Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_update_watermarks(struct drm_device *dev);
48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50
51 typedef struct {
52         /* given values */
53         int n;
54         int m1, m2;
55         int p1, p2;
56         /* derived values */
57         int     dot;
58         int     vco;
59         int     m;
60         int     p;
61 } intel_clock_t;
62
63 typedef struct {
64         int     min, max;
65 } intel_range_t;
66
67 typedef struct {
68         int     dot_limit;
69         int     p2_slow, p2_fast;
70 } intel_p2_t;
71
72 #define INTEL_P2_NUM                  2
73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit {
75         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
76         intel_p2_t          p2;
77         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78                         int, int, intel_clock_t *);
79 };
80
81 /* FDI */
82 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
83
84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86                     int target, int refclk, intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89                         int target, int refclk, intel_clock_t *best_clock);
90
91 static bool
92 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
93                       int target, int refclk, intel_clock_t *best_clock);
94 static bool
95 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96                            int target, int refclk, intel_clock_t *best_clock);
97
98 static inline u32 /* units of 100MHz */
99 intel_fdi_link_freq(struct drm_device *dev)
100 {
101         if (IS_GEN5(dev)) {
102                 struct drm_i915_private *dev_priv = dev->dev_private;
103                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
104         } else
105                 return 27;
106 }
107
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109         .dot = { .min = 25000, .max = 350000 },
110         .vco = { .min = 930000, .max = 1400000 },
111         .n = { .min = 3, .max = 16 },
112         .m = { .min = 96, .max = 140 },
113         .m1 = { .min = 18, .max = 26 },
114         .m2 = { .min = 6, .max = 16 },
115         .p = { .min = 4, .max = 128 },
116         .p1 = { .min = 2, .max = 33 },
117         .p2 = { .dot_limit = 165000,
118                 .p2_slow = 4, .p2_fast = 2 },
119         .find_pll = intel_find_best_PLL,
120 };
121
122 static const intel_limit_t intel_limits_i8xx_lvds = {
123         .dot = { .min = 25000, .max = 350000 },
124         .vco = { .min = 930000, .max = 1400000 },
125         .n = { .min = 3, .max = 16 },
126         .m = { .min = 96, .max = 140 },
127         .m1 = { .min = 18, .max = 26 },
128         .m2 = { .min = 6, .max = 16 },
129         .p = { .min = 4, .max = 128 },
130         .p1 = { .min = 1, .max = 6 },
131         .p2 = { .dot_limit = 165000,
132                 .p2_slow = 14, .p2_fast = 7 },
133         .find_pll = intel_find_best_PLL,
134 };
135
136 static const intel_limit_t intel_limits_i9xx_sdvo = {
137         .dot = { .min = 20000, .max = 400000 },
138         .vco = { .min = 1400000, .max = 2800000 },
139         .n = { .min = 1, .max = 6 },
140         .m = { .min = 70, .max = 120 },
141         .m1 = { .min = 10, .max = 22 },
142         .m2 = { .min = 5, .max = 9 },
143         .p = { .min = 5, .max = 80 },
144         .p1 = { .min = 1, .max = 8 },
145         .p2 = { .dot_limit = 200000,
146                 .p2_slow = 10, .p2_fast = 5 },
147         .find_pll = intel_find_best_PLL,
148 };
149
150 static const intel_limit_t intel_limits_i9xx_lvds = {
151         .dot = { .min = 20000, .max = 400000 },
152         .vco = { .min = 1400000, .max = 2800000 },
153         .n = { .min = 1, .max = 6 },
154         .m = { .min = 70, .max = 120 },
155         .m1 = { .min = 10, .max = 22 },
156         .m2 = { .min = 5, .max = 9 },
157         .p = { .min = 7, .max = 98 },
158         .p1 = { .min = 1, .max = 8 },
159         .p2 = { .dot_limit = 112000,
160                 .p2_slow = 14, .p2_fast = 7 },
161         .find_pll = intel_find_best_PLL,
162 };
163
164
165 static const intel_limit_t intel_limits_g4x_sdvo = {
166         .dot = { .min = 25000, .max = 270000 },
167         .vco = { .min = 1750000, .max = 3500000},
168         .n = { .min = 1, .max = 4 },
169         .m = { .min = 104, .max = 138 },
170         .m1 = { .min = 17, .max = 23 },
171         .m2 = { .min = 5, .max = 11 },
172         .p = { .min = 10, .max = 30 },
173         .p1 = { .min = 1, .max = 3},
174         .p2 = { .dot_limit = 270000,
175                 .p2_slow = 10,
176                 .p2_fast = 10
177         },
178         .find_pll = intel_g4x_find_best_PLL,
179 };
180
181 static const intel_limit_t intel_limits_g4x_hdmi = {
182         .dot = { .min = 22000, .max = 400000 },
183         .vco = { .min = 1750000, .max = 3500000},
184         .n = { .min = 1, .max = 4 },
185         .m = { .min = 104, .max = 138 },
186         .m1 = { .min = 16, .max = 23 },
187         .m2 = { .min = 5, .max = 11 },
188         .p = { .min = 5, .max = 80 },
189         .p1 = { .min = 1, .max = 8},
190         .p2 = { .dot_limit = 165000,
191                 .p2_slow = 10, .p2_fast = 5 },
192         .find_pll = intel_g4x_find_best_PLL,
193 };
194
195 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
196         .dot = { .min = 20000, .max = 115000 },
197         .vco = { .min = 1750000, .max = 3500000 },
198         .n = { .min = 1, .max = 3 },
199         .m = { .min = 104, .max = 138 },
200         .m1 = { .min = 17, .max = 23 },
201         .m2 = { .min = 5, .max = 11 },
202         .p = { .min = 28, .max = 112 },
203         .p1 = { .min = 2, .max = 8 },
204         .p2 = { .dot_limit = 0,
205                 .p2_slow = 14, .p2_fast = 14
206         },
207         .find_pll = intel_g4x_find_best_PLL,
208 };
209
210 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
211         .dot = { .min = 80000, .max = 224000 },
212         .vco = { .min = 1750000, .max = 3500000 },
213         .n = { .min = 1, .max = 3 },
214         .m = { .min = 104, .max = 138 },
215         .m1 = { .min = 17, .max = 23 },
216         .m2 = { .min = 5, .max = 11 },
217         .p = { .min = 14, .max = 42 },
218         .p1 = { .min = 2, .max = 6 },
219         .p2 = { .dot_limit = 0,
220                 .p2_slow = 7, .p2_fast = 7
221         },
222         .find_pll = intel_g4x_find_best_PLL,
223 };
224
225 static const intel_limit_t intel_limits_g4x_display_port = {
226         .dot = { .min = 161670, .max = 227000 },
227         .vco = { .min = 1750000, .max = 3500000},
228         .n = { .min = 1, .max = 2 },
229         .m = { .min = 97, .max = 108 },
230         .m1 = { .min = 0x10, .max = 0x12 },
231         .m2 = { .min = 0x05, .max = 0x06 },
232         .p = { .min = 10, .max = 20 },
233         .p1 = { .min = 1, .max = 2},
234         .p2 = { .dot_limit = 0,
235                 .p2_slow = 10, .p2_fast = 10 },
236         .find_pll = intel_find_pll_g4x_dp,
237 };
238
239 static const intel_limit_t intel_limits_pineview_sdvo = {
240         .dot = { .min = 20000, .max = 400000},
241         .vco = { .min = 1700000, .max = 3500000 },
242         /* Pineview's Ncounter is a ring counter */
243         .n = { .min = 3, .max = 6 },
244         .m = { .min = 2, .max = 256 },
245         /* Pineview only has one combined m divider, which we treat as m2. */
246         .m1 = { .min = 0, .max = 0 },
247         .m2 = { .min = 0, .max = 254 },
248         .p = { .min = 5, .max = 80 },
249         .p1 = { .min = 1, .max = 8 },
250         .p2 = { .dot_limit = 200000,
251                 .p2_slow = 10, .p2_fast = 5 },
252         .find_pll = intel_find_best_PLL,
253 };
254
255 static const intel_limit_t intel_limits_pineview_lvds = {
256         .dot = { .min = 20000, .max = 400000 },
257         .vco = { .min = 1700000, .max = 3500000 },
258         .n = { .min = 3, .max = 6 },
259         .m = { .min = 2, .max = 256 },
260         .m1 = { .min = 0, .max = 0 },
261         .m2 = { .min = 0, .max = 254 },
262         .p = { .min = 7, .max = 112 },
263         .p1 = { .min = 1, .max = 8 },
264         .p2 = { .dot_limit = 112000,
265                 .p2_slow = 14, .p2_fast = 14 },
266         .find_pll = intel_find_best_PLL,
267 };
268
269 /* Ironlake / Sandybridge
270  *
271  * We calculate clock using (register_value + 2) for N/M1/M2, so here
272  * the range value for them is (actual_value - 2).
273  */
274 static const intel_limit_t intel_limits_ironlake_dac = {
275         .dot = { .min = 25000, .max = 350000 },
276         .vco = { .min = 1760000, .max = 3510000 },
277         .n = { .min = 1, .max = 5 },
278         .m = { .min = 79, .max = 127 },
279         .m1 = { .min = 12, .max = 22 },
280         .m2 = { .min = 5, .max = 9 },
281         .p = { .min = 5, .max = 80 },
282         .p1 = { .min = 1, .max = 8 },
283         .p2 = { .dot_limit = 225000,
284                 .p2_slow = 10, .p2_fast = 5 },
285         .find_pll = intel_g4x_find_best_PLL,
286 };
287
288 static const intel_limit_t intel_limits_ironlake_single_lvds = {
289         .dot = { .min = 25000, .max = 350000 },
290         .vco = { .min = 1760000, .max = 3510000 },
291         .n = { .min = 1, .max = 3 },
292         .m = { .min = 79, .max = 118 },
293         .m1 = { .min = 12, .max = 22 },
294         .m2 = { .min = 5, .max = 9 },
295         .p = { .min = 28, .max = 112 },
296         .p1 = { .min = 2, .max = 8 },
297         .p2 = { .dot_limit = 225000,
298                 .p2_slow = 14, .p2_fast = 14 },
299         .find_pll = intel_g4x_find_best_PLL,
300 };
301
302 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
303         .dot = { .min = 25000, .max = 350000 },
304         .vco = { .min = 1760000, .max = 3510000 },
305         .n = { .min = 1, .max = 3 },
306         .m = { .min = 79, .max = 127 },
307         .m1 = { .min = 12, .max = 22 },
308         .m2 = { .min = 5, .max = 9 },
309         .p = { .min = 14, .max = 56 },
310         .p1 = { .min = 2, .max = 8 },
311         .p2 = { .dot_limit = 225000,
312                 .p2_slow = 7, .p2_fast = 7 },
313         .find_pll = intel_g4x_find_best_PLL,
314 };
315
316 /* LVDS 100mhz refclk limits. */
317 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
318         .dot = { .min = 25000, .max = 350000 },
319         .vco = { .min = 1760000, .max = 3510000 },
320         .n = { .min = 1, .max = 2 },
321         .m = { .min = 79, .max = 126 },
322         .m1 = { .min = 12, .max = 22 },
323         .m2 = { .min = 5, .max = 9 },
324         .p = { .min = 28, .max = 112 },
325         .p1 = { .min = 2, .max = 8 },
326         .p2 = { .dot_limit = 225000,
327                 .p2_slow = 14, .p2_fast = 14 },
328         .find_pll = intel_g4x_find_best_PLL,
329 };
330
331 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
332         .dot = { .min = 25000, .max = 350000 },
333         .vco = { .min = 1760000, .max = 3510000 },
334         .n = { .min = 1, .max = 3 },
335         .m = { .min = 79, .max = 126 },
336         .m1 = { .min = 12, .max = 22 },
337         .m2 = { .min = 5, .max = 9 },
338         .p = { .min = 14, .max = 42 },
339         .p1 = { .min = 2, .max = 6 },
340         .p2 = { .dot_limit = 225000,
341                 .p2_slow = 7, .p2_fast = 7 },
342         .find_pll = intel_g4x_find_best_PLL,
343 };
344
345 static const intel_limit_t intel_limits_ironlake_display_port = {
346         .dot = { .min = 25000, .max = 350000 },
347         .vco = { .min = 1760000, .max = 3510000},
348         .n = { .min = 1, .max = 2 },
349         .m = { .min = 81, .max = 90 },
350         .m1 = { .min = 12, .max = 22 },
351         .m2 = { .min = 5, .max = 9 },
352         .p = { .min = 10, .max = 20 },
353         .p1 = { .min = 1, .max = 2},
354         .p2 = { .dot_limit = 0,
355                 .p2_slow = 10, .p2_fast = 10 },
356         .find_pll = intel_find_pll_ironlake_dp,
357 };
358
359 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
360                                                 int refclk)
361 {
362         struct drm_device *dev = crtc->dev;
363         struct drm_i915_private *dev_priv = dev->dev_private;
364         const intel_limit_t *limit;
365
366         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
367                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
368                     LVDS_CLKB_POWER_UP) {
369                         /* LVDS dual channel */
370                         if (refclk == 100000)
371                                 limit = &intel_limits_ironlake_dual_lvds_100m;
372                         else
373                                 limit = &intel_limits_ironlake_dual_lvds;
374                 } else {
375                         if (refclk == 100000)
376                                 limit = &intel_limits_ironlake_single_lvds_100m;
377                         else
378                                 limit = &intel_limits_ironlake_single_lvds;
379                 }
380         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
381                         HAS_eDP)
382                 limit = &intel_limits_ironlake_display_port;
383         else
384                 limit = &intel_limits_ironlake_dac;
385
386         return limit;
387 }
388
389 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
390 {
391         struct drm_device *dev = crtc->dev;
392         struct drm_i915_private *dev_priv = dev->dev_private;
393         const intel_limit_t *limit;
394
395         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
396                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
397                     LVDS_CLKB_POWER_UP)
398                         /* LVDS with dual channel */
399                         limit = &intel_limits_g4x_dual_channel_lvds;
400                 else
401                         /* LVDS with dual channel */
402                         limit = &intel_limits_g4x_single_channel_lvds;
403         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
404                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
405                 limit = &intel_limits_g4x_hdmi;
406         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
407                 limit = &intel_limits_g4x_sdvo;
408         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
409                 limit = &intel_limits_g4x_display_port;
410         } else /* The option is for other outputs */
411                 limit = &intel_limits_i9xx_sdvo;
412
413         return limit;
414 }
415
416 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
417 {
418         struct drm_device *dev = crtc->dev;
419         const intel_limit_t *limit;
420
421         if (HAS_PCH_SPLIT(dev))
422                 limit = intel_ironlake_limit(crtc, refclk);
423         else if (IS_G4X(dev)) {
424                 limit = intel_g4x_limit(crtc);
425         } else if (IS_PINEVIEW(dev)) {
426                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
427                         limit = &intel_limits_pineview_lvds;
428                 else
429                         limit = &intel_limits_pineview_sdvo;
430         } else if (!IS_GEN2(dev)) {
431                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
432                         limit = &intel_limits_i9xx_lvds;
433                 else
434                         limit = &intel_limits_i9xx_sdvo;
435         } else {
436                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
437                         limit = &intel_limits_i8xx_lvds;
438                 else
439                         limit = &intel_limits_i8xx_dvo;
440         }
441         return limit;
442 }
443
444 /* m1 is reserved as 0 in Pineview, n is a ring counter */
445 static void pineview_clock(int refclk, intel_clock_t *clock)
446 {
447         clock->m = clock->m2 + 2;
448         clock->p = clock->p1 * clock->p2;
449         clock->vco = refclk * clock->m / clock->n;
450         clock->dot = clock->vco / clock->p;
451 }
452
453 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
454 {
455         if (IS_PINEVIEW(dev)) {
456                 pineview_clock(refclk, clock);
457                 return;
458         }
459         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
460         clock->p = clock->p1 * clock->p2;
461         clock->vco = refclk * clock->m / (clock->n + 2);
462         clock->dot = clock->vco / clock->p;
463 }
464
465 /**
466  * Returns whether any output on the specified pipe is of the specified type
467  */
468 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
469 {
470         struct drm_device *dev = crtc->dev;
471         struct drm_mode_config *mode_config = &dev->mode_config;
472         struct intel_encoder *encoder;
473
474         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
475                 if (encoder->base.crtc == crtc && encoder->type == type)
476                         return true;
477
478         return false;
479 }
480
481 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
482 /**
483  * Returns whether the given set of divisors are valid for a given refclk with
484  * the given connectors.
485  */
486
487 static bool intel_PLL_is_valid(struct drm_device *dev,
488                                const intel_limit_t *limit,
489                                const intel_clock_t *clock)
490 {
491         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
492                 INTELPllInvalid("p1 out of range\n");
493         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
494                 INTELPllInvalid("p out of range\n");
495         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
496                 INTELPllInvalid("m2 out of range\n");
497         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
498                 INTELPllInvalid("m1 out of range\n");
499         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
500                 INTELPllInvalid("m1 <= m2\n");
501         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
502                 INTELPllInvalid("m out of range\n");
503         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
504                 INTELPllInvalid("n out of range\n");
505         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
506                 INTELPllInvalid("vco out of range\n");
507         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
508          * connector, etc., rather than just a single range.
509          */
510         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
511                 INTELPllInvalid("dot out of range\n");
512
513         return true;
514 }
515
516 static bool
517 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
518                     int target, int refclk, intel_clock_t *best_clock)
519
520 {
521         struct drm_device *dev = crtc->dev;
522         struct drm_i915_private *dev_priv = dev->dev_private;
523         intel_clock_t clock;
524         int err = target;
525
526         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
527             (I915_READ(LVDS)) != 0) {
528                 /*
529                  * For LVDS, if the panel is on, just rely on its current
530                  * settings for dual-channel.  We haven't figured out how to
531                  * reliably set up different single/dual channel state, if we
532                  * even can.
533                  */
534                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
535                     LVDS_CLKB_POWER_UP)
536                         clock.p2 = limit->p2.p2_fast;
537                 else
538                         clock.p2 = limit->p2.p2_slow;
539         } else {
540                 if (target < limit->p2.dot_limit)
541                         clock.p2 = limit->p2.p2_slow;
542                 else
543                         clock.p2 = limit->p2.p2_fast;
544         }
545
546         memset(best_clock, 0, sizeof(*best_clock));
547
548         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
549              clock.m1++) {
550                 for (clock.m2 = limit->m2.min;
551                      clock.m2 <= limit->m2.max; clock.m2++) {
552                         /* m1 is always 0 in Pineview */
553                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
554                                 break;
555                         for (clock.n = limit->n.min;
556                              clock.n <= limit->n.max; clock.n++) {
557                                 for (clock.p1 = limit->p1.min;
558                                         clock.p1 <= limit->p1.max; clock.p1++) {
559                                         int this_err;
560
561                                         intel_clock(dev, refclk, &clock);
562                                         if (!intel_PLL_is_valid(dev, limit,
563                                                                 &clock))
564                                                 continue;
565
566                                         this_err = abs(clock.dot - target);
567                                         if (this_err < err) {
568                                                 *best_clock = clock;
569                                                 err = this_err;
570                                         }
571                                 }
572                         }
573                 }
574         }
575
576         return (err != target);
577 }
578
579 static bool
580 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
581                         int target, int refclk, intel_clock_t *best_clock)
582 {
583         struct drm_device *dev = crtc->dev;
584         struct drm_i915_private *dev_priv = dev->dev_private;
585         intel_clock_t clock;
586         int max_n;
587         bool found;
588         /* approximately equals target * 0.00585 */
589         int err_most = (target >> 8) + (target >> 9);
590         found = false;
591
592         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
593                 int lvds_reg;
594
595                 if (HAS_PCH_SPLIT(dev))
596                         lvds_reg = PCH_LVDS;
597                 else
598                         lvds_reg = LVDS;
599                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
600                     LVDS_CLKB_POWER_UP)
601                         clock.p2 = limit->p2.p2_fast;
602                 else
603                         clock.p2 = limit->p2.p2_slow;
604         } else {
605                 if (target < limit->p2.dot_limit)
606                         clock.p2 = limit->p2.p2_slow;
607                 else
608                         clock.p2 = limit->p2.p2_fast;
609         }
610
611         memset(best_clock, 0, sizeof(*best_clock));
612         max_n = limit->n.max;
613         /* based on hardware requirement, prefer smaller n to precision */
614         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
615                 /* based on hardware requirement, prefere larger m1,m2 */
616                 for (clock.m1 = limit->m1.max;
617                      clock.m1 >= limit->m1.min; clock.m1--) {
618                         for (clock.m2 = limit->m2.max;
619                              clock.m2 >= limit->m2.min; clock.m2--) {
620                                 for (clock.p1 = limit->p1.max;
621                                      clock.p1 >= limit->p1.min; clock.p1--) {
622                                         int this_err;
623
624                                         intel_clock(dev, refclk, &clock);
625                                         if (!intel_PLL_is_valid(dev, limit,
626                                                                 &clock))
627                                                 continue;
628
629                                         this_err = abs(clock.dot - target);
630                                         if (this_err < err_most) {
631                                                 *best_clock = clock;
632                                                 err_most = this_err;
633                                                 max_n = clock.n;
634                                                 found = true;
635                                         }
636                                 }
637                         }
638                 }
639         }
640         return found;
641 }
642
643 static bool
644 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
645                            int target, int refclk, intel_clock_t *best_clock)
646 {
647         struct drm_device *dev = crtc->dev;
648         intel_clock_t clock;
649
650         if (target < 200000) {
651                 clock.n = 1;
652                 clock.p1 = 2;
653                 clock.p2 = 10;
654                 clock.m1 = 12;
655                 clock.m2 = 9;
656         } else {
657                 clock.n = 2;
658                 clock.p1 = 1;
659                 clock.p2 = 10;
660                 clock.m1 = 14;
661                 clock.m2 = 8;
662         }
663         intel_clock(dev, refclk, &clock);
664         memcpy(best_clock, &clock, sizeof(intel_clock_t));
665         return true;
666 }
667
668 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
669 static bool
670 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
671                       int target, int refclk, intel_clock_t *best_clock)
672 {
673         intel_clock_t clock;
674         if (target < 200000) {
675                 clock.p1 = 2;
676                 clock.p2 = 10;
677                 clock.n = 2;
678                 clock.m1 = 23;
679                 clock.m2 = 8;
680         } else {
681                 clock.p1 = 1;
682                 clock.p2 = 10;
683                 clock.n = 1;
684                 clock.m1 = 14;
685                 clock.m2 = 2;
686         }
687         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
688         clock.p = (clock.p1 * clock.p2);
689         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
690         clock.vco = 0;
691         memcpy(best_clock, &clock, sizeof(intel_clock_t));
692         return true;
693 }
694
695 /**
696  * intel_wait_for_vblank - wait for vblank on a given pipe
697  * @dev: drm device
698  * @pipe: pipe to wait for
699  *
700  * Wait for vblank to occur on a given pipe.  Needed for various bits of
701  * mode setting code.
702  */
703 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
704 {
705         struct drm_i915_private *dev_priv = dev->dev_private;
706         int pipestat_reg = PIPESTAT(pipe);
707
708         /* Clear existing vblank status. Note this will clear any other
709          * sticky status fields as well.
710          *
711          * This races with i915_driver_irq_handler() with the result
712          * that either function could miss a vblank event.  Here it is not
713          * fatal, as we will either wait upon the next vblank interrupt or
714          * timeout.  Generally speaking intel_wait_for_vblank() is only
715          * called during modeset at which time the GPU should be idle and
716          * should *not* be performing page flips and thus not waiting on
717          * vblanks...
718          * Currently, the result of us stealing a vblank from the irq
719          * handler is that a single frame will be skipped during swapbuffers.
720          */
721         I915_WRITE(pipestat_reg,
722                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
723
724         /* Wait for vblank interrupt bit to set */
725         if (wait_for(I915_READ(pipestat_reg) &
726                      PIPE_VBLANK_INTERRUPT_STATUS,
727                      50))
728                 DRM_DEBUG_KMS("vblank wait timed out\n");
729 }
730
731 /*
732  * intel_wait_for_pipe_off - wait for pipe to turn off
733  * @dev: drm device
734  * @pipe: pipe to wait for
735  *
736  * After disabling a pipe, we can't wait for vblank in the usual way,
737  * spinning on the vblank interrupt status bit, since we won't actually
738  * see an interrupt when the pipe is disabled.
739  *
740  * On Gen4 and above:
741  *   wait for the pipe register state bit to turn off
742  *
743  * Otherwise:
744  *   wait for the display line value to settle (it usually
745  *   ends up stopping at the start of the next frame).
746  *
747  */
748 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
749 {
750         struct drm_i915_private *dev_priv = dev->dev_private;
751
752         if (INTEL_INFO(dev)->gen >= 4) {
753                 int reg = PIPECONF(pipe);
754
755                 /* Wait for the Pipe State to go off */
756                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
757                              100))
758                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
759         } else {
760                 u32 last_line;
761                 int reg = PIPEDSL(pipe);
762                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
763
764                 /* Wait for the display line to settle */
765                 do {
766                         last_line = I915_READ(reg) & DSL_LINEMASK;
767                         mdelay(5);
768                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
769                          time_after(timeout, jiffies));
770                 if (time_after(jiffies, timeout))
771                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
772         }
773 }
774
775 static const char *state_string(bool enabled)
776 {
777         return enabled ? "on" : "off";
778 }
779
780 /* Only for pre-ILK configs */
781 static void assert_pll(struct drm_i915_private *dev_priv,
782                        enum pipe pipe, bool state)
783 {
784         int reg;
785         u32 val;
786         bool cur_state;
787
788         reg = DPLL(pipe);
789         val = I915_READ(reg);
790         cur_state = !!(val & DPLL_VCO_ENABLE);
791         WARN(cur_state != state,
792              "PLL state assertion failure (expected %s, current %s)\n",
793              state_string(state), state_string(cur_state));
794 }
795 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
796 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
797
798 /* For ILK+ */
799 static void assert_pch_pll(struct drm_i915_private *dev_priv,
800                            enum pipe pipe, bool state)
801 {
802         int reg;
803         u32 val;
804         bool cur_state;
805
806         if (HAS_PCH_CPT(dev_priv->dev)) {
807                 u32 pch_dpll;
808
809                 pch_dpll = I915_READ(PCH_DPLL_SEL);
810
811                 /* Make sure the selected PLL is enabled to the transcoder */
812                 WARN(!((pch_dpll >> (4 * pipe)) & 8),
813                      "transcoder %d PLL not enabled\n", pipe);
814
815                 /* Convert the transcoder pipe number to a pll pipe number */
816                 pipe = (pch_dpll >> (4 * pipe)) & 1;
817         }
818
819         reg = PCH_DPLL(pipe);
820         val = I915_READ(reg);
821         cur_state = !!(val & DPLL_VCO_ENABLE);
822         WARN(cur_state != state,
823              "PCH PLL state assertion failure (expected %s, current %s)\n",
824              state_string(state), state_string(cur_state));
825 }
826 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
827 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
828
829 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
830                           enum pipe pipe, bool state)
831 {
832         int reg;
833         u32 val;
834         bool cur_state;
835
836         reg = FDI_TX_CTL(pipe);
837         val = I915_READ(reg);
838         cur_state = !!(val & FDI_TX_ENABLE);
839         WARN(cur_state != state,
840              "FDI TX state assertion failure (expected %s, current %s)\n",
841              state_string(state), state_string(cur_state));
842 }
843 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
844 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
845
846 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
847                           enum pipe pipe, bool state)
848 {
849         int reg;
850         u32 val;
851         bool cur_state;
852
853         reg = FDI_RX_CTL(pipe);
854         val = I915_READ(reg);
855         cur_state = !!(val & FDI_RX_ENABLE);
856         WARN(cur_state != state,
857              "FDI RX state assertion failure (expected %s, current %s)\n",
858              state_string(state), state_string(cur_state));
859 }
860 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
861 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
862
863 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
864                                       enum pipe pipe)
865 {
866         int reg;
867         u32 val;
868
869         /* ILK FDI PLL is always enabled */
870         if (dev_priv->info->gen == 5)
871                 return;
872
873         reg = FDI_TX_CTL(pipe);
874         val = I915_READ(reg);
875         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
876 }
877
878 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
879                                       enum pipe pipe)
880 {
881         int reg;
882         u32 val;
883
884         reg = FDI_RX_CTL(pipe);
885         val = I915_READ(reg);
886         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
887 }
888
889 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
890                                   enum pipe pipe)
891 {
892         int pp_reg, lvds_reg;
893         u32 val;
894         enum pipe panel_pipe = PIPE_A;
895         bool locked = true;
896
897         if (HAS_PCH_SPLIT(dev_priv->dev)) {
898                 pp_reg = PCH_PP_CONTROL;
899                 lvds_reg = PCH_LVDS;
900         } else {
901                 pp_reg = PP_CONTROL;
902                 lvds_reg = LVDS;
903         }
904
905         val = I915_READ(pp_reg);
906         if (!(val & PANEL_POWER_ON) ||
907             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
908                 locked = false;
909
910         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
911                 panel_pipe = PIPE_B;
912
913         WARN(panel_pipe == pipe && locked,
914              "panel assertion failure, pipe %c regs locked\n",
915              pipe_name(pipe));
916 }
917
918 static void assert_pipe(struct drm_i915_private *dev_priv,
919                         enum pipe pipe, bool state)
920 {
921         int reg;
922         u32 val;
923         bool cur_state;
924
925         reg = PIPECONF(pipe);
926         val = I915_READ(reg);
927         cur_state = !!(val & PIPECONF_ENABLE);
928         WARN(cur_state != state,
929              "pipe %c assertion failure (expected %s, current %s)\n",
930              pipe_name(pipe), state_string(state), state_string(cur_state));
931 }
932 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
933 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
934
935 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
936                                  enum plane plane)
937 {
938         int reg;
939         u32 val;
940
941         reg = DSPCNTR(plane);
942         val = I915_READ(reg);
943         WARN(!(val & DISPLAY_PLANE_ENABLE),
944              "plane %c assertion failure, should be active but is disabled\n",
945              plane_name(plane));
946 }
947
948 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
949                                    enum pipe pipe)
950 {
951         int reg, i;
952         u32 val;
953         int cur_pipe;
954
955         /* Planes are fixed to pipes on ILK+ */
956         if (HAS_PCH_SPLIT(dev_priv->dev))
957                 return;
958
959         /* Need to check both planes against the pipe */
960         for (i = 0; i < 2; i++) {
961                 reg = DSPCNTR(i);
962                 val = I915_READ(reg);
963                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
964                         DISPPLANE_SEL_PIPE_SHIFT;
965                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
966                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
967                      plane_name(i), pipe_name(pipe));
968         }
969 }
970
971 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
972 {
973         u32 val;
974         bool enabled;
975
976         val = I915_READ(PCH_DREF_CONTROL);
977         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
978                             DREF_SUPERSPREAD_SOURCE_MASK));
979         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
980 }
981
982 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
983                                        enum pipe pipe)
984 {
985         int reg;
986         u32 val;
987         bool enabled;
988
989         reg = TRANSCONF(pipe);
990         val = I915_READ(reg);
991         enabled = !!(val & TRANS_ENABLE);
992         WARN(enabled,
993              "transcoder assertion failed, should be off on pipe %c but is still active\n",
994              pipe_name(pipe));
995 }
996
997 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
998                             enum pipe pipe, u32 port_sel, u32 val)
999 {
1000         if ((val & DP_PORT_EN) == 0)
1001                 return false;
1002
1003         if (HAS_PCH_CPT(dev_priv->dev)) {
1004                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1005                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1006                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1007                         return false;
1008         } else {
1009                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1010                         return false;
1011         }
1012         return true;
1013 }
1014
1015 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1016                               enum pipe pipe, u32 val)
1017 {
1018         if ((val & PORT_ENABLE) == 0)
1019                 return false;
1020
1021         if (HAS_PCH_CPT(dev_priv->dev)) {
1022                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1023                         return false;
1024         } else {
1025                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1026                         return false;
1027         }
1028         return true;
1029 }
1030
1031 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1032                               enum pipe pipe, u32 val)
1033 {
1034         if ((val & LVDS_PORT_EN) == 0)
1035                 return false;
1036
1037         if (HAS_PCH_CPT(dev_priv->dev)) {
1038                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1039                         return false;
1040         } else {
1041                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1042                         return false;
1043         }
1044         return true;
1045 }
1046
1047 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1048                               enum pipe pipe, u32 val)
1049 {
1050         if ((val & ADPA_DAC_ENABLE) == 0)
1051                 return false;
1052         if (HAS_PCH_CPT(dev_priv->dev)) {
1053                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1054                         return false;
1055         } else {
1056                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1057                         return false;
1058         }
1059         return true;
1060 }
1061
1062 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1063                                    enum pipe pipe, int reg, u32 port_sel)
1064 {
1065         u32 val = I915_READ(reg);
1066         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1067              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1068              reg, pipe_name(pipe));
1069 }
1070
1071 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1072                                      enum pipe pipe, int reg)
1073 {
1074         u32 val = I915_READ(reg);
1075         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1076              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1077              reg, pipe_name(pipe));
1078 }
1079
1080 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1081                                       enum pipe pipe)
1082 {
1083         int reg;
1084         u32 val;
1085
1086         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1087         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1088         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1089
1090         reg = PCH_ADPA;
1091         val = I915_READ(reg);
1092         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1093              "PCH VGA enabled on transcoder %c, should be disabled\n",
1094              pipe_name(pipe));
1095
1096         reg = PCH_LVDS;
1097         val = I915_READ(reg);
1098         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1099              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1100              pipe_name(pipe));
1101
1102         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1103         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1104         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1105 }
1106
1107 /**
1108  * intel_enable_pll - enable a PLL
1109  * @dev_priv: i915 private structure
1110  * @pipe: pipe PLL to enable
1111  *
1112  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1113  * make sure the PLL reg is writable first though, since the panel write
1114  * protect mechanism may be enabled.
1115  *
1116  * Note!  This is for pre-ILK only.
1117  */
1118 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1119 {
1120         int reg;
1121         u32 val;
1122
1123         /* No really, not for ILK+ */
1124         BUG_ON(dev_priv->info->gen >= 5);
1125
1126         /* PLL is protected by panel, make sure we can write it */
1127         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1128                 assert_panel_unlocked(dev_priv, pipe);
1129
1130         reg = DPLL(pipe);
1131         val = I915_READ(reg);
1132         val |= DPLL_VCO_ENABLE;
1133
1134         /* We do this three times for luck */
1135         I915_WRITE(reg, val);
1136         POSTING_READ(reg);
1137         udelay(150); /* wait for warmup */
1138         I915_WRITE(reg, val);
1139         POSTING_READ(reg);
1140         udelay(150); /* wait for warmup */
1141         I915_WRITE(reg, val);
1142         POSTING_READ(reg);
1143         udelay(150); /* wait for warmup */
1144 }
1145
1146 /**
1147  * intel_disable_pll - disable a PLL
1148  * @dev_priv: i915 private structure
1149  * @pipe: pipe PLL to disable
1150  *
1151  * Disable the PLL for @pipe, making sure the pipe is off first.
1152  *
1153  * Note!  This is for pre-ILK only.
1154  */
1155 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1156 {
1157         int reg;
1158         u32 val;
1159
1160         /* Don't disable pipe A or pipe A PLLs if needed */
1161         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1162                 return;
1163
1164         /* Make sure the pipe isn't still relying on us */
1165         assert_pipe_disabled(dev_priv, pipe);
1166
1167         reg = DPLL(pipe);
1168         val = I915_READ(reg);
1169         val &= ~DPLL_VCO_ENABLE;
1170         I915_WRITE(reg, val);
1171         POSTING_READ(reg);
1172 }
1173
1174 /**
1175  * intel_enable_pch_pll - enable PCH PLL
1176  * @dev_priv: i915 private structure
1177  * @pipe: pipe PLL to enable
1178  *
1179  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1180  * drives the transcoder clock.
1181  */
1182 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1183                                  enum pipe pipe)
1184 {
1185         int reg;
1186         u32 val;
1187
1188         if (pipe > 1)
1189                 return;
1190
1191         /* PCH only available on ILK+ */
1192         BUG_ON(dev_priv->info->gen < 5);
1193
1194         /* PCH refclock must be enabled first */
1195         assert_pch_refclk_enabled(dev_priv);
1196
1197         reg = PCH_DPLL(pipe);
1198         val = I915_READ(reg);
1199         val |= DPLL_VCO_ENABLE;
1200         I915_WRITE(reg, val);
1201         POSTING_READ(reg);
1202         udelay(200);
1203 }
1204
1205 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1206                                   enum pipe pipe)
1207 {
1208         int reg;
1209         u32 val;
1210
1211         if (pipe > 1)
1212                 return;
1213
1214         /* PCH only available on ILK+ */
1215         BUG_ON(dev_priv->info->gen < 5);
1216
1217         /* Make sure transcoder isn't still depending on us */
1218         assert_transcoder_disabled(dev_priv, pipe);
1219
1220         reg = PCH_DPLL(pipe);
1221         val = I915_READ(reg);
1222         val &= ~DPLL_VCO_ENABLE;
1223         I915_WRITE(reg, val);
1224         POSTING_READ(reg);
1225         udelay(200);
1226 }
1227
1228 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1229                                     enum pipe pipe)
1230 {
1231         int reg;
1232         u32 val;
1233
1234         /* PCH only available on ILK+ */
1235         BUG_ON(dev_priv->info->gen < 5);
1236
1237         /* Make sure PCH DPLL is enabled */
1238         assert_pch_pll_enabled(dev_priv, pipe);
1239
1240         /* FDI must be feeding us bits for PCH ports */
1241         assert_fdi_tx_enabled(dev_priv, pipe);
1242         assert_fdi_rx_enabled(dev_priv, pipe);
1243
1244         reg = TRANSCONF(pipe);
1245         val = I915_READ(reg);
1246
1247         if (HAS_PCH_IBX(dev_priv->dev)) {
1248                 /*
1249                  * make the BPC in transcoder be consistent with
1250                  * that in pipeconf reg.
1251                  */
1252                 val &= ~PIPE_BPC_MASK;
1253                 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1254         }
1255         I915_WRITE(reg, val | TRANS_ENABLE);
1256         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1257                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1258 }
1259
1260 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1261                                      enum pipe pipe)
1262 {
1263         int reg;
1264         u32 val;
1265
1266         /* FDI relies on the transcoder */
1267         assert_fdi_tx_disabled(dev_priv, pipe);
1268         assert_fdi_rx_disabled(dev_priv, pipe);
1269
1270         /* Ports must be off as well */
1271         assert_pch_ports_disabled(dev_priv, pipe);
1272
1273         reg = TRANSCONF(pipe);
1274         val = I915_READ(reg);
1275         val &= ~TRANS_ENABLE;
1276         I915_WRITE(reg, val);
1277         /* wait for PCH transcoder off, transcoder state */
1278         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1279                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1280 }
1281
1282 /**
1283  * intel_enable_pipe - enable a pipe, asserting requirements
1284  * @dev_priv: i915 private structure
1285  * @pipe: pipe to enable
1286  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1287  *
1288  * Enable @pipe, making sure that various hardware specific requirements
1289  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1290  *
1291  * @pipe should be %PIPE_A or %PIPE_B.
1292  *
1293  * Will wait until the pipe is actually running (i.e. first vblank) before
1294  * returning.
1295  */
1296 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1297                               bool pch_port)
1298 {
1299         int reg;
1300         u32 val;
1301
1302         /*
1303          * A pipe without a PLL won't actually be able to drive bits from
1304          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1305          * need the check.
1306          */
1307         if (!HAS_PCH_SPLIT(dev_priv->dev))
1308                 assert_pll_enabled(dev_priv, pipe);
1309         else {
1310                 if (pch_port) {
1311                         /* if driving the PCH, we need FDI enabled */
1312                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1313                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1314                 }
1315                 /* FIXME: assert CPU port conditions for SNB+ */
1316         }
1317
1318         reg = PIPECONF(pipe);
1319         val = I915_READ(reg);
1320         if (val & PIPECONF_ENABLE)
1321                 return;
1322
1323         I915_WRITE(reg, val | PIPECONF_ENABLE);
1324         intel_wait_for_vblank(dev_priv->dev, pipe);
1325 }
1326
1327 /**
1328  * intel_disable_pipe - disable a pipe, asserting requirements
1329  * @dev_priv: i915 private structure
1330  * @pipe: pipe to disable
1331  *
1332  * Disable @pipe, making sure that various hardware specific requirements
1333  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1334  *
1335  * @pipe should be %PIPE_A or %PIPE_B.
1336  *
1337  * Will wait until the pipe has shut down before returning.
1338  */
1339 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1340                                enum pipe pipe)
1341 {
1342         int reg;
1343         u32 val;
1344
1345         /*
1346          * Make sure planes won't keep trying to pump pixels to us,
1347          * or we might hang the display.
1348          */
1349         assert_planes_disabled(dev_priv, pipe);
1350
1351         /* Don't disable pipe A or pipe A PLLs if needed */
1352         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1353                 return;
1354
1355         reg = PIPECONF(pipe);
1356         val = I915_READ(reg);
1357         if ((val & PIPECONF_ENABLE) == 0)
1358                 return;
1359
1360         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1361         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1362 }
1363
1364 /*
1365  * Plane regs are double buffered, going from enabled->disabled needs a
1366  * trigger in order to latch.  The display address reg provides this.
1367  */
1368 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1369                                       enum plane plane)
1370 {
1371         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1372         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1373 }
1374
1375 /**
1376  * intel_enable_plane - enable a display plane on a given pipe
1377  * @dev_priv: i915 private structure
1378  * @plane: plane to enable
1379  * @pipe: pipe being fed
1380  *
1381  * Enable @plane on @pipe, making sure that @pipe is running first.
1382  */
1383 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1384                                enum plane plane, enum pipe pipe)
1385 {
1386         int reg;
1387         u32 val;
1388
1389         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1390         assert_pipe_enabled(dev_priv, pipe);
1391
1392         reg = DSPCNTR(plane);
1393         val = I915_READ(reg);
1394         if (val & DISPLAY_PLANE_ENABLE)
1395                 return;
1396
1397         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1398         intel_flush_display_plane(dev_priv, plane);
1399         intel_wait_for_vblank(dev_priv->dev, pipe);
1400 }
1401
1402 /**
1403  * intel_disable_plane - disable a display plane
1404  * @dev_priv: i915 private structure
1405  * @plane: plane to disable
1406  * @pipe: pipe consuming the data
1407  *
1408  * Disable @plane; should be an independent operation.
1409  */
1410 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1411                                 enum plane plane, enum pipe pipe)
1412 {
1413         int reg;
1414         u32 val;
1415
1416         reg = DSPCNTR(plane);
1417         val = I915_READ(reg);
1418         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1419                 return;
1420
1421         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1422         intel_flush_display_plane(dev_priv, plane);
1423         intel_wait_for_vblank(dev_priv->dev, pipe);
1424 }
1425
1426 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1427                            enum pipe pipe, int reg, u32 port_sel)
1428 {
1429         u32 val = I915_READ(reg);
1430         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1431                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1432                 I915_WRITE(reg, val & ~DP_PORT_EN);
1433         }
1434 }
1435
1436 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1437                              enum pipe pipe, int reg)
1438 {
1439         u32 val = I915_READ(reg);
1440         if (hdmi_pipe_enabled(dev_priv, pipe, val)) {
1441                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1442                               reg, pipe);
1443                 I915_WRITE(reg, val & ~PORT_ENABLE);
1444         }
1445 }
1446
1447 /* Disable any ports connected to this transcoder */
1448 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1449                                     enum pipe pipe)
1450 {
1451         u32 reg, val;
1452
1453         val = I915_READ(PCH_PP_CONTROL);
1454         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1455
1456         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1457         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1458         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1459
1460         reg = PCH_ADPA;
1461         val = I915_READ(reg);
1462         if (adpa_pipe_enabled(dev_priv, pipe, val))
1463                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1464
1465         reg = PCH_LVDS;
1466         val = I915_READ(reg);
1467         if (lvds_pipe_enabled(dev_priv, pipe, val)) {
1468                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1469                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1470                 POSTING_READ(reg);
1471                 udelay(100);
1472         }
1473
1474         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1475         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1476         disable_pch_hdmi(dev_priv, pipe, HDMID);
1477 }
1478
1479 static void i8xx_disable_fbc(struct drm_device *dev)
1480 {
1481         struct drm_i915_private *dev_priv = dev->dev_private;
1482         u32 fbc_ctl;
1483
1484         /* Disable compression */
1485         fbc_ctl = I915_READ(FBC_CONTROL);
1486         if ((fbc_ctl & FBC_CTL_EN) == 0)
1487                 return;
1488
1489         fbc_ctl &= ~FBC_CTL_EN;
1490         I915_WRITE(FBC_CONTROL, fbc_ctl);
1491
1492         /* Wait for compressing bit to clear */
1493         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1494                 DRM_DEBUG_KMS("FBC idle timed out\n");
1495                 return;
1496         }
1497
1498         DRM_DEBUG_KMS("disabled FBC\n");
1499 }
1500
1501 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1502 {
1503         struct drm_device *dev = crtc->dev;
1504         struct drm_i915_private *dev_priv = dev->dev_private;
1505         struct drm_framebuffer *fb = crtc->fb;
1506         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1507         struct drm_i915_gem_object *obj = intel_fb->obj;
1508         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1509         int cfb_pitch;
1510         int plane, i;
1511         u32 fbc_ctl, fbc_ctl2;
1512
1513         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1514         if (fb->pitch < cfb_pitch)
1515                 cfb_pitch = fb->pitch;
1516
1517         /* FBC_CTL wants 64B units */
1518         cfb_pitch = (cfb_pitch / 64) - 1;
1519         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1520
1521         /* Clear old tags */
1522         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1523                 I915_WRITE(FBC_TAG + (i * 4), 0);
1524
1525         /* Set it up... */
1526         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1527         fbc_ctl2 |= plane;
1528         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1529         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1530
1531         /* enable it... */
1532         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1533         if (IS_I945GM(dev))
1534                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1535         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1536         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1537         fbc_ctl |= obj->fence_reg;
1538         I915_WRITE(FBC_CONTROL, fbc_ctl);
1539
1540         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1541                       cfb_pitch, crtc->y, intel_crtc->plane);
1542 }
1543
1544 static bool i8xx_fbc_enabled(struct drm_device *dev)
1545 {
1546         struct drm_i915_private *dev_priv = dev->dev_private;
1547
1548         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1549 }
1550
1551 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1552 {
1553         struct drm_device *dev = crtc->dev;
1554         struct drm_i915_private *dev_priv = dev->dev_private;
1555         struct drm_framebuffer *fb = crtc->fb;
1556         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1557         struct drm_i915_gem_object *obj = intel_fb->obj;
1558         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1559         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1560         unsigned long stall_watermark = 200;
1561         u32 dpfc_ctl;
1562
1563         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1564         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1565         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1566
1567         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1568                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1569                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1570         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1571
1572         /* enable it... */
1573         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1574
1575         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1576 }
1577
1578 static void g4x_disable_fbc(struct drm_device *dev)
1579 {
1580         struct drm_i915_private *dev_priv = dev->dev_private;
1581         u32 dpfc_ctl;
1582
1583         /* Disable compression */
1584         dpfc_ctl = I915_READ(DPFC_CONTROL);
1585         if (dpfc_ctl & DPFC_CTL_EN) {
1586                 dpfc_ctl &= ~DPFC_CTL_EN;
1587                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1588
1589                 DRM_DEBUG_KMS("disabled FBC\n");
1590         }
1591 }
1592
1593 static bool g4x_fbc_enabled(struct drm_device *dev)
1594 {
1595         struct drm_i915_private *dev_priv = dev->dev_private;
1596
1597         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1598 }
1599
1600 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1601 {
1602         struct drm_i915_private *dev_priv = dev->dev_private;
1603         u32 blt_ecoskpd;
1604
1605         /* Make sure blitter notifies FBC of writes */
1606         gen6_gt_force_wake_get(dev_priv);
1607         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1608         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1609                 GEN6_BLITTER_LOCK_SHIFT;
1610         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1611         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1612         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1613         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1614                          GEN6_BLITTER_LOCK_SHIFT);
1615         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1616         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1617         gen6_gt_force_wake_put(dev_priv);
1618 }
1619
1620 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1621 {
1622         struct drm_device *dev = crtc->dev;
1623         struct drm_i915_private *dev_priv = dev->dev_private;
1624         struct drm_framebuffer *fb = crtc->fb;
1625         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1626         struct drm_i915_gem_object *obj = intel_fb->obj;
1627         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1628         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1629         unsigned long stall_watermark = 200;
1630         u32 dpfc_ctl;
1631
1632         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1633         dpfc_ctl &= DPFC_RESERVED;
1634         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1635         /* Set persistent mode for front-buffer rendering, ala X. */
1636         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1637         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1638         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1639
1640         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1641                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1642                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1643         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1644         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1645         /* enable it... */
1646         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1647
1648         if (IS_GEN6(dev)) {
1649                 I915_WRITE(SNB_DPFC_CTL_SA,
1650                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1651                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1652                 sandybridge_blit_fbc_update(dev);
1653         }
1654
1655         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1656 }
1657
1658 static void ironlake_disable_fbc(struct drm_device *dev)
1659 {
1660         struct drm_i915_private *dev_priv = dev->dev_private;
1661         u32 dpfc_ctl;
1662
1663         /* Disable compression */
1664         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1665         if (dpfc_ctl & DPFC_CTL_EN) {
1666                 dpfc_ctl &= ~DPFC_CTL_EN;
1667                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1668
1669                 DRM_DEBUG_KMS("disabled FBC\n");
1670         }
1671 }
1672
1673 static bool ironlake_fbc_enabled(struct drm_device *dev)
1674 {
1675         struct drm_i915_private *dev_priv = dev->dev_private;
1676
1677         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1678 }
1679
1680 bool intel_fbc_enabled(struct drm_device *dev)
1681 {
1682         struct drm_i915_private *dev_priv = dev->dev_private;
1683
1684         if (!dev_priv->display.fbc_enabled)
1685                 return false;
1686
1687         return dev_priv->display.fbc_enabled(dev);
1688 }
1689
1690 static void intel_fbc_work_fn(struct work_struct *__work)
1691 {
1692         struct intel_fbc_work *work =
1693                 container_of(to_delayed_work(__work),
1694                              struct intel_fbc_work, work);
1695         struct drm_device *dev = work->crtc->dev;
1696         struct drm_i915_private *dev_priv = dev->dev_private;
1697
1698         mutex_lock(&dev->struct_mutex);
1699         if (work == dev_priv->fbc_work) {
1700                 /* Double check that we haven't switched fb without cancelling
1701                  * the prior work.
1702                  */
1703                 if (work->crtc->fb == work->fb) {
1704                         dev_priv->display.enable_fbc(work->crtc,
1705                                                      work->interval);
1706
1707                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1708                         dev_priv->cfb_fb = work->crtc->fb->base.id;
1709                         dev_priv->cfb_y = work->crtc->y;
1710                 }
1711
1712                 dev_priv->fbc_work = NULL;
1713         }
1714         mutex_unlock(&dev->struct_mutex);
1715
1716         kfree(work);
1717 }
1718
1719 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1720 {
1721         if (dev_priv->fbc_work == NULL)
1722                 return;
1723
1724         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1725
1726         /* Synchronisation is provided by struct_mutex and checking of
1727          * dev_priv->fbc_work, so we can perform the cancellation
1728          * entirely asynchronously.
1729          */
1730         if (cancel_delayed_work(&dev_priv->fbc_work->work))
1731                 /* tasklet was killed before being run, clean up */
1732                 kfree(dev_priv->fbc_work);
1733
1734         /* Mark the work as no longer wanted so that if it does
1735          * wake-up (because the work was already running and waiting
1736          * for our mutex), it will discover that is no longer
1737          * necessary to run.
1738          */
1739         dev_priv->fbc_work = NULL;
1740 }
1741
1742 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1743 {
1744         struct intel_fbc_work *work;
1745         struct drm_device *dev = crtc->dev;
1746         struct drm_i915_private *dev_priv = dev->dev_private;
1747
1748         if (!dev_priv->display.enable_fbc)
1749                 return;
1750
1751         intel_cancel_fbc_work(dev_priv);
1752
1753         work = kzalloc(sizeof *work, GFP_KERNEL);
1754         if (work == NULL) {
1755                 dev_priv->display.enable_fbc(crtc, interval);
1756                 return;
1757         }
1758
1759         work->crtc = crtc;
1760         work->fb = crtc->fb;
1761         work->interval = interval;
1762         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1763
1764         dev_priv->fbc_work = work;
1765
1766         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1767
1768         /* Delay the actual enabling to let pageflipping cease and the
1769          * display to settle before starting the compression. Note that
1770          * this delay also serves a second purpose: it allows for a
1771          * vblank to pass after disabling the FBC before we attempt
1772          * to modify the control registers.
1773          *
1774          * A more complicated solution would involve tracking vblanks
1775          * following the termination of the page-flipping sequence
1776          * and indeed performing the enable as a co-routine and not
1777          * waiting synchronously upon the vblank.
1778          */
1779         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1780 }
1781
1782 void intel_disable_fbc(struct drm_device *dev)
1783 {
1784         struct drm_i915_private *dev_priv = dev->dev_private;
1785
1786         intel_cancel_fbc_work(dev_priv);
1787
1788         if (!dev_priv->display.disable_fbc)
1789                 return;
1790
1791         dev_priv->display.disable_fbc(dev);
1792         dev_priv->cfb_plane = -1;
1793 }
1794
1795 /**
1796  * intel_update_fbc - enable/disable FBC as needed
1797  * @dev: the drm_device
1798  *
1799  * Set up the framebuffer compression hardware at mode set time.  We
1800  * enable it if possible:
1801  *   - plane A only (on pre-965)
1802  *   - no pixel mulitply/line duplication
1803  *   - no alpha buffer discard
1804  *   - no dual wide
1805  *   - framebuffer <= 2048 in width, 1536 in height
1806  *
1807  * We can't assume that any compression will take place (worst case),
1808  * so the compressed buffer has to be the same size as the uncompressed
1809  * one.  It also must reside (along with the line length buffer) in
1810  * stolen memory.
1811  *
1812  * We need to enable/disable FBC on a global basis.
1813  */
1814 static void intel_update_fbc(struct drm_device *dev)
1815 {
1816         struct drm_i915_private *dev_priv = dev->dev_private;
1817         struct drm_crtc *crtc = NULL, *tmp_crtc;
1818         struct intel_crtc *intel_crtc;
1819         struct drm_framebuffer *fb;
1820         struct intel_framebuffer *intel_fb;
1821         struct drm_i915_gem_object *obj;
1822         int enable_fbc;
1823
1824         DRM_DEBUG_KMS("\n");
1825
1826         if (!i915_powersave)
1827                 return;
1828
1829         if (!I915_HAS_FBC(dev))
1830                 return;
1831
1832         /*
1833          * If FBC is already on, we just have to verify that we can
1834          * keep it that way...
1835          * Need to disable if:
1836          *   - more than one pipe is active
1837          *   - changing FBC params (stride, fence, mode)
1838          *   - new fb is too large to fit in compressed buffer
1839          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1840          */
1841         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1842                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1843                         if (crtc) {
1844                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1845                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1846                                 goto out_disable;
1847                         }
1848                         crtc = tmp_crtc;
1849                 }
1850         }
1851
1852         if (!crtc || crtc->fb == NULL) {
1853                 DRM_DEBUG_KMS("no output, disabling\n");
1854                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1855                 goto out_disable;
1856         }
1857
1858         intel_crtc = to_intel_crtc(crtc);
1859         fb = crtc->fb;
1860         intel_fb = to_intel_framebuffer(fb);
1861         obj = intel_fb->obj;
1862
1863         enable_fbc = i915_enable_fbc;
1864         if (enable_fbc < 0) {
1865                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1866                 enable_fbc = 1;
1867                 if (INTEL_INFO(dev)->gen <= 6)
1868                         enable_fbc = 0;
1869         }
1870         if (!enable_fbc) {
1871                 DRM_DEBUG_KMS("fbc disabled per module param\n");
1872                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1873                 goto out_disable;
1874         }
1875         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1876                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1877                               "compression\n");
1878                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1879                 goto out_disable;
1880         }
1881         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1882             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1883                 DRM_DEBUG_KMS("mode incompatible with compression, "
1884                               "disabling\n");
1885                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1886                 goto out_disable;
1887         }
1888         if ((crtc->mode.hdisplay > 2048) ||
1889             (crtc->mode.vdisplay > 1536)) {
1890                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1891                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1892                 goto out_disable;
1893         }
1894         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1895                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1896                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1897                 goto out_disable;
1898         }
1899
1900         /* The use of a CPU fence is mandatory in order to detect writes
1901          * by the CPU to the scanout and trigger updates to the FBC.
1902          */
1903         if (obj->tiling_mode != I915_TILING_X ||
1904             obj->fence_reg == I915_FENCE_REG_NONE) {
1905                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1906                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1907                 goto out_disable;
1908         }
1909
1910         /* If the kernel debugger is active, always disable compression */
1911         if (in_dbg_master())
1912                 goto out_disable;
1913
1914         /* If the scanout has not changed, don't modify the FBC settings.
1915          * Note that we make the fundamental assumption that the fb->obj
1916          * cannot be unpinned (and have its GTT offset and fence revoked)
1917          * without first being decoupled from the scanout and FBC disabled.
1918          */
1919         if (dev_priv->cfb_plane == intel_crtc->plane &&
1920             dev_priv->cfb_fb == fb->base.id &&
1921             dev_priv->cfb_y == crtc->y)
1922                 return;
1923
1924         if (intel_fbc_enabled(dev)) {
1925                 /* We update FBC along two paths, after changing fb/crtc
1926                  * configuration (modeswitching) and after page-flipping
1927                  * finishes. For the latter, we know that not only did
1928                  * we disable the FBC at the start of the page-flip
1929                  * sequence, but also more than one vblank has passed.
1930                  *
1931                  * For the former case of modeswitching, it is possible
1932                  * to switch between two FBC valid configurations
1933                  * instantaneously so we do need to disable the FBC
1934                  * before we can modify its control registers. We also
1935                  * have to wait for the next vblank for that to take
1936                  * effect. However, since we delay enabling FBC we can
1937                  * assume that a vblank has passed since disabling and
1938                  * that we can safely alter the registers in the deferred
1939                  * callback.
1940                  *
1941                  * In the scenario that we go from a valid to invalid
1942                  * and then back to valid FBC configuration we have
1943                  * no strict enforcement that a vblank occurred since
1944                  * disabling the FBC. However, along all current pipe
1945                  * disabling paths we do need to wait for a vblank at
1946                  * some point. And we wait before enabling FBC anyway.
1947                  */
1948                 DRM_DEBUG_KMS("disabling active FBC for update\n");
1949                 intel_disable_fbc(dev);
1950         }
1951
1952         intel_enable_fbc(crtc, 500);
1953         return;
1954
1955 out_disable:
1956         /* Multiple disables should be harmless */
1957         if (intel_fbc_enabled(dev)) {
1958                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1959                 intel_disable_fbc(dev);
1960         }
1961 }
1962
1963 int
1964 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1965                            struct drm_i915_gem_object *obj,
1966                            struct intel_ring_buffer *pipelined)
1967 {
1968         struct drm_i915_private *dev_priv = dev->dev_private;
1969         u32 alignment;
1970         int ret;
1971
1972         switch (obj->tiling_mode) {
1973         case I915_TILING_NONE:
1974                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1975                         alignment = 128 * 1024;
1976                 else if (INTEL_INFO(dev)->gen >= 4)
1977                         alignment = 4 * 1024;
1978                 else
1979                         alignment = 64 * 1024;
1980                 break;
1981         case I915_TILING_X:
1982                 /* pin() will align the object as required by fence */
1983                 alignment = 0;
1984                 break;
1985         case I915_TILING_Y:
1986                 /* FIXME: Is this true? */
1987                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1988                 return -EINVAL;
1989         default:
1990                 BUG();
1991         }
1992
1993         dev_priv->mm.interruptible = false;
1994         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1995         if (ret)
1996                 goto err_interruptible;
1997
1998         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1999          * fence, whereas 965+ only requires a fence if using
2000          * framebuffer compression.  For simplicity, we always install
2001          * a fence as the cost is not that onerous.
2002          */
2003         if (obj->tiling_mode != I915_TILING_NONE) {
2004                 ret = i915_gem_object_get_fence(obj, pipelined);
2005                 if (ret)
2006                         goto err_unpin;
2007         }
2008
2009         dev_priv->mm.interruptible = true;
2010         return 0;
2011
2012 err_unpin:
2013         i915_gem_object_unpin(obj);
2014 err_interruptible:
2015         dev_priv->mm.interruptible = true;
2016         return ret;
2017 }
2018
2019 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2020                              int x, int y)
2021 {
2022         struct drm_device *dev = crtc->dev;
2023         struct drm_i915_private *dev_priv = dev->dev_private;
2024         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2025         struct intel_framebuffer *intel_fb;
2026         struct drm_i915_gem_object *obj;
2027         int plane = intel_crtc->plane;
2028         unsigned long Start, Offset;
2029         u32 dspcntr;
2030         u32 reg;
2031
2032         switch (plane) {
2033         case 0:
2034         case 1:
2035                 break;
2036         default:
2037                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2038                 return -EINVAL;
2039         }
2040
2041         intel_fb = to_intel_framebuffer(fb);
2042         obj = intel_fb->obj;
2043
2044         reg = DSPCNTR(plane);
2045         dspcntr = I915_READ(reg);
2046         /* Mask out pixel format bits in case we change it */
2047         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2048         switch (fb->bits_per_pixel) {
2049         case 8:
2050                 dspcntr |= DISPPLANE_8BPP;
2051                 break;
2052         case 16:
2053                 if (fb->depth == 15)
2054                         dspcntr |= DISPPLANE_15_16BPP;
2055                 else
2056                         dspcntr |= DISPPLANE_16BPP;
2057                 break;
2058         case 24:
2059         case 32:
2060                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2061                 break;
2062         default:
2063                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2064                 return -EINVAL;
2065         }
2066         if (INTEL_INFO(dev)->gen >= 4) {
2067                 if (obj->tiling_mode != I915_TILING_NONE)
2068                         dspcntr |= DISPPLANE_TILED;
2069                 else
2070                         dspcntr &= ~DISPPLANE_TILED;
2071         }
2072
2073         I915_WRITE(reg, dspcntr);
2074
2075         Start = obj->gtt_offset;
2076         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2077
2078         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2079                       Start, Offset, x, y, fb->pitch);
2080         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2081         if (INTEL_INFO(dev)->gen >= 4) {
2082                 I915_WRITE(DSPSURF(plane), Start);
2083                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2084                 I915_WRITE(DSPADDR(plane), Offset);
2085         } else
2086                 I915_WRITE(DSPADDR(plane), Start + Offset);
2087         POSTING_READ(reg);
2088
2089         return 0;
2090 }
2091
2092 static int ironlake_update_plane(struct drm_crtc *crtc,
2093                                  struct drm_framebuffer *fb, int x, int y)
2094 {
2095         struct drm_device *dev = crtc->dev;
2096         struct drm_i915_private *dev_priv = dev->dev_private;
2097         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2098         struct intel_framebuffer *intel_fb;
2099         struct drm_i915_gem_object *obj;
2100         int plane = intel_crtc->plane;
2101         unsigned long Start, Offset;
2102         u32 dspcntr;
2103         u32 reg;
2104
2105         switch (plane) {
2106         case 0:
2107         case 1:
2108         case 2:
2109                 break;
2110         default:
2111                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2112                 return -EINVAL;
2113         }
2114
2115         intel_fb = to_intel_framebuffer(fb);
2116         obj = intel_fb->obj;
2117
2118         reg = DSPCNTR(plane);
2119         dspcntr = I915_READ(reg);
2120         /* Mask out pixel format bits in case we change it */
2121         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2122         switch (fb->bits_per_pixel) {
2123         case 8:
2124                 dspcntr |= DISPPLANE_8BPP;
2125                 break;
2126         case 16:
2127                 if (fb->depth != 16)
2128                         return -EINVAL;
2129
2130                 dspcntr |= DISPPLANE_16BPP;
2131                 break;
2132         case 24:
2133         case 32:
2134                 if (fb->depth == 24)
2135                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2136                 else if (fb->depth == 30)
2137                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2138                 else
2139                         return -EINVAL;
2140                 break;
2141         default:
2142                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2143                 return -EINVAL;
2144         }
2145
2146         if (obj->tiling_mode != I915_TILING_NONE)
2147                 dspcntr |= DISPPLANE_TILED;
2148         else
2149                 dspcntr &= ~DISPPLANE_TILED;
2150
2151         /* must disable */
2152         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2153
2154         I915_WRITE(reg, dspcntr);
2155
2156         Start = obj->gtt_offset;
2157         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2158
2159         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2160                       Start, Offset, x, y, fb->pitch);
2161         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2162         I915_WRITE(DSPSURF(plane), Start);
2163         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2164         I915_WRITE(DSPADDR(plane), Offset);
2165         POSTING_READ(reg);
2166
2167         return 0;
2168 }
2169
2170 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2171 static int
2172 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2173                            int x, int y, enum mode_set_atomic state)
2174 {
2175         struct drm_device *dev = crtc->dev;
2176         struct drm_i915_private *dev_priv = dev->dev_private;
2177         int ret;
2178
2179         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2180         if (ret)
2181                 return ret;
2182
2183         intel_update_fbc(dev);
2184         intel_increase_pllclock(crtc);
2185
2186         return 0;
2187 }
2188
2189 static int
2190 intel_finish_fb(struct drm_framebuffer *old_fb)
2191 {
2192         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2193         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2194         bool was_interruptible = dev_priv->mm.interruptible;
2195         int ret;
2196
2197         wait_event(dev_priv->pending_flip_queue,
2198                    atomic_read(&dev_priv->mm.wedged) ||
2199                    atomic_read(&obj->pending_flip) == 0);
2200
2201         /* Big Hammer, we also need to ensure that any pending
2202          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2203          * current scanout is retired before unpinning the old
2204          * framebuffer.
2205          *
2206          * This should only fail upon a hung GPU, in which case we
2207          * can safely continue.
2208          */
2209         dev_priv->mm.interruptible = false;
2210         ret = i915_gem_object_finish_gpu(obj);
2211         dev_priv->mm.interruptible = was_interruptible;
2212
2213         return ret;
2214 }
2215
2216 static int
2217 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2218                     struct drm_framebuffer *old_fb)
2219 {
2220         struct drm_device *dev = crtc->dev;
2221         struct drm_i915_master_private *master_priv;
2222         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2223         int ret;
2224
2225         /* no fb bound */
2226         if (!crtc->fb) {
2227                 DRM_ERROR("No FB bound\n");
2228                 return 0;
2229         }
2230
2231         switch (intel_crtc->plane) {
2232         case 0:
2233         case 1:
2234                 break;
2235         case 2:
2236                 if (IS_IVYBRIDGE(dev))
2237                         break;
2238                 /* fall through otherwise */
2239         default:
2240                 DRM_ERROR("no plane for crtc\n");
2241                 return -EINVAL;
2242         }
2243
2244         mutex_lock(&dev->struct_mutex);
2245         ret = intel_pin_and_fence_fb_obj(dev,
2246                                          to_intel_framebuffer(crtc->fb)->obj,
2247                                          NULL);
2248         if (ret != 0) {
2249                 mutex_unlock(&dev->struct_mutex);
2250                 DRM_ERROR("pin & fence failed\n");
2251                 return ret;
2252         }
2253
2254         if (old_fb)
2255                 intel_finish_fb(old_fb);
2256
2257         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2258                                          LEAVE_ATOMIC_MODE_SET);
2259         if (ret) {
2260                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2261                 mutex_unlock(&dev->struct_mutex);
2262                 DRM_ERROR("failed to update base address\n");
2263                 return ret;
2264         }
2265
2266         if (old_fb) {
2267                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2268                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2269         }
2270
2271         mutex_unlock(&dev->struct_mutex);
2272
2273         if (!dev->primary->master)
2274                 return 0;
2275
2276         master_priv = dev->primary->master->driver_priv;
2277         if (!master_priv->sarea_priv)
2278                 return 0;
2279
2280         if (intel_crtc->pipe) {
2281                 master_priv->sarea_priv->pipeB_x = x;
2282                 master_priv->sarea_priv->pipeB_y = y;
2283         } else {
2284                 master_priv->sarea_priv->pipeA_x = x;
2285                 master_priv->sarea_priv->pipeA_y = y;
2286         }
2287
2288         return 0;
2289 }
2290
2291 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2292 {
2293         struct drm_device *dev = crtc->dev;
2294         struct drm_i915_private *dev_priv = dev->dev_private;
2295         u32 dpa_ctl;
2296
2297         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2298         dpa_ctl = I915_READ(DP_A);
2299         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2300
2301         if (clock < 200000) {
2302                 u32 temp;
2303                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2304                 /* workaround for 160Mhz:
2305                    1) program 0x4600c bits 15:0 = 0x8124
2306                    2) program 0x46010 bit 0 = 1
2307                    3) program 0x46034 bit 24 = 1
2308                    4) program 0x64000 bit 14 = 1
2309                    */
2310                 temp = I915_READ(0x4600c);
2311                 temp &= 0xffff0000;
2312                 I915_WRITE(0x4600c, temp | 0x8124);
2313
2314                 temp = I915_READ(0x46010);
2315                 I915_WRITE(0x46010, temp | 1);
2316
2317                 temp = I915_READ(0x46034);
2318                 I915_WRITE(0x46034, temp | (1 << 24));
2319         } else {
2320                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2321         }
2322         I915_WRITE(DP_A, dpa_ctl);
2323
2324         POSTING_READ(DP_A);
2325         udelay(500);
2326 }
2327
2328 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2329 {
2330         struct drm_device *dev = crtc->dev;
2331         struct drm_i915_private *dev_priv = dev->dev_private;
2332         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2333         int pipe = intel_crtc->pipe;
2334         u32 reg, temp;
2335
2336         /* enable normal train */
2337         reg = FDI_TX_CTL(pipe);
2338         temp = I915_READ(reg);
2339         if (IS_IVYBRIDGE(dev)) {
2340                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2341                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2342         } else {
2343                 temp &= ~FDI_LINK_TRAIN_NONE;
2344                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2345         }
2346         I915_WRITE(reg, temp);
2347
2348         reg = FDI_RX_CTL(pipe);
2349         temp = I915_READ(reg);
2350         if (HAS_PCH_CPT(dev)) {
2351                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2352                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2353         } else {
2354                 temp &= ~FDI_LINK_TRAIN_NONE;
2355                 temp |= FDI_LINK_TRAIN_NONE;
2356         }
2357         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2358
2359         /* wait one idle pattern time */
2360         POSTING_READ(reg);
2361         udelay(1000);
2362
2363         /* IVB wants error correction enabled */
2364         if (IS_IVYBRIDGE(dev))
2365                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2366                            FDI_FE_ERRC_ENABLE);
2367 }
2368
2369 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2370 {
2371         struct drm_i915_private *dev_priv = dev->dev_private;
2372         u32 flags = I915_READ(SOUTH_CHICKEN1);
2373
2374         flags |= FDI_PHASE_SYNC_OVR(pipe);
2375         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2376         flags |= FDI_PHASE_SYNC_EN(pipe);
2377         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2378         POSTING_READ(SOUTH_CHICKEN1);
2379 }
2380
2381 /* The FDI link training functions for ILK/Ibexpeak. */
2382 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2383 {
2384         struct drm_device *dev = crtc->dev;
2385         struct drm_i915_private *dev_priv = dev->dev_private;
2386         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2387         int pipe = intel_crtc->pipe;
2388         int plane = intel_crtc->plane;
2389         u32 reg, temp, tries;
2390
2391         /* FDI needs bits from pipe & plane first */
2392         assert_pipe_enabled(dev_priv, pipe);
2393         assert_plane_enabled(dev_priv, plane);
2394
2395         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2396            for train result */
2397         reg = FDI_RX_IMR(pipe);
2398         temp = I915_READ(reg);
2399         temp &= ~FDI_RX_SYMBOL_LOCK;
2400         temp &= ~FDI_RX_BIT_LOCK;
2401         I915_WRITE(reg, temp);
2402         I915_READ(reg);
2403         udelay(150);
2404
2405         /* enable CPU FDI TX and PCH FDI RX */
2406         reg = FDI_TX_CTL(pipe);
2407         temp = I915_READ(reg);
2408         temp &= ~(7 << 19);
2409         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2410         temp &= ~FDI_LINK_TRAIN_NONE;
2411         temp |= FDI_LINK_TRAIN_PATTERN_1;
2412         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2413
2414         reg = FDI_RX_CTL(pipe);
2415         temp = I915_READ(reg);
2416         temp &= ~FDI_LINK_TRAIN_NONE;
2417         temp |= FDI_LINK_TRAIN_PATTERN_1;
2418         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2419
2420         POSTING_READ(reg);
2421         udelay(150);
2422
2423         /* Ironlake workaround, enable clock pointer after FDI enable*/
2424         if (HAS_PCH_IBX(dev)) {
2425                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2426                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2427                            FDI_RX_PHASE_SYNC_POINTER_EN);
2428         }
2429
2430         reg = FDI_RX_IIR(pipe);
2431         for (tries = 0; tries < 5; tries++) {
2432                 temp = I915_READ(reg);
2433                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2434
2435                 if ((temp & FDI_RX_BIT_LOCK)) {
2436                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2437                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2438                         break;
2439                 }
2440         }
2441         if (tries == 5)
2442                 DRM_ERROR("FDI train 1 fail!\n");
2443
2444         /* Train 2 */
2445         reg = FDI_TX_CTL(pipe);
2446         temp = I915_READ(reg);
2447         temp &= ~FDI_LINK_TRAIN_NONE;
2448         temp |= FDI_LINK_TRAIN_PATTERN_2;
2449         I915_WRITE(reg, temp);
2450
2451         reg = FDI_RX_CTL(pipe);
2452         temp = I915_READ(reg);
2453         temp &= ~FDI_LINK_TRAIN_NONE;
2454         temp |= FDI_LINK_TRAIN_PATTERN_2;
2455         I915_WRITE(reg, temp);
2456
2457         POSTING_READ(reg);
2458         udelay(150);
2459
2460         reg = FDI_RX_IIR(pipe);
2461         for (tries = 0; tries < 5; tries++) {
2462                 temp = I915_READ(reg);
2463                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2464
2465                 if (temp & FDI_RX_SYMBOL_LOCK) {
2466                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2467                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2468                         break;
2469                 }
2470         }
2471         if (tries == 5)
2472                 DRM_ERROR("FDI train 2 fail!\n");
2473
2474         DRM_DEBUG_KMS("FDI train done\n");
2475
2476 }
2477
2478 static const int snb_b_fdi_train_param[] = {
2479         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2480         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2481         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2482         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2483 };
2484
2485 /* The FDI link training functions for SNB/Cougarpoint. */
2486 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2487 {
2488         struct drm_device *dev = crtc->dev;
2489         struct drm_i915_private *dev_priv = dev->dev_private;
2490         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2491         int pipe = intel_crtc->pipe;
2492         u32 reg, temp, i;
2493
2494         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2495            for train result */
2496         reg = FDI_RX_IMR(pipe);
2497         temp = I915_READ(reg);
2498         temp &= ~FDI_RX_SYMBOL_LOCK;
2499         temp &= ~FDI_RX_BIT_LOCK;
2500         I915_WRITE(reg, temp);
2501
2502         POSTING_READ(reg);
2503         udelay(150);
2504
2505         /* enable CPU FDI TX and PCH FDI RX */
2506         reg = FDI_TX_CTL(pipe);
2507         temp = I915_READ(reg);
2508         temp &= ~(7 << 19);
2509         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2510         temp &= ~FDI_LINK_TRAIN_NONE;
2511         temp |= FDI_LINK_TRAIN_PATTERN_1;
2512         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2513         /* SNB-B */
2514         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2515         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2516
2517         reg = FDI_RX_CTL(pipe);
2518         temp = I915_READ(reg);
2519         if (HAS_PCH_CPT(dev)) {
2520                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2521                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2522         } else {
2523                 temp &= ~FDI_LINK_TRAIN_NONE;
2524                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2525         }
2526         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2527
2528         POSTING_READ(reg);
2529         udelay(150);
2530
2531         if (HAS_PCH_CPT(dev))
2532                 cpt_phase_pointer_enable(dev, pipe);
2533
2534         for (i = 0; i < 4; i++) {
2535                 reg = FDI_TX_CTL(pipe);
2536                 temp = I915_READ(reg);
2537                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2538                 temp |= snb_b_fdi_train_param[i];
2539                 I915_WRITE(reg, temp);
2540
2541                 POSTING_READ(reg);
2542                 udelay(500);
2543
2544                 reg = FDI_RX_IIR(pipe);
2545                 temp = I915_READ(reg);
2546                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2547
2548                 if (temp & FDI_RX_BIT_LOCK) {
2549                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2550                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2551                         break;
2552                 }
2553         }
2554         if (i == 4)
2555                 DRM_ERROR("FDI train 1 fail!\n");
2556
2557         /* Train 2 */
2558         reg = FDI_TX_CTL(pipe);
2559         temp = I915_READ(reg);
2560         temp &= ~FDI_LINK_TRAIN_NONE;
2561         temp |= FDI_LINK_TRAIN_PATTERN_2;
2562         if (IS_GEN6(dev)) {
2563                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2564                 /* SNB-B */
2565                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2566         }
2567         I915_WRITE(reg, temp);
2568
2569         reg = FDI_RX_CTL(pipe);
2570         temp = I915_READ(reg);
2571         if (HAS_PCH_CPT(dev)) {
2572                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2573                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2574         } else {
2575                 temp &= ~FDI_LINK_TRAIN_NONE;
2576                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2577         }
2578         I915_WRITE(reg, temp);
2579
2580         POSTING_READ(reg);
2581         udelay(150);
2582
2583         for (i = 0; i < 4; i++) {
2584                 reg = FDI_TX_CTL(pipe);
2585                 temp = I915_READ(reg);
2586                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2587                 temp |= snb_b_fdi_train_param[i];
2588                 I915_WRITE(reg, temp);
2589
2590                 POSTING_READ(reg);
2591                 udelay(500);
2592
2593                 reg = FDI_RX_IIR(pipe);
2594                 temp = I915_READ(reg);
2595                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2596
2597                 if (temp & FDI_RX_SYMBOL_LOCK) {
2598                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2599                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2600                         break;
2601                 }
2602         }
2603         if (i == 4)
2604                 DRM_ERROR("FDI train 2 fail!\n");
2605
2606         DRM_DEBUG_KMS("FDI train done.\n");
2607 }
2608
2609 /* Manual link training for Ivy Bridge A0 parts */
2610 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2611 {
2612         struct drm_device *dev = crtc->dev;
2613         struct drm_i915_private *dev_priv = dev->dev_private;
2614         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2615         int pipe = intel_crtc->pipe;
2616         u32 reg, temp, i;
2617
2618         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2619            for train result */
2620         reg = FDI_RX_IMR(pipe);
2621         temp = I915_READ(reg);
2622         temp &= ~FDI_RX_SYMBOL_LOCK;
2623         temp &= ~FDI_RX_BIT_LOCK;
2624         I915_WRITE(reg, temp);
2625
2626         POSTING_READ(reg);
2627         udelay(150);
2628
2629         /* enable CPU FDI TX and PCH FDI RX */
2630         reg = FDI_TX_CTL(pipe);
2631         temp = I915_READ(reg);
2632         temp &= ~(7 << 19);
2633         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2634         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2635         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2636         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2637         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2638         temp |= FDI_COMPOSITE_SYNC;
2639         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2640
2641         reg = FDI_RX_CTL(pipe);
2642         temp = I915_READ(reg);
2643         temp &= ~FDI_LINK_TRAIN_AUTO;
2644         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2645         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2646         temp |= FDI_COMPOSITE_SYNC;
2647         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2648
2649         POSTING_READ(reg);
2650         udelay(150);
2651
2652         if (HAS_PCH_CPT(dev))
2653                 cpt_phase_pointer_enable(dev, pipe);
2654
2655         for (i = 0; i < 4; i++) {
2656                 reg = FDI_TX_CTL(pipe);
2657                 temp = I915_READ(reg);
2658                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2659                 temp |= snb_b_fdi_train_param[i];
2660                 I915_WRITE(reg, temp);
2661
2662                 POSTING_READ(reg);
2663                 udelay(500);
2664
2665                 reg = FDI_RX_IIR(pipe);
2666                 temp = I915_READ(reg);
2667                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2668
2669                 if (temp & FDI_RX_BIT_LOCK ||
2670                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2671                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2672                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2673                         break;
2674                 }
2675         }
2676         if (i == 4)
2677                 DRM_ERROR("FDI train 1 fail!\n");
2678
2679         /* Train 2 */
2680         reg = FDI_TX_CTL(pipe);
2681         temp = I915_READ(reg);
2682         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2683         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2684         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2685         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2686         I915_WRITE(reg, temp);
2687
2688         reg = FDI_RX_CTL(pipe);
2689         temp = I915_READ(reg);
2690         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2691         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2692         I915_WRITE(reg, temp);
2693
2694         POSTING_READ(reg);
2695         udelay(150);
2696
2697         for (i = 0; i < 4; i++) {
2698                 reg = FDI_TX_CTL(pipe);
2699                 temp = I915_READ(reg);
2700                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2701                 temp |= snb_b_fdi_train_param[i];
2702                 I915_WRITE(reg, temp);
2703
2704                 POSTING_READ(reg);
2705                 udelay(500);
2706
2707                 reg = FDI_RX_IIR(pipe);
2708                 temp = I915_READ(reg);
2709                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2710
2711                 if (temp & FDI_RX_SYMBOL_LOCK) {
2712                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2713                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2714                         break;
2715                 }
2716         }
2717         if (i == 4)
2718                 DRM_ERROR("FDI train 2 fail!\n");
2719
2720         DRM_DEBUG_KMS("FDI train done.\n");
2721 }
2722
2723 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2724 {
2725         struct drm_device *dev = crtc->dev;
2726         struct drm_i915_private *dev_priv = dev->dev_private;
2727         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2728         int pipe = intel_crtc->pipe;
2729         u32 reg, temp;
2730
2731         /* Write the TU size bits so error detection works */
2732         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2733                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2734
2735         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2736         reg = FDI_RX_CTL(pipe);
2737         temp = I915_READ(reg);
2738         temp &= ~((0x7 << 19) | (0x7 << 16));
2739         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2740         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2741         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2742
2743         POSTING_READ(reg);
2744         udelay(200);
2745
2746         /* Switch from Rawclk to PCDclk */
2747         temp = I915_READ(reg);
2748         I915_WRITE(reg, temp | FDI_PCDCLK);
2749
2750         POSTING_READ(reg);
2751         udelay(200);
2752
2753         /* Enable CPU FDI TX PLL, always on for Ironlake */
2754         reg = FDI_TX_CTL(pipe);
2755         temp = I915_READ(reg);
2756         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2757                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2758
2759                 POSTING_READ(reg);
2760                 udelay(100);
2761         }
2762 }
2763
2764 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2765 {
2766         struct drm_i915_private *dev_priv = dev->dev_private;
2767         u32 flags = I915_READ(SOUTH_CHICKEN1);
2768
2769         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2770         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2771         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2772         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2773         POSTING_READ(SOUTH_CHICKEN1);
2774 }
2775 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2776 {
2777         struct drm_device *dev = crtc->dev;
2778         struct drm_i915_private *dev_priv = dev->dev_private;
2779         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2780         int pipe = intel_crtc->pipe;
2781         u32 reg, temp;
2782
2783         /* disable CPU FDI tx and PCH FDI rx */
2784         reg = FDI_TX_CTL(pipe);
2785         temp = I915_READ(reg);
2786         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2787         POSTING_READ(reg);
2788
2789         reg = FDI_RX_CTL(pipe);
2790         temp = I915_READ(reg);
2791         temp &= ~(0x7 << 16);
2792         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2793         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2794
2795         POSTING_READ(reg);
2796         udelay(100);
2797
2798         /* Ironlake workaround, disable clock pointer after downing FDI */
2799         if (HAS_PCH_IBX(dev)) {
2800                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2801                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2802                            I915_READ(FDI_RX_CHICKEN(pipe) &
2803                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2804         } else if (HAS_PCH_CPT(dev)) {
2805                 cpt_phase_pointer_disable(dev, pipe);
2806         }
2807
2808         /* still set train pattern 1 */
2809         reg = FDI_TX_CTL(pipe);
2810         temp = I915_READ(reg);
2811         temp &= ~FDI_LINK_TRAIN_NONE;
2812         temp |= FDI_LINK_TRAIN_PATTERN_1;
2813         I915_WRITE(reg, temp);
2814
2815         reg = FDI_RX_CTL(pipe);
2816         temp = I915_READ(reg);
2817         if (HAS_PCH_CPT(dev)) {
2818                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2819                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2820         } else {
2821                 temp &= ~FDI_LINK_TRAIN_NONE;
2822                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2823         }
2824         /* BPC in FDI rx is consistent with that in PIPECONF */
2825         temp &= ~(0x07 << 16);
2826         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2827         I915_WRITE(reg, temp);
2828
2829         POSTING_READ(reg);
2830         udelay(100);
2831 }
2832
2833 /*
2834  * When we disable a pipe, we need to clear any pending scanline wait events
2835  * to avoid hanging the ring, which we assume we are waiting on.
2836  */
2837 static void intel_clear_scanline_wait(struct drm_device *dev)
2838 {
2839         struct drm_i915_private *dev_priv = dev->dev_private;
2840         struct intel_ring_buffer *ring;
2841         u32 tmp;
2842
2843         if (IS_GEN2(dev))
2844                 /* Can't break the hang on i8xx */
2845                 return;
2846
2847         ring = LP_RING(dev_priv);
2848         tmp = I915_READ_CTL(ring);
2849         if (tmp & RING_WAIT)
2850                 I915_WRITE_CTL(ring, tmp);
2851 }
2852
2853 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2854 {
2855         struct drm_device *dev = crtc->dev;
2856
2857         if (crtc->fb == NULL)
2858                 return;
2859
2860         mutex_lock(&dev->struct_mutex);
2861         intel_finish_fb(crtc->fb);
2862         mutex_unlock(&dev->struct_mutex);
2863 }
2864
2865 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2866 {
2867         struct drm_device *dev = crtc->dev;
2868         struct drm_mode_config *mode_config = &dev->mode_config;
2869         struct intel_encoder *encoder;
2870
2871         /*
2872          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2873          * must be driven by its own crtc; no sharing is possible.
2874          */
2875         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2876                 if (encoder->base.crtc != crtc)
2877                         continue;
2878
2879                 switch (encoder->type) {
2880                 case INTEL_OUTPUT_EDP:
2881                         if (!intel_encoder_is_pch_edp(&encoder->base))
2882                                 return false;
2883                         continue;
2884                 }
2885         }
2886
2887         return true;
2888 }
2889
2890 /*
2891  * Enable PCH resources required for PCH ports:
2892  *   - PCH PLLs
2893  *   - FDI training & RX/TX
2894  *   - update transcoder timings
2895  *   - DP transcoding bits
2896  *   - transcoder
2897  */
2898 static void ironlake_pch_enable(struct drm_crtc *crtc)
2899 {
2900         struct drm_device *dev = crtc->dev;
2901         struct drm_i915_private *dev_priv = dev->dev_private;
2902         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2903         int pipe = intel_crtc->pipe;
2904         u32 reg, temp, transc_sel;
2905
2906         /* For PCH output, training FDI link */
2907         dev_priv->display.fdi_link_train(crtc);
2908
2909         intel_enable_pch_pll(dev_priv, pipe);
2910
2911         if (HAS_PCH_CPT(dev)) {
2912                 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2913                         TRANSC_DPLLB_SEL;
2914
2915                 /* Be sure PCH DPLL SEL is set */
2916                 temp = I915_READ(PCH_DPLL_SEL);
2917                 if (pipe == 0) {
2918                         temp &= ~(TRANSA_DPLLB_SEL);
2919                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2920                 } else if (pipe == 1) {
2921                         temp &= ~(TRANSB_DPLLB_SEL);
2922                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2923                 } else if (pipe == 2) {
2924                         temp &= ~(TRANSC_DPLLB_SEL);
2925                         temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2926                 }
2927                 I915_WRITE(PCH_DPLL_SEL, temp);
2928         }
2929
2930         /* set transcoder timing, panel must allow it */
2931         assert_panel_unlocked(dev_priv, pipe);
2932         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2933         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2934         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2935
2936         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2937         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2938         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2939
2940         intel_fdi_normal_train(crtc);
2941
2942         /* For PCH DP, enable TRANS_DP_CTL */
2943         if (HAS_PCH_CPT(dev) &&
2944             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2945              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2946                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2947                 reg = TRANS_DP_CTL(pipe);
2948                 temp = I915_READ(reg);
2949                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2950                           TRANS_DP_SYNC_MASK |
2951                           TRANS_DP_BPC_MASK);
2952                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2953                          TRANS_DP_ENH_FRAMING);
2954                 temp |= bpc << 9; /* same format but at 11:9 */
2955
2956                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2957                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2958                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2959                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2960
2961                 switch (intel_trans_dp_port_sel(crtc)) {
2962                 case PCH_DP_B:
2963                         temp |= TRANS_DP_PORT_SEL_B;
2964                         break;
2965                 case PCH_DP_C:
2966                         temp |= TRANS_DP_PORT_SEL_C;
2967                         break;
2968                 case PCH_DP_D:
2969                         temp |= TRANS_DP_PORT_SEL_D;
2970                         break;
2971                 default:
2972                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2973                         temp |= TRANS_DP_PORT_SEL_B;
2974                         break;
2975                 }
2976
2977                 I915_WRITE(reg, temp);
2978         }
2979
2980         intel_enable_transcoder(dev_priv, pipe);
2981 }
2982
2983 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2984 {
2985         struct drm_i915_private *dev_priv = dev->dev_private;
2986         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2987         u32 temp;
2988
2989         temp = I915_READ(dslreg);
2990         udelay(500);
2991         if (wait_for(I915_READ(dslreg) != temp, 5)) {
2992                 /* Without this, mode sets may fail silently on FDI */
2993                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2994                 udelay(250);
2995                 I915_WRITE(tc2reg, 0);
2996                 if (wait_for(I915_READ(dslreg) != temp, 5))
2997                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2998         }
2999 }
3000
3001 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3002 {
3003         struct drm_device *dev = crtc->dev;
3004         struct drm_i915_private *dev_priv = dev->dev_private;
3005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3006         int pipe = intel_crtc->pipe;
3007         int plane = intel_crtc->plane;
3008         u32 temp;
3009         bool is_pch_port;
3010
3011         if (intel_crtc->active)
3012                 return;
3013
3014         intel_crtc->active = true;
3015         intel_update_watermarks(dev);
3016
3017         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3018                 temp = I915_READ(PCH_LVDS);
3019                 if ((temp & LVDS_PORT_EN) == 0)
3020                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3021         }
3022
3023         is_pch_port = intel_crtc_driving_pch(crtc);
3024
3025         if (is_pch_port)
3026                 ironlake_fdi_pll_enable(crtc);
3027         else
3028                 ironlake_fdi_disable(crtc);
3029
3030         /* Enable panel fitting for LVDS */
3031         if (dev_priv->pch_pf_size &&
3032             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3033                 /* Force use of hard-coded filter coefficients
3034                  * as some pre-programmed values are broken,
3035                  * e.g. x201.
3036                  */
3037                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3038                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3039                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3040         }
3041
3042         /*
3043          * On ILK+ LUT must be loaded before the pipe is running but with
3044          * clocks enabled
3045          */
3046         intel_crtc_load_lut(crtc);
3047
3048         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3049         intel_enable_plane(dev_priv, plane, pipe);
3050
3051         if (is_pch_port)
3052                 ironlake_pch_enable(crtc);
3053
3054         mutex_lock(&dev->struct_mutex);
3055         intel_update_fbc(dev);
3056         mutex_unlock(&dev->struct_mutex);
3057
3058         intel_crtc_update_cursor(crtc, true);
3059 }
3060
3061 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3062 {
3063         struct drm_device *dev = crtc->dev;
3064         struct drm_i915_private *dev_priv = dev->dev_private;
3065         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3066         int pipe = intel_crtc->pipe;
3067         int plane = intel_crtc->plane;
3068         u32 reg, temp;
3069
3070         if (!intel_crtc->active)
3071                 return;
3072
3073         intel_crtc_wait_for_pending_flips(crtc);
3074         drm_vblank_off(dev, pipe);
3075         intel_crtc_update_cursor(crtc, false);
3076
3077         intel_disable_plane(dev_priv, plane, pipe);
3078
3079         if (dev_priv->cfb_plane == plane)
3080                 intel_disable_fbc(dev);
3081
3082         intel_disable_pipe(dev_priv, pipe);
3083
3084         /* Disable PF */
3085         I915_WRITE(PF_CTL(pipe), 0);
3086         I915_WRITE(PF_WIN_SZ(pipe), 0);
3087
3088         ironlake_fdi_disable(crtc);
3089
3090         /* This is a horrible layering violation; we should be doing this in
3091          * the connector/encoder ->prepare instead, but we don't always have
3092          * enough information there about the config to know whether it will
3093          * actually be necessary or just cause undesired flicker.
3094          */
3095         intel_disable_pch_ports(dev_priv, pipe);
3096
3097         intel_disable_transcoder(dev_priv, pipe);
3098
3099         if (HAS_PCH_CPT(dev)) {
3100                 /* disable TRANS_DP_CTL */
3101                 reg = TRANS_DP_CTL(pipe);
3102                 temp = I915_READ(reg);
3103                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3104                 temp |= TRANS_DP_PORT_SEL_NONE;
3105                 I915_WRITE(reg, temp);
3106
3107                 /* disable DPLL_SEL */
3108                 temp = I915_READ(PCH_DPLL_SEL);
3109                 switch (pipe) {
3110                 case 0:
3111                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3112                         break;
3113                 case 1:
3114                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3115                         break;
3116                 case 2:
3117                         /* C shares PLL A or B */
3118                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3119                         break;
3120                 default:
3121                         BUG(); /* wtf */
3122                 }
3123                 I915_WRITE(PCH_DPLL_SEL, temp);
3124         }
3125
3126         /* disable PCH DPLL */
3127         if (!intel_crtc->no_pll)
3128                 intel_disable_pch_pll(dev_priv, pipe);
3129
3130         /* Switch from PCDclk to Rawclk */
3131         reg = FDI_RX_CTL(pipe);
3132         temp = I915_READ(reg);
3133         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3134
3135         /* Disable CPU FDI TX PLL */
3136         reg = FDI_TX_CTL(pipe);
3137         temp = I915_READ(reg);
3138         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3139
3140         POSTING_READ(reg);
3141         udelay(100);
3142
3143         reg = FDI_RX_CTL(pipe);
3144         temp = I915_READ(reg);
3145         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3146
3147         /* Wait for the clocks to turn off. */
3148         POSTING_READ(reg);
3149         udelay(100);
3150
3151         intel_crtc->active = false;
3152         intel_update_watermarks(dev);
3153
3154         mutex_lock(&dev->struct_mutex);
3155         intel_update_fbc(dev);
3156         intel_clear_scanline_wait(dev);
3157         mutex_unlock(&dev->struct_mutex);
3158 }
3159
3160 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3161 {
3162         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3163         int pipe = intel_crtc->pipe;
3164         int plane = intel_crtc->plane;
3165
3166         /* XXX: When our outputs are all unaware of DPMS modes other than off
3167          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3168          */
3169         switch (mode) {
3170         case DRM_MODE_DPMS_ON:
3171         case DRM_MODE_DPMS_STANDBY:
3172         case DRM_MODE_DPMS_SUSPEND:
3173                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3174                 ironlake_crtc_enable(crtc);
3175                 break;
3176
3177         case DRM_MODE_DPMS_OFF:
3178                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3179                 ironlake_crtc_disable(crtc);
3180                 break;
3181         }
3182 }
3183
3184 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3185 {
3186         if (!enable && intel_crtc->overlay) {
3187                 struct drm_device *dev = intel_crtc->base.dev;
3188                 struct drm_i915_private *dev_priv = dev->dev_private;
3189
3190                 mutex_lock(&dev->struct_mutex);
3191                 dev_priv->mm.interruptible = false;
3192                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3193                 dev_priv->mm.interruptible = true;
3194                 mutex_unlock(&dev->struct_mutex);
3195         }
3196
3197         /* Let userspace switch the overlay on again. In most cases userspace
3198          * has to recompute where to put it anyway.
3199          */
3200 }
3201
3202 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3203 {
3204         struct drm_device *dev = crtc->dev;
3205         struct drm_i915_private *dev_priv = dev->dev_private;
3206         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3207         int pipe = intel_crtc->pipe;
3208         int plane = intel_crtc->plane;
3209
3210         if (intel_crtc->active)
3211                 return;
3212
3213         intel_crtc->active = true;
3214         intel_update_watermarks(dev);
3215
3216         intel_enable_pll(dev_priv, pipe);
3217         intel_enable_pipe(dev_priv, pipe, false);
3218         intel_enable_plane(dev_priv, plane, pipe);
3219
3220         intel_crtc_load_lut(crtc);
3221         intel_update_fbc(dev);
3222
3223         /* Give the overlay scaler a chance to enable if it's on this pipe */
3224         intel_crtc_dpms_overlay(intel_crtc, true);
3225         intel_crtc_update_cursor(crtc, true);
3226 }
3227
3228 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3229 {
3230         struct drm_device *dev = crtc->dev;
3231         struct drm_i915_private *dev_priv = dev->dev_private;
3232         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3233         int pipe = intel_crtc->pipe;
3234         int plane = intel_crtc->plane;
3235
3236         if (!intel_crtc->active)
3237                 return;
3238
3239         /* Give the overlay scaler a chance to disable if it's on this pipe */
3240         intel_crtc_wait_for_pending_flips(crtc);
3241         drm_vblank_off(dev, pipe);
3242         intel_crtc_dpms_overlay(intel_crtc, false);
3243         intel_crtc_update_cursor(crtc, false);
3244
3245         if (dev_priv->cfb_plane == plane)
3246                 intel_disable_fbc(dev);
3247
3248         intel_disable_plane(dev_priv, plane, pipe);
3249         intel_disable_pipe(dev_priv, pipe);
3250         intel_disable_pll(dev_priv, pipe);
3251
3252         intel_crtc->active = false;
3253         intel_update_fbc(dev);
3254         intel_update_watermarks(dev);
3255         intel_clear_scanline_wait(dev);
3256 }
3257
3258 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3259 {
3260         /* XXX: When our outputs are all unaware of DPMS modes other than off
3261          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3262          */
3263         switch (mode) {
3264         case DRM_MODE_DPMS_ON:
3265         case DRM_MODE_DPMS_STANDBY:
3266         case DRM_MODE_DPMS_SUSPEND:
3267                 i9xx_crtc_enable(crtc);
3268                 break;
3269         case DRM_MODE_DPMS_OFF:
3270                 i9xx_crtc_disable(crtc);
3271                 break;
3272         }
3273 }
3274
3275 /**
3276  * Sets the power management mode of the pipe and plane.
3277  */
3278 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3279 {
3280         struct drm_device *dev = crtc->dev;
3281         struct drm_i915_private *dev_priv = dev->dev_private;
3282         struct drm_i915_master_private *master_priv;
3283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3284         int pipe = intel_crtc->pipe;
3285         bool enabled;
3286
3287         if (intel_crtc->dpms_mode == mode)
3288                 return;
3289
3290         intel_crtc->dpms_mode = mode;
3291
3292         dev_priv->display.dpms(crtc, mode);
3293
3294         if (!dev->primary->master)
3295                 return;
3296
3297         master_priv = dev->primary->master->driver_priv;
3298         if (!master_priv->sarea_priv)
3299                 return;
3300
3301         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3302
3303         switch (pipe) {
3304         case 0:
3305                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3306                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3307                 break;
3308         case 1:
3309                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3310                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3311                 break;
3312         default:
3313                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3314                 break;
3315         }
3316 }
3317
3318 static void intel_crtc_disable(struct drm_crtc *crtc)
3319 {
3320         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3321         struct drm_device *dev = crtc->dev;
3322
3323         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3324
3325         if (crtc->fb) {
3326                 mutex_lock(&dev->struct_mutex);
3327                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3328                 mutex_unlock(&dev->struct_mutex);
3329         }
3330 }
3331
3332 /* Prepare for a mode set.
3333  *
3334  * Note we could be a lot smarter here.  We need to figure out which outputs
3335  * will be enabled, which disabled (in short, how the config will changes)
3336  * and perform the minimum necessary steps to accomplish that, e.g. updating
3337  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3338  * panel fitting is in the proper state, etc.
3339  */
3340 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3341 {
3342         i9xx_crtc_disable(crtc);
3343 }
3344
3345 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3346 {
3347         i9xx_crtc_enable(crtc);
3348 }
3349
3350 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3351 {
3352         ironlake_crtc_disable(crtc);
3353 }
3354
3355 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3356 {
3357         ironlake_crtc_enable(crtc);
3358 }
3359
3360 void intel_encoder_prepare(struct drm_encoder *encoder)
3361 {
3362         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3363         /* lvds has its own version of prepare see intel_lvds_prepare */
3364         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3365 }
3366
3367 void intel_encoder_commit(struct drm_encoder *encoder)
3368 {
3369         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3370         struct drm_device *dev = encoder->dev;
3371         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3372         struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3373
3374         /* lvds has its own version of commit see intel_lvds_commit */
3375         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3376
3377         if (HAS_PCH_CPT(dev))
3378                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3379 }
3380
3381 void intel_encoder_destroy(struct drm_encoder *encoder)
3382 {
3383         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3384
3385         drm_encoder_cleanup(encoder);
3386         kfree(intel_encoder);
3387 }
3388
3389 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3390                                   struct drm_display_mode *mode,
3391                                   struct drm_display_mode *adjusted_mode)
3392 {
3393         struct drm_device *dev = crtc->dev;
3394
3395         if (HAS_PCH_SPLIT(dev)) {
3396                 /* FDI link clock is fixed at 2.7G */
3397                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3398                         return false;
3399         }
3400
3401         /* XXX some encoders set the crtcinfo, others don't.
3402          * Obviously we need some form of conflict resolution here...
3403          */
3404         if (adjusted_mode->crtc_htotal == 0)
3405                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3406
3407         return true;
3408 }
3409
3410 static int i945_get_display_clock_speed(struct drm_device *dev)
3411 {
3412         return 400000;
3413 }
3414
3415 static int i915_get_display_clock_speed(struct drm_device *dev)
3416 {
3417         return 333000;
3418 }
3419
3420 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3421 {
3422         return 200000;
3423 }
3424
3425 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3426 {
3427         u16 gcfgc = 0;
3428
3429         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3430
3431         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3432                 return 133000;
3433         else {
3434                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3435                 case GC_DISPLAY_CLOCK_333_MHZ:
3436                         return 333000;
3437                 default:
3438                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3439                         return 190000;
3440                 }
3441         }
3442 }
3443
3444 static int i865_get_display_clock_speed(struct drm_device *dev)
3445 {
3446         return 266000;
3447 }
3448
3449 static int i855_get_display_clock_speed(struct drm_device *dev)
3450 {
3451         u16 hpllcc = 0;
3452         /* Assume that the hardware is in the high speed state.  This
3453          * should be the default.
3454          */
3455         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3456         case GC_CLOCK_133_200:
3457         case GC_CLOCK_100_200:
3458                 return 200000;
3459         case GC_CLOCK_166_250:
3460                 return 250000;
3461         case GC_CLOCK_100_133:
3462                 return 133000;
3463         }
3464
3465         /* Shouldn't happen */
3466         return 0;
3467 }
3468
3469 static int i830_get_display_clock_speed(struct drm_device *dev)
3470 {
3471         return 133000;
3472 }
3473
3474 struct fdi_m_n {
3475         u32        tu;
3476         u32        gmch_m;
3477         u32        gmch_n;
3478         u32        link_m;
3479         u32        link_n;
3480 };
3481
3482 static void
3483 fdi_reduce_ratio(u32 *num, u32 *den)
3484 {
3485         while (*num > 0xffffff || *den > 0xffffff) {
3486                 *num >>= 1;
3487                 *den >>= 1;
3488         }
3489 }
3490
3491 static void
3492 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3493                      int link_clock, struct fdi_m_n *m_n)
3494 {
3495         m_n->tu = 64; /* default size */
3496
3497         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3498         m_n->gmch_m = bits_per_pixel * pixel_clock;
3499         m_n->gmch_n = link_clock * nlanes * 8;
3500         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3501
3502         m_n->link_m = pixel_clock;
3503         m_n->link_n = link_clock;
3504         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3505 }
3506
3507
3508 struct intel_watermark_params {
3509         unsigned long fifo_size;
3510         unsigned long max_wm;
3511         unsigned long default_wm;
3512         unsigned long guard_size;
3513         unsigned long cacheline_size;
3514 };
3515
3516 /* Pineview has different values for various configs */
3517 static const struct intel_watermark_params pineview_display_wm = {
3518         PINEVIEW_DISPLAY_FIFO,
3519         PINEVIEW_MAX_WM,
3520         PINEVIEW_DFT_WM,
3521         PINEVIEW_GUARD_WM,
3522         PINEVIEW_FIFO_LINE_SIZE
3523 };
3524 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3525         PINEVIEW_DISPLAY_FIFO,
3526         PINEVIEW_MAX_WM,
3527         PINEVIEW_DFT_HPLLOFF_WM,
3528         PINEVIEW_GUARD_WM,
3529         PINEVIEW_FIFO_LINE_SIZE
3530 };
3531 static const struct intel_watermark_params pineview_cursor_wm = {
3532         PINEVIEW_CURSOR_FIFO,
3533         PINEVIEW_CURSOR_MAX_WM,
3534         PINEVIEW_CURSOR_DFT_WM,
3535         PINEVIEW_CURSOR_GUARD_WM,
3536         PINEVIEW_FIFO_LINE_SIZE,
3537 };
3538 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3539         PINEVIEW_CURSOR_FIFO,
3540         PINEVIEW_CURSOR_MAX_WM,
3541         PINEVIEW_CURSOR_DFT_WM,
3542         PINEVIEW_CURSOR_GUARD_WM,
3543         PINEVIEW_FIFO_LINE_SIZE
3544 };
3545 static const struct intel_watermark_params g4x_wm_info = {
3546         G4X_FIFO_SIZE,
3547         G4X_MAX_WM,
3548         G4X_MAX_WM,
3549         2,
3550         G4X_FIFO_LINE_SIZE,
3551 };
3552 static const struct intel_watermark_params g4x_cursor_wm_info = {
3553         I965_CURSOR_FIFO,
3554         I965_CURSOR_MAX_WM,
3555         I965_CURSOR_DFT_WM,
3556         2,
3557         G4X_FIFO_LINE_SIZE,
3558 };
3559 static const struct intel_watermark_params i965_cursor_wm_info = {
3560         I965_CURSOR_FIFO,
3561         I965_CURSOR_MAX_WM,
3562         I965_CURSOR_DFT_WM,
3563         2,
3564         I915_FIFO_LINE_SIZE,
3565 };
3566 static const struct intel_watermark_params i945_wm_info = {
3567         I945_FIFO_SIZE,
3568         I915_MAX_WM,
3569         1,
3570         2,
3571         I915_FIFO_LINE_SIZE
3572 };
3573 static const struct intel_watermark_params i915_wm_info = {
3574         I915_FIFO_SIZE,
3575         I915_MAX_WM,
3576         1,
3577         2,
3578         I915_FIFO_LINE_SIZE
3579 };
3580 static const struct intel_watermark_params i855_wm_info = {
3581         I855GM_FIFO_SIZE,
3582         I915_MAX_WM,
3583         1,
3584         2,
3585         I830_FIFO_LINE_SIZE
3586 };
3587 static const struct intel_watermark_params i830_wm_info = {
3588         I830_FIFO_SIZE,
3589         I915_MAX_WM,
3590         1,
3591         2,
3592         I830_FIFO_LINE_SIZE
3593 };
3594
3595 static const struct intel_watermark_params ironlake_display_wm_info = {
3596         ILK_DISPLAY_FIFO,
3597         ILK_DISPLAY_MAXWM,
3598         ILK_DISPLAY_DFTWM,
3599         2,
3600         ILK_FIFO_LINE_SIZE
3601 };
3602 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3603         ILK_CURSOR_FIFO,
3604         ILK_CURSOR_MAXWM,
3605         ILK_CURSOR_DFTWM,
3606         2,
3607         ILK_FIFO_LINE_SIZE
3608 };
3609 static const struct intel_watermark_params ironlake_display_srwm_info = {
3610         ILK_DISPLAY_SR_FIFO,
3611         ILK_DISPLAY_MAX_SRWM,
3612         ILK_DISPLAY_DFT_SRWM,
3613         2,
3614         ILK_FIFO_LINE_SIZE
3615 };
3616 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3617         ILK_CURSOR_SR_FIFO,
3618         ILK_CURSOR_MAX_SRWM,
3619         ILK_CURSOR_DFT_SRWM,
3620         2,
3621         ILK_FIFO_LINE_SIZE
3622 };
3623
3624 static const struct intel_watermark_params sandybridge_display_wm_info = {
3625         SNB_DISPLAY_FIFO,
3626         SNB_DISPLAY_MAXWM,
3627         SNB_DISPLAY_DFTWM,
3628         2,
3629         SNB_FIFO_LINE_SIZE
3630 };
3631 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3632         SNB_CURSOR_FIFO,
3633         SNB_CURSOR_MAXWM,
3634         SNB_CURSOR_DFTWM,
3635         2,
3636         SNB_FIFO_LINE_SIZE
3637 };
3638 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3639         SNB_DISPLAY_SR_FIFO,
3640         SNB_DISPLAY_MAX_SRWM,
3641         SNB_DISPLAY_DFT_SRWM,
3642         2,
3643         SNB_FIFO_LINE_SIZE
3644 };
3645 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3646         SNB_CURSOR_SR_FIFO,
3647         SNB_CURSOR_MAX_SRWM,
3648         SNB_CURSOR_DFT_SRWM,
3649         2,
3650         SNB_FIFO_LINE_SIZE
3651 };
3652
3653
3654 /**
3655  * intel_calculate_wm - calculate watermark level
3656  * @clock_in_khz: pixel clock
3657  * @wm: chip FIFO params
3658  * @pixel_size: display pixel size
3659  * @latency_ns: memory latency for the platform
3660  *
3661  * Calculate the watermark level (the level at which the display plane will
3662  * start fetching from memory again).  Each chip has a different display
3663  * FIFO size and allocation, so the caller needs to figure that out and pass
3664  * in the correct intel_watermark_params structure.
3665  *
3666  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3667  * on the pixel size.  When it reaches the watermark level, it'll start
3668  * fetching FIFO line sized based chunks from memory until the FIFO fills
3669  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3670  * will occur, and a display engine hang could result.
3671  */
3672 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3673                                         const struct intel_watermark_params *wm,
3674                                         int fifo_size,
3675                                         int pixel_size,
3676                                         unsigned long latency_ns)
3677 {
3678         long entries_required, wm_size;
3679
3680         /*
3681          * Note: we need to make sure we don't overflow for various clock &
3682          * latency values.
3683          * clocks go from a few thousand to several hundred thousand.
3684          * latency is usually a few thousand
3685          */
3686         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3687                 1000;
3688         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3689
3690         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3691
3692         wm_size = fifo_size - (entries_required + wm->guard_size);
3693
3694         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3695
3696         /* Don't promote wm_size to unsigned... */
3697         if (wm_size > (long)wm->max_wm)
3698                 wm_size = wm->max_wm;
3699         if (wm_size <= 0)
3700                 wm_size = wm->default_wm;
3701         return wm_size;
3702 }
3703
3704 struct cxsr_latency {
3705         int is_desktop;
3706         int is_ddr3;
3707         unsigned long fsb_freq;
3708         unsigned long mem_freq;
3709         unsigned long display_sr;
3710         unsigned long display_hpll_disable;
3711         unsigned long cursor_sr;
3712         unsigned long cursor_hpll_disable;
3713 };
3714
3715 static const struct cxsr_latency cxsr_latency_table[] = {
3716         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3717         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3718         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3719         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3720         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3721
3722         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3723         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3724         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3725         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3726         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3727
3728         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3729         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3730         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3731         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3732         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3733
3734         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3735         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3736         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3737         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3738         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3739
3740         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3741         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3742         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3743         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3744         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3745
3746         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3747         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3748         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3749         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3750         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3751 };
3752
3753 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3754                                                          int is_ddr3,
3755                                                          int fsb,
3756                                                          int mem)
3757 {
3758         const struct cxsr_latency *latency;
3759         int i;
3760
3761         if (fsb == 0 || mem == 0)
3762                 return NULL;
3763
3764         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3765                 latency = &cxsr_latency_table[i];
3766                 if (is_desktop == latency->is_desktop &&
3767                     is_ddr3 == latency->is_ddr3 &&
3768                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3769                         return latency;
3770         }
3771
3772         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3773
3774         return NULL;
3775 }
3776
3777 static void pineview_disable_cxsr(struct drm_device *dev)
3778 {
3779         struct drm_i915_private *dev_priv = dev->dev_private;
3780
3781         /* deactivate cxsr */
3782         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3783 }
3784
3785 /*
3786  * Latency for FIFO fetches is dependent on several factors:
3787  *   - memory configuration (speed, channels)
3788  *   - chipset
3789  *   - current MCH state
3790  * It can be fairly high in some situations, so here we assume a fairly
3791  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3792  * set this value too high, the FIFO will fetch frequently to stay full)
3793  * and power consumption (set it too low to save power and we might see
3794  * FIFO underruns and display "flicker").
3795  *
3796  * A value of 5us seems to be a good balance; safe for very low end
3797  * platforms but not overly aggressive on lower latency configs.
3798  */
3799 static const int latency_ns = 5000;
3800
3801 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3802 {
3803         struct drm_i915_private *dev_priv = dev->dev_private;
3804         uint32_t dsparb = I915_READ(DSPARB);
3805         int size;
3806
3807         size = dsparb & 0x7f;
3808         if (plane)
3809                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3810
3811         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3812                       plane ? "B" : "A", size);
3813
3814         return size;
3815 }
3816
3817 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3818 {
3819         struct drm_i915_private *dev_priv = dev->dev_private;
3820         uint32_t dsparb = I915_READ(DSPARB);
3821         int size;
3822
3823         size = dsparb & 0x1ff;
3824         if (plane)
3825                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3826         size >>= 1; /* Convert to cachelines */
3827
3828         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3829                       plane ? "B" : "A", size);
3830
3831         return size;
3832 }
3833
3834 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3835 {
3836         struct drm_i915_private *dev_priv = dev->dev_private;
3837         uint32_t dsparb = I915_READ(DSPARB);
3838         int size;
3839
3840         size = dsparb & 0x7f;
3841         size >>= 2; /* Convert to cachelines */
3842
3843         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3844                       plane ? "B" : "A",
3845                       size);
3846
3847         return size;
3848 }
3849
3850 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3851 {
3852         struct drm_i915_private *dev_priv = dev->dev_private;
3853         uint32_t dsparb = I915_READ(DSPARB);
3854         int size;
3855
3856         size = dsparb & 0x7f;
3857         size >>= 1; /* Convert to cachelines */
3858
3859         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3860                       plane ? "B" : "A", size);
3861
3862         return size;
3863 }
3864
3865 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3866 {
3867         struct drm_crtc *crtc, *enabled = NULL;
3868
3869         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3870                 if (crtc->enabled && crtc->fb) {
3871                         if (enabled)
3872                                 return NULL;
3873                         enabled = crtc;
3874                 }
3875         }
3876
3877         return enabled;
3878 }
3879
3880 static void pineview_update_wm(struct drm_device *dev)
3881 {
3882         struct drm_i915_private *dev_priv = dev->dev_private;
3883         struct drm_crtc *crtc;
3884         const struct cxsr_latency *latency;
3885         u32 reg;
3886         unsigned long wm;
3887
3888         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3889                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3890         if (!latency) {
3891                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3892                 pineview_disable_cxsr(dev);
3893                 return;
3894         }
3895
3896         crtc = single_enabled_crtc(dev);
3897         if (crtc) {
3898                 int clock = crtc->mode.clock;
3899                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3900
3901                 /* Display SR */
3902                 wm = intel_calculate_wm(clock, &pineview_display_wm,
3903                                         pineview_display_wm.fifo_size,
3904                                         pixel_size, latency->display_sr);
3905                 reg = I915_READ(DSPFW1);
3906                 reg &= ~DSPFW_SR_MASK;
3907                 reg |= wm << DSPFW_SR_SHIFT;
3908                 I915_WRITE(DSPFW1, reg);
3909                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3910
3911                 /* cursor SR */
3912                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3913                                         pineview_display_wm.fifo_size,
3914                                         pixel_size, latency->cursor_sr);
3915                 reg = I915_READ(DSPFW3);
3916                 reg &= ~DSPFW_CURSOR_SR_MASK;
3917                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3918                 I915_WRITE(DSPFW3, reg);
3919
3920                 /* Display HPLL off SR */
3921                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3922                                         pineview_display_hplloff_wm.fifo_size,
3923                                         pixel_size, latency->display_hpll_disable);
3924                 reg = I915_READ(DSPFW3);
3925                 reg &= ~DSPFW_HPLL_SR_MASK;
3926                 reg |= wm & DSPFW_HPLL_SR_MASK;
3927                 I915_WRITE(DSPFW3, reg);
3928
3929                 /* cursor HPLL off SR */
3930                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3931                                         pineview_display_hplloff_wm.fifo_size,
3932                                         pixel_size, latency->cursor_hpll_disable);
3933                 reg = I915_READ(DSPFW3);
3934                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3935                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3936                 I915_WRITE(DSPFW3, reg);
3937                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3938
3939                 /* activate cxsr */
3940                 I915_WRITE(DSPFW3,
3941                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3942                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3943         } else {
3944                 pineview_disable_cxsr(dev);
3945                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3946         }
3947 }
3948
3949 static bool g4x_compute_wm0(struct drm_device *dev,
3950                             int plane,
3951                             const struct intel_watermark_params *display,
3952                             int display_latency_ns,
3953                             const struct intel_watermark_params *cursor,
3954                             int cursor_latency_ns,
3955                             int *plane_wm,
3956                             int *cursor_wm)
3957 {
3958         struct drm_crtc *crtc;
3959         int htotal, hdisplay, clock, pixel_size;
3960         int line_time_us, line_count;
3961         int entries, tlb_miss;
3962
3963         crtc = intel_get_crtc_for_plane(dev, plane);
3964         if (crtc->fb == NULL || !crtc->enabled) {
3965                 *cursor_wm = cursor->guard_size;
3966                 *plane_wm = display->guard_size;
3967                 return false;
3968         }
3969
3970         htotal = crtc->mode.htotal;
3971         hdisplay = crtc->mode.hdisplay;
3972         clock = crtc->mode.clock;
3973         pixel_size = crtc->fb->bits_per_pixel / 8;
3974
3975         /* Use the small buffer method to calculate plane watermark */
3976         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3977         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3978         if (tlb_miss > 0)
3979                 entries += tlb_miss;
3980         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3981         *plane_wm = entries + display->guard_size;
3982         if (*plane_wm > (int)display->max_wm)
3983                 *plane_wm = display->max_wm;
3984
3985         /* Use the large buffer method to calculate cursor watermark */
3986         line_time_us = ((htotal * 1000) / clock);
3987         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3988         entries = line_count * 64 * pixel_size;
3989         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3990         if (tlb_miss > 0)
3991                 entries += tlb_miss;
3992         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3993         *cursor_wm = entries + cursor->guard_size;
3994         if (*cursor_wm > (int)cursor->max_wm)
3995                 *cursor_wm = (int)cursor->max_wm;
3996
3997         return true;
3998 }
3999
4000 /*
4001  * Check the wm result.
4002  *
4003  * If any calculated watermark values is larger than the maximum value that
4004  * can be programmed into the associated watermark register, that watermark
4005  * must be disabled.
4006  */
4007 static bool g4x_check_srwm(struct drm_device *dev,
4008                            int display_wm, int cursor_wm,
4009                            const struct intel_watermark_params *display,
4010                            const struct intel_watermark_params *cursor)
4011 {
4012         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4013                       display_wm, cursor_wm);
4014
4015         if (display_wm > display->max_wm) {
4016                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4017                               display_wm, display->max_wm);
4018                 return false;
4019         }
4020
4021         if (cursor_wm > cursor->max_wm) {
4022                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4023                               cursor_wm, cursor->max_wm);
4024                 return false;
4025         }
4026
4027         if (!(display_wm || cursor_wm)) {
4028                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4029                 return false;
4030         }
4031
4032         return true;
4033 }
4034
4035 static bool g4x_compute_srwm(struct drm_device *dev,
4036                              int plane,
4037                              int latency_ns,
4038                              const struct intel_watermark_params *display,
4039                              const struct intel_watermark_params *cursor,
4040                              int *display_wm, int *cursor_wm)
4041 {
4042         struct drm_crtc *crtc;
4043         int hdisplay, htotal, pixel_size, clock;
4044         unsigned long line_time_us;
4045         int line_count, line_size;
4046         int small, large;
4047         int entries;
4048
4049         if (!latency_ns) {
4050                 *display_wm = *cursor_wm = 0;
4051                 return false;
4052         }
4053
4054         crtc = intel_get_crtc_for_plane(dev, plane);
4055         hdisplay = crtc->mode.hdisplay;
4056         htotal = crtc->mode.htotal;
4057         clock = crtc->mode.clock;
4058         pixel_size = crtc->fb->bits_per_pixel / 8;
4059
4060         line_time_us = (htotal * 1000) / clock;
4061         line_count = (latency_ns / line_time_us + 1000) / 1000;
4062         line_size = hdisplay * pixel_size;
4063
4064         /* Use the minimum of the small and large buffer method for primary */
4065         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4066         large = line_count * line_size;
4067
4068         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4069         *display_wm = entries + display->guard_size;
4070
4071         /* calculate the self-refresh watermark for display cursor */
4072         entries = line_count * pixel_size * 64;
4073         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4074         *cursor_wm = entries + cursor->guard_size;
4075
4076         return g4x_check_srwm(dev,
4077                               *display_wm, *cursor_wm,
4078                               display, cursor);
4079 }
4080
4081 #define single_plane_enabled(mask) is_power_of_2(mask)
4082
4083 static void g4x_update_wm(struct drm_device *dev)
4084 {
4085         static const int sr_latency_ns = 12000;
4086         struct drm_i915_private *dev_priv = dev->dev_private;
4087         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4088         int plane_sr, cursor_sr;
4089         unsigned int enabled = 0;
4090
4091         if (g4x_compute_wm0(dev, 0,
4092                             &g4x_wm_info, latency_ns,
4093                             &g4x_cursor_wm_info, latency_ns,
4094                             &planea_wm, &cursora_wm))
4095                 enabled |= 1;
4096
4097         if (g4x_compute_wm0(dev, 1,
4098                             &g4x_wm_info, latency_ns,
4099                             &g4x_cursor_wm_info, latency_ns,
4100                             &planeb_wm, &cursorb_wm))
4101                 enabled |= 2;
4102
4103         plane_sr = cursor_sr = 0;
4104         if (single_plane_enabled(enabled) &&
4105             g4x_compute_srwm(dev, ffs(enabled) - 1,
4106                              sr_latency_ns,
4107                              &g4x_wm_info,
4108                              &g4x_cursor_wm_info,
4109                              &plane_sr, &cursor_sr))
4110                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4111         else
4112                 I915_WRITE(FW_BLC_SELF,
4113                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4114
4115         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4116                       planea_wm, cursora_wm,
4117                       planeb_wm, cursorb_wm,
4118                       plane_sr, cursor_sr);
4119
4120         I915_WRITE(DSPFW1,
4121                    (plane_sr << DSPFW_SR_SHIFT) |
4122                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4123                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
4124                    planea_wm);
4125         I915_WRITE(DSPFW2,
4126                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4127                    (cursora_wm << DSPFW_CURSORA_SHIFT));
4128         /* HPLL off in SR has some issues on G4x... disable it */
4129         I915_WRITE(DSPFW3,
4130                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4131                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4132 }
4133
4134 static void i965_update_wm(struct drm_device *dev)
4135 {
4136         struct drm_i915_private *dev_priv = dev->dev_private;
4137         struct drm_crtc *crtc;
4138         int srwm = 1;
4139         int cursor_sr = 16;
4140
4141         /* Calc sr entries for one plane configs */
4142         crtc = single_enabled_crtc(dev);
4143         if (crtc) {
4144                 /* self-refresh has much higher latency */
4145                 static const int sr_latency_ns = 12000;
4146                 int clock = crtc->mode.clock;
4147                 int htotal = crtc->mode.htotal;
4148                 int hdisplay = crtc->mode.hdisplay;
4149                 int pixel_size = crtc->fb->bits_per_pixel / 8;
4150                 unsigned long line_time_us;
4151                 int entries;
4152
4153                 line_time_us = ((htotal * 1000) / clock);
4154
4155                 /* Use ns/us then divide to preserve precision */
4156                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4157                         pixel_size * hdisplay;
4158                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4159                 srwm = I965_FIFO_SIZE - entries;
4160                 if (srwm < 0)
4161                         srwm = 1;
4162                 srwm &= 0x1ff;
4163                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4164                               entries, srwm);
4165
4166                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4167                         pixel_size * 64;
4168                 entries = DIV_ROUND_UP(entries,
4169                                           i965_cursor_wm_info.cacheline_size);
4170                 cursor_sr = i965_cursor_wm_info.fifo_size -
4171                         (entries + i965_cursor_wm_info.guard_size);
4172
4173                 if (cursor_sr > i965_cursor_wm_info.max_wm)
4174                         cursor_sr = i965_cursor_wm_info.max_wm;
4175
4176                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4177                               "cursor %d\n", srwm, cursor_sr);
4178
4179                 if (IS_CRESTLINE(dev))
4180                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4181         } else {
4182                 /* Turn off self refresh if both pipes are enabled */
4183                 if (IS_CRESTLINE(dev))
4184                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4185                                    & ~FW_BLC_SELF_EN);
4186         }
4187
4188         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4189                       srwm);
4190
4191         /* 965 has limitations... */
4192         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4193                    (8 << 16) | (8 << 8) | (8 << 0));
4194         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4195         /* update cursor SR watermark */
4196         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4197 }
4198
4199 static void i9xx_update_wm(struct drm_device *dev)
4200 {
4201         struct drm_i915_private *dev_priv = dev->dev_private;
4202         const struct intel_watermark_params *wm_info;
4203         uint32_t fwater_lo;
4204         uint32_t fwater_hi;
4205         int cwm, srwm = 1;
4206         int fifo_size;
4207         int planea_wm, planeb_wm;
4208         struct drm_crtc *crtc, *enabled = NULL;
4209
4210         if (IS_I945GM(dev))
4211                 wm_info = &i945_wm_info;
4212         else if (!IS_GEN2(dev))
4213                 wm_info = &i915_wm_info;
4214         else
4215                 wm_info = &i855_wm_info;
4216
4217         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4218         crtc = intel_get_crtc_for_plane(dev, 0);
4219         if (crtc->enabled && crtc->fb) {
4220                 planea_wm = intel_calculate_wm(crtc->mode.clock,
4221                                                wm_info, fifo_size,
4222                                                crtc->fb->bits_per_pixel / 8,
4223                                                latency_ns);
4224                 enabled = crtc;
4225         } else
4226                 planea_wm = fifo_size - wm_info->guard_size;
4227
4228         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4229         crtc = intel_get_crtc_for_plane(dev, 1);
4230         if (crtc->enabled && crtc->fb) {
4231                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4232                                                wm_info, fifo_size,
4233                                                crtc->fb->bits_per_pixel / 8,
4234                                                latency_ns);
4235                 if (enabled == NULL)
4236                         enabled = crtc;
4237                 else
4238                         enabled = NULL;
4239         } else
4240                 planeb_wm = fifo_size - wm_info->guard_size;
4241
4242         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4243
4244         /*
4245          * Overlay gets an aggressive default since video jitter is bad.
4246          */
4247         cwm = 2;
4248
4249         /* Play safe and disable self-refresh before adjusting watermarks. */
4250         if (IS_I945G(dev) || IS_I945GM(dev))
4251                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4252         else if (IS_I915GM(dev))
4253                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4254
4255         /* Calc sr entries for one plane configs */
4256         if (HAS_FW_BLC(dev) && enabled) {
4257                 /* self-refresh has much higher latency */
4258                 static const int sr_latency_ns = 6000;
4259                 int clock = enabled->mode.clock;
4260                 int htotal = enabled->mode.htotal;
4261                 int hdisplay = enabled->mode.hdisplay;
4262                 int pixel_size = enabled->fb->bits_per_pixel / 8;
4263                 unsigned long line_time_us;
4264                 int entries;
4265
4266                 line_time_us = (htotal * 1000) / clock;
4267
4268                 /* Use ns/us then divide to preserve precision */
4269                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4270                         pixel_size * hdisplay;
4271                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4272                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4273                 srwm = wm_info->fifo_size - entries;
4274                 if (srwm < 0)
4275                         srwm = 1;
4276
4277                 if (IS_I945G(dev) || IS_I945GM(dev))
4278                         I915_WRITE(FW_BLC_SELF,
4279                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4280                 else if (IS_I915GM(dev))
4281                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4282         }
4283
4284         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4285                       planea_wm, planeb_wm, cwm, srwm);
4286
4287         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4288         fwater_hi = (cwm & 0x1f);
4289
4290         /* Set request length to 8 cachelines per fetch */
4291         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4292         fwater_hi = fwater_hi | (1 << 8);
4293
4294         I915_WRITE(FW_BLC, fwater_lo);
4295         I915_WRITE(FW_BLC2, fwater_hi);
4296
4297         if (HAS_FW_BLC(dev)) {
4298                 if (enabled) {
4299                         if (IS_I945G(dev) || IS_I945GM(dev))
4300                                 I915_WRITE(FW_BLC_SELF,
4301                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4302                         else if (IS_I915GM(dev))
4303                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4304                         DRM_DEBUG_KMS("memory self refresh enabled\n");
4305                 } else
4306                         DRM_DEBUG_KMS("memory self refresh disabled\n");
4307         }
4308 }
4309
4310 static void i830_update_wm(struct drm_device *dev)
4311 {
4312         struct drm_i915_private *dev_priv = dev->dev_private;
4313         struct drm_crtc *crtc;
4314         uint32_t fwater_lo;
4315         int planea_wm;
4316
4317         crtc = single_enabled_crtc(dev);
4318         if (crtc == NULL)
4319                 return;
4320
4321         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4322                                        dev_priv->display.get_fifo_size(dev, 0),
4323                                        crtc->fb->bits_per_pixel / 8,
4324                                        latency_ns);
4325         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4326         fwater_lo |= (3<<8) | planea_wm;
4327
4328         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4329
4330         I915_WRITE(FW_BLC, fwater_lo);
4331 }
4332
4333 #define ILK_LP0_PLANE_LATENCY           700
4334 #define ILK_LP0_CURSOR_LATENCY          1300
4335
4336 /*
4337  * Check the wm result.
4338  *
4339  * If any calculated watermark values is larger than the maximum value that
4340  * can be programmed into the associated watermark register, that watermark
4341  * must be disabled.
4342  */
4343 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4344                                 int fbc_wm, int display_wm, int cursor_wm,
4345                                 const struct intel_watermark_params *display,
4346                                 const struct intel_watermark_params *cursor)
4347 {
4348         struct drm_i915_private *dev_priv = dev->dev_private;
4349
4350         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4351                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4352
4353         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4354                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4355                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4356
4357                 /* fbc has it's own way to disable FBC WM */
4358                 I915_WRITE(DISP_ARB_CTL,
4359                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4360                 return false;
4361         }
4362
4363         if (display_wm > display->max_wm) {
4364                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4365                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4366                 return false;
4367         }
4368
4369         if (cursor_wm > cursor->max_wm) {
4370                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4371                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4372                 return false;
4373         }
4374
4375         if (!(fbc_wm || display_wm || cursor_wm)) {
4376                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4377                 return false;
4378         }
4379
4380         return true;
4381 }
4382
4383 /*
4384  * Compute watermark values of WM[1-3],
4385  */
4386 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4387                                   int latency_ns,
4388                                   const struct intel_watermark_params *display,
4389                                   const struct intel_watermark_params *cursor,
4390                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4391 {
4392         struct drm_crtc *crtc;
4393         unsigned long line_time_us;
4394         int hdisplay, htotal, pixel_size, clock;
4395         int line_count, line_size;
4396         int small, large;
4397         int entries;
4398
4399         if (!latency_ns) {
4400                 *fbc_wm = *display_wm = *cursor_wm = 0;
4401                 return false;
4402         }
4403
4404         crtc = intel_get_crtc_for_plane(dev, plane);
4405         hdisplay = crtc->mode.hdisplay;
4406         htotal = crtc->mode.htotal;
4407         clock = crtc->mode.clock;
4408         pixel_size = crtc->fb->bits_per_pixel / 8;
4409
4410         line_time_us = (htotal * 1000) / clock;
4411         line_count = (latency_ns / line_time_us + 1000) / 1000;
4412         line_size = hdisplay * pixel_size;
4413
4414         /* Use the minimum of the small and large buffer method for primary */
4415         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4416         large = line_count * line_size;
4417
4418         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4419         *display_wm = entries + display->guard_size;
4420
4421         /*
4422          * Spec says:
4423          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4424          */
4425         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4426
4427         /* calculate the self-refresh watermark for display cursor */
4428         entries = line_count * pixel_size * 64;
4429         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4430         *cursor_wm = entries + cursor->guard_size;
4431
4432         return ironlake_check_srwm(dev, level,
4433                                    *fbc_wm, *display_wm, *cursor_wm,
4434                                    display, cursor);
4435 }
4436
4437 static void ironlake_update_wm(struct drm_device *dev)
4438 {
4439         struct drm_i915_private *dev_priv = dev->dev_private;
4440         int fbc_wm, plane_wm, cursor_wm;
4441         unsigned int enabled;
4442
4443         enabled = 0;
4444         if (g4x_compute_wm0(dev, 0,
4445                             &ironlake_display_wm_info,
4446                             ILK_LP0_PLANE_LATENCY,
4447                             &ironlake_cursor_wm_info,
4448                             ILK_LP0_CURSOR_LATENCY,
4449                             &plane_wm, &cursor_wm)) {
4450                 I915_WRITE(WM0_PIPEA_ILK,
4451                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4452                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4453                               " plane %d, " "cursor: %d\n",
4454                               plane_wm, cursor_wm);
4455                 enabled |= 1;
4456         }
4457
4458         if (g4x_compute_wm0(dev, 1,
4459                             &ironlake_display_wm_info,
4460                             ILK_LP0_PLANE_LATENCY,
4461                             &ironlake_cursor_wm_info,
4462                             ILK_LP0_CURSOR_LATENCY,
4463                             &plane_wm, &cursor_wm)) {
4464                 I915_WRITE(WM0_PIPEB_ILK,
4465                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4466                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4467                               " plane %d, cursor: %d\n",
4468                               plane_wm, cursor_wm);
4469                 enabled |= 2;
4470         }
4471
4472         /*
4473          * Calculate and update the self-refresh watermark only when one
4474          * display plane is used.
4475          */
4476         I915_WRITE(WM3_LP_ILK, 0);
4477         I915_WRITE(WM2_LP_ILK, 0);
4478         I915_WRITE(WM1_LP_ILK, 0);
4479
4480         if (!single_plane_enabled(enabled))
4481                 return;
4482         enabled = ffs(enabled) - 1;
4483
4484         /* WM1 */
4485         if (!ironlake_compute_srwm(dev, 1, enabled,
4486                                    ILK_READ_WM1_LATENCY() * 500,
4487                                    &ironlake_display_srwm_info,
4488                                    &ironlake_cursor_srwm_info,
4489                                    &fbc_wm, &plane_wm, &cursor_wm))
4490                 return;
4491
4492         I915_WRITE(WM1_LP_ILK,
4493                    WM1_LP_SR_EN |
4494                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4495                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4496                    (plane_wm << WM1_LP_SR_SHIFT) |
4497                    cursor_wm);
4498
4499         /* WM2 */
4500         if (!ironlake_compute_srwm(dev, 2, enabled,
4501                                    ILK_READ_WM2_LATENCY() * 500,
4502                                    &ironlake_display_srwm_info,
4503                                    &ironlake_cursor_srwm_info,
4504                                    &fbc_wm, &plane_wm, &cursor_wm))
4505                 return;
4506
4507         I915_WRITE(WM2_LP_ILK,
4508                    WM2_LP_EN |
4509                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4510                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4511                    (plane_wm << WM1_LP_SR_SHIFT) |
4512                    cursor_wm);
4513
4514         /*
4515          * WM3 is unsupported on ILK, probably because we don't have latency
4516          * data for that power state
4517          */
4518 }
4519
4520 static void sandybridge_update_wm(struct drm_device *dev)
4521 {
4522         struct drm_i915_private *dev_priv = dev->dev_private;
4523         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4524         int fbc_wm, plane_wm, cursor_wm;
4525         unsigned int enabled;
4526
4527         enabled = 0;
4528         if (g4x_compute_wm0(dev, 0,
4529                             &sandybridge_display_wm_info, latency,
4530                             &sandybridge_cursor_wm_info, latency,
4531                             &plane_wm, &cursor_wm)) {
4532                 I915_WRITE(WM0_PIPEA_ILK,
4533                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4534                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4535                               " plane %d, " "cursor: %d\n",
4536                               plane_wm, cursor_wm);
4537                 enabled |= 1;
4538         }
4539
4540         if (g4x_compute_wm0(dev, 1,
4541                             &sandybridge_display_wm_info, latency,
4542                             &sandybridge_cursor_wm_info, latency,
4543                             &plane_wm, &cursor_wm)) {
4544                 I915_WRITE(WM0_PIPEB_ILK,
4545                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4546                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4547                               " plane %d, cursor: %d\n",
4548                               plane_wm, cursor_wm);
4549                 enabled |= 2;
4550         }
4551
4552         /* IVB has 3 pipes */
4553         if (IS_IVYBRIDGE(dev) &&
4554             g4x_compute_wm0(dev, 2,
4555                             &sandybridge_display_wm_info, latency,
4556                             &sandybridge_cursor_wm_info, latency,
4557                             &plane_wm, &cursor_wm)) {
4558                 I915_WRITE(WM0_PIPEC_IVB,
4559                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4560                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4561                               " plane %d, cursor: %d\n",
4562                               plane_wm, cursor_wm);
4563                 enabled |= 3;
4564         }
4565
4566         /*
4567          * Calculate and update the self-refresh watermark only when one
4568          * display plane is used.
4569          *
4570          * SNB support 3 levels of watermark.
4571          *
4572          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4573          * and disabled in the descending order
4574          *
4575          */
4576         I915_WRITE(WM3_LP_ILK, 0);
4577         I915_WRITE(WM2_LP_ILK, 0);
4578         I915_WRITE(WM1_LP_ILK, 0);
4579
4580         if (!single_plane_enabled(enabled))
4581                 return;
4582         enabled = ffs(enabled) - 1;
4583
4584         /* WM1 */
4585         if (!ironlake_compute_srwm(dev, 1, enabled,
4586                                    SNB_READ_WM1_LATENCY() * 500,
4587                                    &sandybridge_display_srwm_info,
4588                                    &sandybridge_cursor_srwm_info,
4589                                    &fbc_wm, &plane_wm, &cursor_wm))
4590                 return;
4591
4592         I915_WRITE(WM1_LP_ILK,
4593                    WM1_LP_SR_EN |
4594                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4595                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4596                    (plane_wm << WM1_LP_SR_SHIFT) |
4597                    cursor_wm);
4598
4599         /* WM2 */
4600         if (!ironlake_compute_srwm(dev, 2, enabled,
4601                                    SNB_READ_WM2_LATENCY() * 500,
4602                                    &sandybridge_display_srwm_info,
4603                                    &sandybridge_cursor_srwm_info,
4604                                    &fbc_wm, &plane_wm, &cursor_wm))
4605                 return;
4606
4607         I915_WRITE(WM2_LP_ILK,
4608                    WM2_LP_EN |
4609                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4610                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4611                    (plane_wm << WM1_LP_SR_SHIFT) |
4612                    cursor_wm);
4613
4614         /* WM3 */
4615         if (!ironlake_compute_srwm(dev, 3, enabled,
4616                                    SNB_READ_WM3_LATENCY() * 500,
4617                                    &sandybridge_display_srwm_info,
4618                                    &sandybridge_cursor_srwm_info,
4619                                    &fbc_wm, &plane_wm, &cursor_wm))
4620                 return;
4621
4622         I915_WRITE(WM3_LP_ILK,
4623                    WM3_LP_EN |
4624                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4625                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4626                    (plane_wm << WM1_LP_SR_SHIFT) |
4627                    cursor_wm);
4628 }
4629
4630 /**
4631  * intel_update_watermarks - update FIFO watermark values based on current modes
4632  *
4633  * Calculate watermark values for the various WM regs based on current mode
4634  * and plane configuration.
4635  *
4636  * There are several cases to deal with here:
4637  *   - normal (i.e. non-self-refresh)
4638  *   - self-refresh (SR) mode
4639  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4640  *   - lines are small relative to FIFO size (buffer can hold more than 2
4641  *     lines), so need to account for TLB latency
4642  *
4643  *   The normal calculation is:
4644  *     watermark = dotclock * bytes per pixel * latency
4645  *   where latency is platform & configuration dependent (we assume pessimal
4646  *   values here).
4647  *
4648  *   The SR calculation is:
4649  *     watermark = (trunc(latency/line time)+1) * surface width *
4650  *       bytes per pixel
4651  *   where
4652  *     line time = htotal / dotclock
4653  *     surface width = hdisplay for normal plane and 64 for cursor
4654  *   and latency is assumed to be high, as above.
4655  *
4656  * The final value programmed to the register should always be rounded up,
4657  * and include an extra 2 entries to account for clock crossings.
4658  *
4659  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4660  * to set the non-SR watermarks to 8.
4661  */
4662 static void intel_update_watermarks(struct drm_device *dev)
4663 {
4664         struct drm_i915_private *dev_priv = dev->dev_private;
4665
4666         if (dev_priv->display.update_wm)
4667                 dev_priv->display.update_wm(dev);
4668 }
4669
4670 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4671 {
4672         if (i915_panel_use_ssc >= 0)
4673                 return i915_panel_use_ssc != 0;
4674         return dev_priv->lvds_use_ssc
4675                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4676 }
4677
4678 /**
4679  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4680  * @crtc: CRTC structure
4681  * @mode: requested mode
4682  *
4683  * A pipe may be connected to one or more outputs.  Based on the depth of the
4684  * attached framebuffer, choose a good color depth to use on the pipe.
4685  *
4686  * If possible, match the pipe depth to the fb depth.  In some cases, this
4687  * isn't ideal, because the connected output supports a lesser or restricted
4688  * set of depths.  Resolve that here:
4689  *    LVDS typically supports only 6bpc, so clamp down in that case
4690  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4691  *    Displays may support a restricted set as well, check EDID and clamp as
4692  *      appropriate.
4693  *    DP may want to dither down to 6bpc to fit larger modes
4694  *
4695  * RETURNS:
4696  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4697  * true if they don't match).
4698  */
4699 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4700                                          unsigned int *pipe_bpp,
4701                                          struct drm_display_mode *mode)
4702 {
4703         struct drm_device *dev = crtc->dev;
4704         struct drm_i915_private *dev_priv = dev->dev_private;
4705         struct drm_encoder *encoder;
4706         struct drm_connector *connector;
4707         unsigned int display_bpc = UINT_MAX, bpc;
4708
4709         /* Walk the encoders & connectors on this crtc, get min bpc */
4710         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4711                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4712
4713                 if (encoder->crtc != crtc)
4714                         continue;
4715
4716                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4717                         unsigned int lvds_bpc;
4718
4719                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4720                             LVDS_A3_POWER_UP)
4721                                 lvds_bpc = 8;
4722                         else
4723                                 lvds_bpc = 6;
4724
4725                         if (lvds_bpc < display_bpc) {
4726                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4727                                 display_bpc = lvds_bpc;
4728                         }
4729                         continue;
4730                 }
4731
4732                 /* Not one of the known troublemakers, check the EDID */
4733                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4734                                     head) {
4735                         if (connector->encoder != encoder)
4736                                 continue;
4737
4738                         /* Don't use an invalid EDID bpc value */
4739                         if (connector->display_info.bpc &&
4740                             connector->display_info.bpc < display_bpc) {
4741                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4742                                 display_bpc = connector->display_info.bpc;
4743                         }
4744                 }
4745
4746                 /*
4747                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4748                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4749                  */
4750                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4751                         if (display_bpc > 8 && display_bpc < 12) {
4752                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4753                                 display_bpc = 12;
4754                         } else {
4755                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4756                                 display_bpc = 8;
4757                         }
4758                 }
4759         }
4760
4761         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4762                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4763                 display_bpc = 6;
4764         }
4765
4766         /*
4767          * We could just drive the pipe at the highest bpc all the time and
4768          * enable dithering as needed, but that costs bandwidth.  So choose
4769          * the minimum value that expresses the full color range of the fb but
4770          * also stays within the max display bpc discovered above.
4771          */
4772
4773         switch (crtc->fb->depth) {
4774         case 8:
4775                 bpc = 8; /* since we go through a colormap */
4776                 break;
4777         case 15:
4778         case 16:
4779                 bpc = 6; /* min is 18bpp */
4780                 break;
4781         case 24:
4782                 bpc = 8;
4783                 break;
4784         case 30:
4785                 bpc = 10;
4786                 break;
4787         case 48:
4788                 bpc = 12;
4789                 break;
4790         default:
4791                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4792                 bpc = min((unsigned int)8, display_bpc);
4793                 break;
4794         }
4795
4796         display_bpc = min(display_bpc, bpc);
4797
4798         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4799                       bpc, display_bpc);
4800
4801         *pipe_bpp = display_bpc * 3;
4802
4803         return display_bpc != bpc;
4804 }
4805
4806 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4807                               struct drm_display_mode *mode,
4808                               struct drm_display_mode *adjusted_mode,
4809                               int x, int y,
4810                               struct drm_framebuffer *old_fb)
4811 {
4812         struct drm_device *dev = crtc->dev;
4813         struct drm_i915_private *dev_priv = dev->dev_private;
4814         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4815         int pipe = intel_crtc->pipe;
4816         int plane = intel_crtc->plane;
4817         int refclk, num_connectors = 0;
4818         intel_clock_t clock, reduced_clock;
4819         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4820         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4821         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4822         struct drm_mode_config *mode_config = &dev->mode_config;
4823         struct intel_encoder *encoder;
4824         const intel_limit_t *limit;
4825         int ret;
4826         u32 temp;
4827         u32 lvds_sync = 0;
4828
4829         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4830                 if (encoder->base.crtc != crtc)
4831                         continue;
4832
4833                 switch (encoder->type) {
4834                 case INTEL_OUTPUT_LVDS:
4835                         is_lvds = true;
4836                         break;
4837                 case INTEL_OUTPUT_SDVO:
4838                 case INTEL_OUTPUT_HDMI:
4839                         is_sdvo = true;
4840                         if (encoder->needs_tv_clock)
4841                                 is_tv = true;
4842                         break;
4843                 case INTEL_OUTPUT_DVO:
4844                         is_dvo = true;
4845                         break;
4846                 case INTEL_OUTPUT_TVOUT:
4847                         is_tv = true;
4848                         break;
4849                 case INTEL_OUTPUT_ANALOG:
4850                         is_crt = true;
4851                         break;
4852                 case INTEL_OUTPUT_DISPLAYPORT:
4853                         is_dp = true;
4854                         break;
4855                 }
4856
4857                 num_connectors++;
4858         }
4859
4860         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4861                 refclk = dev_priv->lvds_ssc_freq * 1000;
4862                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4863                               refclk / 1000);
4864         } else if (!IS_GEN2(dev)) {
4865                 refclk = 96000;
4866         } else {
4867                 refclk = 48000;
4868         }
4869
4870         /*
4871          * Returns a set of divisors for the desired target clock with the given
4872          * refclk, or FALSE.  The returned values represent the clock equation:
4873          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4874          */
4875         limit = intel_limit(crtc, refclk);
4876         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4877         if (!ok) {
4878                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4879                 return -EINVAL;
4880         }
4881
4882         /* Ensure that the cursor is valid for the new mode before changing... */
4883         intel_crtc_update_cursor(crtc, true);
4884
4885         if (is_lvds && dev_priv->lvds_downclock_avail) {
4886                 has_reduced_clock = limit->find_pll(limit, crtc,
4887                                                     dev_priv->lvds_downclock,
4888                                                     refclk,
4889                                                     &reduced_clock);
4890                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4891                         /*
4892                          * If the different P is found, it means that we can't
4893                          * switch the display clock by using the FP0/FP1.
4894                          * In such case we will disable the LVDS downclock
4895                          * feature.
4896                          */
4897                         DRM_DEBUG_KMS("Different P is found for "
4898                                       "LVDS clock/downclock\n");
4899                         has_reduced_clock = 0;
4900                 }
4901         }
4902         /* SDVO TV has fixed PLL values depend on its clock range,
4903            this mirrors vbios setting. */
4904         if (is_sdvo && is_tv) {
4905                 if (adjusted_mode->clock >= 100000
4906                     && adjusted_mode->clock < 140500) {
4907                         clock.p1 = 2;
4908                         clock.p2 = 10;
4909                         clock.n = 3;
4910                         clock.m1 = 16;
4911                         clock.m2 = 8;
4912                 } else if (adjusted_mode->clock >= 140500
4913                            && adjusted_mode->clock <= 200000) {
4914                         clock.p1 = 1;
4915                         clock.p2 = 10;
4916                         clock.n = 6;
4917                         clock.m1 = 12;
4918                         clock.m2 = 8;
4919                 }
4920         }
4921
4922         if (IS_PINEVIEW(dev)) {
4923                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4924                 if (has_reduced_clock)
4925                         fp2 = (1 << reduced_clock.n) << 16 |
4926                                 reduced_clock.m1 << 8 | reduced_clock.m2;
4927         } else {
4928                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4929                 if (has_reduced_clock)
4930                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4931                                 reduced_clock.m2;
4932         }
4933
4934         dpll = DPLL_VGA_MODE_DIS;
4935
4936         if (!IS_GEN2(dev)) {
4937                 if (is_lvds)
4938                         dpll |= DPLLB_MODE_LVDS;
4939                 else
4940                         dpll |= DPLLB_MODE_DAC_SERIAL;
4941                 if (is_sdvo) {
4942                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4943                         if (pixel_multiplier > 1) {
4944                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4945                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4946                         }
4947                         dpll |= DPLL_DVO_HIGH_SPEED;
4948                 }
4949                 if (is_dp)
4950                         dpll |= DPLL_DVO_HIGH_SPEED;
4951
4952                 /* compute bitmask from p1 value */
4953                 if (IS_PINEVIEW(dev))
4954                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4955                 else {
4956                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4957                         if (IS_G4X(dev) && has_reduced_clock)
4958                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4959                 }
4960                 switch (clock.p2) {
4961                 case 5:
4962                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4963                         break;
4964                 case 7:
4965                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4966                         break;
4967                 case 10:
4968                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4969                         break;
4970                 case 14:
4971                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4972                         break;
4973                 }
4974                 if (INTEL_INFO(dev)->gen >= 4)
4975                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4976         } else {
4977                 if (is_lvds) {
4978                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4979                 } else {
4980                         if (clock.p1 == 2)
4981                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
4982                         else
4983                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4984                         if (clock.p2 == 4)
4985                                 dpll |= PLL_P2_DIVIDE_BY_4;
4986                 }
4987         }
4988
4989         if (is_sdvo && is_tv)
4990                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4991         else if (is_tv)
4992                 /* XXX: just matching BIOS for now */
4993                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4994                 dpll |= 3;
4995         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4996                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4997         else
4998                 dpll |= PLL_REF_INPUT_DREFCLK;
4999
5000         /* setup pipeconf */
5001         pipeconf = I915_READ(PIPECONF(pipe));
5002
5003         /* Set up the display plane register */
5004         dspcntr = DISPPLANE_GAMMA_ENABLE;
5005
5006         /* Ironlake's plane is forced to pipe, bit 24 is to
5007            enable color space conversion */
5008         if (pipe == 0)
5009                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5010         else
5011                 dspcntr |= DISPPLANE_SEL_PIPE_B;
5012
5013         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5014                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5015                  * core speed.
5016                  *
5017                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5018                  * pipe == 0 check?
5019                  */
5020                 if (mode->clock >
5021                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5022                         pipeconf |= PIPECONF_DOUBLE_WIDE;
5023                 else
5024                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5025         }
5026
5027         /* default to 8bpc */
5028         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5029         if (is_dp) {
5030                 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5031                         pipeconf |= PIPECONF_BPP_6 |
5032                                     PIPECONF_DITHER_EN |
5033                                     PIPECONF_DITHER_TYPE_SP;
5034                 }
5035         }
5036
5037         dpll |= DPLL_VCO_ENABLE;
5038
5039         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5040         drm_mode_debug_printmodeline(mode);
5041
5042         I915_WRITE(FP0(pipe), fp);
5043         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5044
5045         POSTING_READ(DPLL(pipe));
5046         udelay(150);
5047
5048         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5049          * This is an exception to the general rule that mode_set doesn't turn
5050          * things on.
5051          */
5052         if (is_lvds) {
5053                 temp = I915_READ(LVDS);
5054                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5055                 if (pipe == 1) {
5056                         temp |= LVDS_PIPEB_SELECT;
5057                 } else {
5058                         temp &= ~LVDS_PIPEB_SELECT;
5059                 }
5060                 /* set the corresponsding LVDS_BORDER bit */
5061                 temp |= dev_priv->lvds_border_bits;
5062                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5063                  * set the DPLLs for dual-channel mode or not.
5064                  */
5065                 if (clock.p2 == 7)
5066                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5067                 else
5068                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5069
5070                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5071                  * appropriately here, but we need to look more thoroughly into how
5072                  * panels behave in the two modes.
5073                  */
5074                 /* set the dithering flag on LVDS as needed */
5075                 if (INTEL_INFO(dev)->gen >= 4) {
5076                         if (dev_priv->lvds_dither)
5077                                 temp |= LVDS_ENABLE_DITHER;
5078                         else
5079                                 temp &= ~LVDS_ENABLE_DITHER;
5080                 }
5081                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5082                         lvds_sync |= LVDS_HSYNC_POLARITY;
5083                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5084                         lvds_sync |= LVDS_VSYNC_POLARITY;
5085                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5086                     != lvds_sync) {
5087                         char flags[2] = "-+";
5088                         DRM_INFO("Changing LVDS panel from "
5089                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5090                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5091                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5092                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5093                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5094                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5095                         temp |= lvds_sync;
5096                 }
5097                 I915_WRITE(LVDS, temp);
5098         }
5099
5100         if (is_dp) {
5101                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5102         }
5103
5104         I915_WRITE(DPLL(pipe), dpll);
5105
5106         /* Wait for the clocks to stabilize. */
5107         POSTING_READ(DPLL(pipe));
5108         udelay(150);
5109
5110         if (INTEL_INFO(dev)->gen >= 4) {
5111                 temp = 0;
5112                 if (is_sdvo) {
5113                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5114                         if (temp > 1)
5115                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5116                         else
5117                                 temp = 0;
5118                 }
5119                 I915_WRITE(DPLL_MD(pipe), temp);
5120         } else {
5121                 /* The pixel multiplier can only be updated once the
5122                  * DPLL is enabled and the clocks are stable.
5123                  *
5124                  * So write it again.
5125                  */
5126                 I915_WRITE(DPLL(pipe), dpll);
5127         }
5128
5129         intel_crtc->lowfreq_avail = false;
5130         if (is_lvds && has_reduced_clock && i915_powersave) {
5131                 I915_WRITE(FP1(pipe), fp2);
5132                 intel_crtc->lowfreq_avail = true;
5133                 if (HAS_PIPE_CXSR(dev)) {
5134                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5135                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5136                 }
5137         } else {
5138                 I915_WRITE(FP1(pipe), fp);
5139                 if (HAS_PIPE_CXSR(dev)) {
5140                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5141                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5142                 }
5143         }
5144
5145         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5146                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5147                 /* the chip adds 2 halflines automatically */
5148                 adjusted_mode->crtc_vdisplay -= 1;
5149                 adjusted_mode->crtc_vtotal -= 1;
5150                 adjusted_mode->crtc_vblank_start -= 1;
5151                 adjusted_mode->crtc_vblank_end -= 1;
5152                 adjusted_mode->crtc_vsync_end -= 1;
5153                 adjusted_mode->crtc_vsync_start -= 1;
5154         } else
5155                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5156
5157         I915_WRITE(HTOTAL(pipe),
5158                    (adjusted_mode->crtc_hdisplay - 1) |
5159                    ((adjusted_mode->crtc_htotal - 1) << 16));
5160         I915_WRITE(HBLANK(pipe),
5161                    (adjusted_mode->crtc_hblank_start - 1) |
5162                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5163         I915_WRITE(HSYNC(pipe),
5164                    (adjusted_mode->crtc_hsync_start - 1) |
5165                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5166
5167         I915_WRITE(VTOTAL(pipe),
5168                    (adjusted_mode->crtc_vdisplay - 1) |
5169                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5170         I915_WRITE(VBLANK(pipe),
5171                    (adjusted_mode->crtc_vblank_start - 1) |
5172                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5173         I915_WRITE(VSYNC(pipe),
5174                    (adjusted_mode->crtc_vsync_start - 1) |
5175                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5176
5177         /* pipesrc and dspsize control the size that is scaled from,
5178          * which should always be the user's requested size.
5179          */
5180         I915_WRITE(DSPSIZE(plane),
5181                    ((mode->vdisplay - 1) << 16) |
5182                    (mode->hdisplay - 1));
5183         I915_WRITE(DSPPOS(plane), 0);
5184         I915_WRITE(PIPESRC(pipe),
5185                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5186
5187         I915_WRITE(PIPECONF(pipe), pipeconf);
5188         POSTING_READ(PIPECONF(pipe));
5189         intel_enable_pipe(dev_priv, pipe, false);
5190
5191         intel_wait_for_vblank(dev, pipe);
5192
5193         I915_WRITE(DSPCNTR(plane), dspcntr);
5194         POSTING_READ(DSPCNTR(plane));
5195         intel_enable_plane(dev_priv, plane, pipe);
5196
5197         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5198
5199         intel_update_watermarks(dev);
5200
5201         return ret;
5202 }
5203
5204 /*
5205  * Initialize reference clocks when the driver loads
5206  */
5207 void ironlake_init_pch_refclk(struct drm_device *dev)
5208 {
5209         struct drm_i915_private *dev_priv = dev->dev_private;
5210         struct drm_mode_config *mode_config = &dev->mode_config;
5211         struct intel_encoder *encoder;
5212         u32 temp;
5213         bool has_lvds = false;
5214         bool has_cpu_edp = false;
5215         bool has_pch_edp = false;
5216         bool has_panel = false;
5217         bool has_ck505 = false;
5218         bool can_ssc = false;
5219
5220         /* We need to take the global config into account */
5221         list_for_each_entry(encoder, &mode_config->encoder_list,
5222                             base.head) {
5223                 switch (encoder->type) {
5224                 case INTEL_OUTPUT_LVDS:
5225                         has_panel = true;
5226                         has_lvds = true;
5227                         break;
5228                 case INTEL_OUTPUT_EDP:
5229                         has_panel = true;
5230                         if (intel_encoder_is_pch_edp(&encoder->base))
5231                                 has_pch_edp = true;
5232                         else
5233                                 has_cpu_edp = true;
5234                         break;
5235                 }
5236         }
5237
5238         if (HAS_PCH_IBX(dev)) {
5239                 has_ck505 = dev_priv->display_clock_mode;
5240                 can_ssc = has_ck505;
5241         } else {
5242                 has_ck505 = false;
5243                 can_ssc = true;
5244         }
5245
5246         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5247                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5248                       has_ck505);
5249
5250         /* Ironlake: try to setup display ref clock before DPLL
5251          * enabling. This is only under driver's control after
5252          * PCH B stepping, previous chipset stepping should be
5253          * ignoring this setting.
5254          */
5255         temp = I915_READ(PCH_DREF_CONTROL);
5256         /* Always enable nonspread source */
5257         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5258
5259         if (has_ck505)
5260                 temp |= DREF_NONSPREAD_CK505_ENABLE;
5261         else
5262                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5263
5264         if (has_panel) {
5265                 temp &= ~DREF_SSC_SOURCE_MASK;
5266                 temp |= DREF_SSC_SOURCE_ENABLE;
5267
5268                 /* SSC must be turned on before enabling the CPU output  */
5269                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5270                         DRM_DEBUG_KMS("Using SSC on panel\n");
5271                         temp |= DREF_SSC1_ENABLE;
5272                 }
5273
5274                 /* Get SSC going before enabling the outputs */
5275                 I915_WRITE(PCH_DREF_CONTROL, temp);
5276                 POSTING_READ(PCH_DREF_CONTROL);
5277                 udelay(200);
5278
5279                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5280
5281                 /* Enable CPU source on CPU attached eDP */
5282                 if (has_cpu_edp) {
5283                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5284                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5285                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5286                         }
5287                         else
5288                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5289                 } else
5290                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5291
5292                 I915_WRITE(PCH_DREF_CONTROL, temp);
5293                 POSTING_READ(PCH_DREF_CONTROL);
5294                 udelay(200);
5295         } else {
5296                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5297
5298                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5299
5300                 /* Turn off CPU output */
5301                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5302
5303                 I915_WRITE(PCH_DREF_CONTROL, temp);
5304                 POSTING_READ(PCH_DREF_CONTROL);
5305                 udelay(200);
5306
5307                 /* Turn off the SSC source */
5308                 temp &= ~DREF_SSC_SOURCE_MASK;
5309                 temp |= DREF_SSC_SOURCE_DISABLE;
5310
5311                 /* Turn off SSC1 */
5312                 temp &= ~ DREF_SSC1_ENABLE;
5313
5314                 I915_WRITE(PCH_DREF_CONTROL, temp);
5315                 POSTING_READ(PCH_DREF_CONTROL);
5316                 udelay(200);
5317         }
5318 }
5319
5320 static int ironlake_get_refclk(struct drm_crtc *crtc)
5321 {
5322         struct drm_device *dev = crtc->dev;
5323         struct drm_i915_private *dev_priv = dev->dev_private;
5324         struct intel_encoder *encoder;
5325         struct drm_mode_config *mode_config = &dev->mode_config;
5326         struct intel_encoder *edp_encoder = NULL;
5327         int num_connectors = 0;
5328         bool is_lvds = false;
5329
5330         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5331                 if (encoder->base.crtc != crtc)
5332                         continue;
5333
5334                 switch (encoder->type) {
5335                 case INTEL_OUTPUT_LVDS:
5336                         is_lvds = true;
5337                         break;
5338                 case INTEL_OUTPUT_EDP:
5339                         edp_encoder = encoder;
5340                         break;
5341                 }
5342                 num_connectors++;
5343         }
5344
5345         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5346                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5347                               dev_priv->lvds_ssc_freq);
5348                 return dev_priv->lvds_ssc_freq * 1000;
5349         }
5350
5351         return 120000;
5352 }
5353
5354 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5355                                   struct drm_display_mode *mode,
5356                                   struct drm_display_mode *adjusted_mode,
5357                                   int x, int y,
5358                                   struct drm_framebuffer *old_fb)
5359 {
5360         struct drm_device *dev = crtc->dev;
5361         struct drm_i915_private *dev_priv = dev->dev_private;
5362         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5363         int pipe = intel_crtc->pipe;
5364         int plane = intel_crtc->plane;
5365         int refclk, num_connectors = 0;
5366         intel_clock_t clock, reduced_clock;
5367         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5368         bool ok, has_reduced_clock = false, is_sdvo = false;
5369         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5370         struct intel_encoder *has_edp_encoder = NULL;
5371         struct drm_mode_config *mode_config = &dev->mode_config;
5372         struct intel_encoder *encoder;
5373         const intel_limit_t *limit;
5374         int ret;
5375         struct fdi_m_n m_n = {0};
5376         u32 temp;
5377         u32 lvds_sync = 0;
5378         int target_clock, pixel_multiplier, lane, link_bw, factor;
5379         unsigned int pipe_bpp;
5380         bool dither;
5381
5382         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5383                 if (encoder->base.crtc != crtc)
5384                         continue;
5385
5386                 switch (encoder->type) {
5387                 case INTEL_OUTPUT_LVDS:
5388                         is_lvds = true;
5389                         break;
5390                 case INTEL_OUTPUT_SDVO:
5391                 case INTEL_OUTPUT_HDMI:
5392                         is_sdvo = true;
5393                         if (encoder->needs_tv_clock)
5394                                 is_tv = true;
5395                         break;
5396                 case INTEL_OUTPUT_TVOUT:
5397                         is_tv = true;
5398                         break;
5399                 case INTEL_OUTPUT_ANALOG:
5400                         is_crt = true;
5401                         break;
5402                 case INTEL_OUTPUT_DISPLAYPORT:
5403                         is_dp = true;
5404                         break;
5405                 case INTEL_OUTPUT_EDP:
5406                         has_edp_encoder = encoder;
5407                         break;
5408                 }
5409
5410                 num_connectors++;
5411         }
5412
5413         refclk = ironlake_get_refclk(crtc);
5414
5415         /*
5416          * Returns a set of divisors for the desired target clock with the given
5417          * refclk, or FALSE.  The returned values represent the clock equation:
5418          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5419          */
5420         limit = intel_limit(crtc, refclk);
5421         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5422         if (!ok) {
5423                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5424                 return -EINVAL;
5425         }
5426
5427         /* Ensure that the cursor is valid for the new mode before changing... */
5428         intel_crtc_update_cursor(crtc, true);
5429
5430         if (is_lvds && dev_priv->lvds_downclock_avail) {
5431                 has_reduced_clock = limit->find_pll(limit, crtc,
5432                                                     dev_priv->lvds_downclock,
5433                                                     refclk,
5434                                                     &reduced_clock);
5435                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5436                         /*
5437                          * If the different P is found, it means that we can't
5438                          * switch the display clock by using the FP0/FP1.
5439                          * In such case we will disable the LVDS downclock
5440                          * feature.
5441                          */
5442                         DRM_DEBUG_KMS("Different P is found for "
5443                                       "LVDS clock/downclock\n");
5444                         has_reduced_clock = 0;
5445                 }
5446         }
5447         /* SDVO TV has fixed PLL values depend on its clock range,
5448            this mirrors vbios setting. */
5449         if (is_sdvo && is_tv) {
5450                 if (adjusted_mode->clock >= 100000
5451                     && adjusted_mode->clock < 140500) {
5452                         clock.p1 = 2;
5453                         clock.p2 = 10;
5454                         clock.n = 3;
5455                         clock.m1 = 16;
5456                         clock.m2 = 8;
5457                 } else if (adjusted_mode->clock >= 140500
5458                            && adjusted_mode->clock <= 200000) {
5459                         clock.p1 = 1;
5460                         clock.p2 = 10;
5461                         clock.n = 6;
5462                         clock.m1 = 12;
5463                         clock.m2 = 8;
5464                 }
5465         }
5466
5467         /* FDI link */
5468         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5469         lane = 0;
5470         /* CPU eDP doesn't require FDI link, so just set DP M/N
5471            according to current link config */
5472         if (has_edp_encoder &&
5473             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5474                 target_clock = mode->clock;
5475                 intel_edp_link_config(has_edp_encoder,
5476                                       &lane, &link_bw);
5477         } else {
5478                 /* [e]DP over FDI requires target mode clock
5479                    instead of link clock */
5480                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5481                         target_clock = mode->clock;
5482                 else
5483                         target_clock = adjusted_mode->clock;
5484
5485                 /* FDI is a binary signal running at ~2.7GHz, encoding
5486                  * each output octet as 10 bits. The actual frequency
5487                  * is stored as a divider into a 100MHz clock, and the
5488                  * mode pixel clock is stored in units of 1KHz.
5489                  * Hence the bw of each lane in terms of the mode signal
5490                  * is:
5491                  */
5492                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5493         }
5494
5495         /* determine panel color depth */
5496         temp = I915_READ(PIPECONF(pipe));
5497         temp &= ~PIPE_BPC_MASK;
5498         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5499         switch (pipe_bpp) {
5500         case 18:
5501                 temp |= PIPE_6BPC;
5502                 break;
5503         case 24:
5504                 temp |= PIPE_8BPC;
5505                 break;
5506         case 30:
5507                 temp |= PIPE_10BPC;
5508                 break;
5509         case 36:
5510                 temp |= PIPE_12BPC;
5511                 break;
5512         default:
5513                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5514                         pipe_bpp);
5515                 temp |= PIPE_8BPC;
5516                 pipe_bpp = 24;
5517                 break;
5518         }
5519
5520         intel_crtc->bpp = pipe_bpp;
5521         I915_WRITE(PIPECONF(pipe), temp);
5522
5523         if (!lane) {
5524                 /*
5525                  * Account for spread spectrum to avoid
5526                  * oversubscribing the link. Max center spread
5527                  * is 2.5%; use 5% for safety's sake.
5528                  */
5529                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5530                 lane = bps / (link_bw * 8) + 1;
5531         }
5532
5533         intel_crtc->fdi_lanes = lane;
5534
5535         if (pixel_multiplier > 1)
5536                 link_bw *= pixel_multiplier;
5537         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5538                              &m_n);
5539
5540         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5541         if (has_reduced_clock)
5542                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5543                         reduced_clock.m2;
5544
5545         /* Enable autotuning of the PLL clock (if permissible) */
5546         factor = 21;
5547         if (is_lvds) {
5548                 if ((intel_panel_use_ssc(dev_priv) &&
5549                      dev_priv->lvds_ssc_freq == 100) ||
5550                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5551                         factor = 25;
5552         } else if (is_sdvo && is_tv)
5553                 factor = 20;
5554
5555         if (clock.m < factor * clock.n)
5556                 fp |= FP_CB_TUNE;
5557
5558         dpll = 0;
5559
5560         if (is_lvds)
5561                 dpll |= DPLLB_MODE_LVDS;
5562         else
5563                 dpll |= DPLLB_MODE_DAC_SERIAL;
5564         if (is_sdvo) {
5565                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5566                 if (pixel_multiplier > 1) {
5567                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5568                 }
5569                 dpll |= DPLL_DVO_HIGH_SPEED;
5570         }
5571         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5572                 dpll |= DPLL_DVO_HIGH_SPEED;
5573
5574         /* compute bitmask from p1 value */
5575         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5576         /* also FPA1 */
5577         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5578
5579         switch (clock.p2) {
5580         case 5:
5581                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5582                 break;
5583         case 7:
5584                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5585                 break;
5586         case 10:
5587                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5588                 break;
5589         case 14:
5590                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5591                 break;
5592         }
5593
5594         if (is_sdvo && is_tv)
5595                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5596         else if (is_tv)
5597                 /* XXX: just matching BIOS for now */
5598                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5599                 dpll |= 3;
5600         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5601                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5602         else
5603                 dpll |= PLL_REF_INPUT_DREFCLK;
5604
5605         /* setup pipeconf */
5606         pipeconf = I915_READ(PIPECONF(pipe));
5607
5608         /* Set up the display plane register */
5609         dspcntr = DISPPLANE_GAMMA_ENABLE;
5610
5611         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5612         drm_mode_debug_printmodeline(mode);
5613
5614         /* PCH eDP needs FDI, but CPU eDP does not */
5615         if (!intel_crtc->no_pll) {
5616                 if (!has_edp_encoder ||
5617                     intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5618                         I915_WRITE(PCH_FP0(pipe), fp);
5619                         I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5620
5621                         POSTING_READ(PCH_DPLL(pipe));
5622                         udelay(150);
5623                 }
5624         } else {
5625                 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5626                     fp == I915_READ(PCH_FP0(0))) {
5627                         intel_crtc->use_pll_a = true;
5628                         DRM_DEBUG_KMS("using pipe a dpll\n");
5629                 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5630                            fp == I915_READ(PCH_FP0(1))) {
5631                         intel_crtc->use_pll_a = false;
5632                         DRM_DEBUG_KMS("using pipe b dpll\n");
5633                 } else {
5634                         DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5635                         return -EINVAL;
5636                 }
5637         }
5638
5639         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5640          * This is an exception to the general rule that mode_set doesn't turn
5641          * things on.
5642          */
5643         if (is_lvds) {
5644                 temp = I915_READ(PCH_LVDS);
5645                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5646                 if (HAS_PCH_CPT(dev)) {
5647                         temp &= ~PORT_TRANS_SEL_MASK;
5648                         temp |= PORT_TRANS_SEL_CPT(pipe);
5649                 } else {
5650                         if (pipe == 1)
5651                                 temp |= LVDS_PIPEB_SELECT;
5652                         else
5653                                 temp &= ~LVDS_PIPEB_SELECT;
5654                 }
5655
5656                 /* set the corresponsding LVDS_BORDER bit */
5657                 temp |= dev_priv->lvds_border_bits;
5658                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5659                  * set the DPLLs for dual-channel mode or not.
5660                  */
5661                 if (clock.p2 == 7)
5662                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5663                 else
5664                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5665
5666                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5667                  * appropriately here, but we need to look more thoroughly into how
5668                  * panels behave in the two modes.
5669                  */
5670                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5671                         lvds_sync |= LVDS_HSYNC_POLARITY;
5672                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5673                         lvds_sync |= LVDS_VSYNC_POLARITY;
5674                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5675                     != lvds_sync) {
5676                         char flags[2] = "-+";
5677                         DRM_INFO("Changing LVDS panel from "
5678                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5679                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5680                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5681                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5682                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5683                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5684                         temp |= lvds_sync;
5685                 }
5686                 I915_WRITE(PCH_LVDS, temp);
5687         }
5688
5689         pipeconf &= ~PIPECONF_DITHER_EN;
5690         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5691         if ((is_lvds && dev_priv->lvds_dither) || dither) {
5692                 pipeconf |= PIPECONF_DITHER_EN;
5693                 pipeconf |= PIPECONF_DITHER_TYPE_SP;
5694         }
5695         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5696                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5697         } else {
5698                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5699                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5700                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5701                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5702                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5703         }
5704
5705         if (!intel_crtc->no_pll &&
5706             (!has_edp_encoder ||
5707              intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
5708                 I915_WRITE(PCH_DPLL(pipe), dpll);
5709
5710                 /* Wait for the clocks to stabilize. */
5711                 POSTING_READ(PCH_DPLL(pipe));
5712                 udelay(150);
5713
5714                 /* The pixel multiplier can only be updated once the
5715                  * DPLL is enabled and the clocks are stable.
5716                  *
5717                  * So write it again.
5718                  */
5719                 I915_WRITE(PCH_DPLL(pipe), dpll);
5720         }
5721
5722         intel_crtc->lowfreq_avail = false;
5723         if (!intel_crtc->no_pll) {
5724                 if (is_lvds && has_reduced_clock && i915_powersave) {
5725                         I915_WRITE(PCH_FP1(pipe), fp2);
5726                         intel_crtc->lowfreq_avail = true;
5727                         if (HAS_PIPE_CXSR(dev)) {
5728                                 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5729                                 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5730                         }
5731                 } else {
5732                         I915_WRITE(PCH_FP1(pipe), fp);
5733                         if (HAS_PIPE_CXSR(dev)) {
5734                                 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5735                                 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5736                         }
5737                 }
5738         }
5739
5740         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5741                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5742                 /* the chip adds 2 halflines automatically */
5743                 adjusted_mode->crtc_vdisplay -= 1;
5744                 adjusted_mode->crtc_vtotal -= 1;
5745                 adjusted_mode->crtc_vblank_start -= 1;
5746                 adjusted_mode->crtc_vblank_end -= 1;
5747                 adjusted_mode->crtc_vsync_end -= 1;
5748                 adjusted_mode->crtc_vsync_start -= 1;
5749         } else
5750                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5751
5752         I915_WRITE(HTOTAL(pipe),
5753                    (adjusted_mode->crtc_hdisplay - 1) |
5754                    ((adjusted_mode->crtc_htotal - 1) << 16));
5755         I915_WRITE(HBLANK(pipe),
5756                    (adjusted_mode->crtc_hblank_start - 1) |
5757                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5758         I915_WRITE(HSYNC(pipe),
5759                    (adjusted_mode->crtc_hsync_start - 1) |
5760                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5761
5762         I915_WRITE(VTOTAL(pipe),
5763                    (adjusted_mode->crtc_vdisplay - 1) |
5764                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5765         I915_WRITE(VBLANK(pipe),
5766                    (adjusted_mode->crtc_vblank_start - 1) |
5767                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5768         I915_WRITE(VSYNC(pipe),
5769                    (adjusted_mode->crtc_vsync_start - 1) |
5770                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5771
5772         /* pipesrc controls the size that is scaled from, which should
5773          * always be the user's requested size.
5774          */
5775         I915_WRITE(PIPESRC(pipe),
5776                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5777
5778         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5779         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5780         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5781         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5782
5783         if (has_edp_encoder &&
5784             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5785                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5786         }
5787
5788         I915_WRITE(PIPECONF(pipe), pipeconf);
5789         POSTING_READ(PIPECONF(pipe));
5790
5791         intel_wait_for_vblank(dev, pipe);
5792
5793         if (IS_GEN5(dev)) {
5794                 /* enable address swizzle for tiling buffer */
5795                 temp = I915_READ(DISP_ARB_CTL);
5796                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5797         }
5798
5799         I915_WRITE(DSPCNTR(plane), dspcntr);
5800         POSTING_READ(DSPCNTR(plane));
5801
5802         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5803
5804         intel_update_watermarks(dev);
5805
5806         return ret;
5807 }
5808
5809 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5810                                struct drm_display_mode *mode,
5811                                struct drm_display_mode *adjusted_mode,
5812                                int x, int y,
5813                                struct drm_framebuffer *old_fb)
5814 {
5815         struct drm_device *dev = crtc->dev;
5816         struct drm_i915_private *dev_priv = dev->dev_private;
5817         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5818         int pipe = intel_crtc->pipe;
5819         int ret;
5820
5821         drm_vblank_pre_modeset(dev, pipe);
5822
5823         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5824                                               x, y, old_fb);
5825
5826         drm_vblank_post_modeset(dev, pipe);
5827
5828         intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
5829
5830         return ret;
5831 }
5832
5833 static void g4x_write_eld(struct drm_connector *connector,
5834                           struct drm_crtc *crtc)
5835 {
5836         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5837         uint8_t *eld = connector->eld;
5838         uint32_t eldv;
5839         uint32_t len;
5840         uint32_t i;
5841
5842         i = I915_READ(G4X_AUD_VID_DID);
5843
5844         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5845                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5846         else
5847                 eldv = G4X_ELDV_DEVCTG;
5848
5849         i = I915_READ(G4X_AUD_CNTL_ST);
5850         i &= ~(eldv | G4X_ELD_ADDR);
5851         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5852         I915_WRITE(G4X_AUD_CNTL_ST, i);
5853
5854         if (!eld[0])
5855                 return;
5856
5857         len = min_t(uint8_t, eld[2], len);
5858         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5859         for (i = 0; i < len; i++)
5860                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5861
5862         i = I915_READ(G4X_AUD_CNTL_ST);
5863         i |= eldv;
5864         I915_WRITE(G4X_AUD_CNTL_ST, i);
5865 }
5866
5867 static void ironlake_write_eld(struct drm_connector *connector,
5868                                      struct drm_crtc *crtc)
5869 {
5870         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5871         uint8_t *eld = connector->eld;
5872         uint32_t eldv;
5873         uint32_t i;
5874         int len;
5875         int hdmiw_hdmiedid;
5876         int aud_cntl_st;
5877         int aud_cntrl_st2;
5878
5879         if (HAS_PCH_IBX(connector->dev)) {
5880                 hdmiw_hdmiedid = GEN5_HDMIW_HDMIEDID_A;
5881                 aud_cntl_st = GEN5_AUD_CNTL_ST_A;
5882                 aud_cntrl_st2 = GEN5_AUD_CNTL_ST2;
5883         } else {
5884                 hdmiw_hdmiedid = GEN7_HDMIW_HDMIEDID_A;
5885                 aud_cntl_st = GEN7_AUD_CNTRL_ST_A;
5886                 aud_cntrl_st2 = GEN7_AUD_CNTRL_ST2;
5887         }
5888
5889         i = to_intel_crtc(crtc)->pipe;
5890         hdmiw_hdmiedid += i * 0x100;
5891         aud_cntl_st += i * 0x100;
5892
5893         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
5894
5895         i = I915_READ(aud_cntl_st);
5896         i = (i >> 29) & 0x3;            /* DIP_Port_Select, 0x1 = PortB */
5897         if (!i) {
5898                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5899                 /* operate blindly on all ports */
5900                 eldv = GEN5_ELD_VALIDB;
5901                 eldv |= GEN5_ELD_VALIDB << 4;
5902                 eldv |= GEN5_ELD_VALIDB << 8;
5903         } else {
5904                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5905                 eldv = GEN5_ELD_VALIDB << ((i - 1) * 4);
5906         }
5907
5908         i = I915_READ(aud_cntrl_st2);
5909         i &= ~eldv;
5910         I915_WRITE(aud_cntrl_st2, i);
5911
5912         if (!eld[0])
5913                 return;
5914
5915         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5916                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5917                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5918         }
5919
5920         i = I915_READ(aud_cntl_st);
5921         i &= ~GEN5_ELD_ADDRESS;
5922         I915_WRITE(aud_cntl_st, i);
5923
5924         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5925         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5926         for (i = 0; i < len; i++)
5927                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5928
5929         i = I915_READ(aud_cntrl_st2);
5930         i |= eldv;
5931         I915_WRITE(aud_cntrl_st2, i);
5932 }
5933
5934 void intel_write_eld(struct drm_encoder *encoder,
5935                      struct drm_display_mode *mode)
5936 {
5937         struct drm_crtc *crtc = encoder->crtc;
5938         struct drm_connector *connector;
5939         struct drm_device *dev = encoder->dev;
5940         struct drm_i915_private *dev_priv = dev->dev_private;
5941
5942         connector = drm_select_eld(encoder, mode);
5943         if (!connector)
5944                 return;
5945
5946         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5947                          connector->base.id,
5948                          drm_get_connector_name(connector),
5949                          connector->encoder->base.id,
5950                          drm_get_encoder_name(connector->encoder));
5951
5952         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5953
5954         if (dev_priv->display.write_eld)
5955                 dev_priv->display.write_eld(connector, crtc);
5956 }
5957
5958 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5959 void intel_crtc_load_lut(struct drm_crtc *crtc)
5960 {
5961         struct drm_device *dev = crtc->dev;
5962         struct drm_i915_private *dev_priv = dev->dev_private;
5963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5964         int palreg = PALETTE(intel_crtc->pipe);
5965         int i;
5966
5967         /* The clocks have to be on to load the palette. */
5968         if (!crtc->enabled || !intel_crtc->active)
5969                 return;
5970
5971         /* use legacy palette for Ironlake */
5972         if (HAS_PCH_SPLIT(dev))
5973                 palreg = LGC_PALETTE(intel_crtc->pipe);
5974
5975         for (i = 0; i < 256; i++) {
5976                 I915_WRITE(palreg + 4 * i,
5977                            (intel_crtc->lut_r[i] << 16) |
5978                            (intel_crtc->lut_g[i] << 8) |
5979                            intel_crtc->lut_b[i]);
5980         }
5981 }
5982
5983 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5984 {
5985         struct drm_device *dev = crtc->dev;
5986         struct drm_i915_private *dev_priv = dev->dev_private;
5987         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5988         bool visible = base != 0;
5989         u32 cntl;
5990
5991         if (intel_crtc->cursor_visible == visible)
5992                 return;
5993
5994         cntl = I915_READ(_CURACNTR);
5995         if (visible) {
5996                 /* On these chipsets we can only modify the base whilst
5997                  * the cursor is disabled.
5998                  */
5999                 I915_WRITE(_CURABASE, base);
6000
6001                 cntl &= ~(CURSOR_FORMAT_MASK);
6002                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6003                 cntl |= CURSOR_ENABLE |
6004                         CURSOR_GAMMA_ENABLE |
6005                         CURSOR_FORMAT_ARGB;
6006         } else
6007                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6008         I915_WRITE(_CURACNTR, cntl);
6009
6010         intel_crtc->cursor_visible = visible;
6011 }
6012
6013 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6014 {
6015         struct drm_device *dev = crtc->dev;
6016         struct drm_i915_private *dev_priv = dev->dev_private;
6017         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6018         int pipe = intel_crtc->pipe;
6019         bool visible = base != 0;
6020
6021         if (intel_crtc->cursor_visible != visible) {
6022                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6023                 if (base) {
6024                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6025                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6026                         cntl |= pipe << 28; /* Connect to correct pipe */
6027                 } else {
6028                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6029                         cntl |= CURSOR_MODE_DISABLE;
6030                 }
6031                 I915_WRITE(CURCNTR(pipe), cntl);
6032
6033                 intel_crtc->cursor_visible = visible;
6034         }
6035         /* and commit changes on next vblank */
6036         I915_WRITE(CURBASE(pipe), base);
6037 }
6038
6039 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6040 {
6041         struct drm_device *dev = crtc->dev;
6042         struct drm_i915_private *dev_priv = dev->dev_private;
6043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6044         int pipe = intel_crtc->pipe;
6045         bool visible = base != 0;
6046
6047         if (intel_crtc->cursor_visible != visible) {
6048                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6049                 if (base) {
6050                         cntl &= ~CURSOR_MODE;
6051                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6052                 } else {
6053                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6054                         cntl |= CURSOR_MODE_DISABLE;
6055                 }
6056                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6057
6058                 intel_crtc->cursor_visible = visible;
6059         }
6060         /* and commit changes on next vblank */
6061         I915_WRITE(CURBASE_IVB(pipe), base);
6062 }
6063
6064 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6065 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6066                                      bool on)
6067 {
6068         struct drm_device *dev = crtc->dev;
6069         struct drm_i915_private *dev_priv = dev->dev_private;
6070         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6071         int pipe = intel_crtc->pipe;
6072         int x = intel_crtc->cursor_x;
6073         int y = intel_crtc->cursor_y;
6074         u32 base, pos;
6075         bool visible;
6076
6077         pos = 0;
6078
6079         if (on && crtc->enabled && crtc->fb) {
6080                 base = intel_crtc->cursor_addr;
6081                 if (x > (int) crtc->fb->width)
6082                         base = 0;
6083
6084                 if (y > (int) crtc->fb->height)
6085                         base = 0;
6086         } else
6087                 base = 0;
6088
6089         if (x < 0) {
6090                 if (x + intel_crtc->cursor_width < 0)
6091                         base = 0;
6092
6093                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6094                 x = -x;
6095         }
6096         pos |= x << CURSOR_X_SHIFT;
6097
6098         if (y < 0) {
6099                 if (y + intel_crtc->cursor_height < 0)
6100                         base = 0;
6101
6102                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6103                 y = -y;
6104         }
6105         pos |= y << CURSOR_Y_SHIFT;
6106
6107         visible = base != 0;
6108         if (!visible && !intel_crtc->cursor_visible)
6109                 return;
6110
6111         if (IS_IVYBRIDGE(dev)) {
6112                 I915_WRITE(CURPOS_IVB(pipe), pos);
6113                 ivb_update_cursor(crtc, base);
6114         } else {
6115                 I915_WRITE(CURPOS(pipe), pos);
6116                 if (IS_845G(dev) || IS_I865G(dev))
6117                         i845_update_cursor(crtc, base);
6118                 else
6119                         i9xx_update_cursor(crtc, base);
6120         }
6121
6122         if (visible)
6123                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6124 }
6125
6126 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6127                                  struct drm_file *file,
6128                                  uint32_t handle,
6129                                  uint32_t width, uint32_t height)
6130 {
6131         struct drm_device *dev = crtc->dev;
6132         struct drm_i915_private *dev_priv = dev->dev_private;
6133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6134         struct drm_i915_gem_object *obj;
6135         uint32_t addr;
6136         int ret;
6137
6138         DRM_DEBUG_KMS("\n");
6139
6140         /* if we want to turn off the cursor ignore width and height */
6141         if (!handle) {
6142                 DRM_DEBUG_KMS("cursor off\n");
6143                 addr = 0;
6144                 obj = NULL;
6145                 mutex_lock(&dev->struct_mutex);
6146                 goto finish;
6147         }
6148
6149         /* Currently we only support 64x64 cursors */
6150         if (width != 64 || height != 64) {
6151                 DRM_ERROR("we currently only support 64x64 cursors\n");
6152                 return -EINVAL;
6153         }
6154
6155         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6156         if (&obj->base == NULL)
6157                 return -ENOENT;
6158
6159         if (obj->base.size < width * height * 4) {
6160                 DRM_ERROR("buffer is to small\n");
6161                 ret = -ENOMEM;
6162                 goto fail;
6163         }
6164
6165         /* we only need to pin inside GTT if cursor is non-phy */
6166         mutex_lock(&dev->struct_mutex);
6167         if (!dev_priv->info->cursor_needs_physical) {
6168                 if (obj->tiling_mode) {
6169                         DRM_ERROR("cursor cannot be tiled\n");
6170                         ret = -EINVAL;
6171                         goto fail_locked;
6172                 }
6173
6174                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6175                 if (ret) {
6176                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6177                         goto fail_locked;
6178                 }
6179
6180                 ret = i915_gem_object_put_fence(obj);
6181                 if (ret) {
6182                         DRM_ERROR("failed to release fence for cursor");
6183                         goto fail_unpin;
6184                 }
6185
6186                 addr = obj->gtt_offset;
6187         } else {
6188                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6189                 ret = i915_gem_attach_phys_object(dev, obj,
6190                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6191                                                   align);
6192                 if (ret) {
6193                         DRM_ERROR("failed to attach phys object\n");
6194                         goto fail_locked;
6195                 }
6196                 addr = obj->phys_obj->handle->busaddr;
6197         }
6198
6199         if (IS_GEN2(dev))
6200                 I915_WRITE(CURSIZE, (height << 12) | width);
6201
6202  finish:
6203         if (intel_crtc->cursor_bo) {
6204                 if (dev_priv->info->cursor_needs_physical) {
6205                         if (intel_crtc->cursor_bo != obj)
6206                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6207                 } else
6208                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6209                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6210         }
6211
6212         mutex_unlock(&dev->struct_mutex);
6213
6214         intel_crtc->cursor_addr = addr;
6215         intel_crtc->cursor_bo = obj;
6216         intel_crtc->cursor_width = width;
6217         intel_crtc->cursor_height = height;
6218
6219         intel_crtc_update_cursor(crtc, true);
6220
6221         return 0;
6222 fail_unpin:
6223         i915_gem_object_unpin(obj);
6224 fail_locked:
6225         mutex_unlock(&dev->struct_mutex);
6226 fail:
6227         drm_gem_object_unreference_unlocked(&obj->base);
6228         return ret;
6229 }
6230
6231 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6232 {
6233         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6234
6235         intel_crtc->cursor_x = x;
6236         intel_crtc->cursor_y = y;
6237
6238         intel_crtc_update_cursor(crtc, true);
6239
6240         return 0;
6241 }
6242
6243 /** Sets the color ramps on behalf of RandR */
6244 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6245                                  u16 blue, int regno)
6246 {
6247         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6248
6249         intel_crtc->lut_r[regno] = red >> 8;
6250         intel_crtc->lut_g[regno] = green >> 8;
6251         intel_crtc->lut_b[regno] = blue >> 8;
6252 }
6253
6254 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6255                              u16 *blue, int regno)
6256 {
6257         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6258
6259         *red = intel_crtc->lut_r[regno] << 8;
6260         *green = intel_crtc->lut_g[regno] << 8;
6261         *blue = intel_crtc->lut_b[regno] << 8;
6262 }
6263
6264 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6265                                  u16 *blue, uint32_t start, uint32_t size)
6266 {
6267         int end = (start + size > 256) ? 256 : start + size, i;
6268         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6269
6270         for (i = start; i < end; i++) {
6271                 intel_crtc->lut_r[i] = red[i] >> 8;
6272                 intel_crtc->lut_g[i] = green[i] >> 8;
6273                 intel_crtc->lut_b[i] = blue[i] >> 8;
6274         }
6275
6276         intel_crtc_load_lut(crtc);
6277 }
6278
6279 /**
6280  * Get a pipe with a simple mode set on it for doing load-based monitor
6281  * detection.
6282  *
6283  * It will be up to the load-detect code to adjust the pipe as appropriate for
6284  * its requirements.  The pipe will be connected to no other encoders.
6285  *
6286  * Currently this code will only succeed if there is a pipe with no encoders
6287  * configured for it.  In the future, it could choose to temporarily disable
6288  * some outputs to free up a pipe for its use.
6289  *
6290  * \return crtc, or NULL if no pipes are available.
6291  */
6292
6293 /* VESA 640x480x72Hz mode to set on the pipe */
6294 static struct drm_display_mode load_detect_mode = {
6295         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6296                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6297 };
6298
6299 static struct drm_framebuffer *
6300 intel_framebuffer_create(struct drm_device *dev,
6301                          struct drm_mode_fb_cmd *mode_cmd,
6302                          struct drm_i915_gem_object *obj)
6303 {
6304         struct intel_framebuffer *intel_fb;
6305         int ret;
6306
6307         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6308         if (!intel_fb) {
6309                 drm_gem_object_unreference_unlocked(&obj->base);
6310                 return ERR_PTR(-ENOMEM);
6311         }
6312
6313         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6314         if (ret) {
6315                 drm_gem_object_unreference_unlocked(&obj->base);
6316                 kfree(intel_fb);
6317                 return ERR_PTR(ret);
6318         }
6319
6320         return &intel_fb->base;
6321 }
6322
6323 static u32
6324 intel_framebuffer_pitch_for_width(int width, int bpp)
6325 {
6326         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6327         return ALIGN(pitch, 64);
6328 }
6329
6330 static u32
6331 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6332 {
6333         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6334         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6335 }
6336
6337 static struct drm_framebuffer *
6338 intel_framebuffer_create_for_mode(struct drm_device *dev,
6339                                   struct drm_display_mode *mode,
6340                                   int depth, int bpp)
6341 {
6342         struct drm_i915_gem_object *obj;
6343         struct drm_mode_fb_cmd mode_cmd;
6344
6345         obj = i915_gem_alloc_object(dev,
6346                                     intel_framebuffer_size_for_mode(mode, bpp));
6347         if (obj == NULL)
6348                 return ERR_PTR(-ENOMEM);
6349
6350         mode_cmd.width = mode->hdisplay;
6351         mode_cmd.height = mode->vdisplay;
6352         mode_cmd.depth = depth;
6353         mode_cmd.bpp = bpp;
6354         mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
6355
6356         return intel_framebuffer_create(dev, &mode_cmd, obj);
6357 }
6358
6359 static struct drm_framebuffer *
6360 mode_fits_in_fbdev(struct drm_device *dev,
6361                    struct drm_display_mode *mode)
6362 {
6363         struct drm_i915_private *dev_priv = dev->dev_private;
6364         struct drm_i915_gem_object *obj;
6365         struct drm_framebuffer *fb;
6366
6367         if (dev_priv->fbdev == NULL)
6368                 return NULL;
6369
6370         obj = dev_priv->fbdev->ifb.obj;
6371         if (obj == NULL)
6372                 return NULL;
6373
6374         fb = &dev_priv->fbdev->ifb.base;
6375         if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
6376                                                           fb->bits_per_pixel))
6377                 return NULL;
6378
6379         if (obj->base.size < mode->vdisplay * fb->pitch)
6380                 return NULL;
6381
6382         return fb;
6383 }
6384
6385 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6386                                 struct drm_connector *connector,
6387                                 struct drm_display_mode *mode,
6388                                 struct intel_load_detect_pipe *old)
6389 {
6390         struct intel_crtc *intel_crtc;
6391         struct drm_crtc *possible_crtc;
6392         struct drm_encoder *encoder = &intel_encoder->base;
6393         struct drm_crtc *crtc = NULL;
6394         struct drm_device *dev = encoder->dev;
6395         struct drm_framebuffer *old_fb;
6396         int i = -1;
6397
6398         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6399                       connector->base.id, drm_get_connector_name(connector),
6400                       encoder->base.id, drm_get_encoder_name(encoder));
6401
6402         /*
6403          * Algorithm gets a little messy:
6404          *
6405          *   - if the connector already has an assigned crtc, use it (but make
6406          *     sure it's on first)
6407          *
6408          *   - try to find the first unused crtc that can drive this connector,
6409          *     and use that if we find one
6410          */
6411
6412         /* See if we already have a CRTC for this connector */
6413         if (encoder->crtc) {
6414                 crtc = encoder->crtc;
6415
6416                 intel_crtc = to_intel_crtc(crtc);
6417                 old->dpms_mode = intel_crtc->dpms_mode;
6418                 old->load_detect_temp = false;
6419
6420                 /* Make sure the crtc and connector are running */
6421                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6422                         struct drm_encoder_helper_funcs *encoder_funcs;
6423                         struct drm_crtc_helper_funcs *crtc_funcs;
6424
6425                         crtc_funcs = crtc->helper_private;
6426                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6427
6428                         encoder_funcs = encoder->helper_private;
6429                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6430                 }
6431
6432                 return true;
6433         }
6434
6435         /* Find an unused one (if possible) */
6436         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6437                 i++;
6438                 if (!(encoder->possible_crtcs & (1 << i)))
6439                         continue;
6440                 if (!possible_crtc->enabled) {
6441                         crtc = possible_crtc;
6442                         break;
6443                 }
6444         }
6445
6446         /*
6447          * If we didn't find an unused CRTC, don't use any.
6448          */
6449         if (!crtc) {
6450                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6451                 return false;
6452         }
6453
6454         encoder->crtc = crtc;
6455         connector->encoder = encoder;
6456
6457         intel_crtc = to_intel_crtc(crtc);
6458         old->dpms_mode = intel_crtc->dpms_mode;
6459         old->load_detect_temp = true;
6460         old->release_fb = NULL;
6461
6462         if (!mode)
6463                 mode = &load_detect_mode;
6464
6465         old_fb = crtc->fb;
6466
6467         /* We need a framebuffer large enough to accommodate all accesses
6468          * that the plane may generate whilst we perform load detection.
6469          * We can not rely on the fbcon either being present (we get called
6470          * during its initialisation to detect all boot displays, or it may
6471          * not even exist) or that it is large enough to satisfy the
6472          * requested mode.
6473          */
6474         crtc->fb = mode_fits_in_fbdev(dev, mode);
6475         if (crtc->fb == NULL) {
6476                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6477                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6478                 old->release_fb = crtc->fb;
6479         } else
6480                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6481         if (IS_ERR(crtc->fb)) {
6482                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6483                 crtc->fb = old_fb;
6484                 return false;
6485         }
6486
6487         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6488                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6489                 if (old->release_fb)
6490                         old->release_fb->funcs->destroy(old->release_fb);
6491                 crtc->fb = old_fb;
6492                 return false;
6493         }
6494
6495         /* let the connector get through one full cycle before testing */
6496         intel_wait_for_vblank(dev, intel_crtc->pipe);
6497
6498         return true;
6499 }
6500
6501 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6502                                     struct drm_connector *connector,
6503                                     struct intel_load_detect_pipe *old)
6504 {
6505         struct drm_encoder *encoder = &intel_encoder->base;
6506         struct drm_device *dev = encoder->dev;
6507         struct drm_crtc *crtc = encoder->crtc;
6508         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6509         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6510
6511         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6512                       connector->base.id, drm_get_connector_name(connector),
6513                       encoder->base.id, drm_get_encoder_name(encoder));
6514
6515         if (old->load_detect_temp) {
6516                 connector->encoder = NULL;
6517                 drm_helper_disable_unused_functions(dev);
6518
6519                 if (old->release_fb)
6520                         old->release_fb->funcs->destroy(old->release_fb);
6521
6522                 return;
6523         }
6524
6525         /* Switch crtc and encoder back off if necessary */
6526         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6527                 encoder_funcs->dpms(encoder, old->dpms_mode);
6528                 crtc_funcs->dpms(crtc, old->dpms_mode);
6529         }
6530 }
6531
6532 /* Returns the clock of the currently programmed mode of the given pipe. */
6533 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6534 {
6535         struct drm_i915_private *dev_priv = dev->dev_private;
6536         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6537         int pipe = intel_crtc->pipe;
6538         u32 dpll = I915_READ(DPLL(pipe));
6539         u32 fp;
6540         intel_clock_t clock;
6541
6542         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6543                 fp = I915_READ(FP0(pipe));
6544         else
6545                 fp = I915_READ(FP1(pipe));
6546
6547         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6548         if (IS_PINEVIEW(dev)) {
6549                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6550                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6551         } else {
6552                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6553                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6554         }
6555
6556         if (!IS_GEN2(dev)) {
6557                 if (IS_PINEVIEW(dev))
6558                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6559                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6560                 else
6561                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6562                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6563
6564                 switch (dpll & DPLL_MODE_MASK) {
6565                 case DPLLB_MODE_DAC_SERIAL:
6566                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6567                                 5 : 10;
6568                         break;
6569                 case DPLLB_MODE_LVDS:
6570                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6571                                 7 : 14;
6572                         break;
6573                 default:
6574                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6575                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6576                         return 0;
6577                 }
6578
6579                 /* XXX: Handle the 100Mhz refclk */
6580                 intel_clock(dev, 96000, &clock);
6581         } else {
6582                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6583
6584                 if (is_lvds) {
6585                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6586                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6587                         clock.p2 = 14;
6588
6589                         if ((dpll & PLL_REF_INPUT_MASK) ==
6590                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6591                                 /* XXX: might not be 66MHz */
6592                                 intel_clock(dev, 66000, &clock);
6593                         } else
6594                                 intel_clock(dev, 48000, &clock);
6595                 } else {
6596                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6597                                 clock.p1 = 2;
6598                         else {
6599                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6600                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6601                         }
6602                         if (dpll & PLL_P2_DIVIDE_BY_4)
6603                                 clock.p2 = 4;
6604                         else
6605                                 clock.p2 = 2;
6606
6607                         intel_clock(dev, 48000, &clock);
6608                 }
6609         }
6610
6611         /* XXX: It would be nice to validate the clocks, but we can't reuse
6612          * i830PllIsValid() because it relies on the xf86_config connector
6613          * configuration being accurate, which it isn't necessarily.
6614          */
6615
6616         return clock.dot;
6617 }
6618
6619 /** Returns the currently programmed mode of the given pipe. */
6620 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6621                                              struct drm_crtc *crtc)
6622 {
6623         struct drm_i915_private *dev_priv = dev->dev_private;
6624         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6625         int pipe = intel_crtc->pipe;
6626         struct drm_display_mode *mode;
6627         int htot = I915_READ(HTOTAL(pipe));
6628         int hsync = I915_READ(HSYNC(pipe));
6629         int vtot = I915_READ(VTOTAL(pipe));
6630         int vsync = I915_READ(VSYNC(pipe));
6631
6632         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6633         if (!mode)
6634                 return NULL;
6635
6636         mode->clock = intel_crtc_clock_get(dev, crtc);
6637         mode->hdisplay = (htot & 0xffff) + 1;
6638         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6639         mode->hsync_start = (hsync & 0xffff) + 1;
6640         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6641         mode->vdisplay = (vtot & 0xffff) + 1;
6642         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6643         mode->vsync_start = (vsync & 0xffff) + 1;
6644         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6645
6646         drm_mode_set_name(mode);
6647         drm_mode_set_crtcinfo(mode, 0);
6648
6649         return mode;
6650 }
6651
6652 #define GPU_IDLE_TIMEOUT 500 /* ms */
6653
6654 /* When this timer fires, we've been idle for awhile */
6655 static void intel_gpu_idle_timer(unsigned long arg)
6656 {
6657         struct drm_device *dev = (struct drm_device *)arg;
6658         drm_i915_private_t *dev_priv = dev->dev_private;
6659
6660         if (!list_empty(&dev_priv->mm.active_list)) {
6661                 /* Still processing requests, so just re-arm the timer. */
6662                 mod_timer(&dev_priv->idle_timer, jiffies +
6663                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6664                 return;
6665         }
6666
6667         dev_priv->busy = false;
6668         queue_work(dev_priv->wq, &dev_priv->idle_work);
6669 }
6670
6671 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6672
6673 static void intel_crtc_idle_timer(unsigned long arg)
6674 {
6675         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6676         struct drm_crtc *crtc = &intel_crtc->base;
6677         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6678         struct intel_framebuffer *intel_fb;
6679
6680         intel_fb = to_intel_framebuffer(crtc->fb);
6681         if (intel_fb && intel_fb->obj->active) {
6682                 /* The framebuffer is still being accessed by the GPU. */
6683                 mod_timer(&intel_crtc->idle_timer, jiffies +
6684                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6685                 return;
6686         }
6687
6688         intel_crtc->busy = false;
6689         queue_work(dev_priv->wq, &dev_priv->idle_work);
6690 }
6691
6692 static void intel_increase_pllclock(struct drm_crtc *crtc)
6693 {
6694         struct drm_device *dev = crtc->dev;
6695         drm_i915_private_t *dev_priv = dev->dev_private;
6696         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6697         int pipe = intel_crtc->pipe;
6698         int dpll_reg = DPLL(pipe);
6699         int dpll;
6700
6701         if (HAS_PCH_SPLIT(dev))
6702                 return;
6703
6704         if (!dev_priv->lvds_downclock_avail)
6705                 return;
6706
6707         dpll = I915_READ(dpll_reg);
6708         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6709                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6710
6711                 /* Unlock panel regs */
6712                 I915_WRITE(PP_CONTROL,
6713                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6714
6715                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6716                 I915_WRITE(dpll_reg, dpll);
6717                 intel_wait_for_vblank(dev, pipe);
6718
6719                 dpll = I915_READ(dpll_reg);
6720                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6721                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6722
6723                 /* ...and lock them again */
6724                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6725         }
6726
6727         /* Schedule downclock */
6728         mod_timer(&intel_crtc->idle_timer, jiffies +
6729                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6730 }
6731
6732 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6733 {
6734         struct drm_device *dev = crtc->dev;
6735         drm_i915_private_t *dev_priv = dev->dev_private;
6736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6737         int pipe = intel_crtc->pipe;
6738         int dpll_reg = DPLL(pipe);
6739         int dpll = I915_READ(dpll_reg);
6740
6741         if (HAS_PCH_SPLIT(dev))
6742                 return;
6743
6744         if (!dev_priv->lvds_downclock_avail)
6745                 return;
6746
6747         /*
6748          * Since this is called by a timer, we should never get here in
6749          * the manual case.
6750          */
6751         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6752                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6753
6754                 /* Unlock panel regs */
6755                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6756                            PANEL_UNLOCK_REGS);
6757
6758                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6759                 I915_WRITE(dpll_reg, dpll);
6760                 intel_wait_for_vblank(dev, pipe);
6761                 dpll = I915_READ(dpll_reg);
6762                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6763                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6764
6765                 /* ...and lock them again */
6766                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6767         }
6768
6769 }
6770
6771 /**
6772  * intel_idle_update - adjust clocks for idleness
6773  * @work: work struct
6774  *
6775  * Either the GPU or display (or both) went idle.  Check the busy status
6776  * here and adjust the CRTC and GPU clocks as necessary.
6777  */
6778 static void intel_idle_update(struct work_struct *work)
6779 {
6780         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6781                                                     idle_work);
6782         struct drm_device *dev = dev_priv->dev;
6783         struct drm_crtc *crtc;
6784         struct intel_crtc *intel_crtc;
6785
6786         if (!i915_powersave)
6787                 return;
6788
6789         mutex_lock(&dev->struct_mutex);
6790
6791         i915_update_gfx_val(dev_priv);
6792
6793         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6794                 /* Skip inactive CRTCs */
6795                 if (!crtc->fb)
6796                         continue;
6797
6798                 intel_crtc = to_intel_crtc(crtc);
6799                 if (!intel_crtc->busy)
6800                         intel_decrease_pllclock(crtc);
6801         }
6802
6803
6804         mutex_unlock(&dev->struct_mutex);
6805 }
6806
6807 /**
6808  * intel_mark_busy - mark the GPU and possibly the display busy
6809  * @dev: drm device
6810  * @obj: object we're operating on
6811  *
6812  * Callers can use this function to indicate that the GPU is busy processing
6813  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
6814  * buffer), we'll also mark the display as busy, so we know to increase its
6815  * clock frequency.
6816  */
6817 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6818 {
6819         drm_i915_private_t *dev_priv = dev->dev_private;
6820         struct drm_crtc *crtc = NULL;
6821         struct intel_framebuffer *intel_fb;
6822         struct intel_crtc *intel_crtc;
6823
6824         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6825                 return;
6826
6827         if (!dev_priv->busy)
6828                 dev_priv->busy = true;
6829         else
6830                 mod_timer(&dev_priv->idle_timer, jiffies +
6831                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6832
6833         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6834                 if (!crtc->fb)
6835                         continue;
6836
6837                 intel_crtc = to_intel_crtc(crtc);
6838                 intel_fb = to_intel_framebuffer(crtc->fb);
6839                 if (intel_fb->obj == obj) {
6840                         if (!intel_crtc->busy) {
6841                                 /* Non-busy -> busy, upclock */
6842                                 intel_increase_pllclock(crtc);
6843                                 intel_crtc->busy = true;
6844                         } else {
6845                                 /* Busy -> busy, put off timer */
6846                                 mod_timer(&intel_crtc->idle_timer, jiffies +
6847                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6848                         }
6849                 }
6850         }
6851 }
6852
6853 static void intel_crtc_destroy(struct drm_crtc *crtc)
6854 {
6855         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6856         struct drm_device *dev = crtc->dev;
6857         struct intel_unpin_work *work;
6858         unsigned long flags;
6859
6860         spin_lock_irqsave(&dev->event_lock, flags);
6861         work = intel_crtc->unpin_work;
6862         intel_crtc->unpin_work = NULL;
6863         spin_unlock_irqrestore(&dev->event_lock, flags);
6864
6865         if (work) {
6866                 cancel_work_sync(&work->work);
6867                 kfree(work);
6868         }
6869
6870         drm_crtc_cleanup(crtc);
6871
6872         kfree(intel_crtc);
6873 }
6874
6875 static void intel_unpin_work_fn(struct work_struct *__work)
6876 {
6877         struct intel_unpin_work *work =
6878                 container_of(__work, struct intel_unpin_work, work);
6879
6880         mutex_lock(&work->dev->struct_mutex);
6881         i915_gem_object_unpin(work->old_fb_obj);
6882         drm_gem_object_unreference(&work->pending_flip_obj->base);
6883         drm_gem_object_unreference(&work->old_fb_obj->base);
6884
6885         intel_update_fbc(work->dev);
6886         mutex_unlock(&work->dev->struct_mutex);
6887         kfree(work);
6888 }
6889
6890 static void do_intel_finish_page_flip(struct drm_device *dev,
6891                                       struct drm_crtc *crtc)
6892 {
6893         drm_i915_private_t *dev_priv = dev->dev_private;
6894         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6895         struct intel_unpin_work *work;
6896         struct drm_i915_gem_object *obj;
6897         struct drm_pending_vblank_event *e;
6898         struct timeval tnow, tvbl;
6899         unsigned long flags;
6900
6901         /* Ignore early vblank irqs */
6902         if (intel_crtc == NULL)
6903                 return;
6904
6905         do_gettimeofday(&tnow);
6906
6907         spin_lock_irqsave(&dev->event_lock, flags);
6908         work = intel_crtc->unpin_work;
6909         if (work == NULL || !work->pending) {
6910                 spin_unlock_irqrestore(&dev->event_lock, flags);
6911                 return;
6912         }
6913
6914         intel_crtc->unpin_work = NULL;
6915
6916         if (work->event) {
6917                 e = work->event;
6918                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6919
6920                 /* Called before vblank count and timestamps have
6921                  * been updated for the vblank interval of flip
6922                  * completion? Need to increment vblank count and
6923                  * add one videorefresh duration to returned timestamp
6924                  * to account for this. We assume this happened if we
6925                  * get called over 0.9 frame durations after the last
6926                  * timestamped vblank.
6927                  *
6928                  * This calculation can not be used with vrefresh rates
6929                  * below 5Hz (10Hz to be on the safe side) without
6930                  * promoting to 64 integers.
6931                  */
6932                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6933                     9 * crtc->framedur_ns) {
6934                         e->event.sequence++;
6935                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6936                                              crtc->framedur_ns);
6937                 }
6938
6939                 e->event.tv_sec = tvbl.tv_sec;
6940                 e->event.tv_usec = tvbl.tv_usec;
6941
6942                 list_add_tail(&e->base.link,
6943                               &e->base.file_priv->event_list);
6944                 wake_up_interruptible(&e->base.file_priv->event_wait);
6945         }
6946
6947         drm_vblank_put(dev, intel_crtc->pipe);
6948
6949         spin_unlock_irqrestore(&dev->event_lock, flags);
6950
6951         obj = work->old_fb_obj;
6952
6953         atomic_clear_mask(1 << intel_crtc->plane,
6954                           &obj->pending_flip.counter);
6955         if (atomic_read(&obj->pending_flip) == 0)
6956                 wake_up(&dev_priv->pending_flip_queue);
6957
6958         schedule_work(&work->work);
6959
6960         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6961 }
6962
6963 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6964 {
6965         drm_i915_private_t *dev_priv = dev->dev_private;
6966         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6967
6968         do_intel_finish_page_flip(dev, crtc);
6969 }
6970
6971 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6972 {
6973         drm_i915_private_t *dev_priv = dev->dev_private;
6974         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6975
6976         do_intel_finish_page_flip(dev, crtc);
6977 }
6978
6979 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6980 {
6981         drm_i915_private_t *dev_priv = dev->dev_private;
6982         struct intel_crtc *intel_crtc =
6983                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6984         unsigned long flags;
6985
6986         spin_lock_irqsave(&dev->event_lock, flags);
6987         if (intel_crtc->unpin_work) {
6988                 if ((++intel_crtc->unpin_work->pending) > 1)
6989                         DRM_ERROR("Prepared flip multiple times\n");
6990         } else {
6991                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6992         }
6993         spin_unlock_irqrestore(&dev->event_lock, flags);
6994 }
6995
6996 static int intel_gen2_queue_flip(struct drm_device *dev,
6997                                  struct drm_crtc *crtc,
6998                                  struct drm_framebuffer *fb,
6999                                  struct drm_i915_gem_object *obj)
7000 {
7001         struct drm_i915_private *dev_priv = dev->dev_private;
7002         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7003         unsigned long offset;
7004         u32 flip_mask;
7005         int ret;
7006
7007         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7008         if (ret)
7009                 goto err;
7010
7011         /* Offset into the new buffer for cases of shared fbs between CRTCs */
7012         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
7013
7014         ret = BEGIN_LP_RING(6);
7015         if (ret)
7016                 goto err_unpin;
7017
7018         /* Can't queue multiple flips, so wait for the previous
7019          * one to finish before executing the next.
7020          */
7021         if (intel_crtc->plane)
7022                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7023         else
7024                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7025         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7026         OUT_RING(MI_NOOP);
7027         OUT_RING(MI_DISPLAY_FLIP |
7028                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7029         OUT_RING(fb->pitch);
7030         OUT_RING(obj->gtt_offset + offset);
7031         OUT_RING(MI_NOOP);
7032         ADVANCE_LP_RING();
7033         return 0;
7034
7035 err_unpin:
7036         i915_gem_object_unpin(obj);
7037 err:
7038         return ret;
7039 }
7040
7041 static int intel_gen3_queue_flip(struct drm_device *dev,
7042                                  struct drm_crtc *crtc,
7043                                  struct drm_framebuffer *fb,
7044                                  struct drm_i915_gem_object *obj)
7045 {
7046         struct drm_i915_private *dev_priv = dev->dev_private;
7047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7048         unsigned long offset;
7049         u32 flip_mask;
7050         int ret;
7051
7052         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7053         if (ret)
7054                 goto err;
7055
7056         /* Offset into the new buffer for cases of shared fbs between CRTCs */
7057         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
7058
7059         ret = BEGIN_LP_RING(6);
7060         if (ret)
7061                 goto err_unpin;
7062
7063         if (intel_crtc->plane)
7064                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7065         else
7066                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7067         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7068         OUT_RING(MI_NOOP);
7069         OUT_RING(MI_DISPLAY_FLIP_I915 |
7070                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7071         OUT_RING(fb->pitch);
7072         OUT_RING(obj->gtt_offset + offset);
7073         OUT_RING(MI_NOOP);
7074
7075         ADVANCE_LP_RING();
7076         return 0;
7077
7078 err_unpin:
7079         i915_gem_object_unpin(obj);
7080 err:
7081         return ret;
7082 }
7083
7084 static int intel_gen4_queue_flip(struct drm_device *dev,
7085                                  struct drm_crtc *crtc,
7086                                  struct drm_framebuffer *fb,
7087                                  struct drm_i915_gem_object *obj)
7088 {
7089         struct drm_i915_private *dev_priv = dev->dev_private;
7090         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7091         uint32_t pf, pipesrc;
7092         int ret;
7093
7094         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7095         if (ret)
7096                 goto err;
7097
7098         ret = BEGIN_LP_RING(4);
7099         if (ret)
7100                 goto err_unpin;
7101
7102         /* i965+ uses the linear or tiled offsets from the
7103          * Display Registers (which do not change across a page-flip)
7104          * so we need only reprogram the base address.
7105          */
7106         OUT_RING(MI_DISPLAY_FLIP |
7107                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7108         OUT_RING(fb->pitch);
7109         OUT_RING(obj->gtt_offset | obj->tiling_mode);
7110
7111         /* XXX Enabling the panel-fitter across page-flip is so far
7112          * untested on non-native modes, so ignore it for now.
7113          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7114          */
7115         pf = 0;
7116         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7117         OUT_RING(pf | pipesrc);
7118         ADVANCE_LP_RING();
7119         return 0;
7120
7121 err_unpin:
7122         i915_gem_object_unpin(obj);
7123 err:
7124         return ret;
7125 }
7126
7127 static int intel_gen6_queue_flip(struct drm_device *dev,
7128                                  struct drm_crtc *crtc,
7129                                  struct drm_framebuffer *fb,
7130                                  struct drm_i915_gem_object *obj)
7131 {
7132         struct drm_i915_private *dev_priv = dev->dev_private;
7133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7134         uint32_t pf, pipesrc;
7135         int ret;
7136
7137         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7138         if (ret)
7139                 goto err;
7140
7141         ret = BEGIN_LP_RING(4);
7142         if (ret)
7143                 goto err_unpin;
7144
7145         OUT_RING(MI_DISPLAY_FLIP |
7146                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7147         OUT_RING(fb->pitch | obj->tiling_mode);
7148         OUT_RING(obj->gtt_offset);
7149
7150         pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7151         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7152         OUT_RING(pf | pipesrc);
7153         ADVANCE_LP_RING();
7154         return 0;
7155
7156 err_unpin:
7157         i915_gem_object_unpin(obj);
7158 err:
7159         return ret;
7160 }
7161
7162 /*
7163  * On gen7 we currently use the blit ring because (in early silicon at least)
7164  * the render ring doesn't give us interrpts for page flip completion, which
7165  * means clients will hang after the first flip is queued.  Fortunately the
7166  * blit ring generates interrupts properly, so use it instead.
7167  */
7168 static int intel_gen7_queue_flip(struct drm_device *dev,
7169                                  struct drm_crtc *crtc,
7170                                  struct drm_framebuffer *fb,
7171                                  struct drm_i915_gem_object *obj)
7172 {
7173         struct drm_i915_private *dev_priv = dev->dev_private;
7174         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7175         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7176         uint32_t plane_bit = 0;
7177         int ret;
7178
7179         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7180         if (ret)
7181                 goto err;
7182
7183         switch(intel_crtc->plane) {
7184         case PLANE_A:
7185                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7186                 break;
7187         case PLANE_B:
7188                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7189                 break;
7190         case PLANE_C:
7191                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7192                 break;
7193         default:
7194                 WARN_ONCE(1, "unknown plane in flip command\n");
7195                 ret = -ENODEV;
7196                 goto err;
7197         }
7198
7199         ret = intel_ring_begin(ring, 4);
7200         if (ret)
7201                 goto err_unpin;
7202
7203         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7204         intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
7205         intel_ring_emit(ring, (obj->gtt_offset));
7206         intel_ring_emit(ring, (MI_NOOP));
7207         intel_ring_advance(ring);
7208         return 0;
7209
7210 err_unpin:
7211         i915_gem_object_unpin(obj);
7212 err:
7213         return ret;
7214 }
7215
7216 static int intel_default_queue_flip(struct drm_device *dev,
7217                                     struct drm_crtc *crtc,
7218                                     struct drm_framebuffer *fb,
7219                                     struct drm_i915_gem_object *obj)
7220 {
7221         return -ENODEV;
7222 }
7223
7224 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7225                                 struct drm_framebuffer *fb,
7226                                 struct drm_pending_vblank_event *event)
7227 {
7228         struct drm_device *dev = crtc->dev;
7229         struct drm_i915_private *dev_priv = dev->dev_private;
7230         struct intel_framebuffer *intel_fb;
7231         struct drm_i915_gem_object *obj;
7232         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7233         struct intel_unpin_work *work;
7234         unsigned long flags;
7235         int ret;
7236
7237         work = kzalloc(sizeof *work, GFP_KERNEL);
7238         if (work == NULL)
7239                 return -ENOMEM;
7240
7241         work->event = event;
7242         work->dev = crtc->dev;
7243         intel_fb = to_intel_framebuffer(crtc->fb);
7244         work->old_fb_obj = intel_fb->obj;
7245         INIT_WORK(&work->work, intel_unpin_work_fn);
7246
7247         ret = drm_vblank_get(dev, intel_crtc->pipe);
7248         if (ret)
7249                 goto free_work;
7250
7251         /* We borrow the event spin lock for protecting unpin_work */
7252         spin_lock_irqsave(&dev->event_lock, flags);
7253         if (intel_crtc->unpin_work) {
7254                 spin_unlock_irqrestore(&dev->event_lock, flags);
7255                 kfree(work);
7256                 drm_vblank_put(dev, intel_crtc->pipe);
7257
7258                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7259                 return -EBUSY;
7260         }
7261         intel_crtc->unpin_work = work;
7262         spin_unlock_irqrestore(&dev->event_lock, flags);
7263
7264         intel_fb = to_intel_framebuffer(fb);
7265         obj = intel_fb->obj;
7266
7267         mutex_lock(&dev->struct_mutex);
7268
7269         /* Reference the objects for the scheduled work. */
7270         drm_gem_object_reference(&work->old_fb_obj->base);
7271         drm_gem_object_reference(&obj->base);
7272
7273         crtc->fb = fb;
7274
7275         work->pending_flip_obj = obj;
7276
7277         work->enable_stall_check = true;
7278
7279         /* Block clients from rendering to the new back buffer until
7280          * the flip occurs and the object is no longer visible.
7281          */
7282         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7283
7284         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7285         if (ret)
7286                 goto cleanup_pending;
7287
7288         intel_disable_fbc(dev);
7289         mutex_unlock(&dev->struct_mutex);
7290
7291         trace_i915_flip_request(intel_crtc->plane, obj);
7292
7293         return 0;
7294
7295 cleanup_pending:
7296         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7297         drm_gem_object_unreference(&work->old_fb_obj->base);
7298         drm_gem_object_unreference(&obj->base);
7299         mutex_unlock(&dev->struct_mutex);
7300
7301         spin_lock_irqsave(&dev->event_lock, flags);
7302         intel_crtc->unpin_work = NULL;
7303         spin_unlock_irqrestore(&dev->event_lock, flags);
7304
7305         drm_vblank_put(dev, intel_crtc->pipe);
7306 free_work:
7307         kfree(work);
7308
7309         return ret;
7310 }
7311
7312 static void intel_sanitize_modesetting(struct drm_device *dev,
7313                                        int pipe, int plane)
7314 {
7315         struct drm_i915_private *dev_priv = dev->dev_private;
7316         u32 reg, val;
7317         int i;
7318
7319         /* Clear any frame start delays used for debugging left by the BIOS */
7320         for_each_pipe(i) {
7321                 reg = PIPECONF(i);
7322                 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
7323         }
7324
7325         if (HAS_PCH_SPLIT(dev))
7326                 return;
7327
7328         /* Who knows what state these registers were left in by the BIOS or
7329          * grub?
7330          *
7331          * If we leave the registers in a conflicting state (e.g. with the
7332          * display plane reading from the other pipe than the one we intend
7333          * to use) then when we attempt to teardown the active mode, we will
7334          * not disable the pipes and planes in the correct order -- leaving
7335          * a plane reading from a disabled pipe and possibly leading to
7336          * undefined behaviour.
7337          */
7338
7339         reg = DSPCNTR(plane);
7340         val = I915_READ(reg);
7341
7342         if ((val & DISPLAY_PLANE_ENABLE) == 0)
7343                 return;
7344         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7345                 return;
7346
7347         /* This display plane is active and attached to the other CPU pipe. */
7348         pipe = !pipe;
7349
7350         /* Disable the plane and wait for it to stop reading from the pipe. */
7351         intel_disable_plane(dev_priv, plane, pipe);
7352         intel_disable_pipe(dev_priv, pipe);
7353 }
7354
7355 static void intel_crtc_reset(struct drm_crtc *crtc)
7356 {
7357         struct drm_device *dev = crtc->dev;
7358         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7359
7360         /* Reset flags back to the 'unknown' status so that they
7361          * will be correctly set on the initial modeset.
7362          */
7363         intel_crtc->dpms_mode = -1;
7364
7365         /* We need to fix up any BIOS configuration that conflicts with
7366          * our expectations.
7367          */
7368         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7369 }
7370
7371 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7372         .dpms = intel_crtc_dpms,
7373         .mode_fixup = intel_crtc_mode_fixup,
7374         .mode_set = intel_crtc_mode_set,
7375         .mode_set_base = intel_pipe_set_base,
7376         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7377         .load_lut = intel_crtc_load_lut,
7378         .disable = intel_crtc_disable,
7379 };
7380
7381 static const struct drm_crtc_funcs intel_crtc_funcs = {
7382         .reset = intel_crtc_reset,
7383         .cursor_set = intel_crtc_cursor_set,
7384         .cursor_move = intel_crtc_cursor_move,
7385         .gamma_set = intel_crtc_gamma_set,
7386         .set_config = drm_crtc_helper_set_config,
7387         .destroy = intel_crtc_destroy,
7388         .page_flip = intel_crtc_page_flip,
7389 };
7390
7391 static void intel_crtc_init(struct drm_device *dev, int pipe)
7392 {
7393         drm_i915_private_t *dev_priv = dev->dev_private;
7394         struct intel_crtc *intel_crtc;
7395         int i;
7396
7397         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7398         if (intel_crtc == NULL)
7399                 return;
7400
7401         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7402
7403         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7404         for (i = 0; i < 256; i++) {
7405                 intel_crtc->lut_r[i] = i;
7406                 intel_crtc->lut_g[i] = i;
7407                 intel_crtc->lut_b[i] = i;
7408         }
7409
7410         /* Swap pipes & planes for FBC on pre-965 */
7411         intel_crtc->pipe = pipe;
7412         intel_crtc->plane = pipe;
7413         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7414                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7415                 intel_crtc->plane = !pipe;
7416         }
7417
7418         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7419                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7420         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7421         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7422
7423         intel_crtc_reset(&intel_crtc->base);
7424         intel_crtc->active = true; /* force the pipe off on setup_init_config */
7425         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7426
7427         if (HAS_PCH_SPLIT(dev)) {
7428                 if (pipe == 2 && IS_IVYBRIDGE(dev))
7429                         intel_crtc->no_pll = true;
7430                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7431                 intel_helper_funcs.commit = ironlake_crtc_commit;
7432         } else {
7433                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7434                 intel_helper_funcs.commit = i9xx_crtc_commit;
7435         }
7436
7437         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7438
7439         intel_crtc->busy = false;
7440
7441         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7442                     (unsigned long)intel_crtc);
7443 }
7444
7445 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7446                                 struct drm_file *file)
7447 {
7448         drm_i915_private_t *dev_priv = dev->dev_private;
7449         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7450         struct drm_mode_object *drmmode_obj;
7451         struct intel_crtc *crtc;
7452
7453         if (!dev_priv) {
7454                 DRM_ERROR("called with no initialization\n");
7455                 return -EINVAL;
7456         }
7457
7458         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7459                         DRM_MODE_OBJECT_CRTC);
7460
7461         if (!drmmode_obj) {
7462                 DRM_ERROR("no such CRTC id\n");
7463                 return -EINVAL;
7464         }
7465
7466         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7467         pipe_from_crtc_id->pipe = crtc->pipe;
7468
7469         return 0;
7470 }
7471
7472 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7473 {
7474         struct intel_encoder *encoder;
7475         int index_mask = 0;
7476         int entry = 0;
7477
7478         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7479                 if (type_mask & encoder->clone_mask)
7480                         index_mask |= (1 << entry);
7481                 entry++;
7482         }
7483
7484         return index_mask;
7485 }
7486
7487 static bool has_edp_a(struct drm_device *dev)
7488 {
7489         struct drm_i915_private *dev_priv = dev->dev_private;
7490
7491         if (!IS_MOBILE(dev))
7492                 return false;
7493
7494         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7495                 return false;
7496
7497         if (IS_GEN5(dev) &&
7498             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7499                 return false;
7500
7501         return true;
7502 }
7503
7504 static void intel_setup_outputs(struct drm_device *dev)
7505 {
7506         struct drm_i915_private *dev_priv = dev->dev_private;
7507         struct intel_encoder *encoder;
7508         bool dpd_is_edp = false;
7509         bool has_lvds = false;
7510
7511         if (IS_MOBILE(dev) && !IS_I830(dev))
7512                 has_lvds = intel_lvds_init(dev);
7513         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7514                 /* disable the panel fitter on everything but LVDS */
7515                 I915_WRITE(PFIT_CONTROL, 0);
7516         }
7517
7518         if (HAS_PCH_SPLIT(dev)) {
7519                 dpd_is_edp = intel_dpd_is_edp(dev);
7520
7521                 if (has_edp_a(dev))
7522                         intel_dp_init(dev, DP_A);
7523
7524                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7525                         intel_dp_init(dev, PCH_DP_D);
7526         }
7527
7528         intel_crt_init(dev);
7529
7530         if (HAS_PCH_SPLIT(dev)) {
7531                 int found;
7532
7533                 if (I915_READ(HDMIB) & PORT_DETECTED) {
7534                         /* PCH SDVOB multiplex with HDMIB */
7535                         found = intel_sdvo_init(dev, PCH_SDVOB);
7536                         if (!found)
7537                                 intel_hdmi_init(dev, HDMIB);
7538                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7539                                 intel_dp_init(dev, PCH_DP_B);
7540                 }
7541
7542                 if (I915_READ(HDMIC) & PORT_DETECTED)
7543                         intel_hdmi_init(dev, HDMIC);
7544
7545                 if (I915_READ(HDMID) & PORT_DETECTED)
7546                         intel_hdmi_init(dev, HDMID);
7547
7548                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7549                         intel_dp_init(dev, PCH_DP_C);
7550
7551                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7552                         intel_dp_init(dev, PCH_DP_D);
7553
7554         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7555                 bool found = false;
7556
7557                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7558                         DRM_DEBUG_KMS("probing SDVOB\n");
7559                         found = intel_sdvo_init(dev, SDVOB);
7560                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7561                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7562                                 intel_hdmi_init(dev, SDVOB);
7563                         }
7564
7565                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7566                                 DRM_DEBUG_KMS("probing DP_B\n");
7567                                 intel_dp_init(dev, DP_B);
7568                         }
7569                 }
7570
7571                 /* Before G4X SDVOC doesn't have its own detect register */
7572
7573                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7574                         DRM_DEBUG_KMS("probing SDVOC\n");
7575                         found = intel_sdvo_init(dev, SDVOC);
7576                 }
7577
7578                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7579
7580                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7581                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7582                                 intel_hdmi_init(dev, SDVOC);
7583                         }
7584                         if (SUPPORTS_INTEGRATED_DP(dev)) {
7585                                 DRM_DEBUG_KMS("probing DP_C\n");
7586                                 intel_dp_init(dev, DP_C);
7587                         }
7588                 }
7589
7590                 if (SUPPORTS_INTEGRATED_DP(dev) &&
7591                     (I915_READ(DP_D) & DP_DETECTED)) {
7592                         DRM_DEBUG_KMS("probing DP_D\n");
7593                         intel_dp_init(dev, DP_D);
7594                 }
7595         } else if (IS_GEN2(dev))
7596                 intel_dvo_init(dev);
7597
7598         if (SUPPORTS_TV(dev))
7599                 intel_tv_init(dev);
7600
7601         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7602                 encoder->base.possible_crtcs = encoder->crtc_mask;
7603                 encoder->base.possible_clones =
7604                         intel_encoder_clones(dev, encoder->clone_mask);
7605         }
7606
7607         /* disable all the possible outputs/crtcs before entering KMS mode */
7608         drm_helper_disable_unused_functions(dev);
7609
7610         if (HAS_PCH_SPLIT(dev))
7611                 ironlake_init_pch_refclk(dev);
7612 }
7613
7614 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7615 {
7616         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7617
7618         drm_framebuffer_cleanup(fb);
7619         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7620
7621         kfree(intel_fb);
7622 }
7623
7624 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7625                                                 struct drm_file *file,
7626                                                 unsigned int *handle)
7627 {
7628         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7629         struct drm_i915_gem_object *obj = intel_fb->obj;
7630
7631         return drm_gem_handle_create(file, &obj->base, handle);
7632 }
7633
7634 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7635         .destroy = intel_user_framebuffer_destroy,
7636         .create_handle = intel_user_framebuffer_create_handle,
7637 };
7638
7639 int intel_framebuffer_init(struct drm_device *dev,
7640                            struct intel_framebuffer *intel_fb,
7641                            struct drm_mode_fb_cmd *mode_cmd,
7642                            struct drm_i915_gem_object *obj)
7643 {
7644         int ret;
7645
7646         if (obj->tiling_mode == I915_TILING_Y)
7647                 return -EINVAL;
7648
7649         if (mode_cmd->pitch & 63)
7650                 return -EINVAL;
7651
7652         switch (mode_cmd->bpp) {
7653         case 8:
7654         case 16:
7655                 /* Only pre-ILK can handle 5:5:5 */
7656                 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7657                         return -EINVAL;
7658                 break;
7659
7660         case 24:
7661         case 32:
7662                 break;
7663         default:
7664                 return -EINVAL;
7665         }
7666
7667         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7668         if (ret) {
7669                 DRM_ERROR("framebuffer init failed %d\n", ret);
7670                 return ret;
7671         }
7672
7673         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7674         intel_fb->obj = obj;
7675         return 0;
7676 }
7677
7678 static struct drm_framebuffer *
7679 intel_user_framebuffer_create(struct drm_device *dev,
7680                               struct drm_file *filp,
7681                               struct drm_mode_fb_cmd *mode_cmd)
7682 {
7683         struct drm_i915_gem_object *obj;
7684
7685         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
7686         if (&obj->base == NULL)
7687                 return ERR_PTR(-ENOENT);
7688
7689         return intel_framebuffer_create(dev, mode_cmd, obj);
7690 }
7691
7692 static const struct drm_mode_config_funcs intel_mode_funcs = {
7693         .fb_create = intel_user_framebuffer_create,
7694         .output_poll_changed = intel_fb_output_poll_changed,
7695 };
7696
7697 static struct drm_i915_gem_object *
7698 intel_alloc_context_page(struct drm_device *dev)
7699 {
7700         struct drm_i915_gem_object *ctx;
7701         int ret;
7702
7703         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7704
7705         ctx = i915_gem_alloc_object(dev, 4096);
7706         if (!ctx) {
7707                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7708                 return NULL;
7709         }
7710
7711         ret = i915_gem_object_pin(ctx, 4096, true);
7712         if (ret) {
7713                 DRM_ERROR("failed to pin power context: %d\n", ret);
7714                 goto err_unref;
7715         }
7716
7717         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7718         if (ret) {
7719                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7720                 goto err_unpin;
7721         }
7722
7723         return ctx;
7724
7725 err_unpin:
7726         i915_gem_object_unpin(ctx);
7727 err_unref:
7728         drm_gem_object_unreference(&ctx->base);
7729         mutex_unlock(&dev->struct_mutex);
7730         return NULL;
7731 }
7732
7733 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7734 {
7735         struct drm_i915_private *dev_priv = dev->dev_private;
7736         u16 rgvswctl;
7737
7738         rgvswctl = I915_READ16(MEMSWCTL);
7739         if (rgvswctl & MEMCTL_CMD_STS) {
7740                 DRM_DEBUG("gpu busy, RCS change rejected\n");
7741                 return false; /* still busy with another command */
7742         }
7743
7744         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7745                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7746         I915_WRITE16(MEMSWCTL, rgvswctl);
7747         POSTING_READ16(MEMSWCTL);
7748
7749         rgvswctl |= MEMCTL_CMD_STS;
7750         I915_WRITE16(MEMSWCTL, rgvswctl);
7751
7752         return true;
7753 }
7754
7755 void ironlake_enable_drps(struct drm_device *dev)
7756 {
7757         struct drm_i915_private *dev_priv = dev->dev_private;
7758         u32 rgvmodectl = I915_READ(MEMMODECTL);
7759         u8 fmax, fmin, fstart, vstart;
7760
7761         /* Enable temp reporting */
7762         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7763         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7764
7765         /* 100ms RC evaluation intervals */
7766         I915_WRITE(RCUPEI, 100000);
7767         I915_WRITE(RCDNEI, 100000);
7768
7769         /* Set max/min thresholds to 90ms and 80ms respectively */
7770         I915_WRITE(RCBMAXAVG, 90000);
7771         I915_WRITE(RCBMINAVG, 80000);
7772
7773         I915_WRITE(MEMIHYST, 1);
7774
7775         /* Set up min, max, and cur for interrupt handling */
7776         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7777         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7778         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7779                 MEMMODE_FSTART_SHIFT;
7780
7781         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7782                 PXVFREQ_PX_SHIFT;
7783
7784         dev_priv->fmax = fmax; /* IPS callback will increase this */
7785         dev_priv->fstart = fstart;
7786
7787         dev_priv->max_delay = fstart;
7788         dev_priv->min_delay = fmin;
7789         dev_priv->cur_delay = fstart;
7790
7791         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7792                          fmax, fmin, fstart);
7793
7794         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7795
7796         /*
7797          * Interrupts will be enabled in ironlake_irq_postinstall
7798          */
7799
7800         I915_WRITE(VIDSTART, vstart);
7801         POSTING_READ(VIDSTART);
7802
7803         rgvmodectl |= MEMMODE_SWMODE_EN;
7804         I915_WRITE(MEMMODECTL, rgvmodectl);
7805
7806         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7807                 DRM_ERROR("stuck trying to change perf mode\n");
7808         msleep(1);
7809
7810         ironlake_set_drps(dev, fstart);
7811
7812         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7813                 I915_READ(0x112e0);
7814         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7815         dev_priv->last_count2 = I915_READ(0x112f4);
7816         getrawmonotonic(&dev_priv->last_time2);
7817 }
7818
7819 void ironlake_disable_drps(struct drm_device *dev)
7820 {
7821         struct drm_i915_private *dev_priv = dev->dev_private;
7822         u16 rgvswctl = I915_READ16(MEMSWCTL);
7823
7824         /* Ack interrupts, disable EFC interrupt */
7825         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7826         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7827         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7828         I915_WRITE(DEIIR, DE_PCU_EVENT);
7829         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7830
7831         /* Go back to the starting frequency */
7832         ironlake_set_drps(dev, dev_priv->fstart);
7833         msleep(1);
7834         rgvswctl |= MEMCTL_CMD_STS;
7835         I915_WRITE(MEMSWCTL, rgvswctl);
7836         msleep(1);
7837
7838 }
7839
7840 void gen6_set_rps(struct drm_device *dev, u8 val)
7841 {
7842         struct drm_i915_private *dev_priv = dev->dev_private;
7843         u32 swreq;
7844
7845         swreq = (val & 0x3ff) << 25;
7846         I915_WRITE(GEN6_RPNSWREQ, swreq);
7847 }
7848
7849 void gen6_disable_rps(struct drm_device *dev)
7850 {
7851         struct drm_i915_private *dev_priv = dev->dev_private;
7852
7853         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7854         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7855         I915_WRITE(GEN6_PMIER, 0);
7856         /* Complete PM interrupt masking here doesn't race with the rps work
7857          * item again unmasking PM interrupts because that is using a different
7858          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
7859          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
7860
7861         spin_lock_irq(&dev_priv->rps_lock);
7862         dev_priv->pm_iir = 0;
7863         spin_unlock_irq(&dev_priv->rps_lock);
7864
7865         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7866 }
7867
7868 static unsigned long intel_pxfreq(u32 vidfreq)
7869 {
7870         unsigned long freq;
7871         int div = (vidfreq & 0x3f0000) >> 16;
7872         int post = (vidfreq & 0x3000) >> 12;
7873         int pre = (vidfreq & 0x7);
7874
7875         if (!pre)
7876                 return 0;
7877
7878         freq = ((div * 133333) / ((1<<post) * pre));
7879
7880         return freq;
7881 }
7882
7883 void intel_init_emon(struct drm_device *dev)
7884 {
7885         struct drm_i915_private *dev_priv = dev->dev_private;
7886         u32 lcfuse;
7887         u8 pxw[16];
7888         int i;
7889
7890         /* Disable to program */
7891         I915_WRITE(ECR, 0);
7892         POSTING_READ(ECR);
7893
7894         /* Program energy weights for various events */
7895         I915_WRITE(SDEW, 0x15040d00);
7896         I915_WRITE(CSIEW0, 0x007f0000);
7897         I915_WRITE(CSIEW1, 0x1e220004);
7898         I915_WRITE(CSIEW2, 0x04000004);
7899
7900         for (i = 0; i < 5; i++)
7901                 I915_WRITE(PEW + (i * 4), 0);
7902         for (i = 0; i < 3; i++)
7903                 I915_WRITE(DEW + (i * 4), 0);
7904
7905         /* Program P-state weights to account for frequency power adjustment */
7906         for (i = 0; i < 16; i++) {
7907                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7908                 unsigned long freq = intel_pxfreq(pxvidfreq);
7909                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7910                         PXVFREQ_PX_SHIFT;
7911                 unsigned long val;
7912
7913                 val = vid * vid;
7914                 val *= (freq / 1000);
7915                 val *= 255;
7916                 val /= (127*127*900);
7917                 if (val > 0xff)
7918                         DRM_ERROR("bad pxval: %ld\n", val);
7919                 pxw[i] = val;
7920         }
7921         /* Render standby states get 0 weight */
7922         pxw[14] = 0;
7923         pxw[15] = 0;
7924
7925         for (i = 0; i < 4; i++) {
7926                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7927                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7928                 I915_WRITE(PXW + (i * 4), val);
7929         }
7930
7931         /* Adjust magic regs to magic values (more experimental results) */
7932         I915_WRITE(OGW0, 0);
7933         I915_WRITE(OGW1, 0);
7934         I915_WRITE(EG0, 0x00007f00);
7935         I915_WRITE(EG1, 0x0000000e);
7936         I915_WRITE(EG2, 0x000e0000);
7937         I915_WRITE(EG3, 0x68000300);
7938         I915_WRITE(EG4, 0x42000000);
7939         I915_WRITE(EG5, 0x00140031);
7940         I915_WRITE(EG6, 0);
7941         I915_WRITE(EG7, 0);
7942
7943         for (i = 0; i < 8; i++)
7944                 I915_WRITE(PXWL + (i * 4), 0);
7945
7946         /* Enable PMON + select events */
7947         I915_WRITE(ECR, 0x80000019);
7948
7949         lcfuse = I915_READ(LCFUSE02);
7950
7951         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7952 }
7953
7954 static bool intel_enable_rc6(struct drm_device *dev)
7955 {
7956         /*
7957          * Respect the kernel parameter if it is set
7958          */
7959         if (i915_enable_rc6 >= 0)
7960                 return i915_enable_rc6;
7961
7962         /*
7963          * Disable RC6 on Ironlake
7964          */
7965         if (INTEL_INFO(dev)->gen == 5)
7966                 return 0;
7967
7968         /*
7969          * Disable rc6 on Sandybridge
7970          */
7971         if (INTEL_INFO(dev)->gen == 6) {
7972                 DRM_DEBUG_DRIVER("Sandybridge: RC6 disabled\n");
7973                 return 0;
7974         }
7975         DRM_DEBUG_DRIVER("RC6 enabled\n");
7976         return 1;
7977 }
7978
7979 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7980 {
7981         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7982         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7983         u32 pcu_mbox, rc6_mask = 0;
7984         int cur_freq, min_freq, max_freq;
7985         int i;
7986
7987         /* Here begins a magic sequence of register writes to enable
7988          * auto-downclocking.
7989          *
7990          * Perhaps there might be some value in exposing these to
7991          * userspace...
7992          */
7993         I915_WRITE(GEN6_RC_STATE, 0);
7994         mutex_lock(&dev_priv->dev->struct_mutex);
7995         gen6_gt_force_wake_get(dev_priv);
7996
7997         /* disable the counters and set deterministic thresholds */
7998         I915_WRITE(GEN6_RC_CONTROL, 0);
7999
8000         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8001         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8002         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8003         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8004         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8005
8006         for (i = 0; i < I915_NUM_RINGS; i++)
8007                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
8008
8009         I915_WRITE(GEN6_RC_SLEEP, 0);
8010         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8011         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8012         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8013         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8014
8015         if (intel_enable_rc6(dev_priv->dev))
8016                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE |
8017                         ((IS_GEN7(dev_priv->dev)) ? GEN6_RC_CTL_RC6p_ENABLE : 0);
8018
8019         I915_WRITE(GEN6_RC_CONTROL,
8020                    rc6_mask |
8021                    GEN6_RC_CTL_EI_MODE(1) |
8022                    GEN6_RC_CTL_HW_ENABLE);
8023
8024         I915_WRITE(GEN6_RPNSWREQ,
8025                    GEN6_FREQUENCY(10) |
8026                    GEN6_OFFSET(0) |
8027                    GEN6_AGGRESSIVE_TURBO);
8028         I915_WRITE(GEN6_RC_VIDEO_FREQ,
8029                    GEN6_FREQUENCY(12));
8030
8031         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8032         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8033                    18 << 24 |
8034                    6 << 16);
8035         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8036         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8037         I915_WRITE(GEN6_RP_UP_EI, 100000);
8038         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8039         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8040         I915_WRITE(GEN6_RP_CONTROL,
8041                    GEN6_RP_MEDIA_TURBO |
8042                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
8043                    GEN6_RP_MEDIA_IS_GFX |
8044                    GEN6_RP_ENABLE |
8045                    GEN6_RP_UP_BUSY_AVG |
8046                    GEN6_RP_DOWN_IDLE_CONT);
8047
8048         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8049                      500))
8050                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8051
8052         I915_WRITE(GEN6_PCODE_DATA, 0);
8053         I915_WRITE(GEN6_PCODE_MAILBOX,
8054                    GEN6_PCODE_READY |
8055                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8056         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8057                      500))
8058                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8059
8060         min_freq = (rp_state_cap & 0xff0000) >> 16;
8061         max_freq = rp_state_cap & 0xff;
8062         cur_freq = (gt_perf_status & 0xff00) >> 8;
8063
8064         /* Check for overclock support */
8065         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8066                      500))
8067                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8068         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8069         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8070         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8071                      500))
8072                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8073         if (pcu_mbox & (1<<31)) { /* OC supported */
8074                 max_freq = pcu_mbox & 0xff;
8075                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8076         }
8077
8078         /* In units of 100MHz */
8079         dev_priv->max_delay = max_freq;
8080         dev_priv->min_delay = min_freq;
8081         dev_priv->cur_delay = cur_freq;
8082
8083         /* requires MSI enabled */
8084         I915_WRITE(GEN6_PMIER,
8085                    GEN6_PM_MBOX_EVENT |
8086                    GEN6_PM_THERMAL_EVENT |
8087                    GEN6_PM_RP_DOWN_TIMEOUT |
8088                    GEN6_PM_RP_UP_THRESHOLD |
8089                    GEN6_PM_RP_DOWN_THRESHOLD |
8090                    GEN6_PM_RP_UP_EI_EXPIRED |
8091                    GEN6_PM_RP_DOWN_EI_EXPIRED);
8092         spin_lock_irq(&dev_priv->rps_lock);
8093         WARN_ON(dev_priv->pm_iir != 0);
8094         I915_WRITE(GEN6_PMIMR, 0);
8095         spin_unlock_irq(&dev_priv->rps_lock);
8096         /* enable all PM interrupts */
8097         I915_WRITE(GEN6_PMINTRMSK, 0);
8098
8099         gen6_gt_force_wake_put(dev_priv);
8100         mutex_unlock(&dev_priv->dev->struct_mutex);
8101 }
8102
8103 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8104 {
8105         int min_freq = 15;
8106         int gpu_freq, ia_freq, max_ia_freq;
8107         int scaling_factor = 180;
8108
8109         max_ia_freq = cpufreq_quick_get_max(0);
8110         /*
8111          * Default to measured freq if none found, PCU will ensure we don't go
8112          * over
8113          */
8114         if (!max_ia_freq)
8115                 max_ia_freq = tsc_khz;
8116
8117         /* Convert from kHz to MHz */
8118         max_ia_freq /= 1000;
8119
8120         mutex_lock(&dev_priv->dev->struct_mutex);
8121
8122         /*
8123          * For each potential GPU frequency, load a ring frequency we'd like
8124          * to use for memory access.  We do this by specifying the IA frequency
8125          * the PCU should use as a reference to determine the ring frequency.
8126          */
8127         for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8128              gpu_freq--) {
8129                 int diff = dev_priv->max_delay - gpu_freq;
8130
8131                 /*
8132                  * For GPU frequencies less than 750MHz, just use the lowest
8133                  * ring freq.
8134                  */
8135                 if (gpu_freq < min_freq)
8136                         ia_freq = 800;
8137                 else
8138                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8139                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8140
8141                 I915_WRITE(GEN6_PCODE_DATA,
8142                            (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8143                            gpu_freq);
8144                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8145                            GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8146                 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8147                               GEN6_PCODE_READY) == 0, 10)) {
8148                         DRM_ERROR("pcode write of freq table timed out\n");
8149                         continue;
8150                 }
8151         }
8152
8153         mutex_unlock(&dev_priv->dev->struct_mutex);
8154 }
8155
8156 static void ironlake_init_clock_gating(struct drm_device *dev)
8157 {
8158         struct drm_i915_private *dev_priv = dev->dev_private;
8159         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8160
8161         /* Required for FBC */
8162         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8163                 DPFCRUNIT_CLOCK_GATE_DISABLE |
8164                 DPFDUNIT_CLOCK_GATE_DISABLE;
8165         /* Required for CxSR */
8166         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8167
8168         I915_WRITE(PCH_3DCGDIS0,
8169                    MARIUNIT_CLOCK_GATE_DISABLE |
8170                    SVSMUNIT_CLOCK_GATE_DISABLE);
8171         I915_WRITE(PCH_3DCGDIS1,
8172                    VFMUNIT_CLOCK_GATE_DISABLE);
8173
8174         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8175
8176         /*
8177          * According to the spec the following bits should be set in
8178          * order to enable memory self-refresh
8179          * The bit 22/21 of 0x42004
8180          * The bit 5 of 0x42020
8181          * The bit 15 of 0x45000
8182          */
8183         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8184                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8185                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8186         I915_WRITE(ILK_DSPCLK_GATE,
8187                    (I915_READ(ILK_DSPCLK_GATE) |
8188                     ILK_DPARB_CLK_GATE));
8189         I915_WRITE(DISP_ARB_CTL,
8190                    (I915_READ(DISP_ARB_CTL) |
8191                     DISP_FBC_WM_DIS));
8192         I915_WRITE(WM3_LP_ILK, 0);
8193         I915_WRITE(WM2_LP_ILK, 0);
8194         I915_WRITE(WM1_LP_ILK, 0);
8195
8196         /*
8197          * Based on the document from hardware guys the following bits
8198          * should be set unconditionally in order to enable FBC.
8199          * The bit 22 of 0x42000
8200          * The bit 22 of 0x42004
8201          * The bit 7,8,9 of 0x42020.
8202          */
8203         if (IS_IRONLAKE_M(dev)) {
8204                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8205                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8206                            ILK_FBCQ_DIS);
8207                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8208                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8209                            ILK_DPARB_GATE);
8210                 I915_WRITE(ILK_DSPCLK_GATE,
8211                            I915_READ(ILK_DSPCLK_GATE) |
8212                            ILK_DPFC_DIS1 |
8213                            ILK_DPFC_DIS2 |
8214                            ILK_CLK_FBC);
8215         }
8216
8217         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8218                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8219                    ILK_ELPIN_409_SELECT);
8220         I915_WRITE(_3D_CHICKEN2,
8221                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8222                    _3D_CHICKEN2_WM_READ_PIPELINED);
8223 }
8224
8225 static void gen6_init_clock_gating(struct drm_device *dev)
8226 {
8227         struct drm_i915_private *dev_priv = dev->dev_private;
8228         int pipe;
8229         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8230
8231         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8232
8233         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8234                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8235                    ILK_ELPIN_409_SELECT);
8236
8237         I915_WRITE(WM3_LP_ILK, 0);
8238         I915_WRITE(WM2_LP_ILK, 0);
8239         I915_WRITE(WM1_LP_ILK, 0);
8240
8241         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8242          * gating disable must be set.  Failure to set it results in
8243          * flickering pixels due to Z write ordering failures after
8244          * some amount of runtime in the Mesa "fire" demo, and Unigine
8245          * Sanctuary and Tropics, and apparently anything else with
8246          * alpha test or pixel discard.
8247          *
8248          * According to the spec, bit 11 (RCCUNIT) must also be set,
8249          * but we didn't debug actual testcases to find it out.
8250          */
8251         I915_WRITE(GEN6_UCGCTL2,
8252                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8253                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8254
8255         /*
8256          * According to the spec the following bits should be
8257          * set in order to enable memory self-refresh and fbc:
8258          * The bit21 and bit22 of 0x42000
8259          * The bit21 and bit22 of 0x42004
8260          * The bit5 and bit7 of 0x42020
8261          * The bit14 of 0x70180
8262          * The bit14 of 0x71180
8263          */
8264         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8265                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8266                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8267         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8268                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8269                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8270         I915_WRITE(ILK_DSPCLK_GATE,
8271                    I915_READ(ILK_DSPCLK_GATE) |
8272                    ILK_DPARB_CLK_GATE  |
8273                    ILK_DPFD_CLK_GATE);
8274
8275         for_each_pipe(pipe) {
8276                 I915_WRITE(DSPCNTR(pipe),
8277                            I915_READ(DSPCNTR(pipe)) |
8278                            DISPPLANE_TRICKLE_FEED_DISABLE);
8279                 intel_flush_display_plane(dev_priv, pipe);
8280         }
8281 }
8282
8283 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8284 {
8285         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8286
8287         reg &= ~GEN7_FF_SCHED_MASK;
8288         reg |= GEN7_FF_TS_SCHED_HW;
8289         reg |= GEN7_FF_VS_SCHED_HW;
8290         reg |= GEN7_FF_DS_SCHED_HW;
8291
8292         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8293 }
8294
8295 static void ivybridge_init_clock_gating(struct drm_device *dev)
8296 {
8297         struct drm_i915_private *dev_priv = dev->dev_private;
8298         int pipe;
8299         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8300
8301         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8302
8303         I915_WRITE(WM3_LP_ILK, 0);
8304         I915_WRITE(WM2_LP_ILK, 0);
8305         I915_WRITE(WM1_LP_ILK, 0);
8306
8307         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8308          * This implements the WaDisableRCZUnitClockGating workaround.
8309          */
8310         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8311
8312         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8313
8314         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8315         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8316                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8317
8318         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8319         I915_WRITE(GEN7_L3CNTLREG1,
8320                         GEN7_WA_FOR_GEN7_L3_CONTROL);
8321         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8322                         GEN7_WA_L3_CHICKEN_MODE);
8323
8324         /* This is required by WaCatErrorRejectionIssue */
8325         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8326                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8327                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8328
8329         for_each_pipe(pipe) {
8330                 I915_WRITE(DSPCNTR(pipe),
8331                            I915_READ(DSPCNTR(pipe)) |
8332                            DISPPLANE_TRICKLE_FEED_DISABLE);
8333                 intel_flush_display_plane(dev_priv, pipe);
8334         }
8335
8336         gen7_setup_fixed_func_scheduler(dev_priv);
8337 }
8338
8339 static void g4x_init_clock_gating(struct drm_device *dev)
8340 {
8341         struct drm_i915_private *dev_priv = dev->dev_private;
8342         uint32_t dspclk_gate;
8343
8344         I915_WRITE(RENCLK_GATE_D1, 0);
8345         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8346                    GS_UNIT_CLOCK_GATE_DISABLE |
8347                    CL_UNIT_CLOCK_GATE_DISABLE);
8348         I915_WRITE(RAMCLK_GATE_D, 0);
8349         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8350                 OVRUNIT_CLOCK_GATE_DISABLE |
8351                 OVCUNIT_CLOCK_GATE_DISABLE;
8352         if (IS_GM45(dev))
8353                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8354         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8355 }
8356
8357 static void crestline_init_clock_gating(struct drm_device *dev)
8358 {
8359         struct drm_i915_private *dev_priv = dev->dev_private;
8360
8361         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8362         I915_WRITE(RENCLK_GATE_D2, 0);
8363         I915_WRITE(DSPCLK_GATE_D, 0);
8364         I915_WRITE(RAMCLK_GATE_D, 0);
8365         I915_WRITE16(DEUC, 0);
8366 }
8367
8368 static void broadwater_init_clock_gating(struct drm_device *dev)
8369 {
8370         struct drm_i915_private *dev_priv = dev->dev_private;
8371
8372         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8373                    I965_RCC_CLOCK_GATE_DISABLE |
8374                    I965_RCPB_CLOCK_GATE_DISABLE |
8375                    I965_ISC_CLOCK_GATE_DISABLE |
8376                    I965_FBC_CLOCK_GATE_DISABLE);
8377         I915_WRITE(RENCLK_GATE_D2, 0);
8378 }
8379
8380 static void gen3_init_clock_gating(struct drm_device *dev)
8381 {
8382         struct drm_i915_private *dev_priv = dev->dev_private;
8383         u32 dstate = I915_READ(D_STATE);
8384
8385         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8386                 DSTATE_DOT_CLOCK_GATING;
8387         I915_WRITE(D_STATE, dstate);
8388 }
8389
8390 static void i85x_init_clock_gating(struct drm_device *dev)
8391 {
8392         struct drm_i915_private *dev_priv = dev->dev_private;
8393
8394         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8395 }
8396
8397 static void i830_init_clock_gating(struct drm_device *dev)
8398 {
8399         struct drm_i915_private *dev_priv = dev->dev_private;
8400
8401         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8402 }
8403
8404 static void ibx_init_clock_gating(struct drm_device *dev)
8405 {
8406         struct drm_i915_private *dev_priv = dev->dev_private;
8407
8408         /*
8409          * On Ibex Peak and Cougar Point, we need to disable clock
8410          * gating for the panel power sequencer or it will fail to
8411          * start up when no ports are active.
8412          */
8413         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8414 }
8415
8416 static void cpt_init_clock_gating(struct drm_device *dev)
8417 {
8418         struct drm_i915_private *dev_priv = dev->dev_private;
8419         int pipe;
8420
8421         /*
8422          * On Ibex Peak and Cougar Point, we need to disable clock
8423          * gating for the panel power sequencer or it will fail to
8424          * start up when no ports are active.
8425          */
8426         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8427         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8428                    DPLS_EDP_PPS_FIX_DIS);
8429         /* Without this, mode sets may fail silently on FDI */
8430         for_each_pipe(pipe)
8431                 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8432 }
8433
8434 static void ironlake_teardown_rc6(struct drm_device *dev)
8435 {
8436         struct drm_i915_private *dev_priv = dev->dev_private;
8437
8438         if (dev_priv->renderctx) {
8439                 i915_gem_object_unpin(dev_priv->renderctx);
8440                 drm_gem_object_unreference(&dev_priv->renderctx->base);
8441                 dev_priv->renderctx = NULL;
8442         }
8443
8444         if (dev_priv->pwrctx) {
8445                 i915_gem_object_unpin(dev_priv->pwrctx);
8446                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8447                 dev_priv->pwrctx = NULL;
8448         }
8449 }
8450
8451 static void ironlake_disable_rc6(struct drm_device *dev)
8452 {
8453         struct drm_i915_private *dev_priv = dev->dev_private;
8454
8455         if (I915_READ(PWRCTXA)) {
8456                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8457                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8458                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8459                          50);
8460
8461                 I915_WRITE(PWRCTXA, 0);
8462                 POSTING_READ(PWRCTXA);
8463
8464                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8465                 POSTING_READ(RSTDBYCTL);
8466         }
8467
8468         ironlake_teardown_rc6(dev);
8469 }
8470
8471 static int ironlake_setup_rc6(struct drm_device *dev)
8472 {
8473         struct drm_i915_private *dev_priv = dev->dev_private;
8474
8475         if (dev_priv->renderctx == NULL)
8476                 dev_priv->renderctx = intel_alloc_context_page(dev);
8477         if (!dev_priv->renderctx)
8478                 return -ENOMEM;
8479
8480         if (dev_priv->pwrctx == NULL)
8481                 dev_priv->pwrctx = intel_alloc_context_page(dev);
8482         if (!dev_priv->pwrctx) {
8483                 ironlake_teardown_rc6(dev);
8484                 return -ENOMEM;
8485         }
8486
8487         return 0;
8488 }
8489
8490 void ironlake_enable_rc6(struct drm_device *dev)
8491 {
8492         struct drm_i915_private *dev_priv = dev->dev_private;
8493         int ret;
8494
8495         /* rc6 disabled by default due to repeated reports of hanging during
8496          * boot and resume.
8497          */
8498         if (!intel_enable_rc6(dev))
8499                 return;
8500
8501         mutex_lock(&dev->struct_mutex);
8502         ret = ironlake_setup_rc6(dev);
8503         if (ret) {
8504                 mutex_unlock(&dev->struct_mutex);
8505                 return;
8506         }
8507
8508         /*
8509          * GPU can automatically power down the render unit if given a page
8510          * to save state.
8511          */
8512         ret = BEGIN_LP_RING(6);
8513         if (ret) {
8514                 ironlake_teardown_rc6(dev);
8515                 mutex_unlock(&dev->struct_mutex);
8516                 return;
8517         }
8518
8519         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8520         OUT_RING(MI_SET_CONTEXT);
8521         OUT_RING(dev_priv->renderctx->gtt_offset |
8522                  MI_MM_SPACE_GTT |
8523                  MI_SAVE_EXT_STATE_EN |
8524                  MI_RESTORE_EXT_STATE_EN |
8525                  MI_RESTORE_INHIBIT);
8526         OUT_RING(MI_SUSPEND_FLUSH);
8527         OUT_RING(MI_NOOP);
8528         OUT_RING(MI_FLUSH);
8529         ADVANCE_LP_RING();
8530
8531         /*
8532          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8533          * does an implicit flush, combined with MI_FLUSH above, it should be
8534          * safe to assume that renderctx is valid
8535          */
8536         ret = intel_wait_ring_idle(LP_RING(dev_priv));
8537         if (ret) {
8538                 DRM_ERROR("failed to enable ironlake power power savings\n");
8539                 ironlake_teardown_rc6(dev);
8540                 mutex_unlock(&dev->struct_mutex);
8541                 return;
8542         }
8543
8544         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8545         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8546         mutex_unlock(&dev->struct_mutex);
8547 }
8548
8549 void intel_init_clock_gating(struct drm_device *dev)
8550 {
8551         struct drm_i915_private *dev_priv = dev->dev_private;
8552
8553         dev_priv->display.init_clock_gating(dev);
8554
8555         if (dev_priv->display.init_pch_clock_gating)
8556                 dev_priv->display.init_pch_clock_gating(dev);
8557 }
8558
8559 /* Set up chip specific display functions */
8560 static void intel_init_display(struct drm_device *dev)
8561 {
8562         struct drm_i915_private *dev_priv = dev->dev_private;
8563
8564         /* We always want a DPMS function */
8565         if (HAS_PCH_SPLIT(dev)) {
8566                 dev_priv->display.dpms = ironlake_crtc_dpms;
8567                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8568                 dev_priv->display.update_plane = ironlake_update_plane;
8569         } else {
8570                 dev_priv->display.dpms = i9xx_crtc_dpms;
8571                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8572                 dev_priv->display.update_plane = i9xx_update_plane;
8573         }
8574
8575         if (I915_HAS_FBC(dev)) {
8576                 if (HAS_PCH_SPLIT(dev)) {
8577                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8578                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
8579                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
8580                 } else if (IS_GM45(dev)) {
8581                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8582                         dev_priv->display.enable_fbc = g4x_enable_fbc;
8583                         dev_priv->display.disable_fbc = g4x_disable_fbc;
8584                 } else if (IS_CRESTLINE(dev)) {
8585                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8586                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
8587                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
8588                 }
8589                 /* 855GM needs testing */
8590         }
8591
8592         /* Returns the core display clock speed */
8593         if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8594                 dev_priv->display.get_display_clock_speed =
8595                         i945_get_display_clock_speed;
8596         else if (IS_I915G(dev))
8597                 dev_priv->display.get_display_clock_speed =
8598                         i915_get_display_clock_speed;
8599         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8600                 dev_priv->display.get_display_clock_speed =
8601                         i9xx_misc_get_display_clock_speed;
8602         else if (IS_I915GM(dev))
8603                 dev_priv->display.get_display_clock_speed =
8604                         i915gm_get_display_clock_speed;
8605         else if (IS_I865G(dev))
8606                 dev_priv->display.get_display_clock_speed =
8607                         i865_get_display_clock_speed;
8608         else if (IS_I85X(dev))
8609                 dev_priv->display.get_display_clock_speed =
8610                         i855_get_display_clock_speed;
8611         else /* 852, 830 */
8612                 dev_priv->display.get_display_clock_speed =
8613                         i830_get_display_clock_speed;
8614
8615         /* For FIFO watermark updates */
8616         if (HAS_PCH_SPLIT(dev)) {
8617                 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
8618                 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
8619
8620                 /* IVB configs may use multi-threaded forcewake */
8621                 if (IS_IVYBRIDGE(dev)) {
8622                         u32     ecobus;
8623
8624                         mutex_lock(&dev->struct_mutex);
8625                         __gen6_gt_force_wake_mt_get(dev_priv);
8626                         ecobus = I915_READ(ECOBUS);
8627                         __gen6_gt_force_wake_mt_put(dev_priv);
8628                         mutex_unlock(&dev->struct_mutex);
8629
8630                         if (ecobus & FORCEWAKE_MT_ENABLE) {
8631                                 DRM_DEBUG_KMS("Using MT version of forcewake\n");
8632                                 dev_priv->display.force_wake_get =
8633                                         __gen6_gt_force_wake_mt_get;
8634                                 dev_priv->display.force_wake_put =
8635                                         __gen6_gt_force_wake_mt_put;
8636                         }
8637                 }
8638
8639                 if (HAS_PCH_IBX(dev))
8640                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8641                 else if (HAS_PCH_CPT(dev))
8642                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8643
8644                 if (IS_GEN5(dev)) {
8645                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8646                                 dev_priv->display.update_wm = ironlake_update_wm;
8647                         else {
8648                                 DRM_DEBUG_KMS("Failed to get proper latency. "
8649                                               "Disable CxSR\n");
8650                                 dev_priv->display.update_wm = NULL;
8651                         }
8652                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8653                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8654                         dev_priv->display.write_eld = ironlake_write_eld;
8655                 } else if (IS_GEN6(dev)) {
8656                         if (SNB_READ_WM0_LATENCY()) {
8657                                 dev_priv->display.update_wm = sandybridge_update_wm;
8658                         } else {
8659                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8660                                               "Disable CxSR\n");
8661                                 dev_priv->display.update_wm = NULL;
8662                         }
8663                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8664                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8665                         dev_priv->display.write_eld = ironlake_write_eld;
8666                 } else if (IS_IVYBRIDGE(dev)) {
8667                         /* FIXME: detect B0+ stepping and use auto training */
8668                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8669                         if (SNB_READ_WM0_LATENCY()) {
8670                                 dev_priv->display.update_wm = sandybridge_update_wm;
8671                         } else {
8672                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8673                                               "Disable CxSR\n");
8674                                 dev_priv->display.update_wm = NULL;
8675                         }
8676                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8677                         dev_priv->display.write_eld = ironlake_write_eld;
8678                 } else
8679                         dev_priv->display.update_wm = NULL;
8680         } else if (IS_PINEVIEW(dev)) {
8681                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8682                                             dev_priv->is_ddr3,
8683                                             dev_priv->fsb_freq,
8684                                             dev_priv->mem_freq)) {
8685                         DRM_INFO("failed to find known CxSR latency "
8686                                  "(found ddr%s fsb freq %d, mem freq %d), "
8687                                  "disabling CxSR\n",
8688                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
8689                                  dev_priv->fsb_freq, dev_priv->mem_freq);
8690                         /* Disable CxSR and never update its watermark again */
8691                         pineview_disable_cxsr(dev);
8692                         dev_priv->display.update_wm = NULL;
8693                 } else
8694                         dev_priv->display.update_wm = pineview_update_wm;
8695                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8696         } else if (IS_G4X(dev)) {
8697                 dev_priv->display.write_eld = g4x_write_eld;
8698                 dev_priv->display.update_wm = g4x_update_wm;
8699                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8700         } else if (IS_GEN4(dev)) {
8701                 dev_priv->display.update_wm = i965_update_wm;
8702                 if (IS_CRESTLINE(dev))
8703                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8704                 else if (IS_BROADWATER(dev))
8705                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8706         } else if (IS_GEN3(dev)) {
8707                 dev_priv->display.update_wm = i9xx_update_wm;
8708                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8709                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8710         } else if (IS_I865G(dev)) {
8711                 dev_priv->display.update_wm = i830_update_wm;
8712                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8713                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8714         } else if (IS_I85X(dev)) {
8715                 dev_priv->display.update_wm = i9xx_update_wm;
8716                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8717                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8718         } else {
8719                 dev_priv->display.update_wm = i830_update_wm;
8720                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8721                 if (IS_845G(dev))
8722                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
8723                 else
8724                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
8725         }
8726
8727         /* Default just returns -ENODEV to indicate unsupported */
8728         dev_priv->display.queue_flip = intel_default_queue_flip;
8729
8730         switch (INTEL_INFO(dev)->gen) {
8731         case 2:
8732                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8733                 break;
8734
8735         case 3:
8736                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8737                 break;
8738
8739         case 4:
8740         case 5:
8741                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8742                 break;
8743
8744         case 6:
8745                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8746                 break;
8747         case 7:
8748                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8749                 break;
8750         }
8751 }
8752
8753 /*
8754  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8755  * resume, or other times.  This quirk makes sure that's the case for
8756  * affected systems.
8757  */
8758 static void quirk_pipea_force(struct drm_device *dev)
8759 {
8760         struct drm_i915_private *dev_priv = dev->dev_private;
8761
8762         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8763         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8764 }
8765
8766 /*
8767  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8768  */
8769 static void quirk_ssc_force_disable(struct drm_device *dev)
8770 {
8771         struct drm_i915_private *dev_priv = dev->dev_private;
8772         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8773 }
8774
8775 struct intel_quirk {
8776         int device;
8777         int subsystem_vendor;
8778         int subsystem_device;
8779         void (*hook)(struct drm_device *dev);
8780 };
8781
8782 struct intel_quirk intel_quirks[] = {
8783         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8784         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8785         /* HP Mini needs pipe A force quirk (LP: #322104) */
8786         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8787
8788         /* Thinkpad R31 needs pipe A force quirk */
8789         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8790         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8791         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8792
8793         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8794         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
8795         /* ThinkPad X40 needs pipe A force quirk */
8796
8797         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8798         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8799
8800         /* 855 & before need to leave pipe A & dpll A up */
8801         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8802         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8803
8804         /* Lenovo U160 cannot use SSC on LVDS */
8805         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8806
8807         /* Sony Vaio Y cannot use SSC on LVDS */
8808         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8809 };
8810
8811 static void intel_init_quirks(struct drm_device *dev)
8812 {
8813         struct pci_dev *d = dev->pdev;
8814         int i;
8815
8816         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8817                 struct intel_quirk *q = &intel_quirks[i];
8818
8819                 if (d->device == q->device &&
8820                     (d->subsystem_vendor == q->subsystem_vendor ||
8821                      q->subsystem_vendor == PCI_ANY_ID) &&
8822                     (d->subsystem_device == q->subsystem_device ||
8823                      q->subsystem_device == PCI_ANY_ID))
8824                         q->hook(dev);
8825         }
8826 }
8827
8828 /* Disable the VGA plane that we never use */
8829 static void i915_disable_vga(struct drm_device *dev)
8830 {
8831         struct drm_i915_private *dev_priv = dev->dev_private;
8832         u8 sr1;
8833         u32 vga_reg;
8834
8835         if (HAS_PCH_SPLIT(dev))
8836                 vga_reg = CPU_VGACNTRL;
8837         else
8838                 vga_reg = VGACNTRL;
8839
8840         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8841         outb(1, VGA_SR_INDEX);
8842         sr1 = inb(VGA_SR_DATA);
8843         outb(sr1 | 1<<5, VGA_SR_DATA);
8844         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8845         udelay(300);
8846
8847         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8848         POSTING_READ(vga_reg);
8849 }
8850
8851 void intel_modeset_init(struct drm_device *dev)
8852 {
8853         struct drm_i915_private *dev_priv = dev->dev_private;
8854         int i;
8855
8856         drm_mode_config_init(dev);
8857
8858         dev->mode_config.min_width = 0;
8859         dev->mode_config.min_height = 0;
8860
8861         dev->mode_config.funcs = (void *)&intel_mode_funcs;
8862
8863         intel_init_quirks(dev);
8864
8865         intel_init_display(dev);
8866
8867         if (IS_GEN2(dev)) {
8868                 dev->mode_config.max_width = 2048;
8869                 dev->mode_config.max_height = 2048;
8870         } else if (IS_GEN3(dev)) {
8871                 dev->mode_config.max_width = 4096;
8872                 dev->mode_config.max_height = 4096;
8873         } else {
8874                 dev->mode_config.max_width = 8192;
8875                 dev->mode_config.max_height = 8192;
8876         }
8877         dev->mode_config.fb_base = dev->agp->base;
8878
8879         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8880                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8881
8882         for (i = 0; i < dev_priv->num_pipe; i++) {
8883                 intel_crtc_init(dev, i);
8884         }
8885
8886         /* Just disable it once at startup */
8887         i915_disable_vga(dev);
8888         intel_setup_outputs(dev);
8889
8890         intel_init_clock_gating(dev);
8891
8892         if (IS_IRONLAKE_M(dev)) {
8893                 ironlake_enable_drps(dev);
8894                 intel_init_emon(dev);
8895         }
8896
8897         if (IS_GEN6(dev) || IS_GEN7(dev)) {
8898                 gen6_enable_rps(dev_priv);
8899                 gen6_update_ring_freq(dev_priv);
8900         }
8901
8902         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8903         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8904                     (unsigned long)dev);
8905 }
8906
8907 void intel_modeset_gem_init(struct drm_device *dev)
8908 {
8909         if (IS_IRONLAKE_M(dev))
8910                 ironlake_enable_rc6(dev);
8911
8912         intel_setup_overlay(dev);
8913 }
8914
8915 void intel_modeset_cleanup(struct drm_device *dev)
8916 {
8917         struct drm_i915_private *dev_priv = dev->dev_private;
8918         struct drm_crtc *crtc;
8919         struct intel_crtc *intel_crtc;
8920
8921         drm_kms_helper_poll_fini(dev);
8922         mutex_lock(&dev->struct_mutex);
8923
8924         intel_unregister_dsm_handler();
8925
8926
8927         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8928                 /* Skip inactive CRTCs */
8929                 if (!crtc->fb)
8930                         continue;
8931
8932                 intel_crtc = to_intel_crtc(crtc);
8933                 intel_increase_pllclock(crtc);
8934         }
8935
8936         intel_disable_fbc(dev);
8937
8938         if (IS_IRONLAKE_M(dev))
8939                 ironlake_disable_drps(dev);
8940         if (IS_GEN6(dev) || IS_GEN7(dev))
8941                 gen6_disable_rps(dev);
8942
8943         if (IS_IRONLAKE_M(dev))
8944                 ironlake_disable_rc6(dev);
8945
8946         mutex_unlock(&dev->struct_mutex);
8947
8948         /* Disable the irq before mode object teardown, for the irq might
8949          * enqueue unpin/hotplug work. */
8950         drm_irq_uninstall(dev);
8951         cancel_work_sync(&dev_priv->hotplug_work);
8952         cancel_work_sync(&dev_priv->rps_work);
8953
8954         /* flush any delayed tasks or pending work */
8955         flush_scheduled_work();
8956
8957         /* Shut off idle work before the crtcs get freed. */
8958         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8959                 intel_crtc = to_intel_crtc(crtc);
8960                 del_timer_sync(&intel_crtc->idle_timer);
8961         }
8962         del_timer_sync(&dev_priv->idle_timer);
8963         cancel_work_sync(&dev_priv->idle_work);
8964
8965         drm_mode_config_cleanup(dev);
8966 }
8967
8968 /*
8969  * Return which encoder is currently attached for connector.
8970  */
8971 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8972 {
8973         return &intel_attached_encoder(connector)->base;
8974 }
8975
8976 void intel_connector_attach_encoder(struct intel_connector *connector,
8977                                     struct intel_encoder *encoder)
8978 {
8979         connector->encoder = encoder;
8980         drm_mode_connector_attach_encoder(&connector->base,
8981                                           &encoder->base);
8982 }
8983
8984 /*
8985  * set vga decode state - true == enable VGA decode
8986  */
8987 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8988 {
8989         struct drm_i915_private *dev_priv = dev->dev_private;
8990         u16 gmch_ctrl;
8991
8992         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8993         if (state)
8994                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8995         else
8996                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8997         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8998         return 0;
8999 }
9000
9001 #ifdef CONFIG_DEBUG_FS
9002 #include <linux/seq_file.h>
9003
9004 struct intel_display_error_state {
9005         struct intel_cursor_error_state {
9006                 u32 control;
9007                 u32 position;
9008                 u32 base;
9009                 u32 size;
9010         } cursor[2];
9011
9012         struct intel_pipe_error_state {
9013                 u32 conf;
9014                 u32 source;
9015
9016                 u32 htotal;
9017                 u32 hblank;
9018                 u32 hsync;
9019                 u32 vtotal;
9020                 u32 vblank;
9021                 u32 vsync;
9022         } pipe[2];
9023
9024         struct intel_plane_error_state {
9025                 u32 control;
9026                 u32 stride;
9027                 u32 size;
9028                 u32 pos;
9029                 u32 addr;
9030                 u32 surface;
9031                 u32 tile_offset;
9032         } plane[2];
9033 };
9034
9035 struct intel_display_error_state *
9036 intel_display_capture_error_state(struct drm_device *dev)
9037 {
9038         drm_i915_private_t *dev_priv = dev->dev_private;
9039         struct intel_display_error_state *error;
9040         int i;
9041
9042         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9043         if (error == NULL)
9044                 return NULL;
9045
9046         for (i = 0; i < 2; i++) {
9047                 error->cursor[i].control = I915_READ(CURCNTR(i));
9048                 error->cursor[i].position = I915_READ(CURPOS(i));
9049                 error->cursor[i].base = I915_READ(CURBASE(i));
9050
9051                 error->plane[i].control = I915_READ(DSPCNTR(i));
9052                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9053                 error->plane[i].size = I915_READ(DSPSIZE(i));
9054                 error->plane[i].pos = I915_READ(DSPPOS(i));
9055                 error->plane[i].addr = I915_READ(DSPADDR(i));
9056                 if (INTEL_INFO(dev)->gen >= 4) {
9057                         error->plane[i].surface = I915_READ(DSPSURF(i));
9058                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9059                 }
9060
9061                 error->pipe[i].conf = I915_READ(PIPECONF(i));
9062                 error->pipe[i].source = I915_READ(PIPESRC(i));
9063                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9064                 error->pipe[i].hblank = I915_READ(HBLANK(i));
9065                 error->pipe[i].hsync = I915_READ(HSYNC(i));
9066                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9067                 error->pipe[i].vblank = I915_READ(VBLANK(i));
9068                 error->pipe[i].vsync = I915_READ(VSYNC(i));
9069         }
9070
9071         return error;
9072 }
9073
9074 void
9075 intel_display_print_error_state(struct seq_file *m,
9076                                 struct drm_device *dev,
9077                                 struct intel_display_error_state *error)
9078 {
9079         int i;
9080
9081         for (i = 0; i < 2; i++) {
9082                 seq_printf(m, "Pipe [%d]:\n", i);
9083                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9084                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9085                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9086                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9087                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9088                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9089                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9090                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9091
9092                 seq_printf(m, "Plane [%d]:\n", i);
9093                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9094                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9095                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9096                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9097                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9098                 if (INTEL_INFO(dev)->gen >= 4) {
9099                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9100                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9101                 }
9102
9103                 seq_printf(m, "Cursor [%d]:\n", i);
9104                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9105                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9106                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9107         }
9108 }
9109 #endif