drm/i915: make FDI training a display function
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50     /* given values */
51     int n;
52     int m1, m2;
53     int p1, p2;
54     /* derived values */
55     int dot;
56     int vco;
57     int m;
58     int p;
59 } intel_clock_t;
60
61 typedef struct {
62     int min, max;
63 } intel_range_t;
64
65 typedef struct {
66     int dot_limit;
67     int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM                  2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74     intel_p2_t      p2;
75     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76                       int, int, intel_clock_t *);
77 };
78
79 /* FDI */
80 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
81
82 static bool
83 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
84                     int target, int refclk, intel_clock_t *best_clock);
85 static bool
86 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
87                         int target, int refclk, intel_clock_t *best_clock);
88
89 static bool
90 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
91                       int target, int refclk, intel_clock_t *best_clock);
92 static bool
93 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
94                            int target, int refclk, intel_clock_t *best_clock);
95
96 static inline u32 /* units of 100MHz */
97 intel_fdi_link_freq(struct drm_device *dev)
98 {
99         if (IS_GEN5(dev)) {
100                 struct drm_i915_private *dev_priv = dev->dev_private;
101                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
102         } else
103                 return 27;
104 }
105
106 static const intel_limit_t intel_limits_i8xx_dvo = {
107         .dot = { .min = 25000, .max = 350000 },
108         .vco = { .min = 930000, .max = 1400000 },
109         .n = { .min = 3, .max = 16 },
110         .m = { .min = 96, .max = 140 },
111         .m1 = { .min = 18, .max = 26 },
112         .m2 = { .min = 6, .max = 16 },
113         .p = { .min = 4, .max = 128 },
114         .p1 = { .min = 2, .max = 33 },
115         .p2 = { .dot_limit = 165000,
116                 .p2_slow = 4, .p2_fast = 2 },
117         .find_pll = intel_find_best_PLL,
118 };
119
120 static const intel_limit_t intel_limits_i8xx_lvds = {
121         .dot = { .min = 25000, .max = 350000 },
122         .vco = { .min = 930000, .max = 1400000 },
123         .n = { .min = 3, .max = 16 },
124         .m = { .min = 96, .max = 140 },
125         .m1 = { .min = 18, .max = 26 },
126         .m2 = { .min = 6, .max = 16 },
127         .p = { .min = 4, .max = 128 },
128         .p1 = { .min = 1, .max = 6 },
129         .p2 = { .dot_limit = 165000,
130                 .p2_slow = 14, .p2_fast = 7 },
131         .find_pll = intel_find_best_PLL,
132 };
133
134 static const intel_limit_t intel_limits_i9xx_sdvo = {
135         .dot = { .min = 20000, .max = 400000 },
136         .vco = { .min = 1400000, .max = 2800000 },
137         .n = { .min = 1, .max = 6 },
138         .m = { .min = 70, .max = 120 },
139         .m1 = { .min = 10, .max = 22 },
140         .m2 = { .min = 5, .max = 9 },
141         .p = { .min = 5, .max = 80 },
142         .p1 = { .min = 1, .max = 8 },
143         .p2 = { .dot_limit = 200000,
144                 .p2_slow = 10, .p2_fast = 5 },
145         .find_pll = intel_find_best_PLL,
146 };
147
148 static const intel_limit_t intel_limits_i9xx_lvds = {
149         .dot = { .min = 20000, .max = 400000 },
150         .vco = { .min = 1400000, .max = 2800000 },
151         .n = { .min = 1, .max = 6 },
152         .m = { .min = 70, .max = 120 },
153         .m1 = { .min = 10, .max = 22 },
154         .m2 = { .min = 5, .max = 9 },
155         .p = { .min = 7, .max = 98 },
156         .p1 = { .min = 1, .max = 8 },
157         .p2 = { .dot_limit = 112000,
158                 .p2_slow = 14, .p2_fast = 7 },
159         .find_pll = intel_find_best_PLL,
160 };
161
162
163 static const intel_limit_t intel_limits_g4x_sdvo = {
164         .dot = { .min = 25000, .max = 270000 },
165         .vco = { .min = 1750000, .max = 3500000},
166         .n = { .min = 1, .max = 4 },
167         .m = { .min = 104, .max = 138 },
168         .m1 = { .min = 17, .max = 23 },
169         .m2 = { .min = 5, .max = 11 },
170         .p = { .min = 10, .max = 30 },
171         .p1 = { .min = 1, .max = 3},
172         .p2 = { .dot_limit = 270000,
173                 .p2_slow = 10,
174                 .p2_fast = 10
175         },
176         .find_pll = intel_g4x_find_best_PLL,
177 };
178
179 static const intel_limit_t intel_limits_g4x_hdmi = {
180         .dot = { .min = 22000, .max = 400000 },
181         .vco = { .min = 1750000, .max = 3500000},
182         .n = { .min = 1, .max = 4 },
183         .m = { .min = 104, .max = 138 },
184         .m1 = { .min = 16, .max = 23 },
185         .m2 = { .min = 5, .max = 11 },
186         .p = { .min = 5, .max = 80 },
187         .p1 = { .min = 1, .max = 8},
188         .p2 = { .dot_limit = 165000,
189                 .p2_slow = 10, .p2_fast = 5 },
190         .find_pll = intel_g4x_find_best_PLL,
191 };
192
193 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
194         .dot = { .min = 20000, .max = 115000 },
195         .vco = { .min = 1750000, .max = 3500000 },
196         .n = { .min = 1, .max = 3 },
197         .m = { .min = 104, .max = 138 },
198         .m1 = { .min = 17, .max = 23 },
199         .m2 = { .min = 5, .max = 11 },
200         .p = { .min = 28, .max = 112 },
201         .p1 = { .min = 2, .max = 8 },
202         .p2 = { .dot_limit = 0,
203                 .p2_slow = 14, .p2_fast = 14
204         },
205         .find_pll = intel_g4x_find_best_PLL,
206 };
207
208 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
209         .dot = { .min = 80000, .max = 224000 },
210         .vco = { .min = 1750000, .max = 3500000 },
211         .n = { .min = 1, .max = 3 },
212         .m = { .min = 104, .max = 138 },
213         .m1 = { .min = 17, .max = 23 },
214         .m2 = { .min = 5, .max = 11 },
215         .p = { .min = 14, .max = 42 },
216         .p1 = { .min = 2, .max = 6 },
217         .p2 = { .dot_limit = 0,
218                 .p2_slow = 7, .p2_fast = 7
219         },
220         .find_pll = intel_g4x_find_best_PLL,
221 };
222
223 static const intel_limit_t intel_limits_g4x_display_port = {
224         .dot = { .min = 161670, .max = 227000 },
225         .vco = { .min = 1750000, .max = 3500000},
226         .n = { .min = 1, .max = 2 },
227         .m = { .min = 97, .max = 108 },
228         .m1 = { .min = 0x10, .max = 0x12 },
229         .m2 = { .min = 0x05, .max = 0x06 },
230         .p = { .min = 10, .max = 20 },
231         .p1 = { .min = 1, .max = 2},
232         .p2 = { .dot_limit = 0,
233                 .p2_slow = 10, .p2_fast = 10 },
234         .find_pll = intel_find_pll_g4x_dp,
235 };
236
237 static const intel_limit_t intel_limits_pineview_sdvo = {
238         .dot = { .min = 20000, .max = 400000},
239         .vco = { .min = 1700000, .max = 3500000 },
240         /* Pineview's Ncounter is a ring counter */
241         .n = { .min = 3, .max = 6 },
242         .m = { .min = 2, .max = 256 },
243         /* Pineview only has one combined m divider, which we treat as m2. */
244         .m1 = { .min = 0, .max = 0 },
245         .m2 = { .min = 0, .max = 254 },
246         .p = { .min = 5, .max = 80 },
247         .p1 = { .min = 1, .max = 8 },
248         .p2 = { .dot_limit = 200000,
249                 .p2_slow = 10, .p2_fast = 5 },
250         .find_pll = intel_find_best_PLL,
251 };
252
253 static const intel_limit_t intel_limits_pineview_lvds = {
254         .dot = { .min = 20000, .max = 400000 },
255         .vco = { .min = 1700000, .max = 3500000 },
256         .n = { .min = 3, .max = 6 },
257         .m = { .min = 2, .max = 256 },
258         .m1 = { .min = 0, .max = 0 },
259         .m2 = { .min = 0, .max = 254 },
260         .p = { .min = 7, .max = 112 },
261         .p1 = { .min = 1, .max = 8 },
262         .p2 = { .dot_limit = 112000,
263                 .p2_slow = 14, .p2_fast = 14 },
264         .find_pll = intel_find_best_PLL,
265 };
266
267 /* Ironlake / Sandybridge
268  *
269  * We calculate clock using (register_value + 2) for N/M1/M2, so here
270  * the range value for them is (actual_value - 2).
271  */
272 static const intel_limit_t intel_limits_ironlake_dac = {
273         .dot = { .min = 25000, .max = 350000 },
274         .vco = { .min = 1760000, .max = 3510000 },
275         .n = { .min = 1, .max = 5 },
276         .m = { .min = 79, .max = 127 },
277         .m1 = { .min = 12, .max = 22 },
278         .m2 = { .min = 5, .max = 9 },
279         .p = { .min = 5, .max = 80 },
280         .p1 = { .min = 1, .max = 8 },
281         .p2 = { .dot_limit = 225000,
282                 .p2_slow = 10, .p2_fast = 5 },
283         .find_pll = intel_g4x_find_best_PLL,
284 };
285
286 static const intel_limit_t intel_limits_ironlake_single_lvds = {
287         .dot = { .min = 25000, .max = 350000 },
288         .vco = { .min = 1760000, .max = 3510000 },
289         .n = { .min = 1, .max = 3 },
290         .m = { .min = 79, .max = 118 },
291         .m1 = { .min = 12, .max = 22 },
292         .m2 = { .min = 5, .max = 9 },
293         .p = { .min = 28, .max = 112 },
294         .p1 = { .min = 2, .max = 8 },
295         .p2 = { .dot_limit = 225000,
296                 .p2_slow = 14, .p2_fast = 14 },
297         .find_pll = intel_g4x_find_best_PLL,
298 };
299
300 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 3 },
304         .m = { .min = 79, .max = 127 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 14, .max = 56 },
308         .p1 = { .min = 2, .max = 8 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 7, .p2_fast = 7 },
311         .find_pll = intel_g4x_find_best_PLL,
312 };
313
314 /* LVDS 100mhz refclk limits. */
315 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
316         .dot = { .min = 25000, .max = 350000 },
317         .vco = { .min = 1760000, .max = 3510000 },
318         .n = { .min = 1, .max = 2 },
319         .m = { .min = 79, .max = 126 },
320         .m1 = { .min = 12, .max = 22 },
321         .m2 = { .min = 5, .max = 9 },
322         .p = { .min = 28, .max = 112 },
323         .p1 = { .min = 2,.max = 8 },
324         .p2 = { .dot_limit = 225000,
325                 .p2_slow = 14, .p2_fast = 14 },
326         .find_pll = intel_g4x_find_best_PLL,
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
330         .dot = { .min = 25000, .max = 350000 },
331         .vco = { .min = 1760000, .max = 3510000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 79, .max = 126 },
334         .m1 = { .min = 12, .max = 22 },
335         .m2 = { .min = 5, .max = 9 },
336         .p = { .min = 14, .max = 42 },
337         .p1 = { .min = 2,.max = 6 },
338         .p2 = { .dot_limit = 225000,
339                 .p2_slow = 7, .p2_fast = 7 },
340         .find_pll = intel_g4x_find_best_PLL,
341 };
342
343 static const intel_limit_t intel_limits_ironlake_display_port = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000},
346         .n = { .min = 1, .max = 2 },
347         .m = { .min = 81, .max = 90 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 10, .max = 20 },
351         .p1 = { .min = 1, .max = 2},
352         .p2 = { .dot_limit = 0,
353                 .p2_slow = 10, .p2_fast = 10 },
354         .find_pll = intel_find_pll_ironlake_dp,
355 };
356
357 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
358                                                 int refclk)
359 {
360         struct drm_device *dev = crtc->dev;
361         struct drm_i915_private *dev_priv = dev->dev_private;
362         const intel_limit_t *limit;
363
364         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
365                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
366                     LVDS_CLKB_POWER_UP) {
367                         /* LVDS dual channel */
368                         if (refclk == 100000)
369                                 limit = &intel_limits_ironlake_dual_lvds_100m;
370                         else
371                                 limit = &intel_limits_ironlake_dual_lvds;
372                 } else {
373                         if (refclk == 100000)
374                                 limit = &intel_limits_ironlake_single_lvds_100m;
375                         else
376                                 limit = &intel_limits_ironlake_single_lvds;
377                 }
378         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
379                         HAS_eDP)
380                 limit = &intel_limits_ironlake_display_port;
381         else
382                 limit = &intel_limits_ironlake_dac;
383
384         return limit;
385 }
386
387 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
388 {
389         struct drm_device *dev = crtc->dev;
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         const intel_limit_t *limit;
392
393         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
394                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
395                     LVDS_CLKB_POWER_UP)
396                         /* LVDS with dual channel */
397                         limit = &intel_limits_g4x_dual_channel_lvds;
398                 else
399                         /* LVDS with dual channel */
400                         limit = &intel_limits_g4x_single_channel_lvds;
401         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
402                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
403                 limit = &intel_limits_g4x_hdmi;
404         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
405                 limit = &intel_limits_g4x_sdvo;
406         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
407                 limit = &intel_limits_g4x_display_port;
408         } else /* The option is for other outputs */
409                 limit = &intel_limits_i9xx_sdvo;
410
411         return limit;
412 }
413
414 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
415 {
416         struct drm_device *dev = crtc->dev;
417         const intel_limit_t *limit;
418
419         if (HAS_PCH_SPLIT(dev))
420                 limit = intel_ironlake_limit(crtc, refclk);
421         else if (IS_G4X(dev)) {
422                 limit = intel_g4x_limit(crtc);
423         } else if (IS_PINEVIEW(dev)) {
424                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
425                         limit = &intel_limits_pineview_lvds;
426                 else
427                         limit = &intel_limits_pineview_sdvo;
428         } else if (!IS_GEN2(dev)) {
429                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
430                         limit = &intel_limits_i9xx_lvds;
431                 else
432                         limit = &intel_limits_i9xx_sdvo;
433         } else {
434                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
435                         limit = &intel_limits_i8xx_lvds;
436                 else
437                         limit = &intel_limits_i8xx_dvo;
438         }
439         return limit;
440 }
441
442 /* m1 is reserved as 0 in Pineview, n is a ring counter */
443 static void pineview_clock(int refclk, intel_clock_t *clock)
444 {
445         clock->m = clock->m2 + 2;
446         clock->p = clock->p1 * clock->p2;
447         clock->vco = refclk * clock->m / clock->n;
448         clock->dot = clock->vco / clock->p;
449 }
450
451 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
452 {
453         if (IS_PINEVIEW(dev)) {
454                 pineview_clock(refclk, clock);
455                 return;
456         }
457         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
458         clock->p = clock->p1 * clock->p2;
459         clock->vco = refclk * clock->m / (clock->n + 2);
460         clock->dot = clock->vco / clock->p;
461 }
462
463 /**
464  * Returns whether any output on the specified pipe is of the specified type
465  */
466 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
467 {
468         struct drm_device *dev = crtc->dev;
469         struct drm_mode_config *mode_config = &dev->mode_config;
470         struct intel_encoder *encoder;
471
472         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
473                 if (encoder->base.crtc == crtc && encoder->type == type)
474                         return true;
475
476         return false;
477 }
478
479 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
480 /**
481  * Returns whether the given set of divisors are valid for a given refclk with
482  * the given connectors.
483  */
484
485 static bool intel_PLL_is_valid(struct drm_device *dev,
486                                const intel_limit_t *limit,
487                                const intel_clock_t *clock)
488 {
489         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
490                 INTELPllInvalid ("p1 out of range\n");
491         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
492                 INTELPllInvalid ("p out of range\n");
493         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
494                 INTELPllInvalid ("m2 out of range\n");
495         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
496                 INTELPllInvalid ("m1 out of range\n");
497         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
498                 INTELPllInvalid ("m1 <= m2\n");
499         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
500                 INTELPllInvalid ("m out of range\n");
501         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
502                 INTELPllInvalid ("n out of range\n");
503         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
504                 INTELPllInvalid ("vco out of range\n");
505         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
506          * connector, etc., rather than just a single range.
507          */
508         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
509                 INTELPllInvalid ("dot out of range\n");
510
511         return true;
512 }
513
514 static bool
515 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
516                     int target, int refclk, intel_clock_t *best_clock)
517
518 {
519         struct drm_device *dev = crtc->dev;
520         struct drm_i915_private *dev_priv = dev->dev_private;
521         intel_clock_t clock;
522         int err = target;
523
524         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
525             (I915_READ(LVDS)) != 0) {
526                 /*
527                  * For LVDS, if the panel is on, just rely on its current
528                  * settings for dual-channel.  We haven't figured out how to
529                  * reliably set up different single/dual channel state, if we
530                  * even can.
531                  */
532                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
533                     LVDS_CLKB_POWER_UP)
534                         clock.p2 = limit->p2.p2_fast;
535                 else
536                         clock.p2 = limit->p2.p2_slow;
537         } else {
538                 if (target < limit->p2.dot_limit)
539                         clock.p2 = limit->p2.p2_slow;
540                 else
541                         clock.p2 = limit->p2.p2_fast;
542         }
543
544         memset (best_clock, 0, sizeof (*best_clock));
545
546         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
547              clock.m1++) {
548                 for (clock.m2 = limit->m2.min;
549                      clock.m2 <= limit->m2.max; clock.m2++) {
550                         /* m1 is always 0 in Pineview */
551                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
552                                 break;
553                         for (clock.n = limit->n.min;
554                              clock.n <= limit->n.max; clock.n++) {
555                                 for (clock.p1 = limit->p1.min;
556                                         clock.p1 <= limit->p1.max; clock.p1++) {
557                                         int this_err;
558
559                                         intel_clock(dev, refclk, &clock);
560                                         if (!intel_PLL_is_valid(dev, limit,
561                                                                 &clock))
562                                                 continue;
563
564                                         this_err = abs(clock.dot - target);
565                                         if (this_err < err) {
566                                                 *best_clock = clock;
567                                                 err = this_err;
568                                         }
569                                 }
570                         }
571                 }
572         }
573
574         return (err != target);
575 }
576
577 static bool
578 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
579                         int target, int refclk, intel_clock_t *best_clock)
580 {
581         struct drm_device *dev = crtc->dev;
582         struct drm_i915_private *dev_priv = dev->dev_private;
583         intel_clock_t clock;
584         int max_n;
585         bool found;
586         /* approximately equals target * 0.00585 */
587         int err_most = (target >> 8) + (target >> 9);
588         found = false;
589
590         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
591                 int lvds_reg;
592
593                 if (HAS_PCH_SPLIT(dev))
594                         lvds_reg = PCH_LVDS;
595                 else
596                         lvds_reg = LVDS;
597                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
598                     LVDS_CLKB_POWER_UP)
599                         clock.p2 = limit->p2.p2_fast;
600                 else
601                         clock.p2 = limit->p2.p2_slow;
602         } else {
603                 if (target < limit->p2.dot_limit)
604                         clock.p2 = limit->p2.p2_slow;
605                 else
606                         clock.p2 = limit->p2.p2_fast;
607         }
608
609         memset(best_clock, 0, sizeof(*best_clock));
610         max_n = limit->n.max;
611         /* based on hardware requirement, prefer smaller n to precision */
612         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
613                 /* based on hardware requirement, prefere larger m1,m2 */
614                 for (clock.m1 = limit->m1.max;
615                      clock.m1 >= limit->m1.min; clock.m1--) {
616                         for (clock.m2 = limit->m2.max;
617                              clock.m2 >= limit->m2.min; clock.m2--) {
618                                 for (clock.p1 = limit->p1.max;
619                                      clock.p1 >= limit->p1.min; clock.p1--) {
620                                         int this_err;
621
622                                         intel_clock(dev, refclk, &clock);
623                                         if (!intel_PLL_is_valid(dev, limit,
624                                                                 &clock))
625                                                 continue;
626
627                                         this_err = abs(clock.dot - target);
628                                         if (this_err < err_most) {
629                                                 *best_clock = clock;
630                                                 err_most = this_err;
631                                                 max_n = clock.n;
632                                                 found = true;
633                                         }
634                                 }
635                         }
636                 }
637         }
638         return found;
639 }
640
641 static bool
642 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
643                            int target, int refclk, intel_clock_t *best_clock)
644 {
645         struct drm_device *dev = crtc->dev;
646         intel_clock_t clock;
647
648         if (target < 200000) {
649                 clock.n = 1;
650                 clock.p1 = 2;
651                 clock.p2 = 10;
652                 clock.m1 = 12;
653                 clock.m2 = 9;
654         } else {
655                 clock.n = 2;
656                 clock.p1 = 1;
657                 clock.p2 = 10;
658                 clock.m1 = 14;
659                 clock.m2 = 8;
660         }
661         intel_clock(dev, refclk, &clock);
662         memcpy(best_clock, &clock, sizeof(intel_clock_t));
663         return true;
664 }
665
666 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
667 static bool
668 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
669                       int target, int refclk, intel_clock_t *best_clock)
670 {
671         intel_clock_t clock;
672         if (target < 200000) {
673                 clock.p1 = 2;
674                 clock.p2 = 10;
675                 clock.n = 2;
676                 clock.m1 = 23;
677                 clock.m2 = 8;
678         } else {
679                 clock.p1 = 1;
680                 clock.p2 = 10;
681                 clock.n = 1;
682                 clock.m1 = 14;
683                 clock.m2 = 2;
684         }
685         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
686         clock.p = (clock.p1 * clock.p2);
687         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
688         clock.vco = 0;
689         memcpy(best_clock, &clock, sizeof(intel_clock_t));
690         return true;
691 }
692
693 /**
694  * intel_wait_for_vblank - wait for vblank on a given pipe
695  * @dev: drm device
696  * @pipe: pipe to wait for
697  *
698  * Wait for vblank to occur on a given pipe.  Needed for various bits of
699  * mode setting code.
700  */
701 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
702 {
703         struct drm_i915_private *dev_priv = dev->dev_private;
704         int pipestat_reg = PIPESTAT(pipe);
705
706         /* Clear existing vblank status. Note this will clear any other
707          * sticky status fields as well.
708          *
709          * This races with i915_driver_irq_handler() with the result
710          * that either function could miss a vblank event.  Here it is not
711          * fatal, as we will either wait upon the next vblank interrupt or
712          * timeout.  Generally speaking intel_wait_for_vblank() is only
713          * called during modeset at which time the GPU should be idle and
714          * should *not* be performing page flips and thus not waiting on
715          * vblanks...
716          * Currently, the result of us stealing a vblank from the irq
717          * handler is that a single frame will be skipped during swapbuffers.
718          */
719         I915_WRITE(pipestat_reg,
720                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
721
722         /* Wait for vblank interrupt bit to set */
723         if (wait_for(I915_READ(pipestat_reg) &
724                      PIPE_VBLANK_INTERRUPT_STATUS,
725                      50))
726                 DRM_DEBUG_KMS("vblank wait timed out\n");
727 }
728
729 /*
730  * intel_wait_for_pipe_off - wait for pipe to turn off
731  * @dev: drm device
732  * @pipe: pipe to wait for
733  *
734  * After disabling a pipe, we can't wait for vblank in the usual way,
735  * spinning on the vblank interrupt status bit, since we won't actually
736  * see an interrupt when the pipe is disabled.
737  *
738  * On Gen4 and above:
739  *   wait for the pipe register state bit to turn off
740  *
741  * Otherwise:
742  *   wait for the display line value to settle (it usually
743  *   ends up stopping at the start of the next frame).
744  *
745  */
746 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
747 {
748         struct drm_i915_private *dev_priv = dev->dev_private;
749
750         if (INTEL_INFO(dev)->gen >= 4) {
751                 int reg = PIPECONF(pipe);
752
753                 /* Wait for the Pipe State to go off */
754                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
755                              100))
756                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
757         } else {
758                 u32 last_line;
759                 int reg = PIPEDSL(pipe);
760                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
761
762                 /* Wait for the display line to settle */
763                 do {
764                         last_line = I915_READ(reg) & DSL_LINEMASK;
765                         mdelay(5);
766                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
767                          time_after(timeout, jiffies));
768                 if (time_after(jiffies, timeout))
769                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
770         }
771 }
772
773 static const char *state_string(bool enabled)
774 {
775         return enabled ? "on" : "off";
776 }
777
778 /* Only for pre-ILK configs */
779 static void assert_pll(struct drm_i915_private *dev_priv,
780                        enum pipe pipe, bool state)
781 {
782         int reg;
783         u32 val;
784         bool cur_state;
785
786         reg = DPLL(pipe);
787         val = I915_READ(reg);
788         cur_state = !!(val & DPLL_VCO_ENABLE);
789         WARN(cur_state != state,
790              "PLL state assertion failure (expected %s, current %s)\n",
791              state_string(state), state_string(cur_state));
792 }
793 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
794 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
795
796 /* For ILK+ */
797 static void assert_pch_pll(struct drm_i915_private *dev_priv,
798                            enum pipe pipe, bool state)
799 {
800         int reg;
801         u32 val;
802         bool cur_state;
803
804         reg = PCH_DPLL(pipe);
805         val = I915_READ(reg);
806         cur_state = !!(val & DPLL_VCO_ENABLE);
807         WARN(cur_state != state,
808              "PCH PLL state assertion failure (expected %s, current %s)\n",
809              state_string(state), state_string(cur_state));
810 }
811 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
812 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
813
814 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
815                           enum pipe pipe, bool state)
816 {
817         int reg;
818         u32 val;
819         bool cur_state;
820
821         reg = FDI_TX_CTL(pipe);
822         val = I915_READ(reg);
823         cur_state = !!(val & FDI_TX_ENABLE);
824         WARN(cur_state != state,
825              "FDI TX state assertion failure (expected %s, current %s)\n",
826              state_string(state), state_string(cur_state));
827 }
828 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
829 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
830
831 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
832                           enum pipe pipe, bool state)
833 {
834         int reg;
835         u32 val;
836         bool cur_state;
837
838         reg = FDI_RX_CTL(pipe);
839         val = I915_READ(reg);
840         cur_state = !!(val & FDI_RX_ENABLE);
841         WARN(cur_state != state,
842              "FDI RX state assertion failure (expected %s, current %s)\n",
843              state_string(state), state_string(cur_state));
844 }
845 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
846 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
847
848 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
849                                       enum pipe pipe)
850 {
851         int reg;
852         u32 val;
853
854         /* ILK FDI PLL is always enabled */
855         if (dev_priv->info->gen == 5)
856                 return;
857
858         reg = FDI_TX_CTL(pipe);
859         val = I915_READ(reg);
860         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
861 }
862
863 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
864                                       enum pipe pipe)
865 {
866         int reg;
867         u32 val;
868
869         reg = FDI_RX_CTL(pipe);
870         val = I915_READ(reg);
871         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
872 }
873
874 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
875                                   enum pipe pipe)
876 {
877         int pp_reg, lvds_reg;
878         u32 val;
879         enum pipe panel_pipe = PIPE_A;
880         bool locked = locked;
881
882         if (HAS_PCH_SPLIT(dev_priv->dev)) {
883                 pp_reg = PCH_PP_CONTROL;
884                 lvds_reg = PCH_LVDS;
885         } else {
886                 pp_reg = PP_CONTROL;
887                 lvds_reg = LVDS;
888         }
889
890         val = I915_READ(pp_reg);
891         if (!(val & PANEL_POWER_ON) ||
892             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
893                 locked = false;
894
895         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
896                 panel_pipe = PIPE_B;
897
898         WARN(panel_pipe == pipe && locked,
899              "panel assertion failure, pipe %c regs locked\n",
900              pipe_name(pipe));
901 }
902
903 static void assert_pipe(struct drm_i915_private *dev_priv,
904                         enum pipe pipe, bool state)
905 {
906         int reg;
907         u32 val;
908         bool cur_state;
909
910         reg = PIPECONF(pipe);
911         val = I915_READ(reg);
912         cur_state = !!(val & PIPECONF_ENABLE);
913         WARN(cur_state != state,
914              "pipe %c assertion failure (expected %s, current %s)\n",
915              pipe_name(pipe), state_string(state), state_string(cur_state));
916 }
917 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
918 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
919
920 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
921                                  enum plane plane)
922 {
923         int reg;
924         u32 val;
925
926         reg = DSPCNTR(plane);
927         val = I915_READ(reg);
928         WARN(!(val & DISPLAY_PLANE_ENABLE),
929              "plane %c assertion failure, should be active but is disabled\n",
930              plane_name(plane));
931 }
932
933 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
934                                    enum pipe pipe)
935 {
936         int reg, i;
937         u32 val;
938         int cur_pipe;
939
940         /* Planes are fixed to pipes on ILK+ */
941         if (HAS_PCH_SPLIT(dev_priv->dev))
942                 return;
943
944         /* Need to check both planes against the pipe */
945         for (i = 0; i < 2; i++) {
946                 reg = DSPCNTR(i);
947                 val = I915_READ(reg);
948                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
949                         DISPPLANE_SEL_PIPE_SHIFT;
950                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
951                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
952                      plane_name(i), pipe_name(pipe));
953         }
954 }
955
956 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
957 {
958         u32 val;
959         bool enabled;
960
961         val = I915_READ(PCH_DREF_CONTROL);
962         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
963                             DREF_SUPERSPREAD_SOURCE_MASK));
964         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
965 }
966
967 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
968                                        enum pipe pipe)
969 {
970         int reg;
971         u32 val;
972         bool enabled;
973
974         reg = TRANSCONF(pipe);
975         val = I915_READ(reg);
976         enabled = !!(val & TRANS_ENABLE);
977         WARN(enabled,
978              "transcoder assertion failed, should be off on pipe %c but is still active\n",
979              pipe_name(pipe));
980 }
981
982 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
983                                    enum pipe pipe, int reg)
984 {
985         u32 val = I915_READ(reg);
986         WARN(DP_PIPE_ENABLED(val, pipe),
987              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
988              reg, pipe_name(pipe));
989 }
990
991 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
992                                      enum pipe pipe, int reg)
993 {
994         u32 val = I915_READ(reg);
995         WARN(HDMI_PIPE_ENABLED(val, pipe),
996              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
997              reg, pipe_name(pipe));
998 }
999
1000 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1001                                       enum pipe pipe)
1002 {
1003         int reg;
1004         u32 val;
1005
1006         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B);
1007         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C);
1008         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D);
1009
1010         reg = PCH_ADPA;
1011         val = I915_READ(reg);
1012         WARN(ADPA_PIPE_ENABLED(val, pipe),
1013              "PCH VGA enabled on transcoder %c, should be disabled\n",
1014              pipe_name(pipe));
1015
1016         reg = PCH_LVDS;
1017         val = I915_READ(reg);
1018         WARN(LVDS_PIPE_ENABLED(val, pipe),
1019              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1020              pipe_name(pipe));
1021
1022         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1023         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1024         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1025 }
1026
1027 /**
1028  * intel_enable_pll - enable a PLL
1029  * @dev_priv: i915 private structure
1030  * @pipe: pipe PLL to enable
1031  *
1032  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1033  * make sure the PLL reg is writable first though, since the panel write
1034  * protect mechanism may be enabled.
1035  *
1036  * Note!  This is for pre-ILK only.
1037  */
1038 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1039 {
1040         int reg;
1041         u32 val;
1042
1043         /* No really, not for ILK+ */
1044         BUG_ON(dev_priv->info->gen >= 5);
1045
1046         /* PLL is protected by panel, make sure we can write it */
1047         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1048                 assert_panel_unlocked(dev_priv, pipe);
1049
1050         reg = DPLL(pipe);
1051         val = I915_READ(reg);
1052         val |= DPLL_VCO_ENABLE;
1053
1054         /* We do this three times for luck */
1055         I915_WRITE(reg, val);
1056         POSTING_READ(reg);
1057         udelay(150); /* wait for warmup */
1058         I915_WRITE(reg, val);
1059         POSTING_READ(reg);
1060         udelay(150); /* wait for warmup */
1061         I915_WRITE(reg, val);
1062         POSTING_READ(reg);
1063         udelay(150); /* wait for warmup */
1064 }
1065
1066 /**
1067  * intel_disable_pll - disable a PLL
1068  * @dev_priv: i915 private structure
1069  * @pipe: pipe PLL to disable
1070  *
1071  * Disable the PLL for @pipe, making sure the pipe is off first.
1072  *
1073  * Note!  This is for pre-ILK only.
1074  */
1075 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1076 {
1077         int reg;
1078         u32 val;
1079
1080         /* Don't disable pipe A or pipe A PLLs if needed */
1081         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1082                 return;
1083
1084         /* Make sure the pipe isn't still relying on us */
1085         assert_pipe_disabled(dev_priv, pipe);
1086
1087         reg = DPLL(pipe);
1088         val = I915_READ(reg);
1089         val &= ~DPLL_VCO_ENABLE;
1090         I915_WRITE(reg, val);
1091         POSTING_READ(reg);
1092 }
1093
1094 /**
1095  * intel_enable_pch_pll - enable PCH PLL
1096  * @dev_priv: i915 private structure
1097  * @pipe: pipe PLL to enable
1098  *
1099  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1100  * drives the transcoder clock.
1101  */
1102 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1103                                  enum pipe pipe)
1104 {
1105         int reg;
1106         u32 val;
1107
1108         /* PCH only available on ILK+ */
1109         BUG_ON(dev_priv->info->gen < 5);
1110
1111         /* PCH refclock must be enabled first */
1112         assert_pch_refclk_enabled(dev_priv);
1113
1114         reg = PCH_DPLL(pipe);
1115         val = I915_READ(reg);
1116         val |= DPLL_VCO_ENABLE;
1117         I915_WRITE(reg, val);
1118         POSTING_READ(reg);
1119         udelay(200);
1120 }
1121
1122 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1123                                   enum pipe pipe)
1124 {
1125         int reg;
1126         u32 val;
1127
1128         /* PCH only available on ILK+ */
1129         BUG_ON(dev_priv->info->gen < 5);
1130
1131         /* Make sure transcoder isn't still depending on us */
1132         assert_transcoder_disabled(dev_priv, pipe);
1133
1134         reg = PCH_DPLL(pipe);
1135         val = I915_READ(reg);
1136         val &= ~DPLL_VCO_ENABLE;
1137         I915_WRITE(reg, val);
1138         POSTING_READ(reg);
1139         udelay(200);
1140 }
1141
1142 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1143                                     enum pipe pipe)
1144 {
1145         int reg;
1146         u32 val;
1147
1148         /* PCH only available on ILK+ */
1149         BUG_ON(dev_priv->info->gen < 5);
1150
1151         /* Make sure PCH DPLL is enabled */
1152         assert_pch_pll_enabled(dev_priv, pipe);
1153
1154         /* FDI must be feeding us bits for PCH ports */
1155         assert_fdi_tx_enabled(dev_priv, pipe);
1156         assert_fdi_rx_enabled(dev_priv, pipe);
1157
1158         reg = TRANSCONF(pipe);
1159         val = I915_READ(reg);
1160         /*
1161          * make the BPC in transcoder be consistent with
1162          * that in pipeconf reg.
1163          */
1164         val &= ~PIPE_BPC_MASK;
1165         val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1166         I915_WRITE(reg, val | TRANS_ENABLE);
1167         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1168                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1169 }
1170
1171 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1172                                      enum pipe pipe)
1173 {
1174         int reg;
1175         u32 val;
1176
1177         /* FDI relies on the transcoder */
1178         assert_fdi_tx_disabled(dev_priv, pipe);
1179         assert_fdi_rx_disabled(dev_priv, pipe);
1180
1181         /* Ports must be off as well */
1182         assert_pch_ports_disabled(dev_priv, pipe);
1183
1184         reg = TRANSCONF(pipe);
1185         val = I915_READ(reg);
1186         val &= ~TRANS_ENABLE;
1187         I915_WRITE(reg, val);
1188         /* wait for PCH transcoder off, transcoder state */
1189         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1190                 DRM_ERROR("failed to disable transcoder\n");
1191 }
1192
1193 /**
1194  * intel_enable_pipe - enable a pipe, asserting requirements
1195  * @dev_priv: i915 private structure
1196  * @pipe: pipe to enable
1197  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1198  *
1199  * Enable @pipe, making sure that various hardware specific requirements
1200  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1201  *
1202  * @pipe should be %PIPE_A or %PIPE_B.
1203  *
1204  * Will wait until the pipe is actually running (i.e. first vblank) before
1205  * returning.
1206  */
1207 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1208                               bool pch_port)
1209 {
1210         int reg;
1211         u32 val;
1212
1213         /*
1214          * A pipe without a PLL won't actually be able to drive bits from
1215          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1216          * need the check.
1217          */
1218         if (!HAS_PCH_SPLIT(dev_priv->dev))
1219                 assert_pll_enabled(dev_priv, pipe);
1220         else {
1221                 if (pch_port) {
1222                         /* if driving the PCH, we need FDI enabled */
1223                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1224                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1225                 }
1226                 /* FIXME: assert CPU port conditions for SNB+ */
1227         }
1228
1229         reg = PIPECONF(pipe);
1230         val = I915_READ(reg);
1231         if (val & PIPECONF_ENABLE)
1232                 return;
1233
1234         I915_WRITE(reg, val | PIPECONF_ENABLE);
1235         intel_wait_for_vblank(dev_priv->dev, pipe);
1236 }
1237
1238 /**
1239  * intel_disable_pipe - disable a pipe, asserting requirements
1240  * @dev_priv: i915 private structure
1241  * @pipe: pipe to disable
1242  *
1243  * Disable @pipe, making sure that various hardware specific requirements
1244  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1245  *
1246  * @pipe should be %PIPE_A or %PIPE_B.
1247  *
1248  * Will wait until the pipe has shut down before returning.
1249  */
1250 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1251                                enum pipe pipe)
1252 {
1253         int reg;
1254         u32 val;
1255
1256         /*
1257          * Make sure planes won't keep trying to pump pixels to us,
1258          * or we might hang the display.
1259          */
1260         assert_planes_disabled(dev_priv, pipe);
1261
1262         /* Don't disable pipe A or pipe A PLLs if needed */
1263         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1264                 return;
1265
1266         reg = PIPECONF(pipe);
1267         val = I915_READ(reg);
1268         if ((val & PIPECONF_ENABLE) == 0)
1269                 return;
1270
1271         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1272         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1273 }
1274
1275 /**
1276  * intel_enable_plane - enable a display plane on a given pipe
1277  * @dev_priv: i915 private structure
1278  * @plane: plane to enable
1279  * @pipe: pipe being fed
1280  *
1281  * Enable @plane on @pipe, making sure that @pipe is running first.
1282  */
1283 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1284                                enum plane plane, enum pipe pipe)
1285 {
1286         int reg;
1287         u32 val;
1288
1289         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1290         assert_pipe_enabled(dev_priv, pipe);
1291
1292         reg = DSPCNTR(plane);
1293         val = I915_READ(reg);
1294         if (val & DISPLAY_PLANE_ENABLE)
1295                 return;
1296
1297         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1298         intel_wait_for_vblank(dev_priv->dev, pipe);
1299 }
1300
1301 /*
1302  * Plane regs are double buffered, going from enabled->disabled needs a
1303  * trigger in order to latch.  The display address reg provides this.
1304  */
1305 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1306                                       enum plane plane)
1307 {
1308         u32 reg = DSPADDR(plane);
1309         I915_WRITE(reg, I915_READ(reg));
1310 }
1311
1312 /**
1313  * intel_disable_plane - disable a display plane
1314  * @dev_priv: i915 private structure
1315  * @plane: plane to disable
1316  * @pipe: pipe consuming the data
1317  *
1318  * Disable @plane; should be an independent operation.
1319  */
1320 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1321                                 enum plane plane, enum pipe pipe)
1322 {
1323         int reg;
1324         u32 val;
1325
1326         reg = DSPCNTR(plane);
1327         val = I915_READ(reg);
1328         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1329                 return;
1330
1331         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1332         intel_flush_display_plane(dev_priv, plane);
1333         intel_wait_for_vblank(dev_priv->dev, pipe);
1334 }
1335
1336 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1337                            enum pipe pipe, int reg)
1338 {
1339         u32 val = I915_READ(reg);
1340         if (DP_PIPE_ENABLED(val, pipe))
1341                 I915_WRITE(reg, val & ~DP_PORT_EN);
1342 }
1343
1344 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1345                              enum pipe pipe, int reg)
1346 {
1347         u32 val = I915_READ(reg);
1348         if (HDMI_PIPE_ENABLED(val, pipe))
1349                 I915_WRITE(reg, val & ~PORT_ENABLE);
1350 }
1351
1352 /* Disable any ports connected to this transcoder */
1353 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1354                                     enum pipe pipe)
1355 {
1356         u32 reg, val;
1357
1358         val = I915_READ(PCH_PP_CONTROL);
1359         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1360
1361         disable_pch_dp(dev_priv, pipe, PCH_DP_B);
1362         disable_pch_dp(dev_priv, pipe, PCH_DP_C);
1363         disable_pch_dp(dev_priv, pipe, PCH_DP_D);
1364
1365         reg = PCH_ADPA;
1366         val = I915_READ(reg);
1367         if (ADPA_PIPE_ENABLED(val, pipe))
1368                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1369
1370         reg = PCH_LVDS;
1371         val = I915_READ(reg);
1372         if (LVDS_PIPE_ENABLED(val, pipe)) {
1373                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1374                 POSTING_READ(reg);
1375                 udelay(100);
1376         }
1377
1378         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1379         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1380         disable_pch_hdmi(dev_priv, pipe, HDMID);
1381 }
1382
1383 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1384 {
1385         struct drm_device *dev = crtc->dev;
1386         struct drm_i915_private *dev_priv = dev->dev_private;
1387         struct drm_framebuffer *fb = crtc->fb;
1388         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1389         struct drm_i915_gem_object *obj = intel_fb->obj;
1390         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1391         int plane, i;
1392         u32 fbc_ctl, fbc_ctl2;
1393
1394         if (fb->pitch == dev_priv->cfb_pitch &&
1395             obj->fence_reg == dev_priv->cfb_fence &&
1396             intel_crtc->plane == dev_priv->cfb_plane &&
1397             I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1398                 return;
1399
1400         i8xx_disable_fbc(dev);
1401
1402         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1403
1404         if (fb->pitch < dev_priv->cfb_pitch)
1405                 dev_priv->cfb_pitch = fb->pitch;
1406
1407         /* FBC_CTL wants 64B units */
1408         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1409         dev_priv->cfb_fence = obj->fence_reg;
1410         dev_priv->cfb_plane = intel_crtc->plane;
1411         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1412
1413         /* Clear old tags */
1414         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1415                 I915_WRITE(FBC_TAG + (i * 4), 0);
1416
1417         /* Set it up... */
1418         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1419         if (obj->tiling_mode != I915_TILING_NONE)
1420                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1421         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1422         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1423
1424         /* enable it... */
1425         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1426         if (IS_I945GM(dev))
1427                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1428         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1429         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1430         if (obj->tiling_mode != I915_TILING_NONE)
1431                 fbc_ctl |= dev_priv->cfb_fence;
1432         I915_WRITE(FBC_CONTROL, fbc_ctl);
1433
1434         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1435                       dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1436 }
1437
1438 void i8xx_disable_fbc(struct drm_device *dev)
1439 {
1440         struct drm_i915_private *dev_priv = dev->dev_private;
1441         u32 fbc_ctl;
1442
1443         /* Disable compression */
1444         fbc_ctl = I915_READ(FBC_CONTROL);
1445         if ((fbc_ctl & FBC_CTL_EN) == 0)
1446                 return;
1447
1448         fbc_ctl &= ~FBC_CTL_EN;
1449         I915_WRITE(FBC_CONTROL, fbc_ctl);
1450
1451         /* Wait for compressing bit to clear */
1452         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1453                 DRM_DEBUG_KMS("FBC idle timed out\n");
1454                 return;
1455         }
1456
1457         DRM_DEBUG_KMS("disabled FBC\n");
1458 }
1459
1460 static bool i8xx_fbc_enabled(struct drm_device *dev)
1461 {
1462         struct drm_i915_private *dev_priv = dev->dev_private;
1463
1464         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1465 }
1466
1467 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1468 {
1469         struct drm_device *dev = crtc->dev;
1470         struct drm_i915_private *dev_priv = dev->dev_private;
1471         struct drm_framebuffer *fb = crtc->fb;
1472         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1473         struct drm_i915_gem_object *obj = intel_fb->obj;
1474         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1475         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1476         unsigned long stall_watermark = 200;
1477         u32 dpfc_ctl;
1478
1479         dpfc_ctl = I915_READ(DPFC_CONTROL);
1480         if (dpfc_ctl & DPFC_CTL_EN) {
1481                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1482                     dev_priv->cfb_fence == obj->fence_reg &&
1483                     dev_priv->cfb_plane == intel_crtc->plane &&
1484                     dev_priv->cfb_y == crtc->y)
1485                         return;
1486
1487                 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1488                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1489         }
1490
1491         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1492         dev_priv->cfb_fence = obj->fence_reg;
1493         dev_priv->cfb_plane = intel_crtc->plane;
1494         dev_priv->cfb_y = crtc->y;
1495
1496         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1497         if (obj->tiling_mode != I915_TILING_NONE) {
1498                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1499                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1500         } else {
1501                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1502         }
1503
1504         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1505                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1506                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1507         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1508
1509         /* enable it... */
1510         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1511
1512         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1513 }
1514
1515 void g4x_disable_fbc(struct drm_device *dev)
1516 {
1517         struct drm_i915_private *dev_priv = dev->dev_private;
1518         u32 dpfc_ctl;
1519
1520         /* Disable compression */
1521         dpfc_ctl = I915_READ(DPFC_CONTROL);
1522         if (dpfc_ctl & DPFC_CTL_EN) {
1523                 dpfc_ctl &= ~DPFC_CTL_EN;
1524                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1525
1526                 DRM_DEBUG_KMS("disabled FBC\n");
1527         }
1528 }
1529
1530 static bool g4x_fbc_enabled(struct drm_device *dev)
1531 {
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533
1534         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1535 }
1536
1537 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1538 {
1539         struct drm_i915_private *dev_priv = dev->dev_private;
1540         u32 blt_ecoskpd;
1541
1542         /* Make sure blitter notifies FBC of writes */
1543         gen6_gt_force_wake_get(dev_priv);
1544         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1545         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1546                 GEN6_BLITTER_LOCK_SHIFT;
1547         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1548         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1549         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1550         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1551                          GEN6_BLITTER_LOCK_SHIFT);
1552         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1553         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1554         gen6_gt_force_wake_put(dev_priv);
1555 }
1556
1557 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1558 {
1559         struct drm_device *dev = crtc->dev;
1560         struct drm_i915_private *dev_priv = dev->dev_private;
1561         struct drm_framebuffer *fb = crtc->fb;
1562         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1563         struct drm_i915_gem_object *obj = intel_fb->obj;
1564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1565         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1566         unsigned long stall_watermark = 200;
1567         u32 dpfc_ctl;
1568
1569         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1570         if (dpfc_ctl & DPFC_CTL_EN) {
1571                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1572                     dev_priv->cfb_fence == obj->fence_reg &&
1573                     dev_priv->cfb_plane == intel_crtc->plane &&
1574                     dev_priv->cfb_offset == obj->gtt_offset &&
1575                     dev_priv->cfb_y == crtc->y)
1576                         return;
1577
1578                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1579                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1580         }
1581
1582         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1583         dev_priv->cfb_fence = obj->fence_reg;
1584         dev_priv->cfb_plane = intel_crtc->plane;
1585         dev_priv->cfb_offset = obj->gtt_offset;
1586         dev_priv->cfb_y = crtc->y;
1587
1588         dpfc_ctl &= DPFC_RESERVED;
1589         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1590         if (obj->tiling_mode != I915_TILING_NONE) {
1591                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1592                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1593         } else {
1594                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1595         }
1596
1597         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1598                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1599                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1600         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1601         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1602         /* enable it... */
1603         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1604
1605         if (IS_GEN6(dev)) {
1606                 I915_WRITE(SNB_DPFC_CTL_SA,
1607                            SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
1608                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1609                 sandybridge_blit_fbc_update(dev);
1610         }
1611
1612         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1613 }
1614
1615 void ironlake_disable_fbc(struct drm_device *dev)
1616 {
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618         u32 dpfc_ctl;
1619
1620         /* Disable compression */
1621         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1622         if (dpfc_ctl & DPFC_CTL_EN) {
1623                 dpfc_ctl &= ~DPFC_CTL_EN;
1624                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1625
1626                 DRM_DEBUG_KMS("disabled FBC\n");
1627         }
1628 }
1629
1630 static bool ironlake_fbc_enabled(struct drm_device *dev)
1631 {
1632         struct drm_i915_private *dev_priv = dev->dev_private;
1633
1634         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1635 }
1636
1637 bool intel_fbc_enabled(struct drm_device *dev)
1638 {
1639         struct drm_i915_private *dev_priv = dev->dev_private;
1640
1641         if (!dev_priv->display.fbc_enabled)
1642                 return false;
1643
1644         return dev_priv->display.fbc_enabled(dev);
1645 }
1646
1647 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1648 {
1649         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1650
1651         if (!dev_priv->display.enable_fbc)
1652                 return;
1653
1654         dev_priv->display.enable_fbc(crtc, interval);
1655 }
1656
1657 void intel_disable_fbc(struct drm_device *dev)
1658 {
1659         struct drm_i915_private *dev_priv = dev->dev_private;
1660
1661         if (!dev_priv->display.disable_fbc)
1662                 return;
1663
1664         dev_priv->display.disable_fbc(dev);
1665 }
1666
1667 /**
1668  * intel_update_fbc - enable/disable FBC as needed
1669  * @dev: the drm_device
1670  *
1671  * Set up the framebuffer compression hardware at mode set time.  We
1672  * enable it if possible:
1673  *   - plane A only (on pre-965)
1674  *   - no pixel mulitply/line duplication
1675  *   - no alpha buffer discard
1676  *   - no dual wide
1677  *   - framebuffer <= 2048 in width, 1536 in height
1678  *
1679  * We can't assume that any compression will take place (worst case),
1680  * so the compressed buffer has to be the same size as the uncompressed
1681  * one.  It also must reside (along with the line length buffer) in
1682  * stolen memory.
1683  *
1684  * We need to enable/disable FBC on a global basis.
1685  */
1686 static void intel_update_fbc(struct drm_device *dev)
1687 {
1688         struct drm_i915_private *dev_priv = dev->dev_private;
1689         struct drm_crtc *crtc = NULL, *tmp_crtc;
1690         struct intel_crtc *intel_crtc;
1691         struct drm_framebuffer *fb;
1692         struct intel_framebuffer *intel_fb;
1693         struct drm_i915_gem_object *obj;
1694
1695         DRM_DEBUG_KMS("\n");
1696
1697         if (!i915_powersave)
1698                 return;
1699
1700         if (!I915_HAS_FBC(dev))
1701                 return;
1702
1703         /*
1704          * If FBC is already on, we just have to verify that we can
1705          * keep it that way...
1706          * Need to disable if:
1707          *   - more than one pipe is active
1708          *   - changing FBC params (stride, fence, mode)
1709          *   - new fb is too large to fit in compressed buffer
1710          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1711          */
1712         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1713                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1714                         if (crtc) {
1715                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1716                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1717                                 goto out_disable;
1718                         }
1719                         crtc = tmp_crtc;
1720                 }
1721         }
1722
1723         if (!crtc || crtc->fb == NULL) {
1724                 DRM_DEBUG_KMS("no output, disabling\n");
1725                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1726                 goto out_disable;
1727         }
1728
1729         intel_crtc = to_intel_crtc(crtc);
1730         fb = crtc->fb;
1731         intel_fb = to_intel_framebuffer(fb);
1732         obj = intel_fb->obj;
1733
1734         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1735                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1736                               "compression\n");
1737                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1738                 goto out_disable;
1739         }
1740         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1741             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1742                 DRM_DEBUG_KMS("mode incompatible with compression, "
1743                               "disabling\n");
1744                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1745                 goto out_disable;
1746         }
1747         if ((crtc->mode.hdisplay > 2048) ||
1748             (crtc->mode.vdisplay > 1536)) {
1749                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1750                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1751                 goto out_disable;
1752         }
1753         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1754                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1755                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1756                 goto out_disable;
1757         }
1758         if (obj->tiling_mode != I915_TILING_X) {
1759                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1760                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1761                 goto out_disable;
1762         }
1763
1764         /* If the kernel debugger is active, always disable compression */
1765         if (in_dbg_master())
1766                 goto out_disable;
1767
1768         intel_enable_fbc(crtc, 500);
1769         return;
1770
1771 out_disable:
1772         /* Multiple disables should be harmless */
1773         if (intel_fbc_enabled(dev)) {
1774                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1775                 intel_disable_fbc(dev);
1776         }
1777 }
1778
1779 int
1780 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1781                            struct drm_i915_gem_object *obj,
1782                            struct intel_ring_buffer *pipelined)
1783 {
1784         struct drm_i915_private *dev_priv = dev->dev_private;
1785         u32 alignment;
1786         int ret;
1787
1788         switch (obj->tiling_mode) {
1789         case I915_TILING_NONE:
1790                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1791                         alignment = 128 * 1024;
1792                 else if (INTEL_INFO(dev)->gen >= 4)
1793                         alignment = 4 * 1024;
1794                 else
1795                         alignment = 64 * 1024;
1796                 break;
1797         case I915_TILING_X:
1798                 /* pin() will align the object as required by fence */
1799                 alignment = 0;
1800                 break;
1801         case I915_TILING_Y:
1802                 /* FIXME: Is this true? */
1803                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1804                 return -EINVAL;
1805         default:
1806                 BUG();
1807         }
1808
1809         dev_priv->mm.interruptible = false;
1810         ret = i915_gem_object_pin(obj, alignment, true);
1811         if (ret)
1812                 goto err_interruptible;
1813
1814         ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1815         if (ret)
1816                 goto err_unpin;
1817
1818         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1819          * fence, whereas 965+ only requires a fence if using
1820          * framebuffer compression.  For simplicity, we always install
1821          * a fence as the cost is not that onerous.
1822          */
1823         if (obj->tiling_mode != I915_TILING_NONE) {
1824                 ret = i915_gem_object_get_fence(obj, pipelined);
1825                 if (ret)
1826                         goto err_unpin;
1827         }
1828
1829         dev_priv->mm.interruptible = true;
1830         return 0;
1831
1832 err_unpin:
1833         i915_gem_object_unpin(obj);
1834 err_interruptible:
1835         dev_priv->mm.interruptible = true;
1836         return ret;
1837 }
1838
1839 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1840 static int
1841 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1842                            int x, int y, enum mode_set_atomic state)
1843 {
1844         struct drm_device *dev = crtc->dev;
1845         struct drm_i915_private *dev_priv = dev->dev_private;
1846         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1847         struct intel_framebuffer *intel_fb;
1848         struct drm_i915_gem_object *obj;
1849         int plane = intel_crtc->plane;
1850         unsigned long Start, Offset;
1851         u32 dspcntr;
1852         u32 reg;
1853
1854         switch (plane) {
1855         case 0:
1856         case 1:
1857                 break;
1858         default:
1859                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1860                 return -EINVAL;
1861         }
1862
1863         intel_fb = to_intel_framebuffer(fb);
1864         obj = intel_fb->obj;
1865
1866         reg = DSPCNTR(plane);
1867         dspcntr = I915_READ(reg);
1868         /* Mask out pixel format bits in case we change it */
1869         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1870         switch (fb->bits_per_pixel) {
1871         case 8:
1872                 dspcntr |= DISPPLANE_8BPP;
1873                 break;
1874         case 16:
1875                 if (fb->depth == 15)
1876                         dspcntr |= DISPPLANE_15_16BPP;
1877                 else
1878                         dspcntr |= DISPPLANE_16BPP;
1879                 break;
1880         case 24:
1881         case 32:
1882                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1883                 break;
1884         default:
1885                 DRM_ERROR("Unknown color depth\n");
1886                 return -EINVAL;
1887         }
1888         if (INTEL_INFO(dev)->gen >= 4) {
1889                 if (obj->tiling_mode != I915_TILING_NONE)
1890                         dspcntr |= DISPPLANE_TILED;
1891                 else
1892                         dspcntr &= ~DISPPLANE_TILED;
1893         }
1894
1895         if (HAS_PCH_SPLIT(dev))
1896                 /* must disable */
1897                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1898
1899         I915_WRITE(reg, dspcntr);
1900
1901         Start = obj->gtt_offset;
1902         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1903
1904         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1905                       Start, Offset, x, y, fb->pitch);
1906         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1907         if (INTEL_INFO(dev)->gen >= 4) {
1908                 I915_WRITE(DSPSURF(plane), Start);
1909                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1910                 I915_WRITE(DSPADDR(plane), Offset);
1911         } else
1912                 I915_WRITE(DSPADDR(plane), Start + Offset);
1913         POSTING_READ(reg);
1914
1915         intel_update_fbc(dev);
1916         intel_increase_pllclock(crtc);
1917
1918         return 0;
1919 }
1920
1921 static int
1922 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1923                     struct drm_framebuffer *old_fb)
1924 {
1925         struct drm_device *dev = crtc->dev;
1926         struct drm_i915_master_private *master_priv;
1927         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1928         int ret;
1929
1930         /* no fb bound */
1931         if (!crtc->fb) {
1932                 DRM_DEBUG_KMS("No FB bound\n");
1933                 return 0;
1934         }
1935
1936         switch (intel_crtc->plane) {
1937         case 0:
1938         case 1:
1939                 break;
1940         default:
1941                 return -EINVAL;
1942         }
1943
1944         mutex_lock(&dev->struct_mutex);
1945         ret = intel_pin_and_fence_fb_obj(dev,
1946                                          to_intel_framebuffer(crtc->fb)->obj,
1947                                          NULL);
1948         if (ret != 0) {
1949                 mutex_unlock(&dev->struct_mutex);
1950                 return ret;
1951         }
1952
1953         if (old_fb) {
1954                 struct drm_i915_private *dev_priv = dev->dev_private;
1955                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1956
1957                 wait_event(dev_priv->pending_flip_queue,
1958                            atomic_read(&dev_priv->mm.wedged) ||
1959                            atomic_read(&obj->pending_flip) == 0);
1960
1961                 /* Big Hammer, we also need to ensure that any pending
1962                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1963                  * current scanout is retired before unpinning the old
1964                  * framebuffer.
1965                  *
1966                  * This should only fail upon a hung GPU, in which case we
1967                  * can safely continue.
1968                  */
1969                 ret = i915_gem_object_flush_gpu(obj);
1970                 (void) ret;
1971         }
1972
1973         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1974                                          LEAVE_ATOMIC_MODE_SET);
1975         if (ret) {
1976                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1977                 mutex_unlock(&dev->struct_mutex);
1978                 return ret;
1979         }
1980
1981         if (old_fb) {
1982                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1983                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1984         }
1985
1986         mutex_unlock(&dev->struct_mutex);
1987
1988         if (!dev->primary->master)
1989                 return 0;
1990
1991         master_priv = dev->primary->master->driver_priv;
1992         if (!master_priv->sarea_priv)
1993                 return 0;
1994
1995         if (intel_crtc->pipe) {
1996                 master_priv->sarea_priv->pipeB_x = x;
1997                 master_priv->sarea_priv->pipeB_y = y;
1998         } else {
1999                 master_priv->sarea_priv->pipeA_x = x;
2000                 master_priv->sarea_priv->pipeA_y = y;
2001         }
2002
2003         return 0;
2004 }
2005
2006 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2007 {
2008         struct drm_device *dev = crtc->dev;
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         u32 dpa_ctl;
2011
2012         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2013         dpa_ctl = I915_READ(DP_A);
2014         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2015
2016         if (clock < 200000) {
2017                 u32 temp;
2018                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2019                 /* workaround for 160Mhz:
2020                    1) program 0x4600c bits 15:0 = 0x8124
2021                    2) program 0x46010 bit 0 = 1
2022                    3) program 0x46034 bit 24 = 1
2023                    4) program 0x64000 bit 14 = 1
2024                    */
2025                 temp = I915_READ(0x4600c);
2026                 temp &= 0xffff0000;
2027                 I915_WRITE(0x4600c, temp | 0x8124);
2028
2029                 temp = I915_READ(0x46010);
2030                 I915_WRITE(0x46010, temp | 1);
2031
2032                 temp = I915_READ(0x46034);
2033                 I915_WRITE(0x46034, temp | (1 << 24));
2034         } else {
2035                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2036         }
2037         I915_WRITE(DP_A, dpa_ctl);
2038
2039         POSTING_READ(DP_A);
2040         udelay(500);
2041 }
2042
2043 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2044 {
2045         struct drm_device *dev = crtc->dev;
2046         struct drm_i915_private *dev_priv = dev->dev_private;
2047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2048         int pipe = intel_crtc->pipe;
2049         u32 reg, temp;
2050
2051         /* enable normal train */
2052         reg = FDI_TX_CTL(pipe);
2053         temp = I915_READ(reg);
2054         temp &= ~FDI_LINK_TRAIN_NONE;
2055         temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2056         I915_WRITE(reg, temp);
2057
2058         reg = FDI_RX_CTL(pipe);
2059         temp = I915_READ(reg);
2060         if (HAS_PCH_CPT(dev)) {
2061                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2062                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2063         } else {
2064                 temp &= ~FDI_LINK_TRAIN_NONE;
2065                 temp |= FDI_LINK_TRAIN_NONE;
2066         }
2067         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2068
2069         /* wait one idle pattern time */
2070         POSTING_READ(reg);
2071         udelay(1000);
2072 }
2073
2074 /* The FDI link training functions for ILK/Ibexpeak. */
2075 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2076 {
2077         struct drm_device *dev = crtc->dev;
2078         struct drm_i915_private *dev_priv = dev->dev_private;
2079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2080         int pipe = intel_crtc->pipe;
2081         int plane = intel_crtc->plane;
2082         u32 reg, temp, tries;
2083
2084         /* FDI needs bits from pipe & plane first */
2085         assert_pipe_enabled(dev_priv, pipe);
2086         assert_plane_enabled(dev_priv, plane);
2087
2088         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2089            for train result */
2090         reg = FDI_RX_IMR(pipe);
2091         temp = I915_READ(reg);
2092         temp &= ~FDI_RX_SYMBOL_LOCK;
2093         temp &= ~FDI_RX_BIT_LOCK;
2094         I915_WRITE(reg, temp);
2095         I915_READ(reg);
2096         udelay(150);
2097
2098         /* enable CPU FDI TX and PCH FDI RX */
2099         reg = FDI_TX_CTL(pipe);
2100         temp = I915_READ(reg);
2101         temp &= ~(7 << 19);
2102         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2103         temp &= ~FDI_LINK_TRAIN_NONE;
2104         temp |= FDI_LINK_TRAIN_PATTERN_1;
2105         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2106
2107         reg = FDI_RX_CTL(pipe);
2108         temp = I915_READ(reg);
2109         temp &= ~FDI_LINK_TRAIN_NONE;
2110         temp |= FDI_LINK_TRAIN_PATTERN_1;
2111         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2112
2113         POSTING_READ(reg);
2114         udelay(150);
2115
2116         /* Ironlake workaround, enable clock pointer after FDI enable*/
2117         if (HAS_PCH_IBX(dev)) {
2118                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2119                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2120                            FDI_RX_PHASE_SYNC_POINTER_EN);
2121         }
2122
2123         reg = FDI_RX_IIR(pipe);
2124         for (tries = 0; tries < 5; tries++) {
2125                 temp = I915_READ(reg);
2126                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2127
2128                 if ((temp & FDI_RX_BIT_LOCK)) {
2129                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2130                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2131                         break;
2132                 }
2133         }
2134         if (tries == 5)
2135                 DRM_ERROR("FDI train 1 fail!\n");
2136
2137         /* Train 2 */
2138         reg = FDI_TX_CTL(pipe);
2139         temp = I915_READ(reg);
2140         temp &= ~FDI_LINK_TRAIN_NONE;
2141         temp |= FDI_LINK_TRAIN_PATTERN_2;
2142         I915_WRITE(reg, temp);
2143
2144         reg = FDI_RX_CTL(pipe);
2145         temp = I915_READ(reg);
2146         temp &= ~FDI_LINK_TRAIN_NONE;
2147         temp |= FDI_LINK_TRAIN_PATTERN_2;
2148         I915_WRITE(reg, temp);
2149
2150         POSTING_READ(reg);
2151         udelay(150);
2152
2153         reg = FDI_RX_IIR(pipe);
2154         for (tries = 0; tries < 5; tries++) {
2155                 temp = I915_READ(reg);
2156                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2157
2158                 if (temp & FDI_RX_SYMBOL_LOCK) {
2159                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2160                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2161                         break;
2162                 }
2163         }
2164         if (tries == 5)
2165                 DRM_ERROR("FDI train 2 fail!\n");
2166
2167         DRM_DEBUG_KMS("FDI train done\n");
2168
2169 }
2170
2171 static const int snb_b_fdi_train_param [] = {
2172         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2173         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2174         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2175         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2176 };
2177
2178 /* The FDI link training functions for SNB/Cougarpoint. */
2179 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2180 {
2181         struct drm_device *dev = crtc->dev;
2182         struct drm_i915_private *dev_priv = dev->dev_private;
2183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2184         int pipe = intel_crtc->pipe;
2185         u32 reg, temp, i;
2186
2187         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2188            for train result */
2189         reg = FDI_RX_IMR(pipe);
2190         temp = I915_READ(reg);
2191         temp &= ~FDI_RX_SYMBOL_LOCK;
2192         temp &= ~FDI_RX_BIT_LOCK;
2193         I915_WRITE(reg, temp);
2194
2195         POSTING_READ(reg);
2196         udelay(150);
2197
2198         /* enable CPU FDI TX and PCH FDI RX */
2199         reg = FDI_TX_CTL(pipe);
2200         temp = I915_READ(reg);
2201         temp &= ~(7 << 19);
2202         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2203         temp &= ~FDI_LINK_TRAIN_NONE;
2204         temp |= FDI_LINK_TRAIN_PATTERN_1;
2205         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2206         /* SNB-B */
2207         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2208         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2209
2210         reg = FDI_RX_CTL(pipe);
2211         temp = I915_READ(reg);
2212         if (HAS_PCH_CPT(dev)) {
2213                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2214                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2215         } else {
2216                 temp &= ~FDI_LINK_TRAIN_NONE;
2217                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2218         }
2219         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2220
2221         POSTING_READ(reg);
2222         udelay(150);
2223
2224         for (i = 0; i < 4; i++ ) {
2225                 reg = FDI_TX_CTL(pipe);
2226                 temp = I915_READ(reg);
2227                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2228                 temp |= snb_b_fdi_train_param[i];
2229                 I915_WRITE(reg, temp);
2230
2231                 POSTING_READ(reg);
2232                 udelay(500);
2233
2234                 reg = FDI_RX_IIR(pipe);
2235                 temp = I915_READ(reg);
2236                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2237
2238                 if (temp & FDI_RX_BIT_LOCK) {
2239                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2240                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2241                         break;
2242                 }
2243         }
2244         if (i == 4)
2245                 DRM_ERROR("FDI train 1 fail!\n");
2246
2247         /* Train 2 */
2248         reg = FDI_TX_CTL(pipe);
2249         temp = I915_READ(reg);
2250         temp &= ~FDI_LINK_TRAIN_NONE;
2251         temp |= FDI_LINK_TRAIN_PATTERN_2;
2252         if (IS_GEN6(dev)) {
2253                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2254                 /* SNB-B */
2255                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2256         }
2257         I915_WRITE(reg, temp);
2258
2259         reg = FDI_RX_CTL(pipe);
2260         temp = I915_READ(reg);
2261         if (HAS_PCH_CPT(dev)) {
2262                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2263                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2264         } else {
2265                 temp &= ~FDI_LINK_TRAIN_NONE;
2266                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2267         }
2268         I915_WRITE(reg, temp);
2269
2270         POSTING_READ(reg);
2271         udelay(150);
2272
2273         for (i = 0; i < 4; i++ ) {
2274                 reg = FDI_TX_CTL(pipe);
2275                 temp = I915_READ(reg);
2276                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2277                 temp |= snb_b_fdi_train_param[i];
2278                 I915_WRITE(reg, temp);
2279
2280                 POSTING_READ(reg);
2281                 udelay(500);
2282
2283                 reg = FDI_RX_IIR(pipe);
2284                 temp = I915_READ(reg);
2285                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2286
2287                 if (temp & FDI_RX_SYMBOL_LOCK) {
2288                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2289                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2290                         break;
2291                 }
2292         }
2293         if (i == 4)
2294                 DRM_ERROR("FDI train 2 fail!\n");
2295
2296         DRM_DEBUG_KMS("FDI train done.\n");
2297 }
2298
2299 static void ironlake_fdi_enable(struct drm_crtc *crtc)
2300 {
2301         struct drm_device *dev = crtc->dev;
2302         struct drm_i915_private *dev_priv = dev->dev_private;
2303         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2304         int pipe = intel_crtc->pipe;
2305         u32 reg, temp;
2306
2307         /* Write the TU size bits so error detection works */
2308         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2309                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2310
2311         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2312         reg = FDI_RX_CTL(pipe);
2313         temp = I915_READ(reg);
2314         temp &= ~((0x7 << 19) | (0x7 << 16));
2315         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2316         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2317         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2318
2319         POSTING_READ(reg);
2320         udelay(200);
2321
2322         /* Switch from Rawclk to PCDclk */
2323         temp = I915_READ(reg);
2324         I915_WRITE(reg, temp | FDI_PCDCLK);
2325
2326         POSTING_READ(reg);
2327         udelay(200);
2328
2329         /* Enable CPU FDI TX PLL, always on for Ironlake */
2330         reg = FDI_TX_CTL(pipe);
2331         temp = I915_READ(reg);
2332         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2333                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2334
2335                 POSTING_READ(reg);
2336                 udelay(100);
2337         }
2338 }
2339
2340 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2341 {
2342         struct drm_device *dev = crtc->dev;
2343         struct drm_i915_private *dev_priv = dev->dev_private;
2344         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2345         int pipe = intel_crtc->pipe;
2346         u32 reg, temp;
2347
2348         /* disable CPU FDI tx and PCH FDI rx */
2349         reg = FDI_TX_CTL(pipe);
2350         temp = I915_READ(reg);
2351         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2352         POSTING_READ(reg);
2353
2354         reg = FDI_RX_CTL(pipe);
2355         temp = I915_READ(reg);
2356         temp &= ~(0x7 << 16);
2357         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2358         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2359
2360         POSTING_READ(reg);
2361         udelay(100);
2362
2363         /* Ironlake workaround, disable clock pointer after downing FDI */
2364         if (HAS_PCH_IBX(dev)) {
2365                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2366                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2367                            I915_READ(FDI_RX_CHICKEN(pipe) &
2368                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2369         }
2370
2371         /* still set train pattern 1 */
2372         reg = FDI_TX_CTL(pipe);
2373         temp = I915_READ(reg);
2374         temp &= ~FDI_LINK_TRAIN_NONE;
2375         temp |= FDI_LINK_TRAIN_PATTERN_1;
2376         I915_WRITE(reg, temp);
2377
2378         reg = FDI_RX_CTL(pipe);
2379         temp = I915_READ(reg);
2380         if (HAS_PCH_CPT(dev)) {
2381                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2382                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2383         } else {
2384                 temp &= ~FDI_LINK_TRAIN_NONE;
2385                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2386         }
2387         /* BPC in FDI rx is consistent with that in PIPECONF */
2388         temp &= ~(0x07 << 16);
2389         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2390         I915_WRITE(reg, temp);
2391
2392         POSTING_READ(reg);
2393         udelay(100);
2394 }
2395
2396 /*
2397  * When we disable a pipe, we need to clear any pending scanline wait events
2398  * to avoid hanging the ring, which we assume we are waiting on.
2399  */
2400 static void intel_clear_scanline_wait(struct drm_device *dev)
2401 {
2402         struct drm_i915_private *dev_priv = dev->dev_private;
2403         struct intel_ring_buffer *ring;
2404         u32 tmp;
2405
2406         if (IS_GEN2(dev))
2407                 /* Can't break the hang on i8xx */
2408                 return;
2409
2410         ring = LP_RING(dev_priv);
2411         tmp = I915_READ_CTL(ring);
2412         if (tmp & RING_WAIT)
2413                 I915_WRITE_CTL(ring, tmp);
2414 }
2415
2416 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2417 {
2418         struct drm_i915_gem_object *obj;
2419         struct drm_i915_private *dev_priv;
2420
2421         if (crtc->fb == NULL)
2422                 return;
2423
2424         obj = to_intel_framebuffer(crtc->fb)->obj;
2425         dev_priv = crtc->dev->dev_private;
2426         wait_event(dev_priv->pending_flip_queue,
2427                    atomic_read(&obj->pending_flip) == 0);
2428 }
2429
2430 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2431 {
2432         struct drm_device *dev = crtc->dev;
2433         struct drm_mode_config *mode_config = &dev->mode_config;
2434         struct intel_encoder *encoder;
2435
2436         /*
2437          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2438          * must be driven by its own crtc; no sharing is possible.
2439          */
2440         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2441                 if (encoder->base.crtc != crtc)
2442                         continue;
2443
2444                 switch (encoder->type) {
2445                 case INTEL_OUTPUT_EDP:
2446                         if (!intel_encoder_is_pch_edp(&encoder->base))
2447                                 return false;
2448                         continue;
2449                 }
2450         }
2451
2452         return true;
2453 }
2454
2455 /*
2456  * Enable PCH resources required for PCH ports:
2457  *   - PCH PLLs
2458  *   - FDI training & RX/TX
2459  *   - update transcoder timings
2460  *   - DP transcoding bits
2461  *   - transcoder
2462  */
2463 static void ironlake_pch_enable(struct drm_crtc *crtc)
2464 {
2465         struct drm_device *dev = crtc->dev;
2466         struct drm_i915_private *dev_priv = dev->dev_private;
2467         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2468         int pipe = intel_crtc->pipe;
2469         u32 reg, temp;
2470
2471         /* For PCH output, training FDI link */
2472         dev_priv->display.fdi_link_train(crtc);
2473
2474         intel_enable_pch_pll(dev_priv, pipe);
2475
2476         if (HAS_PCH_CPT(dev)) {
2477                 /* Be sure PCH DPLL SEL is set */
2478                 temp = I915_READ(PCH_DPLL_SEL);
2479                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2480                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2481                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2482                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2483                 I915_WRITE(PCH_DPLL_SEL, temp);
2484         }
2485
2486         /* set transcoder timing, panel must allow it */
2487         assert_panel_unlocked(dev_priv, pipe);
2488         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2489         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2490         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2491
2492         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2493         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2494         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2495
2496         intel_fdi_normal_train(crtc);
2497
2498         /* For PCH DP, enable TRANS_DP_CTL */
2499         if (HAS_PCH_CPT(dev) &&
2500             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2501                 reg = TRANS_DP_CTL(pipe);
2502                 temp = I915_READ(reg);
2503                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2504                           TRANS_DP_SYNC_MASK |
2505                           TRANS_DP_BPC_MASK);
2506                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2507                          TRANS_DP_ENH_FRAMING);
2508                 temp |= TRANS_DP_8BPC;
2509
2510                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2511                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2512                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2513                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2514
2515                 switch (intel_trans_dp_port_sel(crtc)) {
2516                 case PCH_DP_B:
2517                         temp |= TRANS_DP_PORT_SEL_B;
2518                         break;
2519                 case PCH_DP_C:
2520                         temp |= TRANS_DP_PORT_SEL_C;
2521                         break;
2522                 case PCH_DP_D:
2523                         temp |= TRANS_DP_PORT_SEL_D;
2524                         break;
2525                 default:
2526                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2527                         temp |= TRANS_DP_PORT_SEL_B;
2528                         break;
2529                 }
2530
2531                 I915_WRITE(reg, temp);
2532         }
2533
2534         intel_enable_transcoder(dev_priv, pipe);
2535 }
2536
2537 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2538 {
2539         struct drm_device *dev = crtc->dev;
2540         struct drm_i915_private *dev_priv = dev->dev_private;
2541         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2542         int pipe = intel_crtc->pipe;
2543         int plane = intel_crtc->plane;
2544         u32 temp;
2545         bool is_pch_port;
2546
2547         if (intel_crtc->active)
2548                 return;
2549
2550         intel_crtc->active = true;
2551         intel_update_watermarks(dev);
2552
2553         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2554                 temp = I915_READ(PCH_LVDS);
2555                 if ((temp & LVDS_PORT_EN) == 0)
2556                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2557         }
2558
2559         is_pch_port = intel_crtc_driving_pch(crtc);
2560
2561         if (is_pch_port)
2562                 ironlake_fdi_enable(crtc);
2563         else
2564                 ironlake_fdi_disable(crtc);
2565
2566         /* Enable panel fitting for LVDS */
2567         if (dev_priv->pch_pf_size &&
2568             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2569                 /* Force use of hard-coded filter coefficients
2570                  * as some pre-programmed values are broken,
2571                  * e.g. x201.
2572                  */
2573                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2574                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2575                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2576         }
2577
2578         intel_enable_pipe(dev_priv, pipe, is_pch_port);
2579         intel_enable_plane(dev_priv, plane, pipe);
2580
2581         if (is_pch_port)
2582                 ironlake_pch_enable(crtc);
2583
2584         intel_crtc_load_lut(crtc);
2585
2586         mutex_lock(&dev->struct_mutex);
2587         intel_update_fbc(dev);
2588         mutex_unlock(&dev->struct_mutex);
2589
2590         intel_crtc_update_cursor(crtc, true);
2591 }
2592
2593 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2594 {
2595         struct drm_device *dev = crtc->dev;
2596         struct drm_i915_private *dev_priv = dev->dev_private;
2597         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2598         int pipe = intel_crtc->pipe;
2599         int plane = intel_crtc->plane;
2600         u32 reg, temp;
2601
2602         if (!intel_crtc->active)
2603                 return;
2604
2605         intel_crtc_wait_for_pending_flips(crtc);
2606         drm_vblank_off(dev, pipe);
2607         intel_crtc_update_cursor(crtc, false);
2608
2609         intel_disable_plane(dev_priv, plane, pipe);
2610
2611         if (dev_priv->cfb_plane == plane &&
2612             dev_priv->display.disable_fbc)
2613                 dev_priv->display.disable_fbc(dev);
2614
2615         intel_disable_pipe(dev_priv, pipe);
2616
2617         /* Disable PF */
2618         I915_WRITE(PF_CTL(pipe), 0);
2619         I915_WRITE(PF_WIN_SZ(pipe), 0);
2620
2621         ironlake_fdi_disable(crtc);
2622
2623         /* This is a horrible layering violation; we should be doing this in
2624          * the connector/encoder ->prepare instead, but we don't always have
2625          * enough information there about the config to know whether it will
2626          * actually be necessary or just cause undesired flicker.
2627          */
2628         intel_disable_pch_ports(dev_priv, pipe);
2629
2630         intel_disable_transcoder(dev_priv, pipe);
2631
2632         if (HAS_PCH_CPT(dev)) {
2633                 /* disable TRANS_DP_CTL */
2634                 reg = TRANS_DP_CTL(pipe);
2635                 temp = I915_READ(reg);
2636                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2637                 temp |= TRANS_DP_PORT_SEL_NONE;
2638                 I915_WRITE(reg, temp);
2639
2640                 /* disable DPLL_SEL */
2641                 temp = I915_READ(PCH_DPLL_SEL);
2642                 switch (pipe) {
2643                 case 0:
2644                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2645                         break;
2646                 case 1:
2647                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2648                         break;
2649                 case 2:
2650                         /* FIXME: manage transcoder PLLs? */
2651                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2652                         break;
2653                 default:
2654                         BUG(); /* wtf */
2655                 }
2656                 I915_WRITE(PCH_DPLL_SEL, temp);
2657         }
2658
2659         /* disable PCH DPLL */
2660         intel_disable_pch_pll(dev_priv, pipe);
2661
2662         /* Switch from PCDclk to Rawclk */
2663         reg = FDI_RX_CTL(pipe);
2664         temp = I915_READ(reg);
2665         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2666
2667         /* Disable CPU FDI TX PLL */
2668         reg = FDI_TX_CTL(pipe);
2669         temp = I915_READ(reg);
2670         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2671
2672         POSTING_READ(reg);
2673         udelay(100);
2674
2675         reg = FDI_RX_CTL(pipe);
2676         temp = I915_READ(reg);
2677         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2678
2679         /* Wait for the clocks to turn off. */
2680         POSTING_READ(reg);
2681         udelay(100);
2682
2683         intel_crtc->active = false;
2684         intel_update_watermarks(dev);
2685
2686         mutex_lock(&dev->struct_mutex);
2687         intel_update_fbc(dev);
2688         intel_clear_scanline_wait(dev);
2689         mutex_unlock(&dev->struct_mutex);
2690 }
2691
2692 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2693 {
2694         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2695         int pipe = intel_crtc->pipe;
2696         int plane = intel_crtc->plane;
2697
2698         /* XXX: When our outputs are all unaware of DPMS modes other than off
2699          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2700          */
2701         switch (mode) {
2702         case DRM_MODE_DPMS_ON:
2703         case DRM_MODE_DPMS_STANDBY:
2704         case DRM_MODE_DPMS_SUSPEND:
2705                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2706                 ironlake_crtc_enable(crtc);
2707                 break;
2708
2709         case DRM_MODE_DPMS_OFF:
2710                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2711                 ironlake_crtc_disable(crtc);
2712                 break;
2713         }
2714 }
2715
2716 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2717 {
2718         if (!enable && intel_crtc->overlay) {
2719                 struct drm_device *dev = intel_crtc->base.dev;
2720                 struct drm_i915_private *dev_priv = dev->dev_private;
2721
2722                 mutex_lock(&dev->struct_mutex);
2723                 dev_priv->mm.interruptible = false;
2724                 (void) intel_overlay_switch_off(intel_crtc->overlay);
2725                 dev_priv->mm.interruptible = true;
2726                 mutex_unlock(&dev->struct_mutex);
2727         }
2728
2729         /* Let userspace switch the overlay on again. In most cases userspace
2730          * has to recompute where to put it anyway.
2731          */
2732 }
2733
2734 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2735 {
2736         struct drm_device *dev = crtc->dev;
2737         struct drm_i915_private *dev_priv = dev->dev_private;
2738         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2739         int pipe = intel_crtc->pipe;
2740         int plane = intel_crtc->plane;
2741
2742         if (intel_crtc->active)
2743                 return;
2744
2745         intel_crtc->active = true;
2746         intel_update_watermarks(dev);
2747
2748         intel_enable_pll(dev_priv, pipe);
2749         intel_enable_pipe(dev_priv, pipe, false);
2750         intel_enable_plane(dev_priv, plane, pipe);
2751
2752         intel_crtc_load_lut(crtc);
2753         intel_update_fbc(dev);
2754
2755         /* Give the overlay scaler a chance to enable if it's on this pipe */
2756         intel_crtc_dpms_overlay(intel_crtc, true);
2757         intel_crtc_update_cursor(crtc, true);
2758 }
2759
2760 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2761 {
2762         struct drm_device *dev = crtc->dev;
2763         struct drm_i915_private *dev_priv = dev->dev_private;
2764         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2765         int pipe = intel_crtc->pipe;
2766         int plane = intel_crtc->plane;
2767
2768         if (!intel_crtc->active)
2769                 return;
2770
2771         /* Give the overlay scaler a chance to disable if it's on this pipe */
2772         intel_crtc_wait_for_pending_flips(crtc);
2773         drm_vblank_off(dev, pipe);
2774         intel_crtc_dpms_overlay(intel_crtc, false);
2775         intel_crtc_update_cursor(crtc, false);
2776
2777         if (dev_priv->cfb_plane == plane &&
2778             dev_priv->display.disable_fbc)
2779                 dev_priv->display.disable_fbc(dev);
2780
2781         intel_disable_plane(dev_priv, plane, pipe);
2782         intel_disable_pipe(dev_priv, pipe);
2783         intel_disable_pll(dev_priv, pipe);
2784
2785         intel_crtc->active = false;
2786         intel_update_fbc(dev);
2787         intel_update_watermarks(dev);
2788         intel_clear_scanline_wait(dev);
2789 }
2790
2791 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2792 {
2793         /* XXX: When our outputs are all unaware of DPMS modes other than off
2794          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2795          */
2796         switch (mode) {
2797         case DRM_MODE_DPMS_ON:
2798         case DRM_MODE_DPMS_STANDBY:
2799         case DRM_MODE_DPMS_SUSPEND:
2800                 i9xx_crtc_enable(crtc);
2801                 break;
2802         case DRM_MODE_DPMS_OFF:
2803                 i9xx_crtc_disable(crtc);
2804                 break;
2805         }
2806 }
2807
2808 /**
2809  * Sets the power management mode of the pipe and plane.
2810  */
2811 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2812 {
2813         struct drm_device *dev = crtc->dev;
2814         struct drm_i915_private *dev_priv = dev->dev_private;
2815         struct drm_i915_master_private *master_priv;
2816         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2817         int pipe = intel_crtc->pipe;
2818         bool enabled;
2819
2820         if (intel_crtc->dpms_mode == mode)
2821                 return;
2822
2823         intel_crtc->dpms_mode = mode;
2824
2825         dev_priv->display.dpms(crtc, mode);
2826
2827         if (!dev->primary->master)
2828                 return;
2829
2830         master_priv = dev->primary->master->driver_priv;
2831         if (!master_priv->sarea_priv)
2832                 return;
2833
2834         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2835
2836         switch (pipe) {
2837         case 0:
2838                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2839                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2840                 break;
2841         case 1:
2842                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2843                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2844                 break;
2845         default:
2846                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
2847                 break;
2848         }
2849 }
2850
2851 static void intel_crtc_disable(struct drm_crtc *crtc)
2852 {
2853         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2854         struct drm_device *dev = crtc->dev;
2855
2856         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2857
2858         if (crtc->fb) {
2859                 mutex_lock(&dev->struct_mutex);
2860                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2861                 mutex_unlock(&dev->struct_mutex);
2862         }
2863 }
2864
2865 /* Prepare for a mode set.
2866  *
2867  * Note we could be a lot smarter here.  We need to figure out which outputs
2868  * will be enabled, which disabled (in short, how the config will changes)
2869  * and perform the minimum necessary steps to accomplish that, e.g. updating
2870  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2871  * panel fitting is in the proper state, etc.
2872  */
2873 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2874 {
2875         i9xx_crtc_disable(crtc);
2876 }
2877
2878 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2879 {
2880         i9xx_crtc_enable(crtc);
2881 }
2882
2883 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2884 {
2885         ironlake_crtc_disable(crtc);
2886 }
2887
2888 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2889 {
2890         ironlake_crtc_enable(crtc);
2891 }
2892
2893 void intel_encoder_prepare (struct drm_encoder *encoder)
2894 {
2895         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2896         /* lvds has its own version of prepare see intel_lvds_prepare */
2897         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2898 }
2899
2900 void intel_encoder_commit (struct drm_encoder *encoder)
2901 {
2902         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2903         /* lvds has its own version of commit see intel_lvds_commit */
2904         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2905 }
2906
2907 void intel_encoder_destroy(struct drm_encoder *encoder)
2908 {
2909         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2910
2911         drm_encoder_cleanup(encoder);
2912         kfree(intel_encoder);
2913 }
2914
2915 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2916                                   struct drm_display_mode *mode,
2917                                   struct drm_display_mode *adjusted_mode)
2918 {
2919         struct drm_device *dev = crtc->dev;
2920
2921         if (HAS_PCH_SPLIT(dev)) {
2922                 /* FDI link clock is fixed at 2.7G */
2923                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2924                         return false;
2925         }
2926
2927         /* XXX some encoders set the crtcinfo, others don't.
2928          * Obviously we need some form of conflict resolution here...
2929          */
2930         if (adjusted_mode->crtc_htotal == 0)
2931                 drm_mode_set_crtcinfo(adjusted_mode, 0);
2932
2933         return true;
2934 }
2935
2936 static int i945_get_display_clock_speed(struct drm_device *dev)
2937 {
2938         return 400000;
2939 }
2940
2941 static int i915_get_display_clock_speed(struct drm_device *dev)
2942 {
2943         return 333000;
2944 }
2945
2946 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2947 {
2948         return 200000;
2949 }
2950
2951 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2952 {
2953         u16 gcfgc = 0;
2954
2955         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2956
2957         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2958                 return 133000;
2959         else {
2960                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2961                 case GC_DISPLAY_CLOCK_333_MHZ:
2962                         return 333000;
2963                 default:
2964                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2965                         return 190000;
2966                 }
2967         }
2968 }
2969
2970 static int i865_get_display_clock_speed(struct drm_device *dev)
2971 {
2972         return 266000;
2973 }
2974
2975 static int i855_get_display_clock_speed(struct drm_device *dev)
2976 {
2977         u16 hpllcc = 0;
2978         /* Assume that the hardware is in the high speed state.  This
2979          * should be the default.
2980          */
2981         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2982         case GC_CLOCK_133_200:
2983         case GC_CLOCK_100_200:
2984                 return 200000;
2985         case GC_CLOCK_166_250:
2986                 return 250000;
2987         case GC_CLOCK_100_133:
2988                 return 133000;
2989         }
2990
2991         /* Shouldn't happen */
2992         return 0;
2993 }
2994
2995 static int i830_get_display_clock_speed(struct drm_device *dev)
2996 {
2997         return 133000;
2998 }
2999
3000 struct fdi_m_n {
3001         u32        tu;
3002         u32        gmch_m;
3003         u32        gmch_n;
3004         u32        link_m;
3005         u32        link_n;
3006 };
3007
3008 static void
3009 fdi_reduce_ratio(u32 *num, u32 *den)
3010 {
3011         while (*num > 0xffffff || *den > 0xffffff) {
3012                 *num >>= 1;
3013                 *den >>= 1;
3014         }
3015 }
3016
3017 static void
3018 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3019                      int link_clock, struct fdi_m_n *m_n)
3020 {
3021         m_n->tu = 64; /* default size */
3022
3023         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3024         m_n->gmch_m = bits_per_pixel * pixel_clock;
3025         m_n->gmch_n = link_clock * nlanes * 8;
3026         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3027
3028         m_n->link_m = pixel_clock;
3029         m_n->link_n = link_clock;
3030         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3031 }
3032
3033
3034 struct intel_watermark_params {
3035         unsigned long fifo_size;
3036         unsigned long max_wm;
3037         unsigned long default_wm;
3038         unsigned long guard_size;
3039         unsigned long cacheline_size;
3040 };
3041
3042 /* Pineview has different values for various configs */
3043 static const struct intel_watermark_params pineview_display_wm = {
3044         PINEVIEW_DISPLAY_FIFO,
3045         PINEVIEW_MAX_WM,
3046         PINEVIEW_DFT_WM,
3047         PINEVIEW_GUARD_WM,
3048         PINEVIEW_FIFO_LINE_SIZE
3049 };
3050 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3051         PINEVIEW_DISPLAY_FIFO,
3052         PINEVIEW_MAX_WM,
3053         PINEVIEW_DFT_HPLLOFF_WM,
3054         PINEVIEW_GUARD_WM,
3055         PINEVIEW_FIFO_LINE_SIZE
3056 };
3057 static const struct intel_watermark_params pineview_cursor_wm = {
3058         PINEVIEW_CURSOR_FIFO,
3059         PINEVIEW_CURSOR_MAX_WM,
3060         PINEVIEW_CURSOR_DFT_WM,
3061         PINEVIEW_CURSOR_GUARD_WM,
3062         PINEVIEW_FIFO_LINE_SIZE,
3063 };
3064 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3065         PINEVIEW_CURSOR_FIFO,
3066         PINEVIEW_CURSOR_MAX_WM,
3067         PINEVIEW_CURSOR_DFT_WM,
3068         PINEVIEW_CURSOR_GUARD_WM,
3069         PINEVIEW_FIFO_LINE_SIZE
3070 };
3071 static const struct intel_watermark_params g4x_wm_info = {
3072         G4X_FIFO_SIZE,
3073         G4X_MAX_WM,
3074         G4X_MAX_WM,
3075         2,
3076         G4X_FIFO_LINE_SIZE,
3077 };
3078 static const struct intel_watermark_params g4x_cursor_wm_info = {
3079         I965_CURSOR_FIFO,
3080         I965_CURSOR_MAX_WM,
3081         I965_CURSOR_DFT_WM,
3082         2,
3083         G4X_FIFO_LINE_SIZE,
3084 };
3085 static const struct intel_watermark_params i965_cursor_wm_info = {
3086         I965_CURSOR_FIFO,
3087         I965_CURSOR_MAX_WM,
3088         I965_CURSOR_DFT_WM,
3089         2,
3090         I915_FIFO_LINE_SIZE,
3091 };
3092 static const struct intel_watermark_params i945_wm_info = {
3093         I945_FIFO_SIZE,
3094         I915_MAX_WM,
3095         1,
3096         2,
3097         I915_FIFO_LINE_SIZE
3098 };
3099 static const struct intel_watermark_params i915_wm_info = {
3100         I915_FIFO_SIZE,
3101         I915_MAX_WM,
3102         1,
3103         2,
3104         I915_FIFO_LINE_SIZE
3105 };
3106 static const struct intel_watermark_params i855_wm_info = {
3107         I855GM_FIFO_SIZE,
3108         I915_MAX_WM,
3109         1,
3110         2,
3111         I830_FIFO_LINE_SIZE
3112 };
3113 static const struct intel_watermark_params i830_wm_info = {
3114         I830_FIFO_SIZE,
3115         I915_MAX_WM,
3116         1,
3117         2,
3118         I830_FIFO_LINE_SIZE
3119 };
3120
3121 static const struct intel_watermark_params ironlake_display_wm_info = {
3122         ILK_DISPLAY_FIFO,
3123         ILK_DISPLAY_MAXWM,
3124         ILK_DISPLAY_DFTWM,
3125         2,
3126         ILK_FIFO_LINE_SIZE
3127 };
3128 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3129         ILK_CURSOR_FIFO,
3130         ILK_CURSOR_MAXWM,
3131         ILK_CURSOR_DFTWM,
3132         2,
3133         ILK_FIFO_LINE_SIZE
3134 };
3135 static const struct intel_watermark_params ironlake_display_srwm_info = {
3136         ILK_DISPLAY_SR_FIFO,
3137         ILK_DISPLAY_MAX_SRWM,
3138         ILK_DISPLAY_DFT_SRWM,
3139         2,
3140         ILK_FIFO_LINE_SIZE
3141 };
3142 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3143         ILK_CURSOR_SR_FIFO,
3144         ILK_CURSOR_MAX_SRWM,
3145         ILK_CURSOR_DFT_SRWM,
3146         2,
3147         ILK_FIFO_LINE_SIZE
3148 };
3149
3150 static const struct intel_watermark_params sandybridge_display_wm_info = {
3151         SNB_DISPLAY_FIFO,
3152         SNB_DISPLAY_MAXWM,
3153         SNB_DISPLAY_DFTWM,
3154         2,
3155         SNB_FIFO_LINE_SIZE
3156 };
3157 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3158         SNB_CURSOR_FIFO,
3159         SNB_CURSOR_MAXWM,
3160         SNB_CURSOR_DFTWM,
3161         2,
3162         SNB_FIFO_LINE_SIZE
3163 };
3164 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3165         SNB_DISPLAY_SR_FIFO,
3166         SNB_DISPLAY_MAX_SRWM,
3167         SNB_DISPLAY_DFT_SRWM,
3168         2,
3169         SNB_FIFO_LINE_SIZE
3170 };
3171 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3172         SNB_CURSOR_SR_FIFO,
3173         SNB_CURSOR_MAX_SRWM,
3174         SNB_CURSOR_DFT_SRWM,
3175         2,
3176         SNB_FIFO_LINE_SIZE
3177 };
3178
3179
3180 /**
3181  * intel_calculate_wm - calculate watermark level
3182  * @clock_in_khz: pixel clock
3183  * @wm: chip FIFO params
3184  * @pixel_size: display pixel size
3185  * @latency_ns: memory latency for the platform
3186  *
3187  * Calculate the watermark level (the level at which the display plane will
3188  * start fetching from memory again).  Each chip has a different display
3189  * FIFO size and allocation, so the caller needs to figure that out and pass
3190  * in the correct intel_watermark_params structure.
3191  *
3192  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3193  * on the pixel size.  When it reaches the watermark level, it'll start
3194  * fetching FIFO line sized based chunks from memory until the FIFO fills
3195  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3196  * will occur, and a display engine hang could result.
3197  */
3198 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3199                                         const struct intel_watermark_params *wm,
3200                                         int fifo_size,
3201                                         int pixel_size,
3202                                         unsigned long latency_ns)
3203 {
3204         long entries_required, wm_size;
3205
3206         /*
3207          * Note: we need to make sure we don't overflow for various clock &
3208          * latency values.
3209          * clocks go from a few thousand to several hundred thousand.
3210          * latency is usually a few thousand
3211          */
3212         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3213                 1000;
3214         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3215
3216         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
3217
3218         wm_size = fifo_size - (entries_required + wm->guard_size);
3219
3220         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
3221
3222         /* Don't promote wm_size to unsigned... */
3223         if (wm_size > (long)wm->max_wm)
3224                 wm_size = wm->max_wm;
3225         if (wm_size <= 0)
3226                 wm_size = wm->default_wm;
3227         return wm_size;
3228 }
3229
3230 struct cxsr_latency {
3231         int is_desktop;
3232         int is_ddr3;
3233         unsigned long fsb_freq;
3234         unsigned long mem_freq;
3235         unsigned long display_sr;
3236         unsigned long display_hpll_disable;
3237         unsigned long cursor_sr;
3238         unsigned long cursor_hpll_disable;
3239 };
3240
3241 static const struct cxsr_latency cxsr_latency_table[] = {
3242         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3243         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3244         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3245         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3246         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3247
3248         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3249         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3250         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3251         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3252         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3253
3254         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3255         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3256         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3257         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3258         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3259
3260         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3261         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3262         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3263         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3264         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3265
3266         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3267         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3268         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3269         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3270         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3271
3272         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3273         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3274         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3275         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3276         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3277 };
3278
3279 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3280                                                          int is_ddr3,
3281                                                          int fsb,
3282                                                          int mem)
3283 {
3284         const struct cxsr_latency *latency;
3285         int i;
3286
3287         if (fsb == 0 || mem == 0)
3288                 return NULL;
3289
3290         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3291                 latency = &cxsr_latency_table[i];
3292                 if (is_desktop == latency->is_desktop &&
3293                     is_ddr3 == latency->is_ddr3 &&
3294                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3295                         return latency;
3296         }
3297
3298         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3299
3300         return NULL;
3301 }
3302
3303 static void pineview_disable_cxsr(struct drm_device *dev)
3304 {
3305         struct drm_i915_private *dev_priv = dev->dev_private;
3306
3307         /* deactivate cxsr */
3308         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3309 }
3310
3311 /*
3312  * Latency for FIFO fetches is dependent on several factors:
3313  *   - memory configuration (speed, channels)
3314  *   - chipset
3315  *   - current MCH state
3316  * It can be fairly high in some situations, so here we assume a fairly
3317  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3318  * set this value too high, the FIFO will fetch frequently to stay full)
3319  * and power consumption (set it too low to save power and we might see
3320  * FIFO underruns and display "flicker").
3321  *
3322  * A value of 5us seems to be a good balance; safe for very low end
3323  * platforms but not overly aggressive on lower latency configs.
3324  */
3325 static const int latency_ns = 5000;
3326
3327 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3328 {
3329         struct drm_i915_private *dev_priv = dev->dev_private;
3330         uint32_t dsparb = I915_READ(DSPARB);
3331         int size;
3332
3333         size = dsparb & 0x7f;
3334         if (plane)
3335                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3336
3337         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3338                       plane ? "B" : "A", size);
3339
3340         return size;
3341 }
3342
3343 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3344 {
3345         struct drm_i915_private *dev_priv = dev->dev_private;
3346         uint32_t dsparb = I915_READ(DSPARB);
3347         int size;
3348
3349         size = dsparb & 0x1ff;
3350         if (plane)
3351                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3352         size >>= 1; /* Convert to cachelines */
3353
3354         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3355                       plane ? "B" : "A", size);
3356
3357         return size;
3358 }
3359
3360 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3361 {
3362         struct drm_i915_private *dev_priv = dev->dev_private;
3363         uint32_t dsparb = I915_READ(DSPARB);
3364         int size;
3365
3366         size = dsparb & 0x7f;
3367         size >>= 2; /* Convert to cachelines */
3368
3369         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3370                       plane ? "B" : "A",
3371                       size);
3372
3373         return size;
3374 }
3375
3376 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3377 {
3378         struct drm_i915_private *dev_priv = dev->dev_private;
3379         uint32_t dsparb = I915_READ(DSPARB);
3380         int size;
3381
3382         size = dsparb & 0x7f;
3383         size >>= 1; /* Convert to cachelines */
3384
3385         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3386                       plane ? "B" : "A", size);
3387
3388         return size;
3389 }
3390
3391 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3392 {
3393         struct drm_crtc *crtc, *enabled = NULL;
3394
3395         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3396                 if (crtc->enabled && crtc->fb) {
3397                         if (enabled)
3398                                 return NULL;
3399                         enabled = crtc;
3400                 }
3401         }
3402
3403         return enabled;
3404 }
3405
3406 static void pineview_update_wm(struct drm_device *dev)
3407 {
3408         struct drm_i915_private *dev_priv = dev->dev_private;
3409         struct drm_crtc *crtc;
3410         const struct cxsr_latency *latency;
3411         u32 reg;
3412         unsigned long wm;
3413
3414         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3415                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3416         if (!latency) {
3417                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3418                 pineview_disable_cxsr(dev);
3419                 return;
3420         }
3421
3422         crtc = single_enabled_crtc(dev);
3423         if (crtc) {
3424                 int clock = crtc->mode.clock;
3425                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3426
3427                 /* Display SR */
3428                 wm = intel_calculate_wm(clock, &pineview_display_wm,
3429                                         pineview_display_wm.fifo_size,
3430                                         pixel_size, latency->display_sr);
3431                 reg = I915_READ(DSPFW1);
3432                 reg &= ~DSPFW_SR_MASK;
3433                 reg |= wm << DSPFW_SR_SHIFT;
3434                 I915_WRITE(DSPFW1, reg);
3435                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3436
3437                 /* cursor SR */
3438                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3439                                         pineview_display_wm.fifo_size,
3440                                         pixel_size, latency->cursor_sr);
3441                 reg = I915_READ(DSPFW3);
3442                 reg &= ~DSPFW_CURSOR_SR_MASK;
3443                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3444                 I915_WRITE(DSPFW3, reg);
3445
3446                 /* Display HPLL off SR */
3447                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3448                                         pineview_display_hplloff_wm.fifo_size,
3449                                         pixel_size, latency->display_hpll_disable);
3450                 reg = I915_READ(DSPFW3);
3451                 reg &= ~DSPFW_HPLL_SR_MASK;
3452                 reg |= wm & DSPFW_HPLL_SR_MASK;
3453                 I915_WRITE(DSPFW3, reg);
3454
3455                 /* cursor HPLL off SR */
3456                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3457                                         pineview_display_hplloff_wm.fifo_size,
3458                                         pixel_size, latency->cursor_hpll_disable);
3459                 reg = I915_READ(DSPFW3);
3460                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3461                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3462                 I915_WRITE(DSPFW3, reg);
3463                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3464
3465                 /* activate cxsr */
3466                 I915_WRITE(DSPFW3,
3467                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3468                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3469         } else {
3470                 pineview_disable_cxsr(dev);
3471                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3472         }
3473 }
3474
3475 static bool g4x_compute_wm0(struct drm_device *dev,
3476                             int plane,
3477                             const struct intel_watermark_params *display,
3478                             int display_latency_ns,
3479                             const struct intel_watermark_params *cursor,
3480                             int cursor_latency_ns,
3481                             int *plane_wm,
3482                             int *cursor_wm)
3483 {
3484         struct drm_crtc *crtc;
3485         int htotal, hdisplay, clock, pixel_size;
3486         int line_time_us, line_count;
3487         int entries, tlb_miss;
3488
3489         crtc = intel_get_crtc_for_plane(dev, plane);
3490         if (crtc->fb == NULL || !crtc->enabled) {
3491                 *cursor_wm = cursor->guard_size;
3492                 *plane_wm = display->guard_size;
3493                 return false;
3494         }
3495
3496         htotal = crtc->mode.htotal;
3497         hdisplay = crtc->mode.hdisplay;
3498         clock = crtc->mode.clock;
3499         pixel_size = crtc->fb->bits_per_pixel / 8;
3500
3501         /* Use the small buffer method to calculate plane watermark */
3502         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3503         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3504         if (tlb_miss > 0)
3505                 entries += tlb_miss;
3506         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3507         *plane_wm = entries + display->guard_size;
3508         if (*plane_wm > (int)display->max_wm)
3509                 *plane_wm = display->max_wm;
3510
3511         /* Use the large buffer method to calculate cursor watermark */
3512         line_time_us = ((htotal * 1000) / clock);
3513         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3514         entries = line_count * 64 * pixel_size;
3515         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3516         if (tlb_miss > 0)
3517                 entries += tlb_miss;
3518         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3519         *cursor_wm = entries + cursor->guard_size;
3520         if (*cursor_wm > (int)cursor->max_wm)
3521                 *cursor_wm = (int)cursor->max_wm;
3522
3523         return true;
3524 }
3525
3526 /*
3527  * Check the wm result.
3528  *
3529  * If any calculated watermark values is larger than the maximum value that
3530  * can be programmed into the associated watermark register, that watermark
3531  * must be disabled.
3532  */
3533 static bool g4x_check_srwm(struct drm_device *dev,
3534                            int display_wm, int cursor_wm,
3535                            const struct intel_watermark_params *display,
3536                            const struct intel_watermark_params *cursor)
3537 {
3538         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3539                       display_wm, cursor_wm);
3540
3541         if (display_wm > display->max_wm) {
3542                 DRM_DEBUG_KMS("display watermark is too large(%d), disabling\n",
3543                               display_wm, display->max_wm);
3544                 return false;
3545         }
3546
3547         if (cursor_wm > cursor->max_wm) {
3548                 DRM_DEBUG_KMS("cursor watermark is too large(%d), disabling\n",
3549                               cursor_wm, cursor->max_wm);
3550                 return false;
3551         }
3552
3553         if (!(display_wm || cursor_wm)) {
3554                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3555                 return false;
3556         }
3557
3558         return true;
3559 }
3560
3561 static bool g4x_compute_srwm(struct drm_device *dev,
3562                              int plane,
3563                              int latency_ns,
3564                              const struct intel_watermark_params *display,
3565                              const struct intel_watermark_params *cursor,
3566                              int *display_wm, int *cursor_wm)
3567 {
3568         struct drm_crtc *crtc;
3569         int hdisplay, htotal, pixel_size, clock;
3570         unsigned long line_time_us;
3571         int line_count, line_size;
3572         int small, large;
3573         int entries;
3574
3575         if (!latency_ns) {
3576                 *display_wm = *cursor_wm = 0;
3577                 return false;
3578         }
3579
3580         crtc = intel_get_crtc_for_plane(dev, plane);
3581         hdisplay = crtc->mode.hdisplay;
3582         htotal = crtc->mode.htotal;
3583         clock = crtc->mode.clock;
3584         pixel_size = crtc->fb->bits_per_pixel / 8;
3585
3586         line_time_us = (htotal * 1000) / clock;
3587         line_count = (latency_ns / line_time_us + 1000) / 1000;
3588         line_size = hdisplay * pixel_size;
3589
3590         /* Use the minimum of the small and large buffer method for primary */
3591         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3592         large = line_count * line_size;
3593
3594         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3595         *display_wm = entries + display->guard_size;
3596
3597         /* calculate the self-refresh watermark for display cursor */
3598         entries = line_count * pixel_size * 64;
3599         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3600         *cursor_wm = entries + cursor->guard_size;
3601
3602         return g4x_check_srwm(dev,
3603                               *display_wm, *cursor_wm,
3604                               display, cursor);
3605 }
3606
3607 #define single_plane_enabled(mask) is_power_of_2(mask)
3608
3609 static void g4x_update_wm(struct drm_device *dev)
3610 {
3611         static const int sr_latency_ns = 12000;
3612         struct drm_i915_private *dev_priv = dev->dev_private;
3613         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3614         int plane_sr, cursor_sr;
3615         unsigned int enabled = 0;
3616
3617         if (g4x_compute_wm0(dev, 0,
3618                             &g4x_wm_info, latency_ns,
3619                             &g4x_cursor_wm_info, latency_ns,
3620                             &planea_wm, &cursora_wm))
3621                 enabled |= 1;
3622
3623         if (g4x_compute_wm0(dev, 1,
3624                             &g4x_wm_info, latency_ns,
3625                             &g4x_cursor_wm_info, latency_ns,
3626                             &planeb_wm, &cursorb_wm))
3627                 enabled |= 2;
3628
3629         plane_sr = cursor_sr = 0;
3630         if (single_plane_enabled(enabled) &&
3631             g4x_compute_srwm(dev, ffs(enabled) - 1,
3632                              sr_latency_ns,
3633                              &g4x_wm_info,
3634                              &g4x_cursor_wm_info,
3635                              &plane_sr, &cursor_sr))
3636                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3637         else
3638                 I915_WRITE(FW_BLC_SELF,
3639                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3640
3641         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3642                       planea_wm, cursora_wm,
3643                       planeb_wm, cursorb_wm,
3644                       plane_sr, cursor_sr);
3645
3646         I915_WRITE(DSPFW1,
3647                    (plane_sr << DSPFW_SR_SHIFT) |
3648                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3649                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
3650                    planea_wm);
3651         I915_WRITE(DSPFW2,
3652                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3653                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3654         /* HPLL off in SR has some issues on G4x... disable it */
3655         I915_WRITE(DSPFW3,
3656                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3657                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3658 }
3659
3660 static void i965_update_wm(struct drm_device *dev)
3661 {
3662         struct drm_i915_private *dev_priv = dev->dev_private;
3663         struct drm_crtc *crtc;
3664         int srwm = 1;
3665         int cursor_sr = 16;
3666
3667         /* Calc sr entries for one plane configs */
3668         crtc = single_enabled_crtc(dev);
3669         if (crtc) {
3670                 /* self-refresh has much higher latency */
3671                 static const int sr_latency_ns = 12000;
3672                 int clock = crtc->mode.clock;
3673                 int htotal = crtc->mode.htotal;
3674                 int hdisplay = crtc->mode.hdisplay;
3675                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3676                 unsigned long line_time_us;
3677                 int entries;
3678
3679                 line_time_us = ((htotal * 1000) / clock);
3680
3681                 /* Use ns/us then divide to preserve precision */
3682                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3683                         pixel_size * hdisplay;
3684                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
3685                 srwm = I965_FIFO_SIZE - entries;
3686                 if (srwm < 0)
3687                         srwm = 1;
3688                 srwm &= 0x1ff;
3689                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
3690                               entries, srwm);
3691
3692                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3693                         pixel_size * 64;
3694                 entries = DIV_ROUND_UP(entries,
3695                                           i965_cursor_wm_info.cacheline_size);
3696                 cursor_sr = i965_cursor_wm_info.fifo_size -
3697                         (entries + i965_cursor_wm_info.guard_size);
3698
3699                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3700                         cursor_sr = i965_cursor_wm_info.max_wm;
3701
3702                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3703                               "cursor %d\n", srwm, cursor_sr);
3704
3705                 if (IS_CRESTLINE(dev))
3706                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3707         } else {
3708                 /* Turn off self refresh if both pipes are enabled */
3709                 if (IS_CRESTLINE(dev))
3710                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3711                                    & ~FW_BLC_SELF_EN);
3712         }
3713
3714         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3715                       srwm);
3716
3717         /* 965 has limitations... */
3718         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
3719                    (8 << 16) | (8 << 8) | (8 << 0));
3720         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3721         /* update cursor SR watermark */
3722         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3723 }
3724
3725 static void i9xx_update_wm(struct drm_device *dev)
3726 {
3727         struct drm_i915_private *dev_priv = dev->dev_private;
3728         const struct intel_watermark_params *wm_info;
3729         uint32_t fwater_lo;
3730         uint32_t fwater_hi;
3731         int cwm, srwm = 1;
3732         int fifo_size;
3733         int planea_wm, planeb_wm;
3734         struct drm_crtc *crtc, *enabled = NULL;
3735
3736         if (IS_I945GM(dev))
3737                 wm_info = &i945_wm_info;
3738         else if (!IS_GEN2(dev))
3739                 wm_info = &i915_wm_info;
3740         else
3741                 wm_info = &i855_wm_info;
3742
3743         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3744         crtc = intel_get_crtc_for_plane(dev, 0);
3745         if (crtc->enabled && crtc->fb) {
3746                 planea_wm = intel_calculate_wm(crtc->mode.clock,
3747                                                wm_info, fifo_size,
3748                                                crtc->fb->bits_per_pixel / 8,
3749                                                latency_ns);
3750                 enabled = crtc;
3751         } else
3752                 planea_wm = fifo_size - wm_info->guard_size;
3753
3754         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3755         crtc = intel_get_crtc_for_plane(dev, 1);
3756         if (crtc->enabled && crtc->fb) {
3757                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
3758                                                wm_info, fifo_size,
3759                                                crtc->fb->bits_per_pixel / 8,
3760                                                latency_ns);
3761                 if (enabled == NULL)
3762                         enabled = crtc;
3763                 else
3764                         enabled = NULL;
3765         } else
3766                 planeb_wm = fifo_size - wm_info->guard_size;
3767
3768         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3769
3770         /*
3771          * Overlay gets an aggressive default since video jitter is bad.
3772          */
3773         cwm = 2;
3774
3775         /* Play safe and disable self-refresh before adjusting watermarks. */
3776         if (IS_I945G(dev) || IS_I945GM(dev))
3777                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
3778         else if (IS_I915GM(dev))
3779                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3780
3781         /* Calc sr entries for one plane configs */
3782         if (HAS_FW_BLC(dev) && enabled) {
3783                 /* self-refresh has much higher latency */
3784                 static const int sr_latency_ns = 6000;
3785                 int clock = enabled->mode.clock;
3786                 int htotal = enabled->mode.htotal;
3787                 int hdisplay = enabled->mode.hdisplay;
3788                 int pixel_size = enabled->fb->bits_per_pixel / 8;
3789                 unsigned long line_time_us;
3790                 int entries;
3791
3792                 line_time_us = (htotal * 1000) / clock;
3793
3794                 /* Use ns/us then divide to preserve precision */
3795                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3796                         pixel_size * hdisplay;
3797                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
3798                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
3799                 srwm = wm_info->fifo_size - entries;
3800                 if (srwm < 0)
3801                         srwm = 1;
3802
3803                 if (IS_I945G(dev) || IS_I945GM(dev))
3804                         I915_WRITE(FW_BLC_SELF,
3805                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3806                 else if (IS_I915GM(dev))
3807                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3808         }
3809
3810         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3811                       planea_wm, planeb_wm, cwm, srwm);
3812
3813         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3814         fwater_hi = (cwm & 0x1f);
3815
3816         /* Set request length to 8 cachelines per fetch */
3817         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3818         fwater_hi = fwater_hi | (1 << 8);
3819
3820         I915_WRITE(FW_BLC, fwater_lo);
3821         I915_WRITE(FW_BLC2, fwater_hi);
3822
3823         if (HAS_FW_BLC(dev)) {
3824                 if (enabled) {
3825                         if (IS_I945G(dev) || IS_I945GM(dev))
3826                                 I915_WRITE(FW_BLC_SELF,
3827                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
3828                         else if (IS_I915GM(dev))
3829                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3830                         DRM_DEBUG_KMS("memory self refresh enabled\n");
3831                 } else
3832                         DRM_DEBUG_KMS("memory self refresh disabled\n");
3833         }
3834 }
3835
3836 static void i830_update_wm(struct drm_device *dev)
3837 {
3838         struct drm_i915_private *dev_priv = dev->dev_private;
3839         struct drm_crtc *crtc;
3840         uint32_t fwater_lo;
3841         int planea_wm;
3842
3843         crtc = single_enabled_crtc(dev);
3844         if (crtc == NULL)
3845                 return;
3846
3847         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
3848                                        dev_priv->display.get_fifo_size(dev, 0),
3849                                        crtc->fb->bits_per_pixel / 8,
3850                                        latency_ns);
3851         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3852         fwater_lo |= (3<<8) | planea_wm;
3853
3854         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3855
3856         I915_WRITE(FW_BLC, fwater_lo);
3857 }
3858
3859 #define ILK_LP0_PLANE_LATENCY           700
3860 #define ILK_LP0_CURSOR_LATENCY          1300
3861
3862 static bool ironlake_compute_wm0(struct drm_device *dev,
3863                                  int pipe,
3864                                  const struct intel_watermark_params *display,
3865                                  int display_latency_ns,
3866                                  const struct intel_watermark_params *cursor,
3867                                  int cursor_latency_ns,
3868                                  int *plane_wm,
3869                                  int *cursor_wm)
3870 {
3871         struct drm_crtc *crtc;
3872         int htotal, hdisplay, clock, pixel_size;
3873         int line_time_us, line_count;
3874         int entries, tlb_miss;
3875
3876         crtc = intel_get_crtc_for_pipe(dev, pipe);
3877         if (crtc->fb == NULL || !crtc->enabled)
3878                 return false;
3879
3880         htotal = crtc->mode.htotal;
3881         hdisplay = crtc->mode.hdisplay;
3882         clock = crtc->mode.clock;
3883         pixel_size = crtc->fb->bits_per_pixel / 8;
3884
3885         /* Use the small buffer method to calculate plane watermark */
3886         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3887         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3888         if (tlb_miss > 0)
3889                 entries += tlb_miss;
3890         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3891         *plane_wm = entries + display->guard_size;
3892         if (*plane_wm > (int)display->max_wm)
3893                 *plane_wm = display->max_wm;
3894
3895         /* Use the large buffer method to calculate cursor watermark */
3896         line_time_us = ((htotal * 1000) / clock);
3897         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3898         entries = line_count * 64 * pixel_size;
3899         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3900         if (tlb_miss > 0)
3901                 entries += tlb_miss;
3902         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3903         *cursor_wm = entries + cursor->guard_size;
3904         if (*cursor_wm > (int)cursor->max_wm)
3905                 *cursor_wm = (int)cursor->max_wm;
3906
3907         return true;
3908 }
3909
3910 /*
3911  * Check the wm result.
3912  *
3913  * If any calculated watermark values is larger than the maximum value that
3914  * can be programmed into the associated watermark register, that watermark
3915  * must be disabled.
3916  */
3917 static bool ironlake_check_srwm(struct drm_device *dev, int level,
3918                                 int fbc_wm, int display_wm, int cursor_wm,
3919                                 const struct intel_watermark_params *display,
3920                                 const struct intel_watermark_params *cursor)
3921 {
3922         struct drm_i915_private *dev_priv = dev->dev_private;
3923
3924         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
3925                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
3926
3927         if (fbc_wm > SNB_FBC_MAX_SRWM) {
3928                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
3929                               fbc_wm, SNB_FBC_MAX_SRWM, level);
3930
3931                 /* fbc has it's own way to disable FBC WM */
3932                 I915_WRITE(DISP_ARB_CTL,
3933                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
3934                 return false;
3935         }
3936
3937         if (display_wm > display->max_wm) {
3938                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
3939                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
3940                 return false;
3941         }
3942
3943         if (cursor_wm > cursor->max_wm) {
3944                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
3945                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
3946                 return false;
3947         }
3948
3949         if (!(fbc_wm || display_wm || cursor_wm)) {
3950                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
3951                 return false;
3952         }
3953
3954         return true;
3955 }
3956
3957 /*
3958  * Compute watermark values of WM[1-3],
3959  */
3960 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
3961                                   int latency_ns,
3962                                   const struct intel_watermark_params *display,
3963                                   const struct intel_watermark_params *cursor,
3964                                   int *fbc_wm, int *display_wm, int *cursor_wm)
3965 {
3966         struct drm_crtc *crtc;
3967         unsigned long line_time_us;
3968         int hdisplay, htotal, pixel_size, clock;
3969         int line_count, line_size;
3970         int small, large;
3971         int entries;
3972
3973         if (!latency_ns) {
3974                 *fbc_wm = *display_wm = *cursor_wm = 0;
3975                 return false;
3976         }
3977
3978         crtc = intel_get_crtc_for_plane(dev, plane);
3979         hdisplay = crtc->mode.hdisplay;
3980         htotal = crtc->mode.htotal;
3981         clock = crtc->mode.clock;
3982         pixel_size = crtc->fb->bits_per_pixel / 8;
3983
3984         line_time_us = (htotal * 1000) / clock;
3985         line_count = (latency_ns / line_time_us + 1000) / 1000;
3986         line_size = hdisplay * pixel_size;
3987
3988         /* Use the minimum of the small and large buffer method for primary */
3989         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3990         large = line_count * line_size;
3991
3992         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3993         *display_wm = entries + display->guard_size;
3994
3995         /*
3996          * Spec says:
3997          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
3998          */
3999         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4000
4001         /* calculate the self-refresh watermark for display cursor */
4002         entries = line_count * pixel_size * 64;
4003         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4004         *cursor_wm = entries + cursor->guard_size;
4005
4006         return ironlake_check_srwm(dev, level,
4007                                    *fbc_wm, *display_wm, *cursor_wm,
4008                                    display, cursor);
4009 }
4010
4011 static void ironlake_update_wm(struct drm_device *dev)
4012 {
4013         struct drm_i915_private *dev_priv = dev->dev_private;
4014         int fbc_wm, plane_wm, cursor_wm;
4015         unsigned int enabled;
4016
4017         enabled = 0;
4018         if (ironlake_compute_wm0(dev, 0,
4019                                  &ironlake_display_wm_info,
4020                                  ILK_LP0_PLANE_LATENCY,
4021                                  &ironlake_cursor_wm_info,
4022                                  ILK_LP0_CURSOR_LATENCY,
4023                                  &plane_wm, &cursor_wm)) {
4024                 I915_WRITE(WM0_PIPEA_ILK,
4025                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4026                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4027                               " plane %d, " "cursor: %d\n",
4028                               plane_wm, cursor_wm);
4029                 enabled |= 1;
4030         }
4031
4032         if (ironlake_compute_wm0(dev, 1,
4033                                  &ironlake_display_wm_info,
4034                                  ILK_LP0_PLANE_LATENCY,
4035                                  &ironlake_cursor_wm_info,
4036                                  ILK_LP0_CURSOR_LATENCY,
4037                                  &plane_wm, &cursor_wm)) {
4038                 I915_WRITE(WM0_PIPEB_ILK,
4039                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4040                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4041                               " plane %d, cursor: %d\n",
4042                               plane_wm, cursor_wm);
4043                 enabled |= 2;
4044         }
4045
4046         /*
4047          * Calculate and update the self-refresh watermark only when one
4048          * display plane is used.
4049          */
4050         I915_WRITE(WM3_LP_ILK, 0);
4051         I915_WRITE(WM2_LP_ILK, 0);
4052         I915_WRITE(WM1_LP_ILK, 0);
4053
4054         if (!single_plane_enabled(enabled))
4055                 return;
4056         enabled = ffs(enabled) - 1;
4057
4058         /* WM1 */
4059         if (!ironlake_compute_srwm(dev, 1, enabled,
4060                                    ILK_READ_WM1_LATENCY() * 500,
4061                                    &ironlake_display_srwm_info,
4062                                    &ironlake_cursor_srwm_info,
4063                                    &fbc_wm, &plane_wm, &cursor_wm))
4064                 return;
4065
4066         I915_WRITE(WM1_LP_ILK,
4067                    WM1_LP_SR_EN |
4068                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4069                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4070                    (plane_wm << WM1_LP_SR_SHIFT) |
4071                    cursor_wm);
4072
4073         /* WM2 */
4074         if (!ironlake_compute_srwm(dev, 2, enabled,
4075                                    ILK_READ_WM2_LATENCY() * 500,
4076                                    &ironlake_display_srwm_info,
4077                                    &ironlake_cursor_srwm_info,
4078                                    &fbc_wm, &plane_wm, &cursor_wm))
4079                 return;
4080
4081         I915_WRITE(WM2_LP_ILK,
4082                    WM2_LP_EN |
4083                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4084                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4085                    (plane_wm << WM1_LP_SR_SHIFT) |
4086                    cursor_wm);
4087
4088         /*
4089          * WM3 is unsupported on ILK, probably because we don't have latency
4090          * data for that power state
4091          */
4092 }
4093
4094 static void sandybridge_update_wm(struct drm_device *dev)
4095 {
4096         struct drm_i915_private *dev_priv = dev->dev_private;
4097         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4098         int fbc_wm, plane_wm, cursor_wm;
4099         unsigned int enabled;
4100
4101         enabled = 0;
4102         if (ironlake_compute_wm0(dev, 0,
4103                                  &sandybridge_display_wm_info, latency,
4104                                  &sandybridge_cursor_wm_info, latency,
4105                                  &plane_wm, &cursor_wm)) {
4106                 I915_WRITE(WM0_PIPEA_ILK,
4107                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4108                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4109                               " plane %d, " "cursor: %d\n",
4110                               plane_wm, cursor_wm);
4111                 enabled |= 1;
4112         }
4113
4114         if (ironlake_compute_wm0(dev, 1,
4115                                  &sandybridge_display_wm_info, latency,
4116                                  &sandybridge_cursor_wm_info, latency,
4117                                  &plane_wm, &cursor_wm)) {
4118                 I915_WRITE(WM0_PIPEB_ILK,
4119                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4120                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4121                               " plane %d, cursor: %d\n",
4122                               plane_wm, cursor_wm);
4123                 enabled |= 2;
4124         }
4125
4126         /*
4127          * Calculate and update the self-refresh watermark only when one
4128          * display plane is used.
4129          *
4130          * SNB support 3 levels of watermark.
4131          *
4132          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4133          * and disabled in the descending order
4134          *
4135          */
4136         I915_WRITE(WM3_LP_ILK, 0);
4137         I915_WRITE(WM2_LP_ILK, 0);
4138         I915_WRITE(WM1_LP_ILK, 0);
4139
4140         if (!single_plane_enabled(enabled))
4141                 return;
4142         enabled = ffs(enabled) - 1;
4143
4144         /* WM1 */
4145         if (!ironlake_compute_srwm(dev, 1, enabled,
4146                                    SNB_READ_WM1_LATENCY() * 500,
4147                                    &sandybridge_display_srwm_info,
4148                                    &sandybridge_cursor_srwm_info,
4149                                    &fbc_wm, &plane_wm, &cursor_wm))
4150                 return;
4151
4152         I915_WRITE(WM1_LP_ILK,
4153                    WM1_LP_SR_EN |
4154                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4155                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4156                    (plane_wm << WM1_LP_SR_SHIFT) |
4157                    cursor_wm);
4158
4159         /* WM2 */
4160         if (!ironlake_compute_srwm(dev, 2, enabled,
4161                                    SNB_READ_WM2_LATENCY() * 500,
4162                                    &sandybridge_display_srwm_info,
4163                                    &sandybridge_cursor_srwm_info,
4164                                    &fbc_wm, &plane_wm, &cursor_wm))
4165                 return;
4166
4167         I915_WRITE(WM2_LP_ILK,
4168                    WM2_LP_EN |
4169                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4170                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4171                    (plane_wm << WM1_LP_SR_SHIFT) |
4172                    cursor_wm);
4173
4174         /* WM3 */
4175         if (!ironlake_compute_srwm(dev, 3, enabled,
4176                                    SNB_READ_WM3_LATENCY() * 500,
4177                                    &sandybridge_display_srwm_info,
4178                                    &sandybridge_cursor_srwm_info,
4179                                    &fbc_wm, &plane_wm, &cursor_wm))
4180                 return;
4181
4182         I915_WRITE(WM3_LP_ILK,
4183                    WM3_LP_EN |
4184                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4185                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4186                    (plane_wm << WM1_LP_SR_SHIFT) |
4187                    cursor_wm);
4188 }
4189
4190 /**
4191  * intel_update_watermarks - update FIFO watermark values based on current modes
4192  *
4193  * Calculate watermark values for the various WM regs based on current mode
4194  * and plane configuration.
4195  *
4196  * There are several cases to deal with here:
4197  *   - normal (i.e. non-self-refresh)
4198  *   - self-refresh (SR) mode
4199  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4200  *   - lines are small relative to FIFO size (buffer can hold more than 2
4201  *     lines), so need to account for TLB latency
4202  *
4203  *   The normal calculation is:
4204  *     watermark = dotclock * bytes per pixel * latency
4205  *   where latency is platform & configuration dependent (we assume pessimal
4206  *   values here).
4207  *
4208  *   The SR calculation is:
4209  *     watermark = (trunc(latency/line time)+1) * surface width *
4210  *       bytes per pixel
4211  *   where
4212  *     line time = htotal / dotclock
4213  *     surface width = hdisplay for normal plane and 64 for cursor
4214  *   and latency is assumed to be high, as above.
4215  *
4216  * The final value programmed to the register should always be rounded up,
4217  * and include an extra 2 entries to account for clock crossings.
4218  *
4219  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4220  * to set the non-SR watermarks to 8.
4221  */
4222 static void intel_update_watermarks(struct drm_device *dev)
4223 {
4224         struct drm_i915_private *dev_priv = dev->dev_private;
4225
4226         if (dev_priv->display.update_wm)
4227                 dev_priv->display.update_wm(dev);
4228 }
4229
4230 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4231 {
4232         return dev_priv->lvds_use_ssc && i915_panel_use_ssc;
4233 }
4234
4235 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4236                               struct drm_display_mode *mode,
4237                               struct drm_display_mode *adjusted_mode,
4238                               int x, int y,
4239                               struct drm_framebuffer *old_fb)
4240 {
4241         struct drm_device *dev = crtc->dev;
4242         struct drm_i915_private *dev_priv = dev->dev_private;
4243         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4244         int pipe = intel_crtc->pipe;
4245         int plane = intel_crtc->plane;
4246         int refclk, num_connectors = 0;
4247         intel_clock_t clock, reduced_clock;
4248         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4249         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4250         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4251         struct drm_mode_config *mode_config = &dev->mode_config;
4252         struct intel_encoder *encoder;
4253         const intel_limit_t *limit;
4254         int ret;
4255         u32 temp;
4256         u32 lvds_sync = 0;
4257
4258         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4259                 if (encoder->base.crtc != crtc)
4260                         continue;
4261
4262                 switch (encoder->type) {
4263                 case INTEL_OUTPUT_LVDS:
4264                         is_lvds = true;
4265                         break;
4266                 case INTEL_OUTPUT_SDVO:
4267                 case INTEL_OUTPUT_HDMI:
4268                         is_sdvo = true;
4269                         if (encoder->needs_tv_clock)
4270                                 is_tv = true;
4271                         break;
4272                 case INTEL_OUTPUT_DVO:
4273                         is_dvo = true;
4274                         break;
4275                 case INTEL_OUTPUT_TVOUT:
4276                         is_tv = true;
4277                         break;
4278                 case INTEL_OUTPUT_ANALOG:
4279                         is_crt = true;
4280                         break;
4281                 case INTEL_OUTPUT_DISPLAYPORT:
4282                         is_dp = true;
4283                         break;
4284                 }
4285
4286                 num_connectors++;
4287         }
4288
4289         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4290                 refclk = dev_priv->lvds_ssc_freq * 1000;
4291                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4292                               refclk / 1000);
4293         } else if (!IS_GEN2(dev)) {
4294                 refclk = 96000;
4295         } else {
4296                 refclk = 48000;
4297         }
4298
4299         /*
4300          * Returns a set of divisors for the desired target clock with the given
4301          * refclk, or FALSE.  The returned values represent the clock equation:
4302          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4303          */
4304         limit = intel_limit(crtc, refclk);
4305         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4306         if (!ok) {
4307                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4308                 return -EINVAL;
4309         }
4310
4311         /* Ensure that the cursor is valid for the new mode before changing... */
4312         intel_crtc_update_cursor(crtc, true);
4313
4314         if (is_lvds && dev_priv->lvds_downclock_avail) {
4315                 has_reduced_clock = limit->find_pll(limit, crtc,
4316                                                     dev_priv->lvds_downclock,
4317                                                     refclk,
4318                                                     &reduced_clock);
4319                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4320                         /*
4321                          * If the different P is found, it means that we can't
4322                          * switch the display clock by using the FP0/FP1.
4323                          * In such case we will disable the LVDS downclock
4324                          * feature.
4325                          */
4326                         DRM_DEBUG_KMS("Different P is found for "
4327                                       "LVDS clock/downclock\n");
4328                         has_reduced_clock = 0;
4329                 }
4330         }
4331         /* SDVO TV has fixed PLL values depend on its clock range,
4332            this mirrors vbios setting. */
4333         if (is_sdvo && is_tv) {
4334                 if (adjusted_mode->clock >= 100000
4335                     && adjusted_mode->clock < 140500) {
4336                         clock.p1 = 2;
4337                         clock.p2 = 10;
4338                         clock.n = 3;
4339                         clock.m1 = 16;
4340                         clock.m2 = 8;
4341                 } else if (adjusted_mode->clock >= 140500
4342                            && adjusted_mode->clock <= 200000) {
4343                         clock.p1 = 1;
4344                         clock.p2 = 10;
4345                         clock.n = 6;
4346                         clock.m1 = 12;
4347                         clock.m2 = 8;
4348                 }
4349         }
4350
4351         if (IS_PINEVIEW(dev)) {
4352                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4353                 if (has_reduced_clock)
4354                         fp2 = (1 << reduced_clock.n) << 16 |
4355                                 reduced_clock.m1 << 8 | reduced_clock.m2;
4356         } else {
4357                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4358                 if (has_reduced_clock)
4359                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4360                                 reduced_clock.m2;
4361         }
4362
4363         dpll = DPLL_VGA_MODE_DIS;
4364
4365         if (!IS_GEN2(dev)) {
4366                 if (is_lvds)
4367                         dpll |= DPLLB_MODE_LVDS;
4368                 else
4369                         dpll |= DPLLB_MODE_DAC_SERIAL;
4370                 if (is_sdvo) {
4371                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4372                         if (pixel_multiplier > 1) {
4373                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4374                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4375                         }
4376                         dpll |= DPLL_DVO_HIGH_SPEED;
4377                 }
4378                 if (is_dp)
4379                         dpll |= DPLL_DVO_HIGH_SPEED;
4380
4381                 /* compute bitmask from p1 value */
4382                 if (IS_PINEVIEW(dev))
4383                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4384                 else {
4385                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4386                         if (IS_G4X(dev) && has_reduced_clock)
4387                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4388                 }
4389                 switch (clock.p2) {
4390                 case 5:
4391                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4392                         break;
4393                 case 7:
4394                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4395                         break;
4396                 case 10:
4397                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4398                         break;
4399                 case 14:
4400                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4401                         break;
4402                 }
4403                 if (INTEL_INFO(dev)->gen >= 4)
4404                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4405         } else {
4406                 if (is_lvds) {
4407                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4408                 } else {
4409                         if (clock.p1 == 2)
4410                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
4411                         else
4412                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4413                         if (clock.p2 == 4)
4414                                 dpll |= PLL_P2_DIVIDE_BY_4;
4415                 }
4416         }
4417
4418         if (is_sdvo && is_tv)
4419                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4420         else if (is_tv)
4421                 /* XXX: just matching BIOS for now */
4422                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4423                 dpll |= 3;
4424         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4425                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4426         else
4427                 dpll |= PLL_REF_INPUT_DREFCLK;
4428
4429         /* setup pipeconf */
4430         pipeconf = I915_READ(PIPECONF(pipe));
4431
4432         /* Set up the display plane register */
4433         dspcntr = DISPPLANE_GAMMA_ENABLE;
4434
4435         /* Ironlake's plane is forced to pipe, bit 24 is to
4436            enable color space conversion */
4437         if (pipe == 0)
4438                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4439         else
4440                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4441
4442         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4443                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4444                  * core speed.
4445                  *
4446                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4447                  * pipe == 0 check?
4448                  */
4449                 if (mode->clock >
4450                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4451                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4452                 else
4453                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4454         }
4455
4456         dpll |= DPLL_VCO_ENABLE;
4457
4458         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4459         drm_mode_debug_printmodeline(mode);
4460
4461         I915_WRITE(FP0(pipe), fp);
4462         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4463
4464         POSTING_READ(DPLL(pipe));
4465         udelay(150);
4466
4467         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4468          * This is an exception to the general rule that mode_set doesn't turn
4469          * things on.
4470          */
4471         if (is_lvds) {
4472                 temp = I915_READ(LVDS);
4473                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4474                 if (pipe == 1) {
4475                         temp |= LVDS_PIPEB_SELECT;
4476                 } else {
4477                         temp &= ~LVDS_PIPEB_SELECT;
4478                 }
4479                 /* set the corresponsding LVDS_BORDER bit */
4480                 temp |= dev_priv->lvds_border_bits;
4481                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4482                  * set the DPLLs for dual-channel mode or not.
4483                  */
4484                 if (clock.p2 == 7)
4485                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4486                 else
4487                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4488
4489                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4490                  * appropriately here, but we need to look more thoroughly into how
4491                  * panels behave in the two modes.
4492                  */
4493                 /* set the dithering flag on LVDS as needed */
4494                 if (INTEL_INFO(dev)->gen >= 4) {
4495                         if (dev_priv->lvds_dither)
4496                                 temp |= LVDS_ENABLE_DITHER;
4497                         else
4498                                 temp &= ~LVDS_ENABLE_DITHER;
4499                 }
4500                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4501                         lvds_sync |= LVDS_HSYNC_POLARITY;
4502                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4503                         lvds_sync |= LVDS_VSYNC_POLARITY;
4504                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4505                     != lvds_sync) {
4506                         char flags[2] = "-+";
4507                         DRM_INFO("Changing LVDS panel from "
4508                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4509                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
4510                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
4511                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4512                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4513                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4514                         temp |= lvds_sync;
4515                 }
4516                 I915_WRITE(LVDS, temp);
4517         }
4518
4519         if (is_dp) {
4520                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4521         }
4522
4523         I915_WRITE(DPLL(pipe), dpll);
4524
4525         /* Wait for the clocks to stabilize. */
4526         POSTING_READ(DPLL(pipe));
4527         udelay(150);
4528
4529         if (INTEL_INFO(dev)->gen >= 4) {
4530                 temp = 0;
4531                 if (is_sdvo) {
4532                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4533                         if (temp > 1)
4534                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4535                         else
4536                                 temp = 0;
4537                 }
4538                 I915_WRITE(DPLL_MD(pipe), temp);
4539         } else {
4540                 /* The pixel multiplier can only be updated once the
4541                  * DPLL is enabled and the clocks are stable.
4542                  *
4543                  * So write it again.
4544                  */
4545                 I915_WRITE(DPLL(pipe), dpll);
4546         }
4547
4548         intel_crtc->lowfreq_avail = false;
4549         if (is_lvds && has_reduced_clock && i915_powersave) {
4550                 I915_WRITE(FP1(pipe), fp2);
4551                 intel_crtc->lowfreq_avail = true;
4552                 if (HAS_PIPE_CXSR(dev)) {
4553                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4554                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4555                 }
4556         } else {
4557                 I915_WRITE(FP1(pipe), fp);
4558                 if (HAS_PIPE_CXSR(dev)) {
4559                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4560                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4561                 }
4562         }
4563
4564         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4565                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4566                 /* the chip adds 2 halflines automatically */
4567                 adjusted_mode->crtc_vdisplay -= 1;
4568                 adjusted_mode->crtc_vtotal -= 1;
4569                 adjusted_mode->crtc_vblank_start -= 1;
4570                 adjusted_mode->crtc_vblank_end -= 1;
4571                 adjusted_mode->crtc_vsync_end -= 1;
4572                 adjusted_mode->crtc_vsync_start -= 1;
4573         } else
4574                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4575
4576         I915_WRITE(HTOTAL(pipe),
4577                    (adjusted_mode->crtc_hdisplay - 1) |
4578                    ((adjusted_mode->crtc_htotal - 1) << 16));
4579         I915_WRITE(HBLANK(pipe),
4580                    (adjusted_mode->crtc_hblank_start - 1) |
4581                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4582         I915_WRITE(HSYNC(pipe),
4583                    (adjusted_mode->crtc_hsync_start - 1) |
4584                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4585
4586         I915_WRITE(VTOTAL(pipe),
4587                    (adjusted_mode->crtc_vdisplay - 1) |
4588                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4589         I915_WRITE(VBLANK(pipe),
4590                    (adjusted_mode->crtc_vblank_start - 1) |
4591                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4592         I915_WRITE(VSYNC(pipe),
4593                    (adjusted_mode->crtc_vsync_start - 1) |
4594                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4595
4596         /* pipesrc and dspsize control the size that is scaled from,
4597          * which should always be the user's requested size.
4598          */
4599         I915_WRITE(DSPSIZE(plane),
4600                    ((mode->vdisplay - 1) << 16) |
4601                    (mode->hdisplay - 1));
4602         I915_WRITE(DSPPOS(plane), 0);
4603         I915_WRITE(PIPESRC(pipe),
4604                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4605
4606         I915_WRITE(PIPECONF(pipe), pipeconf);
4607         POSTING_READ(PIPECONF(pipe));
4608         intel_enable_pipe(dev_priv, pipe, false);
4609
4610         intel_wait_for_vblank(dev, pipe);
4611
4612         I915_WRITE(DSPCNTR(plane), dspcntr);
4613         POSTING_READ(DSPCNTR(plane));
4614
4615         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4616
4617         intel_update_watermarks(dev);
4618
4619         return ret;
4620 }
4621
4622 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4623                                   struct drm_display_mode *mode,
4624                                   struct drm_display_mode *adjusted_mode,
4625                                   int x, int y,
4626                                   struct drm_framebuffer *old_fb)
4627 {
4628         struct drm_device *dev = crtc->dev;
4629         struct drm_i915_private *dev_priv = dev->dev_private;
4630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4631         int pipe = intel_crtc->pipe;
4632         int plane = intel_crtc->plane;
4633         int refclk, num_connectors = 0;
4634         intel_clock_t clock, reduced_clock;
4635         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4636         bool ok, has_reduced_clock = false, is_sdvo = false;
4637         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4638         struct intel_encoder *has_edp_encoder = NULL;
4639         struct drm_mode_config *mode_config = &dev->mode_config;
4640         struct intel_encoder *encoder;
4641         const intel_limit_t *limit;
4642         int ret;
4643         struct fdi_m_n m_n = {0};
4644         u32 temp;
4645         u32 lvds_sync = 0;
4646         int target_clock, pixel_multiplier, lane, link_bw, bpp, factor;
4647
4648         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4649                 if (encoder->base.crtc != crtc)
4650                         continue;
4651
4652                 switch (encoder->type) {
4653                 case INTEL_OUTPUT_LVDS:
4654                         is_lvds = true;
4655                         break;
4656                 case INTEL_OUTPUT_SDVO:
4657                 case INTEL_OUTPUT_HDMI:
4658                         is_sdvo = true;
4659                         if (encoder->needs_tv_clock)
4660                                 is_tv = true;
4661                         break;
4662                 case INTEL_OUTPUT_TVOUT:
4663                         is_tv = true;
4664                         break;
4665                 case INTEL_OUTPUT_ANALOG:
4666                         is_crt = true;
4667                         break;
4668                 case INTEL_OUTPUT_DISPLAYPORT:
4669                         is_dp = true;
4670                         break;
4671                 case INTEL_OUTPUT_EDP:
4672                         has_edp_encoder = encoder;
4673                         break;
4674                 }
4675
4676                 num_connectors++;
4677         }
4678
4679         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4680                 refclk = dev_priv->lvds_ssc_freq * 1000;
4681                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4682                               refclk / 1000);
4683         } else {
4684                 refclk = 96000;
4685                 if (!has_edp_encoder ||
4686                     intel_encoder_is_pch_edp(&has_edp_encoder->base))
4687                         refclk = 120000; /* 120Mhz refclk */
4688         }
4689
4690         /*
4691          * Returns a set of divisors for the desired target clock with the given
4692          * refclk, or FALSE.  The returned values represent the clock equation:
4693          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4694          */
4695         limit = intel_limit(crtc, refclk);
4696         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4697         if (!ok) {
4698                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4699                 return -EINVAL;
4700         }
4701
4702         /* Ensure that the cursor is valid for the new mode before changing... */
4703         intel_crtc_update_cursor(crtc, true);
4704
4705         if (is_lvds && dev_priv->lvds_downclock_avail) {
4706                 has_reduced_clock = limit->find_pll(limit, crtc,
4707                                                     dev_priv->lvds_downclock,
4708                                                     refclk,
4709                                                     &reduced_clock);
4710                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4711                         /*
4712                          * If the different P is found, it means that we can't
4713                          * switch the display clock by using the FP0/FP1.
4714                          * In such case we will disable the LVDS downclock
4715                          * feature.
4716                          */
4717                         DRM_DEBUG_KMS("Different P is found for "
4718                                       "LVDS clock/downclock\n");
4719                         has_reduced_clock = 0;
4720                 }
4721         }
4722         /* SDVO TV has fixed PLL values depend on its clock range,
4723            this mirrors vbios setting. */
4724         if (is_sdvo && is_tv) {
4725                 if (adjusted_mode->clock >= 100000
4726                     && adjusted_mode->clock < 140500) {
4727                         clock.p1 = 2;
4728                         clock.p2 = 10;
4729                         clock.n = 3;
4730                         clock.m1 = 16;
4731                         clock.m2 = 8;
4732                 } else if (adjusted_mode->clock >= 140500
4733                            && adjusted_mode->clock <= 200000) {
4734                         clock.p1 = 1;
4735                         clock.p2 = 10;
4736                         clock.n = 6;
4737                         clock.m1 = 12;
4738                         clock.m2 = 8;
4739                 }
4740         }
4741
4742         /* FDI link */
4743         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4744         lane = 0;
4745         /* CPU eDP doesn't require FDI link, so just set DP M/N
4746            according to current link config */
4747         if (has_edp_encoder &&
4748             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4749                 target_clock = mode->clock;
4750                 intel_edp_link_config(has_edp_encoder,
4751                                       &lane, &link_bw);
4752         } else {
4753                 /* [e]DP over FDI requires target mode clock
4754                    instead of link clock */
4755                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4756                         target_clock = mode->clock;
4757                 else
4758                         target_clock = adjusted_mode->clock;
4759
4760                 /* FDI is a binary signal running at ~2.7GHz, encoding
4761                  * each output octet as 10 bits. The actual frequency
4762                  * is stored as a divider into a 100MHz clock, and the
4763                  * mode pixel clock is stored in units of 1KHz.
4764                  * Hence the bw of each lane in terms of the mode signal
4765                  * is:
4766                  */
4767                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4768         }
4769
4770         /* determine panel color depth */
4771         temp = I915_READ(PIPECONF(pipe));
4772         temp &= ~PIPE_BPC_MASK;
4773         if (is_lvds) {
4774                 /* the BPC will be 6 if it is 18-bit LVDS panel */
4775                 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
4776                         temp |= PIPE_8BPC;
4777                 else
4778                         temp |= PIPE_6BPC;
4779         } else if (has_edp_encoder) {
4780                 switch (dev_priv->edp.bpp/3) {
4781                 case 8:
4782                         temp |= PIPE_8BPC;
4783                         break;
4784                 case 10:
4785                         temp |= PIPE_10BPC;
4786                         break;
4787                 case 6:
4788                         temp |= PIPE_6BPC;
4789                         break;
4790                 case 12:
4791                         temp |= PIPE_12BPC;
4792                         break;
4793                 }
4794         } else
4795                 temp |= PIPE_8BPC;
4796         I915_WRITE(PIPECONF(pipe), temp);
4797
4798         switch (temp & PIPE_BPC_MASK) {
4799         case PIPE_8BPC:
4800                 bpp = 24;
4801                 break;
4802         case PIPE_10BPC:
4803                 bpp = 30;
4804                 break;
4805         case PIPE_6BPC:
4806                 bpp = 18;
4807                 break;
4808         case PIPE_12BPC:
4809                 bpp = 36;
4810                 break;
4811         default:
4812                 DRM_ERROR("unknown pipe bpc value\n");
4813                 bpp = 24;
4814         }
4815
4816         if (!lane) {
4817                 /*
4818                  * Account for spread spectrum to avoid
4819                  * oversubscribing the link. Max center spread
4820                  * is 2.5%; use 5% for safety's sake.
4821                  */
4822                 u32 bps = target_clock * bpp * 21 / 20;
4823                 lane = bps / (link_bw * 8) + 1;
4824         }
4825
4826         intel_crtc->fdi_lanes = lane;
4827
4828         if (pixel_multiplier > 1)
4829                 link_bw *= pixel_multiplier;
4830         ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
4831
4832         /* Ironlake: try to setup display ref clock before DPLL
4833          * enabling. This is only under driver's control after
4834          * PCH B stepping, previous chipset stepping should be
4835          * ignoring this setting.
4836          */
4837         temp = I915_READ(PCH_DREF_CONTROL);
4838         /* Always enable nonspread source */
4839         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4840         temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4841         temp &= ~DREF_SSC_SOURCE_MASK;
4842         temp |= DREF_SSC_SOURCE_ENABLE;
4843         I915_WRITE(PCH_DREF_CONTROL, temp);
4844
4845         POSTING_READ(PCH_DREF_CONTROL);
4846         udelay(200);
4847
4848         if (has_edp_encoder) {
4849                 if (intel_panel_use_ssc(dev_priv)) {
4850                         temp |= DREF_SSC1_ENABLE;
4851                         I915_WRITE(PCH_DREF_CONTROL, temp);
4852
4853                         POSTING_READ(PCH_DREF_CONTROL);
4854                         udelay(200);
4855                 }
4856                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4857
4858                 /* Enable CPU source on CPU attached eDP */
4859                 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4860                         if (intel_panel_use_ssc(dev_priv))
4861                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4862                         else
4863                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4864                 } else {
4865                         /* Enable SSC on PCH eDP if needed */
4866                         if (intel_panel_use_ssc(dev_priv)) {
4867                                 DRM_ERROR("enabling SSC on PCH\n");
4868                                 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
4869                         }
4870                 }
4871                 I915_WRITE(PCH_DREF_CONTROL, temp);
4872                 POSTING_READ(PCH_DREF_CONTROL);
4873                 udelay(200);
4874         }
4875
4876         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4877         if (has_reduced_clock)
4878                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4879                         reduced_clock.m2;
4880
4881         /* Enable autotuning of the PLL clock (if permissible) */
4882         factor = 21;
4883         if (is_lvds) {
4884                 if ((intel_panel_use_ssc(dev_priv) &&
4885                      dev_priv->lvds_ssc_freq == 100) ||
4886                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4887                         factor = 25;
4888         } else if (is_sdvo && is_tv)
4889                 factor = 20;
4890
4891         if (clock.m1 < factor * clock.n)
4892                 fp |= FP_CB_TUNE;
4893
4894         dpll = 0;
4895
4896         if (is_lvds)
4897                 dpll |= DPLLB_MODE_LVDS;
4898         else
4899                 dpll |= DPLLB_MODE_DAC_SERIAL;
4900         if (is_sdvo) {
4901                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4902                 if (pixel_multiplier > 1) {
4903                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4904                 }
4905                 dpll |= DPLL_DVO_HIGH_SPEED;
4906         }
4907         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4908                 dpll |= DPLL_DVO_HIGH_SPEED;
4909
4910         /* compute bitmask from p1 value */
4911         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4912         /* also FPA1 */
4913         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4914
4915         switch (clock.p2) {
4916         case 5:
4917                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4918                 break;
4919         case 7:
4920                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4921                 break;
4922         case 10:
4923                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4924                 break;
4925         case 14:
4926                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4927                 break;
4928         }
4929
4930         if (is_sdvo && is_tv)
4931                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4932         else if (is_tv)
4933                 /* XXX: just matching BIOS for now */
4934                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4935                 dpll |= 3;
4936         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4937                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4938         else
4939                 dpll |= PLL_REF_INPUT_DREFCLK;
4940
4941         /* setup pipeconf */
4942         pipeconf = I915_READ(PIPECONF(pipe));
4943
4944         /* Set up the display plane register */
4945         dspcntr = DISPPLANE_GAMMA_ENABLE;
4946
4947         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4948         drm_mode_debug_printmodeline(mode);
4949
4950         /* PCH eDP needs FDI, but CPU eDP does not */
4951         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4952                 I915_WRITE(PCH_FP0(pipe), fp);
4953                 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4954
4955                 POSTING_READ(PCH_DPLL(pipe));
4956                 udelay(150);
4957         }
4958
4959         /* enable transcoder DPLL */
4960         if (HAS_PCH_CPT(dev)) {
4961                 temp = I915_READ(PCH_DPLL_SEL);
4962                 switch (pipe) {
4963                 case 0:
4964                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
4965                         break;
4966                 case 1:
4967                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
4968                         break;
4969                 case 2:
4970                         /* FIXME: manage transcoder PLLs? */
4971                         temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
4972                         break;
4973                 default:
4974                         BUG();
4975                 }
4976                 I915_WRITE(PCH_DPLL_SEL, temp);
4977
4978                 POSTING_READ(PCH_DPLL_SEL);
4979                 udelay(150);
4980         }
4981
4982         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4983          * This is an exception to the general rule that mode_set doesn't turn
4984          * things on.
4985          */
4986         if (is_lvds) {
4987                 temp = I915_READ(PCH_LVDS);
4988                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4989                 if (pipe == 1) {
4990                         if (HAS_PCH_CPT(dev))
4991                                 temp |= PORT_TRANS_B_SEL_CPT;
4992                         else
4993                                 temp |= LVDS_PIPEB_SELECT;
4994                 } else {
4995                         if (HAS_PCH_CPT(dev))
4996                                 temp &= ~PORT_TRANS_SEL_MASK;
4997                         else
4998                                 temp &= ~LVDS_PIPEB_SELECT;
4999                 }
5000                 /* set the corresponsding LVDS_BORDER bit */
5001                 temp |= dev_priv->lvds_border_bits;
5002                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5003                  * set the DPLLs for dual-channel mode or not.
5004                  */
5005                 if (clock.p2 == 7)
5006                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5007                 else
5008                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5009
5010                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5011                  * appropriately here, but we need to look more thoroughly into how
5012                  * panels behave in the two modes.
5013                  */
5014                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5015                         lvds_sync |= LVDS_HSYNC_POLARITY;
5016                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5017                         lvds_sync |= LVDS_VSYNC_POLARITY;
5018                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5019                     != lvds_sync) {
5020                         char flags[2] = "-+";
5021                         DRM_INFO("Changing LVDS panel from "
5022                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5023                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5024                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5025                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5026                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5027                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5028                         temp |= lvds_sync;
5029                 }
5030                 I915_WRITE(PCH_LVDS, temp);
5031         }
5032
5033         /* set the dithering flag and clear for anything other than a panel. */
5034         pipeconf &= ~PIPECONF_DITHER_EN;
5035         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5036         if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
5037                 pipeconf |= PIPECONF_DITHER_EN;
5038                 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5039         }
5040
5041         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5042                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5043         } else {
5044                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5045                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5046                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5047                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5048                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5049         }
5050
5051         if (!has_edp_encoder ||
5052             intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5053                 I915_WRITE(PCH_DPLL(pipe), dpll);
5054
5055                 /* Wait for the clocks to stabilize. */
5056                 POSTING_READ(PCH_DPLL(pipe));
5057                 udelay(150);
5058
5059                 /* The pixel multiplier can only be updated once the
5060                  * DPLL is enabled and the clocks are stable.
5061                  *
5062                  * So write it again.
5063                  */
5064                 I915_WRITE(PCH_DPLL(pipe), dpll);
5065         }
5066
5067         intel_crtc->lowfreq_avail = false;
5068         if (is_lvds && has_reduced_clock && i915_powersave) {
5069                 I915_WRITE(PCH_FP1(pipe), fp2);
5070                 intel_crtc->lowfreq_avail = true;
5071                 if (HAS_PIPE_CXSR(dev)) {
5072                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5073                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5074                 }
5075         } else {
5076                 I915_WRITE(PCH_FP1(pipe), fp);
5077                 if (HAS_PIPE_CXSR(dev)) {
5078                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5079                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5080                 }
5081         }
5082
5083         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5084                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5085                 /* the chip adds 2 halflines automatically */
5086                 adjusted_mode->crtc_vdisplay -= 1;
5087                 adjusted_mode->crtc_vtotal -= 1;
5088                 adjusted_mode->crtc_vblank_start -= 1;
5089                 adjusted_mode->crtc_vblank_end -= 1;
5090                 adjusted_mode->crtc_vsync_end -= 1;
5091                 adjusted_mode->crtc_vsync_start -= 1;
5092         } else
5093                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5094
5095         I915_WRITE(HTOTAL(pipe),
5096                    (adjusted_mode->crtc_hdisplay - 1) |
5097                    ((adjusted_mode->crtc_htotal - 1) << 16));
5098         I915_WRITE(HBLANK(pipe),
5099                    (adjusted_mode->crtc_hblank_start - 1) |
5100                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5101         I915_WRITE(HSYNC(pipe),
5102                    (adjusted_mode->crtc_hsync_start - 1) |
5103                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5104
5105         I915_WRITE(VTOTAL(pipe),
5106                    (adjusted_mode->crtc_vdisplay - 1) |
5107                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5108         I915_WRITE(VBLANK(pipe),
5109                    (adjusted_mode->crtc_vblank_start - 1) |
5110                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5111         I915_WRITE(VSYNC(pipe),
5112                    (adjusted_mode->crtc_vsync_start - 1) |
5113                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5114
5115         /* pipesrc controls the size that is scaled from, which should
5116          * always be the user's requested size.
5117          */
5118         I915_WRITE(PIPESRC(pipe),
5119                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5120
5121         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5122         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5123         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5124         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5125
5126         if (has_edp_encoder &&
5127             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5128                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5129         }
5130
5131         I915_WRITE(PIPECONF(pipe), pipeconf);
5132         POSTING_READ(PIPECONF(pipe));
5133
5134         intel_wait_for_vblank(dev, pipe);
5135
5136         if (IS_GEN5(dev)) {
5137                 /* enable address swizzle for tiling buffer */
5138                 temp = I915_READ(DISP_ARB_CTL);
5139                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5140         }
5141
5142         I915_WRITE(DSPCNTR(plane), dspcntr);
5143         POSTING_READ(DSPCNTR(plane));
5144
5145         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5146
5147         intel_update_watermarks(dev);
5148
5149         return ret;
5150 }
5151
5152 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5153                                struct drm_display_mode *mode,
5154                                struct drm_display_mode *adjusted_mode,
5155                                int x, int y,
5156                                struct drm_framebuffer *old_fb)
5157 {
5158         struct drm_device *dev = crtc->dev;
5159         struct drm_i915_private *dev_priv = dev->dev_private;
5160         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5161         int pipe = intel_crtc->pipe;
5162         int ret;
5163
5164         drm_vblank_pre_modeset(dev, pipe);
5165
5166         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5167                                               x, y, old_fb);
5168
5169         drm_vblank_post_modeset(dev, pipe);
5170
5171         return ret;
5172 }
5173
5174 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5175 void intel_crtc_load_lut(struct drm_crtc *crtc)
5176 {
5177         struct drm_device *dev = crtc->dev;
5178         struct drm_i915_private *dev_priv = dev->dev_private;
5179         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5180         int palreg = PALETTE(intel_crtc->pipe);
5181         int i;
5182
5183         /* The clocks have to be on to load the palette. */
5184         if (!crtc->enabled)
5185                 return;
5186
5187         /* use legacy palette for Ironlake */
5188         if (HAS_PCH_SPLIT(dev))
5189                 palreg = LGC_PALETTE(intel_crtc->pipe);
5190
5191         for (i = 0; i < 256; i++) {
5192                 I915_WRITE(palreg + 4 * i,
5193                            (intel_crtc->lut_r[i] << 16) |
5194                            (intel_crtc->lut_g[i] << 8) |
5195                            intel_crtc->lut_b[i]);
5196         }
5197 }
5198
5199 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5200 {
5201         struct drm_device *dev = crtc->dev;
5202         struct drm_i915_private *dev_priv = dev->dev_private;
5203         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5204         bool visible = base != 0;
5205         u32 cntl;
5206
5207         if (intel_crtc->cursor_visible == visible)
5208                 return;
5209
5210         cntl = I915_READ(_CURACNTR);
5211         if (visible) {
5212                 /* On these chipsets we can only modify the base whilst
5213                  * the cursor is disabled.
5214                  */
5215                 I915_WRITE(_CURABASE, base);
5216
5217                 cntl &= ~(CURSOR_FORMAT_MASK);
5218                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5219                 cntl |= CURSOR_ENABLE |
5220                         CURSOR_GAMMA_ENABLE |
5221                         CURSOR_FORMAT_ARGB;
5222         } else
5223                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5224         I915_WRITE(_CURACNTR, cntl);
5225
5226         intel_crtc->cursor_visible = visible;
5227 }
5228
5229 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5230 {
5231         struct drm_device *dev = crtc->dev;
5232         struct drm_i915_private *dev_priv = dev->dev_private;
5233         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5234         int pipe = intel_crtc->pipe;
5235         bool visible = base != 0;
5236
5237         if (intel_crtc->cursor_visible != visible) {
5238                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5239                 if (base) {
5240                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5241                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5242                         cntl |= pipe << 28; /* Connect to correct pipe */
5243                 } else {
5244                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5245                         cntl |= CURSOR_MODE_DISABLE;
5246                 }
5247                 I915_WRITE(CURCNTR(pipe), cntl);
5248
5249                 intel_crtc->cursor_visible = visible;
5250         }
5251         /* and commit changes on next vblank */
5252         I915_WRITE(CURBASE(pipe), base);
5253 }
5254
5255 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5256 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5257                                      bool on)
5258 {
5259         struct drm_device *dev = crtc->dev;
5260         struct drm_i915_private *dev_priv = dev->dev_private;
5261         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5262         int pipe = intel_crtc->pipe;
5263         int x = intel_crtc->cursor_x;
5264         int y = intel_crtc->cursor_y;
5265         u32 base, pos;
5266         bool visible;
5267
5268         pos = 0;
5269
5270         if (on && crtc->enabled && crtc->fb) {
5271                 base = intel_crtc->cursor_addr;
5272                 if (x > (int) crtc->fb->width)
5273                         base = 0;
5274
5275                 if (y > (int) crtc->fb->height)
5276                         base = 0;
5277         } else
5278                 base = 0;
5279
5280         if (x < 0) {
5281                 if (x + intel_crtc->cursor_width < 0)
5282                         base = 0;
5283
5284                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5285                 x = -x;
5286         }
5287         pos |= x << CURSOR_X_SHIFT;
5288
5289         if (y < 0) {
5290                 if (y + intel_crtc->cursor_height < 0)
5291                         base = 0;
5292
5293                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5294                 y = -y;
5295         }
5296         pos |= y << CURSOR_Y_SHIFT;
5297
5298         visible = base != 0;
5299         if (!visible && !intel_crtc->cursor_visible)
5300                 return;
5301
5302         I915_WRITE(CURPOS(pipe), pos);
5303         if (IS_845G(dev) || IS_I865G(dev))
5304                 i845_update_cursor(crtc, base);
5305         else
5306                 i9xx_update_cursor(crtc, base);
5307
5308         if (visible)
5309                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5310 }
5311
5312 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5313                                  struct drm_file *file,
5314                                  uint32_t handle,
5315                                  uint32_t width, uint32_t height)
5316 {
5317         struct drm_device *dev = crtc->dev;
5318         struct drm_i915_private *dev_priv = dev->dev_private;
5319         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5320         struct drm_i915_gem_object *obj;
5321         uint32_t addr;
5322         int ret;
5323
5324         DRM_DEBUG_KMS("\n");
5325
5326         /* if we want to turn off the cursor ignore width and height */
5327         if (!handle) {
5328                 DRM_DEBUG_KMS("cursor off\n");
5329                 addr = 0;
5330                 obj = NULL;
5331                 mutex_lock(&dev->struct_mutex);
5332                 goto finish;
5333         }
5334
5335         /* Currently we only support 64x64 cursors */
5336         if (width != 64 || height != 64) {
5337                 DRM_ERROR("we currently only support 64x64 cursors\n");
5338                 return -EINVAL;
5339         }
5340
5341         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5342         if (&obj->base == NULL)
5343                 return -ENOENT;
5344
5345         if (obj->base.size < width * height * 4) {
5346                 DRM_ERROR("buffer is to small\n");
5347                 ret = -ENOMEM;
5348                 goto fail;
5349         }
5350
5351         /* we only need to pin inside GTT if cursor is non-phy */
5352         mutex_lock(&dev->struct_mutex);
5353         if (!dev_priv->info->cursor_needs_physical) {
5354                 if (obj->tiling_mode) {
5355                         DRM_ERROR("cursor cannot be tiled\n");
5356                         ret = -EINVAL;
5357                         goto fail_locked;
5358                 }
5359
5360                 ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
5361                 if (ret) {
5362                         DRM_ERROR("failed to pin cursor bo\n");
5363                         goto fail_locked;
5364                 }
5365
5366                 ret = i915_gem_object_set_to_gtt_domain(obj, 0);
5367                 if (ret) {
5368                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5369                         goto fail_unpin;
5370                 }
5371
5372                 ret = i915_gem_object_put_fence(obj);
5373                 if (ret) {
5374                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5375                         goto fail_unpin;
5376                 }
5377
5378                 addr = obj->gtt_offset;
5379         } else {
5380                 int align = IS_I830(dev) ? 16 * 1024 : 256;
5381                 ret = i915_gem_attach_phys_object(dev, obj,
5382                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5383                                                   align);
5384                 if (ret) {
5385                         DRM_ERROR("failed to attach phys object\n");
5386                         goto fail_locked;
5387                 }
5388                 addr = obj->phys_obj->handle->busaddr;
5389         }
5390
5391         if (IS_GEN2(dev))
5392                 I915_WRITE(CURSIZE, (height << 12) | width);
5393
5394  finish:
5395         if (intel_crtc->cursor_bo) {
5396                 if (dev_priv->info->cursor_needs_physical) {
5397                         if (intel_crtc->cursor_bo != obj)
5398                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5399                 } else
5400                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5401                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5402         }
5403
5404         mutex_unlock(&dev->struct_mutex);
5405
5406         intel_crtc->cursor_addr = addr;
5407         intel_crtc->cursor_bo = obj;
5408         intel_crtc->cursor_width = width;
5409         intel_crtc->cursor_height = height;
5410
5411         intel_crtc_update_cursor(crtc, true);
5412
5413         return 0;
5414 fail_unpin:
5415         i915_gem_object_unpin(obj);
5416 fail_locked:
5417         mutex_unlock(&dev->struct_mutex);
5418 fail:
5419         drm_gem_object_unreference_unlocked(&obj->base);
5420         return ret;
5421 }
5422
5423 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5424 {
5425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5426
5427         intel_crtc->cursor_x = x;
5428         intel_crtc->cursor_y = y;
5429
5430         intel_crtc_update_cursor(crtc, true);
5431
5432         return 0;
5433 }
5434
5435 /** Sets the color ramps on behalf of RandR */
5436 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5437                                  u16 blue, int regno)
5438 {
5439         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5440
5441         intel_crtc->lut_r[regno] = red >> 8;
5442         intel_crtc->lut_g[regno] = green >> 8;
5443         intel_crtc->lut_b[regno] = blue >> 8;
5444 }
5445
5446 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5447                              u16 *blue, int regno)
5448 {
5449         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5450
5451         *red = intel_crtc->lut_r[regno] << 8;
5452         *green = intel_crtc->lut_g[regno] << 8;
5453         *blue = intel_crtc->lut_b[regno] << 8;
5454 }
5455
5456 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5457                                  u16 *blue, uint32_t start, uint32_t size)
5458 {
5459         int end = (start + size > 256) ? 256 : start + size, i;
5460         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5461
5462         for (i = start; i < end; i++) {
5463                 intel_crtc->lut_r[i] = red[i] >> 8;
5464                 intel_crtc->lut_g[i] = green[i] >> 8;
5465                 intel_crtc->lut_b[i] = blue[i] >> 8;
5466         }
5467
5468         intel_crtc_load_lut(crtc);
5469 }
5470
5471 /**
5472  * Get a pipe with a simple mode set on it for doing load-based monitor
5473  * detection.
5474  *
5475  * It will be up to the load-detect code to adjust the pipe as appropriate for
5476  * its requirements.  The pipe will be connected to no other encoders.
5477  *
5478  * Currently this code will only succeed if there is a pipe with no encoders
5479  * configured for it.  In the future, it could choose to temporarily disable
5480  * some outputs to free up a pipe for its use.
5481  *
5482  * \return crtc, or NULL if no pipes are available.
5483  */
5484
5485 /* VESA 640x480x72Hz mode to set on the pipe */
5486 static struct drm_display_mode load_detect_mode = {
5487         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5488                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5489 };
5490
5491 static struct drm_framebuffer *
5492 intel_framebuffer_create(struct drm_device *dev,
5493                          struct drm_mode_fb_cmd *mode_cmd,
5494                          struct drm_i915_gem_object *obj)
5495 {
5496         struct intel_framebuffer *intel_fb;
5497         int ret;
5498
5499         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5500         if (!intel_fb) {
5501                 drm_gem_object_unreference_unlocked(&obj->base);
5502                 return ERR_PTR(-ENOMEM);
5503         }
5504
5505         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5506         if (ret) {
5507                 drm_gem_object_unreference_unlocked(&obj->base);
5508                 kfree(intel_fb);
5509                 return ERR_PTR(ret);
5510         }
5511
5512         return &intel_fb->base;
5513 }
5514
5515 static u32
5516 intel_framebuffer_pitch_for_width(int width, int bpp)
5517 {
5518         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5519         return ALIGN(pitch, 64);
5520 }
5521
5522 static u32
5523 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5524 {
5525         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5526         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5527 }
5528
5529 static struct drm_framebuffer *
5530 intel_framebuffer_create_for_mode(struct drm_device *dev,
5531                                   struct drm_display_mode *mode,
5532                                   int depth, int bpp)
5533 {
5534         struct drm_i915_gem_object *obj;
5535         struct drm_mode_fb_cmd mode_cmd;
5536
5537         obj = i915_gem_alloc_object(dev,
5538                                     intel_framebuffer_size_for_mode(mode, bpp));
5539         if (obj == NULL)
5540                 return ERR_PTR(-ENOMEM);
5541
5542         mode_cmd.width = mode->hdisplay;
5543         mode_cmd.height = mode->vdisplay;
5544         mode_cmd.depth = depth;
5545         mode_cmd.bpp = bpp;
5546         mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
5547
5548         return intel_framebuffer_create(dev, &mode_cmd, obj);
5549 }
5550
5551 static struct drm_framebuffer *
5552 mode_fits_in_fbdev(struct drm_device *dev,
5553                    struct drm_display_mode *mode)
5554 {
5555         struct drm_i915_private *dev_priv = dev->dev_private;
5556         struct drm_i915_gem_object *obj;
5557         struct drm_framebuffer *fb;
5558
5559         if (dev_priv->fbdev == NULL)
5560                 return NULL;
5561
5562         obj = dev_priv->fbdev->ifb.obj;
5563         if (obj == NULL)
5564                 return NULL;
5565
5566         fb = &dev_priv->fbdev->ifb.base;
5567         if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
5568                                                           fb->bits_per_pixel))
5569                 return NULL;
5570
5571         if (obj->base.size < mode->vdisplay * fb->pitch)
5572                 return NULL;
5573
5574         return fb;
5575 }
5576
5577 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5578                                 struct drm_connector *connector,
5579                                 struct drm_display_mode *mode,
5580                                 struct intel_load_detect_pipe *old)
5581 {
5582         struct intel_crtc *intel_crtc;
5583         struct drm_crtc *possible_crtc;
5584         struct drm_encoder *encoder = &intel_encoder->base;
5585         struct drm_crtc *crtc = NULL;
5586         struct drm_device *dev = encoder->dev;
5587         struct drm_framebuffer *old_fb;
5588         int i = -1;
5589
5590         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5591                       connector->base.id, drm_get_connector_name(connector),
5592                       encoder->base.id, drm_get_encoder_name(encoder));
5593
5594         /*
5595          * Algorithm gets a little messy:
5596          *
5597          *   - if the connector already has an assigned crtc, use it (but make
5598          *     sure it's on first)
5599          *
5600          *   - try to find the first unused crtc that can drive this connector,
5601          *     and use that if we find one
5602          */
5603
5604         /* See if we already have a CRTC for this connector */
5605         if (encoder->crtc) {
5606                 crtc = encoder->crtc;
5607
5608                 intel_crtc = to_intel_crtc(crtc);
5609                 old->dpms_mode = intel_crtc->dpms_mode;
5610                 old->load_detect_temp = false;
5611
5612                 /* Make sure the crtc and connector are running */
5613                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5614                         struct drm_encoder_helper_funcs *encoder_funcs;
5615                         struct drm_crtc_helper_funcs *crtc_funcs;
5616
5617                         crtc_funcs = crtc->helper_private;
5618                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5619
5620                         encoder_funcs = encoder->helper_private;
5621                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5622                 }
5623
5624                 return true;
5625         }
5626
5627         /* Find an unused one (if possible) */
5628         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5629                 i++;
5630                 if (!(encoder->possible_crtcs & (1 << i)))
5631                         continue;
5632                 if (!possible_crtc->enabled) {
5633                         crtc = possible_crtc;
5634                         break;
5635                 }
5636         }
5637
5638         /*
5639          * If we didn't find an unused CRTC, don't use any.
5640          */
5641         if (!crtc) {
5642                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5643                 return false;
5644         }
5645
5646         encoder->crtc = crtc;
5647         connector->encoder = encoder;
5648
5649         intel_crtc = to_intel_crtc(crtc);
5650         old->dpms_mode = intel_crtc->dpms_mode;
5651         old->load_detect_temp = true;
5652         old->release_fb = NULL;
5653
5654         if (!mode)
5655                 mode = &load_detect_mode;
5656
5657         old_fb = crtc->fb;
5658
5659         /* We need a framebuffer large enough to accommodate all accesses
5660          * that the plane may generate whilst we perform load detection.
5661          * We can not rely on the fbcon either being present (we get called
5662          * during its initialisation to detect all boot displays, or it may
5663          * not even exist) or that it is large enough to satisfy the
5664          * requested mode.
5665          */
5666         crtc->fb = mode_fits_in_fbdev(dev, mode);
5667         if (crtc->fb == NULL) {
5668                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5669                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5670                 old->release_fb = crtc->fb;
5671         } else
5672                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5673         if (IS_ERR(crtc->fb)) {
5674                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5675                 crtc->fb = old_fb;
5676                 return false;
5677         }
5678
5679         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5680                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5681                 if (old->release_fb)
5682                         old->release_fb->funcs->destroy(old->release_fb);
5683                 crtc->fb = old_fb;
5684                 return false;
5685         }
5686
5687         /* let the connector get through one full cycle before testing */
5688         intel_wait_for_vblank(dev, intel_crtc->pipe);
5689
5690         return true;
5691 }
5692
5693 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5694                                     struct drm_connector *connector,
5695                                     struct intel_load_detect_pipe *old)
5696 {
5697         struct drm_encoder *encoder = &intel_encoder->base;
5698         struct drm_device *dev = encoder->dev;
5699         struct drm_crtc *crtc = encoder->crtc;
5700         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5701         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5702
5703         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5704                       connector->base.id, drm_get_connector_name(connector),
5705                       encoder->base.id, drm_get_encoder_name(encoder));
5706
5707         if (old->load_detect_temp) {
5708                 connector->encoder = NULL;
5709                 drm_helper_disable_unused_functions(dev);
5710
5711                 if (old->release_fb)
5712                         old->release_fb->funcs->destroy(old->release_fb);
5713
5714                 return;
5715         }
5716
5717         /* Switch crtc and encoder back off if necessary */
5718         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5719                 encoder_funcs->dpms(encoder, old->dpms_mode);
5720                 crtc_funcs->dpms(crtc, old->dpms_mode);
5721         }
5722 }
5723
5724 /* Returns the clock of the currently programmed mode of the given pipe. */
5725 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5726 {
5727         struct drm_i915_private *dev_priv = dev->dev_private;
5728         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5729         int pipe = intel_crtc->pipe;
5730         u32 dpll = I915_READ(DPLL(pipe));
5731         u32 fp;
5732         intel_clock_t clock;
5733
5734         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5735                 fp = I915_READ(FP0(pipe));
5736         else
5737                 fp = I915_READ(FP1(pipe));
5738
5739         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5740         if (IS_PINEVIEW(dev)) {
5741                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5742                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5743         } else {
5744                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5745                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5746         }
5747
5748         if (!IS_GEN2(dev)) {
5749                 if (IS_PINEVIEW(dev))
5750                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5751                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5752                 else
5753                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5754                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5755
5756                 switch (dpll & DPLL_MODE_MASK) {
5757                 case DPLLB_MODE_DAC_SERIAL:
5758                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5759                                 5 : 10;
5760                         break;
5761                 case DPLLB_MODE_LVDS:
5762                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5763                                 7 : 14;
5764                         break;
5765                 default:
5766                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5767                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5768                         return 0;
5769                 }
5770
5771                 /* XXX: Handle the 100Mhz refclk */
5772                 intel_clock(dev, 96000, &clock);
5773         } else {
5774                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5775
5776                 if (is_lvds) {
5777                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5778                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5779                         clock.p2 = 14;
5780
5781                         if ((dpll & PLL_REF_INPUT_MASK) ==
5782                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5783                                 /* XXX: might not be 66MHz */
5784                                 intel_clock(dev, 66000, &clock);
5785                         } else
5786                                 intel_clock(dev, 48000, &clock);
5787                 } else {
5788                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5789                                 clock.p1 = 2;
5790                         else {
5791                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5792                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5793                         }
5794                         if (dpll & PLL_P2_DIVIDE_BY_4)
5795                                 clock.p2 = 4;
5796                         else
5797                                 clock.p2 = 2;
5798
5799                         intel_clock(dev, 48000, &clock);
5800                 }
5801         }
5802
5803         /* XXX: It would be nice to validate the clocks, but we can't reuse
5804          * i830PllIsValid() because it relies on the xf86_config connector
5805          * configuration being accurate, which it isn't necessarily.
5806          */
5807
5808         return clock.dot;
5809 }
5810
5811 /** Returns the currently programmed mode of the given pipe. */
5812 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5813                                              struct drm_crtc *crtc)
5814 {
5815         struct drm_i915_private *dev_priv = dev->dev_private;
5816         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5817         int pipe = intel_crtc->pipe;
5818         struct drm_display_mode *mode;
5819         int htot = I915_READ(HTOTAL(pipe));
5820         int hsync = I915_READ(HSYNC(pipe));
5821         int vtot = I915_READ(VTOTAL(pipe));
5822         int vsync = I915_READ(VSYNC(pipe));
5823
5824         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5825         if (!mode)
5826                 return NULL;
5827
5828         mode->clock = intel_crtc_clock_get(dev, crtc);
5829         mode->hdisplay = (htot & 0xffff) + 1;
5830         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5831         mode->hsync_start = (hsync & 0xffff) + 1;
5832         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5833         mode->vdisplay = (vtot & 0xffff) + 1;
5834         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5835         mode->vsync_start = (vsync & 0xffff) + 1;
5836         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5837
5838         drm_mode_set_name(mode);
5839         drm_mode_set_crtcinfo(mode, 0);
5840
5841         return mode;
5842 }
5843
5844 #define GPU_IDLE_TIMEOUT 500 /* ms */
5845
5846 /* When this timer fires, we've been idle for awhile */
5847 static void intel_gpu_idle_timer(unsigned long arg)
5848 {
5849         struct drm_device *dev = (struct drm_device *)arg;
5850         drm_i915_private_t *dev_priv = dev->dev_private;
5851
5852         if (!list_empty(&dev_priv->mm.active_list)) {
5853                 /* Still processing requests, so just re-arm the timer. */
5854                 mod_timer(&dev_priv->idle_timer, jiffies +
5855                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5856                 return;
5857         }
5858
5859         dev_priv->busy = false;
5860         queue_work(dev_priv->wq, &dev_priv->idle_work);
5861 }
5862
5863 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5864
5865 static void intel_crtc_idle_timer(unsigned long arg)
5866 {
5867         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5868         struct drm_crtc *crtc = &intel_crtc->base;
5869         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5870         struct intel_framebuffer *intel_fb;
5871
5872         intel_fb = to_intel_framebuffer(crtc->fb);
5873         if (intel_fb && intel_fb->obj->active) {
5874                 /* The framebuffer is still being accessed by the GPU. */
5875                 mod_timer(&intel_crtc->idle_timer, jiffies +
5876                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5877                 return;
5878         }
5879
5880         intel_crtc->busy = false;
5881         queue_work(dev_priv->wq, &dev_priv->idle_work);
5882 }
5883
5884 static void intel_increase_pllclock(struct drm_crtc *crtc)
5885 {
5886         struct drm_device *dev = crtc->dev;
5887         drm_i915_private_t *dev_priv = dev->dev_private;
5888         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5889         int pipe = intel_crtc->pipe;
5890         int dpll_reg = DPLL(pipe);
5891         int dpll;
5892
5893         if (HAS_PCH_SPLIT(dev))
5894                 return;
5895
5896         if (!dev_priv->lvds_downclock_avail)
5897                 return;
5898
5899         dpll = I915_READ(dpll_reg);
5900         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5901                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5902
5903                 /* Unlock panel regs */
5904                 I915_WRITE(PP_CONTROL,
5905                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
5906
5907                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5908                 I915_WRITE(dpll_reg, dpll);
5909                 intel_wait_for_vblank(dev, pipe);
5910
5911                 dpll = I915_READ(dpll_reg);
5912                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5913                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5914
5915                 /* ...and lock them again */
5916                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5917         }
5918
5919         /* Schedule downclock */
5920         mod_timer(&intel_crtc->idle_timer, jiffies +
5921                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5922 }
5923
5924 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5925 {
5926         struct drm_device *dev = crtc->dev;
5927         drm_i915_private_t *dev_priv = dev->dev_private;
5928         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5929         int pipe = intel_crtc->pipe;
5930         int dpll_reg = DPLL(pipe);
5931         int dpll = I915_READ(dpll_reg);
5932
5933         if (HAS_PCH_SPLIT(dev))
5934                 return;
5935
5936         if (!dev_priv->lvds_downclock_avail)
5937                 return;
5938
5939         /*
5940          * Since this is called by a timer, we should never get here in
5941          * the manual case.
5942          */
5943         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5944                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5945
5946                 /* Unlock panel regs */
5947                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
5948                            PANEL_UNLOCK_REGS);
5949
5950                 dpll |= DISPLAY_RATE_SELECT_FPA1;
5951                 I915_WRITE(dpll_reg, dpll);
5952                 intel_wait_for_vblank(dev, pipe);
5953                 dpll = I915_READ(dpll_reg);
5954                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5955                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5956
5957                 /* ...and lock them again */
5958                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5959         }
5960
5961 }
5962
5963 /**
5964  * intel_idle_update - adjust clocks for idleness
5965  * @work: work struct
5966  *
5967  * Either the GPU or display (or both) went idle.  Check the busy status
5968  * here and adjust the CRTC and GPU clocks as necessary.
5969  */
5970 static void intel_idle_update(struct work_struct *work)
5971 {
5972         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5973                                                     idle_work);
5974         struct drm_device *dev = dev_priv->dev;
5975         struct drm_crtc *crtc;
5976         struct intel_crtc *intel_crtc;
5977
5978         if (!i915_powersave)
5979                 return;
5980
5981         mutex_lock(&dev->struct_mutex);
5982
5983         i915_update_gfx_val(dev_priv);
5984
5985         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5986                 /* Skip inactive CRTCs */
5987                 if (!crtc->fb)
5988                         continue;
5989
5990                 intel_crtc = to_intel_crtc(crtc);
5991                 if (!intel_crtc->busy)
5992                         intel_decrease_pllclock(crtc);
5993         }
5994
5995
5996         mutex_unlock(&dev->struct_mutex);
5997 }
5998
5999 /**
6000  * intel_mark_busy - mark the GPU and possibly the display busy
6001  * @dev: drm device
6002  * @obj: object we're operating on
6003  *
6004  * Callers can use this function to indicate that the GPU is busy processing
6005  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
6006  * buffer), we'll also mark the display as busy, so we know to increase its
6007  * clock frequency.
6008  */
6009 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6010 {
6011         drm_i915_private_t *dev_priv = dev->dev_private;
6012         struct drm_crtc *crtc = NULL;
6013         struct intel_framebuffer *intel_fb;
6014         struct intel_crtc *intel_crtc;
6015
6016         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6017                 return;
6018
6019         if (!dev_priv->busy)
6020                 dev_priv->busy = true;
6021         else
6022                 mod_timer(&dev_priv->idle_timer, jiffies +
6023                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6024
6025         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6026                 if (!crtc->fb)
6027                         continue;
6028
6029                 intel_crtc = to_intel_crtc(crtc);
6030                 intel_fb = to_intel_framebuffer(crtc->fb);
6031                 if (intel_fb->obj == obj) {
6032                         if (!intel_crtc->busy) {
6033                                 /* Non-busy -> busy, upclock */
6034                                 intel_increase_pllclock(crtc);
6035                                 intel_crtc->busy = true;
6036                         } else {
6037                                 /* Busy -> busy, put off timer */
6038                                 mod_timer(&intel_crtc->idle_timer, jiffies +
6039                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6040                         }
6041                 }
6042         }
6043 }
6044
6045 static void intel_crtc_destroy(struct drm_crtc *crtc)
6046 {
6047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6048         struct drm_device *dev = crtc->dev;
6049         struct intel_unpin_work *work;
6050         unsigned long flags;
6051
6052         spin_lock_irqsave(&dev->event_lock, flags);
6053         work = intel_crtc->unpin_work;
6054         intel_crtc->unpin_work = NULL;
6055         spin_unlock_irqrestore(&dev->event_lock, flags);
6056
6057         if (work) {
6058                 cancel_work_sync(&work->work);
6059                 kfree(work);
6060         }
6061
6062         drm_crtc_cleanup(crtc);
6063
6064         kfree(intel_crtc);
6065 }
6066
6067 static void intel_unpin_work_fn(struct work_struct *__work)
6068 {
6069         struct intel_unpin_work *work =
6070                 container_of(__work, struct intel_unpin_work, work);
6071
6072         mutex_lock(&work->dev->struct_mutex);
6073         i915_gem_object_unpin(work->old_fb_obj);
6074         drm_gem_object_unreference(&work->pending_flip_obj->base);
6075         drm_gem_object_unreference(&work->old_fb_obj->base);
6076
6077         mutex_unlock(&work->dev->struct_mutex);
6078         kfree(work);
6079 }
6080
6081 static void do_intel_finish_page_flip(struct drm_device *dev,
6082                                       struct drm_crtc *crtc)
6083 {
6084         drm_i915_private_t *dev_priv = dev->dev_private;
6085         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6086         struct intel_unpin_work *work;
6087         struct drm_i915_gem_object *obj;
6088         struct drm_pending_vblank_event *e;
6089         struct timeval tnow, tvbl;
6090         unsigned long flags;
6091
6092         /* Ignore early vblank irqs */
6093         if (intel_crtc == NULL)
6094                 return;
6095
6096         do_gettimeofday(&tnow);
6097
6098         spin_lock_irqsave(&dev->event_lock, flags);
6099         work = intel_crtc->unpin_work;
6100         if (work == NULL || !work->pending) {
6101                 spin_unlock_irqrestore(&dev->event_lock, flags);
6102                 return;
6103         }
6104
6105         intel_crtc->unpin_work = NULL;
6106
6107         if (work->event) {
6108                 e = work->event;
6109                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6110
6111                 /* Called before vblank count and timestamps have
6112                  * been updated for the vblank interval of flip
6113                  * completion? Need to increment vblank count and
6114                  * add one videorefresh duration to returned timestamp
6115                  * to account for this. We assume this happened if we
6116                  * get called over 0.9 frame durations after the last
6117                  * timestamped vblank.
6118                  *
6119                  * This calculation can not be used with vrefresh rates
6120                  * below 5Hz (10Hz to be on the safe side) without
6121                  * promoting to 64 integers.
6122                  */
6123                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6124                     9 * crtc->framedur_ns) {
6125                         e->event.sequence++;
6126                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6127                                              crtc->framedur_ns);
6128                 }
6129
6130                 e->event.tv_sec = tvbl.tv_sec;
6131                 e->event.tv_usec = tvbl.tv_usec;
6132
6133                 list_add_tail(&e->base.link,
6134                               &e->base.file_priv->event_list);
6135                 wake_up_interruptible(&e->base.file_priv->event_wait);
6136         }
6137
6138         drm_vblank_put(dev, intel_crtc->pipe);
6139
6140         spin_unlock_irqrestore(&dev->event_lock, flags);
6141
6142         obj = work->old_fb_obj;
6143
6144         atomic_clear_mask(1 << intel_crtc->plane,
6145                           &obj->pending_flip.counter);
6146         if (atomic_read(&obj->pending_flip) == 0)
6147                 wake_up(&dev_priv->pending_flip_queue);
6148
6149         schedule_work(&work->work);
6150
6151         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6152 }
6153
6154 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6155 {
6156         drm_i915_private_t *dev_priv = dev->dev_private;
6157         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6158
6159         do_intel_finish_page_flip(dev, crtc);
6160 }
6161
6162 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6163 {
6164         drm_i915_private_t *dev_priv = dev->dev_private;
6165         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6166
6167         do_intel_finish_page_flip(dev, crtc);
6168 }
6169
6170 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6171 {
6172         drm_i915_private_t *dev_priv = dev->dev_private;
6173         struct intel_crtc *intel_crtc =
6174                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6175         unsigned long flags;
6176
6177         spin_lock_irqsave(&dev->event_lock, flags);
6178         if (intel_crtc->unpin_work) {
6179                 if ((++intel_crtc->unpin_work->pending) > 1)
6180                         DRM_ERROR("Prepared flip multiple times\n");
6181         } else {
6182                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6183         }
6184         spin_unlock_irqrestore(&dev->event_lock, flags);
6185 }
6186
6187 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6188                                 struct drm_framebuffer *fb,
6189                                 struct drm_pending_vblank_event *event)
6190 {
6191         struct drm_device *dev = crtc->dev;
6192         struct drm_i915_private *dev_priv = dev->dev_private;
6193         struct intel_framebuffer *intel_fb;
6194         struct drm_i915_gem_object *obj;
6195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6196         struct intel_unpin_work *work;
6197         unsigned long flags, offset;
6198         int pipe = intel_crtc->pipe;
6199         u32 pf, pipesrc;
6200         int ret;
6201
6202         work = kzalloc(sizeof *work, GFP_KERNEL);
6203         if (work == NULL)
6204                 return -ENOMEM;
6205
6206         work->event = event;
6207         work->dev = crtc->dev;
6208         intel_fb = to_intel_framebuffer(crtc->fb);
6209         work->old_fb_obj = intel_fb->obj;
6210         INIT_WORK(&work->work, intel_unpin_work_fn);
6211
6212         /* We borrow the event spin lock for protecting unpin_work */
6213         spin_lock_irqsave(&dev->event_lock, flags);
6214         if (intel_crtc->unpin_work) {
6215                 spin_unlock_irqrestore(&dev->event_lock, flags);
6216                 kfree(work);
6217
6218                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6219                 return -EBUSY;
6220         }
6221         intel_crtc->unpin_work = work;
6222         spin_unlock_irqrestore(&dev->event_lock, flags);
6223
6224         intel_fb = to_intel_framebuffer(fb);
6225         obj = intel_fb->obj;
6226
6227         mutex_lock(&dev->struct_mutex);
6228         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6229         if (ret)
6230                 goto cleanup_work;
6231
6232         /* Reference the objects for the scheduled work. */
6233         drm_gem_object_reference(&work->old_fb_obj->base);
6234         drm_gem_object_reference(&obj->base);
6235
6236         crtc->fb = fb;
6237
6238         ret = drm_vblank_get(dev, intel_crtc->pipe);
6239         if (ret)
6240                 goto cleanup_objs;
6241
6242         if (IS_GEN3(dev) || IS_GEN2(dev)) {
6243                 u32 flip_mask;
6244
6245                 /* Can't queue multiple flips, so wait for the previous
6246                  * one to finish before executing the next.
6247                  */
6248                 ret = BEGIN_LP_RING(2);
6249                 if (ret)
6250                         goto cleanup_objs;
6251
6252                 if (intel_crtc->plane)
6253                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6254                 else
6255                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6256                 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6257                 OUT_RING(MI_NOOP);
6258                 ADVANCE_LP_RING();
6259         }
6260
6261         work->pending_flip_obj = obj;
6262
6263         work->enable_stall_check = true;
6264
6265         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6266         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6267
6268         ret = BEGIN_LP_RING(4);
6269         if (ret)
6270                 goto cleanup_objs;
6271
6272         /* Block clients from rendering to the new back buffer until
6273          * the flip occurs and the object is no longer visible.
6274          */
6275         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6276
6277         switch (INTEL_INFO(dev)->gen) {
6278         case 2:
6279                 OUT_RING(MI_DISPLAY_FLIP |
6280                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6281                 OUT_RING(fb->pitch);
6282                 OUT_RING(obj->gtt_offset + offset);
6283                 OUT_RING(MI_NOOP);
6284                 break;
6285
6286         case 3:
6287                 OUT_RING(MI_DISPLAY_FLIP_I915 |
6288                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6289                 OUT_RING(fb->pitch);
6290                 OUT_RING(obj->gtt_offset + offset);
6291                 OUT_RING(MI_NOOP);
6292                 break;
6293
6294         case 4:
6295         case 5:
6296                 /* i965+ uses the linear or tiled offsets from the
6297                  * Display Registers (which do not change across a page-flip)
6298                  * so we need only reprogram the base address.
6299                  */
6300                 OUT_RING(MI_DISPLAY_FLIP |
6301                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6302                 OUT_RING(fb->pitch);
6303                 OUT_RING(obj->gtt_offset | obj->tiling_mode);
6304
6305                 /* XXX Enabling the panel-fitter across page-flip is so far
6306                  * untested on non-native modes, so ignore it for now.
6307                  * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6308                  */
6309                 pf = 0;
6310                 pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
6311                 OUT_RING(pf | pipesrc);
6312                 break;
6313
6314         case 6:
6315                 OUT_RING(MI_DISPLAY_FLIP |
6316                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6317                 OUT_RING(fb->pitch | obj->tiling_mode);
6318                 OUT_RING(obj->gtt_offset);
6319
6320                 pf = I915_READ(PF_CTL(pipe)) & PF_ENABLE;
6321                 pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
6322                 OUT_RING(pf | pipesrc);
6323                 break;
6324         }
6325         ADVANCE_LP_RING();
6326
6327         mutex_unlock(&dev->struct_mutex);
6328
6329         trace_i915_flip_request(intel_crtc->plane, obj);
6330
6331         return 0;
6332
6333 cleanup_objs:
6334         drm_gem_object_unreference(&work->old_fb_obj->base);
6335         drm_gem_object_unreference(&obj->base);
6336 cleanup_work:
6337         mutex_unlock(&dev->struct_mutex);
6338
6339         spin_lock_irqsave(&dev->event_lock, flags);
6340         intel_crtc->unpin_work = NULL;
6341         spin_unlock_irqrestore(&dev->event_lock, flags);
6342
6343         kfree(work);
6344
6345         return ret;
6346 }
6347
6348 static void intel_sanitize_modesetting(struct drm_device *dev,
6349                                        int pipe, int plane)
6350 {
6351         struct drm_i915_private *dev_priv = dev->dev_private;
6352         u32 reg, val;
6353
6354         if (HAS_PCH_SPLIT(dev))
6355                 return;
6356
6357         /* Who knows what state these registers were left in by the BIOS or
6358          * grub?
6359          *
6360          * If we leave the registers in a conflicting state (e.g. with the
6361          * display plane reading from the other pipe than the one we intend
6362          * to use) then when we attempt to teardown the active mode, we will
6363          * not disable the pipes and planes in the correct order -- leaving
6364          * a plane reading from a disabled pipe and possibly leading to
6365          * undefined behaviour.
6366          */
6367
6368         reg = DSPCNTR(plane);
6369         val = I915_READ(reg);
6370
6371         if ((val & DISPLAY_PLANE_ENABLE) == 0)
6372                 return;
6373         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6374                 return;
6375
6376         /* This display plane is active and attached to the other CPU pipe. */
6377         pipe = !pipe;
6378
6379         /* Disable the plane and wait for it to stop reading from the pipe. */
6380         intel_disable_plane(dev_priv, plane, pipe);
6381         intel_disable_pipe(dev_priv, pipe);
6382 }
6383
6384 static void intel_crtc_reset(struct drm_crtc *crtc)
6385 {
6386         struct drm_device *dev = crtc->dev;
6387         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6388
6389         /* Reset flags back to the 'unknown' status so that they
6390          * will be correctly set on the initial modeset.
6391          */
6392         intel_crtc->dpms_mode = -1;
6393
6394         /* We need to fix up any BIOS configuration that conflicts with
6395          * our expectations.
6396          */
6397         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6398 }
6399
6400 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6401         .dpms = intel_crtc_dpms,
6402         .mode_fixup = intel_crtc_mode_fixup,
6403         .mode_set = intel_crtc_mode_set,
6404         .mode_set_base = intel_pipe_set_base,
6405         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6406         .load_lut = intel_crtc_load_lut,
6407         .disable = intel_crtc_disable,
6408 };
6409
6410 static const struct drm_crtc_funcs intel_crtc_funcs = {
6411         .reset = intel_crtc_reset,
6412         .cursor_set = intel_crtc_cursor_set,
6413         .cursor_move = intel_crtc_cursor_move,
6414         .gamma_set = intel_crtc_gamma_set,
6415         .set_config = drm_crtc_helper_set_config,
6416         .destroy = intel_crtc_destroy,
6417         .page_flip = intel_crtc_page_flip,
6418 };
6419
6420 static void intel_crtc_init(struct drm_device *dev, int pipe)
6421 {
6422         drm_i915_private_t *dev_priv = dev->dev_private;
6423         struct intel_crtc *intel_crtc;
6424         int i;
6425
6426         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6427         if (intel_crtc == NULL)
6428                 return;
6429
6430         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6431
6432         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6433         for (i = 0; i < 256; i++) {
6434                 intel_crtc->lut_r[i] = i;
6435                 intel_crtc->lut_g[i] = i;
6436                 intel_crtc->lut_b[i] = i;
6437         }
6438
6439         /* Swap pipes & planes for FBC on pre-965 */
6440         intel_crtc->pipe = pipe;
6441         intel_crtc->plane = pipe;
6442         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6443                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6444                 intel_crtc->plane = !pipe;
6445         }
6446
6447         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6448                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6449         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6450         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6451
6452         intel_crtc_reset(&intel_crtc->base);
6453         intel_crtc->active = true; /* force the pipe off on setup_init_config */
6454
6455         if (HAS_PCH_SPLIT(dev)) {
6456                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6457                 intel_helper_funcs.commit = ironlake_crtc_commit;
6458         } else {
6459                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6460                 intel_helper_funcs.commit = i9xx_crtc_commit;
6461         }
6462
6463         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6464
6465         intel_crtc->busy = false;
6466
6467         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6468                     (unsigned long)intel_crtc);
6469 }
6470
6471 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6472                                 struct drm_file *file)
6473 {
6474         drm_i915_private_t *dev_priv = dev->dev_private;
6475         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6476         struct drm_mode_object *drmmode_obj;
6477         struct intel_crtc *crtc;
6478
6479         if (!dev_priv) {
6480                 DRM_ERROR("called with no initialization\n");
6481                 return -EINVAL;
6482         }
6483
6484         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6485                         DRM_MODE_OBJECT_CRTC);
6486
6487         if (!drmmode_obj) {
6488                 DRM_ERROR("no such CRTC id\n");
6489                 return -EINVAL;
6490         }
6491
6492         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6493         pipe_from_crtc_id->pipe = crtc->pipe;
6494
6495         return 0;
6496 }
6497
6498 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6499 {
6500         struct intel_encoder *encoder;
6501         int index_mask = 0;
6502         int entry = 0;
6503
6504         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6505                 if (type_mask & encoder->clone_mask)
6506                         index_mask |= (1 << entry);
6507                 entry++;
6508         }
6509
6510         return index_mask;
6511 }
6512
6513 static bool has_edp_a(struct drm_device *dev)
6514 {
6515         struct drm_i915_private *dev_priv = dev->dev_private;
6516
6517         if (!IS_MOBILE(dev))
6518                 return false;
6519
6520         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6521                 return false;
6522
6523         if (IS_GEN5(dev) &&
6524             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6525                 return false;
6526
6527         return true;
6528 }
6529
6530 static void intel_setup_outputs(struct drm_device *dev)
6531 {
6532         struct drm_i915_private *dev_priv = dev->dev_private;
6533         struct intel_encoder *encoder;
6534         bool dpd_is_edp = false;
6535         bool has_lvds = false;
6536
6537         if (IS_MOBILE(dev) && !IS_I830(dev))
6538                 has_lvds = intel_lvds_init(dev);
6539         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6540                 /* disable the panel fitter on everything but LVDS */
6541                 I915_WRITE(PFIT_CONTROL, 0);
6542         }
6543
6544         if (HAS_PCH_SPLIT(dev)) {
6545                 dpd_is_edp = intel_dpd_is_edp(dev);
6546
6547                 if (has_edp_a(dev))
6548                         intel_dp_init(dev, DP_A);
6549
6550                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6551                         intel_dp_init(dev, PCH_DP_D);
6552         }
6553
6554         intel_crt_init(dev);
6555
6556         if (HAS_PCH_SPLIT(dev)) {
6557                 int found;
6558
6559                 if (I915_READ(HDMIB) & PORT_DETECTED) {
6560                         /* PCH SDVOB multiplex with HDMIB */
6561                         found = intel_sdvo_init(dev, PCH_SDVOB);
6562                         if (!found)
6563                                 intel_hdmi_init(dev, HDMIB);
6564                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6565                                 intel_dp_init(dev, PCH_DP_B);
6566                 }
6567
6568                 if (I915_READ(HDMIC) & PORT_DETECTED)
6569                         intel_hdmi_init(dev, HDMIC);
6570
6571                 if (I915_READ(HDMID) & PORT_DETECTED)
6572                         intel_hdmi_init(dev, HDMID);
6573
6574                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6575                         intel_dp_init(dev, PCH_DP_C);
6576
6577                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6578                         intel_dp_init(dev, PCH_DP_D);
6579
6580         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6581                 bool found = false;
6582
6583                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6584                         DRM_DEBUG_KMS("probing SDVOB\n");
6585                         found = intel_sdvo_init(dev, SDVOB);
6586                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6587                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6588                                 intel_hdmi_init(dev, SDVOB);
6589                         }
6590
6591                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6592                                 DRM_DEBUG_KMS("probing DP_B\n");
6593                                 intel_dp_init(dev, DP_B);
6594                         }
6595                 }
6596
6597                 /* Before G4X SDVOC doesn't have its own detect register */
6598
6599                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6600                         DRM_DEBUG_KMS("probing SDVOC\n");
6601                         found = intel_sdvo_init(dev, SDVOC);
6602                 }
6603
6604                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6605
6606                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6607                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6608                                 intel_hdmi_init(dev, SDVOC);
6609                         }
6610                         if (SUPPORTS_INTEGRATED_DP(dev)) {
6611                                 DRM_DEBUG_KMS("probing DP_C\n");
6612                                 intel_dp_init(dev, DP_C);
6613                         }
6614                 }
6615
6616                 if (SUPPORTS_INTEGRATED_DP(dev) &&
6617                     (I915_READ(DP_D) & DP_DETECTED)) {
6618                         DRM_DEBUG_KMS("probing DP_D\n");
6619                         intel_dp_init(dev, DP_D);
6620                 }
6621         } else if (IS_GEN2(dev))
6622                 intel_dvo_init(dev);
6623
6624         if (SUPPORTS_TV(dev))
6625                 intel_tv_init(dev);
6626
6627         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6628                 encoder->base.possible_crtcs = encoder->crtc_mask;
6629                 encoder->base.possible_clones =
6630                         intel_encoder_clones(dev, encoder->clone_mask);
6631         }
6632
6633         intel_panel_setup_backlight(dev);
6634
6635         /* disable all the possible outputs/crtcs before entering KMS mode */
6636         drm_helper_disable_unused_functions(dev);
6637 }
6638
6639 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6640 {
6641         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6642
6643         drm_framebuffer_cleanup(fb);
6644         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6645
6646         kfree(intel_fb);
6647 }
6648
6649 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6650                                                 struct drm_file *file,
6651                                                 unsigned int *handle)
6652 {
6653         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6654         struct drm_i915_gem_object *obj = intel_fb->obj;
6655
6656         return drm_gem_handle_create(file, &obj->base, handle);
6657 }
6658
6659 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6660         .destroy = intel_user_framebuffer_destroy,
6661         .create_handle = intel_user_framebuffer_create_handle,
6662 };
6663
6664 int intel_framebuffer_init(struct drm_device *dev,
6665                            struct intel_framebuffer *intel_fb,
6666                            struct drm_mode_fb_cmd *mode_cmd,
6667                            struct drm_i915_gem_object *obj)
6668 {
6669         int ret;
6670
6671         if (obj->tiling_mode == I915_TILING_Y)
6672                 return -EINVAL;
6673
6674         if (mode_cmd->pitch & 63)
6675                 return -EINVAL;
6676
6677         switch (mode_cmd->bpp) {
6678         case 8:
6679         case 16:
6680         case 24:
6681         case 32:
6682                 break;
6683         default:
6684                 return -EINVAL;
6685         }
6686
6687         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6688         if (ret) {
6689                 DRM_ERROR("framebuffer init failed %d\n", ret);
6690                 return ret;
6691         }
6692
6693         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6694         intel_fb->obj = obj;
6695         return 0;
6696 }
6697
6698 static struct drm_framebuffer *
6699 intel_user_framebuffer_create(struct drm_device *dev,
6700                               struct drm_file *filp,
6701                               struct drm_mode_fb_cmd *mode_cmd)
6702 {
6703         struct drm_i915_gem_object *obj;
6704
6705         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
6706         if (&obj->base == NULL)
6707                 return ERR_PTR(-ENOENT);
6708
6709         return intel_framebuffer_create(dev, mode_cmd, obj);
6710 }
6711
6712 static const struct drm_mode_config_funcs intel_mode_funcs = {
6713         .fb_create = intel_user_framebuffer_create,
6714         .output_poll_changed = intel_fb_output_poll_changed,
6715 };
6716
6717 static struct drm_i915_gem_object *
6718 intel_alloc_context_page(struct drm_device *dev)
6719 {
6720         struct drm_i915_gem_object *ctx;
6721         int ret;
6722
6723         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
6724
6725         ctx = i915_gem_alloc_object(dev, 4096);
6726         if (!ctx) {
6727                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
6728                 return NULL;
6729         }
6730
6731         ret = i915_gem_object_pin(ctx, 4096, true);
6732         if (ret) {
6733                 DRM_ERROR("failed to pin power context: %d\n", ret);
6734                 goto err_unref;
6735         }
6736
6737         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
6738         if (ret) {
6739                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
6740                 goto err_unpin;
6741         }
6742
6743         return ctx;
6744
6745 err_unpin:
6746         i915_gem_object_unpin(ctx);
6747 err_unref:
6748         drm_gem_object_unreference(&ctx->base);
6749         mutex_unlock(&dev->struct_mutex);
6750         return NULL;
6751 }
6752
6753 bool ironlake_set_drps(struct drm_device *dev, u8 val)
6754 {
6755         struct drm_i915_private *dev_priv = dev->dev_private;
6756         u16 rgvswctl;
6757
6758         rgvswctl = I915_READ16(MEMSWCTL);
6759         if (rgvswctl & MEMCTL_CMD_STS) {
6760                 DRM_DEBUG("gpu busy, RCS change rejected\n");
6761                 return false; /* still busy with another command */
6762         }
6763
6764         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6765                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6766         I915_WRITE16(MEMSWCTL, rgvswctl);
6767         POSTING_READ16(MEMSWCTL);
6768
6769         rgvswctl |= MEMCTL_CMD_STS;
6770         I915_WRITE16(MEMSWCTL, rgvswctl);
6771
6772         return true;
6773 }
6774
6775 void ironlake_enable_drps(struct drm_device *dev)
6776 {
6777         struct drm_i915_private *dev_priv = dev->dev_private;
6778         u32 rgvmodectl = I915_READ(MEMMODECTL);
6779         u8 fmax, fmin, fstart, vstart;
6780
6781         /* Enable temp reporting */
6782         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6783         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6784
6785         /* 100ms RC evaluation intervals */
6786         I915_WRITE(RCUPEI, 100000);
6787         I915_WRITE(RCDNEI, 100000);
6788
6789         /* Set max/min thresholds to 90ms and 80ms respectively */
6790         I915_WRITE(RCBMAXAVG, 90000);
6791         I915_WRITE(RCBMINAVG, 80000);
6792
6793         I915_WRITE(MEMIHYST, 1);
6794
6795         /* Set up min, max, and cur for interrupt handling */
6796         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6797         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6798         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6799                 MEMMODE_FSTART_SHIFT;
6800
6801         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
6802                 PXVFREQ_PX_SHIFT;
6803
6804         dev_priv->fmax = fmax; /* IPS callback will increase this */
6805         dev_priv->fstart = fstart;
6806
6807         dev_priv->max_delay = fstart;
6808         dev_priv->min_delay = fmin;
6809         dev_priv->cur_delay = fstart;
6810
6811         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6812                          fmax, fmin, fstart);
6813
6814         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6815
6816         /*
6817          * Interrupts will be enabled in ironlake_irq_postinstall
6818          */
6819
6820         I915_WRITE(VIDSTART, vstart);
6821         POSTING_READ(VIDSTART);
6822
6823         rgvmodectl |= MEMMODE_SWMODE_EN;
6824         I915_WRITE(MEMMODECTL, rgvmodectl);
6825
6826         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6827                 DRM_ERROR("stuck trying to change perf mode\n");
6828         msleep(1);
6829
6830         ironlake_set_drps(dev, fstart);
6831
6832         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
6833                 I915_READ(0x112e0);
6834         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
6835         dev_priv->last_count2 = I915_READ(0x112f4);
6836         getrawmonotonic(&dev_priv->last_time2);
6837 }
6838
6839 void ironlake_disable_drps(struct drm_device *dev)
6840 {
6841         struct drm_i915_private *dev_priv = dev->dev_private;
6842         u16 rgvswctl = I915_READ16(MEMSWCTL);
6843
6844         /* Ack interrupts, disable EFC interrupt */
6845         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6846         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6847         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6848         I915_WRITE(DEIIR, DE_PCU_EVENT);
6849         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6850
6851         /* Go back to the starting frequency */
6852         ironlake_set_drps(dev, dev_priv->fstart);
6853         msleep(1);
6854         rgvswctl |= MEMCTL_CMD_STS;
6855         I915_WRITE(MEMSWCTL, rgvswctl);
6856         msleep(1);
6857
6858 }
6859
6860 void gen6_set_rps(struct drm_device *dev, u8 val)
6861 {
6862         struct drm_i915_private *dev_priv = dev->dev_private;
6863         u32 swreq;
6864
6865         swreq = (val & 0x3ff) << 25;
6866         I915_WRITE(GEN6_RPNSWREQ, swreq);
6867 }
6868
6869 void gen6_disable_rps(struct drm_device *dev)
6870 {
6871         struct drm_i915_private *dev_priv = dev->dev_private;
6872
6873         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6874         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
6875         I915_WRITE(GEN6_PMIER, 0);
6876
6877         spin_lock_irq(&dev_priv->rps_lock);
6878         dev_priv->pm_iir = 0;
6879         spin_unlock_irq(&dev_priv->rps_lock);
6880
6881         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
6882 }
6883
6884 static unsigned long intel_pxfreq(u32 vidfreq)
6885 {
6886         unsigned long freq;
6887         int div = (vidfreq & 0x3f0000) >> 16;
6888         int post = (vidfreq & 0x3000) >> 12;
6889         int pre = (vidfreq & 0x7);
6890
6891         if (!pre)
6892                 return 0;
6893
6894         freq = ((div * 133333) / ((1<<post) * pre));
6895
6896         return freq;
6897 }
6898
6899 void intel_init_emon(struct drm_device *dev)
6900 {
6901         struct drm_i915_private *dev_priv = dev->dev_private;
6902         u32 lcfuse;
6903         u8 pxw[16];
6904         int i;
6905
6906         /* Disable to program */
6907         I915_WRITE(ECR, 0);
6908         POSTING_READ(ECR);
6909
6910         /* Program energy weights for various events */
6911         I915_WRITE(SDEW, 0x15040d00);
6912         I915_WRITE(CSIEW0, 0x007f0000);
6913         I915_WRITE(CSIEW1, 0x1e220004);
6914         I915_WRITE(CSIEW2, 0x04000004);
6915
6916         for (i = 0; i < 5; i++)
6917                 I915_WRITE(PEW + (i * 4), 0);
6918         for (i = 0; i < 3; i++)
6919                 I915_WRITE(DEW + (i * 4), 0);
6920
6921         /* Program P-state weights to account for frequency power adjustment */
6922         for (i = 0; i < 16; i++) {
6923                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
6924                 unsigned long freq = intel_pxfreq(pxvidfreq);
6925                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6926                         PXVFREQ_PX_SHIFT;
6927                 unsigned long val;
6928
6929                 val = vid * vid;
6930                 val *= (freq / 1000);
6931                 val *= 255;
6932                 val /= (127*127*900);
6933                 if (val > 0xff)
6934                         DRM_ERROR("bad pxval: %ld\n", val);
6935                 pxw[i] = val;
6936         }
6937         /* Render standby states get 0 weight */
6938         pxw[14] = 0;
6939         pxw[15] = 0;
6940
6941         for (i = 0; i < 4; i++) {
6942                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6943                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6944                 I915_WRITE(PXW + (i * 4), val);
6945         }
6946
6947         /* Adjust magic regs to magic values (more experimental results) */
6948         I915_WRITE(OGW0, 0);
6949         I915_WRITE(OGW1, 0);
6950         I915_WRITE(EG0, 0x00007f00);
6951         I915_WRITE(EG1, 0x0000000e);
6952         I915_WRITE(EG2, 0x000e0000);
6953         I915_WRITE(EG3, 0x68000300);
6954         I915_WRITE(EG4, 0x42000000);
6955         I915_WRITE(EG5, 0x00140031);
6956         I915_WRITE(EG6, 0);
6957         I915_WRITE(EG7, 0);
6958
6959         for (i = 0; i < 8; i++)
6960                 I915_WRITE(PXWL + (i * 4), 0);
6961
6962         /* Enable PMON + select events */
6963         I915_WRITE(ECR, 0x80000019);
6964
6965         lcfuse = I915_READ(LCFUSE02);
6966
6967         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
6968 }
6969
6970 void gen6_enable_rps(struct drm_i915_private *dev_priv)
6971 {
6972         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6973         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
6974         u32 pcu_mbox, rc6_mask = 0;
6975         int cur_freq, min_freq, max_freq;
6976         int i;
6977
6978         /* Here begins a magic sequence of register writes to enable
6979          * auto-downclocking.
6980          *
6981          * Perhaps there might be some value in exposing these to
6982          * userspace...
6983          */
6984         I915_WRITE(GEN6_RC_STATE, 0);
6985         mutex_lock(&dev_priv->dev->struct_mutex);
6986         gen6_gt_force_wake_get(dev_priv);
6987
6988         /* disable the counters and set deterministic thresholds */
6989         I915_WRITE(GEN6_RC_CONTROL, 0);
6990
6991         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6992         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6993         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6994         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6995         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6996
6997         for (i = 0; i < I915_NUM_RINGS; i++)
6998                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
6999
7000         I915_WRITE(GEN6_RC_SLEEP, 0);
7001         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7002         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7003         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7004         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7005
7006         if (i915_enable_rc6)
7007                 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7008                         GEN6_RC_CTL_RC6_ENABLE;
7009
7010         I915_WRITE(GEN6_RC_CONTROL,
7011                    rc6_mask |
7012                    GEN6_RC_CTL_EI_MODE(1) |
7013                    GEN6_RC_CTL_HW_ENABLE);
7014
7015         I915_WRITE(GEN6_RPNSWREQ,
7016                    GEN6_FREQUENCY(10) |
7017                    GEN6_OFFSET(0) |
7018                    GEN6_AGGRESSIVE_TURBO);
7019         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7020                    GEN6_FREQUENCY(12));
7021
7022         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7023         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7024                    18 << 24 |
7025                    6 << 16);
7026         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7027         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7028         I915_WRITE(GEN6_RP_UP_EI, 100000);
7029         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7030         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7031         I915_WRITE(GEN6_RP_CONTROL,
7032                    GEN6_RP_MEDIA_TURBO |
7033                    GEN6_RP_USE_NORMAL_FREQ |
7034                    GEN6_RP_MEDIA_IS_GFX |
7035                    GEN6_RP_ENABLE |
7036                    GEN6_RP_UP_BUSY_AVG |
7037                    GEN6_RP_DOWN_IDLE_CONT);
7038
7039         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7040                      500))
7041                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7042
7043         I915_WRITE(GEN6_PCODE_DATA, 0);
7044         I915_WRITE(GEN6_PCODE_MAILBOX,
7045                    GEN6_PCODE_READY |
7046                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7047         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7048                      500))
7049                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7050
7051         min_freq = (rp_state_cap & 0xff0000) >> 16;
7052         max_freq = rp_state_cap & 0xff;
7053         cur_freq = (gt_perf_status & 0xff00) >> 8;
7054
7055         /* Check for overclock support */
7056         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7057                      500))
7058                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7059         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7060         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7061         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7062                      500))
7063                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7064         if (pcu_mbox & (1<<31)) { /* OC supported */
7065                 max_freq = pcu_mbox & 0xff;
7066                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7067         }
7068
7069         /* In units of 100MHz */
7070         dev_priv->max_delay = max_freq;
7071         dev_priv->min_delay = min_freq;
7072         dev_priv->cur_delay = cur_freq;
7073
7074         /* requires MSI enabled */
7075         I915_WRITE(GEN6_PMIER,
7076                    GEN6_PM_MBOX_EVENT |
7077                    GEN6_PM_THERMAL_EVENT |
7078                    GEN6_PM_RP_DOWN_TIMEOUT |
7079                    GEN6_PM_RP_UP_THRESHOLD |
7080                    GEN6_PM_RP_DOWN_THRESHOLD |
7081                    GEN6_PM_RP_UP_EI_EXPIRED |
7082                    GEN6_PM_RP_DOWN_EI_EXPIRED);
7083         spin_lock_irq(&dev_priv->rps_lock);
7084         WARN_ON(dev_priv->pm_iir != 0);
7085         I915_WRITE(GEN6_PMIMR, 0);
7086         spin_unlock_irq(&dev_priv->rps_lock);
7087         /* enable all PM interrupts */
7088         I915_WRITE(GEN6_PMINTRMSK, 0);
7089
7090         gen6_gt_force_wake_put(dev_priv);
7091         mutex_unlock(&dev_priv->dev->struct_mutex);
7092 }
7093
7094 void intel_enable_clock_gating(struct drm_device *dev)
7095 {
7096         struct drm_i915_private *dev_priv = dev->dev_private;
7097         int pipe;
7098
7099         /*
7100          * Disable clock gating reported to work incorrectly according to the
7101          * specs, but enable as much else as we can.
7102          */
7103         if (HAS_PCH_SPLIT(dev)) {
7104                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7105
7106                 if (IS_GEN5(dev)) {
7107                         /* Required for FBC */
7108                         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7109                                 DPFCRUNIT_CLOCK_GATE_DISABLE |
7110                                 DPFDUNIT_CLOCK_GATE_DISABLE;
7111                         /* Required for CxSR */
7112                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7113
7114                         I915_WRITE(PCH_3DCGDIS0,
7115                                    MARIUNIT_CLOCK_GATE_DISABLE |
7116                                    SVSMUNIT_CLOCK_GATE_DISABLE);
7117                         I915_WRITE(PCH_3DCGDIS1,
7118                                    VFMUNIT_CLOCK_GATE_DISABLE);
7119                 }
7120
7121                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7122
7123                 /*
7124                  * On Ibex Peak and Cougar Point, we need to disable clock
7125                  * gating for the panel power sequencer or it will fail to
7126                  * start up when no ports are active.
7127                  */
7128                 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7129
7130                 /*
7131                  * According to the spec the following bits should be set in
7132                  * order to enable memory self-refresh
7133                  * The bit 22/21 of 0x42004
7134                  * The bit 5 of 0x42020
7135                  * The bit 15 of 0x45000
7136                  */
7137                 if (IS_GEN5(dev)) {
7138                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7139                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
7140                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7141                         I915_WRITE(ILK_DSPCLK_GATE,
7142                                         (I915_READ(ILK_DSPCLK_GATE) |
7143                                                 ILK_DPARB_CLK_GATE));
7144                         I915_WRITE(DISP_ARB_CTL,
7145                                         (I915_READ(DISP_ARB_CTL) |
7146                                                 DISP_FBC_WM_DIS));
7147                         I915_WRITE(WM3_LP_ILK, 0);
7148                         I915_WRITE(WM2_LP_ILK, 0);
7149                         I915_WRITE(WM1_LP_ILK, 0);
7150                 }
7151                 /*
7152                  * Based on the document from hardware guys the following bits
7153                  * should be set unconditionally in order to enable FBC.
7154                  * The bit 22 of 0x42000
7155                  * The bit 22 of 0x42004
7156                  * The bit 7,8,9 of 0x42020.
7157                  */
7158                 if (IS_IRONLAKE_M(dev)) {
7159                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7160                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7161                                    ILK_FBCQ_DIS);
7162                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7163                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7164                                    ILK_DPARB_GATE);
7165                         I915_WRITE(ILK_DSPCLK_GATE,
7166                                    I915_READ(ILK_DSPCLK_GATE) |
7167                                    ILK_DPFC_DIS1 |
7168                                    ILK_DPFC_DIS2 |
7169                                    ILK_CLK_FBC);
7170                 }
7171
7172                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7173                            I915_READ(ILK_DISPLAY_CHICKEN2) |
7174                            ILK_ELPIN_409_SELECT);
7175
7176                 if (IS_GEN5(dev)) {
7177                         I915_WRITE(_3D_CHICKEN2,
7178                                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7179                                    _3D_CHICKEN2_WM_READ_PIPELINED);
7180                 }
7181
7182                 if (IS_GEN6(dev)) {
7183                         I915_WRITE(WM3_LP_ILK, 0);
7184                         I915_WRITE(WM2_LP_ILK, 0);
7185                         I915_WRITE(WM1_LP_ILK, 0);
7186
7187                         /*
7188                          * According to the spec the following bits should be
7189                          * set in order to enable memory self-refresh and fbc:
7190                          * The bit21 and bit22 of 0x42000
7191                          * The bit21 and bit22 of 0x42004
7192                          * The bit5 and bit7 of 0x42020
7193                          * The bit14 of 0x70180
7194                          * The bit14 of 0x71180
7195                          */
7196                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7197                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7198                                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7199                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7200                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7201                                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7202                         I915_WRITE(ILK_DSPCLK_GATE,
7203                                    I915_READ(ILK_DSPCLK_GATE) |
7204                                    ILK_DPARB_CLK_GATE  |
7205                                    ILK_DPFD_CLK_GATE);
7206
7207                         for_each_pipe(pipe)
7208                                 I915_WRITE(DSPCNTR(pipe),
7209                                            I915_READ(DSPCNTR(pipe)) |
7210                                            DISPPLANE_TRICKLE_FEED_DISABLE);
7211                 }
7212         } else if (IS_G4X(dev)) {
7213                 uint32_t dspclk_gate;
7214                 I915_WRITE(RENCLK_GATE_D1, 0);
7215                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7216                        GS_UNIT_CLOCK_GATE_DISABLE |
7217                        CL_UNIT_CLOCK_GATE_DISABLE);
7218                 I915_WRITE(RAMCLK_GATE_D, 0);
7219                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7220                         OVRUNIT_CLOCK_GATE_DISABLE |
7221                         OVCUNIT_CLOCK_GATE_DISABLE;
7222                 if (IS_GM45(dev))
7223                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7224                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7225         } else if (IS_CRESTLINE(dev)) {
7226                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7227                 I915_WRITE(RENCLK_GATE_D2, 0);
7228                 I915_WRITE(DSPCLK_GATE_D, 0);
7229                 I915_WRITE(RAMCLK_GATE_D, 0);
7230                 I915_WRITE16(DEUC, 0);
7231         } else if (IS_BROADWATER(dev)) {
7232                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7233                        I965_RCC_CLOCK_GATE_DISABLE |
7234                        I965_RCPB_CLOCK_GATE_DISABLE |
7235                        I965_ISC_CLOCK_GATE_DISABLE |
7236                        I965_FBC_CLOCK_GATE_DISABLE);
7237                 I915_WRITE(RENCLK_GATE_D2, 0);
7238         } else if (IS_GEN3(dev)) {
7239                 u32 dstate = I915_READ(D_STATE);
7240
7241                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7242                         DSTATE_DOT_CLOCK_GATING;
7243                 I915_WRITE(D_STATE, dstate);
7244         } else if (IS_I85X(dev) || IS_I865G(dev)) {
7245                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7246         } else if (IS_I830(dev)) {
7247                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7248         }
7249 }
7250
7251 static void ironlake_teardown_rc6(struct drm_device *dev)
7252 {
7253         struct drm_i915_private *dev_priv = dev->dev_private;
7254
7255         if (dev_priv->renderctx) {
7256                 i915_gem_object_unpin(dev_priv->renderctx);
7257                 drm_gem_object_unreference(&dev_priv->renderctx->base);
7258                 dev_priv->renderctx = NULL;
7259         }
7260
7261         if (dev_priv->pwrctx) {
7262                 i915_gem_object_unpin(dev_priv->pwrctx);
7263                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
7264                 dev_priv->pwrctx = NULL;
7265         }
7266 }
7267
7268 static void ironlake_disable_rc6(struct drm_device *dev)
7269 {
7270         struct drm_i915_private *dev_priv = dev->dev_private;
7271
7272         if (I915_READ(PWRCTXA)) {
7273                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7274                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7275                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7276                          50);
7277
7278                 I915_WRITE(PWRCTXA, 0);
7279                 POSTING_READ(PWRCTXA);
7280
7281                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7282                 POSTING_READ(RSTDBYCTL);
7283         }
7284
7285         ironlake_teardown_rc6(dev);
7286 }
7287
7288 static int ironlake_setup_rc6(struct drm_device *dev)
7289 {
7290         struct drm_i915_private *dev_priv = dev->dev_private;
7291
7292         if (dev_priv->renderctx == NULL)
7293                 dev_priv->renderctx = intel_alloc_context_page(dev);
7294         if (!dev_priv->renderctx)
7295                 return -ENOMEM;
7296
7297         if (dev_priv->pwrctx == NULL)
7298                 dev_priv->pwrctx = intel_alloc_context_page(dev);
7299         if (!dev_priv->pwrctx) {
7300                 ironlake_teardown_rc6(dev);
7301                 return -ENOMEM;
7302         }
7303
7304         return 0;
7305 }
7306
7307 void ironlake_enable_rc6(struct drm_device *dev)
7308 {
7309         struct drm_i915_private *dev_priv = dev->dev_private;
7310         int ret;
7311
7312         /* rc6 disabled by default due to repeated reports of hanging during
7313          * boot and resume.
7314          */
7315         if (!i915_enable_rc6)
7316                 return;
7317
7318         mutex_lock(&dev->struct_mutex);
7319         ret = ironlake_setup_rc6(dev);
7320         if (ret) {
7321                 mutex_unlock(&dev->struct_mutex);
7322                 return;
7323         }
7324
7325         /*
7326          * GPU can automatically power down the render unit if given a page
7327          * to save state.
7328          */
7329         ret = BEGIN_LP_RING(6);
7330         if (ret) {
7331                 ironlake_teardown_rc6(dev);
7332                 mutex_unlock(&dev->struct_mutex);
7333                 return;
7334         }
7335
7336         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7337         OUT_RING(MI_SET_CONTEXT);
7338         OUT_RING(dev_priv->renderctx->gtt_offset |
7339                  MI_MM_SPACE_GTT |
7340                  MI_SAVE_EXT_STATE_EN |
7341                  MI_RESTORE_EXT_STATE_EN |
7342                  MI_RESTORE_INHIBIT);
7343         OUT_RING(MI_SUSPEND_FLUSH);
7344         OUT_RING(MI_NOOP);
7345         OUT_RING(MI_FLUSH);
7346         ADVANCE_LP_RING();
7347
7348         /*
7349          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
7350          * does an implicit flush, combined with MI_FLUSH above, it should be
7351          * safe to assume that renderctx is valid
7352          */
7353         ret = intel_wait_ring_idle(LP_RING(dev_priv));
7354         if (ret) {
7355                 DRM_ERROR("failed to enable ironlake power power savings\n");
7356                 ironlake_teardown_rc6(dev);
7357                 mutex_unlock(&dev->struct_mutex);
7358                 return;
7359         }
7360
7361         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
7362         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7363         mutex_unlock(&dev->struct_mutex);
7364 }
7365
7366
7367 /* Set up chip specific display functions */
7368 static void intel_init_display(struct drm_device *dev)
7369 {
7370         struct drm_i915_private *dev_priv = dev->dev_private;
7371
7372         /* We always want a DPMS function */
7373         if (HAS_PCH_SPLIT(dev)) {
7374                 dev_priv->display.dpms = ironlake_crtc_dpms;
7375                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7376         } else {
7377                 dev_priv->display.dpms = i9xx_crtc_dpms;
7378                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7379         }
7380
7381         if (I915_HAS_FBC(dev)) {
7382                 if (HAS_PCH_SPLIT(dev)) {
7383                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7384                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
7385                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7386                 } else if (IS_GM45(dev)) {
7387                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7388                         dev_priv->display.enable_fbc = g4x_enable_fbc;
7389                         dev_priv->display.disable_fbc = g4x_disable_fbc;
7390                 } else if (IS_CRESTLINE(dev)) {
7391                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7392                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
7393                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
7394                 }
7395                 /* 855GM needs testing */
7396         }
7397
7398         /* Returns the core display clock speed */
7399         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
7400                 dev_priv->display.get_display_clock_speed =
7401                         i945_get_display_clock_speed;
7402         else if (IS_I915G(dev))
7403                 dev_priv->display.get_display_clock_speed =
7404                         i915_get_display_clock_speed;
7405         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7406                 dev_priv->display.get_display_clock_speed =
7407                         i9xx_misc_get_display_clock_speed;
7408         else if (IS_I915GM(dev))
7409                 dev_priv->display.get_display_clock_speed =
7410                         i915gm_get_display_clock_speed;
7411         else if (IS_I865G(dev))
7412                 dev_priv->display.get_display_clock_speed =
7413                         i865_get_display_clock_speed;
7414         else if (IS_I85X(dev))
7415                 dev_priv->display.get_display_clock_speed =
7416                         i855_get_display_clock_speed;
7417         else /* 852, 830 */
7418                 dev_priv->display.get_display_clock_speed =
7419                         i830_get_display_clock_speed;
7420
7421         /* For FIFO watermark updates */
7422         if (HAS_PCH_SPLIT(dev)) {
7423                 if (IS_GEN5(dev)) {
7424                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
7425                                 dev_priv->display.update_wm = ironlake_update_wm;
7426                         else {
7427                                 DRM_DEBUG_KMS("Failed to get proper latency. "
7428                                               "Disable CxSR\n");
7429                                 dev_priv->display.update_wm = NULL;
7430                         }
7431                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7432                 } else if (IS_GEN6(dev)) {
7433                         if (SNB_READ_WM0_LATENCY()) {
7434                                 dev_priv->display.update_wm = sandybridge_update_wm;
7435                         } else {
7436                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
7437                                               "Disable CxSR\n");
7438                                 dev_priv->display.update_wm = NULL;
7439                         }
7440                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7441                 } else
7442                         dev_priv->display.update_wm = NULL;
7443         } else if (IS_PINEVIEW(dev)) {
7444                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7445                                             dev_priv->is_ddr3,
7446                                             dev_priv->fsb_freq,
7447                                             dev_priv->mem_freq)) {
7448                         DRM_INFO("failed to find known CxSR latency "
7449                                  "(found ddr%s fsb freq %d, mem freq %d), "
7450                                  "disabling CxSR\n",
7451                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
7452                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7453                         /* Disable CxSR and never update its watermark again */
7454                         pineview_disable_cxsr(dev);
7455                         dev_priv->display.update_wm = NULL;
7456                 } else
7457                         dev_priv->display.update_wm = pineview_update_wm;
7458         } else if (IS_G4X(dev))
7459                 dev_priv->display.update_wm = g4x_update_wm;
7460         else if (IS_GEN4(dev))
7461                 dev_priv->display.update_wm = i965_update_wm;
7462         else if (IS_GEN3(dev)) {
7463                 dev_priv->display.update_wm = i9xx_update_wm;
7464                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7465         } else if (IS_I85X(dev)) {
7466                 dev_priv->display.update_wm = i9xx_update_wm;
7467                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
7468         } else {
7469                 dev_priv->display.update_wm = i830_update_wm;
7470                 if (IS_845G(dev))
7471                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7472                 else
7473                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7474         }
7475 }
7476
7477 /*
7478  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7479  * resume, or other times.  This quirk makes sure that's the case for
7480  * affected systems.
7481  */
7482 static void quirk_pipea_force (struct drm_device *dev)
7483 {
7484         struct drm_i915_private *dev_priv = dev->dev_private;
7485
7486         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7487         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
7488 }
7489
7490 struct intel_quirk {
7491         int device;
7492         int subsystem_vendor;
7493         int subsystem_device;
7494         void (*hook)(struct drm_device *dev);
7495 };
7496
7497 struct intel_quirk intel_quirks[] = {
7498         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
7499         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
7500         /* HP Mini needs pipe A force quirk (LP: #322104) */
7501         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
7502
7503         /* Thinkpad R31 needs pipe A force quirk */
7504         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7505         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7506         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7507
7508         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7509         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
7510         /* ThinkPad X40 needs pipe A force quirk */
7511
7512         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7513         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7514
7515         /* 855 & before need to leave pipe A & dpll A up */
7516         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7517         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7518 };
7519
7520 static void intel_init_quirks(struct drm_device *dev)
7521 {
7522         struct pci_dev *d = dev->pdev;
7523         int i;
7524
7525         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7526                 struct intel_quirk *q = &intel_quirks[i];
7527
7528                 if (d->device == q->device &&
7529                     (d->subsystem_vendor == q->subsystem_vendor ||
7530                      q->subsystem_vendor == PCI_ANY_ID) &&
7531                     (d->subsystem_device == q->subsystem_device ||
7532                      q->subsystem_device == PCI_ANY_ID))
7533                         q->hook(dev);
7534         }
7535 }
7536
7537 /* Disable the VGA plane that we never use */
7538 static void i915_disable_vga(struct drm_device *dev)
7539 {
7540         struct drm_i915_private *dev_priv = dev->dev_private;
7541         u8 sr1;
7542         u32 vga_reg;
7543
7544         if (HAS_PCH_SPLIT(dev))
7545                 vga_reg = CPU_VGACNTRL;
7546         else
7547                 vga_reg = VGACNTRL;
7548
7549         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7550         outb(1, VGA_SR_INDEX);
7551         sr1 = inb(VGA_SR_DATA);
7552         outb(sr1 | 1<<5, VGA_SR_DATA);
7553         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7554         udelay(300);
7555
7556         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7557         POSTING_READ(vga_reg);
7558 }
7559
7560 void intel_modeset_init(struct drm_device *dev)
7561 {
7562         struct drm_i915_private *dev_priv = dev->dev_private;
7563         int i;
7564
7565         drm_mode_config_init(dev);
7566
7567         dev->mode_config.min_width = 0;
7568         dev->mode_config.min_height = 0;
7569
7570         dev->mode_config.funcs = (void *)&intel_mode_funcs;
7571
7572         intel_init_quirks(dev);
7573
7574         intel_init_display(dev);
7575
7576         if (IS_GEN2(dev)) {
7577                 dev->mode_config.max_width = 2048;
7578                 dev->mode_config.max_height = 2048;
7579         } else if (IS_GEN3(dev)) {
7580                 dev->mode_config.max_width = 4096;
7581                 dev->mode_config.max_height = 4096;
7582         } else {
7583                 dev->mode_config.max_width = 8192;
7584                 dev->mode_config.max_height = 8192;
7585         }
7586         dev->mode_config.fb_base = dev->agp->base;
7587
7588         DRM_DEBUG_KMS("%d display pipe%s available.\n",
7589                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7590
7591         for (i = 0; i < dev_priv->num_pipe; i++) {
7592                 intel_crtc_init(dev, i);
7593         }
7594
7595         /* Just disable it once at startup */
7596         i915_disable_vga(dev);
7597         intel_setup_outputs(dev);
7598
7599         intel_enable_clock_gating(dev);
7600
7601         if (IS_IRONLAKE_M(dev)) {
7602                 ironlake_enable_drps(dev);
7603                 intel_init_emon(dev);
7604         }
7605
7606         if (IS_GEN6(dev))
7607                 gen6_enable_rps(dev_priv);
7608
7609         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
7610         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
7611                     (unsigned long)dev);
7612 }
7613
7614 void intel_modeset_gem_init(struct drm_device *dev)
7615 {
7616         if (IS_IRONLAKE_M(dev))
7617                 ironlake_enable_rc6(dev);
7618
7619         intel_setup_overlay(dev);
7620 }
7621
7622 void intel_modeset_cleanup(struct drm_device *dev)
7623 {
7624         struct drm_i915_private *dev_priv = dev->dev_private;
7625         struct drm_crtc *crtc;
7626         struct intel_crtc *intel_crtc;
7627
7628         drm_kms_helper_poll_fini(dev);
7629         mutex_lock(&dev->struct_mutex);
7630
7631         intel_unregister_dsm_handler();
7632
7633
7634         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7635                 /* Skip inactive CRTCs */
7636                 if (!crtc->fb)
7637                         continue;
7638
7639                 intel_crtc = to_intel_crtc(crtc);
7640                 intel_increase_pllclock(crtc);
7641         }
7642
7643         if (dev_priv->display.disable_fbc)
7644                 dev_priv->display.disable_fbc(dev);
7645
7646         if (IS_IRONLAKE_M(dev))
7647                 ironlake_disable_drps(dev);
7648         if (IS_GEN6(dev))
7649                 gen6_disable_rps(dev);
7650
7651         if (IS_IRONLAKE_M(dev))
7652                 ironlake_disable_rc6(dev);
7653
7654         mutex_unlock(&dev->struct_mutex);
7655
7656         /* Disable the irq before mode object teardown, for the irq might
7657          * enqueue unpin/hotplug work. */
7658         drm_irq_uninstall(dev);
7659         cancel_work_sync(&dev_priv->hotplug_work);
7660
7661         /* Shut off idle work before the crtcs get freed. */
7662         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7663                 intel_crtc = to_intel_crtc(crtc);
7664                 del_timer_sync(&intel_crtc->idle_timer);
7665         }
7666         del_timer_sync(&dev_priv->idle_timer);
7667         cancel_work_sync(&dev_priv->idle_work);
7668
7669         drm_mode_config_cleanup(dev);
7670 }
7671
7672 /*
7673  * Return which encoder is currently attached for connector.
7674  */
7675 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
7676 {
7677         return &intel_attached_encoder(connector)->base;
7678 }
7679
7680 void intel_connector_attach_encoder(struct intel_connector *connector,
7681                                     struct intel_encoder *encoder)
7682 {
7683         connector->encoder = encoder;
7684         drm_mode_connector_attach_encoder(&connector->base,
7685                                           &encoder->base);
7686 }
7687
7688 /*
7689  * set vga decode state - true == enable VGA decode
7690  */
7691 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
7692 {
7693         struct drm_i915_private *dev_priv = dev->dev_private;
7694         u16 gmch_ctrl;
7695
7696         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
7697         if (state)
7698                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
7699         else
7700                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
7701         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
7702         return 0;
7703 }
7704
7705 #ifdef CONFIG_DEBUG_FS
7706 #include <linux/seq_file.h>
7707
7708 struct intel_display_error_state {
7709         struct intel_cursor_error_state {
7710                 u32 control;
7711                 u32 position;
7712                 u32 base;
7713                 u32 size;
7714         } cursor[2];
7715
7716         struct intel_pipe_error_state {
7717                 u32 conf;
7718                 u32 source;
7719
7720                 u32 htotal;
7721                 u32 hblank;
7722                 u32 hsync;
7723                 u32 vtotal;
7724                 u32 vblank;
7725                 u32 vsync;
7726         } pipe[2];
7727
7728         struct intel_plane_error_state {
7729                 u32 control;
7730                 u32 stride;
7731                 u32 size;
7732                 u32 pos;
7733                 u32 addr;
7734                 u32 surface;
7735                 u32 tile_offset;
7736         } plane[2];
7737 };
7738
7739 struct intel_display_error_state *
7740 intel_display_capture_error_state(struct drm_device *dev)
7741 {
7742         drm_i915_private_t *dev_priv = dev->dev_private;
7743         struct intel_display_error_state *error;
7744         int i;
7745
7746         error = kmalloc(sizeof(*error), GFP_ATOMIC);
7747         if (error == NULL)
7748                 return NULL;
7749
7750         for (i = 0; i < 2; i++) {
7751                 error->cursor[i].control = I915_READ(CURCNTR(i));
7752                 error->cursor[i].position = I915_READ(CURPOS(i));
7753                 error->cursor[i].base = I915_READ(CURBASE(i));
7754
7755                 error->plane[i].control = I915_READ(DSPCNTR(i));
7756                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
7757                 error->plane[i].size = I915_READ(DSPSIZE(i));
7758                 error->plane[i].pos= I915_READ(DSPPOS(i));
7759                 error->plane[i].addr = I915_READ(DSPADDR(i));
7760                 if (INTEL_INFO(dev)->gen >= 4) {
7761                         error->plane[i].surface = I915_READ(DSPSURF(i));
7762                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
7763                 }
7764
7765                 error->pipe[i].conf = I915_READ(PIPECONF(i));
7766                 error->pipe[i].source = I915_READ(PIPESRC(i));
7767                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
7768                 error->pipe[i].hblank = I915_READ(HBLANK(i));
7769                 error->pipe[i].hsync = I915_READ(HSYNC(i));
7770                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
7771                 error->pipe[i].vblank = I915_READ(VBLANK(i));
7772                 error->pipe[i].vsync = I915_READ(VSYNC(i));
7773         }
7774
7775         return error;
7776 }
7777
7778 void
7779 intel_display_print_error_state(struct seq_file *m,
7780                                 struct drm_device *dev,
7781                                 struct intel_display_error_state *error)
7782 {
7783         int i;
7784
7785         for (i = 0; i < 2; i++) {
7786                 seq_printf(m, "Pipe [%d]:\n", i);
7787                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
7788                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
7789                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
7790                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
7791                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
7792                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
7793                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
7794                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
7795
7796                 seq_printf(m, "Plane [%d]:\n", i);
7797                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
7798                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
7799                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
7800                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
7801                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
7802                 if (INTEL_INFO(dev)->gen >= 4) {
7803                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
7804                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
7805                 }
7806
7807                 seq_printf(m, "Cursor [%d]:\n", i);
7808                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
7809                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
7810                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
7811         }
7812 }
7813 #endif