.size < mode->vdisplay * fb->pitch)
6380                 return NULL;
6381
6382         return fb;
6383 }
6384
6385 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6386                                 struct drm_connector *connector,
6387                                 struct drm_display_mode *mode,
6388                                 struct intel_load_detect_pipe *old)
6389 {
6390         struct intel_crtc *intel_crtc;
6391         struct drm_crtc *possible_crtc;
6392         struct drm_encoder *encoder = &intel_encoder->base;
6393         struct drm_crtc *crtc = NULL;
6394         struct drm_device *dev = encoder->dev;
6395         struct drm_framebuffer *old_fb;
6396         int i = -1;
6397
6398         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6399                       connector->base.id, drm_get_connector_name(connector),
6400                       encoder->base.id, drm_get_encoder_name(encoder));
6401
6402         /*
6403          * Algorithm gets a little messy:
6404          *
6405          *   - if the connector already has an assigned crtc, use it (but make
6406          *     sure it's on first)
6407          *
6408          *   - try to find the first unused crtc that can drive this connector,
6409          *     and use that if we find one
6410          */
6411
6412         /* See if we already have a CRTC for this connector */
6413         if (encoder->crtc) {
6414                 crtc = encoder->crtc;
6415
6416                 intel_crtc = to_intel_crtc(crtc);
6417                 old->dpms_mode = intel_crtc->dpms_mode;
6418                 old->load_detect_temp = false;
6419
6420                 /* Make sure the crtc and connector are running */
6421                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6422                         struct drm_encoder_helper_funcs *encoder_funcs;
6423                         struct drm_crtc_helper_funcs *crtc_funcs;
6424
6425                         crtc_funcs = crtc->helper_private;
6426                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6427
6428                         encoder_funcs = encoder->helper_private;
6429                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6430                 }
6431
6432                 return true;
6433         }
6434
6435         /* Find an unused one (if possible) */
6436         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6437                 i++;
6438                 if (!(encoder->possible_crtcs & (1 << i)))
6439                         continue;
6440                 if (!possible_crtc->enabled) {
6441                         crtc = possible_crtc;
6442                         break;
6443                 }
6444         }
6445
6446         /*
6447          * If we didn't find an unused CRTC, don't use any.
6448          */
6449         if (!crtc) {
6450                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6451                 return false;
6452         }
6453
6454         encoder->crtc = crtc;
6455         connector->encoder = encoder;
6456
6457         intel_crtc = to_intel_crtc(crtc);
6458         old->dpms_mode = intel_crtc->dpms_mode;
6459         old->load_detect_temp = true;
6460         old->release_fb = NULL;
6461
6462         if (!mode)
6463                 mode = &load_detect_mode;
6464
6465         old_fb = crtc->fb;
6466
6467         /* We need a framebuffer large enough to accommodate all accesses
6468          * that the plane may generate whilst we perform load detection.
6469          * We can not rely on the fbcon either being present (we get called
6470          * during its initialisation to detect all boot displays, or it may
6471          * not even exist) or that it is large enough to satisfy the
6472          * requested mode.
6473          */
6474         crtc->fb = mode_fits_in_fbdev(dev, mode);
6475         if (crtc->fb == NULL) {
6476                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6477                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6478                 old->release_fb = crtc->fb;
6479         } else
6480                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6481         if (IS_ERR(crtc->fb)) {
6482                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6483                 crtc->fb = old_fb;
6484                 return false;
6485         }
6486
6487         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6488                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6489                 if (old->release_fb)
6490                         old->release_fb->funcs->destroy(old->release_fb);
6491                 crtc->fb = old_fb;
6492                 return false;
6493         }
6494
6495         /* let the connector get through one full cycle before testing */
6496         intel_wait_for_vblank(dev, intel_crtc->pipe);
6497
6498         return true;
6499 }
6500
6501 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6502                                     struct drm_connector *connector,
6503                                     struct intel_load_detect_pipe *old)
6504 {
6505         struct drm_encoder *encoder = &intel_encoder->base;
6506         struct drm_device *dev = encoder->dev;
6507         struct drm_crtc *crtc = encoder->crtc;
6508         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6509         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6510
6511         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6512                       connector->base.id, drm_get_connector_name(connector),
6513                       encoder->base.id, drm_get_encoder_name(encoder));
6514
6515         if (old->load_detect_temp) {
6516                 connector->encoder = NULL;
6517                 drm_helper_disable_unused_functions(dev);
6518
6519                 if (old->release_fb)
6520                         old->release_fb->funcs->destroy(old->release_fb);
6521
6522                 return;
6523         }
6524
6525         /* Switch crtc and encoder back off if necessary */
6526         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6527                 encoder_funcs->dpms(encoder, old->dpms_mode);
6528                 crtc_funcs->dpms(crtc, old->dpms_mode);
6529         }
6530 }
6531
6532 /* Returns the clock of the currently programmed mode of the given pipe. */
6533 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6534 {
6535         struct drm_i915_private *dev_priv = dev->dev_private;
6536         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6537         int pipe = intel_crtc->pipe;
6538         u32 dpll = I915_READ(DPLL(pipe));
6539         u32 fp;
6540         intel_clock_t clock;
6541
6542         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6543                 fp = I915_READ(FP0(pipe));
6544         else
6545                 fp = I915_READ(FP1(pipe));
6546
6547         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6548         if (IS_PINEVIEW(dev)) {
6549                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6550                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6551         } else {
6552                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6553                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6554         }
6555
6556         if (!IS_GEN2(dev)) {
6557                 if (IS_PINEVIEW(dev))
6558                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6559                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6560                 else
6561                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6562                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6563
6564                 switch (dpll & DPLL_MODE_MASK) {
6565                 case DPLLB_MODE_DAC_SERIAL:
6566                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6567                                 5 : 10;
6568                         break;
6569                 case DPLLB_MODE_LVDS:
6570                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6571                                 7 : 14;
6572                         break;
6573                 default:
6574                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6575                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6576                         return 0;
6577                 }
6578
6579                 /* XXX: Handle the 100Mhz refclk */
6580                 intel_clock(dev, 96000, &clock);
6581         } else {
6582                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6583
6584                 if (is_lvds) {
6585                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6586                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6587                         clock.p2 = 14;
6588
6589                         if ((dpll & PLL_REF_INPUT_MASK) ==
6590                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6591                                 /* XXX: might not be 66MHz */
6592                                 intel_clock(dev, 66000, &clock);
6593                         } else
6594                                 intel_clock(dev, 48000, &clock);
6595                 } else {
6596                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6597                                 clock.p1 = 2;
6598                         else {
6599                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6600                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6601                         }
6602                         if (dpll & PLL_P2_DIVIDE_BY_4)
6603                                 clock.p2 = 4;
6604                         else
6605                                 clock.p2 = 2;
6606
6607                         intel_clock(dev, 48000, &clock);
6608                 }
6609         }
6610
6611         /* XXX: It would be nice to validate the clocks, but we can't reuse
6612          * i830PllIsValid() because it relies on the xf86_config connector
6613          * configuration being accurate, which it isn't necessarily.
6614          */
6615
6616         return clock.dot;
6617 }
6618
6619 /** Returns the currently programmed mode of the given pipe. */
6620 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6621                                              struct drm_crtc *crtc)
6622 {
6623         struct drm_i915_private *dev_priv = dev->dev_private;
6624         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6625         int pipe = intel_crtc->pipe;
6626         struct drm_display_mode *mode;
6627         int htot = I915_READ(HTOTAL(pipe));
6628         int hsync = I915_READ(HSYNC(pipe));
6629         int vtot = I915_READ(VTOTAL(pipe));
6630         int vsync = I915_READ(VSYNC(pipe));
6631
6632         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6633         if (!mode)
6634                 return NULL;
6635
6636         mode->clock = intel_crtc_clock_get(dev, crtc);
6637         mode->hdisplay = (htot & 0xffff) + 1;
6638         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6639         mode->hsync_start = (hsync & 0xffff) + 1;
6640         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6641         mode->vdisplay = (vtot & 0xffff) + 1;
6642         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6643         mode->vsync_start = (vsync & 0xffff) + 1;
6644         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6645
6646         drm_mode_set_name(mode);
6647         drm_mode_set_crtcinfo(mode, 0);
6648
6649         return mode;
6650 }
6651
6652 #define GPU_IDLE_TIMEOUT 500 /* ms */
6653
6654 /* When this timer fires, we've been idle for awhile */
6655 static void intel_gpu_idle_timer(unsigned long arg)
6656 {
6657         struct drm_device *dev = (struct drm_device *)arg;
6658         drm_i915_private_t *dev_priv = dev->dev_private;
6659
6660         if (!list_empty(&dev_priv->mm.active_list)) {
6661                 /* Still processing requests, so just re-arm the timer. */
6662                 mod_timer(&dev_priv->idle_timer, jiffies +
6663                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6664                 return;
6665         }
6666
6667         dev_priv->busy = false;
6668         queue_work(dev_priv->wq, &dev_priv->idle_work);
6669 }
6670
6671 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6672
6673 static void intel_crtc_idle_timer(unsigned long arg)
6674 {
6675         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6676         struct drm_crtc *crtc = &intel_crtc->base;
6677         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6678         struct intel_framebuffer *intel_fb;
6679
6680         intel_fb = to_intel_framebuffer(crtc->fb);
6681         if (intel_fb && intel_fb->obj->active) {
6682                 /* The framebuffer is still being accessed by the GPU. */
6683                 mod_timer(&intel_crtc->idle_timer, jiffies +
6684                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6685                 return;
6686         }
6687
6688         intel_crtc->busy = false;
6689         queue_work(dev_priv->wq, &dev_priv->idle_work);
6690 }
6691
6692 static void intel_increase_pllclock(struct drm_crtc *crtc)
6693 {
6694         struct drm_device *dev = crtc->dev;
6695         drm_i915_private_t *dev_priv = dev->dev_private;
6696         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6697         int pipe = intel_crtc->pipe;
6698         int dpll_reg = DPLL(pipe);
6699         int dpll;
6700
6701         if (HAS_PCH_SPLIT(dev))
6702                 return;
6703
6704         if (!dev_priv->lvds_downclock_avail)
6705                 return;
6706
6707         dpll = I915_READ(dpll_reg);
6708         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6709                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6710
6711                 /* Unlock panel regs */
6712                 I915_WRITE(PP_CONTROL,
6713                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6714
6715                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6716                 I915_WRITE(dpll_reg, dpll);
6717                 intel_wait_for_vblank(dev, pipe);
6718
6719                 dpll = I915_READ(dpll_reg);
6720                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6721                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6722
6723                 /* ...and lock them again */
6724                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6725         }
6726
6727         /* Schedule downclock */
6728         mod_timer(&intel_crtc->idle_timer, jiffies +
6729                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6730 }
6731
6732 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6733 {
6734         struct drm_device *dev = crtc->dev;
6735         drm_i915_private_t *dev_priv = dev->dev_private;
6736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6737         int pipe = intel_crtc->pipe;
6738         int dpll_reg = DPLL(pipe);
6739         int dpll = I915_READ(dpll_reg);
6740
6741         if (HAS_PCH_SPLIT(dev))
6742                 return;
6743
6744         if (!dev_priv->lvds_downclock_avail)
6745                 return;
6746
6747         /*
6748          * Since this is called by a timer, we should never get here in
6749          * the manual case.
6750          */
6751         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6752                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6753
6754                 /* Unlock panel regs */
6755                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6756                            PANEL_UNLOCK_REGS);
6757
6758                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6759                 I915_WRITE(dpll_reg, dpll);
6760                 intel_wait_for_vblank(dev, pipe);
6761                 dpll = I915_READ(dpll_reg);
6762                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6763                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6764
6765                 /* ...and lock them again */
6766                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6767         }
6768
6769 }
6770
6771 /**
6772  * intel_idle_update - adjust clocks for idleness
6773  * @work: work struct
6774  *
6775  * Either the GPU or display (or both) went idle.  Check the busy status
6776  * here and adjust the CRTC and GPU clocks as necessary.
6777  */
6778 static void intel_idle_update(struct work_struct *work)
6779 {
6780         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6781                                                     idle_work);
6782         struct drm_device *dev = dev_priv->dev;
6783         struct drm_crtc *crtc;
6784         struct intel_crtc *intel_crtc;
6785
6786         if (!i915_powersave)
6787                 return;
6788
6789         mutex_lock(&dev->struct_mutex);
6790
6791         i915_update_gfx_val(dev_priv);
6792
6793         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6794                 /* Skip inactive CRTCs */
6795                 if (!crtc->fb)
6796                         continue;
6797
6798                 intel_crtc = to_intel_crtc(crtc);
6799                 if (!intel_crtc->busy)
6800                         intel_decrease_pllclock(crtc);
6801         }
6802
6803
6804         mutex_unlock(&dev->struct_mutex);
6805 }
6806
6807 /**
6808  * intel_mark_busy - mark the GPU and possibly the display busy
6809  * @dev: drm device
6810  * @obj: object we're operating on
6811  *
6812  * Callers can use this function to indicate that the GPU is busy processing
6813  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
6814  * buffer), we'll also mark the display as busy, so we know to increase its
6815  * clock frequency.
6816  */
6817 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6818 {
6819         drm_i915_private_t *dev_priv = dev->dev_private;
6820         struct drm_crtc *crtc = NULL;
6821         struct intel_framebuffer *intel_fb;
6822         struct intel_crtc *intel_crtc;
6823
6824         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6825                 return;
6826
6827         if (!dev_priv->busy)
6828                 dev_priv->busy = true;
6829         else
6830                 mod_timer(&dev_priv->idle_timer, jiffies +
6831                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6832
6833         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6834                 if (!crtc->fb)
6835                         continue;
6836
6837                 intel_crtc = to_intel_crtc(crtc);
6838                 intel_fb = to_intel_framebuffer(crtc->fb);
6839                 if (intel_fb->obj == obj) {
6840                         if (!intel_crtc->busy) {
6841                                 /* Non-busy -> busy, upclock */
6842                                 intel_increase_pllclock(crtc);
6843                                 intel_crtc->busy = true;
6844                         } else {
6845                                 /* Busy -> busy, put off timer */
6846                                 mod_timer(&intel_crtc->idle_timer, jiffies +
6847                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6848                         }
6849                 }
6850         }
6851 }
6852
6853 static void intel_crtc_destroy(struct drm_crtc *crtc)
6854 {
6855         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6856         struct drm_device *dev = crtc->dev;
6857         struct intel_unpin_work *work;
6858         unsigned long flags;
6859
6860         spin_lock_irqsave(&dev->event_lock, flags);
6861         work = intel_crtc->unpin_work;
6862         intel_crtc->unpin_work = NULL;
6863         spin_unlock_irqrestore(&dev->event_lock, flags);
6864
6865         if (work) {
6866                 cancel_work_sync(&work->work);
6867                 kfree(work);
6868         }
6869
6870         drm_crtc_cleanup(crtc);
6871
6872         kfree(intel_crtc);
6873 }
6874
6875 static void intel_unpin_work_fn(struct work_struct *__work)
6876 {
6877         struct intel_unpin_work *work =
6878                 container_of(__work, struct intel_unpin_work, work);
6879
6880         mutex_lock(&work->dev->struct_mutex);
6881         i915_gem_object_unpin(work->old_fb_obj);
6882         drm_gem_object_unreference(&work->pending_flip_obj->base);
6883         drm_gem_object_unreference(&work->old_fb_obj->base);
6884
6885         intel_update_fbc(work->dev);
6886         mutex_unlock(&work->dev->struct_mutex);
6887         kfree(work);
6888 }
6889
6890 static void do_intel_finish_page_flip(struct drm_device *dev,
6891                                       struct drm_crtc *crtc)
6892 {
6893         drm_i915_private_t *dev_priv = dev->dev_private;
6894         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6895         struct intel_unpin_work *work;
6896         struct drm_i915_gem_object *obj;
6897         struct drm_pending_vblank_event *e;
6898         struct timeval tnow, tvbl;
6899         unsigned long flags;
6900
6901         /* Ignore early vblank irqs */
6902         if (intel_crtc == NULL)
6903                 return;
6904
6905         do_gettimeofday(&tnow);
6906
6907         spin_lock_irqsave(&dev->event_lock, flags);
6908         work = intel_crtc->unpin_work;
6909         if (work == NULL || !work->pending) {
6910                 spin_unlock_irqrestore(&dev->event_lock, flags);
6911                 return;
6912         }
6913
6914         intel_crtc->unpin_work = NULL;
6915
6916         if (work->event) {
6917                 e = work->event;
6918                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6919
6920                 /* Called before vblank count and timestamps have
6921                  * been updated for the vblank interval of flip
6922                  * completion? Need to increment vblank count and
6923                  * add one videorefresh duration to returned timestamp
6924                  * to account for this. We assume this happened if we
6925                  * get called over 0.9 frame durations after the last
6926                  * timestamped vblank.
6927                  *
6928                  * This calculation can not be used with vrefresh rates
6929                  * below 5Hz (10Hz to be on the safe side) without
6930                  * promoting to 64 integers.
6931                  */
6932                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6933                     9 * crtc->framedur_ns) {
6934                         e->event.sequence++;
6935                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6936                                              crtc->framedur_ns);
6937                 }
6938
6939                 e->event.tv_sec = tvbl.tv_sec;
6940                 e->event.tv_usec = tvbl.tv_usec;
6941
6942                 list_add_tail(&e->base.link,
6943                               &e->base.file_priv->event_list);
6944                 wake_up_interruptible(&e->base.file_priv->event_wait);
6945         }
6946
6947         drm_vblank_put(dev, intel_crtc->pipe);
6948
6949         spin_unlock_irqrestore(&dev->event_lock, flags);
6950
6951         obj = work->old_fb_obj;
6952
6953         atomic_clear_mask(1 << intel_crtc->plane,
6954                           &obj->pending_flip.counter);
6955         if (atomic_read(&obj->pending_flip) == 0)
6956                 wake_up(&dev_priv->pending_flip_queue);
6957
6958         schedule_work(&work->work);
6959
6960         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6961 }
6962
6963 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6964 {
6965         drm_i915_private_t *dev_priv = dev->dev_private;
6966         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6967
6968         do_intel_finish_page_flip(dev, crtc);
6969 }
6970
6971 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6972 {
6973         drm_i915_private_t *dev_priv = dev->dev_private;
6974         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6975
6976         do_intel_finish_page_flip(dev, crtc);
6977 }
6978
6979 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6980 {
6981         drm_i915_private_t *dev_priv = dev->dev_private;
6982         struct intel_crtc *intel_crtc =
6983                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6984         unsigned long flags;
6985
6986         spin_lock_irqsave(&dev->event_lock, flags);
6987         if (intel_crtc->unpin_work) {
6988                 if ((++intel_crtc->unpin_work->pending) > 1)
6989                         DRM_ERROR("Prepared flip multiple times\n");
6990         } else {
6991                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6992         }
6993         spin_unlock_irqrestore(&dev->event_lock, flags);
6994 }
6995
6996 static int intel_gen2_queue_flip(struct drm_device *dev,
6997                                  struct drm_crtc *crtc,
6998                                  struct drm_framebuffer *fb,
6999                                  struct drm_i915_gem_object *obj)
7000 {
7001         struct drm_i915_private *dev_priv = dev->dev_private;
7002         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7003         unsigned long offset;
7004         u32 flip_mask;
7005         int ret;
7006
7007         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7008         if (ret)
7009                 goto out;
7010
7011         /* Offset into the new buffer for cases of shared fbs between CRTCs */
7012         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
7013
7014         ret = BEGIN_LP_RING(6);
7015         if (ret)
7016                 goto out;
7017
7018         /* Can't queue multiple flips, so wait for the previous
7019          * one to finish before executing the next.
7020          */
7021         if (intel_crtc->plane)
7022                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7023         else
7024                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7025         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7026         OUT_RING(MI_NOOP);
7027         OUT_RING(MI_DISPLAY_FLIP |
7028                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7029         OUT_RING(fb->pitch);
7030         OUT_RING(obj->gtt_offset + offset);
7031         OUT_RING(MI_NOOP);
7032         ADVANCE_LP_RING();
7033 out:
7034         return ret;
7035 }
7036
7037 static int intel_gen3_queue_flip(struct drm_device *dev,
7038                                  struct drm_crtc *crtc,
7039                                  struct drm_framebuffer *fb,
7040                                  struct drm_i915_gem_object *obj)
7041 {
7042         struct drm_i915_private *dev_priv = dev->dev_private;
7043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7044         unsigned long offset;
7045         u32 flip_mask;
7046         int ret;
7047
7048         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7049         if (ret)
7050                 goto out;
7051
7052         /* Offset into the new buffer for cases of shared fbs between CRTCs */
7053         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
7054
7055         ret = BEGIN_LP_RING(6);
7056         if (ret)
7057                 goto out;
7058
7059         if (intel_crtc->plane)
7060                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7061         else
7062                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7063         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7064         OUT_RING(MI_NOOP);
7065         OUT_RING(MI_DISPLAY_FLIP_I915 |
7066                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7067         OUT_RING(fb->pitch);
7068         OUT_RING(obj->gtt_offset + offset);
7069         OUT_RING(MI_NOOP);
7070
7071         ADVANCE_LP_RING();
7072 out:
7073         return ret;
7074 }
7075
7076 static int intel_gen4_queue_flip(struct drm_device *dev,
7077                                  struct drm_crtc *crtc,
7078                                  struct drm_framebuffer *fb,
7079                                  struct drm_i915_gem_object *obj)
7080 {
7081         struct drm_i915_private *dev_priv = dev->dev_private;
7082         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7083         uint32_t pf, pipesrc;
7084         int ret;
7085
7086         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7087         if (ret)
7088                 goto out;
7089
7090         ret = BEGIN_LP_RING(4);
7091         if (ret)
7092                 goto out;
7093
7094         /* i965+ uses the linear or tiled offsets from the
7095          * Display Registers (which do not change across a page-flip)
7096          * so we need only reprogram the base address.
7097          */
7098         OUT_RING(MI_DISPLAY_FLIP |
7099                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7100         OUT_RING(fb->pitch);
7101         OUT_RING(obj->gtt_offset | obj->tiling_mode);
7102
7103         /* XXX Enabling the panel-fitter across page-flip is so far
7104          * untested on non-native modes, so ignore it for now.
7105          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7106          */
7107         pf = 0;
7108         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7109         OUT_RING(pf | pipesrc);
7110         ADVANCE_LP_RING();
7111 out:
7112         return ret;
7113 }
7114
7115 static int intel_gen6_queue_flip(struct drm_device *dev,
7116                                  struct drm_crtc *crtc,
7117                                  struct drm_framebuffer *fb,
7118                                  struct drm_i915_gem_object *obj)
7119 {
7120         struct drm_i915_private *dev_priv = dev->dev_private;
7121         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7122         uint32_t pf, pipesrc;
7123         int ret;
7124
7125         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7126         if (ret)
7127                 goto out;
7128
7129         ret = BEGIN_LP_RING(4);
7130         if (ret)
7131                 goto out;
7132
7133         OUT_RING(MI_DISPLAY_FLIP |
7134                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7135         OUT_RING(fb->pitch | obj->tiling_mode);
7136         OUT_RING(obj->gtt_offset);
7137
7138         pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7139         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7140         OUT_RING(pf | pipesrc);
7141         ADVANCE_LP_RING();
7142 out:
7143         return ret;
7144 }
7145
7146 /*
7147  * On gen7 we currently use the blit ring because (in early silicon at least)
7148  * the render ring doesn't give us interrpts for page flip completion, which
7149  * means clients will hang after the first flip is queued.  Fortunately the
7150  * blit ring generates interrupts properly, so use it instead.
7151  */
7152 static int intel_gen7_queue_flip(struct drm_device *dev,
7153                                  struct drm_crtc *crtc,
7154                                  struct drm_framebuffer *fb,
7155                                  struct drm_i915_gem_object *obj)
7156 {
7157         struct drm_i915_private *dev_priv = dev->dev_private;
7158         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7159         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7160         int ret;
7161
7162         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7163         if (ret)
7164                 goto out;
7165
7166         ret = intel_ring_begin(ring, 4);
7167         if (ret)
7168                 goto out;
7169
7170         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7171         intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
7172         intel_ring_emit(ring, (obj->gtt_offset));
7173         intel_ring_emit(ring, (MI_NOOP));
7174         intel_ring_advance(ring);
7175 out:
7176         return ret;
7177 }
7178
7179 static int intel_default_queue_flip(struct drm_device *dev,
7180                                     struct drm_crtc *crtc,
7181                                     struct drm_framebuffer *fb,
7182                                     struct drm_i915_gem_object *obj)
7183 {
7184         return -ENODEV;
7185 }
7186
7187 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7188                                 struct drm_framebuffer *fb,
7189                                 struct drm_pending_vblank_event *event)
7190 {
7191         struct drm_device *dev = crtc->dev;
7192         struct drm_i915_private *dev_priv = dev->dev_private;
7193         struct intel_framebuffer *intel_fb;
7194         struct drm_i915_gem_object *obj;
7195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7196         struct intel_unpin_work *work;
7197         unsigned long flags;
7198         int ret;
7199
7200         work = kzalloc(sizeof *work, GFP_KERNEL);
7201         if (work == NULL)
7202                 return -ENOMEM;
7203
7204         work->event = event;
7205         work->dev = crtc->dev;
7206         intel_fb = to_intel_framebuffer(crtc->fb);
7207         work->old_fb_obj = intel_fb->obj;
7208         INIT_WORK(&work->work, intel_unpin_work_fn);
7209
7210         ret = drm_vblank_get(dev, intel_crtc->pipe);
7211         if (ret)
7212                 goto free_work;
7213
7214         /* We borrow the event spin lock for protecting unpin_work */
7215         spin_lock_irqsave(&dev->event_lock, flags);
7216         if (intel_crtc->unpin_work) {
7217                 spin_unlock_irqrestore(&dev->event_lock, flags);
7218                 kfree(work);
7219                 drm_vblank_put(dev, intel_crtc->pipe);
7220
7221                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7222                 return -EBUSY;
7223         }
7224         intel_crtc->unpin_work = work;
7225         spin_unlock_irqrestore(&dev->event_lock, flags);
7226
7227         intel_fb = to_intel_framebuffer(fb);
7228         obj = intel_fb->obj;
7229
7230         mutex_lock(&dev->struct_mutex);
7231
7232         /* Reference the objects for the scheduled work. */
7233         drm_gem_object_reference(&work->old_fb_obj->base);
7234         drm_gem_object_reference(&obj->base);
7235
7236         crtc->fb = fb;
7237
7238         work->pending_flip_obj = obj;
7239
7240         work->enable_stall_check = true;
7241
7242         /* Block clients from rendering to the new back buffer until
7243          * the flip occurs and the object is no longer visible.
7244          */
7245         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7246
7247         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7248         if (ret)
7249                 goto cleanup_pending;
7250
7251         intel_disable_fbc(dev);
7252         mutex_unlock(&dev->struct_mutex);
7253
7254         trace_i915_flip_request(intel_crtc->plane, obj);
7255
7256         return 0;
7257
7258 cleanup_pending:
7259         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7260         drm_gem_object_unreference(&work->old_fb_obj->base);
7261         drm_gem_object_unreference(&obj->base);
7262         mutex_unlock(&dev->struct_mutex);
7263
7264         spin_lock_irqsave(&dev->event_lock, flags);
7265         intel_crtc->unpin_work = NULL;
7266         spin_unlock_irqrestore(&dev->event_lock, flags);
7267
7268         drm_vblank_put(dev, intel_crtc->pipe);
7269 free_work:
7270         kfree(work);
7271
7272         return ret;
7273 }
7274
7275 static void intel_sanitize_modesetting(struct drm_device *dev,
7276                                        int pipe, int plane)
7277 {
7278         struct drm_i915_private *dev_priv = dev->dev_private;
7279         u32 reg, val;
7280
7281         if (HAS_PCH_SPLIT(dev))
7282                 return;
7283
7284         /* Who knows what state these registers were left in by the BIOS or
7285          * grub?
7286          *
7287          * If we leave the registers in a conflicting state (e.g. with the
7288          * display plane reading from the other pipe than the one we intend
7289          * to use) then when we attempt to teardown the active mode, we will
7290          * not disable the pipes and planes in the correct order -- leaving
7291          * a plane reading from a disabled pipe and possibly leading to
7292          * undefined behaviour.
7293          */
7294
7295         reg = DSPCNTR(plane);
7296         val = I915_READ(reg);
7297
7298         if ((val & DISPLAY_PLANE_ENABLE) == 0)
7299                 return;
7300         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7301                 return;
7302
7303         /* This display plane is active and attached to the other CPU pipe. */
7304         pipe = !pipe;
7305
7306         /* Disable the plane and wait for it to stop reading from the pipe. */
7307         intel_disable_plane(dev_priv, plane, pipe);
7308         intel_disable_pipe(dev_priv, pipe);
7309 }
7310
7311 static void intel_crtc_reset(struct drm_crtc *crtc)
7312 {
7313         struct drm_device *dev = crtc->dev;
7314         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7315
7316         /* Reset flags back to the 'unknown' status so that they
7317          * will be correctly set on the initial modeset.
7318          */
7319         intel_crtc->dpms_mode = -1;
7320
7321         /* We need to fix up any BIOS configuration that conflicts with
7322          * our expectations.
7323          */
7324         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7325 }
7326
7327 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7328         .dpms = intel_crtc_dpms,
7329         .mode_fixup = intel_crtc_mode_fixup,
7330         .mode_set = intel_crtc_mode_set,
7331         .mode_set_base = intel_pipe_set_base,
7332         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7333         .load_lut = intel_crtc_load_lut,
7334         .disable = intel_crtc_disable,
7335 };
7336
7337 static const struct drm_crtc_funcs intel_crtc_funcs = {
7338         .reset = intel_crtc_reset,
7339         .cursor_set = intel_crtc_cursor_set,
7340         .cursor_move = intel_crtc_cursor_move,
7341         .gamma_set = intel_crtc_gamma_set,
7342         .set_config = drm_crtc_helper_set_config,
7343         .destroy = intel_crtc_destroy,
7344         .page_flip = intel_crtc_page_flip,
7345 };
7346
7347 static void intel_crtc_init(struct drm_device *dev, int pipe)
7348 {
7349         drm_i915_private_t *dev_priv = dev->dev_private;
7350         struct intel_crtc *intel_crtc;
7351         int i;
7352
7353         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7354         if (intel_crtc == NULL)
7355                 return;
7356
7357         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7358
7359         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7360         for (i = 0; i < 256; i++) {
7361                 intel_crtc->lut_r[i] = i;
7362                 intel_crtc->lut_g[i] = i;
7363                 intel_crtc->lut_b[i] = i;
7364         }
7365
7366         /* Swap pipes & planes for FBC on pre-965 */
7367         intel_crtc->pipe = pipe;
7368         intel_crtc->plane = pipe;
7369         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7370                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7371                 intel_crtc->plane = !pipe;
7372         }
7373
7374         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7375                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7376         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7377         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7378
7379         intel_crtc_reset(&intel_crtc->base);
7380         intel_crtc->active = true; /* force the pipe off on setup_init_config */
7381         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7382
7383         if (HAS_PCH_SPLIT(dev)) {
7384                 if (pipe == 2 && IS_IVYBRIDGE(dev))
7385                         intel_crtc->no_pll = true;
7386                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7387                 intel_helper_funcs.commit = ironlake_crtc_commit;
7388         } else {
7389                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7390                 intel_helper_funcs.commit = i9xx_crtc_commit;
7391         }
7392
7393         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7394
7395         intel_crtc->busy = false;
7396
7397         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7398                     (unsigned long)intel_crtc);
7399 }
7400
7401 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7402                                 struct drm_file *file)
7403 {
7404         drm_i915_private_t *dev_priv = dev->dev_private;
7405         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7406         struct drm_mode_object *drmmode_obj;
7407         struct intel_crtc *crtc;
7408
7409         if (!dev_priv) {
7410                 DRM_ERROR("called with no initialization\n");
7411                 return -EINVAL;
7412         }
7413
7414         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7415                         DRM_MODE_OBJECT_CRTC);
7416
7417         if (!drmmode_obj) {
7418                 DRM_ERROR("no such CRTC id\n");
7419                 return -EINVAL;
7420         }
7421
7422         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7423         pipe_from_crtc_id->pipe = crtc->pipe;
7424
7425         return 0;
7426 }
7427
7428 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7429 {
7430         struct intel_encoder *encoder;
7431         int index_mask = 0;
7432         int entry = 0;
7433
7434         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7435                 if (type_mask & encoder->clone_mask)
7436                         index_mask |= (1 << entry);
7437                 entry++;
7438         }
7439
7440         return index_mask;
7441 }
7442
7443 static bool has_edp_a(struct drm_device *dev)
7444 {
7445         struct drm_i915_private *dev_priv = dev->dev_private;
7446
7447         if (!IS_MOBILE(dev))
7448                 return false;
7449
7450         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7451                 return false;
7452
7453         if (IS_GEN5(dev) &&
7454             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7455                 return false;
7456
7457         return true;
7458 }
7459
7460 static void intel_setup_outputs(struct drm_device *dev)
7461 {
7462         struct drm_i915_private *dev_priv = dev->dev_private;
7463         struct intel_encoder *encoder;
7464         bool dpd_is_edp = false;
7465         bool has_lvds = false;
7466
7467         if (IS_MOBILE(dev) && !IS_I830(dev))
7468                 has_lvds = intel_lvds_init(dev);
7469         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7470                 /* disable the panel fitter on everything but LVDS */
7471                 I915_WRITE(PFIT_CONTROL, 0);
7472         }
7473
7474         if (HAS_PCH_SPLIT(dev)) {
7475                 dpd_is_edp = intel_dpd_is_edp(dev);
7476
7477                 if (has_edp_a(dev))
7478                         intel_dp_init(dev, DP_A);
7479
7480                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7481                         intel_dp_init(dev, PCH_DP_D);
7482         }
7483
7484         intel_crt_init(dev);
7485
7486         if (HAS_PCH_SPLIT(dev)) {
7487                 int found;
7488
7489                 if (I915_READ(HDMIB) & PORT_DETECTED) {
7490                         /* PCH SDVOB multiplex with HDMIB */
7491                         found = intel_sdvo_init(dev, PCH_SDVOB);
7492                         if (!found)
7493                                 intel_hdmi_init(dev, HDMIB);
7494                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7495                                 intel_dp_init(dev, PCH_DP_B);
7496                 }
7497
7498                 if (I915_READ(HDMIC) & PORT_DETECTED)
7499                         intel_hdmi_init(dev, HDMIC);
7500
7501                 if (I915_READ(HDMID) & PORT_DETECTED)
7502                         intel_hdmi_init(dev, HDMID);
7503
7504                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7505                         intel_dp_init(dev, PCH_DP_C);
7506
7507                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7508                         intel_dp_init(dev, PCH_DP_D);
7509
7510         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7511                 bool found = false;
7512
7513                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7514                         DRM_DEBUG_KMS("probing SDVOB\n");
7515                         found = intel_sdvo_init(dev, SDVOB);
7516                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7517                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7518                                 intel_hdmi_init(dev, SDVOB);
7519                         }
7520
7521                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7522                                 DRM_DEBUG_KMS("probing DP_B\n");
7523                                 intel_dp_init(dev, DP_B);
7524                         }
7525                 }
7526
7527                 /* Before G4X SDVOC doesn't have its own detect register */
7528
7529                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7530                         DRM_DEBUG_KMS("probing SDVOC\n");
7531                         found = intel_sdvo_init(dev, SDVOC);
7532                 }
7533
7534                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7535
7536                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7537                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7538                                 intel_hdmi_init(dev, SDVOC);
7539                         }
7540                         if (SUPPORTS_INTEGRATED_DP(dev)) {
7541                                 DRM_DEBUG_KMS("probing DP_C\n");
7542                                 intel_dp_init(dev, DP_C);
7543                         }
7544                 }
7545
7546                 if (SUPPORTS_INTEGRATED_DP(dev) &&
7547                     (I915_READ(DP_D) & DP_DETECTED)) {
7548                         DRM_DEBUG_KMS("probing DP_D\n");
7549                         intel_dp_init(dev, DP_D);
7550                 }
7551         } else if (IS_GEN2(dev))
7552                 intel_dvo_init(dev);
7553
7554         if (SUPPORTS_TV(dev))
7555                 intel_tv_init(dev);
7556
7557         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7558                 encoder->base.possible_crtcs = encoder->crtc_mask;
7559                 encoder->base.possible_clones =
7560                         intel_encoder_clones(dev, encoder->clone_mask);
7561         }
7562
7563         /* disable all the possible outputs/crtcs before entering KMS mode */
7564         drm_helper_disable_unused_functions(dev);
7565
7566         if (HAS_PCH_SPLIT(dev))
7567                 ironlake_init_pch_refclk(dev);
7568 }
7569
7570 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7571 {
7572         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7573
7574         drm_framebuffer_cleanup(fb);
7575         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7576
7577         kfree(intel_fb);
7578 }
7579
7580 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7581                                                 struct drm_file *file,
7582                                                 unsigned int *handle)
7583 {
7584         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7585         struct drm_i915_gem_object *obj = intel_fb->obj;
7586
7587         return drm_gem_handle_create(file, &obj->base, handle);
7588 }
7589
7590 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7591         .destroy = intel_user_framebuffer_destroy,
7592         .create_handle = intel_user_framebuffer_create_handle,
7593 };
7594
7595 int intel_framebuffer_init(struct drm_device *dev,
7596                            struct intel_framebuffer *intel_fb,
7597                            struct drm_mode_fb_cmd *mode_cmd,
7598                            struct drm_i915_gem_object *obj)
7599 {
7600         int ret;
7601
7602         if (obj->tiling_mode == I915_TILING_Y)
7603                 return -EINVAL;
7604
7605         if (mode_cmd->pitch & 63)
7606                 return -EINVAL;
7607
7608         switch (mode_cmd->bpp) {
7609         case 8:
7610         case 16:
7611                 /* Only pre-ILK can handle 5:5:5 */
7612                 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7613                         return -EINVAL;
7614                 break;
7615
7616         case 24:
7617         case 32:
7618                 break;
7619         default:
7620                 return -EINVAL;
7621         }
7622
7623         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7624         if (ret) {
7625                 DRM_ERROR("framebuffer init failed %d\n", ret);
7626                 return ret;
7627         }
7628
7629         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7630         intel_fb->obj = obj;
7631         return 0;
7632 }
7633
7634 static struct drm_framebuffer *
7635 intel_user_framebuffer_create(struct drm_device *dev,
7636                               struct drm_file *filp,
7637                               struct drm_mode_fb_cmd *mode_cmd)
7638 {
7639         struct drm_i915_gem_object *obj;
7640
7641         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
7642         if (&obj->base == NULL)
7643                 return ERR_PTR(-ENOENT);
7644
7645         return intel_framebuffer_create(dev, mode_cmd, obj);
7646 }
7647
7648 static const struct drm_mode_config_funcs intel_mode_funcs = {
7649         .fb_create = intel_user_framebuffer_create,
7650         .output_poll_changed = intel_fb_output_poll_changed,
7651 };
7652
7653 static struct drm_i915_gem_object *
7654 intel_alloc_context_page(struct drm_device *dev)
7655 {
7656         struct drm_i915_gem_object *ctx;
7657         int ret;
7658
7659         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7660
7661         ctx = i915_gem_alloc_object(dev, 4096);
7662         if (!ctx) {
7663                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7664                 return NULL;
7665         }
7666
7667         ret = i915_gem_object_pin(ctx, 4096, true);
7668         if (ret) {
7669                 DRM_ERROR("failed to pin power context: %d\n", ret);
7670                 goto err_unref;
7671         }
7672
7673         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7674         if (ret) {
7675                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7676                 goto err_unpin;
7677         }
7678
7679         return ctx;
7680
7681 err_unpin:
7682         i915_gem_object_unpin(ctx);
7683 err_unref:
7684         drm_gem_object_unreference(&ctx->base);
7685         mutex_unlock(&dev->struct_mutex);
7686         return NULL;
7687 }
7688
7689 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7690 {
7691         struct drm_i915_private *dev_priv = dev->dev_private;
7692         u16 rgvswctl;
7693
7694         rgvswctl = I915_READ16(MEMSWCTL);
7695         if (rgvswctl & MEMCTL_CMD_STS) {
7696                 DRM_DEBUG("gpu busy, RCS change rejected\n");
7697                 return false; /* still busy with another command */
7698         }
7699
7700         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7701                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7702         I915_WRITE16(MEMSWCTL, rgvswctl);
7703         POSTING_READ16(MEMSWCTL);
7704
7705         rgvswctl |= MEMCTL_CMD_STS;
7706         I915_WRITE16(MEMSWCTL, rgvswctl);
7707
7708         return true;
7709 }
7710
7711 void ironlake_enable_drps(struct drm_device *dev)
7712 {
7713         struct drm_i915_private *dev_priv = dev->dev_private;
7714         u32 rgvmodectl = I915_READ(MEMMODECTL);
7715         u8 fmax, fmin, fstart, vstart;
7716
7717         /* Enable temp reporting */
7718         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7719         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7720
7721         /* 100ms RC evaluation intervals */
7722         I915_WRITE(RCUPEI, 100000);
7723         I915_WRITE(RCDNEI, 100000);
7724
7725         /* Set max/min thresholds to 90ms and 80ms respectively */
7726         I915_WRITE(RCBMAXAVG, 90000);
7727         I915_WRITE(RCBMINAVG, 80000);
7728
7729         I915_WRITE(MEMIHYST, 1);
7730
7731         /* Set up min, max, and cur for interrupt handling */
7732         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7733         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7734         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7735                 MEMMODE_FSTART_SHIFT;
7736
7737         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7738                 PXVFREQ_PX_SHIFT;
7739
7740         dev_priv->fmax = fmax; /* IPS callback will increase this */
7741         dev_priv->fstart = fstart;
7742
7743         dev_priv->max_delay = fstart;
7744         dev_priv->min_delay = fmin;
7745         dev_priv->cur_delay = fstart;
7746
7747         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7748                          fmax, fmin, fstart);
7749
7750         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7751
7752         /*
7753          * Interrupts will be enabled in ironlake_irq_postinstall
7754          */
7755
7756         I915_WRITE(VIDSTART, vstart);
7757         POSTING_READ(VIDSTART);
7758
7759         rgvmodectl |= MEMMODE_SWMODE_EN;
7760         I915_WRITE(MEMMODECTL, rgvmodectl);
7761
7762         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7763                 DRM_ERROR("stuck trying to change perf mode\n");
7764         msleep(1);
7765
7766         ironlake_set_drps(dev, fstart);
7767
7768         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7769                 I915_READ(0x112e0);
7770         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7771         dev_priv->last_count2 = I915_READ(0x112f4);
7772         getrawmonotonic(&dev_priv->last_time2);
7773 }
7774
7775 void ironlake_disable_drps(struct drm_device *dev)
7776 {
7777         struct drm_i915_private *dev_priv = dev->dev_private;
7778         u16 rgvswctl = I915_READ16(MEMSWCTL);
7779
7780         /* Ack interrupts, disable EFC interrupt */
7781         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7782         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7783         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7784         I915_WRITE(DEIIR, DE_PCU_EVENT);
7785         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7786
7787         /* Go back to the starting frequency */
7788         ironlake_set_drps(dev, dev_priv->fstart);
7789         msleep(1);
7790         rgvswctl |= MEMCTL_CMD_STS;
7791         I915_WRITE(MEMSWCTL, rgvswctl);
7792         msleep(1);
7793
7794 }
7795
7796 void gen6_set_rps(struct drm_device *dev, u8 val)
7797 {
7798         struct drm_i915_private *dev_priv = dev->dev_private;
7799         u32 swreq;
7800
7801         swreq = (val & 0x3ff) << 25;
7802         I915_WRITE(GEN6_RPNSWREQ, swreq);
7803 }
7804
7805 void gen6_disable_rps(struct drm_device *dev)
7806 {
7807         struct drm_i915_private *dev_priv = dev->dev_private;
7808
7809         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7810         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7811         I915_WRITE(GEN6_PMIER, 0);
7812         /* Complete PM interrupt masking here doesn't race with the rps work
7813          * item again unmasking PM interrupts because that is using a different
7814          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
7815          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
7816
7817         spin_lock_irq(&dev_priv->rps_lock);
7818         dev_priv->pm_iir = 0;
7819         spin_unlock_irq(&dev_priv->rps_lock);
7820
7821         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7822 }
7823
7824 static unsigned long intel_pxfreq(u32 vidfreq)
7825 {
7826         unsigned long freq;
7827         int div = (vidfreq & 0x3f0000) >> 16;
7828         int post = (vidfreq & 0x3000) >> 12;
7829         int pre = (vidfreq & 0x7);
7830
7831         if (!pre)
7832                 return 0;
7833
7834         freq = ((div * 133333) / ((1<<post) * pre));
7835
7836         return freq;
7837 }
7838
7839 void intel_init_emon(struct drm_device *dev)
7840 {
7841         struct drm_i915_private *dev_priv = dev->dev_private;
7842         u32 lcfuse;
7843         u8 pxw[16];
7844         int i;
7845
7846         /* Disable to program */
7847         I915_WRITE(ECR, 0);
7848         POSTING_READ(ECR);
7849
7850         /* Program energy weights for various events */
7851         I915_WRITE(SDEW, 0x15040d00);
7852         I915_WRITE(CSIEW0, 0x007f0000);
7853         I915_WRITE(CSIEW1, 0x1e220004);
7854         I915_WRITE(CSIEW2, 0x04000004);
7855
7856         for (i = 0; i < 5; i++)
7857                 I915_WRITE(PEW + (i * 4), 0);
7858         for (i = 0; i < 3; i++)
7859                 I915_WRITE(DEW + (i * 4), 0);
7860
7861         /* Program P-state weights to account for frequency power adjustment */
7862         for (i = 0; i < 16; i++) {
7863                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7864                 unsigned long freq = intel_pxfreq(pxvidfreq);
7865                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7866                         PXVFREQ_PX_SHIFT;
7867                 unsigned long val;
7868
7869                 val = vid * vid;
7870                 val *= (freq / 1000);
7871                 val *= 255;
7872                 val /= (127*127*900);
7873                 if (val > 0xff)
7874                         DRM_ERROR("bad pxval: %ld\n", val);
7875                 pxw[i] = val;
7876         }
7877         /* Render standby states get 0 weight */
7878         pxw[14] = 0;
7879         pxw[15] = 0;
7880
7881         for (i = 0; i < 4; i++) {
7882                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7883                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7884                 I915_WRITE(PXW + (i * 4), val);
7885         }
7886
7887         /* Adjust magic regs to magic values (more experimental results) */
7888         I915_WRITE(OGW0, 0);
7889         I915_WRITE(OGW1, 0);
7890         I915_WRITE(EG0, 0x00007f00);
7891         I915_WRITE(EG1, 0x0000000e);
7892         I915_WRITE(EG2, 0x000e0000);
7893         I915_WRITE(EG3, 0x68000300);
7894         I915_WRITE(EG4, 0x42000000);
7895         I915_WRITE(EG5, 0x00140031);
7896         I915_WRITE(EG6, 0);
7897         I915_WRITE(EG7, 0);
7898
7899         for (i = 0; i < 8; i++)
7900                 I915_WRITE(PXWL + (i * 4), 0);
7901
7902         /* Enable PMON + select events */
7903         I915_WRITE(ECR, 0x80000019);
7904
7905         lcfuse = I915_READ(LCFUSE02);
7906
7907         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7908 }
7909
7910 static bool intel_enable_rc6(struct drm_device *dev)
7911 {
7912         /*
7913          * Respect the kernel parameter if it is set
7914          */
7915         if (i915_enable_rc6 >= 0)
7916                 return i915_enable_rc6;
7917
7918         /*
7919          * Disable RC6 on Ironlake
7920          */
7921         if (INTEL_INFO(dev)->gen == 5)
7922                 return 0;
7923
7924         /*
7925          * Enable rc6 on Sandybridge if DMA remapping is disabled
7926          */
7927         if (INTEL_INFO(dev)->gen == 6) {
7928                 DRM_DEBUG_DRIVER("Sandybridge: intel_iommu_enabled %s -- RC6 %sabled\n",
7929                                  intel_iommu_enabled ? "true" : "false",
7930                                  !intel_iommu_enabled ? "en" : "dis");
7931                 return !intel_iommu_enabled;
7932         }
7933         DRM_DEBUG_DRIVER("RC6 enabled\n");
7934         return 1;
7935 }
7936
7937 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7938 {
7939         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7940         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7941         u32 pcu_mbox, rc6_mask = 0;
7942         int cur_freq, min_freq, max_freq;
7943         int i;
7944
7945         /* Here begins a magic sequence of register writes to enable
7946          * auto-downclocking.
7947          *
7948          * Perhaps there might be some value in exposing these to
7949          * userspace...
7950          */
7951         I915_WRITE(GEN6_RC_STATE, 0);
7952         mutex_lock(&dev_priv->dev->struct_mutex);
7953         gen6_gt_force_wake_get(dev_priv);
7954
7955         /* disable the counters and set deterministic thresholds */
7956         I915_WRITE(GEN6_RC_CONTROL, 0);
7957
7958         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7959         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7960         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7961         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7962         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7963
7964         for (i = 0; i < I915_NUM_RINGS; i++)
7965                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7966
7967         I915_WRITE(GEN6_RC_SLEEP, 0);
7968         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7969         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7970         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7971         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7972
7973         if (intel_enable_rc6(dev_priv->dev))
7974                 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7975                         GEN6_RC_CTL_RC6_ENABLE;
7976
7977         I915_WRITE(GEN6_RC_CONTROL,
7978                    rc6_mask |
7979                    GEN6_RC_CTL_EI_MODE(1) |
7980                    GEN6_RC_CTL_HW_ENABLE);
7981
7982         I915_WRITE(GEN6_RPNSWREQ,
7983                    GEN6_FREQUENCY(10) |
7984                    GEN6_OFFSET(0) |
7985                    GEN6_AGGRESSIVE_TURBO);
7986         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7987                    GEN6_FREQUENCY(12));
7988
7989         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7990         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7991                    18 << 24 |
7992                    6 << 16);
7993         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7994         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7995         I915_WRITE(GEN6_RP_UP_EI, 100000);
7996         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7997         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7998         I915_WRITE(GEN6_RP_CONTROL,
7999                    GEN6_RP_MEDIA_TURBO |
8000                    GEN6_RP_USE_NORMAL_FREQ |
8001                    GEN6_RP_MEDIA_IS_GFX |
8002                    GEN6_RP_ENABLE |
8003                    GEN6_RP_UP_BUSY_AVG |
8004                    GEN6_RP_DOWN_IDLE_CONT);
8005
8006         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8007                      500))
8008                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8009
8010         I915_WRITE(GEN6_PCODE_DATA, 0);
8011         I915_WRITE(GEN6_PCODE_MAILBOX,
8012                    GEN6_PCODE_READY |
8013                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8014         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8015                      500))
8016                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8017
8018         min_freq = (rp_state_cap & 0xff0000) >> 16;
8019         max_freq = rp_state_cap & 0xff;
8020         cur_freq = (gt_perf_status & 0xff00) >> 8;
8021
8022         /* Check for overclock support */
8023         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8024                      500))
8025                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8026         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8027         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8028         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8029                      500))
8030                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8031         if (pcu_mbox & (1<<31)) { /* OC supported */
8032                 max_freq = pcu_mbox & 0xff;
8033                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8034         }
8035
8036         /* In units of 100MHz */
8037         dev_priv->max_delay = max_freq;
8038         dev_priv->min_delay = min_freq;
8039         dev_priv->cur_delay = cur_freq;
8040
8041         /* requires MSI enabled */
8042         I915_WRITE(GEN6_PMIER,
8043                    GEN6_PM_MBOX_EVENT |
8044                    GEN6_PM_THERMAL_EVENT |
8045                    GEN6_PM_RP_DOWN_TIMEOUT |
8046                    GEN6_PM_RP_UP_THRESHOLD |
8047                    GEN6_PM_RP_DOWN_THRESHOLD |
8048                    GEN6_PM_RP_UP_EI_EXPIRED |
8049                    GEN6_PM_RP_DOWN_EI_EXPIRED);
8050         spin_lock_irq(&dev_priv->rps_lock);
8051         WARN_ON(dev_priv->pm_iir != 0);
8052         I915_WRITE(GEN6_PMIMR, 0);
8053         spin_unlock_irq(&dev_priv->rps_lock);
8054         /* enable all PM interrupts */
8055         I915_WRITE(GEN6_PMINTRMSK, 0);
8056
8057         gen6_gt_force_wake_put(dev_priv);
8058         mutex_unlock(&dev_priv->dev->struct_mutex);
8059 }
8060
8061 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8062 {
8063         int min_freq = 15;
8064         int gpu_freq, ia_freq, max_ia_freq;
8065         int scaling_factor = 180;
8066
8067         max_ia_freq = cpufreq_quick_get_max(0);
8068         /*
8069          * Default to measured freq if none found, PCU will ensure we don't go
8070          * over
8071          */
8072         if (!max_ia_freq)
8073                 max_ia_freq = tsc_khz;
8074
8075         /* Convert from kHz to MHz */
8076         max_ia_freq /= 1000;
8077
8078         mutex_lock(&dev_priv->dev->struct_mutex);
8079
8080         /*
8081          * For each potential GPU frequency, load a ring frequency we'd like
8082          * to use for memory access.  We do this by specifying the IA frequency
8083          * the PCU should use as a reference to determine the ring frequency.
8084          */
8085         for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8086              gpu_freq--) {
8087                 int diff = dev_priv->max_delay - gpu_freq;
8088
8089                 /*
8090                  * For GPU frequencies less than 750MHz, just use the lowest
8091                  * ring freq.
8092                  */
8093                 if (gpu_freq < min_freq)
8094                         ia_freq = 800;
8095                 else
8096                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8097                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8098
8099                 I915_WRITE(GEN6_PCODE_DATA,
8100                            (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8101                            gpu_freq);
8102                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8103                            GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8104                 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8105                               GEN6_PCODE_READY) == 0, 10)) {
8106                         DRM_ERROR("pcode write of freq table timed out\n");
8107                         continue;
8108                 }
8109         }
8110
8111         mutex_unlock(&dev_priv->dev->struct_mutex);
8112 }
8113
8114 static void ironlake_init_clock_gating(struct drm_device *dev)
8115 {
8116         struct drm_i915_private *dev_priv = dev->dev_private;
8117         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8118
8119         /* Required for FBC */
8120         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8121                 DPFCRUNIT_CLOCK_GATE_DISABLE |
8122                 DPFDUNIT_CLOCK_GATE_DISABLE;
8123         /* Required for CxSR */
8124         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8125
8126         I915_WRITE(PCH_3DCGDIS0,
8127                    MARIUNIT_CLOCK_GATE_DISABLE |
8128                    SVSMUNIT_CLOCK_GATE_DISABLE);
8129         I915_WRITE(PCH_3DCGDIS1,
8130                    VFMUNIT_CLOCK_GATE_DISABLE);
8131
8132         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8133
8134         /*
8135          * According to the spec the following bits should be set in
8136          * order to enable memory self-refresh
8137          * The bit 22/21 of 0x42004
8138          * The bit 5 of 0x42020
8139          * The bit 15 of 0x45000
8140          */
8141         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8142                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8143                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8144         I915_WRITE(ILK_DSPCLK_GATE,
8145                    (I915_READ(ILK_DSPCLK_GATE) |
8146                     ILK_DPARB_CLK_GATE));
8147         I915_WRITE(DISP_ARB_CTL,
8148                    (I915_READ(DISP_ARB_CTL) |
8149                     DISP_FBC_WM_DIS));
8150         I915_WRITE(WM3_LP_ILK, 0);
8151         I915_WRITE(WM2_LP_ILK, 0);
8152         I915_WRITE(WM1_LP_ILK, 0);
8153
8154         /*
8155          * Based on the document from hardware guys the following bits
8156          * should be set unconditionally in order to enable FBC.
8157          * The bit 22 of 0x42000
8158          * The bit 22 of 0x42004
8159          * The bit 7,8,9 of 0x42020.
8160          */
8161         if (IS_IRONLAKE_M(dev)) {
8162                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8163                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8164                            ILK_FBCQ_DIS);
8165                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8166                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8167                            ILK_DPARB_GATE);
8168                 I915_WRITE(ILK_DSPCLK_GATE,
8169                            I915_READ(ILK_DSPCLK_GATE) |
8170                            ILK_DPFC_DIS1 |
8171                            ILK_DPFC_DIS2 |
8172                            ILK_CLK_FBC);
8173         }
8174
8175         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8176                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8177                    ILK_ELPIN_409_SELECT);
8178         I915_WRITE(_3D_CHICKEN2,
8179                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8180                    _3D_CHICKEN2_WM_READ_PIPELINED);
8181 }
8182
8183 static void gen6_init_clock_gating(struct drm_device *dev)
8184 {
8185         struct drm_i915_private *dev_priv = dev->dev_private;
8186         int pipe;
8187         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8188
8189         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8190
8191         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8192                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8193                    ILK_ELPIN_409_SELECT);
8194
8195         I915_WRITE(WM3_LP_ILK, 0);
8196         I915_WRITE(WM2_LP_ILK, 0);
8197         I915_WRITE(WM1_LP_ILK, 0);
8198
8199         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8200          * gating disable must be set.  Failure to set it results in
8201          * flickering pixels due to Z write ordering failures after
8202          * some amount of runtime in the Mesa "fire" demo, and Unigine
8203          * Sanctuary and Tropics, and apparently anything else with
8204          * alpha test or pixel discard.
8205          *
8206          * According to the spec, bit 11 (RCCUNIT) must also be set,
8207          * but we didn't debug actual testcases to find it out.
8208          */
8209         I915_WRITE(GEN6_UCGCTL2,
8210                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8211                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8212
8213         /*
8214          * According to the spec the following bits should be
8215          * set in order to enable memory self-refresh and fbc:
8216          * The bit21 and bit22 of 0x42000
8217          * The bit21 and bit22 of 0x42004
8218          * The bit5 and bit7 of 0x42020
8219          * The bit14 of 0x70180
8220          * The bit14 of 0x71180
8221          */
8222         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8223                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8224                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8225         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8226                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8227                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8228         I915_WRITE(ILK_DSPCLK_GATE,
8229                    I915_READ(ILK_DSPCLK_GATE) |
8230                    ILK_DPARB_CLK_GATE  |
8231                    ILK_DPFD_CLK_GATE);
8232
8233         for_each_pipe(pipe) {
8234                 I915_WRITE(DSPCNTR(pipe),
8235                            I915_READ(DSPCNTR(pipe)) |
8236                            DISPPLANE_TRICKLE_FEED_DISABLE);
8237                 intel_flush_display_plane(dev_priv, pipe);
8238         }
8239 }
8240
8241 static void ivybridge_init_clock_gating(struct drm_device *dev)
8242 {
8243         struct drm_i915_private *dev_priv = dev->dev_private;
8244         int pipe;
8245         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8246
8247         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8248
8249         I915_WRITE(WM3_LP_ILK, 0);
8250         I915_WRITE(WM2_LP_ILK, 0);
8251         I915_WRITE(WM1_LP_ILK, 0);
8252
8253         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8254
8255         for_each_pipe(pipe) {
8256                 I915_WRITE(DSPCNTR(pipe),
8257                            I915_READ(DSPCNTR(pipe)) |
8258                            DISPPLANE_TRICKLE_FEED_DISABLE);
8259                 intel_flush_display_plane(dev_priv, pipe);
8260         }
8261 }
8262
8263 static void g4x_init_clock_gating(struct drm_device *dev)
8264 {
8265         struct drm_i915_private *dev_priv = dev->dev_private;
8266         uint32_t dspclk_gate;
8267
8268         I915_WRITE(RENCLK_GATE_D1, 0);
8269         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8270                    GS_UNIT_CLOCK_GATE_DISABLE |
8271                    CL_UNIT_CLOCK_GATE_DISABLE);
8272         I915_WRITE(RAMCLK_GATE_D, 0);
8273         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8274                 OVRUNIT_CLOCK_GATE_DISABLE |
8275                 OVCUNIT_CLOCK_GATE_DISABLE;
8276         if (IS_GM45(dev))
8277                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8278         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8279 }
8280
8281 static void crestline_init_clock_gating(struct drm_device *dev)
8282 {
8283         struct drm_i915_private *dev_priv = dev->dev_private;
8284
8285         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8286         I915_WRITE(RENCLK_GATE_D2, 0);
8287         I915_WRITE(DSPCLK_GATE_D, 0);
8288         I915_WRITE(RAMCLK_GATE_D, 0);
8289         I915_WRITE16(DEUC, 0);
8290 }
8291
8292 static void broadwater_init_clock_gating(struct drm_device *dev)
8293 {
8294         struct drm_i915_private *dev_priv = dev->dev_private;
8295
8296         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8297                    I965_RCC_CLOCK_GATE_DISABLE |
8298                    I965_RCPB_CLOCK_GATE_DISABLE |
8299                    I965_ISC_CLOCK_GATE_DISABLE |
8300                    I965_FBC_CLOCK_GATE_DISABLE);
8301         I915_WRITE(RENCLK_GATE_D2, 0);
8302 }
8303
8304 static void gen3_init_clock_gating(struct drm_device *dev)
8305 {
8306         struct drm_i915_private *dev_priv = dev->dev_private;
8307         u32 dstate = I915_READ(D_STATE);
8308
8309         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8310                 DSTATE_DOT_CLOCK_GATING;
8311         I915_WRITE(D_STATE, dstate);
8312 }
8313
8314 static void i85x_init_clock_gating(struct drm_device *dev)
8315 {
8316         struct drm_i915_private *dev_priv = dev->dev_private;
8317
8318         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8319 }
8320
8321 static void i830_init_clock_gating(struct drm_device *dev)
8322 {
8323         struct drm_i915_private *dev_priv = dev->dev_private;
8324
8325         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8326 }
8327
8328 static void ibx_init_clock_gating(struct drm_device *dev)
8329 {
8330         struct drm_i915_private *dev_priv = dev->dev_private;
8331
8332         /*
8333          * On Ibex Peak and Cougar Point, we need to disable clock
8334          * gating for the panel power sequencer or it will fail to
8335          * start up when no ports are active.
8336          */
8337         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8338 }
8339
8340 static void cpt_init_clock_gating(struct drm_device *dev)
8341 {
8342         struct drm_i915_private *dev_priv = dev->dev_private;
8343         int pipe;
8344
8345         /*
8346          * On Ibex Peak and Cougar Point, we need to disable clock
8347          * gating for the panel power sequencer or it will fail to
8348          * start up when no ports are active.
8349          */
8350         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8351         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8352                    DPLS_EDP_PPS_FIX_DIS);
8353         /* Without this, mode sets may fail silently on FDI */
8354         for_each_pipe(pipe)
8355                 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8356 }
8357
8358 static void ironlake_teardown_rc6(struct drm_device *dev)
8359 {
8360         struct drm_i915_private *dev_priv = dev->dev_private;
8361
8362         if (dev_priv->renderctx) {
8363                 i915_gem_object_unpin(dev_priv->renderctx);
8364                 drm_gem_object_unreference(&dev_priv->renderctx->base);
8365                 dev_priv->renderctx = NULL;
8366         }
8367
8368         if (dev_priv->pwrctx) {
8369                 i915_gem_object_unpin(dev_priv->pwrctx);
8370                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8371                 dev_priv->pwrctx = NULL;
8372         }
8373 }
8374
8375 static void ironlake_disable_rc6(struct drm_device *dev)
8376 {
8377         struct drm_i915_private *dev_priv = dev->dev_private;
8378
8379         if (I915_READ(PWRCTXA)) {
8380                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8381                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8382                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8383                          50);
8384
8385                 I915_WRITE(PWRCTXA, 0);
8386                 POSTING_READ(PWRCTXA);
8387
8388                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8389                 POSTING_READ(RSTDBYCTL);
8390         }
8391
8392         ironlake_teardown_rc6(dev);
8393 }
8394
8395 static int ironlake_setup_rc6(struct drm_device *dev)
8396 {
8397         struct drm_i915_private *dev_priv = dev->dev_private;
8398
8399         if (dev_priv->renderctx == NULL)
8400                 dev_priv->renderctx = intel_alloc_context_page(dev);
8401         if (!dev_priv->renderctx)
8402                 return -ENOMEM;
8403
8404         if (dev_priv->pwrctx == NULL)
8405                 dev_priv->pwrctx = intel_alloc_context_page(dev);
8406         if (!dev_priv->pwrctx) {
8407                 ironlake_teardown_rc6(dev);
8408                 return -ENOMEM;
8409         }
8410
8411         return 0;
8412 }
8413
8414 void ironlake_enable_rc6(struct drm_device *dev)
8415 {
8416         struct drm_i915_private *dev_priv = dev->dev_private;
8417         int ret;
8418
8419         /* rc6 disabled by default due to repeated reports of hanging during
8420          * boot and resume.
8421          */
8422         if (!intel_enable_rc6(dev))
8423                 return;
8424
8425         mutex_lock(&dev->struct_mutex);
8426         ret = ironlake_setup_rc6(dev);
8427         if (ret) {
8428                 mutex_unlock(&dev->struct_mutex);
8429                 return;
8430         }
8431
8432         /*
8433          * GPU can automatically power down the render unit if given a page
8434          * to save state.
8435          */
8436         ret = BEGIN_LP_RING(6);
8437         if (ret) {
8438                 ironlake_teardown_rc6(dev);
8439                 mutex_unlock(&dev->struct_mutex);
8440                 return;
8441         }
8442
8443         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8444         OUT_RING(MI_SET_CONTEXT);
8445         OUT_RING(dev_priv->renderctx->gtt_offset |
8446                  MI_MM_SPACE_GTT |
8447                  MI_SAVE_EXT_STATE_EN |
8448                  MI_RESTORE_EXT_STATE_EN |
8449                  MI_RESTORE_INHIBIT);
8450         OUT_RING(MI_SUSPEND_FLUSH);
8451         OUT_RING(MI_NOOP);
8452         OUT_RING(MI_FLUSH);
8453         ADVANCE_LP_RING();
8454
8455         /*
8456          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8457          * does an implicit flush, combined with MI_FLUSH above, it should be
8458          * safe to assume that renderctx is valid
8459          */
8460         ret = intel_wait_ring_idle(LP_RING(dev_priv));
8461         if (ret) {
8462                 DRM_ERROR("failed to enable ironlake power power savings\n");
8463                 ironlake_teardown_rc6(dev);
8464                 mutex_unlock(&dev->struct_mutex);
8465                 return;
8466         }
8467
8468         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8469         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8470         mutex_unlock(&dev->struct_mutex);
8471 }
8472
8473 void intel_init_clock_gating(struct drm_device *dev)
8474 {
8475         struct drm_i915_private *dev_priv = dev->dev_private;
8476
8477         dev_priv->display.init_clock_gating(dev);
8478
8479         if (dev_priv->display.init_pch_clock_gating)
8480                 dev_priv->display.init_pch_clock_gating(dev);
8481 }
8482
8483 /* Set up chip specific display functions */
8484 static void intel_init_display(struct drm_device *dev)
8485 {
8486         struct drm_i915_private *dev_priv = dev->dev_private;
8487
8488         /* We always want a DPMS function */
8489         if (HAS_PCH_SPLIT(dev)) {
8490                 dev_priv->display.dpms = ironlake_crtc_dpms;
8491                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8492                 dev_priv->display.update_plane = ironlake_update_plane;
8493         } else {
8494                 dev_priv->display.dpms = i9xx_crtc_dpms;
8495                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8496                 dev_priv->display.update_plane = i9xx_update_plane;
8497         }
8498
8499         if (I915_HAS_FBC(dev)) {
8500                 if (HAS_PCH_SPLIT(dev)) {
8501                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8502                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
8503                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
8504                 } else if (IS_GM45(dev)) {
8505                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8506                         dev_priv->display.enable_fbc = g4x_enable_fbc;
8507                         dev_priv->display.disable_fbc = g4x_disable_fbc;
8508                 } else if (IS_CRESTLINE(dev)) {
8509                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8510                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
8511                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
8512                 }
8513                 /* 855GM needs testing */
8514         }
8515
8516         /* Returns the core display clock speed */
8517         if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8518                 dev_priv->display.get_display_clock_speed =
8519                         i945_get_display_clock_speed;
8520         else if (IS_I915G(dev))
8521                 dev_priv->display.get_display_clock_speed =
8522                         i915_get_display_clock_speed;
8523         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8524                 dev_priv->display.get_display_clock_speed =
8525                         i9xx_misc_get_display_clock_speed;
8526         else if (IS_I915GM(dev))
8527                 dev_priv->display.get_display_clock_speed =
8528                         i915gm_get_display_clock_speed;
8529         else if (IS_I865G(dev))
8530                 dev_priv->display.get_display_clock_speed =
8531                         i865_get_display_clock_speed;
8532         else if (IS_I85X(dev))
8533                 dev_priv->display.get_display_clock_speed =
8534                         i855_get_display_clock_speed;
8535         else /* 852, 830 */
8536                 dev_priv->display.get_display_clock_speed =
8537                         i830_get_display_clock_speed;
8538
8539         /* For FIFO watermark updates */
8540         if (HAS_PCH_SPLIT(dev)) {
8541                 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
8542                 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
8543
8544                 /* IVB configs may use multi-threaded forcewake */
8545                 if (IS_IVYBRIDGE(dev)) {
8546                         u32     ecobus;
8547
8548                         mutex_lock(&dev->struct_mutex);
8549                         __gen6_gt_force_wake_mt_get(dev_priv);
8550                         ecobus = I915_READ(ECOBUS);
8551                         __gen6_gt_force_wake_mt_put(dev_priv);
8552                         mutex_unlock(&dev->struct_mutex);
8553
8554                         if (ecobus & FORCEWAKE_MT_ENABLE) {
8555                                 DRM_DEBUG_KMS("Using MT version of forcewake\n");
8556                                 dev_priv->display.force_wake_get =
8557                                         __gen6_gt_force_wake_mt_get;
8558                                 dev_priv->display.force_wake_put =
8559                                         __gen6_gt_force_wake_mt_put;
8560                         }
8561                 }
8562
8563                 if (HAS_PCH_IBX(dev))
8564                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8565                 else if (HAS_PCH_CPT(dev))
8566                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8567
8568                 if (IS_GEN5(dev)) {
8569                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8570                                 dev_priv->display.update_wm = ironlake_update_wm;
8571                         else {
8572                                 DRM_DEBUG_KMS("Failed to get proper latency. "
8573                                               "Disable CxSR\n");
8574                                 dev_priv->display.update_wm = NULL;
8575                         }
8576                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8577                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8578                         dev_priv->display.write_eld = ironlake_write_eld;
8579                 } else if (IS_GEN6(dev)) {
8580                         if (SNB_READ_WM0_LATENCY()) {
8581                                 dev_priv->display.update_wm = sandybridge_update_wm;
8582                         } else {
8583                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8584                                               "Disable CxSR\n");
8585                                 dev_priv->display.update_wm = NULL;
8586                         }
8587                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8588                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8589                         dev_priv->display.write_eld = ironlake_write_eld;
8590                 } else if (IS_IVYBRIDGE(dev)) {
8591                         /* FIXME: detect B0+ stepping and use auto training */
8592                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8593                         if (SNB_READ_WM0_LATENCY()) {
8594                                 dev_priv->display.update_wm = sandybridge_update_wm;
8595                         } else {
8596                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8597                                               "Disable CxSR\n");
8598                                 dev_priv->display.update_wm = NULL;
8599                         }
8600                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8601                         dev_priv->display.write_eld = ironlake_write_eld;
8602                 } else
8603                         dev_priv->display.update_wm = NULL;
8604         } else if (IS_PINEVIEW(dev)) {
8605                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8606                                             dev_priv->is_ddr3,
8607                                             dev_priv->fsb_freq,
8608                                             dev_priv->mem_freq)) {
8609                         DRM_INFO("failed to find known CxSR latency "
8610                                  "(found ddr%s fsb freq %d, mem freq %d), "
8611                                  "disabling CxSR\n",
8612                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
8613                                  dev_priv->fsb_freq, dev_priv->mem_freq);
8614                         /* Disable CxSR and never update its watermark again */
8615                         pineview_disable_cxsr(dev);
8616                         dev_priv->display.update_wm = NULL;
8617                 } else
8618                         dev_priv->display.update_wm = pineview_update_wm;
8619                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8620         } else if (IS_G4X(dev)) {
8621                 dev_priv->display.write_eld = g4x_write_eld;
8622                 dev_priv->display.update_wm = g4x_update_wm;
8623                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8624         } else if (IS_GEN4(dev)) {
8625                 dev_priv->display.update_wm = i965_update_wm;
8626                 if (IS_CRESTLINE(dev))
8627                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8628                 else if (IS_BROADWATER(dev))
8629                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8630         } else if (IS_GEN3(dev)) {
8631                 dev_priv->display.update_wm = i9xx_update_wm;
8632                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8633                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8634         } else if (IS_I865G(dev)) {
8635                 dev_priv->display.update_wm = i830_update_wm;
8636                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8637                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8638         } else if (IS_I85X(dev)) {
8639                 dev_priv->display.update_wm = i9xx_update_wm;
8640                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8641                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8642         } else {
8643                 dev_priv->display.update_wm = i830_update_wm;
8644                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8645                 if (IS_845G(dev))
8646                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
8647                 else
8648                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
8649         }
8650
8651         /* Default just returns -ENODEV to indicate unsupported */
8652         dev_priv->display.queue_flip = intel_default_queue_flip;
8653
8654         switch (INTEL_INFO(dev)->gen) {
8655         case 2:
8656                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8657                 break;
8658
8659         case 3:
8660                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8661                 break;
8662
8663         case 4:
8664         case 5:
8665                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8666                 break;
8667
8668         case 6:
8669                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8670                 break;
8671         case 7:
8672                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8673                 break;
8674         }
8675 }
8676
8677 /*
8678  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8679  * resume, or other times.  This quirk makes sure that's the case for
8680  * affected systems.
8681  */
8682 static void quirk_pipea_force(struct drm_device *dev)
8683 {
8684         struct drm_i915_private *dev_priv = dev->dev_private;
8685
8686         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8687         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8688 }
8689
8690 /*
8691  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8692  */
8693 static void quirk_ssc_force_disable(struct drm_device *dev)
8694 {
8695         struct drm_i915_private *dev_priv = dev->dev_private;
8696         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8697 }
8698
8699 struct intel_quirk {
8700         int device;
8701         int subsystem_vendor;
8702         int subsystem_device;
8703         void (*hook)(struct drm_device *dev);
8704 };
8705
8706 struct intel_quirk intel_quirks[] = {
8707         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8708         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8709         /* HP Mini needs pipe A force quirk (LP: #322104) */
8710         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8711
8712         /* Thinkpad R31 needs pipe A force quirk */
8713         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8714         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8715         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8716
8717         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8718         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
8719         /* ThinkPad X40 needs pipe A force quirk */
8720
8721         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8722         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8723
8724         /* 855 & before need to leave pipe A & dpll A up */
8725         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8726         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8727
8728         /* Lenovo U160 cannot use SSC on LVDS */
8729         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8730
8731         /* Sony Vaio Y cannot use SSC on LVDS */
8732         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8733 };
8734
8735 static void intel_init_quirks(struct drm_device *dev)
8736 {
8737         struct pci_dev *d = dev->pdev;
8738         int i;
8739
8740         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8741                 struct intel_quirk *q = &intel_quirks[i];
8742
8743                 if (d->device == q->device &&
8744                     (d->subsystem_vendor == q->subsystem_vendor ||
8745                      q->subsystem_vendor == PCI_ANY_ID) &&
8746                     (d->subsystem_device == q->subsystem_device ||
8747                      q->subsystem_device == PCI_ANY_ID))
8748                         q->hook(dev);
8749         }
8750 }
8751
8752 /* Disable the VGA plane that we never use */
8753 static void i915_disable_vga(struct drm_device *dev)
8754 {
8755         struct drm_i915_private *dev_priv = dev->dev_private;
8756         u8 sr1;
8757         u32 vga_reg;
8758
8759         if (HAS_PCH_SPLIT(dev))
8760                 vga_reg = CPU_VGACNTRL;
8761         else
8762                 vga_reg = VGACNTRL;
8763
8764         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8765         outb(1, VGA_SR_INDEX);
8766         sr1 = inb(VGA_SR_DATA);
8767         outb(sr1 | 1<<5, VGA_SR_DATA);
8768         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8769         udelay(300);
8770
8771         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8772         POSTING_READ(vga_reg);
8773 }
8774
8775 void intel_modeset_init(struct drm_device *dev)
8776 {
8777         struct drm_i915_private *dev_priv = dev->dev_private;
8778         int i;
8779
8780         drm_mode_config_init(dev);
8781
8782         dev->mode_config.min_width = 0;
8783         dev->mode_config.min_height = 0;
8784
8785         dev->mode_config.funcs = (void *)&intel_mode_funcs;
8786
8787         intel_init_quirks(dev);
8788
8789         intel_init_display(dev);
8790
8791         if (IS_GEN2(dev)) {
8792                 dev->mode_config.max_width = 2048;
8793                 dev->mode_config.max_height = 2048;
8794         } else if (IS_GEN3(dev)) {
8795                 dev->mode_config.max_width = 4096;
8796                 dev->mode_config.max_height = 4096;
8797         } else {
8798                 dev->mode_config.max_width = 8192;
8799                 dev->mode_config.max_height = 8192;
8800         }
8801         dev->mode_config.fb_base = dev->agp->base;
8802
8803         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8804                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8805
8806         for (i = 0; i < dev_priv->num_pipe; i++) {
8807                 intel_crtc_init(dev, i);
8808         }
8809
8810         /* Just disable it once at startup */
8811         i915_disable_vga(dev);
8812         intel_setup_outputs(dev);
8813
8814         intel_init_clock_gating(dev);
8815
8816         if (IS_IRONLAKE_M(dev)) {
8817                 ironlake_enable_drps(dev);
8818                 intel_init_emon(dev);
8819         }
8820
8821         if (IS_GEN6(dev) || IS_GEN7(dev)) {
8822                 gen6_enable_rps(dev_priv);
8823                 gen6_update_ring_freq(dev_priv);
8824         }
8825
8826         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8827         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8828                     (unsigned long)dev);
8829 }
8830
8831 void intel_modeset_gem_init(struct drm_device *dev)
8832 {
8833         if (IS_IRONLAKE_M(dev))
8834                 ironlake_enable_rc6(dev);
8835
8836         intel_setup_overlay(dev);
8837 }
8838
8839 void intel_modeset_cleanup(struct drm_device *dev)
8840 {
8841         struct drm_i915_private *dev_priv = dev->dev_private;
8842         struct drm_crtc *crtc;
8843         struct intel_crtc *intel_crtc;
8844
8845         drm_kms_helper_poll_fini(dev);
8846         mutex_lock(&dev->struct_mutex);
8847
8848         intel_unregister_dsm_handler();
8849
8850
8851         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8852                 /* Skip inactive CRTCs */
8853                 if (!crtc->fb)
8854                         continue;
8855
8856                 intel_crtc = to_intel_crtc(crtc);
8857                 intel_increase_pllclock(crtc);
8858         }
8859
8860         intel_disable_fbc(dev);
8861
8862         if (IS_IRONLAKE_M(dev))
8863                 ironlake_disable_drps(dev);
8864         if (IS_GEN6(dev) || IS_GEN7(dev))
8865                 gen6_disable_rps(dev);
8866
8867         if (IS_IRONLAKE_M(dev))
8868                 ironlake_disable_rc6(dev);
8869
8870         mutex_unlock(&dev->struct_mutex);
8871
8872         /* Disable the irq before mode object teardown, for the irq might
8873          * enqueue unpin/hotplug work. */
8874         drm_irq_uninstall(dev);
8875         cancel_work_sync(&dev_priv->hotplug_work);
8876         cancel_work_sync(&dev_priv->rps_work);
8877
8878         /* flush any delayed tasks or pending work */
8879         flush_scheduled_work();
8880
8881         /* Shut off idle work before the crtcs get freed. */
8882         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8883                 intel_crtc = to_intel_crtc(crtc);
8884                 del_timer_sync(&intel_crtc->idle_timer);
8885         }
8886         del_timer_sync(&dev_priv->idle_timer);
8887         cancel_work_sync(&dev_priv->idle_work);
8888
8889         drm_mode_config_cleanup(dev);
8890 }
8891
8892 /*
8893  * Return which encoder is currently attached for connector.
8894  */
8895 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8896 {
8897         return &intel_attached_encoder(connector)->base;
8898 }
8899
8900 void intel_connector_attach_encoder(struct intel_connector *connector,
8901                                     struct intel_encoder *encoder)
8902 {
8903         connector->encoder = encoder;
8904         drm_mode_connector_attach_encoder(&connector->base,
8905                                           &encoder->base);
8906 }
8907
8908 /*
8909  * set vga decode state - true == enable VGA decode
8910  */
8911 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8912 {
8913         struct drm_i915_private *dev_priv = dev->dev_private;
8914         u16 gmch_ctrl;
8915
8916         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8917         if (state)
8918                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8919         else
8920                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8921         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8922         return 0;
8923 }
8924
8925 #ifdef CONFIG_DEBUG_FS
8926 #include <linux/seq_file.h>
8927
8928 struct intel_display_error_state {
8929         struct intel_cursor_error_state {
8930                 u32 control;
8931                 u32 position;
8932                 u32 base;
8933                 u32 size;
8934         } cursor[2];
8935
8936         struct intel_pipe_error_state {
8937                 u32 conf;
8938                 u32 source;
8939
8940                 u32 htotal;
8941                 u32 hblank;
8942                 u32 hsync;
8943                 u32 vtotal;
8944                 u32 vblank;
8945                 u32 vsync;
8946         } pipe[2];
8947
8948         struct intel_plane_error_state {
8949                 u32 control;
8950                 u32 stride;
8951                 u32 size;
8952                 u32 pos;
8953                 u32 addr;
8954                 u32 surface;
8955                 u32 tile_offset;
8956         } plane[2];
8957 };
8958
8959 struct intel_display_error_state *
8960 intel_display_capture_error_state(struct drm_device *dev)
8961 {
8962         drm_i915_private_t *dev_priv = dev->dev_private;
8963         struct intel_display_error_state *error;
8964         int i;
8965
8966         error = kmalloc(sizeof(*error), GFP_ATOMIC);
8967         if (error == NULL)
8968                 return NULL;
8969
8970         for (i = 0; i < 2; i++) {
8971                 error->cursor[i].control = I915_READ(CURCNTR(i));
8972                 error->cursor[i].position = I915_READ(CURPOS(i));
8973                 error->cursor[i].base = I915_READ(CURBASE(i));
8974
8975                 error->plane[i].control = I915_READ(DSPCNTR(i));
8976                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8977                 error->plane[i].size = I915_READ(DSPSIZE(i));
8978                 error->plane[i].pos = I915_READ(DSPPOS(i));
8979                 error->plane[i].addr = I915_READ(DSPADDR(i));
8980                 if (INTEL_INFO(dev)->gen >= 4) {
8981                         error->plane[i].surface = I915_READ(DSPSURF(i));
8982                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8983                 }
8984
8985                 error->pipe[i].conf = I915_READ(PIPECONF(i));
8986                 error->pipe[i].source = I915_READ(PIPESRC(i));
8987                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8988                 error->pipe[i].hblank = I915_READ(HBLANK(i));
8989                 error->pipe[i].hsync = I915_READ(HSYNC(i));
8990                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8991                 error->pipe[i].vblank = I915_READ(VBLANK(i));
8992                 error->pipe[i].vsync = I915_READ(VSYNC(i));
8993         }
8994
8995         return error;
8996 }
8997
8998 void
8999 intel_display_print_error_state(struct seq_file *m,
9000                                 struct drm_device *dev,
9001                                 struct intel_display_error_state *error)
9002 {
9003         int i;
9004
9005         for (i = 0; i < 2; i++) {
9006                 seq_printf(m, "Pipe [%d]:\n", i);
9007                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9008                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9009                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9010                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9011                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9012                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9013                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9014                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9015
9016                 seq_printf(m, "Plane [%d]:\n", i);
9017                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9018                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9019                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9020                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9021                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9022                 if (INTEL_INFO(dev)->gen >= 4) {
9023                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9024                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9025                 }
9026
9027                 seq_printf(m, "Cursor [%d]:\n", i);
9028                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9029                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9030                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9031         }
9032 }
9033 #endif