Merge branch 'imx-for-2.6.38' of git://git.pengutronix.de/git/ukl/linux-2.6 into...
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50     /* given values */
51     int n;
52     int m1, m2;
53     int p1, p2;
54     /* derived values */
55     int dot;
56     int vco;
57     int m;
58     int p;
59 } intel_clock_t;
60
61 typedef struct {
62     int min, max;
63 } intel_range_t;
64
65 typedef struct {
66     int dot_limit;
67     int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM                  2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74     intel_p2_t      p2;
75     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76                       int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN              25000
80 #define I8XX_DOT_MAX             350000
81 #define I8XX_VCO_MIN             930000
82 #define I8XX_VCO_MAX            1400000
83 #define I8XX_N_MIN                    3
84 #define I8XX_N_MAX                   16
85 #define I8XX_M_MIN                   96
86 #define I8XX_M_MAX                  140
87 #define I8XX_M1_MIN                  18
88 #define I8XX_M1_MAX                  26
89 #define I8XX_M2_MIN                   6
90 #define I8XX_M2_MAX                  16
91 #define I8XX_P_MIN                    4
92 #define I8XX_P_MAX                  128
93 #define I8XX_P1_MIN                   2
94 #define I8XX_P1_MAX                  33
95 #define I8XX_P1_LVDS_MIN              1
96 #define I8XX_P1_LVDS_MAX              6
97 #define I8XX_P2_SLOW                  4
98 #define I8XX_P2_FAST                  2
99 #define I8XX_P2_LVDS_SLOW             14
100 #define I8XX_P2_LVDS_FAST             7
101 #define I8XX_P2_SLOW_LIMIT       165000
102
103 #define I9XX_DOT_MIN              20000
104 #define I9XX_DOT_MAX             400000
105 #define I9XX_VCO_MIN            1400000
106 #define I9XX_VCO_MAX            2800000
107 #define PINEVIEW_VCO_MIN                1700000
108 #define PINEVIEW_VCO_MAX                3500000
109 #define I9XX_N_MIN                    1
110 #define I9XX_N_MAX                    6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN                3
113 #define PINEVIEW_N_MAX                6
114 #define I9XX_M_MIN                   70
115 #define I9XX_M_MAX                  120
116 #define PINEVIEW_M_MIN                2
117 #define PINEVIEW_M_MAX              256
118 #define I9XX_M1_MIN                  10
119 #define I9XX_M1_MAX                  22
120 #define I9XX_M2_MIN                   5
121 #define I9XX_M2_MAX                   9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN               0
124 #define PINEVIEW_M1_MAX               0
125 #define PINEVIEW_M2_MIN               0
126 #define PINEVIEW_M2_MAX               254
127 #define I9XX_P_SDVO_DAC_MIN           5
128 #define I9XX_P_SDVO_DAC_MAX          80
129 #define I9XX_P_LVDS_MIN               7
130 #define I9XX_P_LVDS_MAX              98
131 #define PINEVIEW_P_LVDS_MIN                   7
132 #define PINEVIEW_P_LVDS_MAX                  112
133 #define I9XX_P1_MIN                   1
134 #define I9XX_P1_MAX                   8
135 #define I9XX_P2_SDVO_DAC_SLOW                10
136 #define I9XX_P2_SDVO_DAC_FAST                 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
138 #define I9XX_P2_LVDS_SLOW                    14
139 #define I9XX_P2_LVDS_FAST                     7
140 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN           25000
144 #define G4X_DOT_SDVO_MAX           270000
145 #define G4X_VCO_MIN                1750000
146 #define G4X_VCO_MAX                3500000
147 #define G4X_N_SDVO_MIN             1
148 #define G4X_N_SDVO_MAX             4
149 #define G4X_M_SDVO_MIN             104
150 #define G4X_M_SDVO_MAX             138
151 #define G4X_M1_SDVO_MIN            17
152 #define G4X_M1_SDVO_MAX            23
153 #define G4X_M2_SDVO_MIN            5
154 #define G4X_M2_SDVO_MAX            11
155 #define G4X_P_SDVO_MIN             10
156 #define G4X_P_SDVO_MAX             30
157 #define G4X_P1_SDVO_MIN            1
158 #define G4X_P1_SDVO_MAX            3
159 #define G4X_P2_SDVO_SLOW           10
160 #define G4X_P2_SDVO_FAST           10
161 #define G4X_P2_SDVO_LIMIT          270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN           22000
165 #define G4X_DOT_HDMI_DAC_MAX           400000
166 #define G4X_N_HDMI_DAC_MIN             1
167 #define G4X_N_HDMI_DAC_MAX             4
168 #define G4X_M_HDMI_DAC_MIN             104
169 #define G4X_M_HDMI_DAC_MAX             138
170 #define G4X_M1_HDMI_DAC_MIN            16
171 #define G4X_M1_HDMI_DAC_MAX            23
172 #define G4X_M2_HDMI_DAC_MIN            5
173 #define G4X_M2_HDMI_DAC_MAX            11
174 #define G4X_P_HDMI_DAC_MIN             5
175 #define G4X_P_HDMI_DAC_MAX             80
176 #define G4X_P1_HDMI_DAC_MIN            1
177 #define G4X_P1_HDMI_DAC_MAX            8
178 #define G4X_P2_HDMI_DAC_SLOW           10
179 #define G4X_P2_HDMI_DAC_FAST           5
180 #define G4X_P2_HDMI_DAC_LIMIT          165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN           161670
222 #define G4X_DOT_DISPLAY_PORT_MAX           227000
223 #define G4X_N_DISPLAY_PORT_MIN             1
224 #define G4X_N_DISPLAY_PORT_MAX             2
225 #define G4X_M_DISPLAY_PORT_MIN             97
226 #define G4X_M_DISPLAY_PORT_MAX             108
227 #define G4X_M1_DISPLAY_PORT_MIN            0x10
228 #define G4X_M1_DISPLAY_PORT_MAX            0x12
229 #define G4X_M2_DISPLAY_PORT_MIN            0x05
230 #define G4X_M2_DISPLAY_PORT_MAX            0x06
231 #define G4X_P_DISPLAY_PORT_MIN             10
232 #define G4X_P_DISPLAY_PORT_MAX             20
233 #define G4X_P1_DISPLAY_PORT_MIN            1
234 #define G4X_P1_DISPLAY_PORT_MAX            2
235 #define G4X_P2_DISPLAY_PORT_SLOW           10
236 #define G4X_P2_DISPLAY_PORT_FAST           10
237 #define G4X_P2_DISPLAY_PORT_LIMIT          0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241    N/M1/M2, so here the range value for them is (actual_value-2).
242  */
243 #define IRONLAKE_DOT_MIN         25000
244 #define IRONLAKE_DOT_MAX         350000
245 #define IRONLAKE_VCO_MIN         1760000
246 #define IRONLAKE_VCO_MAX         3510000
247 #define IRONLAKE_M1_MIN          12
248 #define IRONLAKE_M1_MAX          22
249 #define IRONLAKE_M2_MIN          5
250 #define IRONLAKE_M2_MAX          9
251 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN      1
257 #define IRONLAKE_DAC_N_MAX      5
258 #define IRONLAKE_DAC_M_MIN      79
259 #define IRONLAKE_DAC_M_MAX      127
260 #define IRONLAKE_DAC_P_MIN      5
261 #define IRONLAKE_DAC_P_MAX      80
262 #define IRONLAKE_DAC_P1_MIN     1
263 #define IRONLAKE_DAC_P1_MAX     8
264 #define IRONLAKE_DAC_P2_SLOW    10
265 #define IRONLAKE_DAC_P2_FAST    5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN   1
269 #define IRONLAKE_LVDS_S_N_MAX   3
270 #define IRONLAKE_LVDS_S_M_MIN   79
271 #define IRONLAKE_LVDS_S_M_MAX   118
272 #define IRONLAKE_LVDS_S_P_MIN   28
273 #define IRONLAKE_LVDS_S_P_MAX   112
274 #define IRONLAKE_LVDS_S_P1_MIN  2
275 #define IRONLAKE_LVDS_S_P1_MAX  8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN   1
281 #define IRONLAKE_LVDS_D_N_MAX   3
282 #define IRONLAKE_LVDS_D_M_MIN   79
283 #define IRONLAKE_LVDS_D_M_MAX   127
284 #define IRONLAKE_LVDS_D_P_MIN   14
285 #define IRONLAKE_LVDS_D_P_MAX   56
286 #define IRONLAKE_LVDS_D_P1_MIN  2
287 #define IRONLAKE_LVDS_D_P1_MAX  8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN               1
317 #define IRONLAKE_DP_N_MAX               2
318 #define IRONLAKE_DP_M_MIN               81
319 #define IRONLAKE_DP_M_MAX               90
320 #define IRONLAKE_DP_P_MIN               10
321 #define IRONLAKE_DP_P_MAX               20
322 #define IRONLAKE_DP_P2_FAST             10
323 #define IRONLAKE_DP_P2_SLOW             10
324 #define IRONLAKE_DP_P2_LIMIT            0
325 #define IRONLAKE_DP_P1_MIN              1
326 #define IRONLAKE_DP_P1_MAX              2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333                     int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336                         int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340                       int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343                            int target, int refclk, intel_clock_t *best_clock);
344
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
347 {
348         if (IS_GEN5(dev)) {
349                 struct drm_i915_private *dev_priv = dev->dev_private;
350                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
351         } else
352                 return 27;
353 }
354
355 static const intel_limit_t intel_limits_i8xx_dvo = {
356         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
357         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
358         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
359         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
360         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
361         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
362         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
363         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
364         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
365                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
366         .find_pll = intel_find_best_PLL,
367 };
368
369 static const intel_limit_t intel_limits_i8xx_lvds = {
370         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
371         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
372         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
373         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
374         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
375         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
376         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
377         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
378         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
379                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
380         .find_pll = intel_find_best_PLL,
381 };
382         
383 static const intel_limit_t intel_limits_i9xx_sdvo = {
384         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
385         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
386         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
387         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
388         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
389         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
390         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
391         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
392         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
393                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
394         .find_pll = intel_find_best_PLL,
395 };
396
397 static const intel_limit_t intel_limits_i9xx_lvds = {
398         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
399         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
400         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
401         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
402         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
403         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
404         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
405         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
406         /* The single-channel range is 25-112Mhz, and dual-channel
407          * is 80-224Mhz.  Prefer single channel as much as possible.
408          */
409         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
410                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
411         .find_pll = intel_find_best_PLL,
412 };
413
414     /* below parameter and function is for G4X Chipset Family*/
415 static const intel_limit_t intel_limits_g4x_sdvo = {
416         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
417         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
418         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
419         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
420         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
421         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
422         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
423         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
424         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
425                  .p2_slow = G4X_P2_SDVO_SLOW,
426                  .p2_fast = G4X_P2_SDVO_FAST
427         },
428         .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_hdmi = {
432         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
433         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
434         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
435         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
436         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
437         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
438         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
439         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
440         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
441                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
442                  .p2_fast = G4X_P2_HDMI_DAC_FAST
443         },
444         .find_pll = intel_g4x_find_best_PLL,
445 };
446
447 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
448         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
449                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
450         .vco = { .min = G4X_VCO_MIN,
451                  .max = G4X_VCO_MAX },
452         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
453                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
454         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
455                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
456         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
457                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
458         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
459                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
460         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
461                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
462         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
463                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
464         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
465                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
466                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
467         },
468         .find_pll = intel_g4x_find_best_PLL,
469 };
470
471 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
472         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
473                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
474         .vco = { .min = G4X_VCO_MIN,
475                  .max = G4X_VCO_MAX },
476         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
477                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
478         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
479                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
480         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
481                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
482         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
483                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
484         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
485                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
486         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
487                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
488         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
489                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
490                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
491         },
492         .find_pll = intel_g4x_find_best_PLL,
493 };
494
495 static const intel_limit_t intel_limits_g4x_display_port = {
496         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
497                  .max = G4X_DOT_DISPLAY_PORT_MAX },
498         .vco = { .min = G4X_VCO_MIN,
499                  .max = G4X_VCO_MAX},
500         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
501                  .max = G4X_N_DISPLAY_PORT_MAX },
502         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
503                  .max = G4X_M_DISPLAY_PORT_MAX },
504         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
505                  .max = G4X_M1_DISPLAY_PORT_MAX },
506         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
507                  .max = G4X_M2_DISPLAY_PORT_MAX },
508         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
509                  .max = G4X_P_DISPLAY_PORT_MAX },
510         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
511                  .max = G4X_P1_DISPLAY_PORT_MAX},
512         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
513                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
514                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
515         .find_pll = intel_find_pll_g4x_dp,
516 };
517
518 static const intel_limit_t intel_limits_pineview_sdvo = {
519         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
520         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
521         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
522         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
523         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
524         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
525         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
526         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
527         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
528                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
529         .find_pll = intel_find_best_PLL,
530 };
531
532 static const intel_limit_t intel_limits_pineview_lvds = {
533         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
534         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
535         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
536         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
537         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
538         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
539         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
540         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
541         /* Pineview only supports single-channel mode. */
542         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
543                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
544         .find_pll = intel_find_best_PLL,
545 };
546
547 static const intel_limit_t intel_limits_ironlake_dac = {
548         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
549         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
550         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
551         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
552         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
553         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
554         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
555         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
556         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
557                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
558                  .p2_fast = IRONLAKE_DAC_P2_FAST },
559         .find_pll = intel_g4x_find_best_PLL,
560 };
561
562 static const intel_limit_t intel_limits_ironlake_single_lvds = {
563         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
564         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
565         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
566         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
567         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
568         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
569         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
570         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
571         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
572                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
573                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
574         .find_pll = intel_g4x_find_best_PLL,
575 };
576
577 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
578         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
579         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
580         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
581         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
582         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
583         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
584         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
585         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
586         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
587                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
588                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
589         .find_pll = intel_g4x_find_best_PLL,
590 };
591
592 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
593         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
594         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
595         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
596         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
597         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
598         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
599         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
600         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
601         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
602                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
603                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
604         .find_pll = intel_g4x_find_best_PLL,
605 };
606
607 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
608         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
609         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
610         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
611         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
612         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
613         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
614         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
615         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
616         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
617                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
618                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
619         .find_pll = intel_g4x_find_best_PLL,
620 };
621
622 static const intel_limit_t intel_limits_ironlake_display_port = {
623         .dot = { .min = IRONLAKE_DOT_MIN,
624                  .max = IRONLAKE_DOT_MAX },
625         .vco = { .min = IRONLAKE_VCO_MIN,
626                  .max = IRONLAKE_VCO_MAX},
627         .n   = { .min = IRONLAKE_DP_N_MIN,
628                  .max = IRONLAKE_DP_N_MAX },
629         .m   = { .min = IRONLAKE_DP_M_MIN,
630                  .max = IRONLAKE_DP_M_MAX },
631         .m1  = { .min = IRONLAKE_M1_MIN,
632                  .max = IRONLAKE_M1_MAX },
633         .m2  = { .min = IRONLAKE_M2_MIN,
634                  .max = IRONLAKE_M2_MAX },
635         .p   = { .min = IRONLAKE_DP_P_MIN,
636                  .max = IRONLAKE_DP_P_MAX },
637         .p1  = { .min = IRONLAKE_DP_P1_MIN,
638                  .max = IRONLAKE_DP_P1_MAX},
639         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
640                  .p2_slow = IRONLAKE_DP_P2_SLOW,
641                  .p2_fast = IRONLAKE_DP_P2_FAST },
642         .find_pll = intel_find_pll_ironlake_dp,
643 };
644
645 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
646 {
647         struct drm_device *dev = crtc->dev;
648         struct drm_i915_private *dev_priv = dev->dev_private;
649         const intel_limit_t *limit;
650         int refclk = 120;
651
652         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
654                         refclk = 100;
655
656                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
657                     LVDS_CLKB_POWER_UP) {
658                         /* LVDS dual channel */
659                         if (refclk == 100)
660                                 limit = &intel_limits_ironlake_dual_lvds_100m;
661                         else
662                                 limit = &intel_limits_ironlake_dual_lvds;
663                 } else {
664                         if (refclk == 100)
665                                 limit = &intel_limits_ironlake_single_lvds_100m;
666                         else
667                                 limit = &intel_limits_ironlake_single_lvds;
668                 }
669         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
670                         HAS_eDP)
671                 limit = &intel_limits_ironlake_display_port;
672         else
673                 limit = &intel_limits_ironlake_dac;
674
675         return limit;
676 }
677
678 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
679 {
680         struct drm_device *dev = crtc->dev;
681         struct drm_i915_private *dev_priv = dev->dev_private;
682         const intel_limit_t *limit;
683
684         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
685                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
686                     LVDS_CLKB_POWER_UP)
687                         /* LVDS with dual channel */
688                         limit = &intel_limits_g4x_dual_channel_lvds;
689                 else
690                         /* LVDS with dual channel */
691                         limit = &intel_limits_g4x_single_channel_lvds;
692         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
693                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
694                 limit = &intel_limits_g4x_hdmi;
695         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
696                 limit = &intel_limits_g4x_sdvo;
697         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
698                 limit = &intel_limits_g4x_display_port;
699         } else /* The option is for other outputs */
700                 limit = &intel_limits_i9xx_sdvo;
701
702         return limit;
703 }
704
705 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
706 {
707         struct drm_device *dev = crtc->dev;
708         const intel_limit_t *limit;
709
710         if (HAS_PCH_SPLIT(dev))
711                 limit = intel_ironlake_limit(crtc);
712         else if (IS_G4X(dev)) {
713                 limit = intel_g4x_limit(crtc);
714         } else if (IS_PINEVIEW(dev)) {
715                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
716                         limit = &intel_limits_pineview_lvds;
717                 else
718                         limit = &intel_limits_pineview_sdvo;
719         } else if (!IS_GEN2(dev)) {
720                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
721                         limit = &intel_limits_i9xx_lvds;
722                 else
723                         limit = &intel_limits_i9xx_sdvo;
724         } else {
725                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
726                         limit = &intel_limits_i8xx_lvds;
727                 else
728                         limit = &intel_limits_i8xx_dvo;
729         }
730         return limit;
731 }
732
733 /* m1 is reserved as 0 in Pineview, n is a ring counter */
734 static void pineview_clock(int refclk, intel_clock_t *clock)
735 {
736         clock->m = clock->m2 + 2;
737         clock->p = clock->p1 * clock->p2;
738         clock->vco = refclk * clock->m / clock->n;
739         clock->dot = clock->vco / clock->p;
740 }
741
742 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
743 {
744         if (IS_PINEVIEW(dev)) {
745                 pineview_clock(refclk, clock);
746                 return;
747         }
748         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
749         clock->p = clock->p1 * clock->p2;
750         clock->vco = refclk * clock->m / (clock->n + 2);
751         clock->dot = clock->vco / clock->p;
752 }
753
754 /**
755  * Returns whether any output on the specified pipe is of the specified type
756  */
757 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
758 {
759         struct drm_device *dev = crtc->dev;
760         struct drm_mode_config *mode_config = &dev->mode_config;
761         struct intel_encoder *encoder;
762
763         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
764                 if (encoder->base.crtc == crtc && encoder->type == type)
765                         return true;
766
767         return false;
768 }
769
770 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
771 /**
772  * Returns whether the given set of divisors are valid for a given refclk with
773  * the given connectors.
774  */
775
776 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
777 {
778         const intel_limit_t *limit = intel_limit (crtc);
779         struct drm_device *dev = crtc->dev;
780
781         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
782                 INTELPllInvalid ("p1 out of range\n");
783         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
784                 INTELPllInvalid ("p out of range\n");
785         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
786                 INTELPllInvalid ("m2 out of range\n");
787         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
788                 INTELPllInvalid ("m1 out of range\n");
789         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
790                 INTELPllInvalid ("m1 <= m2\n");
791         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
792                 INTELPllInvalid ("m out of range\n");
793         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
794                 INTELPllInvalid ("n out of range\n");
795         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
796                 INTELPllInvalid ("vco out of range\n");
797         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
798          * connector, etc., rather than just a single range.
799          */
800         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
801                 INTELPllInvalid ("dot out of range\n");
802
803         return true;
804 }
805
806 static bool
807 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
808                     int target, int refclk, intel_clock_t *best_clock)
809
810 {
811         struct drm_device *dev = crtc->dev;
812         struct drm_i915_private *dev_priv = dev->dev_private;
813         intel_clock_t clock;
814         int err = target;
815
816         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
817             (I915_READ(LVDS)) != 0) {
818                 /*
819                  * For LVDS, if the panel is on, just rely on its current
820                  * settings for dual-channel.  We haven't figured out how to
821                  * reliably set up different single/dual channel state, if we
822                  * even can.
823                  */
824                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
825                     LVDS_CLKB_POWER_UP)
826                         clock.p2 = limit->p2.p2_fast;
827                 else
828                         clock.p2 = limit->p2.p2_slow;
829         } else {
830                 if (target < limit->p2.dot_limit)
831                         clock.p2 = limit->p2.p2_slow;
832                 else
833                         clock.p2 = limit->p2.p2_fast;
834         }
835
836         memset (best_clock, 0, sizeof (*best_clock));
837
838         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
839              clock.m1++) {
840                 for (clock.m2 = limit->m2.min;
841                      clock.m2 <= limit->m2.max; clock.m2++) {
842                         /* m1 is always 0 in Pineview */
843                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
844                                 break;
845                         for (clock.n = limit->n.min;
846                              clock.n <= limit->n.max; clock.n++) {
847                                 for (clock.p1 = limit->p1.min;
848                                         clock.p1 <= limit->p1.max; clock.p1++) {
849                                         int this_err;
850
851                                         intel_clock(dev, refclk, &clock);
852
853                                         if (!intel_PLL_is_valid(crtc, &clock))
854                                                 continue;
855
856                                         this_err = abs(clock.dot - target);
857                                         if (this_err < err) {
858                                                 *best_clock = clock;
859                                                 err = this_err;
860                                         }
861                                 }
862                         }
863                 }
864         }
865
866         return (err != target);
867 }
868
869 static bool
870 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
871                         int target, int refclk, intel_clock_t *best_clock)
872 {
873         struct drm_device *dev = crtc->dev;
874         struct drm_i915_private *dev_priv = dev->dev_private;
875         intel_clock_t clock;
876         int max_n;
877         bool found;
878         /* approximately equals target * 0.00585 */
879         int err_most = (target >> 8) + (target >> 9);
880         found = false;
881
882         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
883                 int lvds_reg;
884
885                 if (HAS_PCH_SPLIT(dev))
886                         lvds_reg = PCH_LVDS;
887                 else
888                         lvds_reg = LVDS;
889                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
890                     LVDS_CLKB_POWER_UP)
891                         clock.p2 = limit->p2.p2_fast;
892                 else
893                         clock.p2 = limit->p2.p2_slow;
894         } else {
895                 if (target < limit->p2.dot_limit)
896                         clock.p2 = limit->p2.p2_slow;
897                 else
898                         clock.p2 = limit->p2.p2_fast;
899         }
900
901         memset(best_clock, 0, sizeof(*best_clock));
902         max_n = limit->n.max;
903         /* based on hardware requirement, prefer smaller n to precision */
904         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
905                 /* based on hardware requirement, prefere larger m1,m2 */
906                 for (clock.m1 = limit->m1.max;
907                      clock.m1 >= limit->m1.min; clock.m1--) {
908                         for (clock.m2 = limit->m2.max;
909                              clock.m2 >= limit->m2.min; clock.m2--) {
910                                 for (clock.p1 = limit->p1.max;
911                                      clock.p1 >= limit->p1.min; clock.p1--) {
912                                         int this_err;
913
914                                         intel_clock(dev, refclk, &clock);
915                                         if (!intel_PLL_is_valid(crtc, &clock))
916                                                 continue;
917                                         this_err = abs(clock.dot - target) ;
918                                         if (this_err < err_most) {
919                                                 *best_clock = clock;
920                                                 err_most = this_err;
921                                                 max_n = clock.n;
922                                                 found = true;
923                                         }
924                                 }
925                         }
926                 }
927         }
928         return found;
929 }
930
931 static bool
932 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
933                            int target, int refclk, intel_clock_t *best_clock)
934 {
935         struct drm_device *dev = crtc->dev;
936         intel_clock_t clock;
937
938         if (target < 200000) {
939                 clock.n = 1;
940                 clock.p1 = 2;
941                 clock.p2 = 10;
942                 clock.m1 = 12;
943                 clock.m2 = 9;
944         } else {
945                 clock.n = 2;
946                 clock.p1 = 1;
947                 clock.p2 = 10;
948                 clock.m1 = 14;
949                 clock.m2 = 8;
950         }
951         intel_clock(dev, refclk, &clock);
952         memcpy(best_clock, &clock, sizeof(intel_clock_t));
953         return true;
954 }
955
956 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
957 static bool
958 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
959                       int target, int refclk, intel_clock_t *best_clock)
960 {
961         intel_clock_t clock;
962         if (target < 200000) {
963                 clock.p1 = 2;
964                 clock.p2 = 10;
965                 clock.n = 2;
966                 clock.m1 = 23;
967                 clock.m2 = 8;
968         } else {
969                 clock.p1 = 1;
970                 clock.p2 = 10;
971                 clock.n = 1;
972                 clock.m1 = 14;
973                 clock.m2 = 2;
974         }
975         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
976         clock.p = (clock.p1 * clock.p2);
977         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
978         clock.vco = 0;
979         memcpy(best_clock, &clock, sizeof(intel_clock_t));
980         return true;
981 }
982
983 /**
984  * intel_wait_for_vblank - wait for vblank on a given pipe
985  * @dev: drm device
986  * @pipe: pipe to wait for
987  *
988  * Wait for vblank to occur on a given pipe.  Needed for various bits of
989  * mode setting code.
990  */
991 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
992 {
993         struct drm_i915_private *dev_priv = dev->dev_private;
994         int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
995
996         /* Clear existing vblank status. Note this will clear any other
997          * sticky status fields as well.
998          *
999          * This races with i915_driver_irq_handler() with the result
1000          * that either function could miss a vblank event.  Here it is not
1001          * fatal, as we will either wait upon the next vblank interrupt or
1002          * timeout.  Generally speaking intel_wait_for_vblank() is only
1003          * called during modeset at which time the GPU should be idle and
1004          * should *not* be performing page flips and thus not waiting on
1005          * vblanks...
1006          * Currently, the result of us stealing a vblank from the irq
1007          * handler is that a single frame will be skipped during swapbuffers.
1008          */
1009         I915_WRITE(pipestat_reg,
1010                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1011
1012         /* Wait for vblank interrupt bit to set */
1013         if (wait_for(I915_READ(pipestat_reg) &
1014                      PIPE_VBLANK_INTERRUPT_STATUS,
1015                      50))
1016                 DRM_DEBUG_KMS("vblank wait timed out\n");
1017 }
1018
1019 /*
1020  * intel_wait_for_pipe_off - wait for pipe to turn off
1021  * @dev: drm device
1022  * @pipe: pipe to wait for
1023  *
1024  * After disabling a pipe, we can't wait for vblank in the usual way,
1025  * spinning on the vblank interrupt status bit, since we won't actually
1026  * see an interrupt when the pipe is disabled.
1027  *
1028  * On Gen4 and above:
1029  *   wait for the pipe register state bit to turn off
1030  *
1031  * Otherwise:
1032  *   wait for the display line value to settle (it usually
1033  *   ends up stopping at the start of the next frame).
1034  *
1035  */
1036 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1037 {
1038         struct drm_i915_private *dev_priv = dev->dev_private;
1039
1040         if (INTEL_INFO(dev)->gen >= 4) {
1041                 int reg = PIPECONF(pipe);
1042
1043                 /* Wait for the Pipe State to go off */
1044                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1045                              100))
1046                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1047         } else {
1048                 u32 last_line;
1049                 int reg = PIPEDSL(pipe);
1050                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1051
1052                 /* Wait for the display line to settle */
1053                 do {
1054                         last_line = I915_READ(reg) & DSL_LINEMASK;
1055                         mdelay(5);
1056                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1057                          time_after(timeout, jiffies));
1058                 if (time_after(jiffies, timeout))
1059                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1060         }
1061 }
1062
1063 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1064 {
1065         struct drm_device *dev = crtc->dev;
1066         struct drm_i915_private *dev_priv = dev->dev_private;
1067         struct drm_framebuffer *fb = crtc->fb;
1068         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1069         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1070         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1071         int plane, i;
1072         u32 fbc_ctl, fbc_ctl2;
1073
1074         if (fb->pitch == dev_priv->cfb_pitch &&
1075             obj_priv->fence_reg == dev_priv->cfb_fence &&
1076             intel_crtc->plane == dev_priv->cfb_plane &&
1077             I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1078                 return;
1079
1080         i8xx_disable_fbc(dev);
1081
1082         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1083
1084         if (fb->pitch < dev_priv->cfb_pitch)
1085                 dev_priv->cfb_pitch = fb->pitch;
1086
1087         /* FBC_CTL wants 64B units */
1088         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1089         dev_priv->cfb_fence = obj_priv->fence_reg;
1090         dev_priv->cfb_plane = intel_crtc->plane;
1091         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1092
1093         /* Clear old tags */
1094         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1095                 I915_WRITE(FBC_TAG + (i * 4), 0);
1096
1097         /* Set it up... */
1098         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1099         if (obj_priv->tiling_mode != I915_TILING_NONE)
1100                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1101         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1102         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1103
1104         /* enable it... */
1105         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1106         if (IS_I945GM(dev))
1107                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1108         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1109         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1110         if (obj_priv->tiling_mode != I915_TILING_NONE)
1111                 fbc_ctl |= dev_priv->cfb_fence;
1112         I915_WRITE(FBC_CONTROL, fbc_ctl);
1113
1114         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1115                       dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1116 }
1117
1118 void i8xx_disable_fbc(struct drm_device *dev)
1119 {
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121         u32 fbc_ctl;
1122
1123         /* Disable compression */
1124         fbc_ctl = I915_READ(FBC_CONTROL);
1125         if ((fbc_ctl & FBC_CTL_EN) == 0)
1126                 return;
1127
1128         fbc_ctl &= ~FBC_CTL_EN;
1129         I915_WRITE(FBC_CONTROL, fbc_ctl);
1130
1131         /* Wait for compressing bit to clear */
1132         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1133                 DRM_DEBUG_KMS("FBC idle timed out\n");
1134                 return;
1135         }
1136
1137         DRM_DEBUG_KMS("disabled FBC\n");
1138 }
1139
1140 static bool i8xx_fbc_enabled(struct drm_device *dev)
1141 {
1142         struct drm_i915_private *dev_priv = dev->dev_private;
1143
1144         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1145 }
1146
1147 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1148 {
1149         struct drm_device *dev = crtc->dev;
1150         struct drm_i915_private *dev_priv = dev->dev_private;
1151         struct drm_framebuffer *fb = crtc->fb;
1152         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1153         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1154         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1155         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1156         unsigned long stall_watermark = 200;
1157         u32 dpfc_ctl;
1158
1159         dpfc_ctl = I915_READ(DPFC_CONTROL);
1160         if (dpfc_ctl & DPFC_CTL_EN) {
1161                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1162                     dev_priv->cfb_fence == obj_priv->fence_reg &&
1163                     dev_priv->cfb_plane == intel_crtc->plane &&
1164                     dev_priv->cfb_y == crtc->y)
1165                         return;
1166
1167                 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1168                 POSTING_READ(DPFC_CONTROL);
1169                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1170         }
1171
1172         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1173         dev_priv->cfb_fence = obj_priv->fence_reg;
1174         dev_priv->cfb_plane = intel_crtc->plane;
1175         dev_priv->cfb_y = crtc->y;
1176
1177         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1178         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1179                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1180                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1181         } else {
1182                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1183         }
1184
1185         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1186                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1187                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1188         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1189
1190         /* enable it... */
1191         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1192
1193         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1194 }
1195
1196 void g4x_disable_fbc(struct drm_device *dev)
1197 {
1198         struct drm_i915_private *dev_priv = dev->dev_private;
1199         u32 dpfc_ctl;
1200
1201         /* Disable compression */
1202         dpfc_ctl = I915_READ(DPFC_CONTROL);
1203         if (dpfc_ctl & DPFC_CTL_EN) {
1204                 dpfc_ctl &= ~DPFC_CTL_EN;
1205                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1206
1207                 DRM_DEBUG_KMS("disabled FBC\n");
1208         }
1209 }
1210
1211 static bool g4x_fbc_enabled(struct drm_device *dev)
1212 {
1213         struct drm_i915_private *dev_priv = dev->dev_private;
1214
1215         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1216 }
1217
1218 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1219 {
1220         struct drm_device *dev = crtc->dev;
1221         struct drm_i915_private *dev_priv = dev->dev_private;
1222         struct drm_framebuffer *fb = crtc->fb;
1223         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1224         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1225         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1226         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1227         unsigned long stall_watermark = 200;
1228         u32 dpfc_ctl;
1229
1230         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1231         if (dpfc_ctl & DPFC_CTL_EN) {
1232                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1233                     dev_priv->cfb_fence == obj_priv->fence_reg &&
1234                     dev_priv->cfb_plane == intel_crtc->plane &&
1235                     dev_priv->cfb_offset == obj_priv->gtt_offset &&
1236                     dev_priv->cfb_y == crtc->y)
1237                         return;
1238
1239                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1240                 POSTING_READ(ILK_DPFC_CONTROL);
1241                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1242         }
1243
1244         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1245         dev_priv->cfb_fence = obj_priv->fence_reg;
1246         dev_priv->cfb_plane = intel_crtc->plane;
1247         dev_priv->cfb_offset = obj_priv->gtt_offset;
1248         dev_priv->cfb_y = crtc->y;
1249
1250         dpfc_ctl &= DPFC_RESERVED;
1251         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1252         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1253                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1254                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1255         } else {
1256                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1257         }
1258
1259         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1260                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1261                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1262         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1263         I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1264         /* enable it... */
1265         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1266
1267         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1268 }
1269
1270 void ironlake_disable_fbc(struct drm_device *dev)
1271 {
1272         struct drm_i915_private *dev_priv = dev->dev_private;
1273         u32 dpfc_ctl;
1274
1275         /* Disable compression */
1276         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1277         if (dpfc_ctl & DPFC_CTL_EN) {
1278                 dpfc_ctl &= ~DPFC_CTL_EN;
1279                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1280
1281                 DRM_DEBUG_KMS("disabled FBC\n");
1282         }
1283 }
1284
1285 static bool ironlake_fbc_enabled(struct drm_device *dev)
1286 {
1287         struct drm_i915_private *dev_priv = dev->dev_private;
1288
1289         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1290 }
1291
1292 bool intel_fbc_enabled(struct drm_device *dev)
1293 {
1294         struct drm_i915_private *dev_priv = dev->dev_private;
1295
1296         if (!dev_priv->display.fbc_enabled)
1297                 return false;
1298
1299         return dev_priv->display.fbc_enabled(dev);
1300 }
1301
1302 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1303 {
1304         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1305
1306         if (!dev_priv->display.enable_fbc)
1307                 return;
1308
1309         dev_priv->display.enable_fbc(crtc, interval);
1310 }
1311
1312 void intel_disable_fbc(struct drm_device *dev)
1313 {
1314         struct drm_i915_private *dev_priv = dev->dev_private;
1315
1316         if (!dev_priv->display.disable_fbc)
1317                 return;
1318
1319         dev_priv->display.disable_fbc(dev);
1320 }
1321
1322 /**
1323  * intel_update_fbc - enable/disable FBC as needed
1324  * @dev: the drm_device
1325  *
1326  * Set up the framebuffer compression hardware at mode set time.  We
1327  * enable it if possible:
1328  *   - plane A only (on pre-965)
1329  *   - no pixel mulitply/line duplication
1330  *   - no alpha buffer discard
1331  *   - no dual wide
1332  *   - framebuffer <= 2048 in width, 1536 in height
1333  *
1334  * We can't assume that any compression will take place (worst case),
1335  * so the compressed buffer has to be the same size as the uncompressed
1336  * one.  It also must reside (along with the line length buffer) in
1337  * stolen memory.
1338  *
1339  * We need to enable/disable FBC on a global basis.
1340  */
1341 static void intel_update_fbc(struct drm_device *dev)
1342 {
1343         struct drm_i915_private *dev_priv = dev->dev_private;
1344         struct drm_crtc *crtc = NULL, *tmp_crtc;
1345         struct intel_crtc *intel_crtc;
1346         struct drm_framebuffer *fb;
1347         struct intel_framebuffer *intel_fb;
1348         struct drm_i915_gem_object *obj_priv;
1349
1350         DRM_DEBUG_KMS("\n");
1351
1352         if (!i915_powersave)
1353                 return;
1354
1355         if (!I915_HAS_FBC(dev))
1356                 return;
1357
1358         /*
1359          * If FBC is already on, we just have to verify that we can
1360          * keep it that way...
1361          * Need to disable if:
1362          *   - more than one pipe is active
1363          *   - changing FBC params (stride, fence, mode)
1364          *   - new fb is too large to fit in compressed buffer
1365          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1366          */
1367         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1368                 if (tmp_crtc->enabled) {
1369                         if (crtc) {
1370                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1371                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1372                                 goto out_disable;
1373                         }
1374                         crtc = tmp_crtc;
1375                 }
1376         }
1377
1378         if (!crtc || crtc->fb == NULL) {
1379                 DRM_DEBUG_KMS("no output, disabling\n");
1380                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1381                 goto out_disable;
1382         }
1383
1384         intel_crtc = to_intel_crtc(crtc);
1385         fb = crtc->fb;
1386         intel_fb = to_intel_framebuffer(fb);
1387         obj_priv = to_intel_bo(intel_fb->obj);
1388
1389         if (intel_fb->obj->size > dev_priv->cfb_size) {
1390                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1391                               "compression\n");
1392                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1393                 goto out_disable;
1394         }
1395         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1396             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1397                 DRM_DEBUG_KMS("mode incompatible with compression, "
1398                               "disabling\n");
1399                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1400                 goto out_disable;
1401         }
1402         if ((crtc->mode.hdisplay > 2048) ||
1403             (crtc->mode.vdisplay > 1536)) {
1404                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1405                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1406                 goto out_disable;
1407         }
1408         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1409                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1410                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1411                 goto out_disable;
1412         }
1413         if (obj_priv->tiling_mode != I915_TILING_X) {
1414                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1415                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1416                 goto out_disable;
1417         }
1418
1419         /* If the kernel debugger is active, always disable compression */
1420         if (in_dbg_master())
1421                 goto out_disable;
1422
1423         intel_enable_fbc(crtc, 500);
1424         return;
1425
1426 out_disable:
1427         /* Multiple disables should be harmless */
1428         if (intel_fbc_enabled(dev)) {
1429                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1430                 intel_disable_fbc(dev);
1431         }
1432 }
1433
1434 int
1435 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1436                            struct drm_gem_object *obj,
1437                            bool pipelined)
1438 {
1439         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1440         u32 alignment;
1441         int ret;
1442
1443         switch (obj_priv->tiling_mode) {
1444         case I915_TILING_NONE:
1445                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1446                         alignment = 128 * 1024;
1447                 else if (INTEL_INFO(dev)->gen >= 4)
1448                         alignment = 4 * 1024;
1449                 else
1450                         alignment = 64 * 1024;
1451                 break;
1452         case I915_TILING_X:
1453                 /* pin() will align the object as required by fence */
1454                 alignment = 0;
1455                 break;
1456         case I915_TILING_Y:
1457                 /* FIXME: Is this true? */
1458                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1459                 return -EINVAL;
1460         default:
1461                 BUG();
1462         }
1463
1464         ret = i915_gem_object_pin(obj, alignment);
1465         if (ret)
1466                 return ret;
1467
1468         ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1469         if (ret)
1470                 goto err_unpin;
1471
1472         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1473          * fence, whereas 965+ only requires a fence if using
1474          * framebuffer compression.  For simplicity, we always install
1475          * a fence as the cost is not that onerous.
1476          */
1477         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1478             obj_priv->tiling_mode != I915_TILING_NONE) {
1479                 ret = i915_gem_object_get_fence_reg(obj, false);
1480                 if (ret)
1481                         goto err_unpin;
1482         }
1483
1484         return 0;
1485
1486 err_unpin:
1487         i915_gem_object_unpin(obj);
1488         return ret;
1489 }
1490
1491 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1492 static int
1493 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1494                            int x, int y, enum mode_set_atomic state)
1495 {
1496         struct drm_device *dev = crtc->dev;
1497         struct drm_i915_private *dev_priv = dev->dev_private;
1498         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1499         struct intel_framebuffer *intel_fb;
1500         struct drm_i915_gem_object *obj_priv;
1501         struct drm_gem_object *obj;
1502         int plane = intel_crtc->plane;
1503         unsigned long Start, Offset;
1504         u32 dspcntr;
1505         u32 reg;
1506
1507         switch (plane) {
1508         case 0:
1509         case 1:
1510                 break;
1511         default:
1512                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1513                 return -EINVAL;
1514         }
1515
1516         intel_fb = to_intel_framebuffer(fb);
1517         obj = intel_fb->obj;
1518         obj_priv = to_intel_bo(obj);
1519
1520         reg = DSPCNTR(plane);
1521         dspcntr = I915_READ(reg);
1522         /* Mask out pixel format bits in case we change it */
1523         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1524         switch (fb->bits_per_pixel) {
1525         case 8:
1526                 dspcntr |= DISPPLANE_8BPP;
1527                 break;
1528         case 16:
1529                 if (fb->depth == 15)
1530                         dspcntr |= DISPPLANE_15_16BPP;
1531                 else
1532                         dspcntr |= DISPPLANE_16BPP;
1533                 break;
1534         case 24:
1535         case 32:
1536                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1537                 break;
1538         default:
1539                 DRM_ERROR("Unknown color depth\n");
1540                 return -EINVAL;
1541         }
1542         if (INTEL_INFO(dev)->gen >= 4) {
1543                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1544                         dspcntr |= DISPPLANE_TILED;
1545                 else
1546                         dspcntr &= ~DISPPLANE_TILED;
1547         }
1548
1549         if (HAS_PCH_SPLIT(dev))
1550                 /* must disable */
1551                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1552
1553         I915_WRITE(reg, dspcntr);
1554
1555         Start = obj_priv->gtt_offset;
1556         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1557
1558         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1559                       Start, Offset, x, y, fb->pitch);
1560         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1561         if (INTEL_INFO(dev)->gen >= 4) {
1562                 I915_WRITE(DSPSURF(plane), Start);
1563                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1564                 I915_WRITE(DSPADDR(plane), Offset);
1565         } else
1566                 I915_WRITE(DSPADDR(plane), Start + Offset);
1567         POSTING_READ(reg);
1568
1569         intel_update_fbc(dev);
1570         intel_increase_pllclock(crtc);
1571
1572         return 0;
1573 }
1574
1575 static int
1576 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1577                     struct drm_framebuffer *old_fb)
1578 {
1579         struct drm_device *dev = crtc->dev;
1580         struct drm_i915_master_private *master_priv;
1581         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1582         int ret;
1583
1584         /* no fb bound */
1585         if (!crtc->fb) {
1586                 DRM_DEBUG_KMS("No FB bound\n");
1587                 return 0;
1588         }
1589
1590         switch (intel_crtc->plane) {
1591         case 0:
1592         case 1:
1593                 break;
1594         default:
1595                 return -EINVAL;
1596         }
1597
1598         mutex_lock(&dev->struct_mutex);
1599         ret = intel_pin_and_fence_fb_obj(dev,
1600                                          to_intel_framebuffer(crtc->fb)->obj,
1601                                          false);
1602         if (ret != 0) {
1603                 mutex_unlock(&dev->struct_mutex);
1604                 return ret;
1605         }
1606
1607         if (old_fb) {
1608                 struct drm_i915_private *dev_priv = dev->dev_private;
1609                 struct drm_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1610                 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1611
1612                 wait_event(dev_priv->pending_flip_queue,
1613                            atomic_read(&obj_priv->pending_flip) == 0);
1614
1615                 /* Big Hammer, we also need to ensure that any pending
1616                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1617                  * current scanout is retired before unpinning the old
1618                  * framebuffer.
1619                  */
1620                 ret = i915_gem_object_flush_gpu(obj_priv, false);
1621                 if (ret) {
1622                         i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1623                         mutex_unlock(&dev->struct_mutex);
1624                         return ret;
1625                 }
1626         }
1627
1628         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1629                                          LEAVE_ATOMIC_MODE_SET);
1630         if (ret) {
1631                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1632                 mutex_unlock(&dev->struct_mutex);
1633                 return ret;
1634         }
1635
1636         if (old_fb)
1637                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1638
1639         mutex_unlock(&dev->struct_mutex);
1640
1641         if (!dev->primary->master)
1642                 return 0;
1643
1644         master_priv = dev->primary->master->driver_priv;
1645         if (!master_priv->sarea_priv)
1646                 return 0;
1647
1648         if (intel_crtc->pipe) {
1649                 master_priv->sarea_priv->pipeB_x = x;
1650                 master_priv->sarea_priv->pipeB_y = y;
1651         } else {
1652                 master_priv->sarea_priv->pipeA_x = x;
1653                 master_priv->sarea_priv->pipeA_y = y;
1654         }
1655
1656         return 0;
1657 }
1658
1659 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1660 {
1661         struct drm_device *dev = crtc->dev;
1662         struct drm_i915_private *dev_priv = dev->dev_private;
1663         u32 dpa_ctl;
1664
1665         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1666         dpa_ctl = I915_READ(DP_A);
1667         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1668
1669         if (clock < 200000) {
1670                 u32 temp;
1671                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1672                 /* workaround for 160Mhz:
1673                    1) program 0x4600c bits 15:0 = 0x8124
1674                    2) program 0x46010 bit 0 = 1
1675                    3) program 0x46034 bit 24 = 1
1676                    4) program 0x64000 bit 14 = 1
1677                    */
1678                 temp = I915_READ(0x4600c);
1679                 temp &= 0xffff0000;
1680                 I915_WRITE(0x4600c, temp | 0x8124);
1681
1682                 temp = I915_READ(0x46010);
1683                 I915_WRITE(0x46010, temp | 1);
1684
1685                 temp = I915_READ(0x46034);
1686                 I915_WRITE(0x46034, temp | (1 << 24));
1687         } else {
1688                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1689         }
1690         I915_WRITE(DP_A, dpa_ctl);
1691
1692         POSTING_READ(DP_A);
1693         udelay(500);
1694 }
1695
1696 static void intel_fdi_normal_train(struct drm_crtc *crtc)
1697 {
1698         struct drm_device *dev = crtc->dev;
1699         struct drm_i915_private *dev_priv = dev->dev_private;
1700         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1701         int pipe = intel_crtc->pipe;
1702         u32 reg, temp;
1703
1704         /* enable normal train */
1705         reg = FDI_TX_CTL(pipe);
1706         temp = I915_READ(reg);
1707         temp &= ~FDI_LINK_TRAIN_NONE;
1708         temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1709         I915_WRITE(reg, temp);
1710
1711         reg = FDI_RX_CTL(pipe);
1712         temp = I915_READ(reg);
1713         if (HAS_PCH_CPT(dev)) {
1714                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1715                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1716         } else {
1717                 temp &= ~FDI_LINK_TRAIN_NONE;
1718                 temp |= FDI_LINK_TRAIN_NONE;
1719         }
1720         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1721
1722         /* wait one idle pattern time */
1723         POSTING_READ(reg);
1724         udelay(1000);
1725 }
1726
1727 /* The FDI link training functions for ILK/Ibexpeak. */
1728 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1729 {
1730         struct drm_device *dev = crtc->dev;
1731         struct drm_i915_private *dev_priv = dev->dev_private;
1732         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1733         int pipe = intel_crtc->pipe;
1734         u32 reg, temp, tries;
1735
1736         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1737            for train result */
1738         reg = FDI_RX_IMR(pipe);
1739         temp = I915_READ(reg);
1740         temp &= ~FDI_RX_SYMBOL_LOCK;
1741         temp &= ~FDI_RX_BIT_LOCK;
1742         I915_WRITE(reg, temp);
1743         I915_READ(reg);
1744         udelay(150);
1745
1746         /* enable CPU FDI TX and PCH FDI RX */
1747         reg = FDI_TX_CTL(pipe);
1748         temp = I915_READ(reg);
1749         temp &= ~(7 << 19);
1750         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1751         temp &= ~FDI_LINK_TRAIN_NONE;
1752         temp |= FDI_LINK_TRAIN_PATTERN_1;
1753         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1754
1755         reg = FDI_RX_CTL(pipe);
1756         temp = I915_READ(reg);
1757         temp &= ~FDI_LINK_TRAIN_NONE;
1758         temp |= FDI_LINK_TRAIN_PATTERN_1;
1759         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1760
1761         POSTING_READ(reg);
1762         udelay(150);
1763
1764         /* Ironlake workaround, enable clock pointer after FDI enable*/
1765         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_ENABLE);
1766
1767         reg = FDI_RX_IIR(pipe);
1768         for (tries = 0; tries < 5; tries++) {
1769                 temp = I915_READ(reg);
1770                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1771
1772                 if ((temp & FDI_RX_BIT_LOCK)) {
1773                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1774                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1775                         break;
1776                 }
1777         }
1778         if (tries == 5)
1779                 DRM_ERROR("FDI train 1 fail!\n");
1780
1781         /* Train 2 */
1782         reg = FDI_TX_CTL(pipe);
1783         temp = I915_READ(reg);
1784         temp &= ~FDI_LINK_TRAIN_NONE;
1785         temp |= FDI_LINK_TRAIN_PATTERN_2;
1786         I915_WRITE(reg, temp);
1787
1788         reg = FDI_RX_CTL(pipe);
1789         temp = I915_READ(reg);
1790         temp &= ~FDI_LINK_TRAIN_NONE;
1791         temp |= FDI_LINK_TRAIN_PATTERN_2;
1792         I915_WRITE(reg, temp);
1793
1794         POSTING_READ(reg);
1795         udelay(150);
1796
1797         reg = FDI_RX_IIR(pipe);
1798         for (tries = 0; tries < 5; tries++) {
1799                 temp = I915_READ(reg);
1800                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1801
1802                 if (temp & FDI_RX_SYMBOL_LOCK) {
1803                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1804                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1805                         break;
1806                 }
1807         }
1808         if (tries == 5)
1809                 DRM_ERROR("FDI train 2 fail!\n");
1810
1811         DRM_DEBUG_KMS("FDI train done\n");
1812
1813 }
1814
1815 static const int const snb_b_fdi_train_param [] = {
1816         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1817         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1818         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1819         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1820 };
1821
1822 /* The FDI link training functions for SNB/Cougarpoint. */
1823 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1824 {
1825         struct drm_device *dev = crtc->dev;
1826         struct drm_i915_private *dev_priv = dev->dev_private;
1827         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1828         int pipe = intel_crtc->pipe;
1829         u32 reg, temp, i;
1830
1831         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1832            for train result */
1833         reg = FDI_RX_IMR(pipe);
1834         temp = I915_READ(reg);
1835         temp &= ~FDI_RX_SYMBOL_LOCK;
1836         temp &= ~FDI_RX_BIT_LOCK;
1837         I915_WRITE(reg, temp);
1838
1839         POSTING_READ(reg);
1840         udelay(150);
1841
1842         /* enable CPU FDI TX and PCH FDI RX */
1843         reg = FDI_TX_CTL(pipe);
1844         temp = I915_READ(reg);
1845         temp &= ~(7 << 19);
1846         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1847         temp &= ~FDI_LINK_TRAIN_NONE;
1848         temp |= FDI_LINK_TRAIN_PATTERN_1;
1849         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1850         /* SNB-B */
1851         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1852         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1853
1854         reg = FDI_RX_CTL(pipe);
1855         temp = I915_READ(reg);
1856         if (HAS_PCH_CPT(dev)) {
1857                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1858                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1859         } else {
1860                 temp &= ~FDI_LINK_TRAIN_NONE;
1861                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1862         }
1863         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1864
1865         POSTING_READ(reg);
1866         udelay(150);
1867
1868         for (i = 0; i < 4; i++ ) {
1869                 reg = FDI_TX_CTL(pipe);
1870                 temp = I915_READ(reg);
1871                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1872                 temp |= snb_b_fdi_train_param[i];
1873                 I915_WRITE(reg, temp);
1874
1875                 POSTING_READ(reg);
1876                 udelay(500);
1877
1878                 reg = FDI_RX_IIR(pipe);
1879                 temp = I915_READ(reg);
1880                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1881
1882                 if (temp & FDI_RX_BIT_LOCK) {
1883                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1884                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1885                         break;
1886                 }
1887         }
1888         if (i == 4)
1889                 DRM_ERROR("FDI train 1 fail!\n");
1890
1891         /* Train 2 */
1892         reg = FDI_TX_CTL(pipe);
1893         temp = I915_READ(reg);
1894         temp &= ~FDI_LINK_TRAIN_NONE;
1895         temp |= FDI_LINK_TRAIN_PATTERN_2;
1896         if (IS_GEN6(dev)) {
1897                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1898                 /* SNB-B */
1899                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1900         }
1901         I915_WRITE(reg, temp);
1902
1903         reg = FDI_RX_CTL(pipe);
1904         temp = I915_READ(reg);
1905         if (HAS_PCH_CPT(dev)) {
1906                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1907                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1908         } else {
1909                 temp &= ~FDI_LINK_TRAIN_NONE;
1910                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1911         }
1912         I915_WRITE(reg, temp);
1913
1914         POSTING_READ(reg);
1915         udelay(150);
1916
1917         for (i = 0; i < 4; i++ ) {
1918                 reg = FDI_TX_CTL(pipe);
1919                 temp = I915_READ(reg);
1920                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1921                 temp |= snb_b_fdi_train_param[i];
1922                 I915_WRITE(reg, temp);
1923
1924                 POSTING_READ(reg);
1925                 udelay(500);
1926
1927                 reg = FDI_RX_IIR(pipe);
1928                 temp = I915_READ(reg);
1929                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1930
1931                 if (temp & FDI_RX_SYMBOL_LOCK) {
1932                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1933                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1934                         break;
1935                 }
1936         }
1937         if (i == 4)
1938                 DRM_ERROR("FDI train 2 fail!\n");
1939
1940         DRM_DEBUG_KMS("FDI train done.\n");
1941 }
1942
1943 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1944 {
1945         struct drm_device *dev = crtc->dev;
1946         struct drm_i915_private *dev_priv = dev->dev_private;
1947         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1948         int pipe = intel_crtc->pipe;
1949         u32 reg, temp;
1950
1951         /* Write the TU size bits so error detection works */
1952         I915_WRITE(FDI_RX_TUSIZE1(pipe),
1953                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1954
1955         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1956         reg = FDI_RX_CTL(pipe);
1957         temp = I915_READ(reg);
1958         temp &= ~((0x7 << 19) | (0x7 << 16));
1959         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1960         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1961         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1962
1963         POSTING_READ(reg);
1964         udelay(200);
1965
1966         /* Switch from Rawclk to PCDclk */
1967         temp = I915_READ(reg);
1968         I915_WRITE(reg, temp | FDI_PCDCLK);
1969
1970         POSTING_READ(reg);
1971         udelay(200);
1972
1973         /* Enable CPU FDI TX PLL, always on for Ironlake */
1974         reg = FDI_TX_CTL(pipe);
1975         temp = I915_READ(reg);
1976         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1977                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1978
1979                 POSTING_READ(reg);
1980                 udelay(100);
1981         }
1982 }
1983
1984 static void intel_flush_display_plane(struct drm_device *dev,
1985                                       int plane)
1986 {
1987         struct drm_i915_private *dev_priv = dev->dev_private;
1988         u32 reg = DSPADDR(plane);
1989         I915_WRITE(reg, I915_READ(reg));
1990 }
1991
1992 /*
1993  * When we disable a pipe, we need to clear any pending scanline wait events
1994  * to avoid hanging the ring, which we assume we are waiting on.
1995  */
1996 static void intel_clear_scanline_wait(struct drm_device *dev)
1997 {
1998         struct drm_i915_private *dev_priv = dev->dev_private;
1999         u32 tmp;
2000
2001         if (IS_GEN2(dev))
2002                 /* Can't break the hang on i8xx */
2003                 return;
2004
2005         tmp = I915_READ(PRB0_CTL);
2006         if (tmp & RING_WAIT) {
2007                 I915_WRITE(PRB0_CTL, tmp);
2008                 POSTING_READ(PRB0_CTL);
2009         }
2010 }
2011
2012 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2013 {
2014         struct drm_i915_gem_object *obj_priv;
2015         struct drm_i915_private *dev_priv;
2016
2017         if (crtc->fb == NULL)
2018                 return;
2019
2020         obj_priv = to_intel_bo(to_intel_framebuffer(crtc->fb)->obj);
2021         dev_priv = crtc->dev->dev_private;
2022         wait_event(dev_priv->pending_flip_queue,
2023                    atomic_read(&obj_priv->pending_flip) == 0);
2024 }
2025
2026 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2027 {
2028         struct drm_device *dev = crtc->dev;
2029         struct drm_i915_private *dev_priv = dev->dev_private;
2030         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2031         int pipe = intel_crtc->pipe;
2032         int plane = intel_crtc->plane;
2033         u32 reg, temp;
2034
2035         if (intel_crtc->active)
2036                 return;
2037
2038         intel_crtc->active = true;
2039         intel_update_watermarks(dev);
2040
2041         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2042                 temp = I915_READ(PCH_LVDS);
2043                 if ((temp & LVDS_PORT_EN) == 0)
2044                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2045         }
2046
2047         ironlake_fdi_enable(crtc);
2048
2049         /* Enable panel fitting for LVDS */
2050         if (dev_priv->pch_pf_size &&
2051             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2052                 /* Force use of hard-coded filter coefficients
2053                  * as some pre-programmed values are broken,
2054                  * e.g. x201.
2055                  */
2056                 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
2057                            PF_ENABLE | PF_FILTER_MED_3x3);
2058                 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
2059                            dev_priv->pch_pf_pos);
2060                 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
2061                            dev_priv->pch_pf_size);
2062         }
2063
2064         /* Enable CPU pipe */
2065         reg = PIPECONF(pipe);
2066         temp = I915_READ(reg);
2067         if ((temp & PIPECONF_ENABLE) == 0) {
2068                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2069                 POSTING_READ(reg);
2070                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2071         }
2072
2073         /* configure and enable CPU plane */
2074         reg = DSPCNTR(plane);
2075         temp = I915_READ(reg);
2076         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2077                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2078                 intel_flush_display_plane(dev, plane);
2079         }
2080
2081         /* For PCH output, training FDI link */
2082         if (IS_GEN6(dev))
2083                 gen6_fdi_link_train(crtc);
2084         else
2085                 ironlake_fdi_link_train(crtc);
2086
2087         /* enable PCH DPLL */
2088         reg = PCH_DPLL(pipe);
2089         temp = I915_READ(reg);
2090         if ((temp & DPLL_VCO_ENABLE) == 0) {
2091                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2092                 POSTING_READ(reg);
2093                 udelay(200);
2094         }
2095
2096         if (HAS_PCH_CPT(dev)) {
2097                 /* Be sure PCH DPLL SEL is set */
2098                 temp = I915_READ(PCH_DPLL_SEL);
2099                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2100                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2101                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2102                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2103                 I915_WRITE(PCH_DPLL_SEL, temp);
2104         }
2105
2106         /* set transcoder timing */
2107         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2108         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2109         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2110
2111         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2112         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2113         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2114
2115         intel_fdi_normal_train(crtc);
2116
2117         /* For PCH DP, enable TRANS_DP_CTL */
2118         if (HAS_PCH_CPT(dev) &&
2119             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2120                 reg = TRANS_DP_CTL(pipe);
2121                 temp = I915_READ(reg);
2122                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2123                           TRANS_DP_SYNC_MASK);
2124                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2125                          TRANS_DP_ENH_FRAMING);
2126
2127                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2128                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2129                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2130                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2131
2132                 switch (intel_trans_dp_port_sel(crtc)) {
2133                 case PCH_DP_B:
2134                         temp |= TRANS_DP_PORT_SEL_B;
2135                         break;
2136                 case PCH_DP_C:
2137                         temp |= TRANS_DP_PORT_SEL_C;
2138                         break;
2139                 case PCH_DP_D:
2140                         temp |= TRANS_DP_PORT_SEL_D;
2141                         break;
2142                 default:
2143                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2144                         temp |= TRANS_DP_PORT_SEL_B;
2145                         break;
2146                 }
2147
2148                 I915_WRITE(reg, temp);
2149         }
2150
2151         /* enable PCH transcoder */
2152         reg = TRANSCONF(pipe);
2153         temp = I915_READ(reg);
2154         /*
2155          * make the BPC in transcoder be consistent with
2156          * that in pipeconf reg.
2157          */
2158         temp &= ~PIPE_BPC_MASK;
2159         temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2160         I915_WRITE(reg, temp | TRANS_ENABLE);
2161         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2162                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
2163
2164         intel_crtc_load_lut(crtc);
2165         intel_update_fbc(dev);
2166         intel_crtc_update_cursor(crtc, true);
2167 }
2168
2169 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2170 {
2171         struct drm_device *dev = crtc->dev;
2172         struct drm_i915_private *dev_priv = dev->dev_private;
2173         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2174         int pipe = intel_crtc->pipe;
2175         int plane = intel_crtc->plane;
2176         u32 reg, temp;
2177
2178         if (!intel_crtc->active)
2179                 return;
2180
2181         intel_crtc_wait_for_pending_flips(crtc);
2182         drm_vblank_off(dev, pipe);
2183         intel_crtc_update_cursor(crtc, false);
2184
2185         /* Disable display plane */
2186         reg = DSPCNTR(plane);
2187         temp = I915_READ(reg);
2188         if (temp & DISPLAY_PLANE_ENABLE) {
2189                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2190                 intel_flush_display_plane(dev, plane);
2191         }
2192
2193         if (dev_priv->cfb_plane == plane &&
2194             dev_priv->display.disable_fbc)
2195                 dev_priv->display.disable_fbc(dev);
2196
2197         /* disable cpu pipe, disable after all planes disabled */
2198         reg = PIPECONF(pipe);
2199         temp = I915_READ(reg);
2200         if (temp & PIPECONF_ENABLE) {
2201                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2202                 POSTING_READ(reg);
2203                 /* wait for cpu pipe off, pipe state */
2204                 intel_wait_for_pipe_off(dev, intel_crtc->pipe);
2205         }
2206
2207         /* Disable PF */
2208         I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2209         I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2210
2211         /* disable CPU FDI tx and PCH FDI rx */
2212         reg = FDI_TX_CTL(pipe);
2213         temp = I915_READ(reg);
2214         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2215         POSTING_READ(reg);
2216
2217         reg = FDI_RX_CTL(pipe);
2218         temp = I915_READ(reg);
2219         temp &= ~(0x7 << 16);
2220         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2221         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2222
2223         POSTING_READ(reg);
2224         udelay(100);
2225
2226         /* Ironlake workaround, disable clock pointer after downing FDI */
2227         if (HAS_PCH_IBX(dev))
2228                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2229                            I915_READ(FDI_RX_CHICKEN(pipe) &
2230                                      ~FDI_RX_PHASE_SYNC_POINTER_ENABLE));
2231
2232         /* still set train pattern 1 */
2233         reg = FDI_TX_CTL(pipe);
2234         temp = I915_READ(reg);
2235         temp &= ~FDI_LINK_TRAIN_NONE;
2236         temp |= FDI_LINK_TRAIN_PATTERN_1;
2237         I915_WRITE(reg, temp);
2238
2239         reg = FDI_RX_CTL(pipe);
2240         temp = I915_READ(reg);
2241         if (HAS_PCH_CPT(dev)) {
2242                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2243                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2244         } else {
2245                 temp &= ~FDI_LINK_TRAIN_NONE;
2246                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2247         }
2248         /* BPC in FDI rx is consistent with that in PIPECONF */
2249         temp &= ~(0x07 << 16);
2250         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2251         I915_WRITE(reg, temp);
2252
2253         POSTING_READ(reg);
2254         udelay(100);
2255
2256         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2257                 temp = I915_READ(PCH_LVDS);
2258                 if (temp & LVDS_PORT_EN) {
2259                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2260                         POSTING_READ(PCH_LVDS);
2261                         udelay(100);
2262                 }
2263         }
2264
2265         /* disable PCH transcoder */
2266         reg = TRANSCONF(plane);
2267         temp = I915_READ(reg);
2268         if (temp & TRANS_ENABLE) {
2269                 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2270                 /* wait for PCH transcoder off, transcoder state */
2271                 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2272                         DRM_ERROR("failed to disable transcoder\n");
2273         }
2274
2275         if (HAS_PCH_CPT(dev)) {
2276                 /* disable TRANS_DP_CTL */
2277                 reg = TRANS_DP_CTL(pipe);
2278                 temp = I915_READ(reg);
2279                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2280                 I915_WRITE(reg, temp);
2281
2282                 /* disable DPLL_SEL */
2283                 temp = I915_READ(PCH_DPLL_SEL);
2284                 if (pipe == 0)
2285                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2286                 else
2287                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2288                 I915_WRITE(PCH_DPLL_SEL, temp);
2289         }
2290
2291         /* disable PCH DPLL */
2292         reg = PCH_DPLL(pipe);
2293         temp = I915_READ(reg);
2294         I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2295
2296         /* Switch from PCDclk to Rawclk */
2297         reg = FDI_RX_CTL(pipe);
2298         temp = I915_READ(reg);
2299         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2300
2301         /* Disable CPU FDI TX PLL */
2302         reg = FDI_TX_CTL(pipe);
2303         temp = I915_READ(reg);
2304         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2305
2306         POSTING_READ(reg);
2307         udelay(100);
2308
2309         reg = FDI_RX_CTL(pipe);
2310         temp = I915_READ(reg);
2311         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2312
2313         /* Wait for the clocks to turn off. */
2314         POSTING_READ(reg);
2315         udelay(100);
2316
2317         intel_crtc->active = false;
2318         intel_update_watermarks(dev);
2319         intel_update_fbc(dev);
2320         intel_clear_scanline_wait(dev);
2321 }
2322
2323 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2324 {
2325         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2326         int pipe = intel_crtc->pipe;
2327         int plane = intel_crtc->plane;
2328
2329         /* XXX: When our outputs are all unaware of DPMS modes other than off
2330          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2331          */
2332         switch (mode) {
2333         case DRM_MODE_DPMS_ON:
2334         case DRM_MODE_DPMS_STANDBY:
2335         case DRM_MODE_DPMS_SUSPEND:
2336                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2337                 ironlake_crtc_enable(crtc);
2338                 break;
2339
2340         case DRM_MODE_DPMS_OFF:
2341                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2342                 ironlake_crtc_disable(crtc);
2343                 break;
2344         }
2345 }
2346
2347 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2348 {
2349         if (!enable && intel_crtc->overlay) {
2350                 struct drm_device *dev = intel_crtc->base.dev;
2351
2352                 mutex_lock(&dev->struct_mutex);
2353                 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2354                 mutex_unlock(&dev->struct_mutex);
2355         }
2356
2357         /* Let userspace switch the overlay on again. In most cases userspace
2358          * has to recompute where to put it anyway.
2359          */
2360 }
2361
2362 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2363 {
2364         struct drm_device *dev = crtc->dev;
2365         struct drm_i915_private *dev_priv = dev->dev_private;
2366         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2367         int pipe = intel_crtc->pipe;
2368         int plane = intel_crtc->plane;
2369         u32 reg, temp;
2370
2371         if (intel_crtc->active)
2372                 return;
2373
2374         intel_crtc->active = true;
2375         intel_update_watermarks(dev);
2376
2377         /* Enable the DPLL */
2378         reg = DPLL(pipe);
2379         temp = I915_READ(reg);
2380         if ((temp & DPLL_VCO_ENABLE) == 0) {
2381                 I915_WRITE(reg, temp);
2382
2383                 /* Wait for the clocks to stabilize. */
2384                 POSTING_READ(reg);
2385                 udelay(150);
2386
2387                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2388
2389                 /* Wait for the clocks to stabilize. */
2390                 POSTING_READ(reg);
2391                 udelay(150);
2392
2393                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2394
2395                 /* Wait for the clocks to stabilize. */
2396                 POSTING_READ(reg);
2397                 udelay(150);
2398         }
2399
2400         /* Enable the pipe */
2401         reg = PIPECONF(pipe);
2402         temp = I915_READ(reg);
2403         if ((temp & PIPECONF_ENABLE) == 0)
2404                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2405
2406         /* Enable the plane */
2407         reg = DSPCNTR(plane);
2408         temp = I915_READ(reg);
2409         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2410                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2411                 intel_flush_display_plane(dev, plane);
2412         }
2413
2414         intel_crtc_load_lut(crtc);
2415         intel_update_fbc(dev);
2416
2417         /* Give the overlay scaler a chance to enable if it's on this pipe */
2418         intel_crtc_dpms_overlay(intel_crtc, true);
2419         intel_crtc_update_cursor(crtc, true);
2420 }
2421
2422 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2423 {
2424         struct drm_device *dev = crtc->dev;
2425         struct drm_i915_private *dev_priv = dev->dev_private;
2426         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2427         int pipe = intel_crtc->pipe;
2428         int plane = intel_crtc->plane;
2429         u32 reg, temp;
2430
2431         if (!intel_crtc->active)
2432                 return;
2433
2434         /* Give the overlay scaler a chance to disable if it's on this pipe */
2435         intel_crtc_wait_for_pending_flips(crtc);
2436         drm_vblank_off(dev, pipe);
2437         intel_crtc_dpms_overlay(intel_crtc, false);
2438         intel_crtc_update_cursor(crtc, false);
2439
2440         if (dev_priv->cfb_plane == plane &&
2441             dev_priv->display.disable_fbc)
2442                 dev_priv->display.disable_fbc(dev);
2443
2444         /* Disable display plane */
2445         reg = DSPCNTR(plane);
2446         temp = I915_READ(reg);
2447         if (temp & DISPLAY_PLANE_ENABLE) {
2448                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2449                 /* Flush the plane changes */
2450                 intel_flush_display_plane(dev, plane);
2451
2452                 /* Wait for vblank for the disable to take effect */
2453                 if (IS_GEN2(dev))
2454                         intel_wait_for_vblank(dev, pipe);
2455         }
2456
2457         /* Don't disable pipe A or pipe A PLLs if needed */
2458         if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2459                 goto done;
2460
2461         /* Next, disable display pipes */
2462         reg = PIPECONF(pipe);
2463         temp = I915_READ(reg);
2464         if (temp & PIPECONF_ENABLE) {
2465                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2466
2467                 /* Wait for the pipe to turn off */
2468                 POSTING_READ(reg);
2469                 intel_wait_for_pipe_off(dev, pipe);
2470         }
2471
2472         reg = DPLL(pipe);
2473         temp = I915_READ(reg);
2474         if (temp & DPLL_VCO_ENABLE) {
2475                 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2476
2477                 /* Wait for the clocks to turn off. */
2478                 POSTING_READ(reg);
2479                 udelay(150);
2480         }
2481
2482 done:
2483         intel_crtc->active = false;
2484         intel_update_fbc(dev);
2485         intel_update_watermarks(dev);
2486         intel_clear_scanline_wait(dev);
2487 }
2488
2489 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2490 {
2491         /* XXX: When our outputs are all unaware of DPMS modes other than off
2492          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2493          */
2494         switch (mode) {
2495         case DRM_MODE_DPMS_ON:
2496         case DRM_MODE_DPMS_STANDBY:
2497         case DRM_MODE_DPMS_SUSPEND:
2498                 i9xx_crtc_enable(crtc);
2499                 break;
2500         case DRM_MODE_DPMS_OFF:
2501                 i9xx_crtc_disable(crtc);
2502                 break;
2503         }
2504 }
2505
2506 /**
2507  * Sets the power management mode of the pipe and plane.
2508  */
2509 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2510 {
2511         struct drm_device *dev = crtc->dev;
2512         struct drm_i915_private *dev_priv = dev->dev_private;
2513         struct drm_i915_master_private *master_priv;
2514         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2515         int pipe = intel_crtc->pipe;
2516         bool enabled;
2517
2518         if (intel_crtc->dpms_mode == mode)
2519                 return;
2520
2521         intel_crtc->dpms_mode = mode;
2522
2523         dev_priv->display.dpms(crtc, mode);
2524
2525         if (!dev->primary->master)
2526                 return;
2527
2528         master_priv = dev->primary->master->driver_priv;
2529         if (!master_priv->sarea_priv)
2530                 return;
2531
2532         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2533
2534         switch (pipe) {
2535         case 0:
2536                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2537                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2538                 break;
2539         case 1:
2540                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2541                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2542                 break;
2543         default:
2544                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2545                 break;
2546         }
2547 }
2548
2549 static void intel_crtc_disable(struct drm_crtc *crtc)
2550 {
2551         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2552         struct drm_device *dev = crtc->dev;
2553
2554         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2555
2556         if (crtc->fb) {
2557                 mutex_lock(&dev->struct_mutex);
2558                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2559                 mutex_unlock(&dev->struct_mutex);
2560         }
2561 }
2562
2563 /* Prepare for a mode set.
2564  *
2565  * Note we could be a lot smarter here.  We need to figure out which outputs
2566  * will be enabled, which disabled (in short, how the config will changes)
2567  * and perform the minimum necessary steps to accomplish that, e.g. updating
2568  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2569  * panel fitting is in the proper state, etc.
2570  */
2571 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2572 {
2573         i9xx_crtc_disable(crtc);
2574 }
2575
2576 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2577 {
2578         i9xx_crtc_enable(crtc);
2579 }
2580
2581 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2582 {
2583         ironlake_crtc_disable(crtc);
2584 }
2585
2586 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2587 {
2588         ironlake_crtc_enable(crtc);
2589 }
2590
2591 void intel_encoder_prepare (struct drm_encoder *encoder)
2592 {
2593         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2594         /* lvds has its own version of prepare see intel_lvds_prepare */
2595         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2596 }
2597
2598 void intel_encoder_commit (struct drm_encoder *encoder)
2599 {
2600         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2601         /* lvds has its own version of commit see intel_lvds_commit */
2602         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2603 }
2604
2605 void intel_encoder_destroy(struct drm_encoder *encoder)
2606 {
2607         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2608
2609         drm_encoder_cleanup(encoder);
2610         kfree(intel_encoder);
2611 }
2612
2613 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2614                                   struct drm_display_mode *mode,
2615                                   struct drm_display_mode *adjusted_mode)
2616 {
2617         struct drm_device *dev = crtc->dev;
2618
2619         if (HAS_PCH_SPLIT(dev)) {
2620                 /* FDI link clock is fixed at 2.7G */
2621                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2622                         return false;
2623         }
2624
2625         /* XXX some encoders set the crtcinfo, others don't.
2626          * Obviously we need some form of conflict resolution here...
2627          */
2628         if (adjusted_mode->crtc_htotal == 0)
2629                 drm_mode_set_crtcinfo(adjusted_mode, 0);
2630
2631         return true;
2632 }
2633
2634 static int i945_get_display_clock_speed(struct drm_device *dev)
2635 {
2636         return 400000;
2637 }
2638
2639 static int i915_get_display_clock_speed(struct drm_device *dev)
2640 {
2641         return 333000;
2642 }
2643
2644 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2645 {
2646         return 200000;
2647 }
2648
2649 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2650 {
2651         u16 gcfgc = 0;
2652
2653         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2654
2655         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2656                 return 133000;
2657         else {
2658                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2659                 case GC_DISPLAY_CLOCK_333_MHZ:
2660                         return 333000;
2661                 default:
2662                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2663                         return 190000;
2664                 }
2665         }
2666 }
2667
2668 static int i865_get_display_clock_speed(struct drm_device *dev)
2669 {
2670         return 266000;
2671 }
2672
2673 static int i855_get_display_clock_speed(struct drm_device *dev)
2674 {
2675         u16 hpllcc = 0;
2676         /* Assume that the hardware is in the high speed state.  This
2677          * should be the default.
2678          */
2679         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2680         case GC_CLOCK_133_200:
2681         case GC_CLOCK_100_200:
2682                 return 200000;
2683         case GC_CLOCK_166_250:
2684                 return 250000;
2685         case GC_CLOCK_100_133:
2686                 return 133000;
2687         }
2688
2689         /* Shouldn't happen */
2690         return 0;
2691 }
2692
2693 static int i830_get_display_clock_speed(struct drm_device *dev)
2694 {
2695         return 133000;
2696 }
2697
2698 struct fdi_m_n {
2699         u32        tu;
2700         u32        gmch_m;
2701         u32        gmch_n;
2702         u32        link_m;
2703         u32        link_n;
2704 };
2705
2706 static void
2707 fdi_reduce_ratio(u32 *num, u32 *den)
2708 {
2709         while (*num > 0xffffff || *den > 0xffffff) {
2710                 *num >>= 1;
2711                 *den >>= 1;
2712         }
2713 }
2714
2715 #define DATA_N 0x800000
2716 #define LINK_N 0x80000
2717
2718 static void
2719 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2720                      int link_clock, struct fdi_m_n *m_n)
2721 {
2722         u64 temp;
2723
2724         m_n->tu = 64; /* default size */
2725
2726         temp = (u64) DATA_N * pixel_clock;
2727         temp = div_u64(temp, link_clock);
2728         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2729         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2730         m_n->gmch_n = DATA_N;
2731         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2732
2733         temp = (u64) LINK_N * pixel_clock;
2734         m_n->link_m = div_u64(temp, link_clock);
2735         m_n->link_n = LINK_N;
2736         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2737 }
2738
2739
2740 struct intel_watermark_params {
2741         unsigned long fifo_size;
2742         unsigned long max_wm;
2743         unsigned long default_wm;
2744         unsigned long guard_size;
2745         unsigned long cacheline_size;
2746 };
2747
2748 /* Pineview has different values for various configs */
2749 static struct intel_watermark_params pineview_display_wm = {
2750         PINEVIEW_DISPLAY_FIFO,
2751         PINEVIEW_MAX_WM,
2752         PINEVIEW_DFT_WM,
2753         PINEVIEW_GUARD_WM,
2754         PINEVIEW_FIFO_LINE_SIZE
2755 };
2756 static struct intel_watermark_params pineview_display_hplloff_wm = {
2757         PINEVIEW_DISPLAY_FIFO,
2758         PINEVIEW_MAX_WM,
2759         PINEVIEW_DFT_HPLLOFF_WM,
2760         PINEVIEW_GUARD_WM,
2761         PINEVIEW_FIFO_LINE_SIZE
2762 };
2763 static struct intel_watermark_params pineview_cursor_wm = {
2764         PINEVIEW_CURSOR_FIFO,
2765         PINEVIEW_CURSOR_MAX_WM,
2766         PINEVIEW_CURSOR_DFT_WM,
2767         PINEVIEW_CURSOR_GUARD_WM,
2768         PINEVIEW_FIFO_LINE_SIZE,
2769 };
2770 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2771         PINEVIEW_CURSOR_FIFO,
2772         PINEVIEW_CURSOR_MAX_WM,
2773         PINEVIEW_CURSOR_DFT_WM,
2774         PINEVIEW_CURSOR_GUARD_WM,
2775         PINEVIEW_FIFO_LINE_SIZE
2776 };
2777 static struct intel_watermark_params g4x_wm_info = {
2778         G4X_FIFO_SIZE,
2779         G4X_MAX_WM,
2780         G4X_MAX_WM,
2781         2,
2782         G4X_FIFO_LINE_SIZE,
2783 };
2784 static struct intel_watermark_params g4x_cursor_wm_info = {
2785         I965_CURSOR_FIFO,
2786         I965_CURSOR_MAX_WM,
2787         I965_CURSOR_DFT_WM,
2788         2,
2789         G4X_FIFO_LINE_SIZE,
2790 };
2791 static struct intel_watermark_params i965_cursor_wm_info = {
2792         I965_CURSOR_FIFO,
2793         I965_CURSOR_MAX_WM,
2794         I965_CURSOR_DFT_WM,
2795         2,
2796         I915_FIFO_LINE_SIZE,
2797 };
2798 static struct intel_watermark_params i945_wm_info = {
2799         I945_FIFO_SIZE,
2800         I915_MAX_WM,
2801         1,
2802         2,
2803         I915_FIFO_LINE_SIZE
2804 };
2805 static struct intel_watermark_params i915_wm_info = {
2806         I915_FIFO_SIZE,
2807         I915_MAX_WM,
2808         1,
2809         2,
2810         I915_FIFO_LINE_SIZE
2811 };
2812 static struct intel_watermark_params i855_wm_info = {
2813         I855GM_FIFO_SIZE,
2814         I915_MAX_WM,
2815         1,
2816         2,
2817         I830_FIFO_LINE_SIZE
2818 };
2819 static struct intel_watermark_params i830_wm_info = {
2820         I830_FIFO_SIZE,
2821         I915_MAX_WM,
2822         1,
2823         2,
2824         I830_FIFO_LINE_SIZE
2825 };
2826
2827 static struct intel_watermark_params ironlake_display_wm_info = {
2828         ILK_DISPLAY_FIFO,
2829         ILK_DISPLAY_MAXWM,
2830         ILK_DISPLAY_DFTWM,
2831         2,
2832         ILK_FIFO_LINE_SIZE
2833 };
2834
2835 static struct intel_watermark_params ironlake_cursor_wm_info = {
2836         ILK_CURSOR_FIFO,
2837         ILK_CURSOR_MAXWM,
2838         ILK_CURSOR_DFTWM,
2839         2,
2840         ILK_FIFO_LINE_SIZE
2841 };
2842
2843 static struct intel_watermark_params ironlake_display_srwm_info = {
2844         ILK_DISPLAY_SR_FIFO,
2845         ILK_DISPLAY_MAX_SRWM,
2846         ILK_DISPLAY_DFT_SRWM,
2847         2,
2848         ILK_FIFO_LINE_SIZE
2849 };
2850
2851 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2852         ILK_CURSOR_SR_FIFO,
2853         ILK_CURSOR_MAX_SRWM,
2854         ILK_CURSOR_DFT_SRWM,
2855         2,
2856         ILK_FIFO_LINE_SIZE
2857 };
2858
2859 /**
2860  * intel_calculate_wm - calculate watermark level
2861  * @clock_in_khz: pixel clock
2862  * @wm: chip FIFO params
2863  * @pixel_size: display pixel size
2864  * @latency_ns: memory latency for the platform
2865  *
2866  * Calculate the watermark level (the level at which the display plane will
2867  * start fetching from memory again).  Each chip has a different display
2868  * FIFO size and allocation, so the caller needs to figure that out and pass
2869  * in the correct intel_watermark_params structure.
2870  *
2871  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2872  * on the pixel size.  When it reaches the watermark level, it'll start
2873  * fetching FIFO line sized based chunks from memory until the FIFO fills
2874  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2875  * will occur, and a display engine hang could result.
2876  */
2877 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2878                                         struct intel_watermark_params *wm,
2879                                         int pixel_size,
2880                                         unsigned long latency_ns)
2881 {
2882         long entries_required, wm_size;
2883
2884         /*
2885          * Note: we need to make sure we don't overflow for various clock &
2886          * latency values.
2887          * clocks go from a few thousand to several hundred thousand.
2888          * latency is usually a few thousand
2889          */
2890         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2891                 1000;
2892         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2893
2894         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2895
2896         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2897
2898         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2899
2900         /* Don't promote wm_size to unsigned... */
2901         if (wm_size > (long)wm->max_wm)
2902                 wm_size = wm->max_wm;
2903         if (wm_size <= 0)
2904                 wm_size = wm->default_wm;
2905         return wm_size;
2906 }
2907
2908 struct cxsr_latency {
2909         int is_desktop;
2910         int is_ddr3;
2911         unsigned long fsb_freq;
2912         unsigned long mem_freq;
2913         unsigned long display_sr;
2914         unsigned long display_hpll_disable;
2915         unsigned long cursor_sr;
2916         unsigned long cursor_hpll_disable;
2917 };
2918
2919 static const struct cxsr_latency cxsr_latency_table[] = {
2920         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2921         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2922         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2923         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
2924         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
2925
2926         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2927         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2928         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2929         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
2930         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
2931
2932         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2933         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2934         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2935         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
2936         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
2937
2938         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2939         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2940         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2941         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
2942         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
2943
2944         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2945         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2946         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2947         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
2948         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
2949
2950         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2951         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2952         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2953         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
2954         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
2955 };
2956
2957 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2958                                                          int is_ddr3,
2959                                                          int fsb,
2960                                                          int mem)
2961 {
2962         const struct cxsr_latency *latency;
2963         int i;
2964
2965         if (fsb == 0 || mem == 0)
2966                 return NULL;
2967
2968         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2969                 latency = &cxsr_latency_table[i];
2970                 if (is_desktop == latency->is_desktop &&
2971                     is_ddr3 == latency->is_ddr3 &&
2972                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2973                         return latency;
2974         }
2975
2976         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2977
2978         return NULL;
2979 }
2980
2981 static void pineview_disable_cxsr(struct drm_device *dev)
2982 {
2983         struct drm_i915_private *dev_priv = dev->dev_private;
2984
2985         /* deactivate cxsr */
2986         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2987 }
2988
2989 /*
2990  * Latency for FIFO fetches is dependent on several factors:
2991  *   - memory configuration (speed, channels)
2992  *   - chipset
2993  *   - current MCH state
2994  * It can be fairly high in some situations, so here we assume a fairly
2995  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2996  * set this value too high, the FIFO will fetch frequently to stay full)
2997  * and power consumption (set it too low to save power and we might see
2998  * FIFO underruns and display "flicker").
2999  *
3000  * A value of 5us seems to be a good balance; safe for very low end
3001  * platforms but not overly aggressive on lower latency configs.
3002  */
3003 static const int latency_ns = 5000;
3004
3005 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3006 {
3007         struct drm_i915_private *dev_priv = dev->dev_private;
3008         uint32_t dsparb = I915_READ(DSPARB);
3009         int size;
3010
3011         size = dsparb & 0x7f;
3012         if (plane)
3013                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3014
3015         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3016                       plane ? "B" : "A", size);
3017
3018         return size;
3019 }
3020
3021 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3022 {
3023         struct drm_i915_private *dev_priv = dev->dev_private;
3024         uint32_t dsparb = I915_READ(DSPARB);
3025         int size;
3026
3027         size = dsparb & 0x1ff;
3028         if (plane)
3029                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3030         size >>= 1; /* Convert to cachelines */
3031
3032         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3033                       plane ? "B" : "A", size);
3034
3035         return size;
3036 }
3037
3038 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3039 {
3040         struct drm_i915_private *dev_priv = dev->dev_private;
3041         uint32_t dsparb = I915_READ(DSPARB);
3042         int size;
3043
3044         size = dsparb & 0x7f;
3045         size >>= 2; /* Convert to cachelines */
3046
3047         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3048                       plane ? "B" : "A",
3049                       size);
3050
3051         return size;
3052 }
3053
3054 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3055 {
3056         struct drm_i915_private *dev_priv = dev->dev_private;
3057         uint32_t dsparb = I915_READ(DSPARB);
3058         int size;
3059
3060         size = dsparb & 0x7f;
3061         size >>= 1; /* Convert to cachelines */
3062
3063         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3064                       plane ? "B" : "A", size);
3065
3066         return size;
3067 }
3068
3069 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
3070                                int planeb_clock, int sr_hdisplay, int unused,
3071                                int pixel_size)
3072 {
3073         struct drm_i915_private *dev_priv = dev->dev_private;
3074         const struct cxsr_latency *latency;
3075         u32 reg;
3076         unsigned long wm;
3077         int sr_clock;
3078
3079         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3080                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3081         if (!latency) {
3082                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3083                 pineview_disable_cxsr(dev);
3084                 return;
3085         }
3086
3087         if (!planea_clock || !planeb_clock) {
3088                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3089
3090                 /* Display SR */
3091                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3092                                         pixel_size, latency->display_sr);
3093                 reg = I915_READ(DSPFW1);
3094                 reg &= ~DSPFW_SR_MASK;
3095                 reg |= wm << DSPFW_SR_SHIFT;
3096                 I915_WRITE(DSPFW1, reg);
3097                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3098
3099                 /* cursor SR */
3100                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3101                                         pixel_size, latency->cursor_sr);
3102                 reg = I915_READ(DSPFW3);
3103                 reg &= ~DSPFW_CURSOR_SR_MASK;
3104                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3105                 I915_WRITE(DSPFW3, reg);
3106
3107                 /* Display HPLL off SR */
3108                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3109                                         pixel_size, latency->display_hpll_disable);
3110                 reg = I915_READ(DSPFW3);
3111                 reg &= ~DSPFW_HPLL_SR_MASK;
3112                 reg |= wm & DSPFW_HPLL_SR_MASK;
3113                 I915_WRITE(DSPFW3, reg);
3114
3115                 /* cursor HPLL off SR */
3116                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3117                                         pixel_size, latency->cursor_hpll_disable);
3118                 reg = I915_READ(DSPFW3);
3119                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3120                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3121                 I915_WRITE(DSPFW3, reg);
3122                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3123
3124                 /* activate cxsr */
3125                 I915_WRITE(DSPFW3,
3126                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3127                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3128         } else {
3129                 pineview_disable_cxsr(dev);
3130                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3131         }
3132 }
3133
3134 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
3135                           int planeb_clock, int sr_hdisplay, int sr_htotal,
3136                           int pixel_size)
3137 {
3138         struct drm_i915_private *dev_priv = dev->dev_private;
3139         int total_size, cacheline_size;
3140         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3141         struct intel_watermark_params planea_params, planeb_params;
3142         unsigned long line_time_us;
3143         int sr_clock, sr_entries = 0, entries_required;
3144
3145         /* Create copies of the base settings for each pipe */
3146         planea_params = planeb_params = g4x_wm_info;
3147
3148         /* Grab a couple of global values before we overwrite them */
3149         total_size = planea_params.fifo_size;
3150         cacheline_size = planea_params.cacheline_size;
3151
3152         /*
3153          * Note: we need to make sure we don't overflow for various clock &
3154          * latency values.
3155          * clocks go from a few thousand to several hundred thousand.
3156          * latency is usually a few thousand
3157          */
3158         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3159                 1000;
3160         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3161         planea_wm = entries_required + planea_params.guard_size;
3162
3163         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3164                 1000;
3165         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3166         planeb_wm = entries_required + planeb_params.guard_size;
3167
3168         cursora_wm = cursorb_wm = 16;
3169         cursor_sr = 32;
3170
3171         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3172
3173         /* Calc sr entries for one plane configs */
3174         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3175                 /* self-refresh has much higher latency */
3176                 static const int sr_latency_ns = 12000;
3177
3178                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3179                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3180
3181                 /* Use ns/us then divide to preserve precision */
3182                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3183                         pixel_size * sr_hdisplay;
3184                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3185
3186                 entries_required = (((sr_latency_ns / line_time_us) +
3187                                      1000) / 1000) * pixel_size * 64;
3188                 entries_required = DIV_ROUND_UP(entries_required,
3189                                                 g4x_cursor_wm_info.cacheline_size);
3190                 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3191
3192                 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3193                         cursor_sr = g4x_cursor_wm_info.max_wm;
3194                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3195                               "cursor %d\n", sr_entries, cursor_sr);
3196
3197                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3198         } else {
3199                 /* Turn off self refresh if both pipes are enabled */
3200                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3201                            & ~FW_BLC_SELF_EN);
3202         }
3203
3204         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3205                   planea_wm, planeb_wm, sr_entries);
3206
3207         planea_wm &= 0x3f;
3208         planeb_wm &= 0x3f;
3209
3210         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3211                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3212                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3213         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3214                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3215         /* HPLL off in SR has some issues on G4x... disable it */
3216         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3217                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3218 }
3219
3220 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3221                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3222                            int pixel_size)
3223 {
3224         struct drm_i915_private *dev_priv = dev->dev_private;
3225         unsigned long line_time_us;
3226         int sr_clock, sr_entries, srwm = 1;
3227         int cursor_sr = 16;
3228
3229         /* Calc sr entries for one plane configs */
3230         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3231                 /* self-refresh has much higher latency */
3232                 static const int sr_latency_ns = 12000;
3233
3234                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3235                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3236
3237                 /* Use ns/us then divide to preserve precision */
3238                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3239                         pixel_size * sr_hdisplay;
3240                 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3241                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3242                 srwm = I965_FIFO_SIZE - sr_entries;
3243                 if (srwm < 0)
3244                         srwm = 1;
3245                 srwm &= 0x1ff;
3246
3247                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3248                         pixel_size * 64;
3249                 sr_entries = DIV_ROUND_UP(sr_entries,
3250                                           i965_cursor_wm_info.cacheline_size);
3251                 cursor_sr = i965_cursor_wm_info.fifo_size -
3252                         (sr_entries + i965_cursor_wm_info.guard_size);
3253
3254                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3255                         cursor_sr = i965_cursor_wm_info.max_wm;
3256
3257                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3258                               "cursor %d\n", srwm, cursor_sr);
3259
3260                 if (IS_CRESTLINE(dev))
3261                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3262         } else {
3263                 /* Turn off self refresh if both pipes are enabled */
3264                 if (IS_CRESTLINE(dev))
3265                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3266                                    & ~FW_BLC_SELF_EN);
3267         }
3268
3269         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3270                       srwm);
3271
3272         /* 965 has limitations... */
3273         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3274                    (8 << 0));
3275         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3276         /* update cursor SR watermark */
3277         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3278 }
3279
3280 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3281                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3282                            int pixel_size)
3283 {
3284         struct drm_i915_private *dev_priv = dev->dev_private;
3285         uint32_t fwater_lo;
3286         uint32_t fwater_hi;
3287         int total_size, cacheline_size, cwm, srwm = 1;
3288         int planea_wm, planeb_wm;
3289         struct intel_watermark_params planea_params, planeb_params;
3290         unsigned long line_time_us;
3291         int sr_clock, sr_entries = 0;
3292
3293         /* Create copies of the base settings for each pipe */
3294         if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3295                 planea_params = planeb_params = i945_wm_info;
3296         else if (!IS_GEN2(dev))
3297                 planea_params = planeb_params = i915_wm_info;
3298         else
3299                 planea_params = planeb_params = i855_wm_info;
3300
3301         /* Grab a couple of global values before we overwrite them */
3302         total_size = planea_params.fifo_size;
3303         cacheline_size = planea_params.cacheline_size;
3304
3305         /* Update per-plane FIFO sizes */
3306         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3307         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3308
3309         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3310                                        pixel_size, latency_ns);
3311         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3312                                        pixel_size, latency_ns);
3313         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3314
3315         /*
3316          * Overlay gets an aggressive default since video jitter is bad.
3317          */
3318         cwm = 2;
3319
3320         /* Calc sr entries for one plane configs */
3321         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3322             (!planea_clock || !planeb_clock)) {
3323                 /* self-refresh has much higher latency */
3324                 static const int sr_latency_ns = 6000;
3325
3326                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3327                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3328
3329                 /* Use ns/us then divide to preserve precision */
3330                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3331                         pixel_size * sr_hdisplay;
3332                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3333                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3334                 srwm = total_size - sr_entries;
3335                 if (srwm < 0)
3336                         srwm = 1;
3337
3338                 if (IS_I945G(dev) || IS_I945GM(dev))
3339                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3340                 else if (IS_I915GM(dev)) {
3341                         /* 915M has a smaller SRWM field */
3342                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3343                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3344                 }
3345         } else {
3346                 /* Turn off self refresh if both pipes are enabled */
3347                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3348                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3349                                    & ~FW_BLC_SELF_EN);
3350                 } else if (IS_I915GM(dev)) {
3351                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3352                 }
3353         }
3354
3355         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3356                       planea_wm, planeb_wm, cwm, srwm);
3357
3358         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3359         fwater_hi = (cwm & 0x1f);
3360
3361         /* Set request length to 8 cachelines per fetch */
3362         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3363         fwater_hi = fwater_hi | (1 << 8);
3364
3365         I915_WRITE(FW_BLC, fwater_lo);
3366         I915_WRITE(FW_BLC2, fwater_hi);
3367 }
3368
3369 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3370                            int unused2, int unused3, int pixel_size)
3371 {
3372         struct drm_i915_private *dev_priv = dev->dev_private;
3373         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3374         int planea_wm;
3375
3376         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3377
3378         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3379                                        pixel_size, latency_ns);
3380         fwater_lo |= (3<<8) | planea_wm;
3381
3382         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3383
3384         I915_WRITE(FW_BLC, fwater_lo);
3385 }
3386
3387 #define ILK_LP0_PLANE_LATENCY           700
3388 #define ILK_LP0_CURSOR_LATENCY          1300
3389
3390 static bool ironlake_compute_wm0(struct drm_device *dev,
3391                                  int pipe,
3392                                  int *plane_wm,
3393                                  int *cursor_wm)
3394 {
3395         struct drm_crtc *crtc;
3396         int htotal, hdisplay, clock, pixel_size = 0;
3397         int line_time_us, line_count, entries;
3398
3399         crtc = intel_get_crtc_for_pipe(dev, pipe);
3400         if (crtc->fb == NULL || !crtc->enabled)
3401                 return false;
3402
3403         htotal = crtc->mode.htotal;
3404         hdisplay = crtc->mode.hdisplay;
3405         clock = crtc->mode.clock;
3406         pixel_size = crtc->fb->bits_per_pixel / 8;
3407
3408         /* Use the small buffer method to calculate plane watermark */
3409         entries = ((clock * pixel_size / 1000) * ILK_LP0_PLANE_LATENCY) / 1000;
3410         entries = DIV_ROUND_UP(entries,
3411                                ironlake_display_wm_info.cacheline_size);
3412         *plane_wm = entries + ironlake_display_wm_info.guard_size;
3413         if (*plane_wm > (int)ironlake_display_wm_info.max_wm)
3414                 *plane_wm = ironlake_display_wm_info.max_wm;
3415
3416         /* Use the large buffer method to calculate cursor watermark */
3417         line_time_us = ((htotal * 1000) / clock);
3418         line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3419         entries = line_count * 64 * pixel_size;
3420         entries = DIV_ROUND_UP(entries,
3421                                ironlake_cursor_wm_info.cacheline_size);
3422         *cursor_wm = entries + ironlake_cursor_wm_info.guard_size;
3423         if (*cursor_wm > ironlake_cursor_wm_info.max_wm)
3424                 *cursor_wm = ironlake_cursor_wm_info.max_wm;
3425
3426         return true;
3427 }
3428
3429 static void ironlake_update_wm(struct drm_device *dev,
3430                                int planea_clock, int planeb_clock,
3431                                int sr_hdisplay, int sr_htotal,
3432                                int pixel_size)
3433 {
3434         struct drm_i915_private *dev_priv = dev->dev_private;
3435         int plane_wm, cursor_wm, enabled;
3436         int tmp;
3437
3438         enabled = 0;
3439         if (ironlake_compute_wm0(dev, 0, &plane_wm, &cursor_wm)) {
3440                 I915_WRITE(WM0_PIPEA_ILK,
3441                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3442                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3443                               " plane %d, " "cursor: %d\n",
3444                               plane_wm, cursor_wm);
3445                 enabled++;
3446         }
3447
3448         if (ironlake_compute_wm0(dev, 1, &plane_wm, &cursor_wm)) {
3449                 I915_WRITE(WM0_PIPEB_ILK,
3450                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3451                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3452                               " plane %d, cursor: %d\n",
3453                               plane_wm, cursor_wm);
3454                 enabled++;
3455         }
3456
3457         /*
3458          * Calculate and update the self-refresh watermark only when one
3459          * display plane is used.
3460          */
3461         tmp = 0;
3462         if (enabled == 1 && /* XXX disabled due to buggy implmentation? */ 0) {
3463                 unsigned long line_time_us;
3464                 int small, large, plane_fbc;
3465                 int sr_clock, entries;
3466                 int line_count, line_size;
3467                 /* Read the self-refresh latency. The unit is 0.5us */
3468                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3469
3470                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3471                 line_time_us = (sr_htotal * 1000) / sr_clock;
3472
3473                 /* Use ns/us then divide to preserve precision */
3474                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3475                         / 1000;
3476                 line_size = sr_hdisplay * pixel_size;
3477
3478                 /* Use the minimum of the small and large buffer method for primary */
3479                 small = ((sr_clock * pixel_size / 1000) * (ilk_sr_latency * 500)) / 1000;
3480                 large = line_count * line_size;
3481
3482                 entries = DIV_ROUND_UP(min(small, large),
3483                                        ironlake_display_srwm_info.cacheline_size);
3484
3485                 plane_fbc = entries * 64;
3486                 plane_fbc = DIV_ROUND_UP(plane_fbc, line_size);
3487
3488                 plane_wm = entries + ironlake_display_srwm_info.guard_size;
3489                 if (plane_wm > (int)ironlake_display_srwm_info.max_wm)
3490                         plane_wm = ironlake_display_srwm_info.max_wm;
3491
3492                 /* calculate the self-refresh watermark for display cursor */
3493                 entries = line_count * pixel_size * 64;
3494                 entries = DIV_ROUND_UP(entries,
3495                                        ironlake_cursor_srwm_info.cacheline_size);
3496
3497                 cursor_wm = entries + ironlake_cursor_srwm_info.guard_size;
3498                 if (cursor_wm > (int)ironlake_cursor_srwm_info.max_wm)
3499                         cursor_wm = ironlake_cursor_srwm_info.max_wm;
3500
3501                 /* configure watermark and enable self-refresh */
3502                 tmp = (WM1_LP_SR_EN |
3503                        (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3504                        (plane_fbc << WM1_LP_FBC_SHIFT) |
3505                        (plane_wm << WM1_LP_SR_SHIFT) |
3506                        cursor_wm);
3507                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3508                               " cursor %d\n", plane_wm, plane_fbc, cursor_wm);
3509         }
3510         I915_WRITE(WM1_LP_ILK, tmp);
3511         /* XXX setup WM2 and WM3 */
3512 }
3513
3514 /**
3515  * intel_update_watermarks - update FIFO watermark values based on current modes
3516  *
3517  * Calculate watermark values for the various WM regs based on current mode
3518  * and plane configuration.
3519  *
3520  * There are several cases to deal with here:
3521  *   - normal (i.e. non-self-refresh)
3522  *   - self-refresh (SR) mode
3523  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3524  *   - lines are small relative to FIFO size (buffer can hold more than 2
3525  *     lines), so need to account for TLB latency
3526  *
3527  *   The normal calculation is:
3528  *     watermark = dotclock * bytes per pixel * latency
3529  *   where latency is platform & configuration dependent (we assume pessimal
3530  *   values here).
3531  *
3532  *   The SR calculation is:
3533  *     watermark = (trunc(latency/line time)+1) * surface width *
3534  *       bytes per pixel
3535  *   where
3536  *     line time = htotal / dotclock
3537  *     surface width = hdisplay for normal plane and 64 for cursor
3538  *   and latency is assumed to be high, as above.
3539  *
3540  * The final value programmed to the register should always be rounded up,
3541  * and include an extra 2 entries to account for clock crossings.
3542  *
3543  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3544  * to set the non-SR watermarks to 8.
3545  */
3546 static void intel_update_watermarks(struct drm_device *dev)
3547 {
3548         struct drm_i915_private *dev_priv = dev->dev_private;
3549         struct drm_crtc *crtc;
3550         int sr_hdisplay = 0;
3551         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3552         int enabled = 0, pixel_size = 0;
3553         int sr_htotal = 0;
3554
3555         if (!dev_priv->display.update_wm)
3556                 return;
3557
3558         /* Get the clock config from both planes */
3559         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3560                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3561                 if (intel_crtc->active) {
3562                         enabled++;
3563                         if (intel_crtc->plane == 0) {
3564                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3565                                               intel_crtc->pipe, crtc->mode.clock);
3566                                 planea_clock = crtc->mode.clock;
3567                         } else {
3568                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3569                                               intel_crtc->pipe, crtc->mode.clock);
3570                                 planeb_clock = crtc->mode.clock;
3571                         }
3572                         sr_hdisplay = crtc->mode.hdisplay;
3573                         sr_clock = crtc->mode.clock;
3574                         sr_htotal = crtc->mode.htotal;
3575                         if (crtc->fb)
3576                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3577                         else
3578                                 pixel_size = 4; /* by default */
3579                 }
3580         }
3581
3582         if (enabled <= 0)
3583                 return;
3584
3585         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3586                                     sr_hdisplay, sr_htotal, pixel_size);
3587 }
3588
3589 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3590                                struct drm_display_mode *mode,
3591                                struct drm_display_mode *adjusted_mode,
3592                                int x, int y,
3593                                struct drm_framebuffer *old_fb)
3594 {
3595         struct drm_device *dev = crtc->dev;
3596         struct drm_i915_private *dev_priv = dev->dev_private;
3597         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3598         int pipe = intel_crtc->pipe;
3599         int plane = intel_crtc->plane;
3600         u32 fp_reg, dpll_reg;
3601         int refclk, num_connectors = 0;
3602         intel_clock_t clock, reduced_clock;
3603         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3604         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3605         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3606         struct intel_encoder *has_edp_encoder = NULL;
3607         struct drm_mode_config *mode_config = &dev->mode_config;
3608         struct intel_encoder *encoder;
3609         const intel_limit_t *limit;
3610         int ret;
3611         struct fdi_m_n m_n = {0};
3612         u32 reg, temp;
3613         int target_clock;
3614
3615         drm_vblank_pre_modeset(dev, pipe);
3616
3617         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3618                 if (encoder->base.crtc != crtc)
3619                         continue;
3620
3621                 switch (encoder->type) {
3622                 case INTEL_OUTPUT_LVDS:
3623                         is_lvds = true;
3624                         break;
3625                 case INTEL_OUTPUT_SDVO:
3626                 case INTEL_OUTPUT_HDMI:
3627                         is_sdvo = true;
3628                         if (encoder->needs_tv_clock)
3629                                 is_tv = true;
3630                         break;
3631                 case INTEL_OUTPUT_DVO:
3632                         is_dvo = true;
3633                         break;
3634                 case INTEL_OUTPUT_TVOUT:
3635                         is_tv = true;
3636                         break;
3637                 case INTEL_OUTPUT_ANALOG:
3638                         is_crt = true;
3639                         break;
3640                 case INTEL_OUTPUT_DISPLAYPORT:
3641                         is_dp = true;
3642                         break;
3643                 case INTEL_OUTPUT_EDP:
3644                         has_edp_encoder = encoder;
3645                         break;
3646                 }
3647
3648                 num_connectors++;
3649         }
3650
3651         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3652                 refclk = dev_priv->lvds_ssc_freq * 1000;
3653                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3654                               refclk / 1000);
3655         } else if (!IS_GEN2(dev)) {
3656                 refclk = 96000;
3657                 if (HAS_PCH_SPLIT(dev) &&
3658                     (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)))
3659                         refclk = 120000; /* 120Mhz refclk */
3660         } else {
3661                 refclk = 48000;
3662         }
3663
3664         /*
3665          * Returns a set of divisors for the desired target clock with the given
3666          * refclk, or FALSE.  The returned values represent the clock equation:
3667          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3668          */
3669         limit = intel_limit(crtc);
3670         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3671         if (!ok) {
3672                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3673                 drm_vblank_post_modeset(dev, pipe);
3674                 return -EINVAL;
3675         }
3676
3677         /* Ensure that the cursor is valid for the new mode before changing... */
3678         intel_crtc_update_cursor(crtc, true);
3679
3680         if (is_lvds && dev_priv->lvds_downclock_avail) {
3681                 has_reduced_clock = limit->find_pll(limit, crtc,
3682                                                     dev_priv->lvds_downclock,
3683                                                     refclk,
3684                                                     &reduced_clock);
3685                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3686                         /*
3687                          * If the different P is found, it means that we can't
3688                          * switch the display clock by using the FP0/FP1.
3689                          * In such case we will disable the LVDS downclock
3690                          * feature.
3691                          */
3692                         DRM_DEBUG_KMS("Different P is found for "
3693                                       "LVDS clock/downclock\n");
3694                         has_reduced_clock = 0;
3695                 }
3696         }
3697         /* SDVO TV has fixed PLL values depend on its clock range,
3698            this mirrors vbios setting. */
3699         if (is_sdvo && is_tv) {
3700                 if (adjusted_mode->clock >= 100000
3701                     && adjusted_mode->clock < 140500) {
3702                         clock.p1 = 2;
3703                         clock.p2 = 10;
3704                         clock.n = 3;
3705                         clock.m1 = 16;
3706                         clock.m2 = 8;
3707                 } else if (adjusted_mode->clock >= 140500
3708                            && adjusted_mode->clock <= 200000) {
3709                         clock.p1 = 1;
3710                         clock.p2 = 10;
3711                         clock.n = 6;
3712                         clock.m1 = 12;
3713                         clock.m2 = 8;
3714                 }
3715         }
3716
3717         /* FDI link */
3718         if (HAS_PCH_SPLIT(dev)) {
3719                 int lane = 0, link_bw, bpp;
3720                 /* CPU eDP doesn't require FDI link, so just set DP M/N
3721                    according to current link config */
3722                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&encoder->base)) {
3723                         target_clock = mode->clock;
3724                         intel_edp_link_config(has_edp_encoder,
3725                                               &lane, &link_bw);
3726                 } else {
3727                         /* [e]DP over FDI requires target mode clock
3728                            instead of link clock */
3729                         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3730                                 target_clock = mode->clock;
3731                         else
3732                                 target_clock = adjusted_mode->clock;
3733
3734                         /* FDI is a binary signal running at ~2.7GHz, encoding
3735                          * each output octet as 10 bits. The actual frequency
3736                          * is stored as a divider into a 100MHz clock, and the
3737                          * mode pixel clock is stored in units of 1KHz.
3738                          * Hence the bw of each lane in terms of the mode signal
3739                          * is:
3740                          */
3741                         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3742                 }
3743
3744                 /* determine panel color depth */
3745                 temp = I915_READ(PIPECONF(pipe));
3746                 temp &= ~PIPE_BPC_MASK;
3747                 if (is_lvds) {
3748                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3749                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3750                                 temp |= PIPE_8BPC;
3751                         else
3752                                 temp |= PIPE_6BPC;
3753                 } else if (has_edp_encoder) {
3754                         switch (dev_priv->edp.bpp/3) {
3755                         case 8:
3756                                 temp |= PIPE_8BPC;
3757                                 break;
3758                         case 10:
3759                                 temp |= PIPE_10BPC;
3760                                 break;
3761                         case 6:
3762                                 temp |= PIPE_6BPC;
3763                                 break;
3764                         case 12:
3765                                 temp |= PIPE_12BPC;
3766                                 break;
3767                         }
3768                 } else
3769                         temp |= PIPE_8BPC;
3770                 I915_WRITE(PIPECONF(pipe), temp);
3771
3772                 switch (temp & PIPE_BPC_MASK) {
3773                 case PIPE_8BPC:
3774                         bpp = 24;
3775                         break;
3776                 case PIPE_10BPC:
3777                         bpp = 30;
3778                         break;
3779                 case PIPE_6BPC:
3780                         bpp = 18;
3781                         break;
3782                 case PIPE_12BPC:
3783                         bpp = 36;
3784                         break;
3785                 default:
3786                         DRM_ERROR("unknown pipe bpc value\n");
3787                         bpp = 24;
3788                 }
3789
3790                 if (!lane) {
3791                         /* 
3792                          * Account for spread spectrum to avoid
3793                          * oversubscribing the link. Max center spread
3794                          * is 2.5%; use 5% for safety's sake.
3795                          */
3796                         u32 bps = target_clock * bpp * 21 / 20;
3797                         lane = bps / (link_bw * 8) + 1;
3798                 }
3799
3800                 intel_crtc->fdi_lanes = lane;
3801
3802                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3803         }
3804
3805         /* Ironlake: try to setup display ref clock before DPLL
3806          * enabling. This is only under driver's control after
3807          * PCH B stepping, previous chipset stepping should be
3808          * ignoring this setting.
3809          */
3810         if (HAS_PCH_SPLIT(dev)) {
3811                 temp = I915_READ(PCH_DREF_CONTROL);
3812                 /* Always enable nonspread source */
3813                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3814                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3815                 temp &= ~DREF_SSC_SOURCE_MASK;
3816                 temp |= DREF_SSC_SOURCE_ENABLE;
3817                 I915_WRITE(PCH_DREF_CONTROL, temp);
3818
3819                 POSTING_READ(PCH_DREF_CONTROL);
3820                 udelay(200);
3821
3822                 if (has_edp_encoder) {
3823                         if (dev_priv->lvds_use_ssc) {
3824                                 temp |= DREF_SSC1_ENABLE;
3825                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3826
3827                                 POSTING_READ(PCH_DREF_CONTROL);
3828                                 udelay(200);
3829                         }
3830                         temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3831
3832                         /* Enable CPU source on CPU attached eDP */
3833                         if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3834                                 if (dev_priv->lvds_use_ssc)
3835                                         temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3836                                 else
3837                                         temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3838                         } else {
3839                                 /* Enable SSC on PCH eDP if needed */
3840                                 if (dev_priv->lvds_use_ssc) {
3841                                         DRM_ERROR("enabling SSC on PCH\n");
3842                                         temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
3843                                 }
3844                         }
3845                         I915_WRITE(PCH_DREF_CONTROL, temp);
3846                         POSTING_READ(PCH_DREF_CONTROL);
3847                         udelay(200);
3848                 }
3849         }
3850
3851         if (IS_PINEVIEW(dev)) {
3852                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3853                 if (has_reduced_clock)
3854                         fp2 = (1 << reduced_clock.n) << 16 |
3855                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3856         } else {
3857                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3858                 if (has_reduced_clock)
3859                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3860                                 reduced_clock.m2;
3861         }
3862
3863         dpll = 0;
3864         if (!HAS_PCH_SPLIT(dev))
3865                 dpll = DPLL_VGA_MODE_DIS;
3866
3867         if (!IS_GEN2(dev)) {
3868                 if (is_lvds)
3869                         dpll |= DPLLB_MODE_LVDS;
3870                 else
3871                         dpll |= DPLLB_MODE_DAC_SERIAL;
3872                 if (is_sdvo) {
3873                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3874                         if (pixel_multiplier > 1) {
3875                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3876                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3877                                 else if (HAS_PCH_SPLIT(dev))
3878                                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3879                         }
3880                         dpll |= DPLL_DVO_HIGH_SPEED;
3881                 }
3882                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3883                         dpll |= DPLL_DVO_HIGH_SPEED;
3884
3885                 /* compute bitmask from p1 value */
3886                 if (IS_PINEVIEW(dev))
3887                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3888                 else {
3889                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3890                         /* also FPA1 */
3891                         if (HAS_PCH_SPLIT(dev))
3892                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3893                         if (IS_G4X(dev) && has_reduced_clock)
3894                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3895                 }
3896                 switch (clock.p2) {
3897                 case 5:
3898                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3899                         break;
3900                 case 7:
3901                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3902                         break;
3903                 case 10:
3904                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3905                         break;
3906                 case 14:
3907                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3908                         break;
3909                 }
3910                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
3911                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3912         } else {
3913                 if (is_lvds) {
3914                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3915                 } else {
3916                         if (clock.p1 == 2)
3917                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3918                         else
3919                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3920                         if (clock.p2 == 4)
3921                                 dpll |= PLL_P2_DIVIDE_BY_4;
3922                 }
3923         }
3924
3925         if (is_sdvo && is_tv)
3926                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3927         else if (is_tv)
3928                 /* XXX: just matching BIOS for now */
3929                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3930                 dpll |= 3;
3931         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3932                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3933         else
3934                 dpll |= PLL_REF_INPUT_DREFCLK;
3935
3936         /* setup pipeconf */
3937         pipeconf = I915_READ(PIPECONF(pipe));
3938
3939         /* Set up the display plane register */
3940         dspcntr = DISPPLANE_GAMMA_ENABLE;
3941
3942         /* Ironlake's plane is forced to pipe, bit 24 is to
3943            enable color space conversion */
3944         if (!HAS_PCH_SPLIT(dev)) {
3945                 if (pipe == 0)
3946                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3947                 else
3948                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3949         }
3950
3951         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3952                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3953                  * core speed.
3954                  *
3955                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3956                  * pipe == 0 check?
3957                  */
3958                 if (mode->clock >
3959                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3960                         pipeconf |= PIPECONF_DOUBLE_WIDE;
3961                 else
3962                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3963         }
3964
3965         dspcntr |= DISPLAY_PLANE_ENABLE;
3966         pipeconf |= PIPECONF_ENABLE;
3967         dpll |= DPLL_VCO_ENABLE;
3968
3969         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3970         drm_mode_debug_printmodeline(mode);
3971
3972         /* assign to Ironlake registers */
3973         if (HAS_PCH_SPLIT(dev)) {
3974                 fp_reg = PCH_FP0(pipe);
3975                 dpll_reg = PCH_DPLL(pipe);
3976         } else {
3977                 fp_reg = FP0(pipe);
3978                 dpll_reg = DPLL(pipe);
3979         }
3980
3981         /* PCH eDP needs FDI, but CPU eDP does not */
3982         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3983                 I915_WRITE(fp_reg, fp);
3984                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3985
3986                 POSTING_READ(dpll_reg);
3987                 udelay(150);
3988         }
3989
3990         /* enable transcoder DPLL */
3991         if (HAS_PCH_CPT(dev)) {
3992                 temp = I915_READ(PCH_DPLL_SEL);
3993                 if (pipe == 0)
3994                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
3995                 else
3996                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
3997                 I915_WRITE(PCH_DPLL_SEL, temp);
3998
3999                 POSTING_READ(PCH_DPLL_SEL);
4000                 udelay(150);
4001         }
4002
4003         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4004          * This is an exception to the general rule that mode_set doesn't turn
4005          * things on.
4006          */
4007         if (is_lvds) {
4008                 reg = LVDS;
4009                 if (HAS_PCH_SPLIT(dev))
4010                         reg = PCH_LVDS;
4011
4012                 temp = I915_READ(reg);
4013                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4014                 if (pipe == 1) {
4015                         if (HAS_PCH_CPT(dev))
4016                                 temp |= PORT_TRANS_B_SEL_CPT;
4017                         else
4018                                 temp |= LVDS_PIPEB_SELECT;
4019                 } else {
4020                         if (HAS_PCH_CPT(dev))
4021                                 temp &= ~PORT_TRANS_SEL_MASK;
4022                         else
4023                                 temp &= ~LVDS_PIPEB_SELECT;
4024                 }
4025                 /* set the corresponsding LVDS_BORDER bit */
4026                 temp |= dev_priv->lvds_border_bits;
4027                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4028                  * set the DPLLs for dual-channel mode or not.
4029                  */
4030                 if (clock.p2 == 7)
4031                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4032                 else
4033                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4034
4035                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4036                  * appropriately here, but we need to look more thoroughly into how
4037                  * panels behave in the two modes.
4038                  */
4039                 /* set the dithering flag on non-PCH LVDS as needed */
4040                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4041                         if (dev_priv->lvds_dither)
4042                                 temp |= LVDS_ENABLE_DITHER;
4043                         else
4044                                 temp &= ~LVDS_ENABLE_DITHER;
4045                 }
4046                 I915_WRITE(reg, temp);
4047         }
4048
4049         /* set the dithering flag and clear for anything other than a panel. */
4050         if (HAS_PCH_SPLIT(dev)) {
4051                 pipeconf &= ~PIPECONF_DITHER_EN;
4052                 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4053                 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
4054                         pipeconf |= PIPECONF_DITHER_EN;
4055                         pipeconf |= PIPECONF_DITHER_TYPE_ST1;
4056                 }
4057         }
4058
4059         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4060                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4061         } else if (HAS_PCH_SPLIT(dev)) {
4062                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4063                 if (pipe == 0) {
4064                         I915_WRITE(TRANSA_DATA_M1, 0);
4065                         I915_WRITE(TRANSA_DATA_N1, 0);
4066                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
4067                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
4068                 } else {
4069                         I915_WRITE(TRANSB_DATA_M1, 0);
4070                         I915_WRITE(TRANSB_DATA_N1, 0);
4071                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
4072                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
4073                 }
4074         }
4075
4076         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4077                 I915_WRITE(fp_reg, fp);
4078                 I915_WRITE(dpll_reg, dpll);
4079
4080                 /* Wait for the clocks to stabilize. */
4081                 POSTING_READ(dpll_reg);
4082                 udelay(150);
4083
4084                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4085                         temp = 0;
4086                         if (is_sdvo) {
4087                                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4088                                 if (temp > 1)
4089                                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4090                                 else
4091                                         temp = 0;
4092                         }
4093                         I915_WRITE(DPLL_MD(pipe), temp);
4094                 } else {
4095                         /* write it again -- the BIOS does, after all */
4096                         I915_WRITE(dpll_reg, dpll);
4097                 }
4098
4099                 /* Wait for the clocks to stabilize. */
4100                 POSTING_READ(dpll_reg);
4101                 udelay(150);
4102         }
4103
4104         intel_crtc->lowfreq_avail = false;
4105         if (is_lvds && has_reduced_clock && i915_powersave) {
4106                 I915_WRITE(fp_reg + 4, fp2);
4107                 intel_crtc->lowfreq_avail = true;
4108                 if (HAS_PIPE_CXSR(dev)) {
4109                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4110                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4111                 }
4112         } else {
4113                 I915_WRITE(fp_reg + 4, fp);
4114                 if (HAS_PIPE_CXSR(dev)) {
4115                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4116                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4117                 }
4118         }
4119
4120         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4121                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4122                 /* the chip adds 2 halflines automatically */
4123                 adjusted_mode->crtc_vdisplay -= 1;
4124                 adjusted_mode->crtc_vtotal -= 1;
4125                 adjusted_mode->crtc_vblank_start -= 1;
4126                 adjusted_mode->crtc_vblank_end -= 1;
4127                 adjusted_mode->crtc_vsync_end -= 1;
4128                 adjusted_mode->crtc_vsync_start -= 1;
4129         } else
4130                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4131
4132         I915_WRITE(HTOTAL(pipe),
4133                    (adjusted_mode->crtc_hdisplay - 1) |
4134                    ((adjusted_mode->crtc_htotal - 1) << 16));
4135         I915_WRITE(HBLANK(pipe),
4136                    (adjusted_mode->crtc_hblank_start - 1) |
4137                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4138         I915_WRITE(HSYNC(pipe),
4139                    (adjusted_mode->crtc_hsync_start - 1) |
4140                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4141
4142         I915_WRITE(VTOTAL(pipe),
4143                    (adjusted_mode->crtc_vdisplay - 1) |
4144                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4145         I915_WRITE(VBLANK(pipe),
4146                    (adjusted_mode->crtc_vblank_start - 1) |
4147                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4148         I915_WRITE(VSYNC(pipe),
4149                    (adjusted_mode->crtc_vsync_start - 1) |
4150                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4151
4152         /* pipesrc and dspsize control the size that is scaled from,
4153          * which should always be the user's requested size.
4154          */
4155         if (!HAS_PCH_SPLIT(dev)) {
4156                 I915_WRITE(DSPSIZE(plane),
4157                            ((mode->vdisplay - 1) << 16) |
4158                            (mode->hdisplay - 1));
4159                 I915_WRITE(DSPPOS(plane), 0);
4160         }
4161         I915_WRITE(PIPESRC(pipe),
4162                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4163
4164         if (HAS_PCH_SPLIT(dev)) {
4165                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4166                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4167                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4168                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4169
4170                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4171                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4172                 }
4173         }
4174
4175         I915_WRITE(PIPECONF(pipe), pipeconf);
4176         POSTING_READ(PIPECONF(pipe));
4177
4178         intel_wait_for_vblank(dev, pipe);
4179
4180         if (IS_GEN5(dev)) {
4181                 /* enable address swizzle for tiling buffer */
4182                 temp = I915_READ(DISP_ARB_CTL);
4183                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4184         }
4185
4186         I915_WRITE(DSPCNTR(plane), dspcntr);
4187
4188         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4189
4190         intel_update_watermarks(dev);
4191
4192         drm_vblank_post_modeset(dev, pipe);
4193
4194         return ret;
4195 }
4196
4197 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4198 void intel_crtc_load_lut(struct drm_crtc *crtc)
4199 {
4200         struct drm_device *dev = crtc->dev;
4201         struct drm_i915_private *dev_priv = dev->dev_private;
4202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4203         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4204         int i;
4205
4206         /* The clocks have to be on to load the palette. */
4207         if (!crtc->enabled)
4208                 return;
4209
4210         /* use legacy palette for Ironlake */
4211         if (HAS_PCH_SPLIT(dev))
4212                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4213                                                    LGC_PALETTE_B;
4214
4215         for (i = 0; i < 256; i++) {
4216                 I915_WRITE(palreg + 4 * i,
4217                            (intel_crtc->lut_r[i] << 16) |
4218                            (intel_crtc->lut_g[i] << 8) |
4219                            intel_crtc->lut_b[i]);
4220         }
4221 }
4222
4223 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4224 {
4225         struct drm_device *dev = crtc->dev;
4226         struct drm_i915_private *dev_priv = dev->dev_private;
4227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4228         bool visible = base != 0;
4229         u32 cntl;
4230
4231         if (intel_crtc->cursor_visible == visible)
4232                 return;
4233
4234         cntl = I915_READ(CURACNTR);
4235         if (visible) {
4236                 /* On these chipsets we can only modify the base whilst
4237                  * the cursor is disabled.
4238                  */
4239                 I915_WRITE(CURABASE, base);
4240
4241                 cntl &= ~(CURSOR_FORMAT_MASK);
4242                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4243                 cntl |= CURSOR_ENABLE |
4244                         CURSOR_GAMMA_ENABLE |
4245                         CURSOR_FORMAT_ARGB;
4246         } else
4247                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4248         I915_WRITE(CURACNTR, cntl);
4249
4250         intel_crtc->cursor_visible = visible;
4251 }
4252
4253 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4254 {
4255         struct drm_device *dev = crtc->dev;
4256         struct drm_i915_private *dev_priv = dev->dev_private;
4257         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4258         int pipe = intel_crtc->pipe;
4259         bool visible = base != 0;
4260
4261         if (intel_crtc->cursor_visible != visible) {
4262                 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4263                 if (base) {
4264                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4265                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4266                         cntl |= pipe << 28; /* Connect to correct pipe */
4267                 } else {
4268                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4269                         cntl |= CURSOR_MODE_DISABLE;
4270                 }
4271                 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4272
4273                 intel_crtc->cursor_visible = visible;
4274         }
4275         /* and commit changes on next vblank */
4276         I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4277 }
4278
4279 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4280 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4281                                      bool on)
4282 {
4283         struct drm_device *dev = crtc->dev;
4284         struct drm_i915_private *dev_priv = dev->dev_private;
4285         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4286         int pipe = intel_crtc->pipe;
4287         int x = intel_crtc->cursor_x;
4288         int y = intel_crtc->cursor_y;
4289         u32 base, pos;
4290         bool visible;
4291
4292         pos = 0;
4293
4294         if (on && crtc->enabled && crtc->fb) {
4295                 base = intel_crtc->cursor_addr;
4296                 if (x > (int) crtc->fb->width)
4297                         base = 0;
4298
4299                 if (y > (int) crtc->fb->height)
4300                         base = 0;
4301         } else
4302                 base = 0;
4303
4304         if (x < 0) {
4305                 if (x + intel_crtc->cursor_width < 0)
4306                         base = 0;
4307
4308                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4309                 x = -x;
4310         }
4311         pos |= x << CURSOR_X_SHIFT;
4312
4313         if (y < 0) {
4314                 if (y + intel_crtc->cursor_height < 0)
4315                         base = 0;
4316
4317                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4318                 y = -y;
4319         }
4320         pos |= y << CURSOR_Y_SHIFT;
4321
4322         visible = base != 0;
4323         if (!visible && !intel_crtc->cursor_visible)
4324                 return;
4325
4326         I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4327         if (IS_845G(dev) || IS_I865G(dev))
4328                 i845_update_cursor(crtc, base);
4329         else
4330                 i9xx_update_cursor(crtc, base);
4331
4332         if (visible)
4333                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4334 }
4335
4336 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4337                                  struct drm_file *file_priv,
4338                                  uint32_t handle,
4339                                  uint32_t width, uint32_t height)
4340 {
4341         struct drm_device *dev = crtc->dev;
4342         struct drm_i915_private *dev_priv = dev->dev_private;
4343         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4344         struct drm_gem_object *bo;
4345         struct drm_i915_gem_object *obj_priv;
4346         uint32_t addr;
4347         int ret;
4348
4349         DRM_DEBUG_KMS("\n");
4350
4351         /* if we want to turn off the cursor ignore width and height */
4352         if (!handle) {
4353                 DRM_DEBUG_KMS("cursor off\n");
4354                 addr = 0;
4355                 bo = NULL;
4356                 mutex_lock(&dev->struct_mutex);
4357                 goto finish;
4358         }
4359
4360         /* Currently we only support 64x64 cursors */
4361         if (width != 64 || height != 64) {
4362                 DRM_ERROR("we currently only support 64x64 cursors\n");
4363                 return -EINVAL;
4364         }
4365
4366         bo = drm_gem_object_lookup(dev, file_priv, handle);
4367         if (!bo)
4368                 return -ENOENT;
4369
4370         obj_priv = to_intel_bo(bo);
4371
4372         if (bo->size < width * height * 4) {
4373                 DRM_ERROR("buffer is to small\n");
4374                 ret = -ENOMEM;
4375                 goto fail;
4376         }
4377
4378         /* we only need to pin inside GTT if cursor is non-phy */
4379         mutex_lock(&dev->struct_mutex);
4380         if (!dev_priv->info->cursor_needs_physical) {
4381                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4382                 if (ret) {
4383                         DRM_ERROR("failed to pin cursor bo\n");
4384                         goto fail_locked;
4385                 }
4386
4387                 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4388                 if (ret) {
4389                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4390                         goto fail_unpin;
4391                 }
4392
4393                 addr = obj_priv->gtt_offset;
4394         } else {
4395                 int align = IS_I830(dev) ? 16 * 1024 : 256;
4396                 ret = i915_gem_attach_phys_object(dev, bo,
4397                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4398                                                   align);
4399                 if (ret) {
4400                         DRM_ERROR("failed to attach phys object\n");
4401                         goto fail_locked;
4402                 }
4403                 addr = obj_priv->phys_obj->handle->busaddr;
4404         }
4405
4406         if (IS_GEN2(dev))
4407                 I915_WRITE(CURSIZE, (height << 12) | width);
4408
4409  finish:
4410         if (intel_crtc->cursor_bo) {
4411                 if (dev_priv->info->cursor_needs_physical) {
4412                         if (intel_crtc->cursor_bo != bo)
4413                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4414                 } else
4415                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4416                 drm_gem_object_unreference(intel_crtc->cursor_bo);
4417         }
4418
4419         mutex_unlock(&dev->struct_mutex);
4420
4421         intel_crtc->cursor_addr = addr;
4422         intel_crtc->cursor_bo = bo;
4423         intel_crtc->cursor_width = width;
4424         intel_crtc->cursor_height = height;
4425
4426         intel_crtc_update_cursor(crtc, true);
4427
4428         return 0;
4429 fail_unpin:
4430         i915_gem_object_unpin(bo);
4431 fail_locked:
4432         mutex_unlock(&dev->struct_mutex);
4433 fail:
4434         drm_gem_object_unreference_unlocked(bo);
4435         return ret;
4436 }
4437
4438 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4439 {
4440         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4441
4442         intel_crtc->cursor_x = x;
4443         intel_crtc->cursor_y = y;
4444
4445         intel_crtc_update_cursor(crtc, true);
4446
4447         return 0;
4448 }
4449
4450 /** Sets the color ramps on behalf of RandR */
4451 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4452                                  u16 blue, int regno)
4453 {
4454         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4455
4456         intel_crtc->lut_r[regno] = red >> 8;
4457         intel_crtc->lut_g[regno] = green >> 8;
4458         intel_crtc->lut_b[regno] = blue >> 8;
4459 }
4460
4461 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4462                              u16 *blue, int regno)
4463 {
4464         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4465
4466         *red = intel_crtc->lut_r[regno] << 8;
4467         *green = intel_crtc->lut_g[regno] << 8;
4468         *blue = intel_crtc->lut_b[regno] << 8;
4469 }
4470
4471 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4472                                  u16 *blue, uint32_t start, uint32_t size)
4473 {
4474         int end = (start + size > 256) ? 256 : start + size, i;
4475         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4476
4477         for (i = start; i < end; i++) {
4478                 intel_crtc->lut_r[i] = red[i] >> 8;
4479                 intel_crtc->lut_g[i] = green[i] >> 8;
4480                 intel_crtc->lut_b[i] = blue[i] >> 8;
4481         }
4482
4483         intel_crtc_load_lut(crtc);
4484 }
4485
4486 /**
4487  * Get a pipe with a simple mode set on it for doing load-based monitor
4488  * detection.
4489  *
4490  * It will be up to the load-detect code to adjust the pipe as appropriate for
4491  * its requirements.  The pipe will be connected to no other encoders.
4492  *
4493  * Currently this code will only succeed if there is a pipe with no encoders
4494  * configured for it.  In the future, it could choose to temporarily disable
4495  * some outputs to free up a pipe for its use.
4496  *
4497  * \return crtc, or NULL if no pipes are available.
4498  */
4499
4500 /* VESA 640x480x72Hz mode to set on the pipe */
4501 static struct drm_display_mode load_detect_mode = {
4502         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4503                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4504 };
4505
4506 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4507                                             struct drm_connector *connector,
4508                                             struct drm_display_mode *mode,
4509                                             int *dpms_mode)
4510 {
4511         struct intel_crtc *intel_crtc;
4512         struct drm_crtc *possible_crtc;
4513         struct drm_crtc *supported_crtc =NULL;
4514         struct drm_encoder *encoder = &intel_encoder->base;
4515         struct drm_crtc *crtc = NULL;
4516         struct drm_device *dev = encoder->dev;
4517         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4518         struct drm_crtc_helper_funcs *crtc_funcs;
4519         int i = -1;
4520
4521         /*
4522          * Algorithm gets a little messy:
4523          *   - if the connector already has an assigned crtc, use it (but make
4524          *     sure it's on first)
4525          *   - try to find the first unused crtc that can drive this connector,
4526          *     and use that if we find one
4527          *   - if there are no unused crtcs available, try to use the first
4528          *     one we found that supports the connector
4529          */
4530
4531         /* See if we already have a CRTC for this connector */
4532         if (encoder->crtc) {
4533                 crtc = encoder->crtc;
4534                 /* Make sure the crtc and connector are running */
4535                 intel_crtc = to_intel_crtc(crtc);
4536                 *dpms_mode = intel_crtc->dpms_mode;
4537                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4538                         crtc_funcs = crtc->helper_private;
4539                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4540                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4541                 }
4542                 return crtc;
4543         }
4544
4545         /* Find an unused one (if possible) */
4546         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4547                 i++;
4548                 if (!(encoder->possible_crtcs & (1 << i)))
4549                         continue;
4550                 if (!possible_crtc->enabled) {
4551                         crtc = possible_crtc;
4552                         break;
4553                 }
4554                 if (!supported_crtc)
4555                         supported_crtc = possible_crtc;
4556         }
4557
4558         /*
4559          * If we didn't find an unused CRTC, don't use any.
4560          */
4561         if (!crtc) {
4562                 return NULL;
4563         }
4564
4565         encoder->crtc = crtc;
4566         connector->encoder = encoder;
4567         intel_encoder->load_detect_temp = true;
4568
4569         intel_crtc = to_intel_crtc(crtc);
4570         *dpms_mode = intel_crtc->dpms_mode;
4571
4572         if (!crtc->enabled) {
4573                 if (!mode)
4574                         mode = &load_detect_mode;
4575                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4576         } else {
4577                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4578                         crtc_funcs = crtc->helper_private;
4579                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4580                 }
4581
4582                 /* Add this connector to the crtc */
4583                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4584                 encoder_funcs->commit(encoder);
4585         }
4586         /* let the connector get through one full cycle before testing */
4587         intel_wait_for_vblank(dev, intel_crtc->pipe);
4588
4589         return crtc;
4590 }
4591
4592 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4593                                     struct drm_connector *connector, int dpms_mode)
4594 {
4595         struct drm_encoder *encoder = &intel_encoder->base;
4596         struct drm_device *dev = encoder->dev;
4597         struct drm_crtc *crtc = encoder->crtc;
4598         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4599         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4600
4601         if (intel_encoder->load_detect_temp) {
4602                 encoder->crtc = NULL;
4603                 connector->encoder = NULL;
4604                 intel_encoder->load_detect_temp = false;
4605                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4606                 drm_helper_disable_unused_functions(dev);
4607         }
4608
4609         /* Switch crtc and encoder back off if necessary */
4610         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4611                 if (encoder->crtc == crtc)
4612                         encoder_funcs->dpms(encoder, dpms_mode);
4613                 crtc_funcs->dpms(crtc, dpms_mode);
4614         }
4615 }
4616
4617 /* Returns the clock of the currently programmed mode of the given pipe. */
4618 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4619 {
4620         struct drm_i915_private *dev_priv = dev->dev_private;
4621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4622         int pipe = intel_crtc->pipe;
4623         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4624         u32 fp;
4625         intel_clock_t clock;
4626
4627         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4628                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4629         else
4630                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4631
4632         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4633         if (IS_PINEVIEW(dev)) {
4634                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4635                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4636         } else {
4637                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4638                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4639         }
4640
4641         if (!IS_GEN2(dev)) {
4642                 if (IS_PINEVIEW(dev))
4643                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4644                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4645                 else
4646                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4647                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4648
4649                 switch (dpll & DPLL_MODE_MASK) {
4650                 case DPLLB_MODE_DAC_SERIAL:
4651                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4652                                 5 : 10;
4653                         break;
4654                 case DPLLB_MODE_LVDS:
4655                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4656                                 7 : 14;
4657                         break;
4658                 default:
4659                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4660                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4661                         return 0;
4662                 }
4663
4664                 /* XXX: Handle the 100Mhz refclk */
4665                 intel_clock(dev, 96000, &clock);
4666         } else {
4667                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4668
4669                 if (is_lvds) {
4670                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4671                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4672                         clock.p2 = 14;
4673
4674                         if ((dpll & PLL_REF_INPUT_MASK) ==
4675                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4676                                 /* XXX: might not be 66MHz */
4677                                 intel_clock(dev, 66000, &clock);
4678                         } else
4679                                 intel_clock(dev, 48000, &clock);
4680                 } else {
4681                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4682                                 clock.p1 = 2;
4683                         else {
4684                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4685                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4686                         }
4687                         if (dpll & PLL_P2_DIVIDE_BY_4)
4688                                 clock.p2 = 4;
4689                         else
4690                                 clock.p2 = 2;
4691
4692                         intel_clock(dev, 48000, &clock);
4693                 }
4694         }
4695
4696         /* XXX: It would be nice to validate the clocks, but we can't reuse
4697          * i830PllIsValid() because it relies on the xf86_config connector
4698          * configuration being accurate, which it isn't necessarily.
4699          */
4700
4701         return clock.dot;
4702 }
4703
4704 /** Returns the currently programmed mode of the given pipe. */
4705 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4706                                              struct drm_crtc *crtc)
4707 {
4708         struct drm_i915_private *dev_priv = dev->dev_private;
4709         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4710         int pipe = intel_crtc->pipe;
4711         struct drm_display_mode *mode;
4712         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4713         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4714         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4715         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4716
4717         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4718         if (!mode)
4719                 return NULL;
4720
4721         mode->clock = intel_crtc_clock_get(dev, crtc);
4722         mode->hdisplay = (htot & 0xffff) + 1;
4723         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4724         mode->hsync_start = (hsync & 0xffff) + 1;
4725         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4726         mode->vdisplay = (vtot & 0xffff) + 1;
4727         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4728         mode->vsync_start = (vsync & 0xffff) + 1;
4729         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4730
4731         drm_mode_set_name(mode);
4732         drm_mode_set_crtcinfo(mode, 0);
4733
4734         return mode;
4735 }
4736
4737 #define GPU_IDLE_TIMEOUT 500 /* ms */
4738
4739 /* When this timer fires, we've been idle for awhile */
4740 static void intel_gpu_idle_timer(unsigned long arg)
4741 {
4742         struct drm_device *dev = (struct drm_device *)arg;
4743         drm_i915_private_t *dev_priv = dev->dev_private;
4744
4745         dev_priv->busy = false;
4746
4747         queue_work(dev_priv->wq, &dev_priv->idle_work);
4748 }
4749
4750 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4751
4752 static void intel_crtc_idle_timer(unsigned long arg)
4753 {
4754         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4755         struct drm_crtc *crtc = &intel_crtc->base;
4756         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4757
4758         intel_crtc->busy = false;
4759
4760         queue_work(dev_priv->wq, &dev_priv->idle_work);
4761 }
4762
4763 static void intel_increase_pllclock(struct drm_crtc *crtc)
4764 {
4765         struct drm_device *dev = crtc->dev;
4766         drm_i915_private_t *dev_priv = dev->dev_private;
4767         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4768         int pipe = intel_crtc->pipe;
4769         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4770         int dpll = I915_READ(dpll_reg);
4771
4772         if (HAS_PCH_SPLIT(dev))
4773                 return;
4774
4775         if (!dev_priv->lvds_downclock_avail)
4776                 return;
4777
4778         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4779                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4780
4781                 /* Unlock panel regs */
4782                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4783                            PANEL_UNLOCK_REGS);
4784
4785                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4786                 I915_WRITE(dpll_reg, dpll);
4787                 dpll = I915_READ(dpll_reg);
4788                 intel_wait_for_vblank(dev, pipe);
4789                 dpll = I915_READ(dpll_reg);
4790                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4791                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4792
4793                 /* ...and lock them again */
4794                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4795         }
4796
4797         /* Schedule downclock */
4798         mod_timer(&intel_crtc->idle_timer, jiffies +
4799                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4800 }
4801
4802 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4803 {
4804         struct drm_device *dev = crtc->dev;
4805         drm_i915_private_t *dev_priv = dev->dev_private;
4806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4807         int pipe = intel_crtc->pipe;
4808         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4809         int dpll = I915_READ(dpll_reg);
4810
4811         if (HAS_PCH_SPLIT(dev))
4812                 return;
4813
4814         if (!dev_priv->lvds_downclock_avail)
4815                 return;
4816
4817         /*
4818          * Since this is called by a timer, we should never get here in
4819          * the manual case.
4820          */
4821         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4822                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4823
4824                 /* Unlock panel regs */
4825                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4826                            PANEL_UNLOCK_REGS);
4827
4828                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4829                 I915_WRITE(dpll_reg, dpll);
4830                 dpll = I915_READ(dpll_reg);
4831                 intel_wait_for_vblank(dev, pipe);
4832                 dpll = I915_READ(dpll_reg);
4833                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4834                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4835
4836                 /* ...and lock them again */
4837                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4838         }
4839
4840 }
4841
4842 /**
4843  * intel_idle_update - adjust clocks for idleness
4844  * @work: work struct
4845  *
4846  * Either the GPU or display (or both) went idle.  Check the busy status
4847  * here and adjust the CRTC and GPU clocks as necessary.
4848  */
4849 static void intel_idle_update(struct work_struct *work)
4850 {
4851         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4852                                                     idle_work);
4853         struct drm_device *dev = dev_priv->dev;
4854         struct drm_crtc *crtc;
4855         struct intel_crtc *intel_crtc;
4856         int enabled = 0;
4857
4858         if (!i915_powersave)
4859                 return;
4860
4861         mutex_lock(&dev->struct_mutex);
4862
4863         i915_update_gfx_val(dev_priv);
4864
4865         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4866                 /* Skip inactive CRTCs */
4867                 if (!crtc->fb)
4868                         continue;
4869
4870                 enabled++;
4871                 intel_crtc = to_intel_crtc(crtc);
4872                 if (!intel_crtc->busy)
4873                         intel_decrease_pllclock(crtc);
4874         }
4875
4876         if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4877                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4878                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4879         }
4880
4881         mutex_unlock(&dev->struct_mutex);
4882 }
4883
4884 /**
4885  * intel_mark_busy - mark the GPU and possibly the display busy
4886  * @dev: drm device
4887  * @obj: object we're operating on
4888  *
4889  * Callers can use this function to indicate that the GPU is busy processing
4890  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4891  * buffer), we'll also mark the display as busy, so we know to increase its
4892  * clock frequency.
4893  */
4894 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4895 {
4896         drm_i915_private_t *dev_priv = dev->dev_private;
4897         struct drm_crtc *crtc = NULL;
4898         struct intel_framebuffer *intel_fb;
4899         struct intel_crtc *intel_crtc;
4900
4901         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4902                 return;
4903
4904         if (!dev_priv->busy) {
4905                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4906                         u32 fw_blc_self;
4907
4908                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4909                         fw_blc_self = I915_READ(FW_BLC_SELF);
4910                         fw_blc_self &= ~FW_BLC_SELF_EN;
4911                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4912                 }
4913                 dev_priv->busy = true;
4914         } else
4915                 mod_timer(&dev_priv->idle_timer, jiffies +
4916                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4917
4918         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4919                 if (!crtc->fb)
4920                         continue;
4921
4922                 intel_crtc = to_intel_crtc(crtc);
4923                 intel_fb = to_intel_framebuffer(crtc->fb);
4924                 if (intel_fb->obj == obj) {
4925                         if (!intel_crtc->busy) {
4926                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4927                                         u32 fw_blc_self;
4928
4929                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4930                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4931                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4932                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4933                                 }
4934                                 /* Non-busy -> busy, upclock */
4935                                 intel_increase_pllclock(crtc);
4936                                 intel_crtc->busy = true;
4937                         } else {
4938                                 /* Busy -> busy, put off timer */
4939                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4940                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4941                         }
4942                 }
4943         }
4944 }
4945
4946 static void intel_crtc_destroy(struct drm_crtc *crtc)
4947 {
4948         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4949         struct drm_device *dev = crtc->dev;
4950         struct intel_unpin_work *work;
4951         unsigned long flags;
4952
4953         spin_lock_irqsave(&dev->event_lock, flags);
4954         work = intel_crtc->unpin_work;
4955         intel_crtc->unpin_work = NULL;
4956         spin_unlock_irqrestore(&dev->event_lock, flags);
4957
4958         if (work) {
4959                 cancel_work_sync(&work->work);
4960                 kfree(work);
4961         }
4962
4963         drm_crtc_cleanup(crtc);
4964
4965         kfree(intel_crtc);
4966 }
4967
4968 static void intel_unpin_work_fn(struct work_struct *__work)
4969 {
4970         struct intel_unpin_work *work =
4971                 container_of(__work, struct intel_unpin_work, work);
4972
4973         mutex_lock(&work->dev->struct_mutex);
4974         i915_gem_object_unpin(work->old_fb_obj);
4975         drm_gem_object_unreference(work->pending_flip_obj);
4976         drm_gem_object_unreference(work->old_fb_obj);
4977         mutex_unlock(&work->dev->struct_mutex);
4978         kfree(work);
4979 }
4980
4981 static void do_intel_finish_page_flip(struct drm_device *dev,
4982                                       struct drm_crtc *crtc)
4983 {
4984         drm_i915_private_t *dev_priv = dev->dev_private;
4985         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4986         struct intel_unpin_work *work;
4987         struct drm_i915_gem_object *obj_priv;
4988         struct drm_pending_vblank_event *e;
4989         struct timeval now;
4990         unsigned long flags;
4991
4992         /* Ignore early vblank irqs */
4993         if (intel_crtc == NULL)
4994                 return;
4995
4996         spin_lock_irqsave(&dev->event_lock, flags);
4997         work = intel_crtc->unpin_work;
4998         if (work == NULL || !work->pending) {
4999                 spin_unlock_irqrestore(&dev->event_lock, flags);
5000                 return;
5001         }
5002
5003         intel_crtc->unpin_work = NULL;
5004         drm_vblank_put(dev, intel_crtc->pipe);
5005
5006         if (work->event) {
5007                 e = work->event;
5008                 do_gettimeofday(&now);
5009                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
5010                 e->event.tv_sec = now.tv_sec;
5011                 e->event.tv_usec = now.tv_usec;
5012                 list_add_tail(&e->base.link,
5013                               &e->base.file_priv->event_list);
5014                 wake_up_interruptible(&e->base.file_priv->event_wait);
5015         }
5016
5017         spin_unlock_irqrestore(&dev->event_lock, flags);
5018
5019         obj_priv = to_intel_bo(work->old_fb_obj);
5020         atomic_clear_mask(1 << intel_crtc->plane,
5021                           &obj_priv->pending_flip.counter);
5022         if (atomic_read(&obj_priv->pending_flip) == 0)
5023                 wake_up(&dev_priv->pending_flip_queue);
5024         schedule_work(&work->work);
5025
5026         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5027 }
5028
5029 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5030 {
5031         drm_i915_private_t *dev_priv = dev->dev_private;
5032         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5033
5034         do_intel_finish_page_flip(dev, crtc);
5035 }
5036
5037 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5038 {
5039         drm_i915_private_t *dev_priv = dev->dev_private;
5040         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5041
5042         do_intel_finish_page_flip(dev, crtc);
5043 }
5044
5045 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5046 {
5047         drm_i915_private_t *dev_priv = dev->dev_private;
5048         struct intel_crtc *intel_crtc =
5049                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5050         unsigned long flags;
5051
5052         spin_lock_irqsave(&dev->event_lock, flags);
5053         if (intel_crtc->unpin_work) {
5054                 if ((++intel_crtc->unpin_work->pending) > 1)
5055                         DRM_ERROR("Prepared flip multiple times\n");
5056         } else {
5057                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5058         }
5059         spin_unlock_irqrestore(&dev->event_lock, flags);
5060 }
5061
5062 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5063                                 struct drm_framebuffer *fb,
5064                                 struct drm_pending_vblank_event *event)
5065 {
5066         struct drm_device *dev = crtc->dev;
5067         struct drm_i915_private *dev_priv = dev->dev_private;
5068         struct intel_framebuffer *intel_fb;
5069         struct drm_i915_gem_object *obj_priv;
5070         struct drm_gem_object *obj;
5071         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5072         struct intel_unpin_work *work;
5073         unsigned long flags, offset;
5074         int pipe = intel_crtc->pipe;
5075         u32 pf, pipesrc;
5076         int ret;
5077
5078         work = kzalloc(sizeof *work, GFP_KERNEL);
5079         if (work == NULL)
5080                 return -ENOMEM;
5081
5082         work->event = event;
5083         work->dev = crtc->dev;
5084         intel_fb = to_intel_framebuffer(crtc->fb);
5085         work->old_fb_obj = intel_fb->obj;
5086         INIT_WORK(&work->work, intel_unpin_work_fn);
5087
5088         /* We borrow the event spin lock for protecting unpin_work */
5089         spin_lock_irqsave(&dev->event_lock, flags);
5090         if (intel_crtc->unpin_work) {
5091                 spin_unlock_irqrestore(&dev->event_lock, flags);
5092                 kfree(work);
5093
5094                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5095                 return -EBUSY;
5096         }
5097         intel_crtc->unpin_work = work;
5098         spin_unlock_irqrestore(&dev->event_lock, flags);
5099
5100         intel_fb = to_intel_framebuffer(fb);
5101         obj = intel_fb->obj;
5102
5103         mutex_lock(&dev->struct_mutex);
5104         ret = intel_pin_and_fence_fb_obj(dev, obj, true);
5105         if (ret)
5106                 goto cleanup_work;
5107
5108         /* Reference the objects for the scheduled work. */
5109         drm_gem_object_reference(work->old_fb_obj);
5110         drm_gem_object_reference(obj);
5111
5112         crtc->fb = fb;
5113
5114         ret = drm_vblank_get(dev, intel_crtc->pipe);
5115         if (ret)
5116                 goto cleanup_objs;
5117
5118         /* Block clients from rendering to the new back buffer until
5119          * the flip occurs and the object is no longer visible.
5120          */
5121         atomic_add(1 << intel_crtc->plane,
5122                    &to_intel_bo(work->old_fb_obj)->pending_flip);
5123
5124         work->pending_flip_obj = obj;
5125         obj_priv = to_intel_bo(obj);
5126
5127         if (IS_GEN3(dev) || IS_GEN2(dev)) {
5128                 u32 flip_mask;
5129
5130                 /* Can't queue multiple flips, so wait for the previous
5131                  * one to finish before executing the next.
5132                  */
5133                 BEGIN_LP_RING(2);
5134                 if (intel_crtc->plane)
5135                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5136                 else
5137                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5138                 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5139                 OUT_RING(MI_NOOP);
5140                 ADVANCE_LP_RING();
5141         }
5142
5143         work->enable_stall_check = true;
5144
5145         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5146         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5147
5148         BEGIN_LP_RING(4);
5149         switch(INTEL_INFO(dev)->gen) {
5150         case 2:
5151                 OUT_RING(MI_DISPLAY_FLIP |
5152                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5153                 OUT_RING(fb->pitch);
5154                 OUT_RING(obj_priv->gtt_offset + offset);
5155                 OUT_RING(MI_NOOP);
5156                 break;
5157
5158         case 3:
5159                 OUT_RING(MI_DISPLAY_FLIP_I915 |
5160                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5161                 OUT_RING(fb->pitch);
5162                 OUT_RING(obj_priv->gtt_offset + offset);
5163                 OUT_RING(MI_NOOP);
5164                 break;
5165
5166         case 4:
5167         case 5:
5168                 /* i965+ uses the linear or tiled offsets from the
5169                  * Display Registers (which do not change across a page-flip)
5170                  * so we need only reprogram the base address.
5171                  */
5172                 OUT_RING(MI_DISPLAY_FLIP |
5173                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5174                 OUT_RING(fb->pitch);
5175                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
5176
5177                 /* XXX Enabling the panel-fitter across page-flip is so far
5178                  * untested on non-native modes, so ignore it for now.
5179                  * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5180                  */
5181                 pf = 0;
5182                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5183                 OUT_RING(pf | pipesrc);
5184                 break;
5185
5186         case 6:
5187                 OUT_RING(MI_DISPLAY_FLIP |
5188                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5189                 OUT_RING(fb->pitch | obj_priv->tiling_mode);
5190                 OUT_RING(obj_priv->gtt_offset);
5191
5192                 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5193                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5194                 OUT_RING(pf | pipesrc);
5195                 break;
5196         }
5197         ADVANCE_LP_RING();
5198
5199         mutex_unlock(&dev->struct_mutex);
5200
5201         trace_i915_flip_request(intel_crtc->plane, obj);
5202
5203         return 0;
5204
5205 cleanup_objs:
5206         drm_gem_object_unreference(work->old_fb_obj);
5207         drm_gem_object_unreference(obj);
5208 cleanup_work:
5209         mutex_unlock(&dev->struct_mutex);
5210
5211         spin_lock_irqsave(&dev->event_lock, flags);
5212         intel_crtc->unpin_work = NULL;
5213         spin_unlock_irqrestore(&dev->event_lock, flags);
5214
5215         kfree(work);
5216
5217         return ret;
5218 }
5219
5220 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5221         .dpms = intel_crtc_dpms,
5222         .mode_fixup = intel_crtc_mode_fixup,
5223         .mode_set = intel_crtc_mode_set,
5224         .mode_set_base = intel_pipe_set_base,
5225         .mode_set_base_atomic = intel_pipe_set_base_atomic,
5226         .load_lut = intel_crtc_load_lut,
5227         .disable = intel_crtc_disable,
5228 };
5229
5230 static const struct drm_crtc_funcs intel_crtc_funcs = {
5231         .cursor_set = intel_crtc_cursor_set,
5232         .cursor_move = intel_crtc_cursor_move,
5233         .gamma_set = intel_crtc_gamma_set,
5234         .set_config = drm_crtc_helper_set_config,
5235         .destroy = intel_crtc_destroy,
5236         .page_flip = intel_crtc_page_flip,
5237 };
5238
5239
5240 static void intel_crtc_init(struct drm_device *dev, int pipe)
5241 {
5242         drm_i915_private_t *dev_priv = dev->dev_private;
5243         struct intel_crtc *intel_crtc;
5244         int i;
5245
5246         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5247         if (intel_crtc == NULL)
5248                 return;
5249
5250         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5251
5252         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5253         for (i = 0; i < 256; i++) {
5254                 intel_crtc->lut_r[i] = i;
5255                 intel_crtc->lut_g[i] = i;
5256                 intel_crtc->lut_b[i] = i;
5257         }
5258
5259         /* Swap pipes & planes for FBC on pre-965 */
5260         intel_crtc->pipe = pipe;
5261         intel_crtc->plane = pipe;
5262         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5263                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5264                 intel_crtc->plane = !pipe;
5265         }
5266
5267         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5268                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5269         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5270         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5271
5272         intel_crtc->cursor_addr = 0;
5273         intel_crtc->dpms_mode = -1;
5274         intel_crtc->active = true; /* force the pipe off on setup_init_config */
5275
5276         if (HAS_PCH_SPLIT(dev)) {
5277                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5278                 intel_helper_funcs.commit = ironlake_crtc_commit;
5279         } else {
5280                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5281                 intel_helper_funcs.commit = i9xx_crtc_commit;
5282         }
5283
5284         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5285
5286         intel_crtc->busy = false;
5287
5288         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5289                     (unsigned long)intel_crtc);
5290 }
5291
5292 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5293                                 struct drm_file *file_priv)
5294 {
5295         drm_i915_private_t *dev_priv = dev->dev_private;
5296         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5297         struct drm_mode_object *drmmode_obj;
5298         struct intel_crtc *crtc;
5299
5300         if (!dev_priv) {
5301                 DRM_ERROR("called with no initialization\n");
5302                 return -EINVAL;
5303         }
5304
5305         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5306                         DRM_MODE_OBJECT_CRTC);
5307
5308         if (!drmmode_obj) {
5309                 DRM_ERROR("no such CRTC id\n");
5310                 return -EINVAL;
5311         }
5312
5313         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5314         pipe_from_crtc_id->pipe = crtc->pipe;
5315
5316         return 0;
5317 }
5318
5319 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5320 {
5321         struct intel_encoder *encoder;
5322         int index_mask = 0;
5323         int entry = 0;
5324
5325         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5326                 if (type_mask & encoder->clone_mask)
5327                         index_mask |= (1 << entry);
5328                 entry++;
5329         }
5330
5331         return index_mask;
5332 }
5333
5334 static void intel_setup_outputs(struct drm_device *dev)
5335 {
5336         struct drm_i915_private *dev_priv = dev->dev_private;
5337         struct intel_encoder *encoder;
5338         bool dpd_is_edp = false;
5339
5340         if (IS_MOBILE(dev) && !IS_I830(dev))
5341                 intel_lvds_init(dev);
5342
5343         if (HAS_PCH_SPLIT(dev)) {
5344                 dpd_is_edp = intel_dpd_is_edp(dev);
5345
5346                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5347                         intel_dp_init(dev, DP_A);
5348
5349                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5350                         intel_dp_init(dev, PCH_DP_D);
5351         }
5352
5353         intel_crt_init(dev);
5354
5355         if (HAS_PCH_SPLIT(dev)) {
5356                 int found;
5357
5358                 if (I915_READ(HDMIB) & PORT_DETECTED) {
5359                         /* PCH SDVOB multiplex with HDMIB */
5360                         found = intel_sdvo_init(dev, PCH_SDVOB);
5361                         if (!found)
5362                                 intel_hdmi_init(dev, HDMIB);
5363                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5364                                 intel_dp_init(dev, PCH_DP_B);
5365                 }
5366
5367                 if (I915_READ(HDMIC) & PORT_DETECTED)
5368                         intel_hdmi_init(dev, HDMIC);
5369
5370                 if (I915_READ(HDMID) & PORT_DETECTED)
5371                         intel_hdmi_init(dev, HDMID);
5372
5373                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5374                         intel_dp_init(dev, PCH_DP_C);
5375
5376                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5377                         intel_dp_init(dev, PCH_DP_D);
5378
5379         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5380                 bool found = false;
5381
5382                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5383                         DRM_DEBUG_KMS("probing SDVOB\n");
5384                         found = intel_sdvo_init(dev, SDVOB);
5385                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5386                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5387                                 intel_hdmi_init(dev, SDVOB);
5388                         }
5389
5390                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5391                                 DRM_DEBUG_KMS("probing DP_B\n");
5392                                 intel_dp_init(dev, DP_B);
5393                         }
5394                 }
5395
5396                 /* Before G4X SDVOC doesn't have its own detect register */
5397
5398                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5399                         DRM_DEBUG_KMS("probing SDVOC\n");
5400                         found = intel_sdvo_init(dev, SDVOC);
5401                 }
5402
5403                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5404
5405                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5406                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5407                                 intel_hdmi_init(dev, SDVOC);
5408                         }
5409                         if (SUPPORTS_INTEGRATED_DP(dev)) {
5410                                 DRM_DEBUG_KMS("probing DP_C\n");
5411                                 intel_dp_init(dev, DP_C);
5412                         }
5413                 }
5414
5415                 if (SUPPORTS_INTEGRATED_DP(dev) &&
5416                     (I915_READ(DP_D) & DP_DETECTED)) {
5417                         DRM_DEBUG_KMS("probing DP_D\n");
5418                         intel_dp_init(dev, DP_D);
5419                 }
5420         } else if (IS_GEN2(dev))
5421                 intel_dvo_init(dev);
5422
5423         if (SUPPORTS_TV(dev))
5424                 intel_tv_init(dev);
5425
5426         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5427                 encoder->base.possible_crtcs = encoder->crtc_mask;
5428                 encoder->base.possible_clones =
5429                         intel_encoder_clones(dev, encoder->clone_mask);
5430         }
5431 }
5432
5433 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5434 {
5435         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5436
5437         drm_framebuffer_cleanup(fb);
5438         drm_gem_object_unreference_unlocked(intel_fb->obj);
5439
5440         kfree(intel_fb);
5441 }
5442
5443 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5444                                                 struct drm_file *file_priv,
5445                                                 unsigned int *handle)
5446 {
5447         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5448         struct drm_gem_object *object = intel_fb->obj;
5449
5450         return drm_gem_handle_create(file_priv, object, handle);
5451 }
5452
5453 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5454         .destroy = intel_user_framebuffer_destroy,
5455         .create_handle = intel_user_framebuffer_create_handle,
5456 };
5457
5458 int intel_framebuffer_init(struct drm_device *dev,
5459                            struct intel_framebuffer *intel_fb,
5460                            struct drm_mode_fb_cmd *mode_cmd,
5461                            struct drm_gem_object *obj)
5462 {
5463         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5464         int ret;
5465
5466         if (obj_priv->tiling_mode == I915_TILING_Y)
5467                 return -EINVAL;
5468
5469         if (mode_cmd->pitch & 63)
5470                 return -EINVAL;
5471
5472         switch (mode_cmd->bpp) {
5473         case 8:
5474         case 16:
5475         case 24:
5476         case 32:
5477                 break;
5478         default:
5479                 return -EINVAL;
5480         }
5481
5482         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5483         if (ret) {
5484                 DRM_ERROR("framebuffer init failed %d\n", ret);
5485                 return ret;
5486         }
5487
5488         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5489         intel_fb->obj = obj;
5490         return 0;
5491 }
5492
5493 static struct drm_framebuffer *
5494 intel_user_framebuffer_create(struct drm_device *dev,
5495                               struct drm_file *filp,
5496                               struct drm_mode_fb_cmd *mode_cmd)
5497 {
5498         struct drm_gem_object *obj;
5499         struct intel_framebuffer *intel_fb;
5500         int ret;
5501
5502         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5503         if (!obj)
5504                 return ERR_PTR(-ENOENT);
5505
5506         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5507         if (!intel_fb)
5508                 return ERR_PTR(-ENOMEM);
5509
5510         ret = intel_framebuffer_init(dev, intel_fb,
5511                                      mode_cmd, obj);
5512         if (ret) {
5513                 drm_gem_object_unreference_unlocked(obj);
5514                 kfree(intel_fb);
5515                 return ERR_PTR(ret);
5516         }
5517
5518         return &intel_fb->base;
5519 }
5520
5521 static const struct drm_mode_config_funcs intel_mode_funcs = {
5522         .fb_create = intel_user_framebuffer_create,
5523         .output_poll_changed = intel_fb_output_poll_changed,
5524 };
5525
5526 static struct drm_gem_object *
5527 intel_alloc_context_page(struct drm_device *dev)
5528 {
5529         struct drm_gem_object *ctx;
5530         int ret;
5531
5532         ctx = i915_gem_alloc_object(dev, 4096);
5533         if (!ctx) {
5534                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5535                 return NULL;
5536         }
5537
5538         mutex_lock(&dev->struct_mutex);
5539         ret = i915_gem_object_pin(ctx, 4096);
5540         if (ret) {
5541                 DRM_ERROR("failed to pin power context: %d\n", ret);
5542                 goto err_unref;
5543         }
5544
5545         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5546         if (ret) {
5547                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5548                 goto err_unpin;
5549         }
5550         mutex_unlock(&dev->struct_mutex);
5551
5552         return ctx;
5553
5554 err_unpin:
5555         i915_gem_object_unpin(ctx);
5556 err_unref:
5557         drm_gem_object_unreference(ctx);
5558         mutex_unlock(&dev->struct_mutex);
5559         return NULL;
5560 }
5561
5562 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5563 {
5564         struct drm_i915_private *dev_priv = dev->dev_private;
5565         u16 rgvswctl;
5566
5567         rgvswctl = I915_READ16(MEMSWCTL);
5568         if (rgvswctl & MEMCTL_CMD_STS) {
5569                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5570                 return false; /* still busy with another command */
5571         }
5572
5573         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5574                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5575         I915_WRITE16(MEMSWCTL, rgvswctl);
5576         POSTING_READ16(MEMSWCTL);
5577
5578         rgvswctl |= MEMCTL_CMD_STS;
5579         I915_WRITE16(MEMSWCTL, rgvswctl);
5580
5581         return true;
5582 }
5583
5584 void ironlake_enable_drps(struct drm_device *dev)
5585 {
5586         struct drm_i915_private *dev_priv = dev->dev_private;
5587         u32 rgvmodectl = I915_READ(MEMMODECTL);
5588         u8 fmax, fmin, fstart, vstart;
5589
5590         /* Enable temp reporting */
5591         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5592         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5593
5594         /* 100ms RC evaluation intervals */
5595         I915_WRITE(RCUPEI, 100000);
5596         I915_WRITE(RCDNEI, 100000);
5597
5598         /* Set max/min thresholds to 90ms and 80ms respectively */
5599         I915_WRITE(RCBMAXAVG, 90000);
5600         I915_WRITE(RCBMINAVG, 80000);
5601
5602         I915_WRITE(MEMIHYST, 1);
5603
5604         /* Set up min, max, and cur for interrupt handling */
5605         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5606         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5607         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5608                 MEMMODE_FSTART_SHIFT;
5609
5610         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5611                 PXVFREQ_PX_SHIFT;
5612
5613         dev_priv->fmax = fmax; /* IPS callback will increase this */
5614         dev_priv->fstart = fstart;
5615
5616         dev_priv->max_delay = fstart;
5617         dev_priv->min_delay = fmin;
5618         dev_priv->cur_delay = fstart;
5619
5620         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5621                          fmax, fmin, fstart);
5622
5623         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5624
5625         /*
5626          * Interrupts will be enabled in ironlake_irq_postinstall
5627          */
5628
5629         I915_WRITE(VIDSTART, vstart);
5630         POSTING_READ(VIDSTART);
5631
5632         rgvmodectl |= MEMMODE_SWMODE_EN;
5633         I915_WRITE(MEMMODECTL, rgvmodectl);
5634
5635         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5636                 DRM_ERROR("stuck trying to change perf mode\n");
5637         msleep(1);
5638
5639         ironlake_set_drps(dev, fstart);
5640
5641         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5642                 I915_READ(0x112e0);
5643         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5644         dev_priv->last_count2 = I915_READ(0x112f4);
5645         getrawmonotonic(&dev_priv->last_time2);
5646 }
5647
5648 void ironlake_disable_drps(struct drm_device *dev)
5649 {
5650         struct drm_i915_private *dev_priv = dev->dev_private;
5651         u16 rgvswctl = I915_READ16(MEMSWCTL);
5652
5653         /* Ack interrupts, disable EFC interrupt */
5654         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5655         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5656         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5657         I915_WRITE(DEIIR, DE_PCU_EVENT);
5658         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5659
5660         /* Go back to the starting frequency */
5661         ironlake_set_drps(dev, dev_priv->fstart);
5662         msleep(1);
5663         rgvswctl |= MEMCTL_CMD_STS;
5664         I915_WRITE(MEMSWCTL, rgvswctl);
5665         msleep(1);
5666
5667 }
5668
5669 static unsigned long intel_pxfreq(u32 vidfreq)
5670 {
5671         unsigned long freq;
5672         int div = (vidfreq & 0x3f0000) >> 16;
5673         int post = (vidfreq & 0x3000) >> 12;
5674         int pre = (vidfreq & 0x7);
5675
5676         if (!pre)
5677                 return 0;
5678
5679         freq = ((div * 133333) / ((1<<post) * pre));
5680
5681         return freq;
5682 }
5683
5684 void intel_init_emon(struct drm_device *dev)
5685 {
5686         struct drm_i915_private *dev_priv = dev->dev_private;
5687         u32 lcfuse;
5688         u8 pxw[16];
5689         int i;
5690
5691         /* Disable to program */
5692         I915_WRITE(ECR, 0);
5693         POSTING_READ(ECR);
5694
5695         /* Program energy weights for various events */
5696         I915_WRITE(SDEW, 0x15040d00);
5697         I915_WRITE(CSIEW0, 0x007f0000);
5698         I915_WRITE(CSIEW1, 0x1e220004);
5699         I915_WRITE(CSIEW2, 0x04000004);
5700
5701         for (i = 0; i < 5; i++)
5702                 I915_WRITE(PEW + (i * 4), 0);
5703         for (i = 0; i < 3; i++)
5704                 I915_WRITE(DEW + (i * 4), 0);
5705
5706         /* Program P-state weights to account for frequency power adjustment */
5707         for (i = 0; i < 16; i++) {
5708                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5709                 unsigned long freq = intel_pxfreq(pxvidfreq);
5710                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5711                         PXVFREQ_PX_SHIFT;
5712                 unsigned long val;
5713
5714                 val = vid * vid;
5715                 val *= (freq / 1000);
5716                 val *= 255;
5717                 val /= (127*127*900);
5718                 if (val > 0xff)
5719                         DRM_ERROR("bad pxval: %ld\n", val);
5720                 pxw[i] = val;
5721         }
5722         /* Render standby states get 0 weight */
5723         pxw[14] = 0;
5724         pxw[15] = 0;
5725
5726         for (i = 0; i < 4; i++) {
5727                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5728                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5729                 I915_WRITE(PXW + (i * 4), val);
5730         }
5731
5732         /* Adjust magic regs to magic values (more experimental results) */
5733         I915_WRITE(OGW0, 0);
5734         I915_WRITE(OGW1, 0);
5735         I915_WRITE(EG0, 0x00007f00);
5736         I915_WRITE(EG1, 0x0000000e);
5737         I915_WRITE(EG2, 0x000e0000);
5738         I915_WRITE(EG3, 0x68000300);
5739         I915_WRITE(EG4, 0x42000000);
5740         I915_WRITE(EG5, 0x00140031);
5741         I915_WRITE(EG6, 0);
5742         I915_WRITE(EG7, 0);
5743
5744         for (i = 0; i < 8; i++)
5745                 I915_WRITE(PXWL + (i * 4), 0);
5746
5747         /* Enable PMON + select events */
5748         I915_WRITE(ECR, 0x80000019);
5749
5750         lcfuse = I915_READ(LCFUSE02);
5751
5752         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5753 }
5754
5755 void intel_init_clock_gating(struct drm_device *dev)
5756 {
5757         struct drm_i915_private *dev_priv = dev->dev_private;
5758
5759         /*
5760          * Disable clock gating reported to work incorrectly according to the
5761          * specs, but enable as much else as we can.
5762          */
5763         if (HAS_PCH_SPLIT(dev)) {
5764                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5765
5766                 if (IS_GEN5(dev)) {
5767                         /* Required for FBC */
5768                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5769                         /* Required for CxSR */
5770                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5771
5772                         I915_WRITE(PCH_3DCGDIS0,
5773                                    MARIUNIT_CLOCK_GATE_DISABLE |
5774                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5775                 }
5776
5777                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5778
5779                 /*
5780                  * On Ibex Peak and Cougar Point, we need to disable clock
5781                  * gating for the panel power sequencer or it will fail to
5782                  * start up when no ports are active.
5783                  */
5784                 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5785
5786                 /*
5787                  * According to the spec the following bits should be set in
5788                  * order to enable memory self-refresh
5789                  * The bit 22/21 of 0x42004
5790                  * The bit 5 of 0x42020
5791                  * The bit 15 of 0x45000
5792                  */
5793                 if (IS_GEN5(dev)) {
5794                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5795                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5796                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5797                         I915_WRITE(ILK_DSPCLK_GATE,
5798                                         (I915_READ(ILK_DSPCLK_GATE) |
5799                                                 ILK_DPARB_CLK_GATE));
5800                         I915_WRITE(DISP_ARB_CTL,
5801                                         (I915_READ(DISP_ARB_CTL) |
5802                                                 DISP_FBC_WM_DIS));
5803                 I915_WRITE(WM3_LP_ILK, 0);
5804                 I915_WRITE(WM2_LP_ILK, 0);
5805                 I915_WRITE(WM1_LP_ILK, 0);
5806                 }
5807                 /*
5808                  * Based on the document from hardware guys the following bits
5809                  * should be set unconditionally in order to enable FBC.
5810                  * The bit 22 of 0x42000
5811                  * The bit 22 of 0x42004
5812                  * The bit 7,8,9 of 0x42020.
5813                  */
5814                 if (IS_IRONLAKE_M(dev)) {
5815                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5816                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5817                                    ILK_FBCQ_DIS);
5818                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5819                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5820                                    ILK_DPARB_GATE);
5821                         I915_WRITE(ILK_DSPCLK_GATE,
5822                                    I915_READ(ILK_DSPCLK_GATE) |
5823                                    ILK_DPFC_DIS1 |
5824                                    ILK_DPFC_DIS2 |
5825                                    ILK_CLK_FBC);
5826                 }
5827                 return;
5828         } else if (IS_G4X(dev)) {
5829                 uint32_t dspclk_gate;
5830                 I915_WRITE(RENCLK_GATE_D1, 0);
5831                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5832                        GS_UNIT_CLOCK_GATE_DISABLE |
5833                        CL_UNIT_CLOCK_GATE_DISABLE);
5834                 I915_WRITE(RAMCLK_GATE_D, 0);
5835                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5836                         OVRUNIT_CLOCK_GATE_DISABLE |
5837                         OVCUNIT_CLOCK_GATE_DISABLE;
5838                 if (IS_GM45(dev))
5839                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5840                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5841         } else if (IS_CRESTLINE(dev)) {
5842                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5843                 I915_WRITE(RENCLK_GATE_D2, 0);
5844                 I915_WRITE(DSPCLK_GATE_D, 0);
5845                 I915_WRITE(RAMCLK_GATE_D, 0);
5846                 I915_WRITE16(DEUC, 0);
5847         } else if (IS_BROADWATER(dev)) {
5848                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5849                        I965_RCC_CLOCK_GATE_DISABLE |
5850                        I965_RCPB_CLOCK_GATE_DISABLE |
5851                        I965_ISC_CLOCK_GATE_DISABLE |
5852                        I965_FBC_CLOCK_GATE_DISABLE);
5853                 I915_WRITE(RENCLK_GATE_D2, 0);
5854         } else if (IS_GEN3(dev)) {
5855                 u32 dstate = I915_READ(D_STATE);
5856
5857                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5858                         DSTATE_DOT_CLOCK_GATING;
5859                 I915_WRITE(D_STATE, dstate);
5860         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5861                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5862         } else if (IS_I830(dev)) {
5863                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5864         }
5865
5866         /*
5867          * GPU can automatically power down the render unit if given a page
5868          * to save state.
5869          */
5870         if (IS_IRONLAKE_M(dev)) {
5871                 if (dev_priv->renderctx == NULL)
5872                         dev_priv->renderctx = intel_alloc_context_page(dev);
5873                 if (dev_priv->renderctx) {
5874                         struct drm_i915_gem_object *obj_priv;
5875                         obj_priv = to_intel_bo(dev_priv->renderctx);
5876                         if (obj_priv) {
5877                                 BEGIN_LP_RING(4);
5878                                 OUT_RING(MI_SET_CONTEXT);
5879                                 OUT_RING(obj_priv->gtt_offset |
5880                                                 MI_MM_SPACE_GTT |
5881                                                 MI_SAVE_EXT_STATE_EN |
5882                                                 MI_RESTORE_EXT_STATE_EN |
5883                                                 MI_RESTORE_INHIBIT);
5884                                 OUT_RING(MI_NOOP);
5885                                 OUT_RING(MI_FLUSH);
5886                                 ADVANCE_LP_RING();
5887                         }
5888                 } else
5889                         DRM_DEBUG_KMS("Failed to allocate render context."
5890                                        "Disable RC6\n");
5891         }
5892
5893         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5894                 struct drm_i915_gem_object *obj_priv = NULL;
5895
5896                 if (dev_priv->pwrctx) {
5897                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5898                 } else {
5899                         struct drm_gem_object *pwrctx;
5900
5901                         pwrctx = intel_alloc_context_page(dev);
5902                         if (pwrctx) {
5903                                 dev_priv->pwrctx = pwrctx;
5904                                 obj_priv = to_intel_bo(pwrctx);
5905                         }
5906                 }
5907
5908                 if (obj_priv) {
5909                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5910                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5911                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5912                 }
5913         }
5914 }
5915
5916 /* Set up chip specific display functions */
5917 static void intel_init_display(struct drm_device *dev)
5918 {
5919         struct drm_i915_private *dev_priv = dev->dev_private;
5920
5921         /* We always want a DPMS function */
5922         if (HAS_PCH_SPLIT(dev))
5923                 dev_priv->display.dpms = ironlake_crtc_dpms;
5924         else
5925                 dev_priv->display.dpms = i9xx_crtc_dpms;
5926
5927         if (I915_HAS_FBC(dev)) {
5928                 if (IS_IRONLAKE_M(dev)) {
5929                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5930                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
5931                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5932                 } else if (IS_GM45(dev)) {
5933                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5934                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5935                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5936                 } else if (IS_CRESTLINE(dev)) {
5937                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5938                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5939                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5940                 }
5941                 /* 855GM needs testing */
5942         }
5943
5944         /* Returns the core display clock speed */
5945         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5946                 dev_priv->display.get_display_clock_speed =
5947                         i945_get_display_clock_speed;
5948         else if (IS_I915G(dev))
5949                 dev_priv->display.get_display_clock_speed =
5950                         i915_get_display_clock_speed;
5951         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5952                 dev_priv->display.get_display_clock_speed =
5953                         i9xx_misc_get_display_clock_speed;
5954         else if (IS_I915GM(dev))
5955                 dev_priv->display.get_display_clock_speed =
5956                         i915gm_get_display_clock_speed;
5957         else if (IS_I865G(dev))
5958                 dev_priv->display.get_display_clock_speed =
5959                         i865_get_display_clock_speed;
5960         else if (IS_I85X(dev))
5961                 dev_priv->display.get_display_clock_speed =
5962                         i855_get_display_clock_speed;
5963         else /* 852, 830 */
5964                 dev_priv->display.get_display_clock_speed =
5965                         i830_get_display_clock_speed;
5966
5967         /* For FIFO watermark updates */
5968         if (HAS_PCH_SPLIT(dev)) {
5969                 if (IS_GEN5(dev)) {
5970                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5971                                 dev_priv->display.update_wm = ironlake_update_wm;
5972                         else {
5973                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5974                                               "Disable CxSR\n");
5975                                 dev_priv->display.update_wm = NULL;
5976                         }
5977                 } else
5978                         dev_priv->display.update_wm = NULL;
5979         } else if (IS_PINEVIEW(dev)) {
5980                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5981                                             dev_priv->is_ddr3,
5982                                             dev_priv->fsb_freq,
5983                                             dev_priv->mem_freq)) {
5984                         DRM_INFO("failed to find known CxSR latency "
5985                                  "(found ddr%s fsb freq %d, mem freq %d), "
5986                                  "disabling CxSR\n",
5987                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
5988                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5989                         /* Disable CxSR and never update its watermark again */
5990                         pineview_disable_cxsr(dev);
5991                         dev_priv->display.update_wm = NULL;
5992                 } else
5993                         dev_priv->display.update_wm = pineview_update_wm;
5994         } else if (IS_G4X(dev))
5995                 dev_priv->display.update_wm = g4x_update_wm;
5996         else if (IS_GEN4(dev))
5997                 dev_priv->display.update_wm = i965_update_wm;
5998         else if (IS_GEN3(dev)) {
5999                 dev_priv->display.update_wm = i9xx_update_wm;
6000                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6001         } else if (IS_I85X(dev)) {
6002                 dev_priv->display.update_wm = i9xx_update_wm;
6003                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6004         } else {
6005                 dev_priv->display.update_wm = i830_update_wm;
6006                 if (IS_845G(dev))
6007                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6008                 else
6009                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6010         }
6011 }
6012
6013 /*
6014  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6015  * resume, or other times.  This quirk makes sure that's the case for
6016  * affected systems.
6017  */
6018 static void quirk_pipea_force (struct drm_device *dev)
6019 {
6020         struct drm_i915_private *dev_priv = dev->dev_private;
6021
6022         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6023         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
6024 }
6025
6026 struct intel_quirk {
6027         int device;
6028         int subsystem_vendor;
6029         int subsystem_device;
6030         void (*hook)(struct drm_device *dev);
6031 };
6032
6033 struct intel_quirk intel_quirks[] = {
6034         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
6035         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
6036         /* HP Mini needs pipe A force quirk (LP: #322104) */
6037         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
6038
6039         /* Thinkpad R31 needs pipe A force quirk */
6040         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6041         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6042         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6043
6044         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6045         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
6046         /* ThinkPad X40 needs pipe A force quirk */
6047
6048         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6049         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6050
6051         /* 855 & before need to leave pipe A & dpll A up */
6052         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6053         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6054 };
6055
6056 static void intel_init_quirks(struct drm_device *dev)
6057 {
6058         struct pci_dev *d = dev->pdev;
6059         int i;
6060
6061         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6062                 struct intel_quirk *q = &intel_quirks[i];
6063
6064                 if (d->device == q->device &&
6065                     (d->subsystem_vendor == q->subsystem_vendor ||
6066                      q->subsystem_vendor == PCI_ANY_ID) &&
6067                     (d->subsystem_device == q->subsystem_device ||
6068                      q->subsystem_device == PCI_ANY_ID))
6069                         q->hook(dev);
6070         }
6071 }
6072
6073 /* Disable the VGA plane that we never use */
6074 static void i915_disable_vga(struct drm_device *dev)
6075 {
6076         struct drm_i915_private *dev_priv = dev->dev_private;
6077         u8 sr1;
6078         u32 vga_reg;
6079
6080         if (HAS_PCH_SPLIT(dev))
6081                 vga_reg = CPU_VGACNTRL;
6082         else
6083                 vga_reg = VGACNTRL;
6084
6085         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6086         outb(1, VGA_SR_INDEX);
6087         sr1 = inb(VGA_SR_DATA);
6088         outb(sr1 | 1<<5, VGA_SR_DATA);
6089         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6090         udelay(300);
6091
6092         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6093         POSTING_READ(vga_reg);
6094 }
6095
6096 void intel_modeset_init(struct drm_device *dev)
6097 {
6098         struct drm_i915_private *dev_priv = dev->dev_private;
6099         int i;
6100
6101         drm_mode_config_init(dev);
6102
6103         dev->mode_config.min_width = 0;
6104         dev->mode_config.min_height = 0;
6105
6106         dev->mode_config.funcs = (void *)&intel_mode_funcs;
6107
6108         intel_init_quirks(dev);
6109
6110         intel_init_display(dev);
6111
6112         if (IS_GEN2(dev)) {
6113                 dev->mode_config.max_width = 2048;
6114                 dev->mode_config.max_height = 2048;
6115         } else if (IS_GEN3(dev)) {
6116                 dev->mode_config.max_width = 4096;
6117                 dev->mode_config.max_height = 4096;
6118         } else {
6119                 dev->mode_config.max_width = 8192;
6120                 dev->mode_config.max_height = 8192;
6121         }
6122
6123         /* set memory base */
6124         if (IS_GEN2(dev))
6125                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6126         else
6127                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6128
6129         if (IS_MOBILE(dev) || !IS_GEN2(dev))
6130                 dev_priv->num_pipe = 2;
6131         else
6132                 dev_priv->num_pipe = 1;
6133         DRM_DEBUG_KMS("%d display pipe%s available.\n",
6134                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6135
6136         for (i = 0; i < dev_priv->num_pipe; i++) {
6137                 intel_crtc_init(dev, i);
6138         }
6139
6140         intel_setup_outputs(dev);
6141
6142         intel_init_clock_gating(dev);
6143
6144         /* Just disable it once at startup */
6145         i915_disable_vga(dev);
6146
6147         if (IS_IRONLAKE_M(dev)) {
6148                 ironlake_enable_drps(dev);
6149                 intel_init_emon(dev);
6150         }
6151
6152         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6153         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6154                     (unsigned long)dev);
6155
6156         intel_setup_overlay(dev);
6157 }
6158
6159 void intel_modeset_cleanup(struct drm_device *dev)
6160 {
6161         struct drm_i915_private *dev_priv = dev->dev_private;
6162         struct drm_crtc *crtc;
6163         struct intel_crtc *intel_crtc;
6164
6165         drm_kms_helper_poll_fini(dev);
6166         mutex_lock(&dev->struct_mutex);
6167
6168         intel_unregister_dsm_handler();
6169
6170
6171         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6172                 /* Skip inactive CRTCs */
6173                 if (!crtc->fb)
6174                         continue;
6175
6176                 intel_crtc = to_intel_crtc(crtc);
6177                 intel_increase_pllclock(crtc);
6178         }
6179
6180         if (dev_priv->display.disable_fbc)
6181                 dev_priv->display.disable_fbc(dev);
6182
6183         if (dev_priv->renderctx) {
6184                 struct drm_i915_gem_object *obj_priv;
6185
6186                 obj_priv = to_intel_bo(dev_priv->renderctx);
6187                 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6188                 I915_READ(CCID);
6189                 i915_gem_object_unpin(dev_priv->renderctx);
6190                 drm_gem_object_unreference(dev_priv->renderctx);
6191         }
6192
6193         if (dev_priv->pwrctx) {
6194                 struct drm_i915_gem_object *obj_priv;
6195
6196                 obj_priv = to_intel_bo(dev_priv->pwrctx);
6197                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6198                 I915_READ(PWRCTXA);
6199                 i915_gem_object_unpin(dev_priv->pwrctx);
6200                 drm_gem_object_unreference(dev_priv->pwrctx);
6201         }
6202
6203         if (IS_IRONLAKE_M(dev))
6204                 ironlake_disable_drps(dev);
6205
6206         mutex_unlock(&dev->struct_mutex);
6207
6208         /* Disable the irq before mode object teardown, for the irq might
6209          * enqueue unpin/hotplug work. */
6210         drm_irq_uninstall(dev);
6211         cancel_work_sync(&dev_priv->hotplug_work);
6212
6213         /* Shut off idle work before the crtcs get freed. */
6214         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6215                 intel_crtc = to_intel_crtc(crtc);
6216                 del_timer_sync(&intel_crtc->idle_timer);
6217         }
6218         del_timer_sync(&dev_priv->idle_timer);
6219         cancel_work_sync(&dev_priv->idle_work);
6220
6221         drm_mode_config_cleanup(dev);
6222 }
6223
6224 /*
6225  * Return which encoder is currently attached for connector.
6226  */
6227 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6228 {
6229         return &intel_attached_encoder(connector)->base;
6230 }
6231
6232 void intel_connector_attach_encoder(struct intel_connector *connector,
6233                                     struct intel_encoder *encoder)
6234 {
6235         connector->encoder = encoder;
6236         drm_mode_connector_attach_encoder(&connector->base,
6237                                           &encoder->base);
6238 }
6239
6240 /*
6241  * set vga decode state - true == enable VGA decode
6242  */
6243 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6244 {
6245         struct drm_i915_private *dev_priv = dev->dev_private;
6246         u16 gmch_ctrl;
6247
6248         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6249         if (state)
6250                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6251         else
6252                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6253         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6254         return 0;
6255 }