Merge git://git.infradead.org/mtd-2.6
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include "drmP.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "drm_dp_helper.h"
38
39 #include "drm_crtc_helper.h"
40
41 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
42
43 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
44 static void intel_update_watermarks(struct drm_device *dev);
45 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc);
47
48 typedef struct {
49     /* given values */
50     int n;
51     int m1, m2;
52     int p1, p2;
53     /* derived values */
54     int dot;
55     int vco;
56     int m;
57     int p;
58 } intel_clock_t;
59
60 typedef struct {
61     int min, max;
62 } intel_range_t;
63
64 typedef struct {
65     int dot_limit;
66     int p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73     intel_p2_t      p2;
74     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75                       int, int, intel_clock_t *);
76 };
77
78 #define I8XX_DOT_MIN              25000
79 #define I8XX_DOT_MAX             350000
80 #define I8XX_VCO_MIN             930000
81 #define I8XX_VCO_MAX            1400000
82 #define I8XX_N_MIN                    3
83 #define I8XX_N_MAX                   16
84 #define I8XX_M_MIN                   96
85 #define I8XX_M_MAX                  140
86 #define I8XX_M1_MIN                  18
87 #define I8XX_M1_MAX                  26
88 #define I8XX_M2_MIN                   6
89 #define I8XX_M2_MAX                  16
90 #define I8XX_P_MIN                    4
91 #define I8XX_P_MAX                  128
92 #define I8XX_P1_MIN                   2
93 #define I8XX_P1_MAX                  33
94 #define I8XX_P1_LVDS_MIN              1
95 #define I8XX_P1_LVDS_MAX              6
96 #define I8XX_P2_SLOW                  4
97 #define I8XX_P2_FAST                  2
98 #define I8XX_P2_LVDS_SLOW             14
99 #define I8XX_P2_LVDS_FAST             7
100 #define I8XX_P2_SLOW_LIMIT       165000
101
102 #define I9XX_DOT_MIN              20000
103 #define I9XX_DOT_MAX             400000
104 #define I9XX_VCO_MIN            1400000
105 #define I9XX_VCO_MAX            2800000
106 #define PINEVIEW_VCO_MIN                1700000
107 #define PINEVIEW_VCO_MAX                3500000
108 #define I9XX_N_MIN                    1
109 #define I9XX_N_MAX                    6
110 /* Pineview's Ncounter is a ring counter */
111 #define PINEVIEW_N_MIN                3
112 #define PINEVIEW_N_MAX                6
113 #define I9XX_M_MIN                   70
114 #define I9XX_M_MAX                  120
115 #define PINEVIEW_M_MIN                2
116 #define PINEVIEW_M_MAX              256
117 #define I9XX_M1_MIN                  10
118 #define I9XX_M1_MAX                  22
119 #define I9XX_M2_MIN                   5
120 #define I9XX_M2_MAX                   9
121 /* Pineview M1 is reserved, and must be 0 */
122 #define PINEVIEW_M1_MIN               0
123 #define PINEVIEW_M1_MAX               0
124 #define PINEVIEW_M2_MIN               0
125 #define PINEVIEW_M2_MAX               254
126 #define I9XX_P_SDVO_DAC_MIN           5
127 #define I9XX_P_SDVO_DAC_MAX          80
128 #define I9XX_P_LVDS_MIN               7
129 #define I9XX_P_LVDS_MAX              98
130 #define PINEVIEW_P_LVDS_MIN                   7
131 #define PINEVIEW_P_LVDS_MAX                  112
132 #define I9XX_P1_MIN                   1
133 #define I9XX_P1_MAX                   8
134 #define I9XX_P2_SDVO_DAC_SLOW                10
135 #define I9XX_P2_SDVO_DAC_FAST                 5
136 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
137 #define I9XX_P2_LVDS_SLOW                    14
138 #define I9XX_P2_LVDS_FAST                     7
139 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
140
141 /*The parameter is for SDVO on G4x platform*/
142 #define G4X_DOT_SDVO_MIN           25000
143 #define G4X_DOT_SDVO_MAX           270000
144 #define G4X_VCO_MIN                1750000
145 #define G4X_VCO_MAX                3500000
146 #define G4X_N_SDVO_MIN             1
147 #define G4X_N_SDVO_MAX             4
148 #define G4X_M_SDVO_MIN             104
149 #define G4X_M_SDVO_MAX             138
150 #define G4X_M1_SDVO_MIN            17
151 #define G4X_M1_SDVO_MAX            23
152 #define G4X_M2_SDVO_MIN            5
153 #define G4X_M2_SDVO_MAX            11
154 #define G4X_P_SDVO_MIN             10
155 #define G4X_P_SDVO_MAX             30
156 #define G4X_P1_SDVO_MIN            1
157 #define G4X_P1_SDVO_MAX            3
158 #define G4X_P2_SDVO_SLOW           10
159 #define G4X_P2_SDVO_FAST           10
160 #define G4X_P2_SDVO_LIMIT          270000
161
162 /*The parameter is for HDMI_DAC on G4x platform*/
163 #define G4X_DOT_HDMI_DAC_MIN           22000
164 #define G4X_DOT_HDMI_DAC_MAX           400000
165 #define G4X_N_HDMI_DAC_MIN             1
166 #define G4X_N_HDMI_DAC_MAX             4
167 #define G4X_M_HDMI_DAC_MIN             104
168 #define G4X_M_HDMI_DAC_MAX             138
169 #define G4X_M1_HDMI_DAC_MIN            16
170 #define G4X_M1_HDMI_DAC_MAX            23
171 #define G4X_M2_HDMI_DAC_MIN            5
172 #define G4X_M2_HDMI_DAC_MAX            11
173 #define G4X_P_HDMI_DAC_MIN             5
174 #define G4X_P_HDMI_DAC_MAX             80
175 #define G4X_P1_HDMI_DAC_MIN            1
176 #define G4X_P1_HDMI_DAC_MAX            8
177 #define G4X_P2_HDMI_DAC_SLOW           10
178 #define G4X_P2_HDMI_DAC_FAST           5
179 #define G4X_P2_HDMI_DAC_LIMIT          165000
180
181 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
199
200 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
203 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
204 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
205 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
206 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
211 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
212 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
215 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
218
219 /*The parameter is for DISPLAY PORT on G4x platform*/
220 #define G4X_DOT_DISPLAY_PORT_MIN           161670
221 #define G4X_DOT_DISPLAY_PORT_MAX           227000
222 #define G4X_N_DISPLAY_PORT_MIN             1
223 #define G4X_N_DISPLAY_PORT_MAX             2
224 #define G4X_M_DISPLAY_PORT_MIN             97
225 #define G4X_M_DISPLAY_PORT_MAX             108
226 #define G4X_M1_DISPLAY_PORT_MIN            0x10
227 #define G4X_M1_DISPLAY_PORT_MAX            0x12
228 #define G4X_M2_DISPLAY_PORT_MIN            0x05
229 #define G4X_M2_DISPLAY_PORT_MAX            0x06
230 #define G4X_P_DISPLAY_PORT_MIN             10
231 #define G4X_P_DISPLAY_PORT_MAX             20
232 #define G4X_P1_DISPLAY_PORT_MIN            1
233 #define G4X_P1_DISPLAY_PORT_MAX            2
234 #define G4X_P2_DISPLAY_PORT_SLOW           10
235 #define G4X_P2_DISPLAY_PORT_FAST           10
236 #define G4X_P2_DISPLAY_PORT_LIMIT          0
237
238 /* Ironlake / Sandybridge */
239 /* as we calculate clock using (register_value + 2) for
240    N/M1/M2, so here the range value for them is (actual_value-2).
241  */
242 #define IRONLAKE_DOT_MIN         25000
243 #define IRONLAKE_DOT_MAX         350000
244 #define IRONLAKE_VCO_MIN         1760000
245 #define IRONLAKE_VCO_MAX         3510000
246 #define IRONLAKE_M1_MIN          12
247 #define IRONLAKE_M1_MAX          22
248 #define IRONLAKE_M2_MIN          5
249 #define IRONLAKE_M2_MAX          9
250 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
251
252 /* We have parameter ranges for different type of outputs. */
253
254 /* DAC & HDMI Refclk 120Mhz */
255 #define IRONLAKE_DAC_N_MIN      1
256 #define IRONLAKE_DAC_N_MAX      5
257 #define IRONLAKE_DAC_M_MIN      79
258 #define IRONLAKE_DAC_M_MAX      127
259 #define IRONLAKE_DAC_P_MIN      5
260 #define IRONLAKE_DAC_P_MAX      80
261 #define IRONLAKE_DAC_P1_MIN     1
262 #define IRONLAKE_DAC_P1_MAX     8
263 #define IRONLAKE_DAC_P2_SLOW    10
264 #define IRONLAKE_DAC_P2_FAST    5
265
266 /* LVDS single-channel 120Mhz refclk */
267 #define IRONLAKE_LVDS_S_N_MIN   1
268 #define IRONLAKE_LVDS_S_N_MAX   3
269 #define IRONLAKE_LVDS_S_M_MIN   79
270 #define IRONLAKE_LVDS_S_M_MAX   118
271 #define IRONLAKE_LVDS_S_P_MIN   28
272 #define IRONLAKE_LVDS_S_P_MAX   112
273 #define IRONLAKE_LVDS_S_P1_MIN  2
274 #define IRONLAKE_LVDS_S_P1_MAX  8
275 #define IRONLAKE_LVDS_S_P2_SLOW 14
276 #define IRONLAKE_LVDS_S_P2_FAST 14
277
278 /* LVDS dual-channel 120Mhz refclk */
279 #define IRONLAKE_LVDS_D_N_MIN   1
280 #define IRONLAKE_LVDS_D_N_MAX   3
281 #define IRONLAKE_LVDS_D_M_MIN   79
282 #define IRONLAKE_LVDS_D_M_MAX   127
283 #define IRONLAKE_LVDS_D_P_MIN   14
284 #define IRONLAKE_LVDS_D_P_MAX   56
285 #define IRONLAKE_LVDS_D_P1_MIN  2
286 #define IRONLAKE_LVDS_D_P1_MAX  8
287 #define IRONLAKE_LVDS_D_P2_SLOW 7
288 #define IRONLAKE_LVDS_D_P2_FAST 7
289
290 /* LVDS single-channel 100Mhz refclk */
291 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
292 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
293 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
294 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
295 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
296 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
297 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
298 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
299 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
300 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
301
302 /* LVDS dual-channel 100Mhz refclk */
303 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
304 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
305 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
306 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
307 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
308 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
309 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
310 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
311 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
312 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
313
314 /* DisplayPort */
315 #define IRONLAKE_DP_N_MIN               1
316 #define IRONLAKE_DP_N_MAX               2
317 #define IRONLAKE_DP_M_MIN               81
318 #define IRONLAKE_DP_M_MAX               90
319 #define IRONLAKE_DP_P_MIN               10
320 #define IRONLAKE_DP_P_MAX               20
321 #define IRONLAKE_DP_P2_FAST             10
322 #define IRONLAKE_DP_P2_SLOW             10
323 #define IRONLAKE_DP_P2_LIMIT            0
324 #define IRONLAKE_DP_P1_MIN              1
325 #define IRONLAKE_DP_P1_MAX              2
326
327 /* FDI */
328 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
329
330 static bool
331 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
332                     int target, int refclk, intel_clock_t *best_clock);
333 static bool
334 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
335                         int target, int refclk, intel_clock_t *best_clock);
336
337 static bool
338 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
339                       int target, int refclk, intel_clock_t *best_clock);
340 static bool
341 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
342                            int target, int refclk, intel_clock_t *best_clock);
343
344 static const intel_limit_t intel_limits_i8xx_dvo = {
345         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
346         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
347         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
348         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
349         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
350         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
351         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
352         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
353         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
354                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
355         .find_pll = intel_find_best_PLL,
356 };
357
358 static const intel_limit_t intel_limits_i8xx_lvds = {
359         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
360         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
361         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
362         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
363         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
364         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
365         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
366         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
367         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
368                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
369         .find_pll = intel_find_best_PLL,
370 };
371         
372 static const intel_limit_t intel_limits_i9xx_sdvo = {
373         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
374         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
375         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
376         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
377         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
378         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
379         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
380         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
381         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
382                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
383         .find_pll = intel_find_best_PLL,
384 };
385
386 static const intel_limit_t intel_limits_i9xx_lvds = {
387         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
388         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
389         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
390         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
391         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
392         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
393         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
394         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
395         /* The single-channel range is 25-112Mhz, and dual-channel
396          * is 80-224Mhz.  Prefer single channel as much as possible.
397          */
398         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
399                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
400         .find_pll = intel_find_best_PLL,
401 };
402
403     /* below parameter and function is for G4X Chipset Family*/
404 static const intel_limit_t intel_limits_g4x_sdvo = {
405         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
406         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
407         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
408         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
409         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
410         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
411         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
412         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
413         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
414                  .p2_slow = G4X_P2_SDVO_SLOW,
415                  .p2_fast = G4X_P2_SDVO_FAST
416         },
417         .find_pll = intel_g4x_find_best_PLL,
418 };
419
420 static const intel_limit_t intel_limits_g4x_hdmi = {
421         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
422         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
423         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
424         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
425         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
426         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
427         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
428         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
429         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
430                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
431                  .p2_fast = G4X_P2_HDMI_DAC_FAST
432         },
433         .find_pll = intel_g4x_find_best_PLL,
434 };
435
436 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
437         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
438                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
439         .vco = { .min = G4X_VCO_MIN,
440                  .max = G4X_VCO_MAX },
441         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
442                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
443         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
444                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
445         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
446                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
447         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
448                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
449         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
450                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
451         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
452                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
453         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
454                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
455                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
456         },
457         .find_pll = intel_g4x_find_best_PLL,
458 };
459
460 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
461         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
462                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
463         .vco = { .min = G4X_VCO_MIN,
464                  .max = G4X_VCO_MAX },
465         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
466                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
467         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
468                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
469         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
470                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
471         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
472                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
473         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
474                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
475         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
476                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
477         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
478                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
479                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
480         },
481         .find_pll = intel_g4x_find_best_PLL,
482 };
483
484 static const intel_limit_t intel_limits_g4x_display_port = {
485         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
486                  .max = G4X_DOT_DISPLAY_PORT_MAX },
487         .vco = { .min = G4X_VCO_MIN,
488                  .max = G4X_VCO_MAX},
489         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
490                  .max = G4X_N_DISPLAY_PORT_MAX },
491         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
492                  .max = G4X_M_DISPLAY_PORT_MAX },
493         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
494                  .max = G4X_M1_DISPLAY_PORT_MAX },
495         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
496                  .max = G4X_M2_DISPLAY_PORT_MAX },
497         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
498                  .max = G4X_P_DISPLAY_PORT_MAX },
499         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
500                  .max = G4X_P1_DISPLAY_PORT_MAX},
501         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
502                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
503                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
504         .find_pll = intel_find_pll_g4x_dp,
505 };
506
507 static const intel_limit_t intel_limits_pineview_sdvo = {
508         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
509         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
510         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
511         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
512         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
513         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
514         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
515         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
516         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
517                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
518         .find_pll = intel_find_best_PLL,
519 };
520
521 static const intel_limit_t intel_limits_pineview_lvds = {
522         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
523         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
524         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
525         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
526         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
527         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
528         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
529         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
530         /* Pineview only supports single-channel mode. */
531         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
532                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
533         .find_pll = intel_find_best_PLL,
534 };
535
536 static const intel_limit_t intel_limits_ironlake_dac = {
537         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
538         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
539         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
540         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
541         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
542         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
543         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
544         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
545         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
546                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
547                  .p2_fast = IRONLAKE_DAC_P2_FAST },
548         .find_pll = intel_g4x_find_best_PLL,
549 };
550
551 static const intel_limit_t intel_limits_ironlake_single_lvds = {
552         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
553         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
554         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
555         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
556         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
557         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
558         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
559         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
560         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
561                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
562                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
563         .find_pll = intel_g4x_find_best_PLL,
564 };
565
566 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
567         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
568         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
569         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
570         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
571         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
572         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
573         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
574         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
575         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
576                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
577                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
578         .find_pll = intel_g4x_find_best_PLL,
579 };
580
581 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
582         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
583         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
584         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
585         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
586         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
587         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
588         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
589         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
590         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
591                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
592                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
593         .find_pll = intel_g4x_find_best_PLL,
594 };
595
596 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
597         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
598         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
599         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
600         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
601         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
602         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
603         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
604         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
605         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
606                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
607                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
608         .find_pll = intel_g4x_find_best_PLL,
609 };
610
611 static const intel_limit_t intel_limits_ironlake_display_port = {
612         .dot = { .min = IRONLAKE_DOT_MIN,
613                  .max = IRONLAKE_DOT_MAX },
614         .vco = { .min = IRONLAKE_VCO_MIN,
615                  .max = IRONLAKE_VCO_MAX},
616         .n   = { .min = IRONLAKE_DP_N_MIN,
617                  .max = IRONLAKE_DP_N_MAX },
618         .m   = { .min = IRONLAKE_DP_M_MIN,
619                  .max = IRONLAKE_DP_M_MAX },
620         .m1  = { .min = IRONLAKE_M1_MIN,
621                  .max = IRONLAKE_M1_MAX },
622         .m2  = { .min = IRONLAKE_M2_MIN,
623                  .max = IRONLAKE_M2_MAX },
624         .p   = { .min = IRONLAKE_DP_P_MIN,
625                  .max = IRONLAKE_DP_P_MAX },
626         .p1  = { .min = IRONLAKE_DP_P1_MIN,
627                  .max = IRONLAKE_DP_P1_MAX},
628         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
629                  .p2_slow = IRONLAKE_DP_P2_SLOW,
630                  .p2_fast = IRONLAKE_DP_P2_FAST },
631         .find_pll = intel_find_pll_ironlake_dp,
632 };
633
634 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
635 {
636         struct drm_device *dev = crtc->dev;
637         struct drm_i915_private *dev_priv = dev->dev_private;
638         const intel_limit_t *limit;
639         int refclk = 120;
640
641         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
642                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
643                         refclk = 100;
644
645                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
646                     LVDS_CLKB_POWER_UP) {
647                         /* LVDS dual channel */
648                         if (refclk == 100)
649                                 limit = &intel_limits_ironlake_dual_lvds_100m;
650                         else
651                                 limit = &intel_limits_ironlake_dual_lvds;
652                 } else {
653                         if (refclk == 100)
654                                 limit = &intel_limits_ironlake_single_lvds_100m;
655                         else
656                                 limit = &intel_limits_ironlake_single_lvds;
657                 }
658         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
659                         HAS_eDP)
660                 limit = &intel_limits_ironlake_display_port;
661         else
662                 limit = &intel_limits_ironlake_dac;
663
664         return limit;
665 }
666
667 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
668 {
669         struct drm_device *dev = crtc->dev;
670         struct drm_i915_private *dev_priv = dev->dev_private;
671         const intel_limit_t *limit;
672
673         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
674                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
675                     LVDS_CLKB_POWER_UP)
676                         /* LVDS with dual channel */
677                         limit = &intel_limits_g4x_dual_channel_lvds;
678                 else
679                         /* LVDS with dual channel */
680                         limit = &intel_limits_g4x_single_channel_lvds;
681         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
682                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
683                 limit = &intel_limits_g4x_hdmi;
684         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
685                 limit = &intel_limits_g4x_sdvo;
686         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
687                 limit = &intel_limits_g4x_display_port;
688         } else /* The option is for other outputs */
689                 limit = &intel_limits_i9xx_sdvo;
690
691         return limit;
692 }
693
694 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
695 {
696         struct drm_device *dev = crtc->dev;
697         const intel_limit_t *limit;
698
699         if (HAS_PCH_SPLIT(dev))
700                 limit = intel_ironlake_limit(crtc);
701         else if (IS_G4X(dev)) {
702                 limit = intel_g4x_limit(crtc);
703         } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
704                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
705                         limit = &intel_limits_i9xx_lvds;
706                 else
707                         limit = &intel_limits_i9xx_sdvo;
708         } else if (IS_PINEVIEW(dev)) {
709                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
710                         limit = &intel_limits_pineview_lvds;
711                 else
712                         limit = &intel_limits_pineview_sdvo;
713         } else {
714                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
715                         limit = &intel_limits_i8xx_lvds;
716                 else
717                         limit = &intel_limits_i8xx_dvo;
718         }
719         return limit;
720 }
721
722 /* m1 is reserved as 0 in Pineview, n is a ring counter */
723 static void pineview_clock(int refclk, intel_clock_t *clock)
724 {
725         clock->m = clock->m2 + 2;
726         clock->p = clock->p1 * clock->p2;
727         clock->vco = refclk * clock->m / clock->n;
728         clock->dot = clock->vco / clock->p;
729 }
730
731 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
732 {
733         if (IS_PINEVIEW(dev)) {
734                 pineview_clock(refclk, clock);
735                 return;
736         }
737         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
738         clock->p = clock->p1 * clock->p2;
739         clock->vco = refclk * clock->m / (clock->n + 2);
740         clock->dot = clock->vco / clock->p;
741 }
742
743 /**
744  * Returns whether any output on the specified pipe is of the specified type
745  */
746 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
747 {
748     struct drm_device *dev = crtc->dev;
749     struct drm_mode_config *mode_config = &dev->mode_config;
750     struct drm_encoder *l_entry;
751
752     list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
753             if (l_entry && l_entry->crtc == crtc) {
754                     struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
755                     if (intel_encoder->type == type)
756                             return true;
757             }
758     }
759     return false;
760 }
761
762 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
763 /**
764  * Returns whether the given set of divisors are valid for a given refclk with
765  * the given connectors.
766  */
767
768 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
769 {
770         const intel_limit_t *limit = intel_limit (crtc);
771         struct drm_device *dev = crtc->dev;
772
773         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
774                 INTELPllInvalid ("p1 out of range\n");
775         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
776                 INTELPllInvalid ("p out of range\n");
777         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
778                 INTELPllInvalid ("m2 out of range\n");
779         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
780                 INTELPllInvalid ("m1 out of range\n");
781         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
782                 INTELPllInvalid ("m1 <= m2\n");
783         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
784                 INTELPllInvalid ("m out of range\n");
785         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
786                 INTELPllInvalid ("n out of range\n");
787         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
788                 INTELPllInvalid ("vco out of range\n");
789         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
790          * connector, etc., rather than just a single range.
791          */
792         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
793                 INTELPllInvalid ("dot out of range\n");
794
795         return true;
796 }
797
798 static bool
799 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
800                     int target, int refclk, intel_clock_t *best_clock)
801
802 {
803         struct drm_device *dev = crtc->dev;
804         struct drm_i915_private *dev_priv = dev->dev_private;
805         intel_clock_t clock;
806         int err = target;
807
808         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
809             (I915_READ(LVDS)) != 0) {
810                 /*
811                  * For LVDS, if the panel is on, just rely on its current
812                  * settings for dual-channel.  We haven't figured out how to
813                  * reliably set up different single/dual channel state, if we
814                  * even can.
815                  */
816                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
817                     LVDS_CLKB_POWER_UP)
818                         clock.p2 = limit->p2.p2_fast;
819                 else
820                         clock.p2 = limit->p2.p2_slow;
821         } else {
822                 if (target < limit->p2.dot_limit)
823                         clock.p2 = limit->p2.p2_slow;
824                 else
825                         clock.p2 = limit->p2.p2_fast;
826         }
827
828         memset (best_clock, 0, sizeof (*best_clock));
829
830         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
831              clock.m1++) {
832                 for (clock.m2 = limit->m2.min;
833                      clock.m2 <= limit->m2.max; clock.m2++) {
834                         /* m1 is always 0 in Pineview */
835                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
836                                 break;
837                         for (clock.n = limit->n.min;
838                              clock.n <= limit->n.max; clock.n++) {
839                                 for (clock.p1 = limit->p1.min;
840                                         clock.p1 <= limit->p1.max; clock.p1++) {
841                                         int this_err;
842
843                                         intel_clock(dev, refclk, &clock);
844
845                                         if (!intel_PLL_is_valid(crtc, &clock))
846                                                 continue;
847
848                                         this_err = abs(clock.dot - target);
849                                         if (this_err < err) {
850                                                 *best_clock = clock;
851                                                 err = this_err;
852                                         }
853                                 }
854                         }
855                 }
856         }
857
858         return (err != target);
859 }
860
861 static bool
862 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
863                         int target, int refclk, intel_clock_t *best_clock)
864 {
865         struct drm_device *dev = crtc->dev;
866         struct drm_i915_private *dev_priv = dev->dev_private;
867         intel_clock_t clock;
868         int max_n;
869         bool found;
870         /* approximately equals target * 0.00585 */
871         int err_most = (target >> 8) + (target >> 9);
872         found = false;
873
874         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
875                 int lvds_reg;
876
877                 if (HAS_PCH_SPLIT(dev))
878                         lvds_reg = PCH_LVDS;
879                 else
880                         lvds_reg = LVDS;
881                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
882                     LVDS_CLKB_POWER_UP)
883                         clock.p2 = limit->p2.p2_fast;
884                 else
885                         clock.p2 = limit->p2.p2_slow;
886         } else {
887                 if (target < limit->p2.dot_limit)
888                         clock.p2 = limit->p2.p2_slow;
889                 else
890                         clock.p2 = limit->p2.p2_fast;
891         }
892
893         memset(best_clock, 0, sizeof(*best_clock));
894         max_n = limit->n.max;
895         /* based on hardware requirement, prefer smaller n to precision */
896         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
897                 /* based on hardware requirement, prefere larger m1,m2 */
898                 for (clock.m1 = limit->m1.max;
899                      clock.m1 >= limit->m1.min; clock.m1--) {
900                         for (clock.m2 = limit->m2.max;
901                              clock.m2 >= limit->m2.min; clock.m2--) {
902                                 for (clock.p1 = limit->p1.max;
903                                      clock.p1 >= limit->p1.min; clock.p1--) {
904                                         int this_err;
905
906                                         intel_clock(dev, refclk, &clock);
907                                         if (!intel_PLL_is_valid(crtc, &clock))
908                                                 continue;
909                                         this_err = abs(clock.dot - target) ;
910                                         if (this_err < err_most) {
911                                                 *best_clock = clock;
912                                                 err_most = this_err;
913                                                 max_n = clock.n;
914                                                 found = true;
915                                         }
916                                 }
917                         }
918                 }
919         }
920         return found;
921 }
922
923 static bool
924 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
925                            int target, int refclk, intel_clock_t *best_clock)
926 {
927         struct drm_device *dev = crtc->dev;
928         intel_clock_t clock;
929
930         /* return directly when it is eDP */
931         if (HAS_eDP)
932                 return true;
933
934         if (target < 200000) {
935                 clock.n = 1;
936                 clock.p1 = 2;
937                 clock.p2 = 10;
938                 clock.m1 = 12;
939                 clock.m2 = 9;
940         } else {
941                 clock.n = 2;
942                 clock.p1 = 1;
943                 clock.p2 = 10;
944                 clock.m1 = 14;
945                 clock.m2 = 8;
946         }
947         intel_clock(dev, refclk, &clock);
948         memcpy(best_clock, &clock, sizeof(intel_clock_t));
949         return true;
950 }
951
952 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
953 static bool
954 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
955                       int target, int refclk, intel_clock_t *best_clock)
956 {
957     intel_clock_t clock;
958     if (target < 200000) {
959         clock.p1 = 2;
960         clock.p2 = 10;
961         clock.n = 2;
962         clock.m1 = 23;
963         clock.m2 = 8;
964     } else {
965         clock.p1 = 1;
966         clock.p2 = 10;
967         clock.n = 1;
968         clock.m1 = 14;
969         clock.m2 = 2;
970     }
971     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
972     clock.p = (clock.p1 * clock.p2);
973     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
974     clock.vco = 0;
975     memcpy(best_clock, &clock, sizeof(intel_clock_t));
976     return true;
977 }
978
979 void
980 intel_wait_for_vblank(struct drm_device *dev)
981 {
982         /* Wait for 20ms, i.e. one cycle at 50hz. */
983         if (in_dbg_master())
984                 mdelay(20); /* The kernel debugger cannot call msleep() */
985         else
986                 msleep(20);
987 }
988
989 /* Parameters have changed, update FBC info */
990 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
991 {
992         struct drm_device *dev = crtc->dev;
993         struct drm_i915_private *dev_priv = dev->dev_private;
994         struct drm_framebuffer *fb = crtc->fb;
995         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
996         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
997         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
998         int plane, i;
999         u32 fbc_ctl, fbc_ctl2;
1000
1001         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1002
1003         if (fb->pitch < dev_priv->cfb_pitch)
1004                 dev_priv->cfb_pitch = fb->pitch;
1005
1006         /* FBC_CTL wants 64B units */
1007         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1008         dev_priv->cfb_fence = obj_priv->fence_reg;
1009         dev_priv->cfb_plane = intel_crtc->plane;
1010         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1011
1012         /* Clear old tags */
1013         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1014                 I915_WRITE(FBC_TAG + (i * 4), 0);
1015
1016         /* Set it up... */
1017         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1018         if (obj_priv->tiling_mode != I915_TILING_NONE)
1019                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1020         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1021         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1022
1023         /* enable it... */
1024         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1025         if (IS_I945GM(dev))
1026                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1027         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1028         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1029         if (obj_priv->tiling_mode != I915_TILING_NONE)
1030                 fbc_ctl |= dev_priv->cfb_fence;
1031         I915_WRITE(FBC_CONTROL, fbc_ctl);
1032
1033         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1034                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1035 }
1036
1037 void i8xx_disable_fbc(struct drm_device *dev)
1038 {
1039         struct drm_i915_private *dev_priv = dev->dev_private;
1040         unsigned long timeout = jiffies + msecs_to_jiffies(1);
1041         u32 fbc_ctl;
1042
1043         if (!I915_HAS_FBC(dev))
1044                 return;
1045
1046         if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
1047                 return; /* Already off, just return */
1048
1049         /* Disable compression */
1050         fbc_ctl = I915_READ(FBC_CONTROL);
1051         fbc_ctl &= ~FBC_CTL_EN;
1052         I915_WRITE(FBC_CONTROL, fbc_ctl);
1053
1054         /* Wait for compressing bit to clear */
1055         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
1056                 if (time_after(jiffies, timeout)) {
1057                         DRM_DEBUG_DRIVER("FBC idle timed out\n");
1058                         break;
1059                 }
1060                 ; /* do nothing */
1061         }
1062
1063         intel_wait_for_vblank(dev);
1064
1065         DRM_DEBUG_KMS("disabled FBC\n");
1066 }
1067
1068 static bool i8xx_fbc_enabled(struct drm_device *dev)
1069 {
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071
1072         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1073 }
1074
1075 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1076 {
1077         struct drm_device *dev = crtc->dev;
1078         struct drm_i915_private *dev_priv = dev->dev_private;
1079         struct drm_framebuffer *fb = crtc->fb;
1080         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1081         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1082         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1083         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1084                      DPFC_CTL_PLANEB);
1085         unsigned long stall_watermark = 200;
1086         u32 dpfc_ctl;
1087
1088         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1089         dev_priv->cfb_fence = obj_priv->fence_reg;
1090         dev_priv->cfb_plane = intel_crtc->plane;
1091
1092         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1093         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1094                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1095                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1096         } else {
1097                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1098         }
1099
1100         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1101         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1102                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1103                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1104         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1105
1106         /* enable it... */
1107         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1108
1109         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1110 }
1111
1112 void g4x_disable_fbc(struct drm_device *dev)
1113 {
1114         struct drm_i915_private *dev_priv = dev->dev_private;
1115         u32 dpfc_ctl;
1116
1117         /* Disable compression */
1118         dpfc_ctl = I915_READ(DPFC_CONTROL);
1119         dpfc_ctl &= ~DPFC_CTL_EN;
1120         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1121         intel_wait_for_vblank(dev);
1122
1123         DRM_DEBUG_KMS("disabled FBC\n");
1124 }
1125
1126 static bool g4x_fbc_enabled(struct drm_device *dev)
1127 {
1128         struct drm_i915_private *dev_priv = dev->dev_private;
1129
1130         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1131 }
1132
1133 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1134 {
1135         struct drm_device *dev = crtc->dev;
1136         struct drm_i915_private *dev_priv = dev->dev_private;
1137         struct drm_framebuffer *fb = crtc->fb;
1138         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1139         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1140         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1141         int plane = (intel_crtc->plane == 0) ? DPFC_CTL_PLANEA :
1142                                                DPFC_CTL_PLANEB;
1143         unsigned long stall_watermark = 200;
1144         u32 dpfc_ctl;
1145
1146         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1147         dev_priv->cfb_fence = obj_priv->fence_reg;
1148         dev_priv->cfb_plane = intel_crtc->plane;
1149
1150         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1151         dpfc_ctl &= DPFC_RESERVED;
1152         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1153         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1154                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1155                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1156         } else {
1157                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1158         }
1159
1160         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1161         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1162                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1163                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1164         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1165         I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1166         /* enable it... */
1167         I915_WRITE(ILK_DPFC_CONTROL, I915_READ(ILK_DPFC_CONTROL) |
1168                    DPFC_CTL_EN);
1169
1170         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1171 }
1172
1173 void ironlake_disable_fbc(struct drm_device *dev)
1174 {
1175         struct drm_i915_private *dev_priv = dev->dev_private;
1176         u32 dpfc_ctl;
1177
1178         /* Disable compression */
1179         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1180         dpfc_ctl &= ~DPFC_CTL_EN;
1181         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1182         intel_wait_for_vblank(dev);
1183
1184         DRM_DEBUG_KMS("disabled FBC\n");
1185 }
1186
1187 static bool ironlake_fbc_enabled(struct drm_device *dev)
1188 {
1189         struct drm_i915_private *dev_priv = dev->dev_private;
1190
1191         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1192 }
1193
1194 bool intel_fbc_enabled(struct drm_device *dev)
1195 {
1196         struct drm_i915_private *dev_priv = dev->dev_private;
1197
1198         if (!dev_priv->display.fbc_enabled)
1199                 return false;
1200
1201         return dev_priv->display.fbc_enabled(dev);
1202 }
1203
1204 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1205 {
1206         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1207
1208         if (!dev_priv->display.enable_fbc)
1209                 return;
1210
1211         dev_priv->display.enable_fbc(crtc, interval);
1212 }
1213
1214 void intel_disable_fbc(struct drm_device *dev)
1215 {
1216         struct drm_i915_private *dev_priv = dev->dev_private;
1217
1218         if (!dev_priv->display.disable_fbc)
1219                 return;
1220
1221         dev_priv->display.disable_fbc(dev);
1222 }
1223
1224 /**
1225  * intel_update_fbc - enable/disable FBC as needed
1226  * @crtc: CRTC to point the compressor at
1227  * @mode: mode in use
1228  *
1229  * Set up the framebuffer compression hardware at mode set time.  We
1230  * enable it if possible:
1231  *   - plane A only (on pre-965)
1232  *   - no pixel mulitply/line duplication
1233  *   - no alpha buffer discard
1234  *   - no dual wide
1235  *   - framebuffer <= 2048 in width, 1536 in height
1236  *
1237  * We can't assume that any compression will take place (worst case),
1238  * so the compressed buffer has to be the same size as the uncompressed
1239  * one.  It also must reside (along with the line length buffer) in
1240  * stolen memory.
1241  *
1242  * We need to enable/disable FBC on a global basis.
1243  */
1244 static void intel_update_fbc(struct drm_crtc *crtc,
1245                              struct drm_display_mode *mode)
1246 {
1247         struct drm_device *dev = crtc->dev;
1248         struct drm_i915_private *dev_priv = dev->dev_private;
1249         struct drm_framebuffer *fb = crtc->fb;
1250         struct intel_framebuffer *intel_fb;
1251         struct drm_i915_gem_object *obj_priv;
1252         struct drm_crtc *tmp_crtc;
1253         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1254         int plane = intel_crtc->plane;
1255         int crtcs_enabled = 0;
1256
1257         DRM_DEBUG_KMS("\n");
1258
1259         if (!i915_powersave)
1260                 return;
1261
1262         if (!I915_HAS_FBC(dev))
1263                 return;
1264
1265         if (!crtc->fb)
1266                 return;
1267
1268         intel_fb = to_intel_framebuffer(fb);
1269         obj_priv = to_intel_bo(intel_fb->obj);
1270
1271         /*
1272          * If FBC is already on, we just have to verify that we can
1273          * keep it that way...
1274          * Need to disable if:
1275          *   - more than one pipe is active
1276          *   - changing FBC params (stride, fence, mode)
1277          *   - new fb is too large to fit in compressed buffer
1278          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1279          */
1280         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1281                 if (tmp_crtc->enabled)
1282                         crtcs_enabled++;
1283         }
1284         DRM_DEBUG_KMS("%d pipes active\n", crtcs_enabled);
1285         if (crtcs_enabled > 1) {
1286                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1287                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1288                 goto out_disable;
1289         }
1290         if (intel_fb->obj->size > dev_priv->cfb_size) {
1291                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1292                                 "compression\n");
1293                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1294                 goto out_disable;
1295         }
1296         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1297             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1298                 DRM_DEBUG_KMS("mode incompatible with compression, "
1299                                 "disabling\n");
1300                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1301                 goto out_disable;
1302         }
1303         if ((mode->hdisplay > 2048) ||
1304             (mode->vdisplay > 1536)) {
1305                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1306                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1307                 goto out_disable;
1308         }
1309         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1310                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1311                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1312                 goto out_disable;
1313         }
1314         if (obj_priv->tiling_mode != I915_TILING_X) {
1315                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1316                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1317                 goto out_disable;
1318         }
1319
1320         /* If the kernel debugger is active, always disable compression */
1321         if (in_dbg_master())
1322                 goto out_disable;
1323
1324         if (intel_fbc_enabled(dev)) {
1325                 /* We can re-enable it in this case, but need to update pitch */
1326                 if ((fb->pitch > dev_priv->cfb_pitch) ||
1327                     (obj_priv->fence_reg != dev_priv->cfb_fence) ||
1328                     (plane != dev_priv->cfb_plane))
1329                         intel_disable_fbc(dev);
1330         }
1331
1332         /* Now try to turn it back on if possible */
1333         if (!intel_fbc_enabled(dev))
1334                 intel_enable_fbc(crtc, 500);
1335
1336         return;
1337
1338 out_disable:
1339         /* Multiple disables should be harmless */
1340         if (intel_fbc_enabled(dev)) {
1341                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1342                 intel_disable_fbc(dev);
1343         }
1344 }
1345
1346 int
1347 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1348 {
1349         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1350         u32 alignment;
1351         int ret;
1352
1353         switch (obj_priv->tiling_mode) {
1354         case I915_TILING_NONE:
1355                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1356                         alignment = 128 * 1024;
1357                 else if (IS_I965G(dev))
1358                         alignment = 4 * 1024;
1359                 else
1360                         alignment = 64 * 1024;
1361                 break;
1362         case I915_TILING_X:
1363                 /* pin() will align the object as required by fence */
1364                 alignment = 0;
1365                 break;
1366         case I915_TILING_Y:
1367                 /* FIXME: Is this true? */
1368                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1369                 return -EINVAL;
1370         default:
1371                 BUG();
1372         }
1373
1374         ret = i915_gem_object_pin(obj, alignment);
1375         if (ret != 0)
1376                 return ret;
1377
1378         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1379          * fence, whereas 965+ only requires a fence if using
1380          * framebuffer compression.  For simplicity, we always install
1381          * a fence as the cost is not that onerous.
1382          */
1383         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1384             obj_priv->tiling_mode != I915_TILING_NONE) {
1385                 ret = i915_gem_object_get_fence_reg(obj);
1386                 if (ret != 0) {
1387                         i915_gem_object_unpin(obj);
1388                         return ret;
1389                 }
1390         }
1391
1392         return 0;
1393 }
1394
1395 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1396 static int
1397 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1398                            int x, int y)
1399 {
1400         struct drm_device *dev = crtc->dev;
1401         struct drm_i915_private *dev_priv = dev->dev_private;
1402         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1403         struct intel_framebuffer *intel_fb;
1404         struct drm_i915_gem_object *obj_priv;
1405         struct drm_gem_object *obj;
1406         int plane = intel_crtc->plane;
1407         unsigned long Start, Offset;
1408         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1409         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1410         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1411         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1412         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1413         u32 dspcntr;
1414
1415         switch (plane) {
1416         case 0:
1417         case 1:
1418                 break;
1419         default:
1420                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1421                 return -EINVAL;
1422         }
1423
1424         intel_fb = to_intel_framebuffer(fb);
1425         obj = intel_fb->obj;
1426         obj_priv = to_intel_bo(obj);
1427
1428         dspcntr = I915_READ(dspcntr_reg);
1429         /* Mask out pixel format bits in case we change it */
1430         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1431         switch (fb->bits_per_pixel) {
1432         case 8:
1433                 dspcntr |= DISPPLANE_8BPP;
1434                 break;
1435         case 16:
1436                 if (fb->depth == 15)
1437                         dspcntr |= DISPPLANE_15_16BPP;
1438                 else
1439                         dspcntr |= DISPPLANE_16BPP;
1440                 break;
1441         case 24:
1442         case 32:
1443                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1444                 break;
1445         default:
1446                 DRM_ERROR("Unknown color depth\n");
1447                 return -EINVAL;
1448         }
1449         if (IS_I965G(dev)) {
1450                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1451                         dspcntr |= DISPPLANE_TILED;
1452                 else
1453                         dspcntr &= ~DISPPLANE_TILED;
1454         }
1455
1456         if (IS_IRONLAKE(dev))
1457                 /* must disable */
1458                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1459
1460         I915_WRITE(dspcntr_reg, dspcntr);
1461
1462         Start = obj_priv->gtt_offset;
1463         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1464
1465         DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1466         I915_WRITE(dspstride, fb->pitch);
1467         if (IS_I965G(dev)) {
1468                 I915_WRITE(dspbase, Offset);
1469                 I915_READ(dspbase);
1470                 I915_WRITE(dspsurf, Start);
1471                 I915_READ(dspsurf);
1472                 I915_WRITE(dsptileoff, (y << 16) | x);
1473         } else {
1474                 I915_WRITE(dspbase, Start + Offset);
1475                 I915_READ(dspbase);
1476         }
1477
1478         if ((IS_I965G(dev) || plane == 0))
1479                 intel_update_fbc(crtc, &crtc->mode);
1480
1481         intel_wait_for_vblank(dev);
1482         intel_increase_pllclock(crtc, true);
1483
1484         return 0;
1485 }
1486
1487 static int
1488 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1489                     struct drm_framebuffer *old_fb)
1490 {
1491         struct drm_device *dev = crtc->dev;
1492         struct drm_i915_private *dev_priv = dev->dev_private;
1493         struct drm_i915_master_private *master_priv;
1494         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1495         struct intel_framebuffer *intel_fb;
1496         struct drm_i915_gem_object *obj_priv;
1497         struct drm_gem_object *obj;
1498         int pipe = intel_crtc->pipe;
1499         int plane = intel_crtc->plane;
1500         unsigned long Start, Offset;
1501         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1502         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1503         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1504         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1505         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1506         u32 dspcntr;
1507         int ret;
1508
1509         /* no fb bound */
1510         if (!crtc->fb) {
1511                 DRM_DEBUG_KMS("No FB bound\n");
1512                 return 0;
1513         }
1514
1515         switch (plane) {
1516         case 0:
1517         case 1:
1518                 break;
1519         default:
1520                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1521                 return -EINVAL;
1522         }
1523
1524         intel_fb = to_intel_framebuffer(crtc->fb);
1525         obj = intel_fb->obj;
1526         obj_priv = to_intel_bo(obj);
1527
1528         mutex_lock(&dev->struct_mutex);
1529         ret = intel_pin_and_fence_fb_obj(dev, obj);
1530         if (ret != 0) {
1531                 mutex_unlock(&dev->struct_mutex);
1532                 return ret;
1533         }
1534
1535         ret = i915_gem_object_set_to_display_plane(obj);
1536         if (ret != 0) {
1537                 i915_gem_object_unpin(obj);
1538                 mutex_unlock(&dev->struct_mutex);
1539                 return ret;
1540         }
1541
1542         dspcntr = I915_READ(dspcntr_reg);
1543         /* Mask out pixel format bits in case we change it */
1544         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1545         switch (crtc->fb->bits_per_pixel) {
1546         case 8:
1547                 dspcntr |= DISPPLANE_8BPP;
1548                 break;
1549         case 16:
1550                 if (crtc->fb->depth == 15)
1551                         dspcntr |= DISPPLANE_15_16BPP;
1552                 else
1553                         dspcntr |= DISPPLANE_16BPP;
1554                 break;
1555         case 24:
1556         case 32:
1557                 if (crtc->fb->depth == 30)
1558                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1559                 else
1560                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1561                 break;
1562         default:
1563                 DRM_ERROR("Unknown color depth\n");
1564                 i915_gem_object_unpin(obj);
1565                 mutex_unlock(&dev->struct_mutex);
1566                 return -EINVAL;
1567         }
1568         if (IS_I965G(dev)) {
1569                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1570                         dspcntr |= DISPPLANE_TILED;
1571                 else
1572                         dspcntr &= ~DISPPLANE_TILED;
1573         }
1574
1575         if (HAS_PCH_SPLIT(dev))
1576                 /* must disable */
1577                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1578
1579         I915_WRITE(dspcntr_reg, dspcntr);
1580
1581         Start = obj_priv->gtt_offset;
1582         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1583
1584         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1585                       Start, Offset, x, y, crtc->fb->pitch);
1586         I915_WRITE(dspstride, crtc->fb->pitch);
1587         if (IS_I965G(dev)) {
1588                 I915_WRITE(dspbase, Offset);
1589                 I915_READ(dspbase);
1590                 I915_WRITE(dspsurf, Start);
1591                 I915_READ(dspsurf);
1592                 I915_WRITE(dsptileoff, (y << 16) | x);
1593         } else {
1594                 I915_WRITE(dspbase, Start + Offset);
1595                 I915_READ(dspbase);
1596         }
1597
1598         if ((IS_I965G(dev) || plane == 0))
1599                 intel_update_fbc(crtc, &crtc->mode);
1600
1601         intel_wait_for_vblank(dev);
1602
1603         if (old_fb) {
1604                 intel_fb = to_intel_framebuffer(old_fb);
1605                 obj_priv = to_intel_bo(intel_fb->obj);
1606                 i915_gem_object_unpin(intel_fb->obj);
1607         }
1608         intel_increase_pllclock(crtc, true);
1609
1610         mutex_unlock(&dev->struct_mutex);
1611
1612         if (!dev->primary->master)
1613                 return 0;
1614
1615         master_priv = dev->primary->master->driver_priv;
1616         if (!master_priv->sarea_priv)
1617                 return 0;
1618
1619         if (pipe) {
1620                 master_priv->sarea_priv->pipeB_x = x;
1621                 master_priv->sarea_priv->pipeB_y = y;
1622         } else {
1623                 master_priv->sarea_priv->pipeA_x = x;
1624                 master_priv->sarea_priv->pipeA_y = y;
1625         }
1626
1627         return 0;
1628 }
1629
1630 /* Disable the VGA plane that we never use */
1631 static void i915_disable_vga (struct drm_device *dev)
1632 {
1633         struct drm_i915_private *dev_priv = dev->dev_private;
1634         u8 sr1;
1635         u32 vga_reg;
1636
1637         if (HAS_PCH_SPLIT(dev))
1638                 vga_reg = CPU_VGACNTRL;
1639         else
1640                 vga_reg = VGACNTRL;
1641
1642         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1643                 return;
1644
1645         I915_WRITE8(VGA_SR_INDEX, 1);
1646         sr1 = I915_READ8(VGA_SR_DATA);
1647         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1648         udelay(100);
1649
1650         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1651 }
1652
1653 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1654 {
1655         struct drm_device *dev = crtc->dev;
1656         struct drm_i915_private *dev_priv = dev->dev_private;
1657         u32 dpa_ctl;
1658
1659         DRM_DEBUG_KMS("\n");
1660         dpa_ctl = I915_READ(DP_A);
1661         dpa_ctl &= ~DP_PLL_ENABLE;
1662         I915_WRITE(DP_A, dpa_ctl);
1663 }
1664
1665 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1666 {
1667         struct drm_device *dev = crtc->dev;
1668         struct drm_i915_private *dev_priv = dev->dev_private;
1669         u32 dpa_ctl;
1670
1671         dpa_ctl = I915_READ(DP_A);
1672         dpa_ctl |= DP_PLL_ENABLE;
1673         I915_WRITE(DP_A, dpa_ctl);
1674         udelay(200);
1675 }
1676
1677
1678 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1679 {
1680         struct drm_device *dev = crtc->dev;
1681         struct drm_i915_private *dev_priv = dev->dev_private;
1682         u32 dpa_ctl;
1683
1684         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1685         dpa_ctl = I915_READ(DP_A);
1686         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1687
1688         if (clock < 200000) {
1689                 u32 temp;
1690                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1691                 /* workaround for 160Mhz:
1692                    1) program 0x4600c bits 15:0 = 0x8124
1693                    2) program 0x46010 bit 0 = 1
1694                    3) program 0x46034 bit 24 = 1
1695                    4) program 0x64000 bit 14 = 1
1696                    */
1697                 temp = I915_READ(0x4600c);
1698                 temp &= 0xffff0000;
1699                 I915_WRITE(0x4600c, temp | 0x8124);
1700
1701                 temp = I915_READ(0x46010);
1702                 I915_WRITE(0x46010, temp | 1);
1703
1704                 temp = I915_READ(0x46034);
1705                 I915_WRITE(0x46034, temp | (1 << 24));
1706         } else {
1707                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1708         }
1709         I915_WRITE(DP_A, dpa_ctl);
1710
1711         udelay(500);
1712 }
1713
1714 /* The FDI link training functions for ILK/Ibexpeak. */
1715 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1716 {
1717         struct drm_device *dev = crtc->dev;
1718         struct drm_i915_private *dev_priv = dev->dev_private;
1719         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1720         int pipe = intel_crtc->pipe;
1721         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1722         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1723         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1724         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1725         u32 temp, tries = 0;
1726
1727         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1728            for train result */
1729         temp = I915_READ(fdi_rx_imr_reg);
1730         temp &= ~FDI_RX_SYMBOL_LOCK;
1731         temp &= ~FDI_RX_BIT_LOCK;
1732         I915_WRITE(fdi_rx_imr_reg, temp);
1733         I915_READ(fdi_rx_imr_reg);
1734         udelay(150);
1735
1736         /* enable CPU FDI TX and PCH FDI RX */
1737         temp = I915_READ(fdi_tx_reg);
1738         temp |= FDI_TX_ENABLE;
1739         temp &= ~(7 << 19);
1740         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1741         temp &= ~FDI_LINK_TRAIN_NONE;
1742         temp |= FDI_LINK_TRAIN_PATTERN_1;
1743         I915_WRITE(fdi_tx_reg, temp);
1744         I915_READ(fdi_tx_reg);
1745
1746         temp = I915_READ(fdi_rx_reg);
1747         temp &= ~FDI_LINK_TRAIN_NONE;
1748         temp |= FDI_LINK_TRAIN_PATTERN_1;
1749         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1750         I915_READ(fdi_rx_reg);
1751         udelay(150);
1752
1753         for (tries = 0; tries < 5; tries++) {
1754                 temp = I915_READ(fdi_rx_iir_reg);
1755                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1756
1757                 if ((temp & FDI_RX_BIT_LOCK)) {
1758                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1759                         I915_WRITE(fdi_rx_iir_reg,
1760                                    temp | FDI_RX_BIT_LOCK);
1761                         break;
1762                 }
1763         }
1764         if (tries == 5)
1765                 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1766
1767         /* Train 2 */
1768         temp = I915_READ(fdi_tx_reg);
1769         temp &= ~FDI_LINK_TRAIN_NONE;
1770         temp |= FDI_LINK_TRAIN_PATTERN_2;
1771         I915_WRITE(fdi_tx_reg, temp);
1772
1773         temp = I915_READ(fdi_rx_reg);
1774         temp &= ~FDI_LINK_TRAIN_NONE;
1775         temp |= FDI_LINK_TRAIN_PATTERN_2;
1776         I915_WRITE(fdi_rx_reg, temp);
1777         udelay(150);
1778
1779         tries = 0;
1780
1781         for (tries = 0; tries < 5; tries++) {
1782                 temp = I915_READ(fdi_rx_iir_reg);
1783                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1784
1785                 if (temp & FDI_RX_SYMBOL_LOCK) {
1786                         I915_WRITE(fdi_rx_iir_reg,
1787                                    temp | FDI_RX_SYMBOL_LOCK);
1788                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1789                         break;
1790                 }
1791         }
1792         if (tries == 5)
1793                 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1794
1795         DRM_DEBUG_KMS("FDI train done\n");
1796 }
1797
1798 static int snb_b_fdi_train_param [] = {
1799         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1800         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1801         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1802         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1803 };
1804
1805 /* The FDI link training functions for SNB/Cougarpoint. */
1806 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1807 {
1808         struct drm_device *dev = crtc->dev;
1809         struct drm_i915_private *dev_priv = dev->dev_private;
1810         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1811         int pipe = intel_crtc->pipe;
1812         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1813         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1814         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1815         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1816         u32 temp, i;
1817
1818         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1819            for train result */
1820         temp = I915_READ(fdi_rx_imr_reg);
1821         temp &= ~FDI_RX_SYMBOL_LOCK;
1822         temp &= ~FDI_RX_BIT_LOCK;
1823         I915_WRITE(fdi_rx_imr_reg, temp);
1824         I915_READ(fdi_rx_imr_reg);
1825         udelay(150);
1826
1827         /* enable CPU FDI TX and PCH FDI RX */
1828         temp = I915_READ(fdi_tx_reg);
1829         temp |= FDI_TX_ENABLE;
1830         temp &= ~(7 << 19);
1831         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1832         temp &= ~FDI_LINK_TRAIN_NONE;
1833         temp |= FDI_LINK_TRAIN_PATTERN_1;
1834         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1835         /* SNB-B */
1836         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1837         I915_WRITE(fdi_tx_reg, temp);
1838         I915_READ(fdi_tx_reg);
1839
1840         temp = I915_READ(fdi_rx_reg);
1841         if (HAS_PCH_CPT(dev)) {
1842                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1843                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1844         } else {
1845                 temp &= ~FDI_LINK_TRAIN_NONE;
1846                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1847         }
1848         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1849         I915_READ(fdi_rx_reg);
1850         udelay(150);
1851
1852         for (i = 0; i < 4; i++ ) {
1853                 temp = I915_READ(fdi_tx_reg);
1854                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1855                 temp |= snb_b_fdi_train_param[i];
1856                 I915_WRITE(fdi_tx_reg, temp);
1857                 udelay(500);
1858
1859                 temp = I915_READ(fdi_rx_iir_reg);
1860                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1861
1862                 if (temp & FDI_RX_BIT_LOCK) {
1863                         I915_WRITE(fdi_rx_iir_reg,
1864                                    temp | FDI_RX_BIT_LOCK);
1865                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1866                         break;
1867                 }
1868         }
1869         if (i == 4)
1870                 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1871
1872         /* Train 2 */
1873         temp = I915_READ(fdi_tx_reg);
1874         temp &= ~FDI_LINK_TRAIN_NONE;
1875         temp |= FDI_LINK_TRAIN_PATTERN_2;
1876         if (IS_GEN6(dev)) {
1877                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1878                 /* SNB-B */
1879                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1880         }
1881         I915_WRITE(fdi_tx_reg, temp);
1882
1883         temp = I915_READ(fdi_rx_reg);
1884         if (HAS_PCH_CPT(dev)) {
1885                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1886                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1887         } else {
1888                 temp &= ~FDI_LINK_TRAIN_NONE;
1889                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1890         }
1891         I915_WRITE(fdi_rx_reg, temp);
1892         udelay(150);
1893
1894         for (i = 0; i < 4; i++ ) {
1895                 temp = I915_READ(fdi_tx_reg);
1896                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1897                 temp |= snb_b_fdi_train_param[i];
1898                 I915_WRITE(fdi_tx_reg, temp);
1899                 udelay(500);
1900
1901                 temp = I915_READ(fdi_rx_iir_reg);
1902                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1903
1904                 if (temp & FDI_RX_SYMBOL_LOCK) {
1905                         I915_WRITE(fdi_rx_iir_reg,
1906                                    temp | FDI_RX_SYMBOL_LOCK);
1907                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1908                         break;
1909                 }
1910         }
1911         if (i == 4)
1912                 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1913
1914         DRM_DEBUG_KMS("FDI train done.\n");
1915 }
1916
1917 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1918 {
1919         struct drm_device *dev = crtc->dev;
1920         struct drm_i915_private *dev_priv = dev->dev_private;
1921         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1922         int pipe = intel_crtc->pipe;
1923         int plane = intel_crtc->plane;
1924         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1925         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1926         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1927         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1928         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1929         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1930         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1931         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1932         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1933         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1934         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1935         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1936         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1937         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1938         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1939         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1940         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1941         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1942         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1943         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1944         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1945         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1946         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1947         u32 temp;
1948         int n;
1949         u32 pipe_bpc;
1950
1951         temp = I915_READ(pipeconf_reg);
1952         pipe_bpc = temp & PIPE_BPC_MASK;
1953
1954         /* XXX: When our outputs are all unaware of DPMS modes other than off
1955          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1956          */
1957         switch (mode) {
1958         case DRM_MODE_DPMS_ON:
1959         case DRM_MODE_DPMS_STANDBY:
1960         case DRM_MODE_DPMS_SUSPEND:
1961                 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1962
1963                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1964                         temp = I915_READ(PCH_LVDS);
1965                         if ((temp & LVDS_PORT_EN) == 0) {
1966                                 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1967                                 POSTING_READ(PCH_LVDS);
1968                         }
1969                 }
1970
1971                 if (HAS_eDP) {
1972                         /* enable eDP PLL */
1973                         ironlake_enable_pll_edp(crtc);
1974                 } else {
1975
1976                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1977                         temp = I915_READ(fdi_rx_reg);
1978                         /*
1979                          * make the BPC in FDI Rx be consistent with that in
1980                          * pipeconf reg.
1981                          */
1982                         temp &= ~(0x7 << 16);
1983                         temp |= (pipe_bpc << 11);
1984                         temp &= ~(7 << 19);
1985                         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1986                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1987                         I915_READ(fdi_rx_reg);
1988                         udelay(200);
1989
1990                         /* Switch from Rawclk to PCDclk */
1991                         temp = I915_READ(fdi_rx_reg);
1992                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1993                         I915_READ(fdi_rx_reg);
1994                         udelay(200);
1995
1996                         /* Enable CPU FDI TX PLL, always on for Ironlake */
1997                         temp = I915_READ(fdi_tx_reg);
1998                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1999                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
2000                                 I915_READ(fdi_tx_reg);
2001                                 udelay(100);
2002                         }
2003                 }
2004
2005                 /* Enable panel fitting for LVDS */
2006                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)
2007                     || HAS_eDP || intel_pch_has_edp(crtc)) {
2008                         temp = I915_READ(pf_ctl_reg);
2009                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
2010
2011                         /* currently full aspect */
2012                         I915_WRITE(pf_win_pos, 0);
2013
2014                         I915_WRITE(pf_win_size,
2015                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
2016                                    (dev_priv->panel_fixed_mode->vdisplay));
2017                 }
2018
2019                 /* Enable CPU pipe */
2020                 temp = I915_READ(pipeconf_reg);
2021                 if ((temp & PIPEACONF_ENABLE) == 0) {
2022                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2023                         I915_READ(pipeconf_reg);
2024                         udelay(100);
2025                 }
2026
2027                 /* configure and enable CPU plane */
2028                 temp = I915_READ(dspcntr_reg);
2029                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2030                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2031                         /* Flush the plane changes */
2032                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2033                 }
2034
2035                 if (!HAS_eDP) {
2036                         /* For PCH output, training FDI link */
2037                         if (IS_GEN6(dev))
2038                                 gen6_fdi_link_train(crtc);
2039                         else
2040                                 ironlake_fdi_link_train(crtc);
2041
2042                         /* enable PCH DPLL */
2043                         temp = I915_READ(pch_dpll_reg);
2044                         if ((temp & DPLL_VCO_ENABLE) == 0) {
2045                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
2046                                 I915_READ(pch_dpll_reg);
2047                         }
2048                         udelay(200);
2049
2050                         if (HAS_PCH_CPT(dev)) {
2051                                 /* Be sure PCH DPLL SEL is set */
2052                                 temp = I915_READ(PCH_DPLL_SEL);
2053                                 if (trans_dpll_sel == 0 &&
2054                                                 (temp & TRANSA_DPLL_ENABLE) == 0)
2055                                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2056                                 else if (trans_dpll_sel == 1 &&
2057                                                 (temp & TRANSB_DPLL_ENABLE) == 0)
2058                                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2059                                 I915_WRITE(PCH_DPLL_SEL, temp);
2060                                 I915_READ(PCH_DPLL_SEL);
2061                         }
2062
2063                         /* set transcoder timing */
2064                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
2065                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
2066                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
2067
2068                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
2069                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
2070                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
2071
2072                         /* enable normal train */
2073                         temp = I915_READ(fdi_tx_reg);
2074                         temp &= ~FDI_LINK_TRAIN_NONE;
2075                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
2076                                         FDI_TX_ENHANCE_FRAME_ENABLE);
2077                         I915_READ(fdi_tx_reg);
2078
2079                         temp = I915_READ(fdi_rx_reg);
2080                         if (HAS_PCH_CPT(dev)) {
2081                                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2082                                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2083                         } else {
2084                                 temp &= ~FDI_LINK_TRAIN_NONE;
2085                                 temp |= FDI_LINK_TRAIN_NONE;
2086                         }
2087                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2088                         I915_READ(fdi_rx_reg);
2089
2090                         /* wait one idle pattern time */
2091                         udelay(100);
2092
2093                         /* For PCH DP, enable TRANS_DP_CTL */
2094                         if (HAS_PCH_CPT(dev) &&
2095                             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2096                                 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2097                                 int reg;
2098
2099                                 reg = I915_READ(trans_dp_ctl);
2100                                 reg &= ~TRANS_DP_PORT_SEL_MASK;
2101                                 reg = TRANS_DP_OUTPUT_ENABLE |
2102                                       TRANS_DP_ENH_FRAMING;
2103
2104                                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2105                                       reg |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2106                                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2107                                       reg |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2108
2109                                 switch (intel_trans_dp_port_sel(crtc)) {
2110                                 case PCH_DP_B:
2111                                         reg |= TRANS_DP_PORT_SEL_B;
2112                                         break;
2113                                 case PCH_DP_C:
2114                                         reg |= TRANS_DP_PORT_SEL_C;
2115                                         break;
2116                                 case PCH_DP_D:
2117                                         reg |= TRANS_DP_PORT_SEL_D;
2118                                         break;
2119                                 default:
2120                                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2121                                         reg |= TRANS_DP_PORT_SEL_B;
2122                                         break;
2123                                 }
2124
2125                                 I915_WRITE(trans_dp_ctl, reg);
2126                                 POSTING_READ(trans_dp_ctl);
2127                         }
2128
2129                         /* enable PCH transcoder */
2130                         temp = I915_READ(transconf_reg);
2131                         /*
2132                          * make the BPC in transcoder be consistent with
2133                          * that in pipeconf reg.
2134                          */
2135                         temp &= ~PIPE_BPC_MASK;
2136                         temp |= pipe_bpc;
2137                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
2138                         I915_READ(transconf_reg);
2139
2140                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
2141                                 ;
2142
2143                 }
2144
2145                 intel_crtc_load_lut(crtc);
2146
2147                 intel_update_fbc(crtc, &crtc->mode);
2148
2149         break;
2150         case DRM_MODE_DPMS_OFF:
2151                 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
2152
2153                 drm_vblank_off(dev, pipe);
2154                 /* Disable display plane */
2155                 temp = I915_READ(dspcntr_reg);
2156                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2157                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2158                         /* Flush the plane changes */
2159                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2160                         I915_READ(dspbase_reg);
2161                 }
2162
2163                 if (dev_priv->cfb_plane == plane &&
2164                     dev_priv->display.disable_fbc)
2165                         dev_priv->display.disable_fbc(dev);
2166
2167                 i915_disable_vga(dev);
2168
2169                 /* disable cpu pipe, disable after all planes disabled */
2170                 temp = I915_READ(pipeconf_reg);
2171                 if ((temp & PIPEACONF_ENABLE) != 0) {
2172                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2173                         I915_READ(pipeconf_reg);
2174                         n = 0;
2175                         /* wait for cpu pipe off, pipe state */
2176                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
2177                                 n++;
2178                                 if (n < 60) {
2179                                         udelay(500);
2180                                         continue;
2181                                 } else {
2182                                         DRM_DEBUG_KMS("pipe %d off delay\n",
2183                                                                 pipe);
2184                                         break;
2185                                 }
2186                         }
2187                 } else
2188                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
2189
2190                 udelay(100);
2191
2192                 /* Disable PF */
2193                 temp = I915_READ(pf_ctl_reg);
2194                 if ((temp & PF_ENABLE) != 0) {
2195                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2196                         I915_READ(pf_ctl_reg);
2197                 }
2198                 I915_WRITE(pf_win_size, 0);
2199                 POSTING_READ(pf_win_size);
2200
2201
2202                 /* disable CPU FDI tx and PCH FDI rx */
2203                 temp = I915_READ(fdi_tx_reg);
2204                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
2205                 I915_READ(fdi_tx_reg);
2206
2207                 temp = I915_READ(fdi_rx_reg);
2208                 /* BPC in FDI rx is consistent with that in pipeconf */
2209                 temp &= ~(0x07 << 16);
2210                 temp |= (pipe_bpc << 11);
2211                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
2212                 I915_READ(fdi_rx_reg);
2213
2214                 udelay(100);
2215
2216                 /* still set train pattern 1 */
2217                 temp = I915_READ(fdi_tx_reg);
2218                 temp &= ~FDI_LINK_TRAIN_NONE;
2219                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2220                 I915_WRITE(fdi_tx_reg, temp);
2221                 POSTING_READ(fdi_tx_reg);
2222
2223                 temp = I915_READ(fdi_rx_reg);
2224                 if (HAS_PCH_CPT(dev)) {
2225                         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2226                         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2227                 } else {
2228                         temp &= ~FDI_LINK_TRAIN_NONE;
2229                         temp |= FDI_LINK_TRAIN_PATTERN_1;
2230                 }
2231                 I915_WRITE(fdi_rx_reg, temp);
2232                 POSTING_READ(fdi_rx_reg);
2233
2234                 udelay(100);
2235
2236                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2237                         temp = I915_READ(PCH_LVDS);
2238                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2239                         I915_READ(PCH_LVDS);
2240                         udelay(100);
2241                 }
2242
2243                 /* disable PCH transcoder */
2244                 temp = I915_READ(transconf_reg);
2245                 if ((temp & TRANS_ENABLE) != 0) {
2246                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2247                         I915_READ(transconf_reg);
2248                         n = 0;
2249                         /* wait for PCH transcoder off, transcoder state */
2250                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
2251                                 n++;
2252                                 if (n < 60) {
2253                                         udelay(500);
2254                                         continue;
2255                                 } else {
2256                                         DRM_DEBUG_KMS("transcoder %d off "
2257                                                         "delay\n", pipe);
2258                                         break;
2259                                 }
2260                         }
2261                 }
2262
2263                 temp = I915_READ(transconf_reg);
2264                 /* BPC in transcoder is consistent with that in pipeconf */
2265                 temp &= ~PIPE_BPC_MASK;
2266                 temp |= pipe_bpc;
2267                 I915_WRITE(transconf_reg, temp);
2268                 I915_READ(transconf_reg);
2269                 udelay(100);
2270
2271                 if (HAS_PCH_CPT(dev)) {
2272                         /* disable TRANS_DP_CTL */
2273                         int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2274                         int reg;
2275
2276                         reg = I915_READ(trans_dp_ctl);
2277                         reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2278                         I915_WRITE(trans_dp_ctl, reg);
2279                         POSTING_READ(trans_dp_ctl);
2280
2281                         /* disable DPLL_SEL */
2282                         temp = I915_READ(PCH_DPLL_SEL);
2283                         if (trans_dpll_sel == 0)
2284                                 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2285                         else
2286                                 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2287                         I915_WRITE(PCH_DPLL_SEL, temp);
2288                         I915_READ(PCH_DPLL_SEL);
2289
2290                 }
2291
2292                 /* disable PCH DPLL */
2293                 temp = I915_READ(pch_dpll_reg);
2294                 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2295                 I915_READ(pch_dpll_reg);
2296
2297                 if (HAS_eDP) {
2298                         ironlake_disable_pll_edp(crtc);
2299                 }
2300
2301                 /* Switch from PCDclk to Rawclk */
2302                 temp = I915_READ(fdi_rx_reg);
2303                 temp &= ~FDI_SEL_PCDCLK;
2304                 I915_WRITE(fdi_rx_reg, temp);
2305                 I915_READ(fdi_rx_reg);
2306
2307                 /* Disable CPU FDI TX PLL */
2308                 temp = I915_READ(fdi_tx_reg);
2309                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2310                 I915_READ(fdi_tx_reg);
2311                 udelay(100);
2312
2313                 temp = I915_READ(fdi_rx_reg);
2314                 temp &= ~FDI_RX_PLL_ENABLE;
2315                 I915_WRITE(fdi_rx_reg, temp);
2316                 I915_READ(fdi_rx_reg);
2317
2318                 /* Wait for the clocks to turn off. */
2319                 udelay(100);
2320                 break;
2321         }
2322 }
2323
2324 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2325 {
2326         struct intel_overlay *overlay;
2327         int ret;
2328
2329         if (!enable && intel_crtc->overlay) {
2330                 overlay = intel_crtc->overlay;
2331                 mutex_lock(&overlay->dev->struct_mutex);
2332                 for (;;) {
2333                         ret = intel_overlay_switch_off(overlay);
2334                         if (ret == 0)
2335                                 break;
2336
2337                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
2338                         if (ret != 0) {
2339                                 /* overlay doesn't react anymore. Usually
2340                                  * results in a black screen and an unkillable
2341                                  * X server. */
2342                                 BUG();
2343                                 overlay->hw_wedged = HW_WEDGED;
2344                                 break;
2345                         }
2346                 }
2347                 mutex_unlock(&overlay->dev->struct_mutex);
2348         }
2349         /* Let userspace switch the overlay on again. In most cases userspace
2350          * has to recompute where to put it anyway. */
2351
2352         return;
2353 }
2354
2355 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2356 {
2357         struct drm_device *dev = crtc->dev;
2358         struct drm_i915_private *dev_priv = dev->dev_private;
2359         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2360         int pipe = intel_crtc->pipe;
2361         int plane = intel_crtc->plane;
2362         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2363         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2364         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2365         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2366         u32 temp;
2367
2368         /* XXX: When our outputs are all unaware of DPMS modes other than off
2369          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2370          */
2371         switch (mode) {
2372         case DRM_MODE_DPMS_ON:
2373         case DRM_MODE_DPMS_STANDBY:
2374         case DRM_MODE_DPMS_SUSPEND:
2375                 intel_update_watermarks(dev);
2376
2377                 /* Enable the DPLL */
2378                 temp = I915_READ(dpll_reg);
2379                 if ((temp & DPLL_VCO_ENABLE) == 0) {
2380                         I915_WRITE(dpll_reg, temp);
2381                         I915_READ(dpll_reg);
2382                         /* Wait for the clocks to stabilize. */
2383                         udelay(150);
2384                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2385                         I915_READ(dpll_reg);
2386                         /* Wait for the clocks to stabilize. */
2387                         udelay(150);
2388                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2389                         I915_READ(dpll_reg);
2390                         /* Wait for the clocks to stabilize. */
2391                         udelay(150);
2392                 }
2393
2394                 /* Enable the pipe */
2395                 temp = I915_READ(pipeconf_reg);
2396                 if ((temp & PIPEACONF_ENABLE) == 0)
2397                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2398
2399                 /* Enable the plane */
2400                 temp = I915_READ(dspcntr_reg);
2401                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2402                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2403                         /* Flush the plane changes */
2404                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2405                 }
2406
2407                 intel_crtc_load_lut(crtc);
2408
2409                 if ((IS_I965G(dev) || plane == 0))
2410                         intel_update_fbc(crtc, &crtc->mode);
2411
2412                 /* Give the overlay scaler a chance to enable if it's on this pipe */
2413                 intel_crtc_dpms_overlay(intel_crtc, true);
2414         break;
2415         case DRM_MODE_DPMS_OFF:
2416                 intel_update_watermarks(dev);
2417
2418                 /* Give the overlay scaler a chance to disable if it's on this pipe */
2419                 intel_crtc_dpms_overlay(intel_crtc, false);
2420                 drm_vblank_off(dev, pipe);
2421
2422                 if (dev_priv->cfb_plane == plane &&
2423                     dev_priv->display.disable_fbc)
2424                         dev_priv->display.disable_fbc(dev);
2425
2426                 /* Disable the VGA plane that we never use */
2427                 i915_disable_vga(dev);
2428
2429                 /* Disable display plane */
2430                 temp = I915_READ(dspcntr_reg);
2431                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2432                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2433                         /* Flush the plane changes */
2434                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2435                         I915_READ(dspbase_reg);
2436                 }
2437
2438                 if (!IS_I9XX(dev)) {
2439                         /* Wait for vblank for the disable to take effect */
2440                         intel_wait_for_vblank(dev);
2441                 }
2442
2443                 /* Don't disable pipe A or pipe A PLLs if needed */
2444                 if (pipeconf_reg == PIPEACONF &&
2445                     (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2446                         goto skip_pipe_off;
2447
2448                 /* Next, disable display pipes */
2449                 temp = I915_READ(pipeconf_reg);
2450                 if ((temp & PIPEACONF_ENABLE) != 0) {
2451                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2452                         I915_READ(pipeconf_reg);
2453                 }
2454
2455                 /* Wait for vblank for the disable to take effect. */
2456                 intel_wait_for_vblank(dev);
2457
2458                 temp = I915_READ(dpll_reg);
2459                 if ((temp & DPLL_VCO_ENABLE) != 0) {
2460                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2461                         I915_READ(dpll_reg);
2462                 }
2463         skip_pipe_off:
2464                 /* Wait for the clocks to turn off. */
2465                 udelay(150);
2466                 break;
2467         }
2468 }
2469
2470 /**
2471  * Sets the power management mode of the pipe and plane.
2472  *
2473  * This code should probably grow support for turning the cursor off and back
2474  * on appropriately at the same time as we're turning the pipe off/on.
2475  */
2476 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2477 {
2478         struct drm_device *dev = crtc->dev;
2479         struct drm_i915_private *dev_priv = dev->dev_private;
2480         struct drm_i915_master_private *master_priv;
2481         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2482         int pipe = intel_crtc->pipe;
2483         bool enabled;
2484
2485         dev_priv->display.dpms(crtc, mode);
2486
2487         intel_crtc->dpms_mode = mode;
2488
2489         if (!dev->primary->master)
2490                 return;
2491
2492         master_priv = dev->primary->master->driver_priv;
2493         if (!master_priv->sarea_priv)
2494                 return;
2495
2496         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2497
2498         switch (pipe) {
2499         case 0:
2500                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2501                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2502                 break;
2503         case 1:
2504                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2505                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2506                 break;
2507         default:
2508                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2509                 break;
2510         }
2511 }
2512
2513 static void intel_crtc_prepare (struct drm_crtc *crtc)
2514 {
2515         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2516         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2517 }
2518
2519 static void intel_crtc_commit (struct drm_crtc *crtc)
2520 {
2521         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2522         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2523 }
2524
2525 void intel_encoder_prepare (struct drm_encoder *encoder)
2526 {
2527         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2528         /* lvds has its own version of prepare see intel_lvds_prepare */
2529         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2530 }
2531
2532 void intel_encoder_commit (struct drm_encoder *encoder)
2533 {
2534         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2535         /* lvds has its own version of commit see intel_lvds_commit */
2536         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2537 }
2538
2539 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2540                                   struct drm_display_mode *mode,
2541                                   struct drm_display_mode *adjusted_mode)
2542 {
2543         struct drm_device *dev = crtc->dev;
2544         if (HAS_PCH_SPLIT(dev)) {
2545                 /* FDI link clock is fixed at 2.7G */
2546                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2547                         return false;
2548         }
2549         return true;
2550 }
2551
2552 static int i945_get_display_clock_speed(struct drm_device *dev)
2553 {
2554         return 400000;
2555 }
2556
2557 static int i915_get_display_clock_speed(struct drm_device *dev)
2558 {
2559         return 333000;
2560 }
2561
2562 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2563 {
2564         return 200000;
2565 }
2566
2567 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2568 {
2569         u16 gcfgc = 0;
2570
2571         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2572
2573         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2574                 return 133000;
2575         else {
2576                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2577                 case GC_DISPLAY_CLOCK_333_MHZ:
2578                         return 333000;
2579                 default:
2580                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2581                         return 190000;
2582                 }
2583         }
2584 }
2585
2586 static int i865_get_display_clock_speed(struct drm_device *dev)
2587 {
2588         return 266000;
2589 }
2590
2591 static int i855_get_display_clock_speed(struct drm_device *dev)
2592 {
2593         u16 hpllcc = 0;
2594         /* Assume that the hardware is in the high speed state.  This
2595          * should be the default.
2596          */
2597         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2598         case GC_CLOCK_133_200:
2599         case GC_CLOCK_100_200:
2600                 return 200000;
2601         case GC_CLOCK_166_250:
2602                 return 250000;
2603         case GC_CLOCK_100_133:
2604                 return 133000;
2605         }
2606
2607         /* Shouldn't happen */
2608         return 0;
2609 }
2610
2611 static int i830_get_display_clock_speed(struct drm_device *dev)
2612 {
2613         return 133000;
2614 }
2615
2616 /**
2617  * Return the pipe currently connected to the panel fitter,
2618  * or -1 if the panel fitter is not present or not in use
2619  */
2620 int intel_panel_fitter_pipe (struct drm_device *dev)
2621 {
2622         struct drm_i915_private *dev_priv = dev->dev_private;
2623         u32  pfit_control;
2624
2625         /* i830 doesn't have a panel fitter */
2626         if (IS_I830(dev))
2627                 return -1;
2628
2629         pfit_control = I915_READ(PFIT_CONTROL);
2630
2631         /* See if the panel fitter is in use */
2632         if ((pfit_control & PFIT_ENABLE) == 0)
2633                 return -1;
2634
2635         /* 965 can place panel fitter on either pipe */
2636         if (IS_I965G(dev))
2637                 return (pfit_control >> 29) & 0x3;
2638
2639         /* older chips can only use pipe 1 */
2640         return 1;
2641 }
2642
2643 struct fdi_m_n {
2644         u32        tu;
2645         u32        gmch_m;
2646         u32        gmch_n;
2647         u32        link_m;
2648         u32        link_n;
2649 };
2650
2651 static void
2652 fdi_reduce_ratio(u32 *num, u32 *den)
2653 {
2654         while (*num > 0xffffff || *den > 0xffffff) {
2655                 *num >>= 1;
2656                 *den >>= 1;
2657         }
2658 }
2659
2660 #define DATA_N 0x800000
2661 #define LINK_N 0x80000
2662
2663 static void
2664 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2665                      int link_clock, struct fdi_m_n *m_n)
2666 {
2667         u64 temp;
2668
2669         m_n->tu = 64; /* default size */
2670
2671         temp = (u64) DATA_N * pixel_clock;
2672         temp = div_u64(temp, link_clock);
2673         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2674         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2675         m_n->gmch_n = DATA_N;
2676         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2677
2678         temp = (u64) LINK_N * pixel_clock;
2679         m_n->link_m = div_u64(temp, link_clock);
2680         m_n->link_n = LINK_N;
2681         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2682 }
2683
2684
2685 struct intel_watermark_params {
2686         unsigned long fifo_size;
2687         unsigned long max_wm;
2688         unsigned long default_wm;
2689         unsigned long guard_size;
2690         unsigned long cacheline_size;
2691 };
2692
2693 /* Pineview has different values for various configs */
2694 static struct intel_watermark_params pineview_display_wm = {
2695         PINEVIEW_DISPLAY_FIFO,
2696         PINEVIEW_MAX_WM,
2697         PINEVIEW_DFT_WM,
2698         PINEVIEW_GUARD_WM,
2699         PINEVIEW_FIFO_LINE_SIZE
2700 };
2701 static struct intel_watermark_params pineview_display_hplloff_wm = {
2702         PINEVIEW_DISPLAY_FIFO,
2703         PINEVIEW_MAX_WM,
2704         PINEVIEW_DFT_HPLLOFF_WM,
2705         PINEVIEW_GUARD_WM,
2706         PINEVIEW_FIFO_LINE_SIZE
2707 };
2708 static struct intel_watermark_params pineview_cursor_wm = {
2709         PINEVIEW_CURSOR_FIFO,
2710         PINEVIEW_CURSOR_MAX_WM,
2711         PINEVIEW_CURSOR_DFT_WM,
2712         PINEVIEW_CURSOR_GUARD_WM,
2713         PINEVIEW_FIFO_LINE_SIZE,
2714 };
2715 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2716         PINEVIEW_CURSOR_FIFO,
2717         PINEVIEW_CURSOR_MAX_WM,
2718         PINEVIEW_CURSOR_DFT_WM,
2719         PINEVIEW_CURSOR_GUARD_WM,
2720         PINEVIEW_FIFO_LINE_SIZE
2721 };
2722 static struct intel_watermark_params g4x_wm_info = {
2723         G4X_FIFO_SIZE,
2724         G4X_MAX_WM,
2725         G4X_MAX_WM,
2726         2,
2727         G4X_FIFO_LINE_SIZE,
2728 };
2729 static struct intel_watermark_params g4x_cursor_wm_info = {
2730         I965_CURSOR_FIFO,
2731         I965_CURSOR_MAX_WM,
2732         I965_CURSOR_DFT_WM,
2733         2,
2734         G4X_FIFO_LINE_SIZE,
2735 };
2736 static struct intel_watermark_params i965_cursor_wm_info = {
2737         I965_CURSOR_FIFO,
2738         I965_CURSOR_MAX_WM,
2739         I965_CURSOR_DFT_WM,
2740         2,
2741         I915_FIFO_LINE_SIZE,
2742 };
2743 static struct intel_watermark_params i945_wm_info = {
2744         I945_FIFO_SIZE,
2745         I915_MAX_WM,
2746         1,
2747         2,
2748         I915_FIFO_LINE_SIZE
2749 };
2750 static struct intel_watermark_params i915_wm_info = {
2751         I915_FIFO_SIZE,
2752         I915_MAX_WM,
2753         1,
2754         2,
2755         I915_FIFO_LINE_SIZE
2756 };
2757 static struct intel_watermark_params i855_wm_info = {
2758         I855GM_FIFO_SIZE,
2759         I915_MAX_WM,
2760         1,
2761         2,
2762         I830_FIFO_LINE_SIZE
2763 };
2764 static struct intel_watermark_params i830_wm_info = {
2765         I830_FIFO_SIZE,
2766         I915_MAX_WM,
2767         1,
2768         2,
2769         I830_FIFO_LINE_SIZE
2770 };
2771
2772 static struct intel_watermark_params ironlake_display_wm_info = {
2773         ILK_DISPLAY_FIFO,
2774         ILK_DISPLAY_MAXWM,
2775         ILK_DISPLAY_DFTWM,
2776         2,
2777         ILK_FIFO_LINE_SIZE
2778 };
2779
2780 static struct intel_watermark_params ironlake_cursor_wm_info = {
2781         ILK_CURSOR_FIFO,
2782         ILK_CURSOR_MAXWM,
2783         ILK_CURSOR_DFTWM,
2784         2,
2785         ILK_FIFO_LINE_SIZE
2786 };
2787
2788 static struct intel_watermark_params ironlake_display_srwm_info = {
2789         ILK_DISPLAY_SR_FIFO,
2790         ILK_DISPLAY_MAX_SRWM,
2791         ILK_DISPLAY_DFT_SRWM,
2792         2,
2793         ILK_FIFO_LINE_SIZE
2794 };
2795
2796 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2797         ILK_CURSOR_SR_FIFO,
2798         ILK_CURSOR_MAX_SRWM,
2799         ILK_CURSOR_DFT_SRWM,
2800         2,
2801         ILK_FIFO_LINE_SIZE
2802 };
2803
2804 /**
2805  * intel_calculate_wm - calculate watermark level
2806  * @clock_in_khz: pixel clock
2807  * @wm: chip FIFO params
2808  * @pixel_size: display pixel size
2809  * @latency_ns: memory latency for the platform
2810  *
2811  * Calculate the watermark level (the level at which the display plane will
2812  * start fetching from memory again).  Each chip has a different display
2813  * FIFO size and allocation, so the caller needs to figure that out and pass
2814  * in the correct intel_watermark_params structure.
2815  *
2816  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2817  * on the pixel size.  When it reaches the watermark level, it'll start
2818  * fetching FIFO line sized based chunks from memory until the FIFO fills
2819  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2820  * will occur, and a display engine hang could result.
2821  */
2822 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2823                                         struct intel_watermark_params *wm,
2824                                         int pixel_size,
2825                                         unsigned long latency_ns)
2826 {
2827         long entries_required, wm_size;
2828
2829         /*
2830          * Note: we need to make sure we don't overflow for various clock &
2831          * latency values.
2832          * clocks go from a few thousand to several hundred thousand.
2833          * latency is usually a few thousand
2834          */
2835         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2836                 1000;
2837         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2838
2839         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2840
2841         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2842
2843         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2844
2845         /* Don't promote wm_size to unsigned... */
2846         if (wm_size > (long)wm->max_wm)
2847                 wm_size = wm->max_wm;
2848         if (wm_size <= 0) {
2849                 wm_size = wm->default_wm;
2850                 DRM_ERROR("Insufficient FIFO for plane, expect flickering:"
2851                           " entries required = %ld, available = %lu.\n",
2852                           entries_required + wm->guard_size,
2853                           wm->fifo_size);
2854         }
2855
2856         return wm_size;
2857 }
2858
2859 struct cxsr_latency {
2860         int is_desktop;
2861         int is_ddr3;
2862         unsigned long fsb_freq;
2863         unsigned long mem_freq;
2864         unsigned long display_sr;
2865         unsigned long display_hpll_disable;
2866         unsigned long cursor_sr;
2867         unsigned long cursor_hpll_disable;
2868 };
2869
2870 static struct cxsr_latency cxsr_latency_table[] = {
2871         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2872         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2873         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2874         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
2875         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
2876
2877         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2878         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2879         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2880         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
2881         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
2882
2883         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2884         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2885         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2886         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
2887         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
2888
2889         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2890         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2891         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2892         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
2893         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
2894
2895         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2896         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2897         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2898         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
2899         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
2900
2901         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2902         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2903         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2904         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
2905         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
2906 };
2907
2908 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3, 
2909                                                    int fsb, int mem)
2910 {
2911         int i;
2912         struct cxsr_latency *latency;
2913
2914         if (fsb == 0 || mem == 0)
2915                 return NULL;
2916
2917         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2918                 latency = &cxsr_latency_table[i];
2919                 if (is_desktop == latency->is_desktop &&
2920                     is_ddr3 == latency->is_ddr3 &&
2921                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2922                         return latency;
2923         }
2924
2925         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2926
2927         return NULL;
2928 }
2929
2930 static void pineview_disable_cxsr(struct drm_device *dev)
2931 {
2932         struct drm_i915_private *dev_priv = dev->dev_private;
2933         u32 reg;
2934
2935         /* deactivate cxsr */
2936         reg = I915_READ(DSPFW3);
2937         reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2938         I915_WRITE(DSPFW3, reg);
2939         DRM_INFO("Big FIFO is disabled\n");
2940 }
2941
2942 /*
2943  * Latency for FIFO fetches is dependent on several factors:
2944  *   - memory configuration (speed, channels)
2945  *   - chipset
2946  *   - current MCH state
2947  * It can be fairly high in some situations, so here we assume a fairly
2948  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2949  * set this value too high, the FIFO will fetch frequently to stay full)
2950  * and power consumption (set it too low to save power and we might see
2951  * FIFO underruns and display "flicker").
2952  *
2953  * A value of 5us seems to be a good balance; safe for very low end
2954  * platforms but not overly aggressive on lower latency configs.
2955  */
2956 static const int latency_ns = 5000;
2957
2958 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2959 {
2960         struct drm_i915_private *dev_priv = dev->dev_private;
2961         uint32_t dsparb = I915_READ(DSPARB);
2962         int size;
2963
2964         size = dsparb & 0x7f;
2965         if (plane)
2966                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
2967
2968         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2969                         plane ? "B" : "A", size);
2970
2971         return size;
2972 }
2973
2974 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2975 {
2976         struct drm_i915_private *dev_priv = dev->dev_private;
2977         uint32_t dsparb = I915_READ(DSPARB);
2978         int size;
2979
2980         size = dsparb & 0x1ff;
2981         if (plane)
2982                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
2983         size >>= 1; /* Convert to cachelines */
2984
2985         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2986                         plane ? "B" : "A", size);
2987
2988         return size;
2989 }
2990
2991 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2992 {
2993         struct drm_i915_private *dev_priv = dev->dev_private;
2994         uint32_t dsparb = I915_READ(DSPARB);
2995         int size;
2996
2997         size = dsparb & 0x7f;
2998         size >>= 2; /* Convert to cachelines */
2999
3000         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3001                         plane ? "B" : "A",
3002                   size);
3003
3004         return size;
3005 }
3006
3007 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3008 {
3009         struct drm_i915_private *dev_priv = dev->dev_private;
3010         uint32_t dsparb = I915_READ(DSPARB);
3011         int size;
3012
3013         size = dsparb & 0x7f;
3014         size >>= 1; /* Convert to cachelines */
3015
3016         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3017                         plane ? "B" : "A", size);
3018
3019         return size;
3020 }
3021
3022 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
3023                           int planeb_clock, int sr_hdisplay, int unused,
3024                           int pixel_size)
3025 {
3026         struct drm_i915_private *dev_priv = dev->dev_private;
3027         u32 reg;
3028         unsigned long wm;
3029         struct cxsr_latency *latency;
3030         int sr_clock;
3031
3032         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3, 
3033                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3034         if (!latency) {
3035                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3036                 pineview_disable_cxsr(dev);
3037                 return;
3038         }
3039
3040         if (!planea_clock || !planeb_clock) {
3041                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3042
3043                 /* Display SR */
3044                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3045                                         pixel_size, latency->display_sr);
3046                 reg = I915_READ(DSPFW1);
3047                 reg &= ~DSPFW_SR_MASK;
3048                 reg |= wm << DSPFW_SR_SHIFT;
3049                 I915_WRITE(DSPFW1, reg);
3050                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3051
3052                 /* cursor SR */
3053                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3054                                         pixel_size, latency->cursor_sr);
3055                 reg = I915_READ(DSPFW3);
3056                 reg &= ~DSPFW_CURSOR_SR_MASK;
3057                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3058                 I915_WRITE(DSPFW3, reg);
3059
3060                 /* Display HPLL off SR */
3061                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3062                                         pixel_size, latency->display_hpll_disable);
3063                 reg = I915_READ(DSPFW3);
3064                 reg &= ~DSPFW_HPLL_SR_MASK;
3065                 reg |= wm & DSPFW_HPLL_SR_MASK;
3066                 I915_WRITE(DSPFW3, reg);
3067
3068                 /* cursor HPLL off SR */
3069                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3070                                         pixel_size, latency->cursor_hpll_disable);
3071                 reg = I915_READ(DSPFW3);
3072                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3073                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3074                 I915_WRITE(DSPFW3, reg);
3075                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3076
3077                 /* activate cxsr */
3078                 reg = I915_READ(DSPFW3);
3079                 reg |= PINEVIEW_SELF_REFRESH_EN;
3080                 I915_WRITE(DSPFW3, reg);
3081                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3082         } else {
3083                 pineview_disable_cxsr(dev);
3084                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3085         }
3086 }
3087
3088 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
3089                           int planeb_clock, int sr_hdisplay, int sr_htotal,
3090                           int pixel_size)
3091 {
3092         struct drm_i915_private *dev_priv = dev->dev_private;
3093         int total_size, cacheline_size;
3094         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3095         struct intel_watermark_params planea_params, planeb_params;
3096         unsigned long line_time_us;
3097         int sr_clock, sr_entries = 0, entries_required;
3098
3099         /* Create copies of the base settings for each pipe */
3100         planea_params = planeb_params = g4x_wm_info;
3101
3102         /* Grab a couple of global values before we overwrite them */
3103         total_size = planea_params.fifo_size;
3104         cacheline_size = planea_params.cacheline_size;
3105
3106         /*
3107          * Note: we need to make sure we don't overflow for various clock &
3108          * latency values.
3109          * clocks go from a few thousand to several hundred thousand.
3110          * latency is usually a few thousand
3111          */
3112         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3113                 1000;
3114         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3115         planea_wm = entries_required + planea_params.guard_size;
3116
3117         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3118                 1000;
3119         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3120         planeb_wm = entries_required + planeb_params.guard_size;
3121
3122         cursora_wm = cursorb_wm = 16;
3123         cursor_sr = 32;
3124
3125         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3126
3127         /* Calc sr entries for one plane configs */
3128         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3129                 /* self-refresh has much higher latency */
3130                 static const int sr_latency_ns = 12000;
3131
3132                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3133                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3134
3135                 /* Use ns/us then divide to preserve precision */
3136                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3137                               pixel_size * sr_hdisplay;
3138                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3139
3140                 entries_required = (((sr_latency_ns / line_time_us) +
3141                                      1000) / 1000) * pixel_size * 64;
3142                 entries_required = DIV_ROUND_UP(entries_required,
3143                                            g4x_cursor_wm_info.cacheline_size);
3144                 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3145
3146                 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3147                         cursor_sr = g4x_cursor_wm_info.max_wm;
3148                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3149                               "cursor %d\n", sr_entries, cursor_sr);
3150
3151                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3152         } else {
3153                 /* Turn off self refresh if both pipes are enabled */
3154                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3155                                         & ~FW_BLC_SELF_EN);
3156         }
3157
3158         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3159                   planea_wm, planeb_wm, sr_entries);
3160
3161         planea_wm &= 0x3f;
3162         planeb_wm &= 0x3f;
3163
3164         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3165                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3166                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3167         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3168                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3169         /* HPLL off in SR has some issues on G4x... disable it */
3170         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3171                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3172 }
3173
3174 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3175                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3176                            int pixel_size)
3177 {
3178         struct drm_i915_private *dev_priv = dev->dev_private;
3179         unsigned long line_time_us;
3180         int sr_clock, sr_entries, srwm = 1;
3181         int cursor_sr = 16;
3182
3183         /* Calc sr entries for one plane configs */
3184         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3185                 /* self-refresh has much higher latency */
3186                 static const int sr_latency_ns = 12000;
3187
3188                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3189                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3190
3191                 /* Use ns/us then divide to preserve precision */
3192                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3193                               pixel_size * sr_hdisplay;
3194                 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3195                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3196                 srwm = I965_FIFO_SIZE - sr_entries;
3197                 if (srwm < 0)
3198                         srwm = 1;
3199                 srwm &= 0x1ff;
3200
3201                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3202                              pixel_size * 64;
3203                 sr_entries = DIV_ROUND_UP(sr_entries,
3204                                           i965_cursor_wm_info.cacheline_size);
3205                 cursor_sr = i965_cursor_wm_info.fifo_size -
3206                             (sr_entries + i965_cursor_wm_info.guard_size);
3207
3208                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3209                         cursor_sr = i965_cursor_wm_info.max_wm;
3210
3211                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3212                               "cursor %d\n", srwm, cursor_sr);
3213
3214                 if (IS_I965GM(dev))
3215                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3216         } else {
3217                 /* Turn off self refresh if both pipes are enabled */
3218                 if (IS_I965GM(dev))
3219                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3220                                    & ~FW_BLC_SELF_EN);
3221         }
3222
3223         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3224                       srwm);
3225
3226         /* 965 has limitations... */
3227         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3228                    (8 << 0));
3229         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3230         /* update cursor SR watermark */
3231         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3232 }
3233
3234 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3235                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3236                            int pixel_size)
3237 {
3238         struct drm_i915_private *dev_priv = dev->dev_private;
3239         uint32_t fwater_lo;
3240         uint32_t fwater_hi;
3241         int total_size, cacheline_size, cwm, srwm = 1;
3242         int planea_wm, planeb_wm;
3243         struct intel_watermark_params planea_params, planeb_params;
3244         unsigned long line_time_us;
3245         int sr_clock, sr_entries = 0;
3246
3247         /* Create copies of the base settings for each pipe */
3248         if (IS_I965GM(dev) || IS_I945GM(dev))
3249                 planea_params = planeb_params = i945_wm_info;
3250         else if (IS_I9XX(dev))
3251                 planea_params = planeb_params = i915_wm_info;
3252         else
3253                 planea_params = planeb_params = i855_wm_info;
3254
3255         /* Grab a couple of global values before we overwrite them */
3256         total_size = planea_params.fifo_size;
3257         cacheline_size = planea_params.cacheline_size;
3258
3259         /* Update per-plane FIFO sizes */
3260         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3261         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3262
3263         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3264                                        pixel_size, latency_ns);
3265         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3266                                        pixel_size, latency_ns);
3267         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3268
3269         /*
3270          * Overlay gets an aggressive default since video jitter is bad.
3271          */
3272         cwm = 2;
3273
3274         /* Calc sr entries for one plane configs */
3275         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3276             (!planea_clock || !planeb_clock)) {
3277                 /* self-refresh has much higher latency */
3278                 static const int sr_latency_ns = 6000;
3279
3280                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3281                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3282
3283                 /* Use ns/us then divide to preserve precision */
3284                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3285                               pixel_size * sr_hdisplay;
3286                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3287                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3288                 srwm = total_size - sr_entries;
3289                 if (srwm < 0)
3290                         srwm = 1;
3291
3292                 if (IS_I945G(dev) || IS_I945GM(dev))
3293                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3294                 else if (IS_I915GM(dev)) {
3295                         /* 915M has a smaller SRWM field */
3296                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3297                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3298                 }
3299         } else {
3300                 /* Turn off self refresh if both pipes are enabled */
3301                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3302                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3303                                    & ~FW_BLC_SELF_EN);
3304                 } else if (IS_I915GM(dev)) {
3305                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3306                 }
3307         }
3308
3309         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3310                   planea_wm, planeb_wm, cwm, srwm);
3311
3312         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3313         fwater_hi = (cwm & 0x1f);
3314
3315         /* Set request length to 8 cachelines per fetch */
3316         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3317         fwater_hi = fwater_hi | (1 << 8);
3318
3319         I915_WRITE(FW_BLC, fwater_lo);
3320         I915_WRITE(FW_BLC2, fwater_hi);
3321 }
3322
3323 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3324                            int unused2, int unused3, int pixel_size)
3325 {
3326         struct drm_i915_private *dev_priv = dev->dev_private;
3327         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3328         int planea_wm;
3329
3330         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3331
3332         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3333                                        pixel_size, latency_ns);
3334         fwater_lo |= (3<<8) | planea_wm;
3335
3336         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3337
3338         I915_WRITE(FW_BLC, fwater_lo);
3339 }
3340
3341 #define ILK_LP0_PLANE_LATENCY           700
3342 #define ILK_LP0_CURSOR_LATENCY          1300
3343
3344 static void ironlake_update_wm(struct drm_device *dev,  int planea_clock,
3345                        int planeb_clock, int sr_hdisplay, int sr_htotal,
3346                        int pixel_size)
3347 {
3348         struct drm_i915_private *dev_priv = dev->dev_private;
3349         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3350         int sr_wm, cursor_wm;
3351         unsigned long line_time_us;
3352         int sr_clock, entries_required;
3353         u32 reg_value;
3354         int line_count;
3355         int planea_htotal = 0, planeb_htotal = 0;
3356         struct drm_crtc *crtc;
3357         struct intel_crtc *intel_crtc;
3358
3359         /* Need htotal for all active display plane */
3360         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3361                 intel_crtc = to_intel_crtc(crtc);
3362                 if (crtc->enabled) {
3363                         if (intel_crtc->plane == 0)
3364                                 planea_htotal = crtc->mode.htotal;
3365                         else
3366                                 planeb_htotal = crtc->mode.htotal;
3367                 }
3368         }
3369
3370         /* Calculate and update the watermark for plane A */
3371         if (planea_clock) {
3372                 entries_required = ((planea_clock / 1000) * pixel_size *
3373                                      ILK_LP0_PLANE_LATENCY) / 1000;
3374                 entries_required = DIV_ROUND_UP(entries_required,
3375                                                 ironlake_display_wm_info.cacheline_size);
3376                 planea_wm = entries_required +
3377                             ironlake_display_wm_info.guard_size;
3378
3379                 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3380                         planea_wm = ironlake_display_wm_info.max_wm;
3381
3382                 /* Use the large buffer method to calculate cursor watermark */
3383                 line_time_us = (planea_htotal * 1000) / planea_clock;
3384
3385                 /* Use ns/us then divide to preserve precision */
3386                 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3387
3388                 /* calculate the cursor watermark for cursor A */
3389                 entries_required = line_count * 64 * pixel_size;
3390                 entries_required = DIV_ROUND_UP(entries_required,
3391                                                 ironlake_cursor_wm_info.cacheline_size);
3392                 cursora_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3393                 if (cursora_wm > ironlake_cursor_wm_info.max_wm)
3394                         cursora_wm = ironlake_cursor_wm_info.max_wm;
3395
3396                 reg_value = I915_READ(WM0_PIPEA_ILK);
3397                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3398                 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3399                              (cursora_wm & WM0_PIPE_CURSOR_MASK);
3400                 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3401                 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3402                                 "cursor: %d\n", planea_wm, cursora_wm);
3403         }
3404         /* Calculate and update the watermark for plane B */
3405         if (planeb_clock) {
3406                 entries_required = ((planeb_clock / 1000) * pixel_size *
3407                                      ILK_LP0_PLANE_LATENCY) / 1000;
3408                 entries_required = DIV_ROUND_UP(entries_required,
3409                                                 ironlake_display_wm_info.cacheline_size);
3410                 planeb_wm = entries_required +
3411                             ironlake_display_wm_info.guard_size;
3412
3413                 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3414                         planeb_wm = ironlake_display_wm_info.max_wm;
3415
3416                 /* Use the large buffer method to calculate cursor watermark */
3417                 line_time_us = (planeb_htotal * 1000) / planeb_clock;
3418
3419                 /* Use ns/us then divide to preserve precision */
3420                 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3421
3422                 /* calculate the cursor watermark for cursor B */
3423                 entries_required = line_count * 64 * pixel_size;
3424                 entries_required = DIV_ROUND_UP(entries_required,
3425                                                 ironlake_cursor_wm_info.cacheline_size);
3426                 cursorb_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3427                 if (cursorb_wm > ironlake_cursor_wm_info.max_wm)
3428                         cursorb_wm = ironlake_cursor_wm_info.max_wm;
3429
3430                 reg_value = I915_READ(WM0_PIPEB_ILK);
3431                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3432                 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3433                              (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3434                 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3435                 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3436                                 "cursor: %d\n", planeb_wm, cursorb_wm);
3437         }
3438
3439         /*
3440          * Calculate and update the self-refresh watermark only when one
3441          * display plane is used.
3442          */
3443         if (!planea_clock || !planeb_clock) {
3444
3445                 /* Read the self-refresh latency. The unit is 0.5us */
3446                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3447
3448                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3449                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3450
3451                 /* Use ns/us then divide to preserve precision */
3452                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3453                                / 1000;
3454
3455                 /* calculate the self-refresh watermark for display plane */
3456                 entries_required = line_count * sr_hdisplay * pixel_size;
3457                 entries_required = DIV_ROUND_UP(entries_required,
3458                                                 ironlake_display_srwm_info.cacheline_size);
3459                 sr_wm = entries_required +
3460                         ironlake_display_srwm_info.guard_size;
3461
3462                 /* calculate the self-refresh watermark for display cursor */
3463                 entries_required = line_count * pixel_size * 64;
3464                 entries_required = DIV_ROUND_UP(entries_required,
3465                                                 ironlake_cursor_srwm_info.cacheline_size);
3466                 cursor_wm = entries_required +
3467                             ironlake_cursor_srwm_info.guard_size;
3468
3469                 /* configure watermark and enable self-refresh */
3470                 reg_value = I915_READ(WM1_LP_ILK);
3471                 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3472                                WM1_LP_CURSOR_MASK);
3473                 reg_value |= WM1_LP_SR_EN |
3474                              (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3475                              (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3476
3477                 I915_WRITE(WM1_LP_ILK, reg_value);
3478                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3479                                 "cursor %d\n", sr_wm, cursor_wm);
3480
3481         } else {
3482                 /* Turn off self refresh if both pipes are enabled */
3483                 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3484         }
3485 }
3486 /**
3487  * intel_update_watermarks - update FIFO watermark values based on current modes
3488  *
3489  * Calculate watermark values for the various WM regs based on current mode
3490  * and plane configuration.
3491  *
3492  * There are several cases to deal with here:
3493  *   - normal (i.e. non-self-refresh)
3494  *   - self-refresh (SR) mode
3495  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3496  *   - lines are small relative to FIFO size (buffer can hold more than 2
3497  *     lines), so need to account for TLB latency
3498  *
3499  *   The normal calculation is:
3500  *     watermark = dotclock * bytes per pixel * latency
3501  *   where latency is platform & configuration dependent (we assume pessimal
3502  *   values here).
3503  *
3504  *   The SR calculation is:
3505  *     watermark = (trunc(latency/line time)+1) * surface width *
3506  *       bytes per pixel
3507  *   where
3508  *     line time = htotal / dotclock
3509  *     surface width = hdisplay for normal plane and 64 for cursor
3510  *   and latency is assumed to be high, as above.
3511  *
3512  * The final value programmed to the register should always be rounded up,
3513  * and include an extra 2 entries to account for clock crossings.
3514  *
3515  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3516  * to set the non-SR watermarks to 8.
3517   */
3518 static void intel_update_watermarks(struct drm_device *dev)
3519 {
3520         struct drm_i915_private *dev_priv = dev->dev_private;
3521         struct drm_crtc *crtc;
3522         struct intel_crtc *intel_crtc;
3523         int sr_hdisplay = 0;
3524         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3525         int enabled = 0, pixel_size = 0;
3526         int sr_htotal = 0;
3527
3528         if (!dev_priv->display.update_wm)
3529                 return;
3530
3531         /* Get the clock config from both planes */
3532         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3533                 intel_crtc = to_intel_crtc(crtc);
3534                 if (crtc->enabled) {
3535                         enabled++;
3536                         if (intel_crtc->plane == 0) {
3537                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3538                                           intel_crtc->pipe, crtc->mode.clock);
3539                                 planea_clock = crtc->mode.clock;
3540                         } else {
3541                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3542                                           intel_crtc->pipe, crtc->mode.clock);
3543                                 planeb_clock = crtc->mode.clock;
3544                         }
3545                         sr_hdisplay = crtc->mode.hdisplay;
3546                         sr_clock = crtc->mode.clock;
3547                         sr_htotal = crtc->mode.htotal;
3548                         if (crtc->fb)
3549                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3550                         else
3551                                 pixel_size = 4; /* by default */
3552                 }
3553         }
3554
3555         if (enabled <= 0)
3556                 return;
3557
3558         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3559                                     sr_hdisplay, sr_htotal, pixel_size);
3560 }
3561
3562 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3563                                struct drm_display_mode *mode,
3564                                struct drm_display_mode *adjusted_mode,
3565                                int x, int y,
3566                                struct drm_framebuffer *old_fb)
3567 {
3568         struct drm_device *dev = crtc->dev;
3569         struct drm_i915_private *dev_priv = dev->dev_private;
3570         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3571         int pipe = intel_crtc->pipe;
3572         int plane = intel_crtc->plane;
3573         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3574         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3575         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3576         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3577         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3578         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3579         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3580         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3581         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3582         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3583         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3584         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3585         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3586         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3587         int refclk, num_connectors = 0;
3588         intel_clock_t clock, reduced_clock;
3589         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3590         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3591         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3592         bool is_edp = false;
3593         struct drm_mode_config *mode_config = &dev->mode_config;
3594         struct drm_encoder *encoder;
3595         struct intel_encoder *intel_encoder = NULL;
3596         const intel_limit_t *limit;
3597         int ret;
3598         struct fdi_m_n m_n = {0};
3599         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3600         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3601         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3602         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3603         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3604         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3605         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3606         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3607         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3608         int lvds_reg = LVDS;
3609         u32 temp;
3610         int sdvo_pixel_multiply;
3611         int target_clock;
3612
3613         drm_vblank_pre_modeset(dev, pipe);
3614
3615         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3616
3617                 if (!encoder || encoder->crtc != crtc)
3618                         continue;
3619
3620                 intel_encoder = enc_to_intel_encoder(encoder);
3621
3622                 switch (intel_encoder->type) {
3623                 case INTEL_OUTPUT_LVDS:
3624                         is_lvds = true;
3625                         break;
3626                 case INTEL_OUTPUT_SDVO:
3627                 case INTEL_OUTPUT_HDMI:
3628                         is_sdvo = true;
3629                         if (intel_encoder->needs_tv_clock)
3630                                 is_tv = true;
3631                         break;
3632                 case INTEL_OUTPUT_DVO:
3633                         is_dvo = true;
3634                         break;
3635                 case INTEL_OUTPUT_TVOUT:
3636                         is_tv = true;
3637                         break;
3638                 case INTEL_OUTPUT_ANALOG:
3639                         is_crt = true;
3640                         break;
3641                 case INTEL_OUTPUT_DISPLAYPORT:
3642                         is_dp = true;
3643                         break;
3644                 case INTEL_OUTPUT_EDP:
3645                         is_edp = true;
3646                         break;
3647                 }
3648
3649                 num_connectors++;
3650         }
3651
3652         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3653                 refclk = dev_priv->lvds_ssc_freq * 1000;
3654                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3655                                         refclk / 1000);
3656         } else if (IS_I9XX(dev)) {
3657                 refclk = 96000;
3658                 if (HAS_PCH_SPLIT(dev))
3659                         refclk = 120000; /* 120Mhz refclk */
3660         } else {
3661                 refclk = 48000;
3662         }
3663         
3664
3665         /*
3666          * Returns a set of divisors for the desired target clock with the given
3667          * refclk, or FALSE.  The returned values represent the clock equation:
3668          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3669          */
3670         limit = intel_limit(crtc);
3671         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3672         if (!ok) {
3673                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3674                 drm_vblank_post_modeset(dev, pipe);
3675                 return -EINVAL;
3676         }
3677
3678         /* Ensure that the cursor is valid for the new mode before changing... */
3679         intel_crtc_update_cursor(crtc);
3680
3681         if (is_lvds && dev_priv->lvds_downclock_avail) {
3682                 has_reduced_clock = limit->find_pll(limit, crtc,
3683                                                             dev_priv->lvds_downclock,
3684                                                             refclk,
3685                                                             &reduced_clock);
3686                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3687                         /*
3688                          * If the different P is found, it means that we can't
3689                          * switch the display clock by using the FP0/FP1.
3690                          * In such case we will disable the LVDS downclock
3691                          * feature.
3692                          */
3693                         DRM_DEBUG_KMS("Different P is found for "
3694                                                 "LVDS clock/downclock\n");
3695                         has_reduced_clock = 0;
3696                 }
3697         }
3698         /* SDVO TV has fixed PLL values depend on its clock range,
3699            this mirrors vbios setting. */
3700         if (is_sdvo && is_tv) {
3701                 if (adjusted_mode->clock >= 100000
3702                                 && adjusted_mode->clock < 140500) {
3703                         clock.p1 = 2;
3704                         clock.p2 = 10;
3705                         clock.n = 3;
3706                         clock.m1 = 16;
3707                         clock.m2 = 8;
3708                 } else if (adjusted_mode->clock >= 140500
3709                                 && adjusted_mode->clock <= 200000) {
3710                         clock.p1 = 1;
3711                         clock.p2 = 10;
3712                         clock.n = 6;
3713                         clock.m1 = 12;
3714                         clock.m2 = 8;
3715                 }
3716         }
3717
3718         /* FDI link */
3719         if (HAS_PCH_SPLIT(dev)) {
3720                 int lane = 0, link_bw, bpp;
3721                 /* eDP doesn't require FDI link, so just set DP M/N
3722                    according to current link config */
3723                 if (is_edp) {
3724                         target_clock = mode->clock;
3725                         intel_edp_link_config(intel_encoder,
3726                                         &lane, &link_bw);
3727                 } else {
3728                         /* DP over FDI requires target mode clock
3729                            instead of link clock */
3730                         if (is_dp)
3731                                 target_clock = mode->clock;
3732                         else
3733                                 target_clock = adjusted_mode->clock;
3734                         link_bw = 270000;
3735                 }
3736
3737                 /* determine panel color depth */
3738                 temp = I915_READ(pipeconf_reg);
3739                 temp &= ~PIPE_BPC_MASK;
3740                 if (is_lvds) {
3741                         int lvds_reg = I915_READ(PCH_LVDS);
3742                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3743                         if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3744                                 temp |= PIPE_8BPC;
3745                         else
3746                                 temp |= PIPE_6BPC;
3747                 } else if (is_edp || (is_dp && intel_pch_has_edp(crtc))) {
3748                         switch (dev_priv->edp_bpp/3) {
3749                         case 8:
3750                                 temp |= PIPE_8BPC;
3751                                 break;
3752                         case 10:
3753                                 temp |= PIPE_10BPC;
3754                                 break;
3755                         case 6:
3756                                 temp |= PIPE_6BPC;
3757                                 break;
3758                         case 12:
3759                                 temp |= PIPE_12BPC;
3760                                 break;
3761                         }
3762                 } else
3763                         temp |= PIPE_8BPC;
3764                 I915_WRITE(pipeconf_reg, temp);
3765                 I915_READ(pipeconf_reg);
3766
3767                 switch (temp & PIPE_BPC_MASK) {
3768                 case PIPE_8BPC:
3769                         bpp = 24;
3770                         break;
3771                 case PIPE_10BPC:
3772                         bpp = 30;
3773                         break;
3774                 case PIPE_6BPC:
3775                         bpp = 18;
3776                         break;
3777                 case PIPE_12BPC:
3778                         bpp = 36;
3779                         break;
3780                 default:
3781                         DRM_ERROR("unknown pipe bpc value\n");
3782                         bpp = 24;
3783                 }
3784
3785                 if (!lane) {
3786                         /* 
3787                          * Account for spread spectrum to avoid
3788                          * oversubscribing the link. Max center spread
3789                          * is 2.5%; use 5% for safety's sake.
3790                          */
3791                         u32 bps = target_clock * bpp * 21 / 20;
3792                         lane = bps / (link_bw * 8) + 1;
3793                 }
3794
3795                 intel_crtc->fdi_lanes = lane;
3796
3797                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3798         }
3799
3800         /* Ironlake: try to setup display ref clock before DPLL
3801          * enabling. This is only under driver's control after
3802          * PCH B stepping, previous chipset stepping should be
3803          * ignoring this setting.
3804          */
3805         if (HAS_PCH_SPLIT(dev)) {
3806                 temp = I915_READ(PCH_DREF_CONTROL);
3807                 /* Always enable nonspread source */
3808                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3809                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3810                 I915_WRITE(PCH_DREF_CONTROL, temp);
3811                 POSTING_READ(PCH_DREF_CONTROL);
3812
3813                 temp &= ~DREF_SSC_SOURCE_MASK;
3814                 temp |= DREF_SSC_SOURCE_ENABLE;
3815                 I915_WRITE(PCH_DREF_CONTROL, temp);
3816                 POSTING_READ(PCH_DREF_CONTROL);
3817
3818                 udelay(200);
3819
3820                 if (is_edp) {
3821                         if (dev_priv->lvds_use_ssc) {
3822                                 temp |= DREF_SSC1_ENABLE;
3823                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3824                                 POSTING_READ(PCH_DREF_CONTROL);
3825
3826                                 udelay(200);
3827
3828                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3829                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3830                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3831                                 POSTING_READ(PCH_DREF_CONTROL);
3832                         } else {
3833                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3834                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3835                                 POSTING_READ(PCH_DREF_CONTROL);
3836                         }
3837                 }
3838         }
3839
3840         if (IS_PINEVIEW(dev)) {
3841                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3842                 if (has_reduced_clock)
3843                         fp2 = (1 << reduced_clock.n) << 16 |
3844                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3845         } else {
3846                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3847                 if (has_reduced_clock)
3848                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3849                                 reduced_clock.m2;
3850         }
3851
3852         if (!HAS_PCH_SPLIT(dev))
3853                 dpll = DPLL_VGA_MODE_DIS;
3854
3855         if (IS_I9XX(dev)) {
3856                 if (is_lvds)
3857                         dpll |= DPLLB_MODE_LVDS;
3858                 else
3859                         dpll |= DPLLB_MODE_DAC_SERIAL;
3860                 if (is_sdvo) {
3861                         dpll |= DPLL_DVO_HIGH_SPEED;
3862                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3863                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3864                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3865                         else if (HAS_PCH_SPLIT(dev))
3866                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3867                 }
3868                 if (is_dp)
3869                         dpll |= DPLL_DVO_HIGH_SPEED;
3870
3871                 /* compute bitmask from p1 value */
3872                 if (IS_PINEVIEW(dev))
3873                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3874                 else {
3875                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3876                         /* also FPA1 */
3877                         if (HAS_PCH_SPLIT(dev))
3878                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3879                         if (IS_G4X(dev) && has_reduced_clock)
3880                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3881                 }
3882                 switch (clock.p2) {
3883                 case 5:
3884                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3885                         break;
3886                 case 7:
3887                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3888                         break;
3889                 case 10:
3890                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3891                         break;
3892                 case 14:
3893                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3894                         break;
3895                 }
3896                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3897                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3898         } else {
3899                 if (is_lvds) {
3900                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3901                 } else {
3902                         if (clock.p1 == 2)
3903                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3904                         else
3905                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3906                         if (clock.p2 == 4)
3907                                 dpll |= PLL_P2_DIVIDE_BY_4;
3908                 }
3909         }
3910
3911         if (is_sdvo && is_tv)
3912                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3913         else if (is_tv)
3914                 /* XXX: just matching BIOS for now */
3915                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3916                 dpll |= 3;
3917         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3918                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3919         else
3920                 dpll |= PLL_REF_INPUT_DREFCLK;
3921
3922         /* setup pipeconf */
3923         pipeconf = I915_READ(pipeconf_reg);
3924
3925         /* Set up the display plane register */
3926         dspcntr = DISPPLANE_GAMMA_ENABLE;
3927
3928         /* Ironlake's plane is forced to pipe, bit 24 is to
3929            enable color space conversion */
3930         if (!HAS_PCH_SPLIT(dev)) {
3931                 if (pipe == 0)
3932                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3933                 else
3934                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3935         }
3936
3937         if (pipe == 0 && !IS_I965G(dev)) {
3938                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3939                  * core speed.
3940                  *
3941                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3942                  * pipe == 0 check?
3943                  */
3944                 if (mode->clock >
3945                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3946                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3947                 else
3948                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3949         }
3950
3951         dspcntr |= DISPLAY_PLANE_ENABLE;
3952         pipeconf |= PIPEACONF_ENABLE;
3953         dpll |= DPLL_VCO_ENABLE;
3954
3955
3956         /* Disable the panel fitter if it was on our pipe */
3957         if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3958                 I915_WRITE(PFIT_CONTROL, 0);
3959
3960         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3961         drm_mode_debug_printmodeline(mode);
3962
3963         /* assign to Ironlake registers */
3964         if (HAS_PCH_SPLIT(dev)) {
3965                 fp_reg = pch_fp_reg;
3966                 dpll_reg = pch_dpll_reg;
3967         }
3968
3969         if (is_edp) {
3970                 ironlake_disable_pll_edp(crtc);
3971         } else if ((dpll & DPLL_VCO_ENABLE)) {
3972                 I915_WRITE(fp_reg, fp);
3973                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3974                 I915_READ(dpll_reg);
3975                 udelay(150);
3976         }
3977
3978         /* enable transcoder DPLL */
3979         if (HAS_PCH_CPT(dev)) {
3980                 temp = I915_READ(PCH_DPLL_SEL);
3981                 if (trans_dpll_sel == 0)
3982                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3983                 else
3984                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3985                 I915_WRITE(PCH_DPLL_SEL, temp);
3986                 I915_READ(PCH_DPLL_SEL);
3987                 udelay(150);
3988         }
3989
3990         if (HAS_PCH_SPLIT(dev)) {
3991                 pipeconf &= ~PIPE_ENABLE_DITHER;
3992                 pipeconf &= ~PIPE_DITHER_TYPE_MASK;
3993         }
3994
3995         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3996          * This is an exception to the general rule that mode_set doesn't turn
3997          * things on.
3998          */
3999         if (is_lvds) {
4000                 u32 lvds;
4001
4002                 if (HAS_PCH_SPLIT(dev))
4003                         lvds_reg = PCH_LVDS;
4004
4005                 lvds = I915_READ(lvds_reg);
4006                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4007                 if (pipe == 1) {
4008                         if (HAS_PCH_CPT(dev))
4009                                 lvds |= PORT_TRANS_B_SEL_CPT;
4010                         else
4011                                 lvds |= LVDS_PIPEB_SELECT;
4012                 } else {
4013                         if (HAS_PCH_CPT(dev))
4014                                 lvds &= ~PORT_TRANS_SEL_MASK;
4015                         else
4016                                 lvds &= ~LVDS_PIPEB_SELECT;
4017                 }
4018                 /* set the corresponsding LVDS_BORDER bit */
4019                 lvds |= dev_priv->lvds_border_bits;
4020                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4021                  * set the DPLLs for dual-channel mode or not.
4022                  */
4023                 if (clock.p2 == 7)
4024                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4025                 else
4026                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4027
4028                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4029                  * appropriately here, but we need to look more thoroughly into how
4030                  * panels behave in the two modes.
4031                  */
4032                 /* set the dithering flag */
4033                 if (IS_I965G(dev)) {
4034                         if (dev_priv->lvds_dither) {
4035                                 if (HAS_PCH_SPLIT(dev)) {
4036                                         pipeconf |= PIPE_ENABLE_DITHER;
4037                                         pipeconf |= PIPE_DITHER_TYPE_ST01;
4038                                 } else
4039                                         lvds |= LVDS_ENABLE_DITHER;
4040                         } else {
4041                                 if (!HAS_PCH_SPLIT(dev)) {
4042                                         lvds &= ~LVDS_ENABLE_DITHER;
4043                                 }
4044                         }
4045                 }
4046                 I915_WRITE(lvds_reg, lvds);
4047                 I915_READ(lvds_reg);
4048         }
4049         if (is_dp)
4050                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4051         else if (HAS_PCH_SPLIT(dev)) {
4052                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4053                 if (pipe == 0) {
4054                         I915_WRITE(TRANSA_DATA_M1, 0);
4055                         I915_WRITE(TRANSA_DATA_N1, 0);
4056                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
4057                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
4058                 } else {
4059                         I915_WRITE(TRANSB_DATA_M1, 0);
4060                         I915_WRITE(TRANSB_DATA_N1, 0);
4061                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
4062                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
4063                 }
4064         }
4065
4066         if (!is_edp) {
4067                 I915_WRITE(fp_reg, fp);
4068                 I915_WRITE(dpll_reg, dpll);
4069                 I915_READ(dpll_reg);
4070                 /* Wait for the clocks to stabilize. */
4071                 udelay(150);
4072
4073                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
4074                         if (is_sdvo) {
4075                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
4076                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
4077                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
4078                         } else
4079                                 I915_WRITE(dpll_md_reg, 0);
4080                 } else {
4081                         /* write it again -- the BIOS does, after all */
4082                         I915_WRITE(dpll_reg, dpll);
4083                 }
4084                 I915_READ(dpll_reg);
4085                 /* Wait for the clocks to stabilize. */
4086                 udelay(150);
4087         }
4088
4089         if (is_lvds && has_reduced_clock && i915_powersave) {
4090                 I915_WRITE(fp_reg + 4, fp2);
4091                 intel_crtc->lowfreq_avail = true;
4092                 if (HAS_PIPE_CXSR(dev)) {
4093                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4094                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4095                 }
4096         } else {
4097                 I915_WRITE(fp_reg + 4, fp);
4098                 intel_crtc->lowfreq_avail = false;
4099                 if (HAS_PIPE_CXSR(dev)) {
4100                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4101                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4102                 }
4103         }
4104
4105         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4106                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4107                 /* the chip adds 2 halflines automatically */
4108                 adjusted_mode->crtc_vdisplay -= 1;
4109                 adjusted_mode->crtc_vtotal -= 1;
4110                 adjusted_mode->crtc_vblank_start -= 1;
4111                 adjusted_mode->crtc_vblank_end -= 1;
4112                 adjusted_mode->crtc_vsync_end -= 1;
4113                 adjusted_mode->crtc_vsync_start -= 1;
4114         } else
4115                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4116
4117         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
4118                    ((adjusted_mode->crtc_htotal - 1) << 16));
4119         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
4120                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4121         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
4122                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4123         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
4124                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4125         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
4126                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4127         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
4128                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4129         /* pipesrc and dspsize control the size that is scaled from, which should
4130          * always be the user's requested size.
4131          */
4132         if (!HAS_PCH_SPLIT(dev)) {
4133                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
4134                                 (mode->hdisplay - 1));
4135                 I915_WRITE(dsppos_reg, 0);
4136         }
4137         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4138
4139         if (HAS_PCH_SPLIT(dev)) {
4140                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
4141                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
4142                 I915_WRITE(link_m1_reg, m_n.link_m);
4143                 I915_WRITE(link_n1_reg, m_n.link_n);
4144
4145                 if (is_edp) {
4146                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4147                 } else {
4148                         /* enable FDI RX PLL too */
4149                         temp = I915_READ(fdi_rx_reg);
4150                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
4151                         I915_READ(fdi_rx_reg);
4152                         udelay(200);
4153
4154                         /* enable FDI TX PLL too */
4155                         temp = I915_READ(fdi_tx_reg);
4156                         I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
4157                         I915_READ(fdi_tx_reg);
4158
4159                         /* enable FDI RX PCDCLK */
4160                         temp = I915_READ(fdi_rx_reg);
4161                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
4162                         I915_READ(fdi_rx_reg);
4163                         udelay(200);
4164                 }
4165         }
4166
4167         I915_WRITE(pipeconf_reg, pipeconf);
4168         I915_READ(pipeconf_reg);
4169
4170         intel_wait_for_vblank(dev);
4171
4172         if (IS_IRONLAKE(dev)) {
4173                 /* enable address swizzle for tiling buffer */
4174                 temp = I915_READ(DISP_ARB_CTL);
4175                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4176         }
4177
4178         I915_WRITE(dspcntr_reg, dspcntr);
4179
4180         /* Flush the plane changes */
4181         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4182
4183         if ((IS_I965G(dev) || plane == 0))
4184                 intel_update_fbc(crtc, &crtc->mode);
4185
4186         intel_update_watermarks(dev);
4187
4188         drm_vblank_post_modeset(dev, pipe);
4189
4190         return ret;
4191 }
4192
4193 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4194 void intel_crtc_load_lut(struct drm_crtc *crtc)
4195 {
4196         struct drm_device *dev = crtc->dev;
4197         struct drm_i915_private *dev_priv = dev->dev_private;
4198         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4199         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4200         int i;
4201
4202         /* The clocks have to be on to load the palette. */
4203         if (!crtc->enabled)
4204                 return;
4205
4206         /* use legacy palette for Ironlake */
4207         if (HAS_PCH_SPLIT(dev))
4208                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4209                                                    LGC_PALETTE_B;
4210
4211         for (i = 0; i < 256; i++) {
4212                 I915_WRITE(palreg + 4 * i,
4213                            (intel_crtc->lut_r[i] << 16) |
4214                            (intel_crtc->lut_g[i] << 8) |
4215                            intel_crtc->lut_b[i]);
4216         }
4217 }
4218
4219 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4220 static void intel_crtc_update_cursor(struct drm_crtc *crtc)
4221 {
4222         struct drm_device *dev = crtc->dev;
4223         struct drm_i915_private *dev_priv = dev->dev_private;
4224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4225         int pipe = intel_crtc->pipe;
4226         int x = intel_crtc->cursor_x;
4227         int y = intel_crtc->cursor_y;
4228         uint32_t base, pos;
4229         bool visible;
4230
4231         pos = 0;
4232
4233         if (crtc->fb) {
4234                 base = intel_crtc->cursor_addr;
4235                 if (x > (int) crtc->fb->width)
4236                         base = 0;
4237
4238                 if (y > (int) crtc->fb->height)
4239                         base = 0;
4240         } else
4241                 base = 0;
4242
4243         if (x < 0) {
4244                 if (x + intel_crtc->cursor_width < 0)
4245                         base = 0;
4246
4247                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4248                 x = -x;
4249         }
4250         pos |= x << CURSOR_X_SHIFT;
4251
4252         if (y < 0) {
4253                 if (y + intel_crtc->cursor_height < 0)
4254                         base = 0;
4255
4256                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4257                 y = -y;
4258         }
4259         pos |= y << CURSOR_Y_SHIFT;
4260
4261         visible = base != 0;
4262         if (!visible && !intel_crtc->cursor_visble)
4263                 return;
4264
4265         I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4266         if (intel_crtc->cursor_visble != visible) {
4267                 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4268                 if (base) {
4269                         /* Hooray for CUR*CNTR differences */
4270                         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
4271                                 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4272                                 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4273                                 cntl |= pipe << 28; /* Connect to correct pipe */
4274                         } else {
4275                                 cntl &= ~(CURSOR_FORMAT_MASK);
4276                                 cntl |= CURSOR_ENABLE;
4277                                 cntl |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
4278                         }
4279                 } else {
4280                         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
4281                                 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4282                                 cntl |= CURSOR_MODE_DISABLE;
4283                         } else {
4284                                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4285                         }
4286                 }
4287                 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4288
4289                 intel_crtc->cursor_visble = visible;
4290         }
4291         /* and commit changes on next vblank */
4292         I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4293
4294         if (visible)
4295                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4296 }
4297
4298 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4299                                  struct drm_file *file_priv,
4300                                  uint32_t handle,
4301                                  uint32_t width, uint32_t height)
4302 {
4303         struct drm_device *dev = crtc->dev;
4304         struct drm_i915_private *dev_priv = dev->dev_private;
4305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4306         struct drm_gem_object *bo;
4307         struct drm_i915_gem_object *obj_priv;
4308         uint32_t addr;
4309         int ret;
4310
4311         DRM_DEBUG_KMS("\n");
4312
4313         /* if we want to turn off the cursor ignore width and height */
4314         if (!handle) {
4315                 DRM_DEBUG_KMS("cursor off\n");
4316                 addr = 0;
4317                 bo = NULL;
4318                 mutex_lock(&dev->struct_mutex);
4319                 goto finish;
4320         }
4321
4322         /* Currently we only support 64x64 cursors */
4323         if (width != 64 || height != 64) {
4324                 DRM_ERROR("we currently only support 64x64 cursors\n");
4325                 return -EINVAL;
4326         }
4327
4328         bo = drm_gem_object_lookup(dev, file_priv, handle);
4329         if (!bo)
4330                 return -ENOENT;
4331
4332         obj_priv = to_intel_bo(bo);
4333
4334         if (bo->size < width * height * 4) {
4335                 DRM_ERROR("buffer is to small\n");
4336                 ret = -ENOMEM;
4337                 goto fail;
4338         }
4339
4340         /* we only need to pin inside GTT if cursor is non-phy */
4341         mutex_lock(&dev->struct_mutex);
4342         if (!dev_priv->info->cursor_needs_physical) {
4343                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4344                 if (ret) {
4345                         DRM_ERROR("failed to pin cursor bo\n");
4346                         goto fail_locked;
4347                 }
4348
4349                 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4350                 if (ret) {
4351                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4352                         goto fail_unpin;
4353                 }
4354
4355                 addr = obj_priv->gtt_offset;
4356         } else {
4357                 ret = i915_gem_attach_phys_object(dev, bo,
4358                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
4359                 if (ret) {
4360                         DRM_ERROR("failed to attach phys object\n");
4361                         goto fail_locked;
4362                 }
4363                 addr = obj_priv->phys_obj->handle->busaddr;
4364         }
4365
4366         if (!IS_I9XX(dev))
4367                 I915_WRITE(CURSIZE, (height << 12) | width);
4368
4369  finish:
4370         if (intel_crtc->cursor_bo) {
4371                 if (dev_priv->info->cursor_needs_physical) {
4372                         if (intel_crtc->cursor_bo != bo)
4373                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4374                 } else
4375                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4376                 drm_gem_object_unreference(intel_crtc->cursor_bo);
4377         }
4378
4379         mutex_unlock(&dev->struct_mutex);
4380
4381         intel_crtc->cursor_addr = addr;
4382         intel_crtc->cursor_bo = bo;
4383         intel_crtc->cursor_width = width;
4384         intel_crtc->cursor_height = height;
4385
4386         intel_crtc_update_cursor(crtc);
4387
4388         return 0;
4389 fail_unpin:
4390         i915_gem_object_unpin(bo);
4391 fail_locked:
4392         mutex_unlock(&dev->struct_mutex);
4393 fail:
4394         drm_gem_object_unreference_unlocked(bo);
4395         return ret;
4396 }
4397
4398 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4399 {
4400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4401
4402         intel_crtc->cursor_x = x;
4403         intel_crtc->cursor_y = y;
4404
4405         intel_crtc_update_cursor(crtc);
4406
4407         return 0;
4408 }
4409
4410 /** Sets the color ramps on behalf of RandR */
4411 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4412                                  u16 blue, int regno)
4413 {
4414         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4415
4416         intel_crtc->lut_r[regno] = red >> 8;
4417         intel_crtc->lut_g[regno] = green >> 8;
4418         intel_crtc->lut_b[regno] = blue >> 8;
4419 }
4420
4421 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4422                              u16 *blue, int regno)
4423 {
4424         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4425
4426         *red = intel_crtc->lut_r[regno] << 8;
4427         *green = intel_crtc->lut_g[regno] << 8;
4428         *blue = intel_crtc->lut_b[regno] << 8;
4429 }
4430
4431 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4432                                  u16 *blue, uint32_t start, uint32_t size)
4433 {
4434         int end = (start + size > 256) ? 256 : start + size, i;
4435         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4436
4437         for (i = start; i < end; i++) {
4438                 intel_crtc->lut_r[i] = red[i] >> 8;
4439                 intel_crtc->lut_g[i] = green[i] >> 8;
4440                 intel_crtc->lut_b[i] = blue[i] >> 8;
4441         }
4442
4443         intel_crtc_load_lut(crtc);
4444 }
4445
4446 /**
4447  * Get a pipe with a simple mode set on it for doing load-based monitor
4448  * detection.
4449  *
4450  * It will be up to the load-detect code to adjust the pipe as appropriate for
4451  * its requirements.  The pipe will be connected to no other encoders.
4452  *
4453  * Currently this code will only succeed if there is a pipe with no encoders
4454  * configured for it.  In the future, it could choose to temporarily disable
4455  * some outputs to free up a pipe for its use.
4456  *
4457  * \return crtc, or NULL if no pipes are available.
4458  */
4459
4460 /* VESA 640x480x72Hz mode to set on the pipe */
4461 static struct drm_display_mode load_detect_mode = {
4462         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4463                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4464 };
4465
4466 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4467                                             struct drm_connector *connector,
4468                                             struct drm_display_mode *mode,
4469                                             int *dpms_mode)
4470 {
4471         struct intel_crtc *intel_crtc;
4472         struct drm_crtc *possible_crtc;
4473         struct drm_crtc *supported_crtc =NULL;
4474         struct drm_encoder *encoder = &intel_encoder->enc;
4475         struct drm_crtc *crtc = NULL;
4476         struct drm_device *dev = encoder->dev;
4477         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4478         struct drm_crtc_helper_funcs *crtc_funcs;
4479         int i = -1;
4480
4481         /*
4482          * Algorithm gets a little messy:
4483          *   - if the connector already has an assigned crtc, use it (but make
4484          *     sure it's on first)
4485          *   - try to find the first unused crtc that can drive this connector,
4486          *     and use that if we find one
4487          *   - if there are no unused crtcs available, try to use the first
4488          *     one we found that supports the connector
4489          */
4490
4491         /* See if we already have a CRTC for this connector */
4492         if (encoder->crtc) {
4493                 crtc = encoder->crtc;
4494                 /* Make sure the crtc and connector are running */
4495                 intel_crtc = to_intel_crtc(crtc);
4496                 *dpms_mode = intel_crtc->dpms_mode;
4497                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4498                         crtc_funcs = crtc->helper_private;
4499                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4500                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4501                 }
4502                 return crtc;
4503         }
4504
4505         /* Find an unused one (if possible) */
4506         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4507                 i++;
4508                 if (!(encoder->possible_crtcs & (1 << i)))
4509                         continue;
4510                 if (!possible_crtc->enabled) {
4511                         crtc = possible_crtc;
4512                         break;
4513                 }
4514                 if (!supported_crtc)
4515                         supported_crtc = possible_crtc;
4516         }
4517
4518         /*
4519          * If we didn't find an unused CRTC, don't use any.
4520          */
4521         if (!crtc) {
4522                 return NULL;
4523         }
4524
4525         encoder->crtc = crtc;
4526         connector->encoder = encoder;
4527         intel_encoder->load_detect_temp = true;
4528
4529         intel_crtc = to_intel_crtc(crtc);
4530         *dpms_mode = intel_crtc->dpms_mode;
4531
4532         if (!crtc->enabled) {
4533                 if (!mode)
4534                         mode = &load_detect_mode;
4535                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4536         } else {
4537                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4538                         crtc_funcs = crtc->helper_private;
4539                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4540                 }
4541
4542                 /* Add this connector to the crtc */
4543                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4544                 encoder_funcs->commit(encoder);
4545         }
4546         /* let the connector get through one full cycle before testing */
4547         intel_wait_for_vblank(dev);
4548
4549         return crtc;
4550 }
4551
4552 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4553                                     struct drm_connector *connector, int dpms_mode)
4554 {
4555         struct drm_encoder *encoder = &intel_encoder->enc;
4556         struct drm_device *dev = encoder->dev;
4557         struct drm_crtc *crtc = encoder->crtc;
4558         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4559         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4560
4561         if (intel_encoder->load_detect_temp) {
4562                 encoder->crtc = NULL;
4563                 connector->encoder = NULL;
4564                 intel_encoder->load_detect_temp = false;
4565                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4566                 drm_helper_disable_unused_functions(dev);
4567         }
4568
4569         /* Switch crtc and encoder back off if necessary */
4570         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4571                 if (encoder->crtc == crtc)
4572                         encoder_funcs->dpms(encoder, dpms_mode);
4573                 crtc_funcs->dpms(crtc, dpms_mode);
4574         }
4575 }
4576
4577 /* Returns the clock of the currently programmed mode of the given pipe. */
4578 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4579 {
4580         struct drm_i915_private *dev_priv = dev->dev_private;
4581         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4582         int pipe = intel_crtc->pipe;
4583         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4584         u32 fp;
4585         intel_clock_t clock;
4586
4587         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4588                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4589         else
4590                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4591
4592         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4593         if (IS_PINEVIEW(dev)) {
4594                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4595                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4596         } else {
4597                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4598                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4599         }
4600
4601         if (IS_I9XX(dev)) {
4602                 if (IS_PINEVIEW(dev))
4603                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4604                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4605                 else
4606                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4607                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4608
4609                 switch (dpll & DPLL_MODE_MASK) {
4610                 case DPLLB_MODE_DAC_SERIAL:
4611                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4612                                 5 : 10;
4613                         break;
4614                 case DPLLB_MODE_LVDS:
4615                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4616                                 7 : 14;
4617                         break;
4618                 default:
4619                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4620                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4621                         return 0;
4622                 }
4623
4624                 /* XXX: Handle the 100Mhz refclk */
4625                 intel_clock(dev, 96000, &clock);
4626         } else {
4627                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4628
4629                 if (is_lvds) {
4630                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4631                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4632                         clock.p2 = 14;
4633
4634                         if ((dpll & PLL_REF_INPUT_MASK) ==
4635                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4636                                 /* XXX: might not be 66MHz */
4637                                 intel_clock(dev, 66000, &clock);
4638                         } else
4639                                 intel_clock(dev, 48000, &clock);
4640                 } else {
4641                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4642                                 clock.p1 = 2;
4643                         else {
4644                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4645                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4646                         }
4647                         if (dpll & PLL_P2_DIVIDE_BY_4)
4648                                 clock.p2 = 4;
4649                         else
4650                                 clock.p2 = 2;
4651
4652                         intel_clock(dev, 48000, &clock);
4653                 }
4654         }
4655
4656         /* XXX: It would be nice to validate the clocks, but we can't reuse
4657          * i830PllIsValid() because it relies on the xf86_config connector
4658          * configuration being accurate, which it isn't necessarily.
4659          */
4660
4661         return clock.dot;
4662 }
4663
4664 /** Returns the currently programmed mode of the given pipe. */
4665 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4666                                              struct drm_crtc *crtc)
4667 {
4668         struct drm_i915_private *dev_priv = dev->dev_private;
4669         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4670         int pipe = intel_crtc->pipe;
4671         struct drm_display_mode *mode;
4672         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4673         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4674         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4675         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4676
4677         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4678         if (!mode)
4679                 return NULL;
4680
4681         mode->clock = intel_crtc_clock_get(dev, crtc);
4682         mode->hdisplay = (htot & 0xffff) + 1;
4683         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4684         mode->hsync_start = (hsync & 0xffff) + 1;
4685         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4686         mode->vdisplay = (vtot & 0xffff) + 1;
4687         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4688         mode->vsync_start = (vsync & 0xffff) + 1;
4689         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4690
4691         drm_mode_set_name(mode);
4692         drm_mode_set_crtcinfo(mode, 0);
4693
4694         return mode;
4695 }
4696
4697 #define GPU_IDLE_TIMEOUT 500 /* ms */
4698
4699 /* When this timer fires, we've been idle for awhile */
4700 static void intel_gpu_idle_timer(unsigned long arg)
4701 {
4702         struct drm_device *dev = (struct drm_device *)arg;
4703         drm_i915_private_t *dev_priv = dev->dev_private;
4704
4705         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4706
4707         dev_priv->busy = false;
4708
4709         queue_work(dev_priv->wq, &dev_priv->idle_work);
4710 }
4711
4712 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4713
4714 static void intel_crtc_idle_timer(unsigned long arg)
4715 {
4716         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4717         struct drm_crtc *crtc = &intel_crtc->base;
4718         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4719
4720         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4721
4722         intel_crtc->busy = false;
4723
4724         queue_work(dev_priv->wq, &dev_priv->idle_work);
4725 }
4726
4727 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4728 {
4729         struct drm_device *dev = crtc->dev;
4730         drm_i915_private_t *dev_priv = dev->dev_private;
4731         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4732         int pipe = intel_crtc->pipe;
4733         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4734         int dpll = I915_READ(dpll_reg);
4735
4736         if (HAS_PCH_SPLIT(dev))
4737                 return;
4738
4739         if (!dev_priv->lvds_downclock_avail)
4740                 return;
4741
4742         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4743                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4744
4745                 /* Unlock panel regs */
4746                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4747                            PANEL_UNLOCK_REGS);
4748
4749                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4750                 I915_WRITE(dpll_reg, dpll);
4751                 dpll = I915_READ(dpll_reg);
4752                 intel_wait_for_vblank(dev);
4753                 dpll = I915_READ(dpll_reg);
4754                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4755                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4756
4757                 /* ...and lock them again */
4758                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4759         }
4760
4761         /* Schedule downclock */
4762         if (schedule)
4763                 mod_timer(&intel_crtc->idle_timer, jiffies +
4764                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4765 }
4766
4767 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4768 {
4769         struct drm_device *dev = crtc->dev;
4770         drm_i915_private_t *dev_priv = dev->dev_private;
4771         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4772         int pipe = intel_crtc->pipe;
4773         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4774         int dpll = I915_READ(dpll_reg);
4775
4776         if (HAS_PCH_SPLIT(dev))
4777                 return;
4778
4779         if (!dev_priv->lvds_downclock_avail)
4780                 return;
4781
4782         /*
4783          * Since this is called by a timer, we should never get here in
4784          * the manual case.
4785          */
4786         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4787                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4788
4789                 /* Unlock panel regs */
4790                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4791                            PANEL_UNLOCK_REGS);
4792
4793                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4794                 I915_WRITE(dpll_reg, dpll);
4795                 dpll = I915_READ(dpll_reg);
4796                 intel_wait_for_vblank(dev);
4797                 dpll = I915_READ(dpll_reg);
4798                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4799                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4800
4801                 /* ...and lock them again */
4802                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4803         }
4804
4805 }
4806
4807 /**
4808  * intel_idle_update - adjust clocks for idleness
4809  * @work: work struct
4810  *
4811  * Either the GPU or display (or both) went idle.  Check the busy status
4812  * here and adjust the CRTC and GPU clocks as necessary.
4813  */
4814 static void intel_idle_update(struct work_struct *work)
4815 {
4816         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4817                                                     idle_work);
4818         struct drm_device *dev = dev_priv->dev;
4819         struct drm_crtc *crtc;
4820         struct intel_crtc *intel_crtc;
4821         int enabled = 0;
4822
4823         if (!i915_powersave)
4824                 return;
4825
4826         mutex_lock(&dev->struct_mutex);
4827
4828         i915_update_gfx_val(dev_priv);
4829
4830         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4831                 /* Skip inactive CRTCs */
4832                 if (!crtc->fb)
4833                         continue;
4834
4835                 enabled++;
4836                 intel_crtc = to_intel_crtc(crtc);
4837                 if (!intel_crtc->busy)
4838                         intel_decrease_pllclock(crtc);
4839         }
4840
4841         if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4842                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4843                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4844         }
4845
4846         mutex_unlock(&dev->struct_mutex);
4847 }
4848
4849 /**
4850  * intel_mark_busy - mark the GPU and possibly the display busy
4851  * @dev: drm device
4852  * @obj: object we're operating on
4853  *
4854  * Callers can use this function to indicate that the GPU is busy processing
4855  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4856  * buffer), we'll also mark the display as busy, so we know to increase its
4857  * clock frequency.
4858  */
4859 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4860 {
4861         drm_i915_private_t *dev_priv = dev->dev_private;
4862         struct drm_crtc *crtc = NULL;
4863         struct intel_framebuffer *intel_fb;
4864         struct intel_crtc *intel_crtc;
4865
4866         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4867                 return;
4868
4869         if (!dev_priv->busy) {
4870                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4871                         u32 fw_blc_self;
4872
4873                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4874                         fw_blc_self = I915_READ(FW_BLC_SELF);
4875                         fw_blc_self &= ~FW_BLC_SELF_EN;
4876                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4877                 }
4878                 dev_priv->busy = true;
4879         } else
4880                 mod_timer(&dev_priv->idle_timer, jiffies +
4881                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4882
4883         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4884                 if (!crtc->fb)
4885                         continue;
4886
4887                 intel_crtc = to_intel_crtc(crtc);
4888                 intel_fb = to_intel_framebuffer(crtc->fb);
4889                 if (intel_fb->obj == obj) {
4890                         if (!intel_crtc->busy) {
4891                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4892                                         u32 fw_blc_self;
4893
4894                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4895                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4896                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4897                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4898                                 }
4899                                 /* Non-busy -> busy, upclock */
4900                                 intel_increase_pllclock(crtc, true);
4901                                 intel_crtc->busy = true;
4902                         } else {
4903                                 /* Busy -> busy, put off timer */
4904                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4905                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4906                         }
4907                 }
4908         }
4909 }
4910
4911 static void intel_crtc_destroy(struct drm_crtc *crtc)
4912 {
4913         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4914
4915         drm_crtc_cleanup(crtc);
4916         kfree(intel_crtc);
4917 }
4918
4919 struct intel_unpin_work {
4920         struct work_struct work;
4921         struct drm_device *dev;
4922         struct drm_gem_object *old_fb_obj;
4923         struct drm_gem_object *pending_flip_obj;
4924         struct drm_pending_vblank_event *event;
4925         int pending;
4926 };
4927
4928 static void intel_unpin_work_fn(struct work_struct *__work)
4929 {
4930         struct intel_unpin_work *work =
4931                 container_of(__work, struct intel_unpin_work, work);
4932
4933         mutex_lock(&work->dev->struct_mutex);
4934         i915_gem_object_unpin(work->old_fb_obj);
4935         drm_gem_object_unreference(work->pending_flip_obj);
4936         drm_gem_object_unreference(work->old_fb_obj);
4937         mutex_unlock(&work->dev->struct_mutex);
4938         kfree(work);
4939 }
4940
4941 static void do_intel_finish_page_flip(struct drm_device *dev,
4942                                       struct drm_crtc *crtc)
4943 {
4944         drm_i915_private_t *dev_priv = dev->dev_private;
4945         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4946         struct intel_unpin_work *work;
4947         struct drm_i915_gem_object *obj_priv;
4948         struct drm_pending_vblank_event *e;
4949         struct timeval now;
4950         unsigned long flags;
4951
4952         /* Ignore early vblank irqs */
4953         if (intel_crtc == NULL)
4954                 return;
4955
4956         spin_lock_irqsave(&dev->event_lock, flags);
4957         work = intel_crtc->unpin_work;
4958         if (work == NULL || !work->pending) {
4959                 spin_unlock_irqrestore(&dev->event_lock, flags);
4960                 return;
4961         }
4962
4963         intel_crtc->unpin_work = NULL;
4964         drm_vblank_put(dev, intel_crtc->pipe);
4965
4966         if (work->event) {
4967                 e = work->event;
4968                 do_gettimeofday(&now);
4969                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4970                 e->event.tv_sec = now.tv_sec;
4971                 e->event.tv_usec = now.tv_usec;
4972                 list_add_tail(&e->base.link,
4973                               &e->base.file_priv->event_list);
4974                 wake_up_interruptible(&e->base.file_priv->event_wait);
4975         }
4976
4977         spin_unlock_irqrestore(&dev->event_lock, flags);
4978
4979         obj_priv = to_intel_bo(work->pending_flip_obj);
4980
4981         /* Initial scanout buffer will have a 0 pending flip count */
4982         if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4983             atomic_dec_and_test(&obj_priv->pending_flip))
4984                 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4985         schedule_work(&work->work);
4986
4987         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
4988 }
4989
4990 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4991 {
4992         drm_i915_private_t *dev_priv = dev->dev_private;
4993         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4994
4995         do_intel_finish_page_flip(dev, crtc);
4996 }
4997
4998 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
4999 {
5000         drm_i915_private_t *dev_priv = dev->dev_private;
5001         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5002
5003         do_intel_finish_page_flip(dev, crtc);
5004 }
5005
5006 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5007 {
5008         drm_i915_private_t *dev_priv = dev->dev_private;
5009         struct intel_crtc *intel_crtc =
5010                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5011         unsigned long flags;
5012
5013         spin_lock_irqsave(&dev->event_lock, flags);
5014         if (intel_crtc->unpin_work) {
5015                 intel_crtc->unpin_work->pending = 1;
5016         } else {
5017                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5018         }
5019         spin_unlock_irqrestore(&dev->event_lock, flags);
5020 }
5021
5022 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5023                                 struct drm_framebuffer *fb,
5024                                 struct drm_pending_vblank_event *event)
5025 {
5026         struct drm_device *dev = crtc->dev;
5027         struct drm_i915_private *dev_priv = dev->dev_private;
5028         struct intel_framebuffer *intel_fb;
5029         struct drm_i915_gem_object *obj_priv;
5030         struct drm_gem_object *obj;
5031         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5032         struct intel_unpin_work *work;
5033         unsigned long flags, offset;
5034         int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
5035         int ret, pipesrc;
5036         u32 flip_mask;
5037
5038         work = kzalloc(sizeof *work, GFP_KERNEL);
5039         if (work == NULL)
5040                 return -ENOMEM;
5041
5042         work->event = event;
5043         work->dev = crtc->dev;
5044         intel_fb = to_intel_framebuffer(crtc->fb);
5045         work->old_fb_obj = intel_fb->obj;
5046         INIT_WORK(&work->work, intel_unpin_work_fn);
5047
5048         /* We borrow the event spin lock for protecting unpin_work */
5049         spin_lock_irqsave(&dev->event_lock, flags);
5050         if (intel_crtc->unpin_work) {
5051                 spin_unlock_irqrestore(&dev->event_lock, flags);
5052                 kfree(work);
5053
5054                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5055                 return -EBUSY;
5056         }
5057         intel_crtc->unpin_work = work;
5058         spin_unlock_irqrestore(&dev->event_lock, flags);
5059
5060         intel_fb = to_intel_framebuffer(fb);
5061         obj = intel_fb->obj;
5062
5063         mutex_lock(&dev->struct_mutex);
5064         ret = intel_pin_and_fence_fb_obj(dev, obj);
5065         if (ret)
5066                 goto cleanup_work;
5067
5068         /* Reference the objects for the scheduled work. */
5069         drm_gem_object_reference(work->old_fb_obj);
5070         drm_gem_object_reference(obj);
5071
5072         crtc->fb = fb;
5073         ret = i915_gem_object_flush_write_domain(obj);
5074         if (ret)
5075                 goto cleanup_objs;
5076
5077         ret = drm_vblank_get(dev, intel_crtc->pipe);
5078         if (ret)
5079                 goto cleanup_objs;
5080
5081         obj_priv = to_intel_bo(obj);
5082         atomic_inc(&obj_priv->pending_flip);
5083         work->pending_flip_obj = obj;
5084
5085         if (intel_crtc->plane)
5086                 flip_mask = I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
5087         else
5088                 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT;
5089
5090         /* Wait for any previous flip to finish */
5091         if (IS_GEN3(dev))
5092                 while (I915_READ(ISR) & flip_mask)
5093                         ;
5094
5095         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5096         offset = obj_priv->gtt_offset;
5097         offset += (crtc->y * fb->pitch) + (crtc->x * (fb->bits_per_pixel) / 8);
5098
5099         BEGIN_LP_RING(4);
5100         if (IS_I965G(dev)) {
5101                 OUT_RING(MI_DISPLAY_FLIP |
5102                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5103                 OUT_RING(fb->pitch);
5104                 OUT_RING(offset | obj_priv->tiling_mode);
5105                 pipesrc = I915_READ(pipesrc_reg); 
5106                 OUT_RING(pipesrc & 0x0fff0fff);
5107         } else {
5108                 OUT_RING(MI_DISPLAY_FLIP_I915 |
5109                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5110                 OUT_RING(fb->pitch);
5111                 OUT_RING(offset);
5112                 OUT_RING(MI_NOOP);
5113         }
5114         ADVANCE_LP_RING();
5115
5116         mutex_unlock(&dev->struct_mutex);
5117
5118         trace_i915_flip_request(intel_crtc->plane, obj);
5119
5120         return 0;
5121
5122 cleanup_objs:
5123         drm_gem_object_unreference(work->old_fb_obj);
5124         drm_gem_object_unreference(obj);
5125 cleanup_work:
5126         mutex_unlock(&dev->struct_mutex);
5127
5128         spin_lock_irqsave(&dev->event_lock, flags);
5129         intel_crtc->unpin_work = NULL;
5130         spin_unlock_irqrestore(&dev->event_lock, flags);
5131
5132         kfree(work);
5133
5134         return ret;
5135 }
5136
5137 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
5138         .dpms = intel_crtc_dpms,
5139         .mode_fixup = intel_crtc_mode_fixup,
5140         .mode_set = intel_crtc_mode_set,
5141         .mode_set_base = intel_pipe_set_base,
5142         .mode_set_base_atomic = intel_pipe_set_base_atomic,
5143         .prepare = intel_crtc_prepare,
5144         .commit = intel_crtc_commit,
5145         .load_lut = intel_crtc_load_lut,
5146 };
5147
5148 static const struct drm_crtc_funcs intel_crtc_funcs = {
5149         .cursor_set = intel_crtc_cursor_set,
5150         .cursor_move = intel_crtc_cursor_move,
5151         .gamma_set = intel_crtc_gamma_set,
5152         .set_config = drm_crtc_helper_set_config,
5153         .destroy = intel_crtc_destroy,
5154         .page_flip = intel_crtc_page_flip,
5155 };
5156
5157
5158 static void intel_crtc_init(struct drm_device *dev, int pipe)
5159 {
5160         drm_i915_private_t *dev_priv = dev->dev_private;
5161         struct intel_crtc *intel_crtc;
5162         int i;
5163
5164         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5165         if (intel_crtc == NULL)
5166                 return;
5167
5168         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5169
5170         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5171         intel_crtc->pipe = pipe;
5172         intel_crtc->plane = pipe;
5173         for (i = 0; i < 256; i++) {
5174                 intel_crtc->lut_r[i] = i;
5175                 intel_crtc->lut_g[i] = i;
5176                 intel_crtc->lut_b[i] = i;
5177         }
5178
5179         /* Swap pipes & planes for FBC on pre-965 */
5180         intel_crtc->pipe = pipe;
5181         intel_crtc->plane = pipe;
5182         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
5183                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5184                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
5185         }
5186
5187         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5188                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5189         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5190         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5191
5192         intel_crtc->cursor_addr = 0;
5193         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
5194         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5195
5196         intel_crtc->busy = false;
5197
5198         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5199                     (unsigned long)intel_crtc);
5200 }
5201
5202 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5203                                 struct drm_file *file_priv)
5204 {
5205         drm_i915_private_t *dev_priv = dev->dev_private;
5206         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5207         struct drm_mode_object *drmmode_obj;
5208         struct intel_crtc *crtc;
5209
5210         if (!dev_priv) {
5211                 DRM_ERROR("called with no initialization\n");
5212                 return -EINVAL;
5213         }
5214
5215         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5216                         DRM_MODE_OBJECT_CRTC);
5217
5218         if (!drmmode_obj) {
5219                 DRM_ERROR("no such CRTC id\n");
5220                 return -EINVAL;
5221         }
5222
5223         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5224         pipe_from_crtc_id->pipe = crtc->pipe;
5225
5226         return 0;
5227 }
5228
5229 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
5230 {
5231         struct drm_crtc *crtc = NULL;
5232
5233         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5234                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5235                 if (intel_crtc->pipe == pipe)
5236                         break;
5237         }
5238         return crtc;
5239 }
5240
5241 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5242 {
5243         int index_mask = 0;
5244         struct drm_encoder *encoder;
5245         int entry = 0;
5246
5247         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5248                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5249                 if (type_mask & intel_encoder->clone_mask)
5250                         index_mask |= (1 << entry);
5251                 entry++;
5252         }
5253         return index_mask;
5254 }
5255
5256
5257 static void intel_setup_outputs(struct drm_device *dev)
5258 {
5259         struct drm_i915_private *dev_priv = dev->dev_private;
5260         struct drm_encoder *encoder;
5261         bool dpd_is_edp = false;
5262
5263         if (IS_MOBILE(dev) && !IS_I830(dev))
5264                 intel_lvds_init(dev);
5265
5266         if (HAS_PCH_SPLIT(dev)) {
5267                 dpd_is_edp = intel_dpd_is_edp(dev);
5268
5269                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5270                         intel_dp_init(dev, DP_A);
5271
5272                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5273                         intel_dp_init(dev, PCH_DP_D);
5274         }
5275
5276         intel_crt_init(dev);
5277
5278         if (HAS_PCH_SPLIT(dev)) {
5279                 int found;
5280
5281                 if (I915_READ(HDMIB) & PORT_DETECTED) {
5282                         /* PCH SDVOB multiplex with HDMIB */
5283                         found = intel_sdvo_init(dev, PCH_SDVOB);
5284                         if (!found)
5285                                 intel_hdmi_init(dev, HDMIB);
5286                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5287                                 intel_dp_init(dev, PCH_DP_B);
5288                 }
5289
5290                 if (I915_READ(HDMIC) & PORT_DETECTED)
5291                         intel_hdmi_init(dev, HDMIC);
5292
5293                 if (I915_READ(HDMID) & PORT_DETECTED)
5294                         intel_hdmi_init(dev, HDMID);
5295
5296                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5297                         intel_dp_init(dev, PCH_DP_C);
5298
5299                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5300                         intel_dp_init(dev, PCH_DP_D);
5301
5302         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5303                 bool found = false;
5304
5305                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5306                         DRM_DEBUG_KMS("probing SDVOB\n");
5307                         found = intel_sdvo_init(dev, SDVOB);
5308                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5309                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5310                                 intel_hdmi_init(dev, SDVOB);
5311                         }
5312
5313                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5314                                 DRM_DEBUG_KMS("probing DP_B\n");
5315                                 intel_dp_init(dev, DP_B);
5316                         }
5317                 }
5318
5319                 /* Before G4X SDVOC doesn't have its own detect register */
5320
5321                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5322                         DRM_DEBUG_KMS("probing SDVOC\n");
5323                         found = intel_sdvo_init(dev, SDVOC);
5324                 }
5325
5326                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5327
5328                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5329                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5330                                 intel_hdmi_init(dev, SDVOC);
5331                         }
5332                         if (SUPPORTS_INTEGRATED_DP(dev)) {
5333                                 DRM_DEBUG_KMS("probing DP_C\n");
5334                                 intel_dp_init(dev, DP_C);
5335                         }
5336                 }
5337
5338                 if (SUPPORTS_INTEGRATED_DP(dev) &&
5339                     (I915_READ(DP_D) & DP_DETECTED)) {
5340                         DRM_DEBUG_KMS("probing DP_D\n");
5341                         intel_dp_init(dev, DP_D);
5342                 }
5343         } else if (IS_GEN2(dev))
5344                 intel_dvo_init(dev);
5345
5346         if (SUPPORTS_TV(dev))
5347                 intel_tv_init(dev);
5348
5349         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5350                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5351
5352                 encoder->possible_crtcs = intel_encoder->crtc_mask;
5353                 encoder->possible_clones = intel_encoder_clones(dev,
5354                                                 intel_encoder->clone_mask);
5355         }
5356 }
5357
5358 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5359 {
5360         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5361
5362         drm_framebuffer_cleanup(fb);
5363         drm_gem_object_unreference_unlocked(intel_fb->obj);
5364
5365         kfree(intel_fb);
5366 }
5367
5368 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5369                                                 struct drm_file *file_priv,
5370                                                 unsigned int *handle)
5371 {
5372         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5373         struct drm_gem_object *object = intel_fb->obj;
5374
5375         return drm_gem_handle_create(file_priv, object, handle);
5376 }
5377
5378 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5379         .destroy = intel_user_framebuffer_destroy,
5380         .create_handle = intel_user_framebuffer_create_handle,
5381 };
5382
5383 int intel_framebuffer_init(struct drm_device *dev,
5384                            struct intel_framebuffer *intel_fb,
5385                            struct drm_mode_fb_cmd *mode_cmd,
5386                            struct drm_gem_object *obj)
5387 {
5388         int ret;
5389
5390         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5391         if (ret) {
5392                 DRM_ERROR("framebuffer init failed %d\n", ret);
5393                 return ret;
5394         }
5395
5396         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5397         intel_fb->obj = obj;
5398         return 0;
5399 }
5400
5401 static struct drm_framebuffer *
5402 intel_user_framebuffer_create(struct drm_device *dev,
5403                               struct drm_file *filp,
5404                               struct drm_mode_fb_cmd *mode_cmd)
5405 {
5406         struct drm_gem_object *obj;
5407         struct intel_framebuffer *intel_fb;
5408         int ret;
5409
5410         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5411         if (!obj)
5412                 return ERR_PTR(-ENOENT);
5413
5414         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5415         if (!intel_fb)
5416                 return ERR_PTR(-ENOMEM);
5417
5418         ret = intel_framebuffer_init(dev, intel_fb,
5419                                      mode_cmd, obj);
5420         if (ret) {
5421                 drm_gem_object_unreference_unlocked(obj);
5422                 kfree(intel_fb);
5423                 return ERR_PTR(ret);
5424         }
5425
5426         return &intel_fb->base;
5427 }
5428
5429 static const struct drm_mode_config_funcs intel_mode_funcs = {
5430         .fb_create = intel_user_framebuffer_create,
5431         .output_poll_changed = intel_fb_output_poll_changed,
5432 };
5433
5434 static struct drm_gem_object *
5435 intel_alloc_power_context(struct drm_device *dev)
5436 {
5437         struct drm_gem_object *pwrctx;
5438         int ret;
5439
5440         pwrctx = i915_gem_alloc_object(dev, 4096);
5441         if (!pwrctx) {
5442                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5443                 return NULL;
5444         }
5445
5446         mutex_lock(&dev->struct_mutex);
5447         ret = i915_gem_object_pin(pwrctx, 4096);
5448         if (ret) {
5449                 DRM_ERROR("failed to pin power context: %d\n", ret);
5450                 goto err_unref;
5451         }
5452
5453         ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
5454         if (ret) {
5455                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5456                 goto err_unpin;
5457         }
5458         mutex_unlock(&dev->struct_mutex);
5459
5460         return pwrctx;
5461
5462 err_unpin:
5463         i915_gem_object_unpin(pwrctx);
5464 err_unref:
5465         drm_gem_object_unreference(pwrctx);
5466         mutex_unlock(&dev->struct_mutex);
5467         return NULL;
5468 }
5469
5470 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5471 {
5472         struct drm_i915_private *dev_priv = dev->dev_private;
5473         u16 rgvswctl;
5474
5475         rgvswctl = I915_READ16(MEMSWCTL);
5476         if (rgvswctl & MEMCTL_CMD_STS) {
5477                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5478                 return false; /* still busy with another command */
5479         }
5480
5481         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5482                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5483         I915_WRITE16(MEMSWCTL, rgvswctl);
5484         POSTING_READ16(MEMSWCTL);
5485
5486         rgvswctl |= MEMCTL_CMD_STS;
5487         I915_WRITE16(MEMSWCTL, rgvswctl);
5488
5489         return true;
5490 }
5491
5492 void ironlake_enable_drps(struct drm_device *dev)
5493 {
5494         struct drm_i915_private *dev_priv = dev->dev_private;
5495         u32 rgvmodectl = I915_READ(MEMMODECTL);
5496         u8 fmax, fmin, fstart, vstart;
5497         int i = 0;
5498
5499         /* 100ms RC evaluation intervals */
5500         I915_WRITE(RCUPEI, 100000);
5501         I915_WRITE(RCDNEI, 100000);
5502
5503         /* Set max/min thresholds to 90ms and 80ms respectively */
5504         I915_WRITE(RCBMAXAVG, 90000);
5505         I915_WRITE(RCBMINAVG, 80000);
5506
5507         I915_WRITE(MEMIHYST, 1);
5508
5509         /* Set up min, max, and cur for interrupt handling */
5510         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5511         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5512         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5513                 MEMMODE_FSTART_SHIFT;
5514         fstart = fmax;
5515
5516         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5517                 PXVFREQ_PX_SHIFT;
5518
5519         dev_priv->fmax = fstart; /* IPS callback will increase this */
5520         dev_priv->fstart = fstart;
5521
5522         dev_priv->max_delay = fmax;
5523         dev_priv->min_delay = fmin;
5524         dev_priv->cur_delay = fstart;
5525
5526         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5527                          fstart);
5528
5529         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5530
5531         /*
5532          * Interrupts will be enabled in ironlake_irq_postinstall
5533          */
5534
5535         I915_WRITE(VIDSTART, vstart);
5536         POSTING_READ(VIDSTART);
5537
5538         rgvmodectl |= MEMMODE_SWMODE_EN;
5539         I915_WRITE(MEMMODECTL, rgvmodectl);
5540
5541         while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
5542                 if (i++ > 100) {
5543                         DRM_ERROR("stuck trying to change perf mode\n");
5544                         break;
5545                 }
5546                 msleep(1);
5547         }
5548         msleep(1);
5549
5550         ironlake_set_drps(dev, fstart);
5551
5552         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5553                 I915_READ(0x112e0);
5554         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5555         dev_priv->last_count2 = I915_READ(0x112f4);
5556         getrawmonotonic(&dev_priv->last_time2);
5557 }
5558
5559 void ironlake_disable_drps(struct drm_device *dev)
5560 {
5561         struct drm_i915_private *dev_priv = dev->dev_private;
5562         u16 rgvswctl = I915_READ16(MEMSWCTL);
5563
5564         /* Ack interrupts, disable EFC interrupt */
5565         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5566         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5567         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5568         I915_WRITE(DEIIR, DE_PCU_EVENT);
5569         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5570
5571         /* Go back to the starting frequency */
5572         ironlake_set_drps(dev, dev_priv->fstart);
5573         msleep(1);
5574         rgvswctl |= MEMCTL_CMD_STS;
5575         I915_WRITE(MEMSWCTL, rgvswctl);
5576         msleep(1);
5577
5578 }
5579
5580 static unsigned long intel_pxfreq(u32 vidfreq)
5581 {
5582         unsigned long freq;
5583         int div = (vidfreq & 0x3f0000) >> 16;
5584         int post = (vidfreq & 0x3000) >> 12;
5585         int pre = (vidfreq & 0x7);
5586
5587         if (!pre)
5588                 return 0;
5589
5590         freq = ((div * 133333) / ((1<<post) * pre));
5591
5592         return freq;
5593 }
5594
5595 void intel_init_emon(struct drm_device *dev)
5596 {
5597         struct drm_i915_private *dev_priv = dev->dev_private;
5598         u32 lcfuse;
5599         u8 pxw[16];
5600         int i;
5601
5602         /* Disable to program */
5603         I915_WRITE(ECR, 0);
5604         POSTING_READ(ECR);
5605
5606         /* Program energy weights for various events */
5607         I915_WRITE(SDEW, 0x15040d00);
5608         I915_WRITE(CSIEW0, 0x007f0000);
5609         I915_WRITE(CSIEW1, 0x1e220004);
5610         I915_WRITE(CSIEW2, 0x04000004);
5611
5612         for (i = 0; i < 5; i++)
5613                 I915_WRITE(PEW + (i * 4), 0);
5614         for (i = 0; i < 3; i++)
5615                 I915_WRITE(DEW + (i * 4), 0);
5616
5617         /* Program P-state weights to account for frequency power adjustment */
5618         for (i = 0; i < 16; i++) {
5619                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5620                 unsigned long freq = intel_pxfreq(pxvidfreq);
5621                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5622                         PXVFREQ_PX_SHIFT;
5623                 unsigned long val;
5624
5625                 val = vid * vid;
5626                 val *= (freq / 1000);
5627                 val *= 255;
5628                 val /= (127*127*900);
5629                 if (val > 0xff)
5630                         DRM_ERROR("bad pxval: %ld\n", val);
5631                 pxw[i] = val;
5632         }
5633         /* Render standby states get 0 weight */
5634         pxw[14] = 0;
5635         pxw[15] = 0;
5636
5637         for (i = 0; i < 4; i++) {
5638                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5639                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5640                 I915_WRITE(PXW + (i * 4), val);
5641         }
5642
5643         /* Adjust magic regs to magic values (more experimental results) */
5644         I915_WRITE(OGW0, 0);
5645         I915_WRITE(OGW1, 0);
5646         I915_WRITE(EG0, 0x00007f00);
5647         I915_WRITE(EG1, 0x0000000e);
5648         I915_WRITE(EG2, 0x000e0000);
5649         I915_WRITE(EG3, 0x68000300);
5650         I915_WRITE(EG4, 0x42000000);
5651         I915_WRITE(EG5, 0x00140031);
5652         I915_WRITE(EG6, 0);
5653         I915_WRITE(EG7, 0);
5654
5655         for (i = 0; i < 8; i++)
5656                 I915_WRITE(PXWL + (i * 4), 0);
5657
5658         /* Enable PMON + select events */
5659         I915_WRITE(ECR, 0x80000019);
5660
5661         lcfuse = I915_READ(LCFUSE02);
5662
5663         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5664 }
5665
5666 void intel_init_clock_gating(struct drm_device *dev)
5667 {
5668         struct drm_i915_private *dev_priv = dev->dev_private;
5669
5670         /*
5671          * Disable clock gating reported to work incorrectly according to the
5672          * specs, but enable as much else as we can.
5673          */
5674         if (HAS_PCH_SPLIT(dev)) {
5675                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5676
5677                 if (IS_IRONLAKE(dev)) {
5678                         /* Required for FBC */
5679                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5680                         /* Required for CxSR */
5681                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5682
5683                         I915_WRITE(PCH_3DCGDIS0,
5684                                    MARIUNIT_CLOCK_GATE_DISABLE |
5685                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5686                 }
5687
5688                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5689
5690                 /*
5691                  * According to the spec the following bits should be set in
5692                  * order to enable memory self-refresh
5693                  * The bit 22/21 of 0x42004
5694                  * The bit 5 of 0x42020
5695                  * The bit 15 of 0x45000
5696                  */
5697                 if (IS_IRONLAKE(dev)) {
5698                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5699                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5700                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5701                         I915_WRITE(ILK_DSPCLK_GATE,
5702                                         (I915_READ(ILK_DSPCLK_GATE) |
5703                                                 ILK_DPARB_CLK_GATE));
5704                         I915_WRITE(DISP_ARB_CTL,
5705                                         (I915_READ(DISP_ARB_CTL) |
5706                                                 DISP_FBC_WM_DIS));
5707                 }
5708                 /*
5709                  * Based on the document from hardware guys the following bits
5710                  * should be set unconditionally in order to enable FBC.
5711                  * The bit 22 of 0x42000
5712                  * The bit 22 of 0x42004
5713                  * The bit 7,8,9 of 0x42020.
5714                  */
5715                 if (IS_IRONLAKE_M(dev)) {
5716                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5717                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5718                                    ILK_FBCQ_DIS);
5719                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5720                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5721                                    ILK_DPARB_GATE);
5722                         I915_WRITE(ILK_DSPCLK_GATE,
5723                                    I915_READ(ILK_DSPCLK_GATE) |
5724                                    ILK_DPFC_DIS1 |
5725                                    ILK_DPFC_DIS2 |
5726                                    ILK_CLK_FBC);
5727                 }
5728                 return;
5729         } else if (IS_G4X(dev)) {
5730                 uint32_t dspclk_gate;
5731                 I915_WRITE(RENCLK_GATE_D1, 0);
5732                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5733                        GS_UNIT_CLOCK_GATE_DISABLE |
5734                        CL_UNIT_CLOCK_GATE_DISABLE);
5735                 I915_WRITE(RAMCLK_GATE_D, 0);
5736                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5737                         OVRUNIT_CLOCK_GATE_DISABLE |
5738                         OVCUNIT_CLOCK_GATE_DISABLE;
5739                 if (IS_GM45(dev))
5740                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5741                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5742         } else if (IS_I965GM(dev)) {
5743                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5744                 I915_WRITE(RENCLK_GATE_D2, 0);
5745                 I915_WRITE(DSPCLK_GATE_D, 0);
5746                 I915_WRITE(RAMCLK_GATE_D, 0);
5747                 I915_WRITE16(DEUC, 0);
5748         } else if (IS_I965G(dev)) {
5749                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5750                        I965_RCC_CLOCK_GATE_DISABLE |
5751                        I965_RCPB_CLOCK_GATE_DISABLE |
5752                        I965_ISC_CLOCK_GATE_DISABLE |
5753                        I965_FBC_CLOCK_GATE_DISABLE);
5754                 I915_WRITE(RENCLK_GATE_D2, 0);
5755         } else if (IS_I9XX(dev)) {
5756                 u32 dstate = I915_READ(D_STATE);
5757
5758                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5759                         DSTATE_DOT_CLOCK_GATING;
5760                 I915_WRITE(D_STATE, dstate);
5761         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5762                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5763         } else if (IS_I830(dev)) {
5764                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5765         }
5766
5767         /*
5768          * GPU can automatically power down the render unit if given a page
5769          * to save state.
5770          */
5771         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5772                 struct drm_i915_gem_object *obj_priv = NULL;
5773
5774                 if (dev_priv->pwrctx) {
5775                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5776                 } else {
5777                         struct drm_gem_object *pwrctx;
5778
5779                         pwrctx = intel_alloc_power_context(dev);
5780                         if (pwrctx) {
5781                                 dev_priv->pwrctx = pwrctx;
5782                                 obj_priv = to_intel_bo(pwrctx);
5783                         }
5784                 }
5785
5786                 if (obj_priv) {
5787                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5788                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5789                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5790                 }
5791         }
5792 }
5793
5794 /* Set up chip specific display functions */
5795 static void intel_init_display(struct drm_device *dev)
5796 {
5797         struct drm_i915_private *dev_priv = dev->dev_private;
5798
5799         /* We always want a DPMS function */
5800         if (HAS_PCH_SPLIT(dev))
5801                 dev_priv->display.dpms = ironlake_crtc_dpms;
5802         else
5803                 dev_priv->display.dpms = i9xx_crtc_dpms;
5804
5805         if (I915_HAS_FBC(dev)) {
5806                 if (IS_IRONLAKE_M(dev)) {
5807                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5808                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
5809                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5810                 } else if (IS_GM45(dev)) {
5811                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5812                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5813                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5814                 } else if (IS_I965GM(dev)) {
5815                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5816                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5817                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5818                 }
5819                 /* 855GM needs testing */
5820         }
5821
5822         /* Returns the core display clock speed */
5823         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5824                 dev_priv->display.get_display_clock_speed =
5825                         i945_get_display_clock_speed;
5826         else if (IS_I915G(dev))
5827                 dev_priv->display.get_display_clock_speed =
5828                         i915_get_display_clock_speed;
5829         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5830                 dev_priv->display.get_display_clock_speed =
5831                         i9xx_misc_get_display_clock_speed;
5832         else if (IS_I915GM(dev))
5833                 dev_priv->display.get_display_clock_speed =
5834                         i915gm_get_display_clock_speed;
5835         else if (IS_I865G(dev))
5836                 dev_priv->display.get_display_clock_speed =
5837                         i865_get_display_clock_speed;
5838         else if (IS_I85X(dev))
5839                 dev_priv->display.get_display_clock_speed =
5840                         i855_get_display_clock_speed;
5841         else /* 852, 830 */
5842                 dev_priv->display.get_display_clock_speed =
5843                         i830_get_display_clock_speed;
5844
5845         /* For FIFO watermark updates */
5846         if (HAS_PCH_SPLIT(dev)) {
5847                 if (IS_IRONLAKE(dev)) {
5848                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5849                                 dev_priv->display.update_wm = ironlake_update_wm;
5850                         else {
5851                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5852                                               "Disable CxSR\n");
5853                                 dev_priv->display.update_wm = NULL;
5854                         }
5855                 } else
5856                         dev_priv->display.update_wm = NULL;
5857         } else if (IS_PINEVIEW(dev)) {
5858                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5859                                             dev_priv->is_ddr3,
5860                                             dev_priv->fsb_freq,
5861                                             dev_priv->mem_freq)) {
5862                         DRM_INFO("failed to find known CxSR latency "
5863                                  "(found ddr%s fsb freq %d, mem freq %d), "
5864                                  "disabling CxSR\n",
5865                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
5866                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5867                         /* Disable CxSR and never update its watermark again */
5868                         pineview_disable_cxsr(dev);
5869                         dev_priv->display.update_wm = NULL;
5870                 } else
5871                         dev_priv->display.update_wm = pineview_update_wm;
5872         } else if (IS_G4X(dev))
5873                 dev_priv->display.update_wm = g4x_update_wm;
5874         else if (IS_I965G(dev))
5875                 dev_priv->display.update_wm = i965_update_wm;
5876         else if (IS_I9XX(dev)) {
5877                 dev_priv->display.update_wm = i9xx_update_wm;
5878                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5879         } else if (IS_I85X(dev)) {
5880                 dev_priv->display.update_wm = i9xx_update_wm;
5881                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5882         } else {
5883                 dev_priv->display.update_wm = i830_update_wm;
5884                 if (IS_845G(dev))
5885                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5886                 else
5887                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5888         }
5889 }
5890
5891 /*
5892  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5893  * resume, or other times.  This quirk makes sure that's the case for
5894  * affected systems.
5895  */
5896 static void quirk_pipea_force (struct drm_device *dev)
5897 {
5898         struct drm_i915_private *dev_priv = dev->dev_private;
5899
5900         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
5901         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
5902 }
5903
5904 struct intel_quirk {
5905         int device;
5906         int subsystem_vendor;
5907         int subsystem_device;
5908         void (*hook)(struct drm_device *dev);
5909 };
5910
5911 struct intel_quirk intel_quirks[] = {
5912         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
5913         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
5914         /* HP Mini needs pipe A force quirk (LP: #322104) */
5915         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
5916
5917         /* Thinkpad R31 needs pipe A force quirk */
5918         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
5919         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
5920         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
5921
5922         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
5923         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
5924         /* ThinkPad X40 needs pipe A force quirk */
5925
5926         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
5927         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
5928
5929         /* 855 & before need to leave pipe A & dpll A up */
5930         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5931         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5932 };
5933
5934 static void intel_init_quirks(struct drm_device *dev)
5935 {
5936         struct pci_dev *d = dev->pdev;
5937         int i;
5938
5939         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
5940                 struct intel_quirk *q = &intel_quirks[i];
5941
5942                 if (d->device == q->device &&
5943                     (d->subsystem_vendor == q->subsystem_vendor ||
5944                      q->subsystem_vendor == PCI_ANY_ID) &&
5945                     (d->subsystem_device == q->subsystem_device ||
5946                      q->subsystem_device == PCI_ANY_ID))
5947                         q->hook(dev);
5948         }
5949 }
5950
5951 void intel_modeset_init(struct drm_device *dev)
5952 {
5953         struct drm_i915_private *dev_priv = dev->dev_private;
5954         int i;
5955
5956         drm_mode_config_init(dev);
5957
5958         dev->mode_config.min_width = 0;
5959         dev->mode_config.min_height = 0;
5960
5961         dev->mode_config.funcs = (void *)&intel_mode_funcs;
5962
5963         intel_init_quirks(dev);
5964
5965         intel_init_display(dev);
5966
5967         if (IS_I965G(dev)) {
5968                 dev->mode_config.max_width = 8192;
5969                 dev->mode_config.max_height = 8192;
5970         } else if (IS_I9XX(dev)) {
5971                 dev->mode_config.max_width = 4096;
5972                 dev->mode_config.max_height = 4096;
5973         } else {
5974                 dev->mode_config.max_width = 2048;
5975                 dev->mode_config.max_height = 2048;
5976         }
5977
5978         /* set memory base */
5979         if (IS_I9XX(dev))
5980                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
5981         else
5982                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
5983
5984         if (IS_MOBILE(dev) || IS_I9XX(dev))
5985                 dev_priv->num_pipe = 2;
5986         else
5987                 dev_priv->num_pipe = 1;
5988         DRM_DEBUG_KMS("%d display pipe%s available.\n",
5989                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
5990
5991         for (i = 0; i < dev_priv->num_pipe; i++) {
5992                 intel_crtc_init(dev, i);
5993         }
5994
5995         intel_setup_outputs(dev);
5996
5997         intel_init_clock_gating(dev);
5998
5999         if (IS_IRONLAKE_M(dev)) {
6000                 ironlake_enable_drps(dev);
6001                 intel_init_emon(dev);
6002         }
6003
6004         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6005         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6006                     (unsigned long)dev);
6007
6008         intel_setup_overlay(dev);
6009 }
6010
6011 void intel_modeset_cleanup(struct drm_device *dev)
6012 {
6013         struct drm_i915_private *dev_priv = dev->dev_private;
6014         struct drm_crtc *crtc;
6015         struct intel_crtc *intel_crtc;
6016
6017         mutex_lock(&dev->struct_mutex);
6018
6019         drm_kms_helper_poll_fini(dev);
6020         intel_fbdev_fini(dev);
6021
6022         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6023                 /* Skip inactive CRTCs */
6024                 if (!crtc->fb)
6025                         continue;
6026
6027                 intel_crtc = to_intel_crtc(crtc);
6028                 intel_increase_pllclock(crtc, false);
6029                 del_timer_sync(&intel_crtc->idle_timer);
6030         }
6031
6032         del_timer_sync(&dev_priv->idle_timer);
6033
6034         if (dev_priv->display.disable_fbc)
6035                 dev_priv->display.disable_fbc(dev);
6036
6037         if (dev_priv->pwrctx) {
6038                 struct drm_i915_gem_object *obj_priv;
6039
6040                 obj_priv = to_intel_bo(dev_priv->pwrctx);
6041                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6042                 I915_READ(PWRCTXA);
6043                 i915_gem_object_unpin(dev_priv->pwrctx);
6044                 drm_gem_object_unreference(dev_priv->pwrctx);
6045         }
6046
6047         if (IS_IRONLAKE_M(dev))
6048                 ironlake_disable_drps(dev);
6049
6050         mutex_unlock(&dev->struct_mutex);
6051
6052         drm_mode_config_cleanup(dev);
6053 }
6054
6055
6056 /*
6057  * Return which encoder is currently attached for connector.
6058  */
6059 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
6060 {
6061         struct drm_mode_object *obj;
6062         struct drm_encoder *encoder;
6063         int i;
6064
6065         for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
6066                 if (connector->encoder_ids[i] == 0)
6067                         break;
6068
6069                 obj = drm_mode_object_find(connector->dev,
6070                                            connector->encoder_ids[i],
6071                                            DRM_MODE_OBJECT_ENCODER);
6072                 if (!obj)
6073                         continue;
6074
6075                 encoder = obj_to_encoder(obj);
6076                 return encoder;
6077         }
6078         return NULL;
6079 }
6080
6081 /*
6082  * set vga decode state - true == enable VGA decode
6083  */
6084 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6085 {
6086         struct drm_i915_private *dev_priv = dev->dev_private;
6087         u16 gmch_ctrl;
6088
6089         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6090         if (state)
6091                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6092         else
6093                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6094         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6095         return 0;
6096 }