Merge branch 'core-printk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50     /* given values */
51     int n;
52     int m1, m2;
53     int p1, p2;
54     /* derived values */
55     int dot;
56     int vco;
57     int m;
58     int p;
59 } intel_clock_t;
60
61 typedef struct {
62     int min, max;
63 } intel_range_t;
64
65 typedef struct {
66     int dot_limit;
67     int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM                  2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74     intel_p2_t      p2;
75     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76                       int, int, intel_clock_t *);
77 };
78
79 /* FDI */
80 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
81
82 static bool
83 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
84                     int target, int refclk, intel_clock_t *best_clock);
85 static bool
86 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
87                         int target, int refclk, intel_clock_t *best_clock);
88
89 static bool
90 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
91                       int target, int refclk, intel_clock_t *best_clock);
92 static bool
93 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
94                            int target, int refclk, intel_clock_t *best_clock);
95
96 static inline u32 /* units of 100MHz */
97 intel_fdi_link_freq(struct drm_device *dev)
98 {
99         if (IS_GEN5(dev)) {
100                 struct drm_i915_private *dev_priv = dev->dev_private;
101                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
102         } else
103                 return 27;
104 }
105
106 static const intel_limit_t intel_limits_i8xx_dvo = {
107         .dot = { .min = 25000, .max = 350000 },
108         .vco = { .min = 930000, .max = 1400000 },
109         .n = { .min = 3, .max = 16 },
110         .m = { .min = 96, .max = 140 },
111         .m1 = { .min = 18, .max = 26 },
112         .m2 = { .min = 6, .max = 16 },
113         .p = { .min = 4, .max = 128 },
114         .p1 = { .min = 2, .max = 33 },
115         .p2 = { .dot_limit = 165000,
116                 .p2_slow = 4, .p2_fast = 2 },
117         .find_pll = intel_find_best_PLL,
118 };
119
120 static const intel_limit_t intel_limits_i8xx_lvds = {
121         .dot = { .min = 25000, .max = 350000 },
122         .vco = { .min = 930000, .max = 1400000 },
123         .n = { .min = 3, .max = 16 },
124         .m = { .min = 96, .max = 140 },
125         .m1 = { .min = 18, .max = 26 },
126         .m2 = { .min = 6, .max = 16 },
127         .p = { .min = 4, .max = 128 },
128         .p1 = { .min = 1, .max = 6 },
129         .p2 = { .dot_limit = 165000,
130                 .p2_slow = 14, .p2_fast = 7 },
131         .find_pll = intel_find_best_PLL,
132 };
133
134 static const intel_limit_t intel_limits_i9xx_sdvo = {
135         .dot = { .min = 20000, .max = 400000 },
136         .vco = { .min = 1400000, .max = 2800000 },
137         .n = { .min = 1, .max = 6 },
138         .m = { .min = 70, .max = 120 },
139         .m1 = { .min = 10, .max = 22 },
140         .m2 = { .min = 5, .max = 9 },
141         .p = { .min = 5, .max = 80 },
142         .p1 = { .min = 1, .max = 8 },
143         .p2 = { .dot_limit = 200000,
144                 .p2_slow = 10, .p2_fast = 5 },
145         .find_pll = intel_find_best_PLL,
146 };
147
148 static const intel_limit_t intel_limits_i9xx_lvds = {
149         .dot = { .min = 20000, .max = 400000 },
150         .vco = { .min = 1400000, .max = 2800000 },
151         .n = { .min = 1, .max = 6 },
152         .m = { .min = 70, .max = 120 },
153         .m1 = { .min = 10, .max = 22 },
154         .m2 = { .min = 5, .max = 9 },
155         .p = { .min = 7, .max = 98 },
156         .p1 = { .min = 1, .max = 8 },
157         .p2 = { .dot_limit = 112000,
158                 .p2_slow = 14, .p2_fast = 7 },
159         .find_pll = intel_find_best_PLL,
160 };
161
162
163 static const intel_limit_t intel_limits_g4x_sdvo = {
164         .dot = { .min = 25000, .max = 270000 },
165         .vco = { .min = 1750000, .max = 3500000},
166         .n = { .min = 1, .max = 4 },
167         .m = { .min = 104, .max = 138 },
168         .m1 = { .min = 17, .max = 23 },
169         .m2 = { .min = 5, .max = 11 },
170         .p = { .min = 10, .max = 30 },
171         .p1 = { .min = 1, .max = 3},
172         .p2 = { .dot_limit = 270000,
173                 .p2_slow = 10,
174                 .p2_fast = 10
175         },
176         .find_pll = intel_g4x_find_best_PLL,
177 };
178
179 static const intel_limit_t intel_limits_g4x_hdmi = {
180         .dot = { .min = 22000, .max = 400000 },
181         .vco = { .min = 1750000, .max = 3500000},
182         .n = { .min = 1, .max = 4 },
183         .m = { .min = 104, .max = 138 },
184         .m1 = { .min = 16, .max = 23 },
185         .m2 = { .min = 5, .max = 11 },
186         .p = { .min = 5, .max = 80 },
187         .p1 = { .min = 1, .max = 8},
188         .p2 = { .dot_limit = 165000,
189                 .p2_slow = 10, .p2_fast = 5 },
190         .find_pll = intel_g4x_find_best_PLL,
191 };
192
193 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
194         .dot = { .min = 20000, .max = 115000 },
195         .vco = { .min = 1750000, .max = 3500000 },
196         .n = { .min = 1, .max = 3 },
197         .m = { .min = 104, .max = 138 },
198         .m1 = { .min = 17, .max = 23 },
199         .m2 = { .min = 5, .max = 11 },
200         .p = { .min = 28, .max = 112 },
201         .p1 = { .min = 2, .max = 8 },
202         .p2 = { .dot_limit = 0,
203                 .p2_slow = 14, .p2_fast = 14
204         },
205         .find_pll = intel_g4x_find_best_PLL,
206 };
207
208 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
209         .dot = { .min = 80000, .max = 224000 },
210         .vco = { .min = 1750000, .max = 3500000 },
211         .n = { .min = 1, .max = 3 },
212         .m = { .min = 104, .max = 138 },
213         .m1 = { .min = 17, .max = 23 },
214         .m2 = { .min = 5, .max = 11 },
215         .p = { .min = 14, .max = 42 },
216         .p1 = { .min = 2, .max = 6 },
217         .p2 = { .dot_limit = 0,
218                 .p2_slow = 7, .p2_fast = 7
219         },
220         .find_pll = intel_g4x_find_best_PLL,
221 };
222
223 static const intel_limit_t intel_limits_g4x_display_port = {
224         .dot = { .min = 161670, .max = 227000 },
225         .vco = { .min = 1750000, .max = 3500000},
226         .n = { .min = 1, .max = 2 },
227         .m = { .min = 97, .max = 108 },
228         .m1 = { .min = 0x10, .max = 0x12 },
229         .m2 = { .min = 0x05, .max = 0x06 },
230         .p = { .min = 10, .max = 20 },
231         .p1 = { .min = 1, .max = 2},
232         .p2 = { .dot_limit = 0,
233                 .p2_slow = 10, .p2_fast = 10 },
234         .find_pll = intel_find_pll_g4x_dp,
235 };
236
237 static const intel_limit_t intel_limits_pineview_sdvo = {
238         .dot = { .min = 20000, .max = 400000},
239         .vco = { .min = 1700000, .max = 3500000 },
240         /* Pineview's Ncounter is a ring counter */
241         .n = { .min = 3, .max = 6 },
242         .m = { .min = 2, .max = 256 },
243         /* Pineview only has one combined m divider, which we treat as m2. */
244         .m1 = { .min = 0, .max = 0 },
245         .m2 = { .min = 0, .max = 254 },
246         .p = { .min = 5, .max = 80 },
247         .p1 = { .min = 1, .max = 8 },
248         .p2 = { .dot_limit = 200000,
249                 .p2_slow = 10, .p2_fast = 5 },
250         .find_pll = intel_find_best_PLL,
251 };
252
253 static const intel_limit_t intel_limits_pineview_lvds = {
254         .dot = { .min = 20000, .max = 400000 },
255         .vco = { .min = 1700000, .max = 3500000 },
256         .n = { .min = 3, .max = 6 },
257         .m = { .min = 2, .max = 256 },
258         .m1 = { .min = 0, .max = 0 },
259         .m2 = { .min = 0, .max = 254 },
260         .p = { .min = 7, .max = 112 },
261         .p1 = { .min = 1, .max = 8 },
262         .p2 = { .dot_limit = 112000,
263                 .p2_slow = 14, .p2_fast = 14 },
264         .find_pll = intel_find_best_PLL,
265 };
266
267 /* Ironlake / Sandybridge
268  *
269  * We calculate clock using (register_value + 2) for N/M1/M2, so here
270  * the range value for them is (actual_value - 2).
271  */
272 static const intel_limit_t intel_limits_ironlake_dac = {
273         .dot = { .min = 25000, .max = 350000 },
274         .vco = { .min = 1760000, .max = 3510000 },
275         .n = { .min = 1, .max = 5 },
276         .m = { .min = 79, .max = 127 },
277         .m1 = { .min = 12, .max = 22 },
278         .m2 = { .min = 5, .max = 9 },
279         .p = { .min = 5, .max = 80 },
280         .p1 = { .min = 1, .max = 8 },
281         .p2 = { .dot_limit = 225000,
282                 .p2_slow = 10, .p2_fast = 5 },
283         .find_pll = intel_g4x_find_best_PLL,
284 };
285
286 static const intel_limit_t intel_limits_ironlake_single_lvds = {
287         .dot = { .min = 25000, .max = 350000 },
288         .vco = { .min = 1760000, .max = 3510000 },
289         .n = { .min = 1, .max = 3 },
290         .m = { .min = 79, .max = 118 },
291         .m1 = { .min = 12, .max = 22 },
292         .m2 = { .min = 5, .max = 9 },
293         .p = { .min = 28, .max = 112 },
294         .p1 = { .min = 2, .max = 8 },
295         .p2 = { .dot_limit = 225000,
296                 .p2_slow = 14, .p2_fast = 14 },
297         .find_pll = intel_g4x_find_best_PLL,
298 };
299
300 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 3 },
304         .m = { .min = 79, .max = 127 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 14, .max = 56 },
308         .p1 = { .min = 2, .max = 8 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 7, .p2_fast = 7 },
311         .find_pll = intel_g4x_find_best_PLL,
312 };
313
314 /* LVDS 100mhz refclk limits. */
315 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
316         .dot = { .min = 25000, .max = 350000 },
317         .vco = { .min = 1760000, .max = 3510000 },
318         .n = { .min = 1, .max = 2 },
319         .m = { .min = 79, .max = 126 },
320         .m1 = { .min = 12, .max = 22 },
321         .m2 = { .min = 5, .max = 9 },
322         .p = { .min = 28, .max = 112 },
323         .p1 = { .min = 2,.max = 8 },
324         .p2 = { .dot_limit = 225000,
325                 .p2_slow = 14, .p2_fast = 14 },
326         .find_pll = intel_g4x_find_best_PLL,
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
330         .dot = { .min = 25000, .max = 350000 },
331         .vco = { .min = 1760000, .max = 3510000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 79, .max = 126 },
334         .m1 = { .min = 12, .max = 22 },
335         .m2 = { .min = 5, .max = 9 },
336         .p = { .min = 14, .max = 42 },
337         .p1 = { .min = 2,.max = 6 },
338         .p2 = { .dot_limit = 225000,
339                 .p2_slow = 7, .p2_fast = 7 },
340         .find_pll = intel_g4x_find_best_PLL,
341 };
342
343 static const intel_limit_t intel_limits_ironlake_display_port = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000},
346         .n = { .min = 1, .max = 2 },
347         .m = { .min = 81, .max = 90 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 10, .max = 20 },
351         .p1 = { .min = 1, .max = 2},
352         .p2 = { .dot_limit = 0,
353                 .p2_slow = 10, .p2_fast = 10 },
354         .find_pll = intel_find_pll_ironlake_dp,
355 };
356
357 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
358                                                 int refclk)
359 {
360         struct drm_device *dev = crtc->dev;
361         struct drm_i915_private *dev_priv = dev->dev_private;
362         const intel_limit_t *limit;
363
364         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
365                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
366                     LVDS_CLKB_POWER_UP) {
367                         /* LVDS dual channel */
368                         if (refclk == 100000)
369                                 limit = &intel_limits_ironlake_dual_lvds_100m;
370                         else
371                                 limit = &intel_limits_ironlake_dual_lvds;
372                 } else {
373                         if (refclk == 100000)
374                                 limit = &intel_limits_ironlake_single_lvds_100m;
375                         else
376                                 limit = &intel_limits_ironlake_single_lvds;
377                 }
378         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
379                         HAS_eDP)
380                 limit = &intel_limits_ironlake_display_port;
381         else
382                 limit = &intel_limits_ironlake_dac;
383
384         return limit;
385 }
386
387 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
388 {
389         struct drm_device *dev = crtc->dev;
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         const intel_limit_t *limit;
392
393         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
394                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
395                     LVDS_CLKB_POWER_UP)
396                         /* LVDS with dual channel */
397                         limit = &intel_limits_g4x_dual_channel_lvds;
398                 else
399                         /* LVDS with dual channel */
400                         limit = &intel_limits_g4x_single_channel_lvds;
401         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
402                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
403                 limit = &intel_limits_g4x_hdmi;
404         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
405                 limit = &intel_limits_g4x_sdvo;
406         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
407                 limit = &intel_limits_g4x_display_port;
408         } else /* The option is for other outputs */
409                 limit = &intel_limits_i9xx_sdvo;
410
411         return limit;
412 }
413
414 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
415 {
416         struct drm_device *dev = crtc->dev;
417         const intel_limit_t *limit;
418
419         if (HAS_PCH_SPLIT(dev))
420                 limit = intel_ironlake_limit(crtc, refclk);
421         else if (IS_G4X(dev)) {
422                 limit = intel_g4x_limit(crtc);
423         } else if (IS_PINEVIEW(dev)) {
424                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
425                         limit = &intel_limits_pineview_lvds;
426                 else
427                         limit = &intel_limits_pineview_sdvo;
428         } else if (!IS_GEN2(dev)) {
429                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
430                         limit = &intel_limits_i9xx_lvds;
431                 else
432                         limit = &intel_limits_i9xx_sdvo;
433         } else {
434                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
435                         limit = &intel_limits_i8xx_lvds;
436                 else
437                         limit = &intel_limits_i8xx_dvo;
438         }
439         return limit;
440 }
441
442 /* m1 is reserved as 0 in Pineview, n is a ring counter */
443 static void pineview_clock(int refclk, intel_clock_t *clock)
444 {
445         clock->m = clock->m2 + 2;
446         clock->p = clock->p1 * clock->p2;
447         clock->vco = refclk * clock->m / clock->n;
448         clock->dot = clock->vco / clock->p;
449 }
450
451 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
452 {
453         if (IS_PINEVIEW(dev)) {
454                 pineview_clock(refclk, clock);
455                 return;
456         }
457         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
458         clock->p = clock->p1 * clock->p2;
459         clock->vco = refclk * clock->m / (clock->n + 2);
460         clock->dot = clock->vco / clock->p;
461 }
462
463 /**
464  * Returns whether any output on the specified pipe is of the specified type
465  */
466 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
467 {
468         struct drm_device *dev = crtc->dev;
469         struct drm_mode_config *mode_config = &dev->mode_config;
470         struct intel_encoder *encoder;
471
472         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
473                 if (encoder->base.crtc == crtc && encoder->type == type)
474                         return true;
475
476         return false;
477 }
478
479 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
480 /**
481  * Returns whether the given set of divisors are valid for a given refclk with
482  * the given connectors.
483  */
484
485 static bool intel_PLL_is_valid(struct drm_device *dev,
486                                const intel_limit_t *limit,
487                                const intel_clock_t *clock)
488 {
489         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
490                 INTELPllInvalid ("p1 out of range\n");
491         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
492                 INTELPllInvalid ("p out of range\n");
493         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
494                 INTELPllInvalid ("m2 out of range\n");
495         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
496                 INTELPllInvalid ("m1 out of range\n");
497         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
498                 INTELPllInvalid ("m1 <= m2\n");
499         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
500                 INTELPllInvalid ("m out of range\n");
501         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
502                 INTELPllInvalid ("n out of range\n");
503         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
504                 INTELPllInvalid ("vco out of range\n");
505         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
506          * connector, etc., rather than just a single range.
507          */
508         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
509                 INTELPllInvalid ("dot out of range\n");
510
511         return true;
512 }
513
514 static bool
515 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
516                     int target, int refclk, intel_clock_t *best_clock)
517
518 {
519         struct drm_device *dev = crtc->dev;
520         struct drm_i915_private *dev_priv = dev->dev_private;
521         intel_clock_t clock;
522         int err = target;
523
524         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
525             (I915_READ(LVDS)) != 0) {
526                 /*
527                  * For LVDS, if the panel is on, just rely on its current
528                  * settings for dual-channel.  We haven't figured out how to
529                  * reliably set up different single/dual channel state, if we
530                  * even can.
531                  */
532                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
533                     LVDS_CLKB_POWER_UP)
534                         clock.p2 = limit->p2.p2_fast;
535                 else
536                         clock.p2 = limit->p2.p2_slow;
537         } else {
538                 if (target < limit->p2.dot_limit)
539                         clock.p2 = limit->p2.p2_slow;
540                 else
541                         clock.p2 = limit->p2.p2_fast;
542         }
543
544         memset (best_clock, 0, sizeof (*best_clock));
545
546         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
547              clock.m1++) {
548                 for (clock.m2 = limit->m2.min;
549                      clock.m2 <= limit->m2.max; clock.m2++) {
550                         /* m1 is always 0 in Pineview */
551                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
552                                 break;
553                         for (clock.n = limit->n.min;
554                              clock.n <= limit->n.max; clock.n++) {
555                                 for (clock.p1 = limit->p1.min;
556                                         clock.p1 <= limit->p1.max; clock.p1++) {
557                                         int this_err;
558
559                                         intel_clock(dev, refclk, &clock);
560                                         if (!intel_PLL_is_valid(dev, limit,
561                                                                 &clock))
562                                                 continue;
563
564                                         this_err = abs(clock.dot - target);
565                                         if (this_err < err) {
566                                                 *best_clock = clock;
567                                                 err = this_err;
568                                         }
569                                 }
570                         }
571                 }
572         }
573
574         return (err != target);
575 }
576
577 static bool
578 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
579                         int target, int refclk, intel_clock_t *best_clock)
580 {
581         struct drm_device *dev = crtc->dev;
582         struct drm_i915_private *dev_priv = dev->dev_private;
583         intel_clock_t clock;
584         int max_n;
585         bool found;
586         /* approximately equals target * 0.00585 */
587         int err_most = (target >> 8) + (target >> 9);
588         found = false;
589
590         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
591                 int lvds_reg;
592
593                 if (HAS_PCH_SPLIT(dev))
594                         lvds_reg = PCH_LVDS;
595                 else
596                         lvds_reg = LVDS;
597                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
598                     LVDS_CLKB_POWER_UP)
599                         clock.p2 = limit->p2.p2_fast;
600                 else
601                         clock.p2 = limit->p2.p2_slow;
602         } else {
603                 if (target < limit->p2.dot_limit)
604                         clock.p2 = limit->p2.p2_slow;
605                 else
606                         clock.p2 = limit->p2.p2_fast;
607         }
608
609         memset(best_clock, 0, sizeof(*best_clock));
610         max_n = limit->n.max;
611         /* based on hardware requirement, prefer smaller n to precision */
612         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
613                 /* based on hardware requirement, prefere larger m1,m2 */
614                 for (clock.m1 = limit->m1.max;
615                      clock.m1 >= limit->m1.min; clock.m1--) {
616                         for (clock.m2 = limit->m2.max;
617                              clock.m2 >= limit->m2.min; clock.m2--) {
618                                 for (clock.p1 = limit->p1.max;
619                                      clock.p1 >= limit->p1.min; clock.p1--) {
620                                         int this_err;
621
622                                         intel_clock(dev, refclk, &clock);
623                                         if (!intel_PLL_is_valid(dev, limit,
624                                                                 &clock))
625                                                 continue;
626
627                                         this_err = abs(clock.dot - target);
628                                         if (this_err < err_most) {
629                                                 *best_clock = clock;
630                                                 err_most = this_err;
631                                                 max_n = clock.n;
632                                                 found = true;
633                                         }
634                                 }
635                         }
636                 }
637         }
638         return found;
639 }
640
641 static bool
642 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
643                            int target, int refclk, intel_clock_t *best_clock)
644 {
645         struct drm_device *dev = crtc->dev;
646         intel_clock_t clock;
647
648         if (target < 200000) {
649                 clock.n = 1;
650                 clock.p1 = 2;
651                 clock.p2 = 10;
652                 clock.m1 = 12;
653                 clock.m2 = 9;
654         } else {
655                 clock.n = 2;
656                 clock.p1 = 1;
657                 clock.p2 = 10;
658                 clock.m1 = 14;
659                 clock.m2 = 8;
660         }
661         intel_clock(dev, refclk, &clock);
662         memcpy(best_clock, &clock, sizeof(intel_clock_t));
663         return true;
664 }
665
666 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
667 static bool
668 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
669                       int target, int refclk, intel_clock_t *best_clock)
670 {
671         intel_clock_t clock;
672         if (target < 200000) {
673                 clock.p1 = 2;
674                 clock.p2 = 10;
675                 clock.n = 2;
676                 clock.m1 = 23;
677                 clock.m2 = 8;
678         } else {
679                 clock.p1 = 1;
680                 clock.p2 = 10;
681                 clock.n = 1;
682                 clock.m1 = 14;
683                 clock.m2 = 2;
684         }
685         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
686         clock.p = (clock.p1 * clock.p2);
687         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
688         clock.vco = 0;
689         memcpy(best_clock, &clock, sizeof(intel_clock_t));
690         return true;
691 }
692
693 /**
694  * intel_wait_for_vblank - wait for vblank on a given pipe
695  * @dev: drm device
696  * @pipe: pipe to wait for
697  *
698  * Wait for vblank to occur on a given pipe.  Needed for various bits of
699  * mode setting code.
700  */
701 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
702 {
703         struct drm_i915_private *dev_priv = dev->dev_private;
704         int pipestat_reg = PIPESTAT(pipe);
705
706         /* Clear existing vblank status. Note this will clear any other
707          * sticky status fields as well.
708          *
709          * This races with i915_driver_irq_handler() with the result
710          * that either function could miss a vblank event.  Here it is not
711          * fatal, as we will either wait upon the next vblank interrupt or
712          * timeout.  Generally speaking intel_wait_for_vblank() is only
713          * called during modeset at which time the GPU should be idle and
714          * should *not* be performing page flips and thus not waiting on
715          * vblanks...
716          * Currently, the result of us stealing a vblank from the irq
717          * handler is that a single frame will be skipped during swapbuffers.
718          */
719         I915_WRITE(pipestat_reg,
720                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
721
722         /* Wait for vblank interrupt bit to set */
723         if (wait_for(I915_READ(pipestat_reg) &
724                      PIPE_VBLANK_INTERRUPT_STATUS,
725                      50))
726                 DRM_DEBUG_KMS("vblank wait timed out\n");
727 }
728
729 /*
730  * intel_wait_for_pipe_off - wait for pipe to turn off
731  * @dev: drm device
732  * @pipe: pipe to wait for
733  *
734  * After disabling a pipe, we can't wait for vblank in the usual way,
735  * spinning on the vblank interrupt status bit, since we won't actually
736  * see an interrupt when the pipe is disabled.
737  *
738  * On Gen4 and above:
739  *   wait for the pipe register state bit to turn off
740  *
741  * Otherwise:
742  *   wait for the display line value to settle (it usually
743  *   ends up stopping at the start of the next frame).
744  *
745  */
746 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
747 {
748         struct drm_i915_private *dev_priv = dev->dev_private;
749
750         if (INTEL_INFO(dev)->gen >= 4) {
751                 int reg = PIPECONF(pipe);
752
753                 /* Wait for the Pipe State to go off */
754                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
755                              100))
756                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
757         } else {
758                 u32 last_line;
759                 int reg = PIPEDSL(pipe);
760                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
761
762                 /* Wait for the display line to settle */
763                 do {
764                         last_line = I915_READ(reg) & DSL_LINEMASK;
765                         mdelay(5);
766                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
767                          time_after(timeout, jiffies));
768                 if (time_after(jiffies, timeout))
769                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
770         }
771 }
772
773 static const char *state_string(bool enabled)
774 {
775         return enabled ? "on" : "off";
776 }
777
778 /* Only for pre-ILK configs */
779 static void assert_pll(struct drm_i915_private *dev_priv,
780                        enum pipe pipe, bool state)
781 {
782         int reg;
783         u32 val;
784         bool cur_state;
785
786         reg = DPLL(pipe);
787         val = I915_READ(reg);
788         cur_state = !!(val & DPLL_VCO_ENABLE);
789         WARN(cur_state != state,
790              "PLL state assertion failure (expected %s, current %s)\n",
791              state_string(state), state_string(cur_state));
792 }
793 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
794 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
795
796 /* For ILK+ */
797 static void assert_pch_pll(struct drm_i915_private *dev_priv,
798                            enum pipe pipe, bool state)
799 {
800         int reg;
801         u32 val;
802         bool cur_state;
803
804         reg = PCH_DPLL(pipe);
805         val = I915_READ(reg);
806         cur_state = !!(val & DPLL_VCO_ENABLE);
807         WARN(cur_state != state,
808              "PCH PLL state assertion failure (expected %s, current %s)\n",
809              state_string(state), state_string(cur_state));
810 }
811 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
812 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
813
814 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
815                           enum pipe pipe, bool state)
816 {
817         int reg;
818         u32 val;
819         bool cur_state;
820
821         reg = FDI_TX_CTL(pipe);
822         val = I915_READ(reg);
823         cur_state = !!(val & FDI_TX_ENABLE);
824         WARN(cur_state != state,
825              "FDI TX state assertion failure (expected %s, current %s)\n",
826              state_string(state), state_string(cur_state));
827 }
828 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
829 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
830
831 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
832                           enum pipe pipe, bool state)
833 {
834         int reg;
835         u32 val;
836         bool cur_state;
837
838         reg = FDI_RX_CTL(pipe);
839         val = I915_READ(reg);
840         cur_state = !!(val & FDI_RX_ENABLE);
841         WARN(cur_state != state,
842              "FDI RX state assertion failure (expected %s, current %s)\n",
843              state_string(state), state_string(cur_state));
844 }
845 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
846 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
847
848 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
849                                       enum pipe pipe)
850 {
851         int reg;
852         u32 val;
853
854         /* ILK FDI PLL is always enabled */
855         if (dev_priv->info->gen == 5)
856                 return;
857
858         reg = FDI_TX_CTL(pipe);
859         val = I915_READ(reg);
860         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
861 }
862
863 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
864                                       enum pipe pipe)
865 {
866         int reg;
867         u32 val;
868
869         reg = FDI_RX_CTL(pipe);
870         val = I915_READ(reg);
871         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
872 }
873
874 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
875                                   enum pipe pipe)
876 {
877         int pp_reg, lvds_reg;
878         u32 val;
879         enum pipe panel_pipe = PIPE_A;
880         bool locked = locked;
881
882         if (HAS_PCH_SPLIT(dev_priv->dev)) {
883                 pp_reg = PCH_PP_CONTROL;
884                 lvds_reg = PCH_LVDS;
885         } else {
886                 pp_reg = PP_CONTROL;
887                 lvds_reg = LVDS;
888         }
889
890         val = I915_READ(pp_reg);
891         if (!(val & PANEL_POWER_ON) ||
892             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
893                 locked = false;
894
895         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
896                 panel_pipe = PIPE_B;
897
898         WARN(panel_pipe == pipe && locked,
899              "panel assertion failure, pipe %c regs locked\n",
900              pipe_name(pipe));
901 }
902
903 static void assert_pipe(struct drm_i915_private *dev_priv,
904                         enum pipe pipe, bool state)
905 {
906         int reg;
907         u32 val;
908         bool cur_state;
909
910         reg = PIPECONF(pipe);
911         val = I915_READ(reg);
912         cur_state = !!(val & PIPECONF_ENABLE);
913         WARN(cur_state != state,
914              "pipe %c assertion failure (expected %s, current %s)\n",
915              pipe_name(pipe), state_string(state), state_string(cur_state));
916 }
917 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
918 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
919
920 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
921                                  enum plane plane)
922 {
923         int reg;
924         u32 val;
925
926         reg = DSPCNTR(plane);
927         val = I915_READ(reg);
928         WARN(!(val & DISPLAY_PLANE_ENABLE),
929              "plane %c assertion failure, should be active but is disabled\n",
930              plane_name(plane));
931 }
932
933 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
934                                    enum pipe pipe)
935 {
936         int reg, i;
937         u32 val;
938         int cur_pipe;
939
940         /* Planes are fixed to pipes on ILK+ */
941         if (HAS_PCH_SPLIT(dev_priv->dev))
942                 return;
943
944         /* Need to check both planes against the pipe */
945         for (i = 0; i < 2; i++) {
946                 reg = DSPCNTR(i);
947                 val = I915_READ(reg);
948                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
949                         DISPPLANE_SEL_PIPE_SHIFT;
950                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
951                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
952                      plane_name(i), pipe_name(pipe));
953         }
954 }
955
956 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
957 {
958         u32 val;
959         bool enabled;
960
961         val = I915_READ(PCH_DREF_CONTROL);
962         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
963                             DREF_SUPERSPREAD_SOURCE_MASK));
964         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
965 }
966
967 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
968                                        enum pipe pipe)
969 {
970         int reg;
971         u32 val;
972         bool enabled;
973
974         reg = TRANSCONF(pipe);
975         val = I915_READ(reg);
976         enabled = !!(val & TRANS_ENABLE);
977         WARN(enabled,
978              "transcoder assertion failed, should be off on pipe %c but is still active\n",
979              pipe_name(pipe));
980 }
981
982 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
983                                    enum pipe pipe, int reg)
984 {
985         u32 val = I915_READ(reg);
986         WARN(DP_PIPE_ENABLED(val, pipe),
987              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
988              reg, pipe_name(pipe));
989 }
990
991 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
992                                      enum pipe pipe, int reg)
993 {
994         u32 val = I915_READ(reg);
995         WARN(HDMI_PIPE_ENABLED(val, pipe),
996              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
997              reg, pipe_name(pipe));
998 }
999
1000 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1001                                       enum pipe pipe)
1002 {
1003         int reg;
1004         u32 val;
1005
1006         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B);
1007         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C);
1008         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D);
1009
1010         reg = PCH_ADPA;
1011         val = I915_READ(reg);
1012         WARN(ADPA_PIPE_ENABLED(val, pipe),
1013              "PCH VGA enabled on transcoder %c, should be disabled\n",
1014              pipe_name(pipe));
1015
1016         reg = PCH_LVDS;
1017         val = I915_READ(reg);
1018         WARN(LVDS_PIPE_ENABLED(val, pipe),
1019              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1020              pipe_name(pipe));
1021
1022         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1023         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1024         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1025 }
1026
1027 /**
1028  * intel_enable_pll - enable a PLL
1029  * @dev_priv: i915 private structure
1030  * @pipe: pipe PLL to enable
1031  *
1032  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1033  * make sure the PLL reg is writable first though, since the panel write
1034  * protect mechanism may be enabled.
1035  *
1036  * Note!  This is for pre-ILK only.
1037  */
1038 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1039 {
1040         int reg;
1041         u32 val;
1042
1043         /* No really, not for ILK+ */
1044         BUG_ON(dev_priv->info->gen >= 5);
1045
1046         /* PLL is protected by panel, make sure we can write it */
1047         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1048                 assert_panel_unlocked(dev_priv, pipe);
1049
1050         reg = DPLL(pipe);
1051         val = I915_READ(reg);
1052         val |= DPLL_VCO_ENABLE;
1053
1054         /* We do this three times for luck */
1055         I915_WRITE(reg, val);
1056         POSTING_READ(reg);
1057         udelay(150); /* wait for warmup */
1058         I915_WRITE(reg, val);
1059         POSTING_READ(reg);
1060         udelay(150); /* wait for warmup */
1061         I915_WRITE(reg, val);
1062         POSTING_READ(reg);
1063         udelay(150); /* wait for warmup */
1064 }
1065
1066 /**
1067  * intel_disable_pll - disable a PLL
1068  * @dev_priv: i915 private structure
1069  * @pipe: pipe PLL to disable
1070  *
1071  * Disable the PLL for @pipe, making sure the pipe is off first.
1072  *
1073  * Note!  This is for pre-ILK only.
1074  */
1075 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1076 {
1077         int reg;
1078         u32 val;
1079
1080         /* Don't disable pipe A or pipe A PLLs if needed */
1081         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1082                 return;
1083
1084         /* Make sure the pipe isn't still relying on us */
1085         assert_pipe_disabled(dev_priv, pipe);
1086
1087         reg = DPLL(pipe);
1088         val = I915_READ(reg);
1089         val &= ~DPLL_VCO_ENABLE;
1090         I915_WRITE(reg, val);
1091         POSTING_READ(reg);
1092 }
1093
1094 /**
1095  * intel_enable_pch_pll - enable PCH PLL
1096  * @dev_priv: i915 private structure
1097  * @pipe: pipe PLL to enable
1098  *
1099  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1100  * drives the transcoder clock.
1101  */
1102 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1103                                  enum pipe pipe)
1104 {
1105         int reg;
1106         u32 val;
1107
1108         /* PCH only available on ILK+ */
1109         BUG_ON(dev_priv->info->gen < 5);
1110
1111         /* PCH refclock must be enabled first */
1112         assert_pch_refclk_enabled(dev_priv);
1113
1114         reg = PCH_DPLL(pipe);
1115         val = I915_READ(reg);
1116         val |= DPLL_VCO_ENABLE;
1117         I915_WRITE(reg, val);
1118         POSTING_READ(reg);
1119         udelay(200);
1120 }
1121
1122 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1123                                   enum pipe pipe)
1124 {
1125         int reg;
1126         u32 val;
1127
1128         /* PCH only available on ILK+ */
1129         BUG_ON(dev_priv->info->gen < 5);
1130
1131         /* Make sure transcoder isn't still depending on us */
1132         assert_transcoder_disabled(dev_priv, pipe);
1133
1134         reg = PCH_DPLL(pipe);
1135         val = I915_READ(reg);
1136         val &= ~DPLL_VCO_ENABLE;
1137         I915_WRITE(reg, val);
1138         POSTING_READ(reg);
1139         udelay(200);
1140 }
1141
1142 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1143                                     enum pipe pipe)
1144 {
1145         int reg;
1146         u32 val;
1147
1148         /* PCH only available on ILK+ */
1149         BUG_ON(dev_priv->info->gen < 5);
1150
1151         /* Make sure PCH DPLL is enabled */
1152         assert_pch_pll_enabled(dev_priv, pipe);
1153
1154         /* FDI must be feeding us bits for PCH ports */
1155         assert_fdi_tx_enabled(dev_priv, pipe);
1156         assert_fdi_rx_enabled(dev_priv, pipe);
1157
1158         reg = TRANSCONF(pipe);
1159         val = I915_READ(reg);
1160         /*
1161          * make the BPC in transcoder be consistent with
1162          * that in pipeconf reg.
1163          */
1164         val &= ~PIPE_BPC_MASK;
1165         val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1166         I915_WRITE(reg, val | TRANS_ENABLE);
1167         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1168                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1169 }
1170
1171 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1172                                      enum pipe pipe)
1173 {
1174         int reg;
1175         u32 val;
1176
1177         /* FDI relies on the transcoder */
1178         assert_fdi_tx_disabled(dev_priv, pipe);
1179         assert_fdi_rx_disabled(dev_priv, pipe);
1180
1181         /* Ports must be off as well */
1182         assert_pch_ports_disabled(dev_priv, pipe);
1183
1184         reg = TRANSCONF(pipe);
1185         val = I915_READ(reg);
1186         val &= ~TRANS_ENABLE;
1187         I915_WRITE(reg, val);
1188         /* wait for PCH transcoder off, transcoder state */
1189         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1190                 DRM_ERROR("failed to disable transcoder\n");
1191 }
1192
1193 /**
1194  * intel_enable_pipe - enable a pipe, asserting requirements
1195  * @dev_priv: i915 private structure
1196  * @pipe: pipe to enable
1197  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1198  *
1199  * Enable @pipe, making sure that various hardware specific requirements
1200  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1201  *
1202  * @pipe should be %PIPE_A or %PIPE_B.
1203  *
1204  * Will wait until the pipe is actually running (i.e. first vblank) before
1205  * returning.
1206  */
1207 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1208                               bool pch_port)
1209 {
1210         int reg;
1211         u32 val;
1212
1213         /*
1214          * A pipe without a PLL won't actually be able to drive bits from
1215          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1216          * need the check.
1217          */
1218         if (!HAS_PCH_SPLIT(dev_priv->dev))
1219                 assert_pll_enabled(dev_priv, pipe);
1220         else {
1221                 if (pch_port) {
1222                         /* if driving the PCH, we need FDI enabled */
1223                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1224                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1225                 }
1226                 /* FIXME: assert CPU port conditions for SNB+ */
1227         }
1228
1229         reg = PIPECONF(pipe);
1230         val = I915_READ(reg);
1231         if (val & PIPECONF_ENABLE)
1232                 return;
1233
1234         I915_WRITE(reg, val | PIPECONF_ENABLE);
1235         intel_wait_for_vblank(dev_priv->dev, pipe);
1236 }
1237
1238 /**
1239  * intel_disable_pipe - disable a pipe, asserting requirements
1240  * @dev_priv: i915 private structure
1241  * @pipe: pipe to disable
1242  *
1243  * Disable @pipe, making sure that various hardware specific requirements
1244  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1245  *
1246  * @pipe should be %PIPE_A or %PIPE_B.
1247  *
1248  * Will wait until the pipe has shut down before returning.
1249  */
1250 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1251                                enum pipe pipe)
1252 {
1253         int reg;
1254         u32 val;
1255
1256         /*
1257          * Make sure planes won't keep trying to pump pixels to us,
1258          * or we might hang the display.
1259          */
1260         assert_planes_disabled(dev_priv, pipe);
1261
1262         /* Don't disable pipe A or pipe A PLLs if needed */
1263         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1264                 return;
1265
1266         reg = PIPECONF(pipe);
1267         val = I915_READ(reg);
1268         if ((val & PIPECONF_ENABLE) == 0)
1269                 return;
1270
1271         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1272         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1273 }
1274
1275 /**
1276  * intel_enable_plane - enable a display plane on a given pipe
1277  * @dev_priv: i915 private structure
1278  * @plane: plane to enable
1279  * @pipe: pipe being fed
1280  *
1281  * Enable @plane on @pipe, making sure that @pipe is running first.
1282  */
1283 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1284                                enum plane plane, enum pipe pipe)
1285 {
1286         int reg;
1287         u32 val;
1288
1289         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1290         assert_pipe_enabled(dev_priv, pipe);
1291
1292         reg = DSPCNTR(plane);
1293         val = I915_READ(reg);
1294         if (val & DISPLAY_PLANE_ENABLE)
1295                 return;
1296
1297         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1298         intel_wait_for_vblank(dev_priv->dev, pipe);
1299 }
1300
1301 /*
1302  * Plane regs are double buffered, going from enabled->disabled needs a
1303  * trigger in order to latch.  The display address reg provides this.
1304  */
1305 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1306                                       enum plane plane)
1307 {
1308         u32 reg = DSPADDR(plane);
1309         I915_WRITE(reg, I915_READ(reg));
1310 }
1311
1312 /**
1313  * intel_disable_plane - disable a display plane
1314  * @dev_priv: i915 private structure
1315  * @plane: plane to disable
1316  * @pipe: pipe consuming the data
1317  *
1318  * Disable @plane; should be an independent operation.
1319  */
1320 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1321                                 enum plane plane, enum pipe pipe)
1322 {
1323         int reg;
1324         u32 val;
1325
1326         reg = DSPCNTR(plane);
1327         val = I915_READ(reg);
1328         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1329                 return;
1330
1331         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1332         intel_flush_display_plane(dev_priv, plane);
1333         intel_wait_for_vblank(dev_priv->dev, pipe);
1334 }
1335
1336 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1337                            enum pipe pipe, int reg)
1338 {
1339         u32 val = I915_READ(reg);
1340         if (DP_PIPE_ENABLED(val, pipe))
1341                 I915_WRITE(reg, val & ~DP_PORT_EN);
1342 }
1343
1344 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1345                              enum pipe pipe, int reg)
1346 {
1347         u32 val = I915_READ(reg);
1348         if (HDMI_PIPE_ENABLED(val, pipe))
1349                 I915_WRITE(reg, val & ~PORT_ENABLE);
1350 }
1351
1352 /* Disable any ports connected to this transcoder */
1353 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1354                                     enum pipe pipe)
1355 {
1356         u32 reg, val;
1357
1358         val = I915_READ(PCH_PP_CONTROL);
1359         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1360
1361         disable_pch_dp(dev_priv, pipe, PCH_DP_B);
1362         disable_pch_dp(dev_priv, pipe, PCH_DP_C);
1363         disable_pch_dp(dev_priv, pipe, PCH_DP_D);
1364
1365         reg = PCH_ADPA;
1366         val = I915_READ(reg);
1367         if (ADPA_PIPE_ENABLED(val, pipe))
1368                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1369
1370         reg = PCH_LVDS;
1371         val = I915_READ(reg);
1372         if (LVDS_PIPE_ENABLED(val, pipe)) {
1373                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1374                 POSTING_READ(reg);
1375                 udelay(100);
1376         }
1377
1378         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1379         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1380         disable_pch_hdmi(dev_priv, pipe, HDMID);
1381 }
1382
1383 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1384 {
1385         struct drm_device *dev = crtc->dev;
1386         struct drm_i915_private *dev_priv = dev->dev_private;
1387         struct drm_framebuffer *fb = crtc->fb;
1388         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1389         struct drm_i915_gem_object *obj = intel_fb->obj;
1390         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1391         int plane, i;
1392         u32 fbc_ctl, fbc_ctl2;
1393
1394         if (fb->pitch == dev_priv->cfb_pitch &&
1395             obj->fence_reg == dev_priv->cfb_fence &&
1396             intel_crtc->plane == dev_priv->cfb_plane &&
1397             I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1398                 return;
1399
1400         i8xx_disable_fbc(dev);
1401
1402         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1403
1404         if (fb->pitch < dev_priv->cfb_pitch)
1405                 dev_priv->cfb_pitch = fb->pitch;
1406
1407         /* FBC_CTL wants 64B units */
1408         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1409         dev_priv->cfb_fence = obj->fence_reg;
1410         dev_priv->cfb_plane = intel_crtc->plane;
1411         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1412
1413         /* Clear old tags */
1414         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1415                 I915_WRITE(FBC_TAG + (i * 4), 0);
1416
1417         /* Set it up... */
1418         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1419         if (obj->tiling_mode != I915_TILING_NONE)
1420                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1421         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1422         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1423
1424         /* enable it... */
1425         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1426         if (IS_I945GM(dev))
1427                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1428         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1429         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1430         if (obj->tiling_mode != I915_TILING_NONE)
1431                 fbc_ctl |= dev_priv->cfb_fence;
1432         I915_WRITE(FBC_CONTROL, fbc_ctl);
1433
1434         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1435                       dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1436 }
1437
1438 void i8xx_disable_fbc(struct drm_device *dev)
1439 {
1440         struct drm_i915_private *dev_priv = dev->dev_private;
1441         u32 fbc_ctl;
1442
1443         /* Disable compression */
1444         fbc_ctl = I915_READ(FBC_CONTROL);
1445         if ((fbc_ctl & FBC_CTL_EN) == 0)
1446                 return;
1447
1448         fbc_ctl &= ~FBC_CTL_EN;
1449         I915_WRITE(FBC_CONTROL, fbc_ctl);
1450
1451         /* Wait for compressing bit to clear */
1452         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1453                 DRM_DEBUG_KMS("FBC idle timed out\n");
1454                 return;
1455         }
1456
1457         DRM_DEBUG_KMS("disabled FBC\n");
1458 }
1459
1460 static bool i8xx_fbc_enabled(struct drm_device *dev)
1461 {
1462         struct drm_i915_private *dev_priv = dev->dev_private;
1463
1464         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1465 }
1466
1467 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1468 {
1469         struct drm_device *dev = crtc->dev;
1470         struct drm_i915_private *dev_priv = dev->dev_private;
1471         struct drm_framebuffer *fb = crtc->fb;
1472         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1473         struct drm_i915_gem_object *obj = intel_fb->obj;
1474         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1475         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1476         unsigned long stall_watermark = 200;
1477         u32 dpfc_ctl;
1478
1479         dpfc_ctl = I915_READ(DPFC_CONTROL);
1480         if (dpfc_ctl & DPFC_CTL_EN) {
1481                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1482                     dev_priv->cfb_fence == obj->fence_reg &&
1483                     dev_priv->cfb_plane == intel_crtc->plane &&
1484                     dev_priv->cfb_y == crtc->y)
1485                         return;
1486
1487                 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1488                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1489         }
1490
1491         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1492         dev_priv->cfb_fence = obj->fence_reg;
1493         dev_priv->cfb_plane = intel_crtc->plane;
1494         dev_priv->cfb_y = crtc->y;
1495
1496         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1497         if (obj->tiling_mode != I915_TILING_NONE) {
1498                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1499                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1500         } else {
1501                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1502         }
1503
1504         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1505                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1506                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1507         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1508
1509         /* enable it... */
1510         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1511
1512         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1513 }
1514
1515 void g4x_disable_fbc(struct drm_device *dev)
1516 {
1517         struct drm_i915_private *dev_priv = dev->dev_private;
1518         u32 dpfc_ctl;
1519
1520         /* Disable compression */
1521         dpfc_ctl = I915_READ(DPFC_CONTROL);
1522         if (dpfc_ctl & DPFC_CTL_EN) {
1523                 dpfc_ctl &= ~DPFC_CTL_EN;
1524                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1525
1526                 DRM_DEBUG_KMS("disabled FBC\n");
1527         }
1528 }
1529
1530 static bool g4x_fbc_enabled(struct drm_device *dev)
1531 {
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533
1534         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1535 }
1536
1537 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1538 {
1539         struct drm_i915_private *dev_priv = dev->dev_private;
1540         u32 blt_ecoskpd;
1541
1542         /* Make sure blitter notifies FBC of writes */
1543         gen6_gt_force_wake_get(dev_priv);
1544         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1545         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1546                 GEN6_BLITTER_LOCK_SHIFT;
1547         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1548         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1549         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1550         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1551                          GEN6_BLITTER_LOCK_SHIFT);
1552         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1553         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1554         gen6_gt_force_wake_put(dev_priv);
1555 }
1556
1557 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1558 {
1559         struct drm_device *dev = crtc->dev;
1560         struct drm_i915_private *dev_priv = dev->dev_private;
1561         struct drm_framebuffer *fb = crtc->fb;
1562         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1563         struct drm_i915_gem_object *obj = intel_fb->obj;
1564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1565         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1566         unsigned long stall_watermark = 200;
1567         u32 dpfc_ctl;
1568
1569         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1570         if (dpfc_ctl & DPFC_CTL_EN) {
1571                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1572                     dev_priv->cfb_fence == obj->fence_reg &&
1573                     dev_priv->cfb_plane == intel_crtc->plane &&
1574                     dev_priv->cfb_offset == obj->gtt_offset &&
1575                     dev_priv->cfb_y == crtc->y)
1576                         return;
1577
1578                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1579                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1580         }
1581
1582         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1583         dev_priv->cfb_fence = obj->fence_reg;
1584         dev_priv->cfb_plane = intel_crtc->plane;
1585         dev_priv->cfb_offset = obj->gtt_offset;
1586         dev_priv->cfb_y = crtc->y;
1587
1588         dpfc_ctl &= DPFC_RESERVED;
1589         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1590         if (obj->tiling_mode != I915_TILING_NONE) {
1591                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1592                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1593         } else {
1594                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1595         }
1596
1597         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1598                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1599                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1600         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1601         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1602         /* enable it... */
1603         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1604
1605         if (IS_GEN6(dev)) {
1606                 I915_WRITE(SNB_DPFC_CTL_SA,
1607                            SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
1608                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1609                 sandybridge_blit_fbc_update(dev);
1610         }
1611
1612         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1613 }
1614
1615 void ironlake_disable_fbc(struct drm_device *dev)
1616 {
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618         u32 dpfc_ctl;
1619
1620         /* Disable compression */
1621         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1622         if (dpfc_ctl & DPFC_CTL_EN) {
1623                 dpfc_ctl &= ~DPFC_CTL_EN;
1624                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1625
1626                 DRM_DEBUG_KMS("disabled FBC\n");
1627         }
1628 }
1629
1630 static bool ironlake_fbc_enabled(struct drm_device *dev)
1631 {
1632         struct drm_i915_private *dev_priv = dev->dev_private;
1633
1634         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1635 }
1636
1637 bool intel_fbc_enabled(struct drm_device *dev)
1638 {
1639         struct drm_i915_private *dev_priv = dev->dev_private;
1640
1641         if (!dev_priv->display.fbc_enabled)
1642                 return false;
1643
1644         return dev_priv->display.fbc_enabled(dev);
1645 }
1646
1647 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1648 {
1649         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1650
1651         if (!dev_priv->display.enable_fbc)
1652                 return;
1653
1654         dev_priv->display.enable_fbc(crtc, interval);
1655 }
1656
1657 void intel_disable_fbc(struct drm_device *dev)
1658 {
1659         struct drm_i915_private *dev_priv = dev->dev_private;
1660
1661         if (!dev_priv->display.disable_fbc)
1662                 return;
1663
1664         dev_priv->display.disable_fbc(dev);
1665 }
1666
1667 /**
1668  * intel_update_fbc - enable/disable FBC as needed
1669  * @dev: the drm_device
1670  *
1671  * Set up the framebuffer compression hardware at mode set time.  We
1672  * enable it if possible:
1673  *   - plane A only (on pre-965)
1674  *   - no pixel mulitply/line duplication
1675  *   - no alpha buffer discard
1676  *   - no dual wide
1677  *   - framebuffer <= 2048 in width, 1536 in height
1678  *
1679  * We can't assume that any compression will take place (worst case),
1680  * so the compressed buffer has to be the same size as the uncompressed
1681  * one.  It also must reside (along with the line length buffer) in
1682  * stolen memory.
1683  *
1684  * We need to enable/disable FBC on a global basis.
1685  */
1686 static void intel_update_fbc(struct drm_device *dev)
1687 {
1688         struct drm_i915_private *dev_priv = dev->dev_private;
1689         struct drm_crtc *crtc = NULL, *tmp_crtc;
1690         struct intel_crtc *intel_crtc;
1691         struct drm_framebuffer *fb;
1692         struct intel_framebuffer *intel_fb;
1693         struct drm_i915_gem_object *obj;
1694
1695         DRM_DEBUG_KMS("\n");
1696
1697         if (!i915_powersave)
1698                 return;
1699
1700         if (!I915_HAS_FBC(dev))
1701                 return;
1702
1703         /*
1704          * If FBC is already on, we just have to verify that we can
1705          * keep it that way...
1706          * Need to disable if:
1707          *   - more than one pipe is active
1708          *   - changing FBC params (stride, fence, mode)
1709          *   - new fb is too large to fit in compressed buffer
1710          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1711          */
1712         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1713                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1714                         if (crtc) {
1715                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1716                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1717                                 goto out_disable;
1718                         }
1719                         crtc = tmp_crtc;
1720                 }
1721         }
1722
1723         if (!crtc || crtc->fb == NULL) {
1724                 DRM_DEBUG_KMS("no output, disabling\n");
1725                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1726                 goto out_disable;
1727         }
1728
1729         intel_crtc = to_intel_crtc(crtc);
1730         fb = crtc->fb;
1731         intel_fb = to_intel_framebuffer(fb);
1732         obj = intel_fb->obj;
1733
1734         if (!i915_enable_fbc) {
1735                 DRM_DEBUG_KMS("fbc disabled per module param (default off)\n");
1736                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1737                 goto out_disable;
1738         }
1739         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1740                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1741                               "compression\n");
1742                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1743                 goto out_disable;
1744         }
1745         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1746             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1747                 DRM_DEBUG_KMS("mode incompatible with compression, "
1748                               "disabling\n");
1749                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1750                 goto out_disable;
1751         }
1752         if ((crtc->mode.hdisplay > 2048) ||
1753             (crtc->mode.vdisplay > 1536)) {
1754                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1755                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1756                 goto out_disable;
1757         }
1758         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1759                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1760                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1761                 goto out_disable;
1762         }
1763         if (obj->tiling_mode != I915_TILING_X) {
1764                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1765                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1766                 goto out_disable;
1767         }
1768
1769         /* If the kernel debugger is active, always disable compression */
1770         if (in_dbg_master())
1771                 goto out_disable;
1772
1773         intel_enable_fbc(crtc, 500);
1774         return;
1775
1776 out_disable:
1777         /* Multiple disables should be harmless */
1778         if (intel_fbc_enabled(dev)) {
1779                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1780                 intel_disable_fbc(dev);
1781         }
1782 }
1783
1784 int
1785 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1786                            struct drm_i915_gem_object *obj,
1787                            struct intel_ring_buffer *pipelined)
1788 {
1789         struct drm_i915_private *dev_priv = dev->dev_private;
1790         u32 alignment;
1791         int ret;
1792
1793         switch (obj->tiling_mode) {
1794         case I915_TILING_NONE:
1795                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1796                         alignment = 128 * 1024;
1797                 else if (INTEL_INFO(dev)->gen >= 4)
1798                         alignment = 4 * 1024;
1799                 else
1800                         alignment = 64 * 1024;
1801                 break;
1802         case I915_TILING_X:
1803                 /* pin() will align the object as required by fence */
1804                 alignment = 0;
1805                 break;
1806         case I915_TILING_Y:
1807                 /* FIXME: Is this true? */
1808                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1809                 return -EINVAL;
1810         default:
1811                 BUG();
1812         }
1813
1814         dev_priv->mm.interruptible = false;
1815         ret = i915_gem_object_pin(obj, alignment, true);
1816         if (ret)
1817                 goto err_interruptible;
1818
1819         ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1820         if (ret)
1821                 goto err_unpin;
1822
1823         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1824          * fence, whereas 965+ only requires a fence if using
1825          * framebuffer compression.  For simplicity, we always install
1826          * a fence as the cost is not that onerous.
1827          */
1828         if (obj->tiling_mode != I915_TILING_NONE) {
1829                 ret = i915_gem_object_get_fence(obj, pipelined);
1830                 if (ret)
1831                         goto err_unpin;
1832         }
1833
1834         dev_priv->mm.interruptible = true;
1835         return 0;
1836
1837 err_unpin:
1838         i915_gem_object_unpin(obj);
1839 err_interruptible:
1840         dev_priv->mm.interruptible = true;
1841         return ret;
1842 }
1843
1844 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1845 static int
1846 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1847                            int x, int y, enum mode_set_atomic state)
1848 {
1849         struct drm_device *dev = crtc->dev;
1850         struct drm_i915_private *dev_priv = dev->dev_private;
1851         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1852         struct intel_framebuffer *intel_fb;
1853         struct drm_i915_gem_object *obj;
1854         int plane = intel_crtc->plane;
1855         unsigned long Start, Offset;
1856         u32 dspcntr;
1857         u32 reg;
1858
1859         switch (plane) {
1860         case 0:
1861         case 1:
1862                 break;
1863         default:
1864                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1865                 return -EINVAL;
1866         }
1867
1868         intel_fb = to_intel_framebuffer(fb);
1869         obj = intel_fb->obj;
1870
1871         reg = DSPCNTR(plane);
1872         dspcntr = I915_READ(reg);
1873         /* Mask out pixel format bits in case we change it */
1874         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1875         switch (fb->bits_per_pixel) {
1876         case 8:
1877                 dspcntr |= DISPPLANE_8BPP;
1878                 break;
1879         case 16:
1880                 if (fb->depth == 15)
1881                         dspcntr |= DISPPLANE_15_16BPP;
1882                 else
1883                         dspcntr |= DISPPLANE_16BPP;
1884                 break;
1885         case 24:
1886         case 32:
1887                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1888                 break;
1889         default:
1890                 DRM_ERROR("Unknown color depth\n");
1891                 return -EINVAL;
1892         }
1893         if (INTEL_INFO(dev)->gen >= 4) {
1894                 if (obj->tiling_mode != I915_TILING_NONE)
1895                         dspcntr |= DISPPLANE_TILED;
1896                 else
1897                         dspcntr &= ~DISPPLANE_TILED;
1898         }
1899
1900         if (HAS_PCH_SPLIT(dev))
1901                 /* must disable */
1902                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1903
1904         I915_WRITE(reg, dspcntr);
1905
1906         Start = obj->gtt_offset;
1907         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1908
1909         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1910                       Start, Offset, x, y, fb->pitch);
1911         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1912         if (INTEL_INFO(dev)->gen >= 4) {
1913                 I915_WRITE(DSPSURF(plane), Start);
1914                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1915                 I915_WRITE(DSPADDR(plane), Offset);
1916         } else
1917                 I915_WRITE(DSPADDR(plane), Start + Offset);
1918         POSTING_READ(reg);
1919
1920         intel_update_fbc(dev);
1921         intel_increase_pllclock(crtc);
1922
1923         return 0;
1924 }
1925
1926 static int
1927 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1928                     struct drm_framebuffer *old_fb)
1929 {
1930         struct drm_device *dev = crtc->dev;
1931         struct drm_i915_master_private *master_priv;
1932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1933         int ret;
1934
1935         /* no fb bound */
1936         if (!crtc->fb) {
1937                 DRM_DEBUG_KMS("No FB bound\n");
1938                 return 0;
1939         }
1940
1941         switch (intel_crtc->plane) {
1942         case 0:
1943         case 1:
1944                 break;
1945         default:
1946                 return -EINVAL;
1947         }
1948
1949         mutex_lock(&dev->struct_mutex);
1950         ret = intel_pin_and_fence_fb_obj(dev,
1951                                          to_intel_framebuffer(crtc->fb)->obj,
1952                                          NULL);
1953         if (ret != 0) {
1954                 mutex_unlock(&dev->struct_mutex);
1955                 return ret;
1956         }
1957
1958         if (old_fb) {
1959                 struct drm_i915_private *dev_priv = dev->dev_private;
1960                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1961
1962                 wait_event(dev_priv->pending_flip_queue,
1963                            atomic_read(&dev_priv->mm.wedged) ||
1964                            atomic_read(&obj->pending_flip) == 0);
1965
1966                 /* Big Hammer, we also need to ensure that any pending
1967                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1968                  * current scanout is retired before unpinning the old
1969                  * framebuffer.
1970                  *
1971                  * This should only fail upon a hung GPU, in which case we
1972                  * can safely continue.
1973                  */
1974                 ret = i915_gem_object_flush_gpu(obj);
1975                 (void) ret;
1976         }
1977
1978         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1979                                          LEAVE_ATOMIC_MODE_SET);
1980         if (ret) {
1981                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1982                 mutex_unlock(&dev->struct_mutex);
1983                 return ret;
1984         }
1985
1986         if (old_fb) {
1987                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1988                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1989         }
1990
1991         mutex_unlock(&dev->struct_mutex);
1992
1993         if (!dev->primary->master)
1994                 return 0;
1995
1996         master_priv = dev->primary->master->driver_priv;
1997         if (!master_priv->sarea_priv)
1998                 return 0;
1999
2000         if (intel_crtc->pipe) {
2001                 master_priv->sarea_priv->pipeB_x = x;
2002                 master_priv->sarea_priv->pipeB_y = y;
2003         } else {
2004                 master_priv->sarea_priv->pipeA_x = x;
2005                 master_priv->sarea_priv->pipeA_y = y;
2006         }
2007
2008         return 0;
2009 }
2010
2011 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2012 {
2013         struct drm_device *dev = crtc->dev;
2014         struct drm_i915_private *dev_priv = dev->dev_private;
2015         u32 dpa_ctl;
2016
2017         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2018         dpa_ctl = I915_READ(DP_A);
2019         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2020
2021         if (clock < 200000) {
2022                 u32 temp;
2023                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2024                 /* workaround for 160Mhz:
2025                    1) program 0x4600c bits 15:0 = 0x8124
2026                    2) program 0x46010 bit 0 = 1
2027                    3) program 0x46034 bit 24 = 1
2028                    4) program 0x64000 bit 14 = 1
2029                    */
2030                 temp = I915_READ(0x4600c);
2031                 temp &= 0xffff0000;
2032                 I915_WRITE(0x4600c, temp | 0x8124);
2033
2034                 temp = I915_READ(0x46010);
2035                 I915_WRITE(0x46010, temp | 1);
2036
2037                 temp = I915_READ(0x46034);
2038                 I915_WRITE(0x46034, temp | (1 << 24));
2039         } else {
2040                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2041         }
2042         I915_WRITE(DP_A, dpa_ctl);
2043
2044         POSTING_READ(DP_A);
2045         udelay(500);
2046 }
2047
2048 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2049 {
2050         struct drm_device *dev = crtc->dev;
2051         struct drm_i915_private *dev_priv = dev->dev_private;
2052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2053         int pipe = intel_crtc->pipe;
2054         u32 reg, temp;
2055
2056         /* enable normal train */
2057         reg = FDI_TX_CTL(pipe);
2058         temp = I915_READ(reg);
2059         if (IS_IVYBRIDGE(dev)) {
2060                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2061                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2062         } else {
2063                 temp &= ~FDI_LINK_TRAIN_NONE;
2064                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2065         }
2066         I915_WRITE(reg, temp);
2067
2068         reg = FDI_RX_CTL(pipe);
2069         temp = I915_READ(reg);
2070         if (HAS_PCH_CPT(dev)) {
2071                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2072                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2073         } else {
2074                 temp &= ~FDI_LINK_TRAIN_NONE;
2075                 temp |= FDI_LINK_TRAIN_NONE;
2076         }
2077         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2078
2079         /* wait one idle pattern time */
2080         POSTING_READ(reg);
2081         udelay(1000);
2082
2083         /* IVB wants error correction enabled */
2084         if (IS_IVYBRIDGE(dev))
2085                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2086                            FDI_FE_ERRC_ENABLE);
2087 }
2088
2089 /* The FDI link training functions for ILK/Ibexpeak. */
2090 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2091 {
2092         struct drm_device *dev = crtc->dev;
2093         struct drm_i915_private *dev_priv = dev->dev_private;
2094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2095         int pipe = intel_crtc->pipe;
2096         int plane = intel_crtc->plane;
2097         u32 reg, temp, tries;
2098
2099         /* FDI needs bits from pipe & plane first */
2100         assert_pipe_enabled(dev_priv, pipe);
2101         assert_plane_enabled(dev_priv, plane);
2102
2103         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2104            for train result */
2105         reg = FDI_RX_IMR(pipe);
2106         temp = I915_READ(reg);
2107         temp &= ~FDI_RX_SYMBOL_LOCK;
2108         temp &= ~FDI_RX_BIT_LOCK;
2109         I915_WRITE(reg, temp);
2110         I915_READ(reg);
2111         udelay(150);
2112
2113         /* enable CPU FDI TX and PCH FDI RX */
2114         reg = FDI_TX_CTL(pipe);
2115         temp = I915_READ(reg);
2116         temp &= ~(7 << 19);
2117         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2118         temp &= ~FDI_LINK_TRAIN_NONE;
2119         temp |= FDI_LINK_TRAIN_PATTERN_1;
2120         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2121
2122         reg = FDI_RX_CTL(pipe);
2123         temp = I915_READ(reg);
2124         temp &= ~FDI_LINK_TRAIN_NONE;
2125         temp |= FDI_LINK_TRAIN_PATTERN_1;
2126         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2127
2128         POSTING_READ(reg);
2129         udelay(150);
2130
2131         /* Ironlake workaround, enable clock pointer after FDI enable*/
2132         if (HAS_PCH_IBX(dev)) {
2133                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2134                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2135                            FDI_RX_PHASE_SYNC_POINTER_EN);
2136         }
2137
2138         reg = FDI_RX_IIR(pipe);
2139         for (tries = 0; tries < 5; tries++) {
2140                 temp = I915_READ(reg);
2141                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2142
2143                 if ((temp & FDI_RX_BIT_LOCK)) {
2144                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2145                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2146                         break;
2147                 }
2148         }
2149         if (tries == 5)
2150                 DRM_ERROR("FDI train 1 fail!\n");
2151
2152         /* Train 2 */
2153         reg = FDI_TX_CTL(pipe);
2154         temp = I915_READ(reg);
2155         temp &= ~FDI_LINK_TRAIN_NONE;
2156         temp |= FDI_LINK_TRAIN_PATTERN_2;
2157         I915_WRITE(reg, temp);
2158
2159         reg = FDI_RX_CTL(pipe);
2160         temp = I915_READ(reg);
2161         temp &= ~FDI_LINK_TRAIN_NONE;
2162         temp |= FDI_LINK_TRAIN_PATTERN_2;
2163         I915_WRITE(reg, temp);
2164
2165         POSTING_READ(reg);
2166         udelay(150);
2167
2168         reg = FDI_RX_IIR(pipe);
2169         for (tries = 0; tries < 5; tries++) {
2170                 temp = I915_READ(reg);
2171                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2172
2173                 if (temp & FDI_RX_SYMBOL_LOCK) {
2174                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2175                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2176                         break;
2177                 }
2178         }
2179         if (tries == 5)
2180                 DRM_ERROR("FDI train 2 fail!\n");
2181
2182         DRM_DEBUG_KMS("FDI train done\n");
2183
2184 }
2185
2186 static const int snb_b_fdi_train_param [] = {
2187         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2188         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2189         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2190         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2191 };
2192
2193 /* The FDI link training functions for SNB/Cougarpoint. */
2194 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2195 {
2196         struct drm_device *dev = crtc->dev;
2197         struct drm_i915_private *dev_priv = dev->dev_private;
2198         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2199         int pipe = intel_crtc->pipe;
2200         u32 reg, temp, i;
2201
2202         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2203            for train result */
2204         reg = FDI_RX_IMR(pipe);
2205         temp = I915_READ(reg);
2206         temp &= ~FDI_RX_SYMBOL_LOCK;
2207         temp &= ~FDI_RX_BIT_LOCK;
2208         I915_WRITE(reg, temp);
2209
2210         POSTING_READ(reg);
2211         udelay(150);
2212
2213         /* enable CPU FDI TX and PCH FDI RX */
2214         reg = FDI_TX_CTL(pipe);
2215         temp = I915_READ(reg);
2216         temp &= ~(7 << 19);
2217         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2218         temp &= ~FDI_LINK_TRAIN_NONE;
2219         temp |= FDI_LINK_TRAIN_PATTERN_1;
2220         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2221         /* SNB-B */
2222         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2223         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2224
2225         reg = FDI_RX_CTL(pipe);
2226         temp = I915_READ(reg);
2227         if (HAS_PCH_CPT(dev)) {
2228                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2229                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2230         } else {
2231                 temp &= ~FDI_LINK_TRAIN_NONE;
2232                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2233         }
2234         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2235
2236         POSTING_READ(reg);
2237         udelay(150);
2238
2239         for (i = 0; i < 4; i++ ) {
2240                 reg = FDI_TX_CTL(pipe);
2241                 temp = I915_READ(reg);
2242                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2243                 temp |= snb_b_fdi_train_param[i];
2244                 I915_WRITE(reg, temp);
2245
2246                 POSTING_READ(reg);
2247                 udelay(500);
2248
2249                 reg = FDI_RX_IIR(pipe);
2250                 temp = I915_READ(reg);
2251                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2252
2253                 if (temp & FDI_RX_BIT_LOCK) {
2254                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2255                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2256                         break;
2257                 }
2258         }
2259         if (i == 4)
2260                 DRM_ERROR("FDI train 1 fail!\n");
2261
2262         /* Train 2 */
2263         reg = FDI_TX_CTL(pipe);
2264         temp = I915_READ(reg);
2265         temp &= ~FDI_LINK_TRAIN_NONE;
2266         temp |= FDI_LINK_TRAIN_PATTERN_2;
2267         if (IS_GEN6(dev)) {
2268                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2269                 /* SNB-B */
2270                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2271         }
2272         I915_WRITE(reg, temp);
2273
2274         reg = FDI_RX_CTL(pipe);
2275         temp = I915_READ(reg);
2276         if (HAS_PCH_CPT(dev)) {
2277                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2278                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2279         } else {
2280                 temp &= ~FDI_LINK_TRAIN_NONE;
2281                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2282         }
2283         I915_WRITE(reg, temp);
2284
2285         POSTING_READ(reg);
2286         udelay(150);
2287
2288         for (i = 0; i < 4; i++ ) {
2289                 reg = FDI_TX_CTL(pipe);
2290                 temp = I915_READ(reg);
2291                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2292                 temp |= snb_b_fdi_train_param[i];
2293                 I915_WRITE(reg, temp);
2294
2295                 POSTING_READ(reg);
2296                 udelay(500);
2297
2298                 reg = FDI_RX_IIR(pipe);
2299                 temp = I915_READ(reg);
2300                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2301
2302                 if (temp & FDI_RX_SYMBOL_LOCK) {
2303                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2304                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2305                         break;
2306                 }
2307         }
2308         if (i == 4)
2309                 DRM_ERROR("FDI train 2 fail!\n");
2310
2311         DRM_DEBUG_KMS("FDI train done.\n");
2312 }
2313
2314 /* Manual link training for Ivy Bridge A0 parts */
2315 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2316 {
2317         struct drm_device *dev = crtc->dev;
2318         struct drm_i915_private *dev_priv = dev->dev_private;
2319         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2320         int pipe = intel_crtc->pipe;
2321         u32 reg, temp, i;
2322
2323         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2324            for train result */
2325         reg = FDI_RX_IMR(pipe);
2326         temp = I915_READ(reg);
2327         temp &= ~FDI_RX_SYMBOL_LOCK;
2328         temp &= ~FDI_RX_BIT_LOCK;
2329         I915_WRITE(reg, temp);
2330
2331         POSTING_READ(reg);
2332         udelay(150);
2333
2334         /* enable CPU FDI TX and PCH FDI RX */
2335         reg = FDI_TX_CTL(pipe);
2336         temp = I915_READ(reg);
2337         temp &= ~(7 << 19);
2338         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2339         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2340         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2341         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2342         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2343         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2344
2345         reg = FDI_RX_CTL(pipe);
2346         temp = I915_READ(reg);
2347         temp &= ~FDI_LINK_TRAIN_AUTO;
2348         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2349         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2350         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2351
2352         POSTING_READ(reg);
2353         udelay(150);
2354
2355         for (i = 0; i < 4; i++ ) {
2356                 reg = FDI_TX_CTL(pipe);
2357                 temp = I915_READ(reg);
2358                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2359                 temp |= snb_b_fdi_train_param[i];
2360                 I915_WRITE(reg, temp);
2361
2362                 POSTING_READ(reg);
2363                 udelay(500);
2364
2365                 reg = FDI_RX_IIR(pipe);
2366                 temp = I915_READ(reg);
2367                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2368
2369                 if (temp & FDI_RX_BIT_LOCK ||
2370                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2371                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2372                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2373                         break;
2374                 }
2375         }
2376         if (i == 4)
2377                 DRM_ERROR("FDI train 1 fail!\n");
2378
2379         /* Train 2 */
2380         reg = FDI_TX_CTL(pipe);
2381         temp = I915_READ(reg);
2382         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2383         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2384         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2385         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2386         I915_WRITE(reg, temp);
2387
2388         reg = FDI_RX_CTL(pipe);
2389         temp = I915_READ(reg);
2390         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2391         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2392         I915_WRITE(reg, temp);
2393
2394         POSTING_READ(reg);
2395         udelay(150);
2396
2397         for (i = 0; i < 4; i++ ) {
2398                 reg = FDI_TX_CTL(pipe);
2399                 temp = I915_READ(reg);
2400                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2401                 temp |= snb_b_fdi_train_param[i];
2402                 I915_WRITE(reg, temp);
2403
2404                 POSTING_READ(reg);
2405                 udelay(500);
2406
2407                 reg = FDI_RX_IIR(pipe);
2408                 temp = I915_READ(reg);
2409                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2410
2411                 if (temp & FDI_RX_SYMBOL_LOCK) {
2412                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2413                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2414                         break;
2415                 }
2416         }
2417         if (i == 4)
2418                 DRM_ERROR("FDI train 2 fail!\n");
2419
2420         DRM_DEBUG_KMS("FDI train done.\n");
2421 }
2422
2423 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2424 {
2425         struct drm_device *dev = crtc->dev;
2426         struct drm_i915_private *dev_priv = dev->dev_private;
2427         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2428         int pipe = intel_crtc->pipe;
2429         u32 reg, temp;
2430
2431         /* Write the TU size bits so error detection works */
2432         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2433                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2434
2435         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2436         reg = FDI_RX_CTL(pipe);
2437         temp = I915_READ(reg);
2438         temp &= ~((0x7 << 19) | (0x7 << 16));
2439         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2440         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2441         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2442
2443         POSTING_READ(reg);
2444         udelay(200);
2445
2446         /* Switch from Rawclk to PCDclk */
2447         temp = I915_READ(reg);
2448         I915_WRITE(reg, temp | FDI_PCDCLK);
2449
2450         POSTING_READ(reg);
2451         udelay(200);
2452
2453         /* Enable CPU FDI TX PLL, always on for Ironlake */
2454         reg = FDI_TX_CTL(pipe);
2455         temp = I915_READ(reg);
2456         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2457                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2458
2459                 POSTING_READ(reg);
2460                 udelay(100);
2461         }
2462 }
2463
2464 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2465 {
2466         struct drm_device *dev = crtc->dev;
2467         struct drm_i915_private *dev_priv = dev->dev_private;
2468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2469         int pipe = intel_crtc->pipe;
2470         u32 reg, temp;
2471
2472         /* disable CPU FDI tx and PCH FDI rx */
2473         reg = FDI_TX_CTL(pipe);
2474         temp = I915_READ(reg);
2475         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2476         POSTING_READ(reg);
2477
2478         reg = FDI_RX_CTL(pipe);
2479         temp = I915_READ(reg);
2480         temp &= ~(0x7 << 16);
2481         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2482         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2483
2484         POSTING_READ(reg);
2485         udelay(100);
2486
2487         /* Ironlake workaround, disable clock pointer after downing FDI */
2488         if (HAS_PCH_IBX(dev)) {
2489                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2490                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2491                            I915_READ(FDI_RX_CHICKEN(pipe) &
2492                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2493         }
2494
2495         /* still set train pattern 1 */
2496         reg = FDI_TX_CTL(pipe);
2497         temp = I915_READ(reg);
2498         temp &= ~FDI_LINK_TRAIN_NONE;
2499         temp |= FDI_LINK_TRAIN_PATTERN_1;
2500         I915_WRITE(reg, temp);
2501
2502         reg = FDI_RX_CTL(pipe);
2503         temp = I915_READ(reg);
2504         if (HAS_PCH_CPT(dev)) {
2505                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2506                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2507         } else {
2508                 temp &= ~FDI_LINK_TRAIN_NONE;
2509                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2510         }
2511         /* BPC in FDI rx is consistent with that in PIPECONF */
2512         temp &= ~(0x07 << 16);
2513         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2514         I915_WRITE(reg, temp);
2515
2516         POSTING_READ(reg);
2517         udelay(100);
2518 }
2519
2520 /*
2521  * When we disable a pipe, we need to clear any pending scanline wait events
2522  * to avoid hanging the ring, which we assume we are waiting on.
2523  */
2524 static void intel_clear_scanline_wait(struct drm_device *dev)
2525 {
2526         struct drm_i915_private *dev_priv = dev->dev_private;
2527         struct intel_ring_buffer *ring;
2528         u32 tmp;
2529
2530         if (IS_GEN2(dev))
2531                 /* Can't break the hang on i8xx */
2532                 return;
2533
2534         ring = LP_RING(dev_priv);
2535         tmp = I915_READ_CTL(ring);
2536         if (tmp & RING_WAIT)
2537                 I915_WRITE_CTL(ring, tmp);
2538 }
2539
2540 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2541 {
2542         struct drm_i915_gem_object *obj;
2543         struct drm_i915_private *dev_priv;
2544
2545         if (crtc->fb == NULL)
2546                 return;
2547
2548         obj = to_intel_framebuffer(crtc->fb)->obj;
2549         dev_priv = crtc->dev->dev_private;
2550         wait_event(dev_priv->pending_flip_queue,
2551                    atomic_read(&obj->pending_flip) == 0);
2552 }
2553
2554 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2555 {
2556         struct drm_device *dev = crtc->dev;
2557         struct drm_mode_config *mode_config = &dev->mode_config;
2558         struct intel_encoder *encoder;
2559
2560         /*
2561          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2562          * must be driven by its own crtc; no sharing is possible.
2563          */
2564         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2565                 if (encoder->base.crtc != crtc)
2566                         continue;
2567
2568                 switch (encoder->type) {
2569                 case INTEL_OUTPUT_EDP:
2570                         if (!intel_encoder_is_pch_edp(&encoder->base))
2571                                 return false;
2572                         continue;
2573                 }
2574         }
2575
2576         return true;
2577 }
2578
2579 /*
2580  * Enable PCH resources required for PCH ports:
2581  *   - PCH PLLs
2582  *   - FDI training & RX/TX
2583  *   - update transcoder timings
2584  *   - DP transcoding bits
2585  *   - transcoder
2586  */
2587 static void ironlake_pch_enable(struct drm_crtc *crtc)
2588 {
2589         struct drm_device *dev = crtc->dev;
2590         struct drm_i915_private *dev_priv = dev->dev_private;
2591         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2592         int pipe = intel_crtc->pipe;
2593         u32 reg, temp;
2594
2595         /* For PCH output, training FDI link */
2596         dev_priv->display.fdi_link_train(crtc);
2597
2598         intel_enable_pch_pll(dev_priv, pipe);
2599
2600         if (HAS_PCH_CPT(dev)) {
2601                 /* Be sure PCH DPLL SEL is set */
2602                 temp = I915_READ(PCH_DPLL_SEL);
2603                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2604                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2605                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2606                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2607                 I915_WRITE(PCH_DPLL_SEL, temp);
2608         }
2609
2610         /* set transcoder timing, panel must allow it */
2611         assert_panel_unlocked(dev_priv, pipe);
2612         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2613         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2614         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2615
2616         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2617         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2618         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2619
2620         intel_fdi_normal_train(crtc);
2621
2622         /* For PCH DP, enable TRANS_DP_CTL */
2623         if (HAS_PCH_CPT(dev) &&
2624             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2625                 reg = TRANS_DP_CTL(pipe);
2626                 temp = I915_READ(reg);
2627                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2628                           TRANS_DP_SYNC_MASK |
2629                           TRANS_DP_BPC_MASK);
2630                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2631                          TRANS_DP_ENH_FRAMING);
2632                 temp |= TRANS_DP_8BPC;
2633
2634                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2635                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2636                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2637                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2638
2639                 switch (intel_trans_dp_port_sel(crtc)) {
2640                 case PCH_DP_B:
2641                         temp |= TRANS_DP_PORT_SEL_B;
2642                         break;
2643                 case PCH_DP_C:
2644                         temp |= TRANS_DP_PORT_SEL_C;
2645                         break;
2646                 case PCH_DP_D:
2647                         temp |= TRANS_DP_PORT_SEL_D;
2648                         break;
2649                 default:
2650                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2651                         temp |= TRANS_DP_PORT_SEL_B;
2652                         break;
2653                 }
2654
2655                 I915_WRITE(reg, temp);
2656         }
2657
2658         intel_enable_transcoder(dev_priv, pipe);
2659 }
2660
2661 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2662 {
2663         struct drm_device *dev = crtc->dev;
2664         struct drm_i915_private *dev_priv = dev->dev_private;
2665         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2666         int pipe = intel_crtc->pipe;
2667         int plane = intel_crtc->plane;
2668         u32 temp;
2669         bool is_pch_port;
2670
2671         if (intel_crtc->active)
2672                 return;
2673
2674         intel_crtc->active = true;
2675         intel_update_watermarks(dev);
2676
2677         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2678                 temp = I915_READ(PCH_LVDS);
2679                 if ((temp & LVDS_PORT_EN) == 0)
2680                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2681         }
2682
2683         is_pch_port = intel_crtc_driving_pch(crtc);
2684
2685         if (is_pch_port)
2686                 ironlake_fdi_pll_enable(crtc);
2687         else
2688                 ironlake_fdi_disable(crtc);
2689
2690         /* Enable panel fitting for LVDS */
2691         if (dev_priv->pch_pf_size &&
2692             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2693                 /* Force use of hard-coded filter coefficients
2694                  * as some pre-programmed values are broken,
2695                  * e.g. x201.
2696                  */
2697                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2698                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2699                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2700         }
2701
2702         intel_enable_pipe(dev_priv, pipe, is_pch_port);
2703         intel_enable_plane(dev_priv, plane, pipe);
2704
2705         if (is_pch_port)
2706                 ironlake_pch_enable(crtc);
2707
2708         intel_crtc_load_lut(crtc);
2709
2710         mutex_lock(&dev->struct_mutex);
2711         intel_update_fbc(dev);
2712         mutex_unlock(&dev->struct_mutex);
2713
2714         intel_crtc_update_cursor(crtc, true);
2715 }
2716
2717 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2718 {
2719         struct drm_device *dev = crtc->dev;
2720         struct drm_i915_private *dev_priv = dev->dev_private;
2721         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2722         int pipe = intel_crtc->pipe;
2723         int plane = intel_crtc->plane;
2724         u32 reg, temp;
2725
2726         if (!intel_crtc->active)
2727                 return;
2728
2729         intel_crtc_wait_for_pending_flips(crtc);
2730         drm_vblank_off(dev, pipe);
2731         intel_crtc_update_cursor(crtc, false);
2732
2733         intel_disable_plane(dev_priv, plane, pipe);
2734
2735         if (dev_priv->cfb_plane == plane &&
2736             dev_priv->display.disable_fbc)
2737                 dev_priv->display.disable_fbc(dev);
2738
2739         intel_disable_pipe(dev_priv, pipe);
2740
2741         /* Disable PF */
2742         I915_WRITE(PF_CTL(pipe), 0);
2743         I915_WRITE(PF_WIN_SZ(pipe), 0);
2744
2745         ironlake_fdi_disable(crtc);
2746
2747         /* This is a horrible layering violation; we should be doing this in
2748          * the connector/encoder ->prepare instead, but we don't always have
2749          * enough information there about the config to know whether it will
2750          * actually be necessary or just cause undesired flicker.
2751          */
2752         intel_disable_pch_ports(dev_priv, pipe);
2753
2754         intel_disable_transcoder(dev_priv, pipe);
2755
2756         if (HAS_PCH_CPT(dev)) {
2757                 /* disable TRANS_DP_CTL */
2758                 reg = TRANS_DP_CTL(pipe);
2759                 temp = I915_READ(reg);
2760                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2761                 temp |= TRANS_DP_PORT_SEL_NONE;
2762                 I915_WRITE(reg, temp);
2763
2764                 /* disable DPLL_SEL */
2765                 temp = I915_READ(PCH_DPLL_SEL);
2766                 switch (pipe) {
2767                 case 0:
2768                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2769                         break;
2770                 case 1:
2771                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2772                         break;
2773                 case 2:
2774                         /* FIXME: manage transcoder PLLs? */
2775                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2776                         break;
2777                 default:
2778                         BUG(); /* wtf */
2779                 }
2780                 I915_WRITE(PCH_DPLL_SEL, temp);
2781         }
2782
2783         /* disable PCH DPLL */
2784         intel_disable_pch_pll(dev_priv, pipe);
2785
2786         /* Switch from PCDclk to Rawclk */
2787         reg = FDI_RX_CTL(pipe);
2788         temp = I915_READ(reg);
2789         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2790
2791         /* Disable CPU FDI TX PLL */
2792         reg = FDI_TX_CTL(pipe);
2793         temp = I915_READ(reg);
2794         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2795
2796         POSTING_READ(reg);
2797         udelay(100);
2798
2799         reg = FDI_RX_CTL(pipe);
2800         temp = I915_READ(reg);
2801         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2802
2803         /* Wait for the clocks to turn off. */
2804         POSTING_READ(reg);
2805         udelay(100);
2806
2807         intel_crtc->active = false;
2808         intel_update_watermarks(dev);
2809
2810         mutex_lock(&dev->struct_mutex);
2811         intel_update_fbc(dev);
2812         intel_clear_scanline_wait(dev);
2813         mutex_unlock(&dev->struct_mutex);
2814 }
2815
2816 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2817 {
2818         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2819         int pipe = intel_crtc->pipe;
2820         int plane = intel_crtc->plane;
2821
2822         /* XXX: When our outputs are all unaware of DPMS modes other than off
2823          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2824          */
2825         switch (mode) {
2826         case DRM_MODE_DPMS_ON:
2827         case DRM_MODE_DPMS_STANDBY:
2828         case DRM_MODE_DPMS_SUSPEND:
2829                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2830                 ironlake_crtc_enable(crtc);
2831                 break;
2832
2833         case DRM_MODE_DPMS_OFF:
2834                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2835                 ironlake_crtc_disable(crtc);
2836                 break;
2837         }
2838 }
2839
2840 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2841 {
2842         if (!enable && intel_crtc->overlay) {
2843                 struct drm_device *dev = intel_crtc->base.dev;
2844                 struct drm_i915_private *dev_priv = dev->dev_private;
2845
2846                 mutex_lock(&dev->struct_mutex);
2847                 dev_priv->mm.interruptible = false;
2848                 (void) intel_overlay_switch_off(intel_crtc->overlay);
2849                 dev_priv->mm.interruptible = true;
2850                 mutex_unlock(&dev->struct_mutex);
2851         }
2852
2853         /* Let userspace switch the overlay on again. In most cases userspace
2854          * has to recompute where to put it anyway.
2855          */
2856 }
2857
2858 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2859 {
2860         struct drm_device *dev = crtc->dev;
2861         struct drm_i915_private *dev_priv = dev->dev_private;
2862         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2863         int pipe = intel_crtc->pipe;
2864         int plane = intel_crtc->plane;
2865
2866         if (intel_crtc->active)
2867                 return;
2868
2869         intel_crtc->active = true;
2870         intel_update_watermarks(dev);
2871
2872         intel_enable_pll(dev_priv, pipe);
2873         intel_enable_pipe(dev_priv, pipe, false);
2874         intel_enable_plane(dev_priv, plane, pipe);
2875
2876         intel_crtc_load_lut(crtc);
2877         intel_update_fbc(dev);
2878
2879         /* Give the overlay scaler a chance to enable if it's on this pipe */
2880         intel_crtc_dpms_overlay(intel_crtc, true);
2881         intel_crtc_update_cursor(crtc, true);
2882 }
2883
2884 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2885 {
2886         struct drm_device *dev = crtc->dev;
2887         struct drm_i915_private *dev_priv = dev->dev_private;
2888         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2889         int pipe = intel_crtc->pipe;
2890         int plane = intel_crtc->plane;
2891
2892         if (!intel_crtc->active)
2893                 return;
2894
2895         /* Give the overlay scaler a chance to disable if it's on this pipe */
2896         intel_crtc_wait_for_pending_flips(crtc);
2897         drm_vblank_off(dev, pipe);
2898         intel_crtc_dpms_overlay(intel_crtc, false);
2899         intel_crtc_update_cursor(crtc, false);
2900
2901         if (dev_priv->cfb_plane == plane &&
2902             dev_priv->display.disable_fbc)
2903                 dev_priv->display.disable_fbc(dev);
2904
2905         intel_disable_plane(dev_priv, plane, pipe);
2906         intel_disable_pipe(dev_priv, pipe);
2907         intel_disable_pll(dev_priv, pipe);
2908
2909         intel_crtc->active = false;
2910         intel_update_fbc(dev);
2911         intel_update_watermarks(dev);
2912         intel_clear_scanline_wait(dev);
2913 }
2914
2915 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2916 {
2917         /* XXX: When our outputs are all unaware of DPMS modes other than off
2918          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2919          */
2920         switch (mode) {
2921         case DRM_MODE_DPMS_ON:
2922         case DRM_MODE_DPMS_STANDBY:
2923         case DRM_MODE_DPMS_SUSPEND:
2924                 i9xx_crtc_enable(crtc);
2925                 break;
2926         case DRM_MODE_DPMS_OFF:
2927                 i9xx_crtc_disable(crtc);
2928                 break;
2929         }
2930 }
2931
2932 /**
2933  * Sets the power management mode of the pipe and plane.
2934  */
2935 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2936 {
2937         struct drm_device *dev = crtc->dev;
2938         struct drm_i915_private *dev_priv = dev->dev_private;
2939         struct drm_i915_master_private *master_priv;
2940         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2941         int pipe = intel_crtc->pipe;
2942         bool enabled;
2943
2944         if (intel_crtc->dpms_mode == mode)
2945                 return;
2946
2947         intel_crtc->dpms_mode = mode;
2948
2949         dev_priv->display.dpms(crtc, mode);
2950
2951         if (!dev->primary->master)
2952                 return;
2953
2954         master_priv = dev->primary->master->driver_priv;
2955         if (!master_priv->sarea_priv)
2956                 return;
2957
2958         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2959
2960         switch (pipe) {
2961         case 0:
2962                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2963                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2964                 break;
2965         case 1:
2966                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2967                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2968                 break;
2969         default:
2970                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
2971                 break;
2972         }
2973 }
2974
2975 static void intel_crtc_disable(struct drm_crtc *crtc)
2976 {
2977         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2978         struct drm_device *dev = crtc->dev;
2979
2980         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2981
2982         if (crtc->fb) {
2983                 mutex_lock(&dev->struct_mutex);
2984                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2985                 mutex_unlock(&dev->struct_mutex);
2986         }
2987 }
2988
2989 /* Prepare for a mode set.
2990  *
2991  * Note we could be a lot smarter here.  We need to figure out which outputs
2992  * will be enabled, which disabled (in short, how the config will changes)
2993  * and perform the minimum necessary steps to accomplish that, e.g. updating
2994  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2995  * panel fitting is in the proper state, etc.
2996  */
2997 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2998 {
2999         i9xx_crtc_disable(crtc);
3000 }
3001
3002 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3003 {
3004         i9xx_crtc_enable(crtc);
3005 }
3006
3007 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3008 {
3009         ironlake_crtc_disable(crtc);
3010 }
3011
3012 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3013 {
3014         ironlake_crtc_enable(crtc);
3015 }
3016
3017 void intel_encoder_prepare (struct drm_encoder *encoder)
3018 {
3019         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3020         /* lvds has its own version of prepare see intel_lvds_prepare */
3021         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3022 }
3023
3024 void intel_encoder_commit (struct drm_encoder *encoder)
3025 {
3026         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3027         /* lvds has its own version of commit see intel_lvds_commit */
3028         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3029 }
3030
3031 void intel_encoder_destroy(struct drm_encoder *encoder)
3032 {
3033         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3034
3035         drm_encoder_cleanup(encoder);
3036         kfree(intel_encoder);
3037 }
3038
3039 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3040                                   struct drm_display_mode *mode,
3041                                   struct drm_display_mode *adjusted_mode)
3042 {
3043         struct drm_device *dev = crtc->dev;
3044
3045         if (HAS_PCH_SPLIT(dev)) {
3046                 /* FDI link clock is fixed at 2.7G */
3047                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3048                         return false;
3049         }
3050
3051         /* XXX some encoders set the crtcinfo, others don't.
3052          * Obviously we need some form of conflict resolution here...
3053          */
3054         if (adjusted_mode->crtc_htotal == 0)
3055                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3056
3057         return true;
3058 }
3059
3060 static int i945_get_display_clock_speed(struct drm_device *dev)
3061 {
3062         return 400000;
3063 }
3064
3065 static int i915_get_display_clock_speed(struct drm_device *dev)
3066 {
3067         return 333000;
3068 }
3069
3070 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3071 {
3072         return 200000;
3073 }
3074
3075 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3076 {
3077         u16 gcfgc = 0;
3078
3079         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3080
3081         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3082                 return 133000;
3083         else {
3084                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3085                 case GC_DISPLAY_CLOCK_333_MHZ:
3086                         return 333000;
3087                 default:
3088                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3089                         return 190000;
3090                 }
3091         }
3092 }
3093
3094 static int i865_get_display_clock_speed(struct drm_device *dev)
3095 {
3096         return 266000;
3097 }
3098
3099 static int i855_get_display_clock_speed(struct drm_device *dev)
3100 {
3101         u16 hpllcc = 0;
3102         /* Assume that the hardware is in the high speed state.  This
3103          * should be the default.
3104          */
3105         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3106         case GC_CLOCK_133_200:
3107         case GC_CLOCK_100_200:
3108                 return 200000;
3109         case GC_CLOCK_166_250:
3110                 return 250000;
3111         case GC_CLOCK_100_133:
3112                 return 133000;
3113         }
3114
3115         /* Shouldn't happen */
3116         return 0;
3117 }
3118
3119 static int i830_get_display_clock_speed(struct drm_device *dev)
3120 {
3121         return 133000;
3122 }
3123
3124 struct fdi_m_n {
3125         u32        tu;
3126         u32        gmch_m;
3127         u32        gmch_n;
3128         u32        link_m;
3129         u32        link_n;
3130 };
3131
3132 static void
3133 fdi_reduce_ratio(u32 *num, u32 *den)
3134 {
3135         while (*num > 0xffffff || *den > 0xffffff) {
3136                 *num >>= 1;
3137                 *den >>= 1;
3138         }
3139 }
3140
3141 static void
3142 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3143                      int link_clock, struct fdi_m_n *m_n)
3144 {
3145         m_n->tu = 64; /* default size */
3146
3147         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3148         m_n->gmch_m = bits_per_pixel * pixel_clock;
3149         m_n->gmch_n = link_clock * nlanes * 8;
3150         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3151
3152         m_n->link_m = pixel_clock;
3153         m_n->link_n = link_clock;
3154         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3155 }
3156
3157
3158 struct intel_watermark_params {
3159         unsigned long fifo_size;
3160         unsigned long max_wm;
3161         unsigned long default_wm;
3162         unsigned long guard_size;
3163         unsigned long cacheline_size;
3164 };
3165
3166 /* Pineview has different values for various configs */
3167 static const struct intel_watermark_params pineview_display_wm = {
3168         PINEVIEW_DISPLAY_FIFO,
3169         PINEVIEW_MAX_WM,
3170         PINEVIEW_DFT_WM,
3171         PINEVIEW_GUARD_WM,
3172         PINEVIEW_FIFO_LINE_SIZE
3173 };
3174 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3175         PINEVIEW_DISPLAY_FIFO,
3176         PINEVIEW_MAX_WM,
3177         PINEVIEW_DFT_HPLLOFF_WM,
3178         PINEVIEW_GUARD_WM,
3179         PINEVIEW_FIFO_LINE_SIZE
3180 };
3181 static const struct intel_watermark_params pineview_cursor_wm = {
3182         PINEVIEW_CURSOR_FIFO,
3183         PINEVIEW_CURSOR_MAX_WM,
3184         PINEVIEW_CURSOR_DFT_WM,
3185         PINEVIEW_CURSOR_GUARD_WM,
3186         PINEVIEW_FIFO_LINE_SIZE,
3187 };
3188 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3189         PINEVIEW_CURSOR_FIFO,
3190         PINEVIEW_CURSOR_MAX_WM,
3191         PINEVIEW_CURSOR_DFT_WM,
3192         PINEVIEW_CURSOR_GUARD_WM,
3193         PINEVIEW_FIFO_LINE_SIZE
3194 };
3195 static const struct intel_watermark_params g4x_wm_info = {
3196         G4X_FIFO_SIZE,
3197         G4X_MAX_WM,
3198         G4X_MAX_WM,
3199         2,
3200         G4X_FIFO_LINE_SIZE,
3201 };
3202 static const struct intel_watermark_params g4x_cursor_wm_info = {
3203         I965_CURSOR_FIFO,
3204         I965_CURSOR_MAX_WM,
3205         I965_CURSOR_DFT_WM,
3206         2,
3207         G4X_FIFO_LINE_SIZE,
3208 };
3209 static const struct intel_watermark_params i965_cursor_wm_info = {
3210         I965_CURSOR_FIFO,
3211         I965_CURSOR_MAX_WM,
3212         I965_CURSOR_DFT_WM,
3213         2,
3214         I915_FIFO_LINE_SIZE,
3215 };
3216 static const struct intel_watermark_params i945_wm_info = {
3217         I945_FIFO_SIZE,
3218         I915_MAX_WM,
3219         1,
3220         2,
3221         I915_FIFO_LINE_SIZE
3222 };
3223 static const struct intel_watermark_params i915_wm_info = {
3224         I915_FIFO_SIZE,
3225         I915_MAX_WM,
3226         1,
3227         2,
3228         I915_FIFO_LINE_SIZE
3229 };
3230 static const struct intel_watermark_params i855_wm_info = {
3231         I855GM_FIFO_SIZE,
3232         I915_MAX_WM,
3233         1,
3234         2,
3235         I830_FIFO_LINE_SIZE
3236 };
3237 static const struct intel_watermark_params i830_wm_info = {
3238         I830_FIFO_SIZE,
3239         I915_MAX_WM,
3240         1,
3241         2,
3242         I830_FIFO_LINE_SIZE
3243 };
3244
3245 static const struct intel_watermark_params ironlake_display_wm_info = {
3246         ILK_DISPLAY_FIFO,
3247         ILK_DISPLAY_MAXWM,
3248         ILK_DISPLAY_DFTWM,
3249         2,
3250         ILK_FIFO_LINE_SIZE
3251 };
3252 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3253         ILK_CURSOR_FIFO,
3254         ILK_CURSOR_MAXWM,
3255         ILK_CURSOR_DFTWM,
3256         2,
3257         ILK_FIFO_LINE_SIZE
3258 };
3259 static const struct intel_watermark_params ironlake_display_srwm_info = {
3260         ILK_DISPLAY_SR_FIFO,
3261         ILK_DISPLAY_MAX_SRWM,
3262         ILK_DISPLAY_DFT_SRWM,
3263         2,
3264         ILK_FIFO_LINE_SIZE
3265 };
3266 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3267         ILK_CURSOR_SR_FIFO,
3268         ILK_CURSOR_MAX_SRWM,
3269         ILK_CURSOR_DFT_SRWM,
3270         2,
3271         ILK_FIFO_LINE_SIZE
3272 };
3273
3274 static const struct intel_watermark_params sandybridge_display_wm_info = {
3275         SNB_DISPLAY_FIFO,
3276         SNB_DISPLAY_MAXWM,
3277         SNB_DISPLAY_DFTWM,
3278         2,
3279         SNB_FIFO_LINE_SIZE
3280 };
3281 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3282         SNB_CURSOR_FIFO,
3283         SNB_CURSOR_MAXWM,
3284         SNB_CURSOR_DFTWM,
3285         2,
3286         SNB_FIFO_LINE_SIZE
3287 };
3288 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3289         SNB_DISPLAY_SR_FIFO,
3290         SNB_DISPLAY_MAX_SRWM,
3291         SNB_DISPLAY_DFT_SRWM,
3292         2,
3293         SNB_FIFO_LINE_SIZE
3294 };
3295 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3296         SNB_CURSOR_SR_FIFO,
3297         SNB_CURSOR_MAX_SRWM,
3298         SNB_CURSOR_DFT_SRWM,
3299         2,
3300         SNB_FIFO_LINE_SIZE
3301 };
3302
3303
3304 /**
3305  * intel_calculate_wm - calculate watermark level
3306  * @clock_in_khz: pixel clock
3307  * @wm: chip FIFO params
3308  * @pixel_size: display pixel size
3309  * @latency_ns: memory latency for the platform
3310  *
3311  * Calculate the watermark level (the level at which the display plane will
3312  * start fetching from memory again).  Each chip has a different display
3313  * FIFO size and allocation, so the caller needs to figure that out and pass
3314  * in the correct intel_watermark_params structure.
3315  *
3316  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3317  * on the pixel size.  When it reaches the watermark level, it'll start
3318  * fetching FIFO line sized based chunks from memory until the FIFO fills
3319  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3320  * will occur, and a display engine hang could result.
3321  */
3322 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3323                                         const struct intel_watermark_params *wm,
3324                                         int fifo_size,
3325                                         int pixel_size,
3326                                         unsigned long latency_ns)
3327 {
3328         long entries_required, wm_size;
3329
3330         /*
3331          * Note: we need to make sure we don't overflow for various clock &
3332          * latency values.
3333          * clocks go from a few thousand to several hundred thousand.
3334          * latency is usually a few thousand
3335          */
3336         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3337                 1000;
3338         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3339
3340         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3341
3342         wm_size = fifo_size - (entries_required + wm->guard_size);
3343
3344         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3345
3346         /* Don't promote wm_size to unsigned... */
3347         if (wm_size > (long)wm->max_wm)
3348                 wm_size = wm->max_wm;
3349         if (wm_size <= 0)
3350                 wm_size = wm->default_wm;
3351         return wm_size;
3352 }
3353
3354 struct cxsr_latency {
3355         int is_desktop;
3356         int is_ddr3;
3357         unsigned long fsb_freq;
3358         unsigned long mem_freq;
3359         unsigned long display_sr;
3360         unsigned long display_hpll_disable;
3361         unsigned long cursor_sr;
3362         unsigned long cursor_hpll_disable;
3363 };
3364
3365 static const struct cxsr_latency cxsr_latency_table[] = {
3366         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3367         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3368         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3369         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3370         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3371
3372         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3373         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3374         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3375         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3376         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3377
3378         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3379         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3380         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3381         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3382         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3383
3384         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3385         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3386         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3387         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3388         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3389
3390         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3391         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3392         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3393         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3394         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3395
3396         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3397         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3398         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3399         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3400         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3401 };
3402
3403 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3404                                                          int is_ddr3,
3405                                                          int fsb,
3406                                                          int mem)
3407 {
3408         const struct cxsr_latency *latency;
3409         int i;
3410
3411         if (fsb == 0 || mem == 0)
3412                 return NULL;
3413
3414         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3415                 latency = &cxsr_latency_table[i];
3416                 if (is_desktop == latency->is_desktop &&
3417                     is_ddr3 == latency->is_ddr3 &&
3418                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3419                         return latency;
3420         }
3421
3422         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3423
3424         return NULL;
3425 }
3426
3427 static void pineview_disable_cxsr(struct drm_device *dev)
3428 {
3429         struct drm_i915_private *dev_priv = dev->dev_private;
3430
3431         /* deactivate cxsr */
3432         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3433 }
3434
3435 /*
3436  * Latency for FIFO fetches is dependent on several factors:
3437  *   - memory configuration (speed, channels)
3438  *   - chipset
3439  *   - current MCH state
3440  * It can be fairly high in some situations, so here we assume a fairly
3441  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3442  * set this value too high, the FIFO will fetch frequently to stay full)
3443  * and power consumption (set it too low to save power and we might see
3444  * FIFO underruns and display "flicker").
3445  *
3446  * A value of 5us seems to be a good balance; safe for very low end
3447  * platforms but not overly aggressive on lower latency configs.
3448  */
3449 static const int latency_ns = 5000;
3450
3451 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3452 {
3453         struct drm_i915_private *dev_priv = dev->dev_private;
3454         uint32_t dsparb = I915_READ(DSPARB);
3455         int size;
3456
3457         size = dsparb & 0x7f;
3458         if (plane)
3459                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3460
3461         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3462                       plane ? "B" : "A", size);
3463
3464         return size;
3465 }
3466
3467 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3468 {
3469         struct drm_i915_private *dev_priv = dev->dev_private;
3470         uint32_t dsparb = I915_READ(DSPARB);
3471         int size;
3472
3473         size = dsparb & 0x1ff;
3474         if (plane)
3475                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3476         size >>= 1; /* Convert to cachelines */
3477
3478         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3479                       plane ? "B" : "A", size);
3480
3481         return size;
3482 }
3483
3484 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3485 {
3486         struct drm_i915_private *dev_priv = dev->dev_private;
3487         uint32_t dsparb = I915_READ(DSPARB);
3488         int size;
3489
3490         size = dsparb & 0x7f;
3491         size >>= 2; /* Convert to cachelines */
3492
3493         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3494                       plane ? "B" : "A",
3495                       size);
3496
3497         return size;
3498 }
3499
3500 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3501 {
3502         struct drm_i915_private *dev_priv = dev->dev_private;
3503         uint32_t dsparb = I915_READ(DSPARB);
3504         int size;
3505
3506         size = dsparb & 0x7f;
3507         size >>= 1; /* Convert to cachelines */
3508
3509         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3510                       plane ? "B" : "A", size);
3511
3512         return size;
3513 }
3514
3515 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3516 {
3517         struct drm_crtc *crtc, *enabled = NULL;
3518
3519         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3520                 if (crtc->enabled && crtc->fb) {
3521                         if (enabled)
3522                                 return NULL;
3523                         enabled = crtc;
3524                 }
3525         }
3526
3527         return enabled;
3528 }
3529
3530 static void pineview_update_wm(struct drm_device *dev)
3531 {
3532         struct drm_i915_private *dev_priv = dev->dev_private;
3533         struct drm_crtc *crtc;
3534         const struct cxsr_latency *latency;
3535         u32 reg;
3536         unsigned long wm;
3537
3538         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3539                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3540         if (!latency) {
3541                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3542                 pineview_disable_cxsr(dev);
3543                 return;
3544         }
3545
3546         crtc = single_enabled_crtc(dev);
3547         if (crtc) {
3548                 int clock = crtc->mode.clock;
3549                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3550
3551                 /* Display SR */
3552                 wm = intel_calculate_wm(clock, &pineview_display_wm,
3553                                         pineview_display_wm.fifo_size,
3554                                         pixel_size, latency->display_sr);
3555                 reg = I915_READ(DSPFW1);
3556                 reg &= ~DSPFW_SR_MASK;
3557                 reg |= wm << DSPFW_SR_SHIFT;
3558                 I915_WRITE(DSPFW1, reg);
3559                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3560
3561                 /* cursor SR */
3562                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3563                                         pineview_display_wm.fifo_size,
3564                                         pixel_size, latency->cursor_sr);
3565                 reg = I915_READ(DSPFW3);
3566                 reg &= ~DSPFW_CURSOR_SR_MASK;
3567                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3568                 I915_WRITE(DSPFW3, reg);
3569
3570                 /* Display HPLL off SR */
3571                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3572                                         pineview_display_hplloff_wm.fifo_size,
3573                                         pixel_size, latency->display_hpll_disable);
3574                 reg = I915_READ(DSPFW3);
3575                 reg &= ~DSPFW_HPLL_SR_MASK;
3576                 reg |= wm & DSPFW_HPLL_SR_MASK;
3577                 I915_WRITE(DSPFW3, reg);
3578
3579                 /* cursor HPLL off SR */
3580                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3581                                         pineview_display_hplloff_wm.fifo_size,
3582                                         pixel_size, latency->cursor_hpll_disable);
3583                 reg = I915_READ(DSPFW3);
3584                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3585                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3586                 I915_WRITE(DSPFW3, reg);
3587                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3588
3589                 /* activate cxsr */
3590                 I915_WRITE(DSPFW3,
3591                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3592                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3593         } else {
3594                 pineview_disable_cxsr(dev);
3595                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3596         }
3597 }
3598
3599 static bool g4x_compute_wm0(struct drm_device *dev,
3600                             int plane,
3601                             const struct intel_watermark_params *display,
3602                             int display_latency_ns,
3603                             const struct intel_watermark_params *cursor,
3604                             int cursor_latency_ns,
3605                             int *plane_wm,
3606                             int *cursor_wm)
3607 {
3608         struct drm_crtc *crtc;
3609         int htotal, hdisplay, clock, pixel_size;
3610         int line_time_us, line_count;
3611         int entries, tlb_miss;
3612
3613         crtc = intel_get_crtc_for_plane(dev, plane);
3614         if (crtc->fb == NULL || !crtc->enabled) {
3615                 *cursor_wm = cursor->guard_size;
3616                 *plane_wm = display->guard_size;
3617                 return false;
3618         }
3619
3620         htotal = crtc->mode.htotal;
3621         hdisplay = crtc->mode.hdisplay;
3622         clock = crtc->mode.clock;
3623         pixel_size = crtc->fb->bits_per_pixel / 8;
3624
3625         /* Use the small buffer method to calculate plane watermark */
3626         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3627         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3628         if (tlb_miss > 0)
3629                 entries += tlb_miss;
3630         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3631         *plane_wm = entries + display->guard_size;
3632         if (*plane_wm > (int)display->max_wm)
3633                 *plane_wm = display->max_wm;
3634
3635         /* Use the large buffer method to calculate cursor watermark */
3636         line_time_us = ((htotal * 1000) / clock);
3637         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3638         entries = line_count * 64 * pixel_size;
3639         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3640         if (tlb_miss > 0)
3641                 entries += tlb_miss;
3642         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3643         *cursor_wm = entries + cursor->guard_size;
3644         if (*cursor_wm > (int)cursor->max_wm)
3645                 *cursor_wm = (int)cursor->max_wm;
3646
3647         return true;
3648 }
3649
3650 /*
3651  * Check the wm result.
3652  *
3653  * If any calculated watermark values is larger than the maximum value that
3654  * can be programmed into the associated watermark register, that watermark
3655  * must be disabled.
3656  */
3657 static bool g4x_check_srwm(struct drm_device *dev,
3658                            int display_wm, int cursor_wm,
3659                            const struct intel_watermark_params *display,
3660                            const struct intel_watermark_params *cursor)
3661 {
3662         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3663                       display_wm, cursor_wm);
3664
3665         if (display_wm > display->max_wm) {
3666                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3667                               display_wm, display->max_wm);
3668                 return false;
3669         }
3670
3671         if (cursor_wm > cursor->max_wm) {
3672                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3673                               cursor_wm, cursor->max_wm);
3674                 return false;
3675         }
3676
3677         if (!(display_wm || cursor_wm)) {
3678                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3679                 return false;
3680         }
3681
3682         return true;
3683 }
3684
3685 static bool g4x_compute_srwm(struct drm_device *dev,
3686                              int plane,
3687                              int latency_ns,
3688                              const struct intel_watermark_params *display,
3689                              const struct intel_watermark_params *cursor,
3690                              int *display_wm, int *cursor_wm)
3691 {
3692         struct drm_crtc *crtc;
3693         int hdisplay, htotal, pixel_size, clock;
3694         unsigned long line_time_us;
3695         int line_count, line_size;
3696         int small, large;
3697         int entries;
3698
3699         if (!latency_ns) {
3700                 *display_wm = *cursor_wm = 0;
3701                 return false;
3702         }
3703
3704         crtc = intel_get_crtc_for_plane(dev, plane);
3705         hdisplay = crtc->mode.hdisplay;
3706         htotal = crtc->mode.htotal;
3707         clock = crtc->mode.clock;
3708         pixel_size = crtc->fb->bits_per_pixel / 8;
3709
3710         line_time_us = (htotal * 1000) / clock;
3711         line_count = (latency_ns / line_time_us + 1000) / 1000;
3712         line_size = hdisplay * pixel_size;
3713
3714         /* Use the minimum of the small and large buffer method for primary */
3715         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3716         large = line_count * line_size;
3717
3718         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3719         *display_wm = entries + display->guard_size;
3720
3721         /* calculate the self-refresh watermark for display cursor */
3722         entries = line_count * pixel_size * 64;
3723         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3724         *cursor_wm = entries + cursor->guard_size;
3725
3726         return g4x_check_srwm(dev,
3727                               *display_wm, *cursor_wm,
3728                               display, cursor);
3729 }
3730
3731 #define single_plane_enabled(mask) is_power_of_2(mask)
3732
3733 static void g4x_update_wm(struct drm_device *dev)
3734 {
3735         static const int sr_latency_ns = 12000;
3736         struct drm_i915_private *dev_priv = dev->dev_private;
3737         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3738         int plane_sr, cursor_sr;
3739         unsigned int enabled = 0;
3740
3741         if (g4x_compute_wm0(dev, 0,
3742                             &g4x_wm_info, latency_ns,
3743                             &g4x_cursor_wm_info, latency_ns,
3744                             &planea_wm, &cursora_wm))
3745                 enabled |= 1;
3746
3747         if (g4x_compute_wm0(dev, 1,
3748                             &g4x_wm_info, latency_ns,
3749                             &g4x_cursor_wm_info, latency_ns,
3750                             &planeb_wm, &cursorb_wm))
3751                 enabled |= 2;
3752
3753         plane_sr = cursor_sr = 0;
3754         if (single_plane_enabled(enabled) &&
3755             g4x_compute_srwm(dev, ffs(enabled) - 1,
3756                              sr_latency_ns,
3757                              &g4x_wm_info,
3758                              &g4x_cursor_wm_info,
3759                              &plane_sr, &cursor_sr))
3760                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3761         else
3762                 I915_WRITE(FW_BLC_SELF,
3763                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3764
3765         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3766                       planea_wm, cursora_wm,
3767                       planeb_wm, cursorb_wm,
3768                       plane_sr, cursor_sr);
3769
3770         I915_WRITE(DSPFW1,
3771                    (plane_sr << DSPFW_SR_SHIFT) |
3772                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3773                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
3774                    planea_wm);
3775         I915_WRITE(DSPFW2,
3776                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3777                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3778         /* HPLL off in SR has some issues on G4x... disable it */
3779         I915_WRITE(DSPFW3,
3780                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3781                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3782 }
3783
3784 static void i965_update_wm(struct drm_device *dev)
3785 {
3786         struct drm_i915_private *dev_priv = dev->dev_private;
3787         struct drm_crtc *crtc;
3788         int srwm = 1;
3789         int cursor_sr = 16;
3790
3791         /* Calc sr entries for one plane configs */
3792         crtc = single_enabled_crtc(dev);
3793         if (crtc) {
3794                 /* self-refresh has much higher latency */
3795                 static const int sr_latency_ns = 12000;
3796                 int clock = crtc->mode.clock;
3797                 int htotal = crtc->mode.htotal;
3798                 int hdisplay = crtc->mode.hdisplay;
3799                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3800                 unsigned long line_time_us;
3801                 int entries;
3802
3803                 line_time_us = ((htotal * 1000) / clock);
3804
3805                 /* Use ns/us then divide to preserve precision */
3806                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3807                         pixel_size * hdisplay;
3808                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
3809                 srwm = I965_FIFO_SIZE - entries;
3810                 if (srwm < 0)
3811                         srwm = 1;
3812                 srwm &= 0x1ff;
3813                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
3814                               entries, srwm);
3815
3816                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3817                         pixel_size * 64;
3818                 entries = DIV_ROUND_UP(entries,
3819                                           i965_cursor_wm_info.cacheline_size);
3820                 cursor_sr = i965_cursor_wm_info.fifo_size -
3821                         (entries + i965_cursor_wm_info.guard_size);
3822
3823                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3824                         cursor_sr = i965_cursor_wm_info.max_wm;
3825
3826                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3827                               "cursor %d\n", srwm, cursor_sr);
3828
3829                 if (IS_CRESTLINE(dev))
3830                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3831         } else {
3832                 /* Turn off self refresh if both pipes are enabled */
3833                 if (IS_CRESTLINE(dev))
3834                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3835                                    & ~FW_BLC_SELF_EN);
3836         }
3837
3838         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3839                       srwm);
3840
3841         /* 965 has limitations... */
3842         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
3843                    (8 << 16) | (8 << 8) | (8 << 0));
3844         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3845         /* update cursor SR watermark */
3846         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3847 }
3848
3849 static void i9xx_update_wm(struct drm_device *dev)
3850 {
3851         struct drm_i915_private *dev_priv = dev->dev_private;
3852         const struct intel_watermark_params *wm_info;
3853         uint32_t fwater_lo;
3854         uint32_t fwater_hi;
3855         int cwm, srwm = 1;
3856         int fifo_size;
3857         int planea_wm, planeb_wm;
3858         struct drm_crtc *crtc, *enabled = NULL;
3859
3860         if (IS_I945GM(dev))
3861                 wm_info = &i945_wm_info;
3862         else if (!IS_GEN2(dev))
3863                 wm_info = &i915_wm_info;
3864         else
3865                 wm_info = &i855_wm_info;
3866
3867         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3868         crtc = intel_get_crtc_for_plane(dev, 0);
3869         if (crtc->enabled && crtc->fb) {
3870                 planea_wm = intel_calculate_wm(crtc->mode.clock,
3871                                                wm_info, fifo_size,
3872                                                crtc->fb->bits_per_pixel / 8,
3873                                                latency_ns);
3874                 enabled = crtc;
3875         } else
3876                 planea_wm = fifo_size - wm_info->guard_size;
3877
3878         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3879         crtc = intel_get_crtc_for_plane(dev, 1);
3880         if (crtc->enabled && crtc->fb) {
3881                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
3882                                                wm_info, fifo_size,
3883                                                crtc->fb->bits_per_pixel / 8,
3884                                                latency_ns);
3885                 if (enabled == NULL)
3886                         enabled = crtc;
3887                 else
3888                         enabled = NULL;
3889         } else
3890                 planeb_wm = fifo_size - wm_info->guard_size;
3891
3892         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3893
3894         /*
3895          * Overlay gets an aggressive default since video jitter is bad.
3896          */
3897         cwm = 2;
3898
3899         /* Play safe and disable self-refresh before adjusting watermarks. */
3900         if (IS_I945G(dev) || IS_I945GM(dev))
3901                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
3902         else if (IS_I915GM(dev))
3903                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3904
3905         /* Calc sr entries for one plane configs */
3906         if (HAS_FW_BLC(dev) && enabled) {
3907                 /* self-refresh has much higher latency */
3908                 static const int sr_latency_ns = 6000;
3909                 int clock = enabled->mode.clock;
3910                 int htotal = enabled->mode.htotal;
3911                 int hdisplay = enabled->mode.hdisplay;
3912                 int pixel_size = enabled->fb->bits_per_pixel / 8;
3913                 unsigned long line_time_us;
3914                 int entries;
3915
3916                 line_time_us = (htotal * 1000) / clock;
3917
3918                 /* Use ns/us then divide to preserve precision */
3919                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3920                         pixel_size * hdisplay;
3921                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
3922                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
3923                 srwm = wm_info->fifo_size - entries;
3924                 if (srwm < 0)
3925                         srwm = 1;
3926
3927                 if (IS_I945G(dev) || IS_I945GM(dev))
3928                         I915_WRITE(FW_BLC_SELF,
3929                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3930                 else if (IS_I915GM(dev))
3931                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3932         }
3933
3934         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3935                       planea_wm, planeb_wm, cwm, srwm);
3936
3937         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3938         fwater_hi = (cwm & 0x1f);
3939
3940         /* Set request length to 8 cachelines per fetch */
3941         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3942         fwater_hi = fwater_hi | (1 << 8);
3943
3944         I915_WRITE(FW_BLC, fwater_lo);
3945         I915_WRITE(FW_BLC2, fwater_hi);
3946
3947         if (HAS_FW_BLC(dev)) {
3948                 if (enabled) {
3949                         if (IS_I945G(dev) || IS_I945GM(dev))
3950                                 I915_WRITE(FW_BLC_SELF,
3951                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
3952                         else if (IS_I915GM(dev))
3953                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3954                         DRM_DEBUG_KMS("memory self refresh enabled\n");
3955                 } else
3956                         DRM_DEBUG_KMS("memory self refresh disabled\n");
3957         }
3958 }
3959
3960 static void i830_update_wm(struct drm_device *dev)
3961 {
3962         struct drm_i915_private *dev_priv = dev->dev_private;
3963         struct drm_crtc *crtc;
3964         uint32_t fwater_lo;
3965         int planea_wm;
3966
3967         crtc = single_enabled_crtc(dev);
3968         if (crtc == NULL)
3969                 return;
3970
3971         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
3972                                        dev_priv->display.get_fifo_size(dev, 0),
3973                                        crtc->fb->bits_per_pixel / 8,
3974                                        latency_ns);
3975         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3976         fwater_lo |= (3<<8) | planea_wm;
3977
3978         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3979
3980         I915_WRITE(FW_BLC, fwater_lo);
3981 }
3982
3983 #define ILK_LP0_PLANE_LATENCY           700
3984 #define ILK_LP0_CURSOR_LATENCY          1300
3985
3986 /*
3987  * Check the wm result.
3988  *
3989  * If any calculated watermark values is larger than the maximum value that
3990  * can be programmed into the associated watermark register, that watermark
3991  * must be disabled.
3992  */
3993 static bool ironlake_check_srwm(struct drm_device *dev, int level,
3994                                 int fbc_wm, int display_wm, int cursor_wm,
3995                                 const struct intel_watermark_params *display,
3996                                 const struct intel_watermark_params *cursor)
3997 {
3998         struct drm_i915_private *dev_priv = dev->dev_private;
3999
4000         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4001                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4002
4003         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4004                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4005                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4006
4007                 /* fbc has it's own way to disable FBC WM */
4008                 I915_WRITE(DISP_ARB_CTL,
4009                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4010                 return false;
4011         }
4012
4013         if (display_wm > display->max_wm) {
4014                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4015                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4016                 return false;
4017         }
4018
4019         if (cursor_wm > cursor->max_wm) {
4020                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4021                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4022                 return false;
4023         }
4024
4025         if (!(fbc_wm || display_wm || cursor_wm)) {
4026                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4027                 return false;
4028         }
4029
4030         return true;
4031 }
4032
4033 /*
4034  * Compute watermark values of WM[1-3],
4035  */
4036 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4037                                   int latency_ns,
4038                                   const struct intel_watermark_params *display,
4039                                   const struct intel_watermark_params *cursor,
4040                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4041 {
4042         struct drm_crtc *crtc;
4043         unsigned long line_time_us;
4044         int hdisplay, htotal, pixel_size, clock;
4045         int line_count, line_size;
4046         int small, large;
4047         int entries;
4048
4049         if (!latency_ns) {
4050                 *fbc_wm = *display_wm = *cursor_wm = 0;
4051                 return false;
4052         }
4053
4054         crtc = intel_get_crtc_for_plane(dev, plane);
4055         hdisplay = crtc->mode.hdisplay;
4056         htotal = crtc->mode.htotal;
4057         clock = crtc->mode.clock;
4058         pixel_size = crtc->fb->bits_per_pixel / 8;
4059
4060         line_time_us = (htotal * 1000) / clock;
4061         line_count = (latency_ns / line_time_us + 1000) / 1000;
4062         line_size = hdisplay * pixel_size;
4063
4064         /* Use the minimum of the small and large buffer method for primary */
4065         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4066         large = line_count * line_size;
4067
4068         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4069         *display_wm = entries + display->guard_size;
4070
4071         /*
4072          * Spec says:
4073          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4074          */
4075         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4076
4077         /* calculate the self-refresh watermark for display cursor */
4078         entries = line_count * pixel_size * 64;
4079         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4080         *cursor_wm = entries + cursor->guard_size;
4081
4082         return ironlake_check_srwm(dev, level,
4083                                    *fbc_wm, *display_wm, *cursor_wm,
4084                                    display, cursor);
4085 }
4086
4087 static void ironlake_update_wm(struct drm_device *dev)
4088 {
4089         struct drm_i915_private *dev_priv = dev->dev_private;
4090         int fbc_wm, plane_wm, cursor_wm;
4091         unsigned int enabled;
4092
4093         enabled = 0;
4094         if (g4x_compute_wm0(dev, 0,
4095                             &ironlake_display_wm_info,
4096                             ILK_LP0_PLANE_LATENCY,
4097                             &ironlake_cursor_wm_info,
4098                             ILK_LP0_CURSOR_LATENCY,
4099                             &plane_wm, &cursor_wm)) {
4100                 I915_WRITE(WM0_PIPEA_ILK,
4101                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4102                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4103                               " plane %d, " "cursor: %d\n",
4104                               plane_wm, cursor_wm);
4105                 enabled |= 1;
4106         }
4107
4108         if (g4x_compute_wm0(dev, 1,
4109                             &ironlake_display_wm_info,
4110                             ILK_LP0_PLANE_LATENCY,
4111                             &ironlake_cursor_wm_info,
4112                             ILK_LP0_CURSOR_LATENCY,
4113                             &plane_wm, &cursor_wm)) {
4114                 I915_WRITE(WM0_PIPEB_ILK,
4115                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4116                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4117                               " plane %d, cursor: %d\n",
4118                               plane_wm, cursor_wm);
4119                 enabled |= 2;
4120         }
4121
4122         /*
4123          * Calculate and update the self-refresh watermark only when one
4124          * display plane is used.
4125          */
4126         I915_WRITE(WM3_LP_ILK, 0);
4127         I915_WRITE(WM2_LP_ILK, 0);
4128         I915_WRITE(WM1_LP_ILK, 0);
4129
4130         if (!single_plane_enabled(enabled))
4131                 return;
4132         enabled = ffs(enabled) - 1;
4133
4134         /* WM1 */
4135         if (!ironlake_compute_srwm(dev, 1, enabled,
4136                                    ILK_READ_WM1_LATENCY() * 500,
4137                                    &ironlake_display_srwm_info,
4138                                    &ironlake_cursor_srwm_info,
4139                                    &fbc_wm, &plane_wm, &cursor_wm))
4140                 return;
4141
4142         I915_WRITE(WM1_LP_ILK,
4143                    WM1_LP_SR_EN |
4144                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4145                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4146                    (plane_wm << WM1_LP_SR_SHIFT) |
4147                    cursor_wm);
4148
4149         /* WM2 */
4150         if (!ironlake_compute_srwm(dev, 2, enabled,
4151                                    ILK_READ_WM2_LATENCY() * 500,
4152                                    &ironlake_display_srwm_info,
4153                                    &ironlake_cursor_srwm_info,
4154                                    &fbc_wm, &plane_wm, &cursor_wm))
4155                 return;
4156
4157         I915_WRITE(WM2_LP_ILK,
4158                    WM2_LP_EN |
4159                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4160                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4161                    (plane_wm << WM1_LP_SR_SHIFT) |
4162                    cursor_wm);
4163
4164         /*
4165          * WM3 is unsupported on ILK, probably because we don't have latency
4166          * data for that power state
4167          */
4168 }
4169
4170 static void sandybridge_update_wm(struct drm_device *dev)
4171 {
4172         struct drm_i915_private *dev_priv = dev->dev_private;
4173         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4174         int fbc_wm, plane_wm, cursor_wm;
4175         unsigned int enabled;
4176
4177         enabled = 0;
4178         if (g4x_compute_wm0(dev, 0,
4179                             &sandybridge_display_wm_info, latency,
4180                             &sandybridge_cursor_wm_info, latency,
4181                             &plane_wm, &cursor_wm)) {
4182                 I915_WRITE(WM0_PIPEA_ILK,
4183                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4184                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4185                               " plane %d, " "cursor: %d\n",
4186                               plane_wm, cursor_wm);
4187                 enabled |= 1;
4188         }
4189
4190         if (g4x_compute_wm0(dev, 1,
4191                             &sandybridge_display_wm_info, latency,
4192                             &sandybridge_cursor_wm_info, latency,
4193                             &plane_wm, &cursor_wm)) {
4194                 I915_WRITE(WM0_PIPEB_ILK,
4195                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4196                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4197                               " plane %d, cursor: %d\n",
4198                               plane_wm, cursor_wm);
4199                 enabled |= 2;
4200         }
4201
4202         /*
4203          * Calculate and update the self-refresh watermark only when one
4204          * display plane is used.
4205          *
4206          * SNB support 3 levels of watermark.
4207          *
4208          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4209          * and disabled in the descending order
4210          *
4211          */
4212         I915_WRITE(WM3_LP_ILK, 0);
4213         I915_WRITE(WM2_LP_ILK, 0);
4214         I915_WRITE(WM1_LP_ILK, 0);
4215
4216         if (!single_plane_enabled(enabled))
4217                 return;
4218         enabled = ffs(enabled) - 1;
4219
4220         /* WM1 */
4221         if (!ironlake_compute_srwm(dev, 1, enabled,
4222                                    SNB_READ_WM1_LATENCY() * 500,
4223                                    &sandybridge_display_srwm_info,
4224                                    &sandybridge_cursor_srwm_info,
4225                                    &fbc_wm, &plane_wm, &cursor_wm))
4226                 return;
4227
4228         I915_WRITE(WM1_LP_ILK,
4229                    WM1_LP_SR_EN |
4230                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4231                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4232                    (plane_wm << WM1_LP_SR_SHIFT) |
4233                    cursor_wm);
4234
4235         /* WM2 */
4236         if (!ironlake_compute_srwm(dev, 2, enabled,
4237                                    SNB_READ_WM2_LATENCY() * 500,
4238                                    &sandybridge_display_srwm_info,
4239                                    &sandybridge_cursor_srwm_info,
4240                                    &fbc_wm, &plane_wm, &cursor_wm))
4241                 return;
4242
4243         I915_WRITE(WM2_LP_ILK,
4244                    WM2_LP_EN |
4245                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4246                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4247                    (plane_wm << WM1_LP_SR_SHIFT) |
4248                    cursor_wm);
4249
4250         /* WM3 */
4251         if (!ironlake_compute_srwm(dev, 3, enabled,
4252                                    SNB_READ_WM3_LATENCY() * 500,
4253                                    &sandybridge_display_srwm_info,
4254                                    &sandybridge_cursor_srwm_info,
4255                                    &fbc_wm, &plane_wm, &cursor_wm))
4256                 return;
4257
4258         I915_WRITE(WM3_LP_ILK,
4259                    WM3_LP_EN |
4260                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4261                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4262                    (plane_wm << WM1_LP_SR_SHIFT) |
4263                    cursor_wm);
4264 }
4265
4266 /**
4267  * intel_update_watermarks - update FIFO watermark values based on current modes
4268  *
4269  * Calculate watermark values for the various WM regs based on current mode
4270  * and plane configuration.
4271  *
4272  * There are several cases to deal with here:
4273  *   - normal (i.e. non-self-refresh)
4274  *   - self-refresh (SR) mode
4275  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4276  *   - lines are small relative to FIFO size (buffer can hold more than 2
4277  *     lines), so need to account for TLB latency
4278  *
4279  *   The normal calculation is:
4280  *     watermark = dotclock * bytes per pixel * latency
4281  *   where latency is platform & configuration dependent (we assume pessimal
4282  *   values here).
4283  *
4284  *   The SR calculation is:
4285  *     watermark = (trunc(latency/line time)+1) * surface width *
4286  *       bytes per pixel
4287  *   where
4288  *     line time = htotal / dotclock
4289  *     surface width = hdisplay for normal plane and 64 for cursor
4290  *   and latency is assumed to be high, as above.
4291  *
4292  * The final value programmed to the register should always be rounded up,
4293  * and include an extra 2 entries to account for clock crossings.
4294  *
4295  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4296  * to set the non-SR watermarks to 8.
4297  */
4298 static void intel_update_watermarks(struct drm_device *dev)
4299 {
4300         struct drm_i915_private *dev_priv = dev->dev_private;
4301
4302         if (dev_priv->display.update_wm)
4303                 dev_priv->display.update_wm(dev);
4304 }
4305
4306 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4307 {
4308         return dev_priv->lvds_use_ssc && i915_panel_use_ssc
4309                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4310 }
4311
4312 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4313                               struct drm_display_mode *mode,
4314                               struct drm_display_mode *adjusted_mode,
4315                               int x, int y,
4316                               struct drm_framebuffer *old_fb)
4317 {
4318         struct drm_device *dev = crtc->dev;
4319         struct drm_i915_private *dev_priv = dev->dev_private;
4320         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4321         int pipe = intel_crtc->pipe;
4322         int plane = intel_crtc->plane;
4323         int refclk, num_connectors = 0;
4324         intel_clock_t clock, reduced_clock;
4325         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4326         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4327         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4328         struct drm_mode_config *mode_config = &dev->mode_config;
4329         struct intel_encoder *encoder;
4330         const intel_limit_t *limit;
4331         int ret;
4332         u32 temp;
4333         u32 lvds_sync = 0;
4334
4335         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4336                 if (encoder->base.crtc != crtc)
4337                         continue;
4338
4339                 switch (encoder->type) {
4340                 case INTEL_OUTPUT_LVDS:
4341                         is_lvds = true;
4342                         break;
4343                 case INTEL_OUTPUT_SDVO:
4344                 case INTEL_OUTPUT_HDMI:
4345                         is_sdvo = true;
4346                         if (encoder->needs_tv_clock)
4347                                 is_tv = true;
4348                         break;
4349                 case INTEL_OUTPUT_DVO:
4350                         is_dvo = true;
4351                         break;
4352                 case INTEL_OUTPUT_TVOUT:
4353                         is_tv = true;
4354                         break;
4355                 case INTEL_OUTPUT_ANALOG:
4356                         is_crt = true;
4357                         break;
4358                 case INTEL_OUTPUT_DISPLAYPORT:
4359                         is_dp = true;
4360                         break;
4361                 }
4362
4363                 num_connectors++;
4364         }
4365
4366         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4367                 refclk = dev_priv->lvds_ssc_freq * 1000;
4368                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4369                               refclk / 1000);
4370         } else if (!IS_GEN2(dev)) {
4371                 refclk = 96000;
4372         } else {
4373                 refclk = 48000;
4374         }
4375
4376         /*
4377          * Returns a set of divisors for the desired target clock with the given
4378          * refclk, or FALSE.  The returned values represent the clock equation:
4379          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4380          */
4381         limit = intel_limit(crtc, refclk);
4382         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4383         if (!ok) {
4384                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4385                 return -EINVAL;
4386         }
4387
4388         /* Ensure that the cursor is valid for the new mode before changing... */
4389         intel_crtc_update_cursor(crtc, true);
4390
4391         if (is_lvds && dev_priv->lvds_downclock_avail) {
4392                 has_reduced_clock = limit->find_pll(limit, crtc,
4393                                                     dev_priv->lvds_downclock,
4394                                                     refclk,
4395                                                     &reduced_clock);
4396                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4397                         /*
4398                          * If the different P is found, it means that we can't
4399                          * switch the display clock by using the FP0/FP1.
4400                          * In such case we will disable the LVDS downclock
4401                          * feature.
4402                          */
4403                         DRM_DEBUG_KMS("Different P is found for "
4404                                       "LVDS clock/downclock\n");
4405                         has_reduced_clock = 0;
4406                 }
4407         }
4408         /* SDVO TV has fixed PLL values depend on its clock range,
4409            this mirrors vbios setting. */
4410         if (is_sdvo && is_tv) {
4411                 if (adjusted_mode->clock >= 100000
4412                     && adjusted_mode->clock < 140500) {
4413                         clock.p1 = 2;
4414                         clock.p2 = 10;
4415                         clock.n = 3;
4416                         clock.m1 = 16;
4417                         clock.m2 = 8;
4418                 } else if (adjusted_mode->clock >= 140500
4419                            && adjusted_mode->clock <= 200000) {
4420                         clock.p1 = 1;
4421                         clock.p2 = 10;
4422                         clock.n = 6;
4423                         clock.m1 = 12;
4424                         clock.m2 = 8;
4425                 }
4426         }
4427
4428         if (IS_PINEVIEW(dev)) {
4429                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4430                 if (has_reduced_clock)
4431                         fp2 = (1 << reduced_clock.n) << 16 |
4432                                 reduced_clock.m1 << 8 | reduced_clock.m2;
4433         } else {
4434                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4435                 if (has_reduced_clock)
4436                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4437                                 reduced_clock.m2;
4438         }
4439
4440         dpll = DPLL_VGA_MODE_DIS;
4441
4442         if (!IS_GEN2(dev)) {
4443                 if (is_lvds)
4444                         dpll |= DPLLB_MODE_LVDS;
4445                 else
4446                         dpll |= DPLLB_MODE_DAC_SERIAL;
4447                 if (is_sdvo) {
4448                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4449                         if (pixel_multiplier > 1) {
4450                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4451                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4452                         }
4453                         dpll |= DPLL_DVO_HIGH_SPEED;
4454                 }
4455                 if (is_dp)
4456                         dpll |= DPLL_DVO_HIGH_SPEED;
4457
4458                 /* compute bitmask from p1 value */
4459                 if (IS_PINEVIEW(dev))
4460                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4461                 else {
4462                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4463                         if (IS_G4X(dev) && has_reduced_clock)
4464                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4465                 }
4466                 switch (clock.p2) {
4467                 case 5:
4468                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4469                         break;
4470                 case 7:
4471                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4472                         break;
4473                 case 10:
4474                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4475                         break;
4476                 case 14:
4477                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4478                         break;
4479                 }
4480                 if (INTEL_INFO(dev)->gen >= 4)
4481                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4482         } else {
4483                 if (is_lvds) {
4484                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4485                 } else {
4486                         if (clock.p1 == 2)
4487                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
4488                         else
4489                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4490                         if (clock.p2 == 4)
4491                                 dpll |= PLL_P2_DIVIDE_BY_4;
4492                 }
4493         }
4494
4495         if (is_sdvo && is_tv)
4496                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4497         else if (is_tv)
4498                 /* XXX: just matching BIOS for now */
4499                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4500                 dpll |= 3;
4501         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4502                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4503         else
4504                 dpll |= PLL_REF_INPUT_DREFCLK;
4505
4506         /* setup pipeconf */
4507         pipeconf = I915_READ(PIPECONF(pipe));
4508
4509         /* Set up the display plane register */
4510         dspcntr = DISPPLANE_GAMMA_ENABLE;
4511
4512         /* Ironlake's plane is forced to pipe, bit 24 is to
4513            enable color space conversion */
4514         if (pipe == 0)
4515                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4516         else
4517                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4518
4519         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4520                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4521                  * core speed.
4522                  *
4523                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4524                  * pipe == 0 check?
4525                  */
4526                 if (mode->clock >
4527                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4528                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4529                 else
4530                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4531         }
4532
4533         dpll |= DPLL_VCO_ENABLE;
4534
4535         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4536         drm_mode_debug_printmodeline(mode);
4537
4538         I915_WRITE(FP0(pipe), fp);
4539         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4540
4541         POSTING_READ(DPLL(pipe));
4542         udelay(150);
4543
4544         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4545          * This is an exception to the general rule that mode_set doesn't turn
4546          * things on.
4547          */
4548         if (is_lvds) {
4549                 temp = I915_READ(LVDS);
4550                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4551                 if (pipe == 1) {
4552                         temp |= LVDS_PIPEB_SELECT;
4553                 } else {
4554                         temp &= ~LVDS_PIPEB_SELECT;
4555                 }
4556                 /* set the corresponsding LVDS_BORDER bit */
4557                 temp |= dev_priv->lvds_border_bits;
4558                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4559                  * set the DPLLs for dual-channel mode or not.
4560                  */
4561                 if (clock.p2 == 7)
4562                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4563                 else
4564                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4565
4566                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4567                  * appropriately here, but we need to look more thoroughly into how
4568                  * panels behave in the two modes.
4569                  */
4570                 /* set the dithering flag on LVDS as needed */
4571                 if (INTEL_INFO(dev)->gen >= 4) {
4572                         if (dev_priv->lvds_dither)
4573                                 temp |= LVDS_ENABLE_DITHER;
4574                         else
4575                                 temp &= ~LVDS_ENABLE_DITHER;
4576                 }
4577                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4578                         lvds_sync |= LVDS_HSYNC_POLARITY;
4579                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4580                         lvds_sync |= LVDS_VSYNC_POLARITY;
4581                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4582                     != lvds_sync) {
4583                         char flags[2] = "-+";
4584                         DRM_INFO("Changing LVDS panel from "
4585                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4586                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
4587                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
4588                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4589                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4590                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4591                         temp |= lvds_sync;
4592                 }
4593                 I915_WRITE(LVDS, temp);
4594         }
4595
4596         if (is_dp) {
4597                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4598         }
4599
4600         I915_WRITE(DPLL(pipe), dpll);
4601
4602         /* Wait for the clocks to stabilize. */
4603         POSTING_READ(DPLL(pipe));
4604         udelay(150);
4605
4606         if (INTEL_INFO(dev)->gen >= 4) {
4607                 temp = 0;
4608                 if (is_sdvo) {
4609                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4610                         if (temp > 1)
4611                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4612                         else
4613                                 temp = 0;
4614                 }
4615                 I915_WRITE(DPLL_MD(pipe), temp);
4616         } else {
4617                 /* The pixel multiplier can only be updated once the
4618                  * DPLL is enabled and the clocks are stable.
4619                  *
4620                  * So write it again.
4621                  */
4622                 I915_WRITE(DPLL(pipe), dpll);
4623         }
4624
4625         intel_crtc->lowfreq_avail = false;
4626         if (is_lvds && has_reduced_clock && i915_powersave) {
4627                 I915_WRITE(FP1(pipe), fp2);
4628                 intel_crtc->lowfreq_avail = true;
4629                 if (HAS_PIPE_CXSR(dev)) {
4630                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4631                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4632                 }
4633         } else {
4634                 I915_WRITE(FP1(pipe), fp);
4635                 if (HAS_PIPE_CXSR(dev)) {
4636                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4637                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4638                 }
4639         }
4640
4641         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4642                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4643                 /* the chip adds 2 halflines automatically */
4644                 adjusted_mode->crtc_vdisplay -= 1;
4645                 adjusted_mode->crtc_vtotal -= 1;
4646                 adjusted_mode->crtc_vblank_start -= 1;
4647                 adjusted_mode->crtc_vblank_end -= 1;
4648                 adjusted_mode->crtc_vsync_end -= 1;
4649                 adjusted_mode->crtc_vsync_start -= 1;
4650         } else
4651                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4652
4653         I915_WRITE(HTOTAL(pipe),
4654                    (adjusted_mode->crtc_hdisplay - 1) |
4655                    ((adjusted_mode->crtc_htotal - 1) << 16));
4656         I915_WRITE(HBLANK(pipe),
4657                    (adjusted_mode->crtc_hblank_start - 1) |
4658                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4659         I915_WRITE(HSYNC(pipe),
4660                    (adjusted_mode->crtc_hsync_start - 1) |
4661                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4662
4663         I915_WRITE(VTOTAL(pipe),
4664                    (adjusted_mode->crtc_vdisplay - 1) |
4665                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4666         I915_WRITE(VBLANK(pipe),
4667                    (adjusted_mode->crtc_vblank_start - 1) |
4668                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4669         I915_WRITE(VSYNC(pipe),
4670                    (adjusted_mode->crtc_vsync_start - 1) |
4671                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4672
4673         /* pipesrc and dspsize control the size that is scaled from,
4674          * which should always be the user's requested size.
4675          */
4676         I915_WRITE(DSPSIZE(plane),
4677                    ((mode->vdisplay - 1) << 16) |
4678                    (mode->hdisplay - 1));
4679         I915_WRITE(DSPPOS(plane), 0);
4680         I915_WRITE(PIPESRC(pipe),
4681                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4682
4683         I915_WRITE(PIPECONF(pipe), pipeconf);
4684         POSTING_READ(PIPECONF(pipe));
4685         intel_enable_pipe(dev_priv, pipe, false);
4686
4687         intel_wait_for_vblank(dev, pipe);
4688
4689         I915_WRITE(DSPCNTR(plane), dspcntr);
4690         POSTING_READ(DSPCNTR(plane));
4691         intel_enable_plane(dev_priv, plane, pipe);
4692
4693         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4694
4695         intel_update_watermarks(dev);
4696
4697         return ret;
4698 }
4699
4700 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4701                                   struct drm_display_mode *mode,
4702                                   struct drm_display_mode *adjusted_mode,
4703                                   int x, int y,
4704                                   struct drm_framebuffer *old_fb)
4705 {
4706         struct drm_device *dev = crtc->dev;
4707         struct drm_i915_private *dev_priv = dev->dev_private;
4708         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4709         int pipe = intel_crtc->pipe;
4710         int plane = intel_crtc->plane;
4711         int refclk, num_connectors = 0;
4712         intel_clock_t clock, reduced_clock;
4713         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4714         bool ok, has_reduced_clock = false, is_sdvo = false;
4715         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4716         struct intel_encoder *has_edp_encoder = NULL;
4717         struct drm_mode_config *mode_config = &dev->mode_config;
4718         struct intel_encoder *encoder;
4719         const intel_limit_t *limit;
4720         int ret;
4721         struct fdi_m_n m_n = {0};
4722         u32 temp;
4723         u32 lvds_sync = 0;
4724         int target_clock, pixel_multiplier, lane, link_bw, bpp, factor;
4725
4726         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4727                 if (encoder->base.crtc != crtc)
4728                         continue;
4729
4730                 switch (encoder->type) {
4731                 case INTEL_OUTPUT_LVDS:
4732                         is_lvds = true;
4733                         break;
4734                 case INTEL_OUTPUT_SDVO:
4735                 case INTEL_OUTPUT_HDMI:
4736                         is_sdvo = true;
4737                         if (encoder->needs_tv_clock)
4738                                 is_tv = true;
4739                         break;
4740                 case INTEL_OUTPUT_TVOUT:
4741                         is_tv = true;
4742                         break;
4743                 case INTEL_OUTPUT_ANALOG:
4744                         is_crt = true;
4745                         break;
4746                 case INTEL_OUTPUT_DISPLAYPORT:
4747                         is_dp = true;
4748                         break;
4749                 case INTEL_OUTPUT_EDP:
4750                         has_edp_encoder = encoder;
4751                         break;
4752                 }
4753
4754                 num_connectors++;
4755         }
4756
4757         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4758                 refclk = dev_priv->lvds_ssc_freq * 1000;
4759                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4760                               refclk / 1000);
4761         } else {
4762                 refclk = 96000;
4763                 if (!has_edp_encoder ||
4764                     intel_encoder_is_pch_edp(&has_edp_encoder->base))
4765                         refclk = 120000; /* 120Mhz refclk */
4766         }
4767
4768         /*
4769          * Returns a set of divisors for the desired target clock with the given
4770          * refclk, or FALSE.  The returned values represent the clock equation:
4771          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4772          */
4773         limit = intel_limit(crtc, refclk);
4774         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4775         if (!ok) {
4776                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4777                 return -EINVAL;
4778         }
4779
4780         /* Ensure that the cursor is valid for the new mode before changing... */
4781         intel_crtc_update_cursor(crtc, true);
4782
4783         if (is_lvds && dev_priv->lvds_downclock_avail) {
4784                 has_reduced_clock = limit->find_pll(limit, crtc,
4785                                                     dev_priv->lvds_downclock,
4786                                                     refclk,
4787                                                     &reduced_clock);
4788                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4789                         /*
4790                          * If the different P is found, it means that we can't
4791                          * switch the display clock by using the FP0/FP1.
4792                          * In such case we will disable the LVDS downclock
4793                          * feature.
4794                          */
4795                         DRM_DEBUG_KMS("Different P is found for "
4796                                       "LVDS clock/downclock\n");
4797                         has_reduced_clock = 0;
4798                 }
4799         }
4800         /* SDVO TV has fixed PLL values depend on its clock range,
4801            this mirrors vbios setting. */
4802         if (is_sdvo && is_tv) {
4803                 if (adjusted_mode->clock >= 100000
4804                     && adjusted_mode->clock < 140500) {
4805                         clock.p1 = 2;
4806                         clock.p2 = 10;
4807                         clock.n = 3;
4808                         clock.m1 = 16;
4809                         clock.m2 = 8;
4810                 } else if (adjusted_mode->clock >= 140500
4811                            && adjusted_mode->clock <= 200000) {
4812                         clock.p1 = 1;
4813                         clock.p2 = 10;
4814                         clock.n = 6;
4815                         clock.m1 = 12;
4816                         clock.m2 = 8;
4817                 }
4818         }
4819
4820         /* FDI link */
4821         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4822         lane = 0;
4823         /* CPU eDP doesn't require FDI link, so just set DP M/N
4824            according to current link config */
4825         if (has_edp_encoder &&
4826             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4827                 target_clock = mode->clock;
4828                 intel_edp_link_config(has_edp_encoder,
4829                                       &lane, &link_bw);
4830         } else {
4831                 /* [e]DP over FDI requires target mode clock
4832                    instead of link clock */
4833                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4834                         target_clock = mode->clock;
4835                 else
4836                         target_clock = adjusted_mode->clock;
4837
4838                 /* FDI is a binary signal running at ~2.7GHz, encoding
4839                  * each output octet as 10 bits. The actual frequency
4840                  * is stored as a divider into a 100MHz clock, and the
4841                  * mode pixel clock is stored in units of 1KHz.
4842                  * Hence the bw of each lane in terms of the mode signal
4843                  * is:
4844                  */
4845                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4846         }
4847
4848         /* determine panel color depth */
4849         temp = I915_READ(PIPECONF(pipe));
4850         temp &= ~PIPE_BPC_MASK;
4851         if (is_lvds) {
4852                 /* the BPC will be 6 if it is 18-bit LVDS panel */
4853                 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
4854                         temp |= PIPE_8BPC;
4855                 else
4856                         temp |= PIPE_6BPC;
4857         } else if (has_edp_encoder) {
4858                 switch (dev_priv->edp.bpp/3) {
4859                 case 8:
4860                         temp |= PIPE_8BPC;
4861                         break;
4862                 case 10:
4863                         temp |= PIPE_10BPC;
4864                         break;
4865                 case 6:
4866                         temp |= PIPE_6BPC;
4867                         break;
4868                 case 12:
4869                         temp |= PIPE_12BPC;
4870                         break;
4871                 }
4872         } else
4873                 temp |= PIPE_8BPC;
4874         I915_WRITE(PIPECONF(pipe), temp);
4875
4876         switch (temp & PIPE_BPC_MASK) {
4877         case PIPE_8BPC:
4878                 bpp = 24;
4879                 break;
4880         case PIPE_10BPC:
4881                 bpp = 30;
4882                 break;
4883         case PIPE_6BPC:
4884                 bpp = 18;
4885                 break;
4886         case PIPE_12BPC:
4887                 bpp = 36;
4888                 break;
4889         default:
4890                 DRM_ERROR("unknown pipe bpc value\n");
4891                 bpp = 24;
4892         }
4893
4894         if (!lane) {
4895                 /*
4896                  * Account for spread spectrum to avoid
4897                  * oversubscribing the link. Max center spread
4898                  * is 2.5%; use 5% for safety's sake.
4899                  */
4900                 u32 bps = target_clock * bpp * 21 / 20;
4901                 lane = bps / (link_bw * 8) + 1;
4902         }
4903
4904         intel_crtc->fdi_lanes = lane;
4905
4906         if (pixel_multiplier > 1)
4907                 link_bw *= pixel_multiplier;
4908         ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
4909
4910         /* Ironlake: try to setup display ref clock before DPLL
4911          * enabling. This is only under driver's control after
4912          * PCH B stepping, previous chipset stepping should be
4913          * ignoring this setting.
4914          */
4915         temp = I915_READ(PCH_DREF_CONTROL);
4916         /* Always enable nonspread source */
4917         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4918         temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4919         temp &= ~DREF_SSC_SOURCE_MASK;
4920         temp |= DREF_SSC_SOURCE_ENABLE;
4921         I915_WRITE(PCH_DREF_CONTROL, temp);
4922
4923         POSTING_READ(PCH_DREF_CONTROL);
4924         udelay(200);
4925
4926         if (has_edp_encoder) {
4927                 if (intel_panel_use_ssc(dev_priv)) {
4928                         temp |= DREF_SSC1_ENABLE;
4929                         I915_WRITE(PCH_DREF_CONTROL, temp);
4930
4931                         POSTING_READ(PCH_DREF_CONTROL);
4932                         udelay(200);
4933                 }
4934                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4935
4936                 /* Enable CPU source on CPU attached eDP */
4937                 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4938                         if (intel_panel_use_ssc(dev_priv))
4939                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4940                         else
4941                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4942                 } else {
4943                         /* Enable SSC on PCH eDP if needed */
4944                         if (intel_panel_use_ssc(dev_priv)) {
4945                                 DRM_ERROR("enabling SSC on PCH\n");
4946                                 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
4947                         }
4948                 }
4949                 I915_WRITE(PCH_DREF_CONTROL, temp);
4950                 POSTING_READ(PCH_DREF_CONTROL);
4951                 udelay(200);
4952         }
4953
4954         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4955         if (has_reduced_clock)
4956                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4957                         reduced_clock.m2;
4958
4959         /* Enable autotuning of the PLL clock (if permissible) */
4960         factor = 21;
4961         if (is_lvds) {
4962                 if ((intel_panel_use_ssc(dev_priv) &&
4963                      dev_priv->lvds_ssc_freq == 100) ||
4964                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4965                         factor = 25;
4966         } else if (is_sdvo && is_tv)
4967                 factor = 20;
4968
4969         if (clock.m1 < factor * clock.n)
4970                 fp |= FP_CB_TUNE;
4971
4972         dpll = 0;
4973
4974         if (is_lvds)
4975                 dpll |= DPLLB_MODE_LVDS;
4976         else
4977                 dpll |= DPLLB_MODE_DAC_SERIAL;
4978         if (is_sdvo) {
4979                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4980                 if (pixel_multiplier > 1) {
4981                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4982                 }
4983                 dpll |= DPLL_DVO_HIGH_SPEED;
4984         }
4985         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4986                 dpll |= DPLL_DVO_HIGH_SPEED;
4987
4988         /* compute bitmask from p1 value */
4989         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4990         /* also FPA1 */
4991         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4992
4993         switch (clock.p2) {
4994         case 5:
4995                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4996                 break;
4997         case 7:
4998                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4999                 break;
5000         case 10:
5001                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5002                 break;
5003         case 14:
5004                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5005                 break;
5006         }
5007
5008         if (is_sdvo && is_tv)
5009                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5010         else if (is_tv)
5011                 /* XXX: just matching BIOS for now */
5012                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5013                 dpll |= 3;
5014         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5015                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5016         else
5017                 dpll |= PLL_REF_INPUT_DREFCLK;
5018
5019         /* setup pipeconf */
5020         pipeconf = I915_READ(PIPECONF(pipe));
5021
5022         /* Set up the display plane register */
5023         dspcntr = DISPPLANE_GAMMA_ENABLE;
5024
5025         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5026         drm_mode_debug_printmodeline(mode);
5027
5028         /* PCH eDP needs FDI, but CPU eDP does not */
5029         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5030                 I915_WRITE(PCH_FP0(pipe), fp);
5031                 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5032
5033                 POSTING_READ(PCH_DPLL(pipe));
5034                 udelay(150);
5035         }
5036
5037         /* enable transcoder DPLL */
5038         if (HAS_PCH_CPT(dev)) {
5039                 temp = I915_READ(PCH_DPLL_SEL);
5040                 switch (pipe) {
5041                 case 0:
5042                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
5043                         break;
5044                 case 1:
5045                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
5046                         break;
5047                 case 2:
5048                         /* FIXME: manage transcoder PLLs? */
5049                         temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5050                         break;
5051                 default:
5052                         BUG();
5053                 }
5054                 I915_WRITE(PCH_DPLL_SEL, temp);
5055
5056                 POSTING_READ(PCH_DPLL_SEL);
5057                 udelay(150);
5058         }
5059
5060         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5061          * This is an exception to the general rule that mode_set doesn't turn
5062          * things on.
5063          */
5064         if (is_lvds) {
5065                 temp = I915_READ(PCH_LVDS);
5066                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5067                 if (pipe == 1) {
5068                         if (HAS_PCH_CPT(dev))
5069                                 temp |= PORT_TRANS_B_SEL_CPT;
5070                         else
5071                                 temp |= LVDS_PIPEB_SELECT;
5072                 } else {
5073                         if (HAS_PCH_CPT(dev))
5074                                 temp &= ~PORT_TRANS_SEL_MASK;
5075                         else
5076                                 temp &= ~LVDS_PIPEB_SELECT;
5077                 }
5078                 /* set the corresponsding LVDS_BORDER bit */
5079                 temp |= dev_priv->lvds_border_bits;
5080                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5081                  * set the DPLLs for dual-channel mode or not.
5082                  */
5083                 if (clock.p2 == 7)
5084                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5085                 else
5086                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5087
5088                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5089                  * appropriately here, but we need to look more thoroughly into how
5090                  * panels behave in the two modes.
5091                  */
5092                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5093                         lvds_sync |= LVDS_HSYNC_POLARITY;
5094                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5095                         lvds_sync |= LVDS_VSYNC_POLARITY;
5096                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5097                     != lvds_sync) {
5098                         char flags[2] = "-+";
5099                         DRM_INFO("Changing LVDS panel from "
5100                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5101                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5102                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5103                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5104                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5105                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5106                         temp |= lvds_sync;
5107                 }
5108                 I915_WRITE(PCH_LVDS, temp);
5109         }
5110
5111         /* set the dithering flag and clear for anything other than a panel. */
5112         pipeconf &= ~PIPECONF_DITHER_EN;
5113         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5114         if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
5115                 pipeconf |= PIPECONF_DITHER_EN;
5116                 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5117         }
5118
5119         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5120                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5121         } else {
5122                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5123                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5124                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5125                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5126                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5127         }
5128
5129         if (!has_edp_encoder ||
5130             intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5131                 I915_WRITE(PCH_DPLL(pipe), dpll);
5132
5133                 /* Wait for the clocks to stabilize. */
5134                 POSTING_READ(PCH_DPLL(pipe));
5135                 udelay(150);
5136
5137                 /* The pixel multiplier can only be updated once the
5138                  * DPLL is enabled and the clocks are stable.
5139                  *
5140                  * So write it again.
5141                  */
5142                 I915_WRITE(PCH_DPLL(pipe), dpll);
5143         }
5144
5145         intel_crtc->lowfreq_avail = false;
5146         if (is_lvds && has_reduced_clock && i915_powersave) {
5147                 I915_WRITE(PCH_FP1(pipe), fp2);
5148                 intel_crtc->lowfreq_avail = true;
5149                 if (HAS_PIPE_CXSR(dev)) {
5150                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5151                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5152                 }
5153         } else {
5154                 I915_WRITE(PCH_FP1(pipe), fp);
5155                 if (HAS_PIPE_CXSR(dev)) {
5156                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5157                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5158                 }
5159         }
5160
5161         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5162                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5163                 /* the chip adds 2 halflines automatically */
5164                 adjusted_mode->crtc_vdisplay -= 1;
5165                 adjusted_mode->crtc_vtotal -= 1;
5166                 adjusted_mode->crtc_vblank_start -= 1;
5167                 adjusted_mode->crtc_vblank_end -= 1;
5168                 adjusted_mode->crtc_vsync_end -= 1;
5169                 adjusted_mode->crtc_vsync_start -= 1;
5170         } else
5171                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5172
5173         I915_WRITE(HTOTAL(pipe),
5174                    (adjusted_mode->crtc_hdisplay - 1) |
5175                    ((adjusted_mode->crtc_htotal - 1) << 16));
5176         I915_WRITE(HBLANK(pipe),
5177                    (adjusted_mode->crtc_hblank_start - 1) |
5178                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5179         I915_WRITE(HSYNC(pipe),
5180                    (adjusted_mode->crtc_hsync_start - 1) |
5181                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5182
5183         I915_WRITE(VTOTAL(pipe),
5184                    (adjusted_mode->crtc_vdisplay - 1) |
5185                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5186         I915_WRITE(VBLANK(pipe),
5187                    (adjusted_mode->crtc_vblank_start - 1) |
5188                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5189         I915_WRITE(VSYNC(pipe),
5190                    (adjusted_mode->crtc_vsync_start - 1) |
5191                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5192
5193         /* pipesrc controls the size that is scaled from, which should
5194          * always be the user's requested size.
5195          */
5196         I915_WRITE(PIPESRC(pipe),
5197                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5198
5199         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5200         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5201         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5202         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5203
5204         if (has_edp_encoder &&
5205             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5206                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5207         }
5208
5209         I915_WRITE(PIPECONF(pipe), pipeconf);
5210         POSTING_READ(PIPECONF(pipe));
5211
5212         intel_wait_for_vblank(dev, pipe);
5213
5214         if (IS_GEN5(dev)) {
5215                 /* enable address swizzle for tiling buffer */
5216                 temp = I915_READ(DISP_ARB_CTL);
5217                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5218         }
5219
5220         I915_WRITE(DSPCNTR(plane), dspcntr);
5221         POSTING_READ(DSPCNTR(plane));
5222
5223         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5224
5225         intel_update_watermarks(dev);
5226
5227         return ret;
5228 }
5229
5230 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5231                                struct drm_display_mode *mode,
5232                                struct drm_display_mode *adjusted_mode,
5233                                int x, int y,
5234                                struct drm_framebuffer *old_fb)
5235 {
5236         struct drm_device *dev = crtc->dev;
5237         struct drm_i915_private *dev_priv = dev->dev_private;
5238         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5239         int pipe = intel_crtc->pipe;
5240         int ret;
5241
5242         drm_vblank_pre_modeset(dev, pipe);
5243
5244         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5245                                               x, y, old_fb);
5246
5247         drm_vblank_post_modeset(dev, pipe);
5248
5249         return ret;
5250 }
5251
5252 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5253 void intel_crtc_load_lut(struct drm_crtc *crtc)
5254 {
5255         struct drm_device *dev = crtc->dev;
5256         struct drm_i915_private *dev_priv = dev->dev_private;
5257         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5258         int palreg = PALETTE(intel_crtc->pipe);
5259         int i;
5260
5261         /* The clocks have to be on to load the palette. */
5262         if (!crtc->enabled)
5263                 return;
5264
5265         /* use legacy palette for Ironlake */
5266         if (HAS_PCH_SPLIT(dev))
5267                 palreg = LGC_PALETTE(intel_crtc->pipe);
5268
5269         for (i = 0; i < 256; i++) {
5270                 I915_WRITE(palreg + 4 * i,
5271                            (intel_crtc->lut_r[i] << 16) |
5272                            (intel_crtc->lut_g[i] << 8) |
5273                            intel_crtc->lut_b[i]);
5274         }
5275 }
5276
5277 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5278 {
5279         struct drm_device *dev = crtc->dev;
5280         struct drm_i915_private *dev_priv = dev->dev_private;
5281         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5282         bool visible = base != 0;
5283         u32 cntl;
5284
5285         if (intel_crtc->cursor_visible == visible)
5286                 return;
5287
5288         cntl = I915_READ(_CURACNTR);
5289         if (visible) {
5290                 /* On these chipsets we can only modify the base whilst
5291                  * the cursor is disabled.
5292                  */
5293                 I915_WRITE(_CURABASE, base);
5294
5295                 cntl &= ~(CURSOR_FORMAT_MASK);
5296                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5297                 cntl |= CURSOR_ENABLE |
5298                         CURSOR_GAMMA_ENABLE |
5299                         CURSOR_FORMAT_ARGB;
5300         } else
5301                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5302         I915_WRITE(_CURACNTR, cntl);
5303
5304         intel_crtc->cursor_visible = visible;
5305 }
5306
5307 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5308 {
5309         struct drm_device *dev = crtc->dev;
5310         struct drm_i915_private *dev_priv = dev->dev_private;
5311         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5312         int pipe = intel_crtc->pipe;
5313         bool visible = base != 0;
5314
5315         if (intel_crtc->cursor_visible != visible) {
5316                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5317                 if (base) {
5318                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5319                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5320                         cntl |= pipe << 28; /* Connect to correct pipe */
5321                 } else {
5322                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5323                         cntl |= CURSOR_MODE_DISABLE;
5324                 }
5325                 I915_WRITE(CURCNTR(pipe), cntl);
5326
5327                 intel_crtc->cursor_visible = visible;
5328         }
5329         /* and commit changes on next vblank */
5330         I915_WRITE(CURBASE(pipe), base);
5331 }
5332
5333 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5334 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5335                                      bool on)
5336 {
5337         struct drm_device *dev = crtc->dev;
5338         struct drm_i915_private *dev_priv = dev->dev_private;
5339         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5340         int pipe = intel_crtc->pipe;
5341         int x = intel_crtc->cursor_x;
5342         int y = intel_crtc->cursor_y;
5343         u32 base, pos;
5344         bool visible;
5345
5346         pos = 0;
5347
5348         if (on && crtc->enabled && crtc->fb) {
5349                 base = intel_crtc->cursor_addr;
5350                 if (x > (int) crtc->fb->width)
5351                         base = 0;
5352
5353                 if (y > (int) crtc->fb->height)
5354                         base = 0;
5355         } else
5356                 base = 0;
5357
5358         if (x < 0) {
5359                 if (x + intel_crtc->cursor_width < 0)
5360                         base = 0;
5361
5362                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5363                 x = -x;
5364         }
5365         pos |= x << CURSOR_X_SHIFT;
5366
5367         if (y < 0) {
5368                 if (y + intel_crtc->cursor_height < 0)
5369                         base = 0;
5370
5371                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5372                 y = -y;
5373         }
5374         pos |= y << CURSOR_Y_SHIFT;
5375
5376         visible = base != 0;
5377         if (!visible && !intel_crtc->cursor_visible)
5378                 return;
5379
5380         I915_WRITE(CURPOS(pipe), pos);
5381         if (IS_845G(dev) || IS_I865G(dev))
5382                 i845_update_cursor(crtc, base);
5383         else
5384                 i9xx_update_cursor(crtc, base);
5385
5386         if (visible)
5387                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5388 }
5389
5390 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5391                                  struct drm_file *file,
5392                                  uint32_t handle,
5393                                  uint32_t width, uint32_t height)
5394 {
5395         struct drm_device *dev = crtc->dev;
5396         struct drm_i915_private *dev_priv = dev->dev_private;
5397         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5398         struct drm_i915_gem_object *obj;
5399         uint32_t addr;
5400         int ret;
5401
5402         DRM_DEBUG_KMS("\n");
5403
5404         /* if we want to turn off the cursor ignore width and height */
5405         if (!handle) {
5406                 DRM_DEBUG_KMS("cursor off\n");
5407                 addr = 0;
5408                 obj = NULL;
5409                 mutex_lock(&dev->struct_mutex);
5410                 goto finish;
5411         }
5412
5413         /* Currently we only support 64x64 cursors */
5414         if (width != 64 || height != 64) {
5415                 DRM_ERROR("we currently only support 64x64 cursors\n");
5416                 return -EINVAL;
5417         }
5418
5419         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5420         if (&obj->base == NULL)
5421                 return -ENOENT;
5422
5423         if (obj->base.size < width * height * 4) {
5424                 DRM_ERROR("buffer is to small\n");
5425                 ret = -ENOMEM;
5426                 goto fail;
5427         }
5428
5429         /* we only need to pin inside GTT if cursor is non-phy */
5430         mutex_lock(&dev->struct_mutex);
5431         if (!dev_priv->info->cursor_needs_physical) {
5432                 if (obj->tiling_mode) {
5433                         DRM_ERROR("cursor cannot be tiled\n");
5434                         ret = -EINVAL;
5435                         goto fail_locked;
5436                 }
5437
5438                 ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
5439                 if (ret) {
5440                         DRM_ERROR("failed to pin cursor bo\n");
5441                         goto fail_locked;
5442                 }
5443
5444                 ret = i915_gem_object_set_to_gtt_domain(obj, 0);
5445                 if (ret) {
5446                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5447                         goto fail_unpin;
5448                 }
5449
5450                 ret = i915_gem_object_put_fence(obj);
5451                 if (ret) {
5452                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5453                         goto fail_unpin;
5454                 }
5455
5456                 addr = obj->gtt_offset;
5457         } else {
5458                 int align = IS_I830(dev) ? 16 * 1024 : 256;
5459                 ret = i915_gem_attach_phys_object(dev, obj,
5460                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5461                                                   align);
5462                 if (ret) {
5463                         DRM_ERROR("failed to attach phys object\n");
5464                         goto fail_locked;
5465                 }
5466                 addr = obj->phys_obj->handle->busaddr;
5467         }
5468
5469         if (IS_GEN2(dev))
5470                 I915_WRITE(CURSIZE, (height << 12) | width);
5471
5472  finish:
5473         if (intel_crtc->cursor_bo) {
5474                 if (dev_priv->info->cursor_needs_physical) {
5475                         if (intel_crtc->cursor_bo != obj)
5476                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5477                 } else
5478                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5479                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5480         }
5481
5482         mutex_unlock(&dev->struct_mutex);
5483
5484         intel_crtc->cursor_addr = addr;
5485         intel_crtc->cursor_bo = obj;
5486         intel_crtc->cursor_width = width;
5487         intel_crtc->cursor_height = height;
5488
5489         intel_crtc_update_cursor(crtc, true);
5490
5491         return 0;
5492 fail_unpin:
5493         i915_gem_object_unpin(obj);
5494 fail_locked:
5495         mutex_unlock(&dev->struct_mutex);
5496 fail:
5497         drm_gem_object_unreference_unlocked(&obj->base);
5498         return ret;
5499 }
5500
5501 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5502 {
5503         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5504
5505         intel_crtc->cursor_x = x;
5506         intel_crtc->cursor_y = y;
5507
5508         intel_crtc_update_cursor(crtc, true);
5509
5510         return 0;
5511 }
5512
5513 /** Sets the color ramps on behalf of RandR */
5514 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5515                                  u16 blue, int regno)
5516 {
5517         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5518
5519         intel_crtc->lut_r[regno] = red >> 8;
5520         intel_crtc->lut_g[regno] = green >> 8;
5521         intel_crtc->lut_b[regno] = blue >> 8;
5522 }
5523
5524 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5525                              u16 *blue, int regno)
5526 {
5527         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5528
5529         *red = intel_crtc->lut_r[regno] << 8;
5530         *green = intel_crtc->lut_g[regno] << 8;
5531         *blue = intel_crtc->lut_b[regno] << 8;
5532 }
5533
5534 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5535                                  u16 *blue, uint32_t start, uint32_t size)
5536 {
5537         int end = (start + size > 256) ? 256 : start + size, i;
5538         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5539
5540         for (i = start; i < end; i++) {
5541                 intel_crtc->lut_r[i] = red[i] >> 8;
5542                 intel_crtc->lut_g[i] = green[i] >> 8;
5543                 intel_crtc->lut_b[i] = blue[i] >> 8;
5544         }
5545
5546         intel_crtc_load_lut(crtc);
5547 }
5548
5549 /**
5550  * Get a pipe with a simple mode set on it for doing load-based monitor
5551  * detection.
5552  *
5553  * It will be up to the load-detect code to adjust the pipe as appropriate for
5554  * its requirements.  The pipe will be connected to no other encoders.
5555  *
5556  * Currently this code will only succeed if there is a pipe with no encoders
5557  * configured for it.  In the future, it could choose to temporarily disable
5558  * some outputs to free up a pipe for its use.
5559  *
5560  * \return crtc, or NULL if no pipes are available.
5561  */
5562
5563 /* VESA 640x480x72Hz mode to set on the pipe */
5564 static struct drm_display_mode load_detect_mode = {
5565         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5566                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5567 };
5568
5569 static struct drm_framebuffer *
5570 intel_framebuffer_create(struct drm_device *dev,
5571                          struct drm_mode_fb_cmd *mode_cmd,
5572                          struct drm_i915_gem_object *obj)
5573 {
5574         struct intel_framebuffer *intel_fb;
5575         int ret;
5576
5577         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5578         if (!intel_fb) {
5579                 drm_gem_object_unreference_unlocked(&obj->base);
5580                 return ERR_PTR(-ENOMEM);
5581         }
5582
5583         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5584         if (ret) {
5585                 drm_gem_object_unreference_unlocked(&obj->base);
5586                 kfree(intel_fb);
5587                 return ERR_PTR(ret);
5588         }
5589
5590         return &intel_fb->base;
5591 }
5592
5593 static u32
5594 intel_framebuffer_pitch_for_width(int width, int bpp)
5595 {
5596         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5597         return ALIGN(pitch, 64);
5598 }
5599
5600 static u32
5601 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5602 {
5603         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5604         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5605 }
5606
5607 static struct drm_framebuffer *
5608 intel_framebuffer_create_for_mode(struct drm_device *dev,
5609                                   struct drm_display_mode *mode,
5610                                   int depth, int bpp)
5611 {
5612         struct drm_i915_gem_object *obj;
5613         struct drm_mode_fb_cmd mode_cmd;
5614
5615         obj = i915_gem_alloc_object(dev,
5616                                     intel_framebuffer_size_for_mode(mode, bpp));
5617         if (obj == NULL)
5618                 return ERR_PTR(-ENOMEM);
5619
5620         mode_cmd.width = mode->hdisplay;
5621         mode_cmd.height = mode->vdisplay;
5622         mode_cmd.depth = depth;
5623         mode_cmd.bpp = bpp;
5624         mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
5625
5626         return intel_framebuffer_create(dev, &mode_cmd, obj);
5627 }
5628
5629 static struct drm_framebuffer *
5630 mode_fits_in_fbdev(struct drm_device *dev,
5631                    struct drm_display_mode *mode)
5632 {
5633         struct drm_i915_private *dev_priv = dev->dev_private;
5634         struct drm_i915_gem_object *obj;
5635         struct drm_framebuffer *fb;
5636
5637         if (dev_priv->fbdev == NULL)
5638                 return NULL;
5639
5640         obj = dev_priv->fbdev->ifb.obj;
5641         if (obj == NULL)
5642                 return NULL;
5643
5644         fb = &dev_priv->fbdev->ifb.base;
5645         if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
5646                                                           fb->bits_per_pixel))
5647                 return NULL;
5648
5649         if (obj->base.size < mode->vdisplay * fb->pitch)
5650                 return NULL;
5651
5652         return fb;
5653 }
5654
5655 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5656                                 struct drm_connector *connector,
5657                                 struct drm_display_mode *mode,
5658                                 struct intel_load_detect_pipe *old)
5659 {
5660         struct intel_crtc *intel_crtc;
5661         struct drm_crtc *possible_crtc;
5662         struct drm_encoder *encoder = &intel_encoder->base;
5663         struct drm_crtc *crtc = NULL;
5664         struct drm_device *dev = encoder->dev;
5665         struct drm_framebuffer *old_fb;
5666         int i = -1;
5667
5668         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5669                       connector->base.id, drm_get_connector_name(connector),
5670                       encoder->base.id, drm_get_encoder_name(encoder));
5671
5672         /*
5673          * Algorithm gets a little messy:
5674          *
5675          *   - if the connector already has an assigned crtc, use it (but make
5676          *     sure it's on first)
5677          *
5678          *   - try to find the first unused crtc that can drive this connector,
5679          *     and use that if we find one
5680          */
5681
5682         /* See if we already have a CRTC for this connector */
5683         if (encoder->crtc) {
5684                 crtc = encoder->crtc;
5685
5686                 intel_crtc = to_intel_crtc(crtc);
5687                 old->dpms_mode = intel_crtc->dpms_mode;
5688                 old->load_detect_temp = false;
5689
5690                 /* Make sure the crtc and connector are running */
5691                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5692                         struct drm_encoder_helper_funcs *encoder_funcs;
5693                         struct drm_crtc_helper_funcs *crtc_funcs;
5694
5695                         crtc_funcs = crtc->helper_private;
5696                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5697
5698                         encoder_funcs = encoder->helper_private;
5699                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5700                 }
5701
5702                 return true;
5703         }
5704
5705         /* Find an unused one (if possible) */
5706         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5707                 i++;
5708                 if (!(encoder->possible_crtcs & (1 << i)))
5709                         continue;
5710                 if (!possible_crtc->enabled) {
5711                         crtc = possible_crtc;
5712                         break;
5713                 }
5714         }
5715
5716         /*
5717          * If we didn't find an unused CRTC, don't use any.
5718          */
5719         if (!crtc) {
5720                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5721                 return false;
5722         }
5723
5724         encoder->crtc = crtc;
5725         connector->encoder = encoder;
5726
5727         intel_crtc = to_intel_crtc(crtc);
5728         old->dpms_mode = intel_crtc->dpms_mode;
5729         old->load_detect_temp = true;
5730         old->release_fb = NULL;
5731
5732         if (!mode)
5733                 mode = &load_detect_mode;
5734
5735         old_fb = crtc->fb;
5736
5737         /* We need a framebuffer large enough to accommodate all accesses
5738          * that the plane may generate whilst we perform load detection.
5739          * We can not rely on the fbcon either being present (we get called
5740          * during its initialisation to detect all boot displays, or it may
5741          * not even exist) or that it is large enough to satisfy the
5742          * requested mode.
5743          */
5744         crtc->fb = mode_fits_in_fbdev(dev, mode);
5745         if (crtc->fb == NULL) {
5746                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5747                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5748                 old->release_fb = crtc->fb;
5749         } else
5750                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5751         if (IS_ERR(crtc->fb)) {
5752                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5753                 crtc->fb = old_fb;
5754                 return false;
5755         }
5756
5757         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5758                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5759                 if (old->release_fb)
5760                         old->release_fb->funcs->destroy(old->release_fb);
5761                 crtc->fb = old_fb;
5762                 return false;
5763         }
5764
5765         /* let the connector get through one full cycle before testing */
5766         intel_wait_for_vblank(dev, intel_crtc->pipe);
5767
5768         return true;
5769 }
5770
5771 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5772                                     struct drm_connector *connector,
5773                                     struct intel_load_detect_pipe *old)
5774 {
5775         struct drm_encoder *encoder = &intel_encoder->base;
5776         struct drm_device *dev = encoder->dev;
5777         struct drm_crtc *crtc = encoder->crtc;
5778         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5779         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5780
5781         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5782                       connector->base.id, drm_get_connector_name(connector),
5783                       encoder->base.id, drm_get_encoder_name(encoder));
5784
5785         if (old->load_detect_temp) {
5786                 connector->encoder = NULL;
5787                 drm_helper_disable_unused_functions(dev);
5788
5789                 if (old->release_fb)
5790                         old->release_fb->funcs->destroy(old->release_fb);
5791
5792                 return;
5793         }
5794
5795         /* Switch crtc and encoder back off if necessary */
5796         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5797                 encoder_funcs->dpms(encoder, old->dpms_mode);
5798                 crtc_funcs->dpms(crtc, old->dpms_mode);
5799         }
5800 }
5801
5802 /* Returns the clock of the currently programmed mode of the given pipe. */
5803 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5804 {
5805         struct drm_i915_private *dev_priv = dev->dev_private;
5806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5807         int pipe = intel_crtc->pipe;
5808         u32 dpll = I915_READ(DPLL(pipe));
5809         u32 fp;
5810         intel_clock_t clock;
5811
5812         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5813                 fp = I915_READ(FP0(pipe));
5814         else
5815                 fp = I915_READ(FP1(pipe));
5816
5817         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5818         if (IS_PINEVIEW(dev)) {
5819                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5820                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5821         } else {
5822                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5823                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5824         }
5825
5826         if (!IS_GEN2(dev)) {
5827                 if (IS_PINEVIEW(dev))
5828                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5829                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5830                 else
5831                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5832                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5833
5834                 switch (dpll & DPLL_MODE_MASK) {
5835                 case DPLLB_MODE_DAC_SERIAL:
5836                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5837                                 5 : 10;
5838                         break;
5839                 case DPLLB_MODE_LVDS:
5840                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5841                                 7 : 14;
5842                         break;
5843                 default:
5844                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5845                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5846                         return 0;
5847                 }
5848
5849                 /* XXX: Handle the 100Mhz refclk */
5850                 intel_clock(dev, 96000, &clock);
5851         } else {
5852                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5853
5854                 if (is_lvds) {
5855                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5856                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5857                         clock.p2 = 14;
5858
5859                         if ((dpll & PLL_REF_INPUT_MASK) ==
5860                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5861                                 /* XXX: might not be 66MHz */
5862                                 intel_clock(dev, 66000, &clock);
5863                         } else
5864                                 intel_clock(dev, 48000, &clock);
5865                 } else {
5866                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5867                                 clock.p1 = 2;
5868                         else {
5869                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5870                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5871                         }
5872                         if (dpll & PLL_P2_DIVIDE_BY_4)
5873                                 clock.p2 = 4;
5874                         else
5875                                 clock.p2 = 2;
5876
5877                         intel_clock(dev, 48000, &clock);
5878                 }
5879         }
5880
5881         /* XXX: It would be nice to validate the clocks, but we can't reuse
5882          * i830PllIsValid() because it relies on the xf86_config connector
5883          * configuration being accurate, which it isn't necessarily.
5884          */
5885
5886         return clock.dot;
5887 }
5888
5889 /** Returns the currently programmed mode of the given pipe. */
5890 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5891                                              struct drm_crtc *crtc)
5892 {
5893         struct drm_i915_private *dev_priv = dev->dev_private;
5894         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5895         int pipe = intel_crtc->pipe;
5896         struct drm_display_mode *mode;
5897         int htot = I915_READ(HTOTAL(pipe));
5898         int hsync = I915_READ(HSYNC(pipe));
5899         int vtot = I915_READ(VTOTAL(pipe));
5900         int vsync = I915_READ(VSYNC(pipe));
5901
5902         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5903         if (!mode)
5904                 return NULL;
5905
5906         mode->clock = intel_crtc_clock_get(dev, crtc);
5907         mode->hdisplay = (htot & 0xffff) + 1;
5908         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5909         mode->hsync_start = (hsync & 0xffff) + 1;
5910         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5911         mode->vdisplay = (vtot & 0xffff) + 1;
5912         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5913         mode->vsync_start = (vsync & 0xffff) + 1;
5914         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5915
5916         drm_mode_set_name(mode);
5917         drm_mode_set_crtcinfo(mode, 0);
5918
5919         return mode;
5920 }
5921
5922 #define GPU_IDLE_TIMEOUT 500 /* ms */
5923
5924 /* When this timer fires, we've been idle for awhile */
5925 static void intel_gpu_idle_timer(unsigned long arg)
5926 {
5927         struct drm_device *dev = (struct drm_device *)arg;
5928         drm_i915_private_t *dev_priv = dev->dev_private;
5929
5930         if (!list_empty(&dev_priv->mm.active_list)) {
5931                 /* Still processing requests, so just re-arm the timer. */
5932                 mod_timer(&dev_priv->idle_timer, jiffies +
5933                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5934                 return;
5935         }
5936
5937         dev_priv->busy = false;
5938         queue_work(dev_priv->wq, &dev_priv->idle_work);
5939 }
5940
5941 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5942
5943 static void intel_crtc_idle_timer(unsigned long arg)
5944 {
5945         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5946         struct drm_crtc *crtc = &intel_crtc->base;
5947         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5948         struct intel_framebuffer *intel_fb;
5949
5950         intel_fb = to_intel_framebuffer(crtc->fb);
5951         if (intel_fb && intel_fb->obj->active) {
5952                 /* The framebuffer is still being accessed by the GPU. */
5953                 mod_timer(&intel_crtc->idle_timer, jiffies +
5954                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5955                 return;
5956         }
5957
5958         intel_crtc->busy = false;
5959         queue_work(dev_priv->wq, &dev_priv->idle_work);
5960 }
5961
5962 static void intel_increase_pllclock(struct drm_crtc *crtc)
5963 {
5964         struct drm_device *dev = crtc->dev;
5965         drm_i915_private_t *dev_priv = dev->dev_private;
5966         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5967         int pipe = intel_crtc->pipe;
5968         int dpll_reg = DPLL(pipe);
5969         int dpll;
5970
5971         if (HAS_PCH_SPLIT(dev))
5972                 return;
5973
5974         if (!dev_priv->lvds_downclock_avail)
5975                 return;
5976
5977         dpll = I915_READ(dpll_reg);
5978         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5979                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5980
5981                 /* Unlock panel regs */
5982                 I915_WRITE(PP_CONTROL,
5983                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
5984
5985                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5986                 I915_WRITE(dpll_reg, dpll);
5987                 intel_wait_for_vblank(dev, pipe);
5988
5989                 dpll = I915_READ(dpll_reg);
5990                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5991                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5992
5993                 /* ...and lock them again */
5994                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5995         }
5996
5997         /* Schedule downclock */
5998         mod_timer(&intel_crtc->idle_timer, jiffies +
5999                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6000 }
6001
6002 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6003 {
6004         struct drm_device *dev = crtc->dev;
6005         drm_i915_private_t *dev_priv = dev->dev_private;
6006         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6007         int pipe = intel_crtc->pipe;
6008         int dpll_reg = DPLL(pipe);
6009         int dpll = I915_READ(dpll_reg);
6010
6011         if (HAS_PCH_SPLIT(dev))
6012                 return;
6013
6014         if (!dev_priv->lvds_downclock_avail)
6015                 return;
6016
6017         /*
6018          * Since this is called by a timer, we should never get here in
6019          * the manual case.
6020          */
6021         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6022                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6023
6024                 /* Unlock panel regs */
6025                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6026                            PANEL_UNLOCK_REGS);
6027
6028                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6029                 I915_WRITE(dpll_reg, dpll);
6030                 intel_wait_for_vblank(dev, pipe);
6031                 dpll = I915_READ(dpll_reg);
6032                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6033                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6034
6035                 /* ...and lock them again */
6036                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6037         }
6038
6039 }
6040
6041 /**
6042  * intel_idle_update - adjust clocks for idleness
6043  * @work: work struct
6044  *
6045  * Either the GPU or display (or both) went idle.  Check the busy status
6046  * here and adjust the CRTC and GPU clocks as necessary.
6047  */
6048 static void intel_idle_update(struct work_struct *work)
6049 {
6050         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6051                                                     idle_work);
6052         struct drm_device *dev = dev_priv->dev;
6053         struct drm_crtc *crtc;
6054         struct intel_crtc *intel_crtc;
6055
6056         if (!i915_powersave)
6057                 return;
6058
6059         mutex_lock(&dev->struct_mutex);
6060
6061         i915_update_gfx_val(dev_priv);
6062
6063         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6064                 /* Skip inactive CRTCs */
6065                 if (!crtc->fb)
6066                         continue;
6067
6068                 intel_crtc = to_intel_crtc(crtc);
6069                 if (!intel_crtc->busy)
6070                         intel_decrease_pllclock(crtc);
6071         }
6072
6073
6074         mutex_unlock(&dev->struct_mutex);
6075 }
6076
6077 /**
6078  * intel_mark_busy - mark the GPU and possibly the display busy
6079  * @dev: drm device
6080  * @obj: object we're operating on
6081  *
6082  * Callers can use this function to indicate that the GPU is busy processing
6083  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
6084  * buffer), we'll also mark the display as busy, so we know to increase its
6085  * clock frequency.
6086  */
6087 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6088 {
6089         drm_i915_private_t *dev_priv = dev->dev_private;
6090         struct drm_crtc *crtc = NULL;
6091         struct intel_framebuffer *intel_fb;
6092         struct intel_crtc *intel_crtc;
6093
6094         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6095                 return;
6096
6097         if (!dev_priv->busy)
6098                 dev_priv->busy = true;
6099         else
6100                 mod_timer(&dev_priv->idle_timer, jiffies +
6101                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6102
6103         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6104                 if (!crtc->fb)
6105                         continue;
6106
6107                 intel_crtc = to_intel_crtc(crtc);
6108                 intel_fb = to_intel_framebuffer(crtc->fb);
6109                 if (intel_fb->obj == obj) {
6110                         if (!intel_crtc->busy) {
6111                                 /* Non-busy -> busy, upclock */
6112                                 intel_increase_pllclock(crtc);
6113                                 intel_crtc->busy = true;
6114                         } else {
6115                                 /* Busy -> busy, put off timer */
6116                                 mod_timer(&intel_crtc->idle_timer, jiffies +
6117                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6118                         }
6119                 }
6120         }
6121 }
6122
6123 static void intel_crtc_destroy(struct drm_crtc *crtc)
6124 {
6125         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6126         struct drm_device *dev = crtc->dev;
6127         struct intel_unpin_work *work;
6128         unsigned long flags;
6129
6130         spin_lock_irqsave(&dev->event_lock, flags);
6131         work = intel_crtc->unpin_work;
6132         intel_crtc->unpin_work = NULL;
6133         spin_unlock_irqrestore(&dev->event_lock, flags);
6134
6135         if (work) {
6136                 cancel_work_sync(&work->work);
6137                 kfree(work);
6138         }
6139
6140         drm_crtc_cleanup(crtc);
6141
6142         kfree(intel_crtc);
6143 }
6144
6145 static void intel_unpin_work_fn(struct work_struct *__work)
6146 {
6147         struct intel_unpin_work *work =
6148                 container_of(__work, struct intel_unpin_work, work);
6149
6150         mutex_lock(&work->dev->struct_mutex);
6151         i915_gem_object_unpin(work->old_fb_obj);
6152         drm_gem_object_unreference(&work->pending_flip_obj->base);
6153         drm_gem_object_unreference(&work->old_fb_obj->base);
6154
6155         mutex_unlock(&work->dev->struct_mutex);
6156         kfree(work);
6157 }
6158
6159 static void do_intel_finish_page_flip(struct drm_device *dev,
6160                                       struct drm_crtc *crtc)
6161 {
6162         drm_i915_private_t *dev_priv = dev->dev_private;
6163         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6164         struct intel_unpin_work *work;
6165         struct drm_i915_gem_object *obj;
6166         struct drm_pending_vblank_event *e;
6167         struct timeval tnow, tvbl;
6168         unsigned long flags;
6169
6170         /* Ignore early vblank irqs */
6171         if (intel_crtc == NULL)
6172                 return;
6173
6174         do_gettimeofday(&tnow);
6175
6176         spin_lock_irqsave(&dev->event_lock, flags);
6177         work = intel_crtc->unpin_work;
6178         if (work == NULL || !work->pending) {
6179                 spin_unlock_irqrestore(&dev->event_lock, flags);
6180                 return;
6181         }
6182
6183         intel_crtc->unpin_work = NULL;
6184
6185         if (work->event) {
6186                 e = work->event;
6187                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6188
6189                 /* Called before vblank count and timestamps have
6190                  * been updated for the vblank interval of flip
6191                  * completion? Need to increment vblank count and
6192                  * add one videorefresh duration to returned timestamp
6193                  * to account for this. We assume this happened if we
6194                  * get called over 0.9 frame durations after the last
6195                  * timestamped vblank.
6196                  *
6197                  * This calculation can not be used with vrefresh rates
6198                  * below 5Hz (10Hz to be on the safe side) without
6199                  * promoting to 64 integers.
6200                  */
6201                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6202                     9 * crtc->framedur_ns) {
6203                         e->event.sequence++;
6204                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6205                                              crtc->framedur_ns);
6206                 }
6207
6208                 e->event.tv_sec = tvbl.tv_sec;
6209                 e->event.tv_usec = tvbl.tv_usec;
6210
6211                 list_add_tail(&e->base.link,
6212                               &e->base.file_priv->event_list);
6213                 wake_up_interruptible(&e->base.file_priv->event_wait);
6214         }
6215
6216         drm_vblank_put(dev, intel_crtc->pipe);
6217
6218         spin_unlock_irqrestore(&dev->event_lock, flags);
6219
6220         obj = work->old_fb_obj;
6221
6222         atomic_clear_mask(1 << intel_crtc->plane,
6223                           &obj->pending_flip.counter);
6224         if (atomic_read(&obj->pending_flip) == 0)
6225                 wake_up(&dev_priv->pending_flip_queue);
6226
6227         schedule_work(&work->work);
6228
6229         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6230 }
6231
6232 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6233 {
6234         drm_i915_private_t *dev_priv = dev->dev_private;
6235         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6236
6237         do_intel_finish_page_flip(dev, crtc);
6238 }
6239
6240 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6241 {
6242         drm_i915_private_t *dev_priv = dev->dev_private;
6243         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6244
6245         do_intel_finish_page_flip(dev, crtc);
6246 }
6247
6248 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6249 {
6250         drm_i915_private_t *dev_priv = dev->dev_private;
6251         struct intel_crtc *intel_crtc =
6252                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6253         unsigned long flags;
6254
6255         spin_lock_irqsave(&dev->event_lock, flags);
6256         if (intel_crtc->unpin_work) {
6257                 if ((++intel_crtc->unpin_work->pending) > 1)
6258                         DRM_ERROR("Prepared flip multiple times\n");
6259         } else {
6260                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6261         }
6262         spin_unlock_irqrestore(&dev->event_lock, flags);
6263 }
6264
6265 static int intel_gen2_queue_flip(struct drm_device *dev,
6266                                  struct drm_crtc *crtc,
6267                                  struct drm_framebuffer *fb,
6268                                  struct drm_i915_gem_object *obj)
6269 {
6270         struct drm_i915_private *dev_priv = dev->dev_private;
6271         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6272         unsigned long offset;
6273         u32 flip_mask;
6274         int ret;
6275
6276         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6277         if (ret)
6278                 goto out;
6279
6280         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6281         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6282
6283         ret = BEGIN_LP_RING(6);
6284         if (ret)
6285                 goto out;
6286
6287         /* Can't queue multiple flips, so wait for the previous
6288          * one to finish before executing the next.
6289          */
6290         if (intel_crtc->plane)
6291                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6292         else
6293                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6294         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6295         OUT_RING(MI_NOOP);
6296         OUT_RING(MI_DISPLAY_FLIP |
6297                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6298         OUT_RING(fb->pitch);
6299         OUT_RING(obj->gtt_offset + offset);
6300         OUT_RING(MI_NOOP);
6301         ADVANCE_LP_RING();
6302 out:
6303         return ret;
6304 }
6305
6306 static int intel_gen3_queue_flip(struct drm_device *dev,
6307                                  struct drm_crtc *crtc,
6308                                  struct drm_framebuffer *fb,
6309                                  struct drm_i915_gem_object *obj)
6310 {
6311         struct drm_i915_private *dev_priv = dev->dev_private;
6312         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6313         unsigned long offset;
6314         u32 flip_mask;
6315         int ret;
6316
6317         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6318         if (ret)
6319                 goto out;
6320
6321         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6322         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6323
6324         ret = BEGIN_LP_RING(6);
6325         if (ret)
6326                 goto out;
6327
6328         if (intel_crtc->plane)
6329                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6330         else
6331                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6332         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6333         OUT_RING(MI_NOOP);
6334         OUT_RING(MI_DISPLAY_FLIP_I915 |
6335                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6336         OUT_RING(fb->pitch);
6337         OUT_RING(obj->gtt_offset + offset);
6338         OUT_RING(MI_NOOP);
6339
6340         ADVANCE_LP_RING();
6341 out:
6342         return ret;
6343 }
6344
6345 static int intel_gen4_queue_flip(struct drm_device *dev,
6346                                  struct drm_crtc *crtc,
6347                                  struct drm_framebuffer *fb,
6348                                  struct drm_i915_gem_object *obj)
6349 {
6350         struct drm_i915_private *dev_priv = dev->dev_private;
6351         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6352         uint32_t pf, pipesrc;
6353         int ret;
6354
6355         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6356         if (ret)
6357                 goto out;
6358
6359         ret = BEGIN_LP_RING(4);
6360         if (ret)
6361                 goto out;
6362
6363         /* i965+ uses the linear or tiled offsets from the
6364          * Display Registers (which do not change across a page-flip)
6365          * so we need only reprogram the base address.
6366          */
6367         OUT_RING(MI_DISPLAY_FLIP |
6368                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6369         OUT_RING(fb->pitch);
6370         OUT_RING(obj->gtt_offset | obj->tiling_mode);
6371
6372         /* XXX Enabling the panel-fitter across page-flip is so far
6373          * untested on non-native modes, so ignore it for now.
6374          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6375          */
6376         pf = 0;
6377         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6378         OUT_RING(pf | pipesrc);
6379         ADVANCE_LP_RING();
6380 out:
6381         return ret;
6382 }
6383
6384 static int intel_gen6_queue_flip(struct drm_device *dev,
6385                                  struct drm_crtc *crtc,
6386                                  struct drm_framebuffer *fb,
6387                                  struct drm_i915_gem_object *obj)
6388 {
6389         struct drm_i915_private *dev_priv = dev->dev_private;
6390         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6391         uint32_t pf, pipesrc;
6392         int ret;
6393
6394         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6395         if (ret)
6396                 goto out;
6397
6398         ret = BEGIN_LP_RING(4);
6399         if (ret)
6400                 goto out;
6401
6402         OUT_RING(MI_DISPLAY_FLIP |
6403                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6404         OUT_RING(fb->pitch | obj->tiling_mode);
6405         OUT_RING(obj->gtt_offset);
6406
6407         pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6408         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6409         OUT_RING(pf | pipesrc);
6410         ADVANCE_LP_RING();
6411 out:
6412         return ret;
6413 }
6414
6415 /*
6416  * On gen7 we currently use the blit ring because (in early silicon at least)
6417  * the render ring doesn't give us interrpts for page flip completion, which
6418  * means clients will hang after the first flip is queued.  Fortunately the
6419  * blit ring generates interrupts properly, so use it instead.
6420  */
6421 static int intel_gen7_queue_flip(struct drm_device *dev,
6422                                  struct drm_crtc *crtc,
6423                                  struct drm_framebuffer *fb,
6424                                  struct drm_i915_gem_object *obj)
6425 {
6426         struct drm_i915_private *dev_priv = dev->dev_private;
6427         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6428         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6429         int ret;
6430
6431         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6432         if (ret)
6433                 goto out;
6434
6435         ret = intel_ring_begin(ring, 4);
6436         if (ret)
6437                 goto out;
6438
6439         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
6440         intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
6441         intel_ring_emit(ring, (obj->gtt_offset));
6442         intel_ring_emit(ring, (MI_NOOP));
6443         intel_ring_advance(ring);
6444 out:
6445         return ret;
6446 }
6447
6448 static int intel_default_queue_flip(struct drm_device *dev,
6449                                     struct drm_crtc *crtc,
6450                                     struct drm_framebuffer *fb,
6451                                     struct drm_i915_gem_object *obj)
6452 {
6453         return -ENODEV;
6454 }
6455
6456 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6457                                 struct drm_framebuffer *fb,
6458                                 struct drm_pending_vblank_event *event)
6459 {
6460         struct drm_device *dev = crtc->dev;
6461         struct drm_i915_private *dev_priv = dev->dev_private;
6462         struct intel_framebuffer *intel_fb;
6463         struct drm_i915_gem_object *obj;
6464         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6465         struct intel_unpin_work *work;
6466         unsigned long flags;
6467         int ret;
6468
6469         work = kzalloc(sizeof *work, GFP_KERNEL);
6470         if (work == NULL)
6471                 return -ENOMEM;
6472
6473         work->event = event;
6474         work->dev = crtc->dev;
6475         intel_fb = to_intel_framebuffer(crtc->fb);
6476         work->old_fb_obj = intel_fb->obj;
6477         INIT_WORK(&work->work, intel_unpin_work_fn);
6478
6479         /* We borrow the event spin lock for protecting unpin_work */
6480         spin_lock_irqsave(&dev->event_lock, flags);
6481         if (intel_crtc->unpin_work) {
6482                 spin_unlock_irqrestore(&dev->event_lock, flags);
6483                 kfree(work);
6484
6485                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6486                 return -EBUSY;
6487         }
6488         intel_crtc->unpin_work = work;
6489         spin_unlock_irqrestore(&dev->event_lock, flags);
6490
6491         intel_fb = to_intel_framebuffer(fb);
6492         obj = intel_fb->obj;
6493
6494         mutex_lock(&dev->struct_mutex);
6495
6496         /* Reference the objects for the scheduled work. */
6497         drm_gem_object_reference(&work->old_fb_obj->base);
6498         drm_gem_object_reference(&obj->base);
6499
6500         crtc->fb = fb;
6501
6502         ret = drm_vblank_get(dev, intel_crtc->pipe);
6503         if (ret)
6504                 goto cleanup_objs;
6505
6506         work->pending_flip_obj = obj;
6507
6508         work->enable_stall_check = true;
6509
6510         /* Block clients from rendering to the new back buffer until
6511          * the flip occurs and the object is no longer visible.
6512          */
6513         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6514
6515         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6516         if (ret)
6517                 goto cleanup_pending;
6518
6519         mutex_unlock(&dev->struct_mutex);
6520
6521         trace_i915_flip_request(intel_crtc->plane, obj);
6522
6523         return 0;
6524
6525 cleanup_pending:
6526         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6527 cleanup_objs:
6528         drm_gem_object_unreference(&work->old_fb_obj->base);
6529         drm_gem_object_unreference(&obj->base);
6530         mutex_unlock(&dev->struct_mutex);
6531
6532         spin_lock_irqsave(&dev->event_lock, flags);
6533         intel_crtc->unpin_work = NULL;
6534         spin_unlock_irqrestore(&dev->event_lock, flags);
6535
6536         kfree(work);
6537
6538         return ret;
6539 }
6540
6541 static void intel_sanitize_modesetting(struct drm_device *dev,
6542                                        int pipe, int plane)
6543 {
6544         struct drm_i915_private *dev_priv = dev->dev_private;
6545         u32 reg, val;
6546
6547         if (HAS_PCH_SPLIT(dev))
6548                 return;
6549
6550         /* Who knows what state these registers were left in by the BIOS or
6551          * grub?
6552          *
6553          * If we leave the registers in a conflicting state (e.g. with the
6554          * display plane reading from the other pipe than the one we intend
6555          * to use) then when we attempt to teardown the active mode, we will
6556          * not disable the pipes and planes in the correct order -- leaving
6557          * a plane reading from a disabled pipe and possibly leading to
6558          * undefined behaviour.
6559          */
6560
6561         reg = DSPCNTR(plane);
6562         val = I915_READ(reg);
6563
6564         if ((val & DISPLAY_PLANE_ENABLE) == 0)
6565                 return;
6566         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6567                 return;
6568
6569         /* This display plane is active and attached to the other CPU pipe. */
6570         pipe = !pipe;
6571
6572         /* Disable the plane and wait for it to stop reading from the pipe. */
6573         intel_disable_plane(dev_priv, plane, pipe);
6574         intel_disable_pipe(dev_priv, pipe);
6575 }
6576
6577 static void intel_crtc_reset(struct drm_crtc *crtc)
6578 {
6579         struct drm_device *dev = crtc->dev;
6580         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6581
6582         /* Reset flags back to the 'unknown' status so that they
6583          * will be correctly set on the initial modeset.
6584          */
6585         intel_crtc->dpms_mode = -1;
6586
6587         /* We need to fix up any BIOS configuration that conflicts with
6588          * our expectations.
6589          */
6590         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6591 }
6592
6593 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6594         .dpms = intel_crtc_dpms,
6595         .mode_fixup = intel_crtc_mode_fixup,
6596         .mode_set = intel_crtc_mode_set,
6597         .mode_set_base = intel_pipe_set_base,
6598         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6599         .load_lut = intel_crtc_load_lut,
6600         .disable = intel_crtc_disable,
6601 };
6602
6603 static const struct drm_crtc_funcs intel_crtc_funcs = {
6604         .reset = intel_crtc_reset,
6605         .cursor_set = intel_crtc_cursor_set,
6606         .cursor_move = intel_crtc_cursor_move,
6607         .gamma_set = intel_crtc_gamma_set,
6608         .set_config = drm_crtc_helper_set_config,
6609         .destroy = intel_crtc_destroy,
6610         .page_flip = intel_crtc_page_flip,
6611 };
6612
6613 static void intel_crtc_init(struct drm_device *dev, int pipe)
6614 {
6615         drm_i915_private_t *dev_priv = dev->dev_private;
6616         struct intel_crtc *intel_crtc;
6617         int i;
6618
6619         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6620         if (intel_crtc == NULL)
6621                 return;
6622
6623         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6624
6625         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6626         for (i = 0; i < 256; i++) {
6627                 intel_crtc->lut_r[i] = i;
6628                 intel_crtc->lut_g[i] = i;
6629                 intel_crtc->lut_b[i] = i;
6630         }
6631
6632         /* Swap pipes & planes for FBC on pre-965 */
6633         intel_crtc->pipe = pipe;
6634         intel_crtc->plane = pipe;
6635         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6636                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6637                 intel_crtc->plane = !pipe;
6638         }
6639
6640         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6641                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6642         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6643         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6644
6645         intel_crtc_reset(&intel_crtc->base);
6646         intel_crtc->active = true; /* force the pipe off on setup_init_config */
6647
6648         if (HAS_PCH_SPLIT(dev)) {
6649                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6650                 intel_helper_funcs.commit = ironlake_crtc_commit;
6651         } else {
6652                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6653                 intel_helper_funcs.commit = i9xx_crtc_commit;
6654         }
6655
6656         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6657
6658         intel_crtc->busy = false;
6659
6660         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6661                     (unsigned long)intel_crtc);
6662 }
6663
6664 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6665                                 struct drm_file *file)
6666 {
6667         drm_i915_private_t *dev_priv = dev->dev_private;
6668         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6669         struct drm_mode_object *drmmode_obj;
6670         struct intel_crtc *crtc;
6671
6672         if (!dev_priv) {
6673                 DRM_ERROR("called with no initialization\n");
6674                 return -EINVAL;
6675         }
6676
6677         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6678                         DRM_MODE_OBJECT_CRTC);
6679
6680         if (!drmmode_obj) {
6681                 DRM_ERROR("no such CRTC id\n");
6682                 return -EINVAL;
6683         }
6684
6685         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6686         pipe_from_crtc_id->pipe = crtc->pipe;
6687
6688         return 0;
6689 }
6690
6691 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6692 {
6693         struct intel_encoder *encoder;
6694         int index_mask = 0;
6695         int entry = 0;
6696
6697         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6698                 if (type_mask & encoder->clone_mask)
6699                         index_mask |= (1 << entry);
6700                 entry++;
6701         }
6702
6703         return index_mask;
6704 }
6705
6706 static bool has_edp_a(struct drm_device *dev)
6707 {
6708         struct drm_i915_private *dev_priv = dev->dev_private;
6709
6710         if (!IS_MOBILE(dev))
6711                 return false;
6712
6713         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6714                 return false;
6715
6716         if (IS_GEN5(dev) &&
6717             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6718                 return false;
6719
6720         return true;
6721 }
6722
6723 static void intel_setup_outputs(struct drm_device *dev)
6724 {
6725         struct drm_i915_private *dev_priv = dev->dev_private;
6726         struct intel_encoder *encoder;
6727         bool dpd_is_edp = false;
6728         bool has_lvds = false;
6729
6730         if (IS_MOBILE(dev) && !IS_I830(dev))
6731                 has_lvds = intel_lvds_init(dev);
6732         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6733                 /* disable the panel fitter on everything but LVDS */
6734                 I915_WRITE(PFIT_CONTROL, 0);
6735         }
6736
6737         if (HAS_PCH_SPLIT(dev)) {
6738                 dpd_is_edp = intel_dpd_is_edp(dev);
6739
6740                 if (has_edp_a(dev))
6741                         intel_dp_init(dev, DP_A);
6742
6743                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6744                         intel_dp_init(dev, PCH_DP_D);
6745         }
6746
6747         intel_crt_init(dev);
6748
6749         if (HAS_PCH_SPLIT(dev)) {
6750                 int found;
6751
6752                 if (I915_READ(HDMIB) & PORT_DETECTED) {
6753                         /* PCH SDVOB multiplex with HDMIB */
6754                         found = intel_sdvo_init(dev, PCH_SDVOB);
6755                         if (!found)
6756                                 intel_hdmi_init(dev, HDMIB);
6757                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6758                                 intel_dp_init(dev, PCH_DP_B);
6759                 }
6760
6761                 if (I915_READ(HDMIC) & PORT_DETECTED)
6762                         intel_hdmi_init(dev, HDMIC);
6763
6764                 if (I915_READ(HDMID) & PORT_DETECTED)
6765                         intel_hdmi_init(dev, HDMID);
6766
6767                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6768                         intel_dp_init(dev, PCH_DP_C);
6769
6770                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6771                         intel_dp_init(dev, PCH_DP_D);
6772
6773         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6774                 bool found = false;
6775
6776                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6777                         DRM_DEBUG_KMS("probing SDVOB\n");
6778                         found = intel_sdvo_init(dev, SDVOB);
6779                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6780                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6781                                 intel_hdmi_init(dev, SDVOB);
6782                         }
6783
6784                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6785                                 DRM_DEBUG_KMS("probing DP_B\n");
6786                                 intel_dp_init(dev, DP_B);
6787                         }
6788                 }
6789
6790                 /* Before G4X SDVOC doesn't have its own detect register */
6791
6792                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6793                         DRM_DEBUG_KMS("probing SDVOC\n");
6794                         found = intel_sdvo_init(dev, SDVOC);
6795                 }
6796
6797                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6798
6799                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6800                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6801                                 intel_hdmi_init(dev, SDVOC);
6802                         }
6803                         if (SUPPORTS_INTEGRATED_DP(dev)) {
6804                                 DRM_DEBUG_KMS("probing DP_C\n");
6805                                 intel_dp_init(dev, DP_C);
6806                         }
6807                 }
6808
6809                 if (SUPPORTS_INTEGRATED_DP(dev) &&
6810                     (I915_READ(DP_D) & DP_DETECTED)) {
6811                         DRM_DEBUG_KMS("probing DP_D\n");
6812                         intel_dp_init(dev, DP_D);
6813                 }
6814         } else if (IS_GEN2(dev))
6815                 intel_dvo_init(dev);
6816
6817         if (SUPPORTS_TV(dev))
6818                 intel_tv_init(dev);
6819
6820         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6821                 encoder->base.possible_crtcs = encoder->crtc_mask;
6822                 encoder->base.possible_clones =
6823                         intel_encoder_clones(dev, encoder->clone_mask);
6824         }
6825
6826         intel_panel_setup_backlight(dev);
6827
6828         /* disable all the possible outputs/crtcs before entering KMS mode */
6829         drm_helper_disable_unused_functions(dev);
6830 }
6831
6832 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6833 {
6834         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6835
6836         drm_framebuffer_cleanup(fb);
6837         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6838
6839         kfree(intel_fb);
6840 }
6841
6842 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6843                                                 struct drm_file *file,
6844                                                 unsigned int *handle)
6845 {
6846         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6847         struct drm_i915_gem_object *obj = intel_fb->obj;
6848
6849         return drm_gem_handle_create(file, &obj->base, handle);
6850 }
6851
6852 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6853         .destroy = intel_user_framebuffer_destroy,
6854         .create_handle = intel_user_framebuffer_create_handle,
6855 };
6856
6857 int intel_framebuffer_init(struct drm_device *dev,
6858                            struct intel_framebuffer *intel_fb,
6859                            struct drm_mode_fb_cmd *mode_cmd,
6860                            struct drm_i915_gem_object *obj)
6861 {
6862         int ret;
6863
6864         if (obj->tiling_mode == I915_TILING_Y)
6865                 return -EINVAL;
6866
6867         if (mode_cmd->pitch & 63)
6868                 return -EINVAL;
6869
6870         switch (mode_cmd->bpp) {
6871         case 8:
6872         case 16:
6873         case 24:
6874         case 32:
6875                 break;
6876         default:
6877                 return -EINVAL;
6878         }
6879
6880         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6881         if (ret) {
6882                 DRM_ERROR("framebuffer init failed %d\n", ret);
6883                 return ret;
6884         }
6885
6886         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6887         intel_fb->obj = obj;
6888         return 0;
6889 }
6890
6891 static struct drm_framebuffer *
6892 intel_user_framebuffer_create(struct drm_device *dev,
6893                               struct drm_file *filp,
6894                               struct drm_mode_fb_cmd *mode_cmd)
6895 {
6896         struct drm_i915_gem_object *obj;
6897
6898         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
6899         if (&obj->base == NULL)
6900                 return ERR_PTR(-ENOENT);
6901
6902         return intel_framebuffer_create(dev, mode_cmd, obj);
6903 }
6904
6905 static const struct drm_mode_config_funcs intel_mode_funcs = {
6906         .fb_create = intel_user_framebuffer_create,
6907         .output_poll_changed = intel_fb_output_poll_changed,
6908 };
6909
6910 static struct drm_i915_gem_object *
6911 intel_alloc_context_page(struct drm_device *dev)
6912 {
6913         struct drm_i915_gem_object *ctx;
6914         int ret;
6915
6916         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
6917
6918         ctx = i915_gem_alloc_object(dev, 4096);
6919         if (!ctx) {
6920                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
6921                 return NULL;
6922         }
6923
6924         ret = i915_gem_object_pin(ctx, 4096, true);
6925         if (ret) {
6926                 DRM_ERROR("failed to pin power context: %d\n", ret);
6927                 goto err_unref;
6928         }
6929
6930         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
6931         if (ret) {
6932                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
6933                 goto err_unpin;
6934         }
6935
6936         return ctx;
6937
6938 err_unpin:
6939         i915_gem_object_unpin(ctx);
6940 err_unref:
6941         drm_gem_object_unreference(&ctx->base);
6942         mutex_unlock(&dev->struct_mutex);
6943         return NULL;
6944 }
6945
6946 bool ironlake_set_drps(struct drm_device *dev, u8 val)
6947 {
6948         struct drm_i915_private *dev_priv = dev->dev_private;
6949         u16 rgvswctl;
6950
6951         rgvswctl = I915_READ16(MEMSWCTL);
6952         if (rgvswctl & MEMCTL_CMD_STS) {
6953                 DRM_DEBUG("gpu busy, RCS change rejected\n");
6954                 return false; /* still busy with another command */
6955         }
6956
6957         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6958                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6959         I915_WRITE16(MEMSWCTL, rgvswctl);
6960         POSTING_READ16(MEMSWCTL);
6961
6962         rgvswctl |= MEMCTL_CMD_STS;
6963         I915_WRITE16(MEMSWCTL, rgvswctl);
6964
6965         return true;
6966 }
6967
6968 void ironlake_enable_drps(struct drm_device *dev)
6969 {
6970         struct drm_i915_private *dev_priv = dev->dev_private;
6971         u32 rgvmodectl = I915_READ(MEMMODECTL);
6972         u8 fmax, fmin, fstart, vstart;
6973
6974         /* Enable temp reporting */
6975         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6976         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6977
6978         /* 100ms RC evaluation intervals */
6979         I915_WRITE(RCUPEI, 100000);
6980         I915_WRITE(RCDNEI, 100000);
6981
6982         /* Set max/min thresholds to 90ms and 80ms respectively */
6983         I915_WRITE(RCBMAXAVG, 90000);
6984         I915_WRITE(RCBMINAVG, 80000);
6985
6986         I915_WRITE(MEMIHYST, 1);
6987
6988         /* Set up min, max, and cur for interrupt handling */
6989         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6990         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6991         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6992                 MEMMODE_FSTART_SHIFT;
6993
6994         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
6995                 PXVFREQ_PX_SHIFT;
6996
6997         dev_priv->fmax = fmax; /* IPS callback will increase this */
6998         dev_priv->fstart = fstart;
6999
7000         dev_priv->max_delay = fstart;
7001         dev_priv->min_delay = fmin;
7002         dev_priv->cur_delay = fstart;
7003
7004         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7005                          fmax, fmin, fstart);
7006
7007         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7008
7009         /*
7010          * Interrupts will be enabled in ironlake_irq_postinstall
7011          */
7012
7013         I915_WRITE(VIDSTART, vstart);
7014         POSTING_READ(VIDSTART);
7015
7016         rgvmodectl |= MEMMODE_SWMODE_EN;
7017         I915_WRITE(MEMMODECTL, rgvmodectl);
7018
7019         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7020                 DRM_ERROR("stuck trying to change perf mode\n");
7021         msleep(1);
7022
7023         ironlake_set_drps(dev, fstart);
7024
7025         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7026                 I915_READ(0x112e0);
7027         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7028         dev_priv->last_count2 = I915_READ(0x112f4);
7029         getrawmonotonic(&dev_priv->last_time2);
7030 }
7031
7032 void ironlake_disable_drps(struct drm_device *dev)
7033 {
7034         struct drm_i915_private *dev_priv = dev->dev_private;
7035         u16 rgvswctl = I915_READ16(MEMSWCTL);
7036
7037         /* Ack interrupts, disable EFC interrupt */
7038         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7039         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7040         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7041         I915_WRITE(DEIIR, DE_PCU_EVENT);
7042         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7043
7044         /* Go back to the starting frequency */
7045         ironlake_set_drps(dev, dev_priv->fstart);
7046         msleep(1);
7047         rgvswctl |= MEMCTL_CMD_STS;
7048         I915_WRITE(MEMSWCTL, rgvswctl);
7049         msleep(1);
7050
7051 }
7052
7053 void gen6_set_rps(struct drm_device *dev, u8 val)
7054 {
7055         struct drm_i915_private *dev_priv = dev->dev_private;
7056         u32 swreq;
7057
7058         swreq = (val & 0x3ff) << 25;
7059         I915_WRITE(GEN6_RPNSWREQ, swreq);
7060 }
7061
7062 void gen6_disable_rps(struct drm_device *dev)
7063 {
7064         struct drm_i915_private *dev_priv = dev->dev_private;
7065
7066         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7067         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7068         I915_WRITE(GEN6_PMIER, 0);
7069
7070         spin_lock_irq(&dev_priv->rps_lock);
7071         dev_priv->pm_iir = 0;
7072         spin_unlock_irq(&dev_priv->rps_lock);
7073
7074         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7075 }
7076
7077 static unsigned long intel_pxfreq(u32 vidfreq)
7078 {
7079         unsigned long freq;
7080         int div = (vidfreq & 0x3f0000) >> 16;
7081         int post = (vidfreq & 0x3000) >> 12;
7082         int pre = (vidfreq & 0x7);
7083
7084         if (!pre)
7085                 return 0;
7086
7087         freq = ((div * 133333) / ((1<<post) * pre));
7088
7089         return freq;
7090 }
7091
7092 void intel_init_emon(struct drm_device *dev)
7093 {
7094         struct drm_i915_private *dev_priv = dev->dev_private;
7095         u32 lcfuse;
7096         u8 pxw[16];
7097         int i;
7098
7099         /* Disable to program */
7100         I915_WRITE(ECR, 0);
7101         POSTING_READ(ECR);
7102
7103         /* Program energy weights for various events */
7104         I915_WRITE(SDEW, 0x15040d00);
7105         I915_WRITE(CSIEW0, 0x007f0000);
7106         I915_WRITE(CSIEW1, 0x1e220004);
7107         I915_WRITE(CSIEW2, 0x04000004);
7108
7109         for (i = 0; i < 5; i++)
7110                 I915_WRITE(PEW + (i * 4), 0);
7111         for (i = 0; i < 3; i++)
7112                 I915_WRITE(DEW + (i * 4), 0);
7113
7114         /* Program P-state weights to account for frequency power adjustment */
7115         for (i = 0; i < 16; i++) {
7116                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7117                 unsigned long freq = intel_pxfreq(pxvidfreq);
7118                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7119                         PXVFREQ_PX_SHIFT;
7120                 unsigned long val;
7121
7122                 val = vid * vid;
7123                 val *= (freq / 1000);
7124                 val *= 255;
7125                 val /= (127*127*900);
7126                 if (val > 0xff)
7127                         DRM_ERROR("bad pxval: %ld\n", val);
7128                 pxw[i] = val;
7129         }
7130         /* Render standby states get 0 weight */
7131         pxw[14] = 0;
7132         pxw[15] = 0;
7133
7134         for (i = 0; i < 4; i++) {
7135                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7136                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7137                 I915_WRITE(PXW + (i * 4), val);
7138         }
7139
7140         /* Adjust magic regs to magic values (more experimental results) */
7141         I915_WRITE(OGW0, 0);
7142         I915_WRITE(OGW1, 0);
7143         I915_WRITE(EG0, 0x00007f00);
7144         I915_WRITE(EG1, 0x0000000e);
7145         I915_WRITE(EG2, 0x000e0000);
7146         I915_WRITE(EG3, 0x68000300);
7147         I915_WRITE(EG4, 0x42000000);
7148         I915_WRITE(EG5, 0x00140031);
7149         I915_WRITE(EG6, 0);
7150         I915_WRITE(EG7, 0);
7151
7152         for (i = 0; i < 8; i++)
7153                 I915_WRITE(PXWL + (i * 4), 0);
7154
7155         /* Enable PMON + select events */
7156         I915_WRITE(ECR, 0x80000019);
7157
7158         lcfuse = I915_READ(LCFUSE02);
7159
7160         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7161 }
7162
7163 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7164 {
7165         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7166         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7167         u32 pcu_mbox, rc6_mask = 0;
7168         int cur_freq, min_freq, max_freq;
7169         int i;
7170
7171         /* Here begins a magic sequence of register writes to enable
7172          * auto-downclocking.
7173          *
7174          * Perhaps there might be some value in exposing these to
7175          * userspace...
7176          */
7177         I915_WRITE(GEN6_RC_STATE, 0);
7178         mutex_lock(&dev_priv->dev->struct_mutex);
7179         gen6_gt_force_wake_get(dev_priv);
7180
7181         /* disable the counters and set deterministic thresholds */
7182         I915_WRITE(GEN6_RC_CONTROL, 0);
7183
7184         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7185         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7186         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7187         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7188         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7189
7190         for (i = 0; i < I915_NUM_RINGS; i++)
7191                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7192
7193         I915_WRITE(GEN6_RC_SLEEP, 0);
7194         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7195         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7196         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7197         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7198
7199         if (i915_enable_rc6)
7200                 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7201                         GEN6_RC_CTL_RC6_ENABLE;
7202
7203         I915_WRITE(GEN6_RC_CONTROL,
7204                    rc6_mask |
7205                    GEN6_RC_CTL_EI_MODE(1) |
7206                    GEN6_RC_CTL_HW_ENABLE);
7207
7208         I915_WRITE(GEN6_RPNSWREQ,
7209                    GEN6_FREQUENCY(10) |
7210                    GEN6_OFFSET(0) |
7211                    GEN6_AGGRESSIVE_TURBO);
7212         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7213                    GEN6_FREQUENCY(12));
7214
7215         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7216         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7217                    18 << 24 |
7218                    6 << 16);
7219         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7220         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7221         I915_WRITE(GEN6_RP_UP_EI, 100000);
7222         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7223         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7224         I915_WRITE(GEN6_RP_CONTROL,
7225                    GEN6_RP_MEDIA_TURBO |
7226                    GEN6_RP_USE_NORMAL_FREQ |
7227                    GEN6_RP_MEDIA_IS_GFX |
7228                    GEN6_RP_ENABLE |
7229                    GEN6_RP_UP_BUSY_AVG |
7230                    GEN6_RP_DOWN_IDLE_CONT);
7231
7232         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7233                      500))
7234                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7235
7236         I915_WRITE(GEN6_PCODE_DATA, 0);
7237         I915_WRITE(GEN6_PCODE_MAILBOX,
7238                    GEN6_PCODE_READY |
7239                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7240         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7241                      500))
7242                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7243
7244         min_freq = (rp_state_cap & 0xff0000) >> 16;
7245         max_freq = rp_state_cap & 0xff;
7246         cur_freq = (gt_perf_status & 0xff00) >> 8;
7247
7248         /* Check for overclock support */
7249         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7250                      500))
7251                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7252         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7253         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7254         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7255                      500))
7256                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7257         if (pcu_mbox & (1<<31)) { /* OC supported */
7258                 max_freq = pcu_mbox & 0xff;
7259                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7260         }
7261
7262         /* In units of 100MHz */
7263         dev_priv->max_delay = max_freq;
7264         dev_priv->min_delay = min_freq;
7265         dev_priv->cur_delay = cur_freq;
7266
7267         /* requires MSI enabled */
7268         I915_WRITE(GEN6_PMIER,
7269                    GEN6_PM_MBOX_EVENT |
7270                    GEN6_PM_THERMAL_EVENT |
7271                    GEN6_PM_RP_DOWN_TIMEOUT |
7272                    GEN6_PM_RP_UP_THRESHOLD |
7273                    GEN6_PM_RP_DOWN_THRESHOLD |
7274                    GEN6_PM_RP_UP_EI_EXPIRED |
7275                    GEN6_PM_RP_DOWN_EI_EXPIRED);
7276         spin_lock_irq(&dev_priv->rps_lock);
7277         WARN_ON(dev_priv->pm_iir != 0);
7278         I915_WRITE(GEN6_PMIMR, 0);
7279         spin_unlock_irq(&dev_priv->rps_lock);
7280         /* enable all PM interrupts */
7281         I915_WRITE(GEN6_PMINTRMSK, 0);
7282
7283         gen6_gt_force_wake_put(dev_priv);
7284         mutex_unlock(&dev_priv->dev->struct_mutex);
7285 }
7286
7287 static void ironlake_init_clock_gating(struct drm_device *dev)
7288 {
7289         struct drm_i915_private *dev_priv = dev->dev_private;
7290         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7291
7292         /* Required for FBC */
7293         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7294                 DPFCRUNIT_CLOCK_GATE_DISABLE |
7295                 DPFDUNIT_CLOCK_GATE_DISABLE;
7296         /* Required for CxSR */
7297         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7298
7299         I915_WRITE(PCH_3DCGDIS0,
7300                    MARIUNIT_CLOCK_GATE_DISABLE |
7301                    SVSMUNIT_CLOCK_GATE_DISABLE);
7302         I915_WRITE(PCH_3DCGDIS1,
7303                    VFMUNIT_CLOCK_GATE_DISABLE);
7304
7305         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7306
7307         /*
7308          * According to the spec the following bits should be set in
7309          * order to enable memory self-refresh
7310          * The bit 22/21 of 0x42004
7311          * The bit 5 of 0x42020
7312          * The bit 15 of 0x45000
7313          */
7314         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7315                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
7316                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7317         I915_WRITE(ILK_DSPCLK_GATE,
7318                    (I915_READ(ILK_DSPCLK_GATE) |
7319                     ILK_DPARB_CLK_GATE));
7320         I915_WRITE(DISP_ARB_CTL,
7321                    (I915_READ(DISP_ARB_CTL) |
7322                     DISP_FBC_WM_DIS));
7323         I915_WRITE(WM3_LP_ILK, 0);
7324         I915_WRITE(WM2_LP_ILK, 0);
7325         I915_WRITE(WM1_LP_ILK, 0);
7326
7327         /*
7328          * Based on the document from hardware guys the following bits
7329          * should be set unconditionally in order to enable FBC.
7330          * The bit 22 of 0x42000
7331          * The bit 22 of 0x42004
7332          * The bit 7,8,9 of 0x42020.
7333          */
7334         if (IS_IRONLAKE_M(dev)) {
7335                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7336                            I915_READ(ILK_DISPLAY_CHICKEN1) |
7337                            ILK_FBCQ_DIS);
7338                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7339                            I915_READ(ILK_DISPLAY_CHICKEN2) |
7340                            ILK_DPARB_GATE);
7341                 I915_WRITE(ILK_DSPCLK_GATE,
7342                            I915_READ(ILK_DSPCLK_GATE) |
7343                            ILK_DPFC_DIS1 |
7344                            ILK_DPFC_DIS2 |
7345                            ILK_CLK_FBC);
7346         }
7347
7348         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7349                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7350                    ILK_ELPIN_409_SELECT);
7351         I915_WRITE(_3D_CHICKEN2,
7352                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7353                    _3D_CHICKEN2_WM_READ_PIPELINED);
7354 }
7355
7356 static void gen6_init_clock_gating(struct drm_device *dev)
7357 {
7358         struct drm_i915_private *dev_priv = dev->dev_private;
7359         int pipe;
7360         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7361
7362         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7363
7364         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7365                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7366                    ILK_ELPIN_409_SELECT);
7367
7368         I915_WRITE(WM3_LP_ILK, 0);
7369         I915_WRITE(WM2_LP_ILK, 0);
7370         I915_WRITE(WM1_LP_ILK, 0);
7371
7372         /*
7373          * According to the spec the following bits should be
7374          * set in order to enable memory self-refresh and fbc:
7375          * The bit21 and bit22 of 0x42000
7376          * The bit21 and bit22 of 0x42004
7377          * The bit5 and bit7 of 0x42020
7378          * The bit14 of 0x70180
7379          * The bit14 of 0x71180
7380          */
7381         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7382                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7383                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7384         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7385                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7386                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7387         I915_WRITE(ILK_DSPCLK_GATE,
7388                    I915_READ(ILK_DSPCLK_GATE) |
7389                    ILK_DPARB_CLK_GATE  |
7390                    ILK_DPFD_CLK_GATE);
7391
7392         for_each_pipe(pipe)
7393                 I915_WRITE(DSPCNTR(pipe),
7394                            I915_READ(DSPCNTR(pipe)) |
7395                            DISPPLANE_TRICKLE_FEED_DISABLE);
7396 }
7397
7398 static void ivybridge_init_clock_gating(struct drm_device *dev)
7399 {
7400         struct drm_i915_private *dev_priv = dev->dev_private;
7401         int pipe;
7402         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7403
7404         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7405
7406         I915_WRITE(WM3_LP_ILK, 0);
7407         I915_WRITE(WM2_LP_ILK, 0);
7408         I915_WRITE(WM1_LP_ILK, 0);
7409
7410         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
7411
7412         for_each_pipe(pipe)
7413                 I915_WRITE(DSPCNTR(pipe),
7414                            I915_READ(DSPCNTR(pipe)) |
7415                            DISPPLANE_TRICKLE_FEED_DISABLE);
7416 }
7417
7418 static void g4x_init_clock_gating(struct drm_device *dev)
7419 {
7420         struct drm_i915_private *dev_priv = dev->dev_private;
7421         uint32_t dspclk_gate;
7422
7423         I915_WRITE(RENCLK_GATE_D1, 0);
7424         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7425                    GS_UNIT_CLOCK_GATE_DISABLE |
7426                    CL_UNIT_CLOCK_GATE_DISABLE);
7427         I915_WRITE(RAMCLK_GATE_D, 0);
7428         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7429                 OVRUNIT_CLOCK_GATE_DISABLE |
7430                 OVCUNIT_CLOCK_GATE_DISABLE;
7431         if (IS_GM45(dev))
7432                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7433         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7434 }
7435
7436 static void crestline_init_clock_gating(struct drm_device *dev)
7437 {
7438         struct drm_i915_private *dev_priv = dev->dev_private;
7439
7440         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7441         I915_WRITE(RENCLK_GATE_D2, 0);
7442         I915_WRITE(DSPCLK_GATE_D, 0);
7443         I915_WRITE(RAMCLK_GATE_D, 0);
7444         I915_WRITE16(DEUC, 0);
7445 }
7446
7447 static void broadwater_init_clock_gating(struct drm_device *dev)
7448 {
7449         struct drm_i915_private *dev_priv = dev->dev_private;
7450
7451         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7452                    I965_RCC_CLOCK_GATE_DISABLE |
7453                    I965_RCPB_CLOCK_GATE_DISABLE |
7454                    I965_ISC_CLOCK_GATE_DISABLE |
7455                    I965_FBC_CLOCK_GATE_DISABLE);
7456         I915_WRITE(RENCLK_GATE_D2, 0);
7457 }
7458
7459 static void gen3_init_clock_gating(struct drm_device *dev)
7460 {
7461         struct drm_i915_private *dev_priv = dev->dev_private;
7462         u32 dstate = I915_READ(D_STATE);
7463
7464         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7465                 DSTATE_DOT_CLOCK_GATING;
7466         I915_WRITE(D_STATE, dstate);
7467 }
7468
7469 static void i85x_init_clock_gating(struct drm_device *dev)
7470 {
7471         struct drm_i915_private *dev_priv = dev->dev_private;
7472
7473         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7474 }
7475
7476 static void i830_init_clock_gating(struct drm_device *dev)
7477 {
7478         struct drm_i915_private *dev_priv = dev->dev_private;
7479
7480         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7481 }
7482
7483 static void ibx_init_clock_gating(struct drm_device *dev)
7484 {
7485         struct drm_i915_private *dev_priv = dev->dev_private;
7486
7487         /*
7488          * On Ibex Peak and Cougar Point, we need to disable clock
7489          * gating for the panel power sequencer or it will fail to
7490          * start up when no ports are active.
7491          */
7492         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7493 }
7494
7495 static void cpt_init_clock_gating(struct drm_device *dev)
7496 {
7497         struct drm_i915_private *dev_priv = dev->dev_private;
7498
7499         /*
7500          * On Ibex Peak and Cougar Point, we need to disable clock
7501          * gating for the panel power sequencer or it will fail to
7502          * start up when no ports are active.
7503          */
7504         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7505         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7506                    DPLS_EDP_PPS_FIX_DIS);
7507 }
7508
7509 static void ironlake_teardown_rc6(struct drm_device *dev)
7510 {
7511         struct drm_i915_private *dev_priv = dev->dev_private;
7512
7513         if (dev_priv->renderctx) {
7514                 i915_gem_object_unpin(dev_priv->renderctx);
7515                 drm_gem_object_unreference(&dev_priv->renderctx->base);
7516                 dev_priv->renderctx = NULL;
7517         }
7518
7519         if (dev_priv->pwrctx) {
7520                 i915_gem_object_unpin(dev_priv->pwrctx);
7521                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
7522                 dev_priv->pwrctx = NULL;
7523         }
7524 }
7525
7526 static void ironlake_disable_rc6(struct drm_device *dev)
7527 {
7528         struct drm_i915_private *dev_priv = dev->dev_private;
7529
7530         if (I915_READ(PWRCTXA)) {
7531                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7532                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7533                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7534                          50);
7535
7536                 I915_WRITE(PWRCTXA, 0);
7537                 POSTING_READ(PWRCTXA);
7538
7539                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7540                 POSTING_READ(RSTDBYCTL);
7541         }
7542
7543         ironlake_teardown_rc6(dev);
7544 }
7545
7546 static int ironlake_setup_rc6(struct drm_device *dev)
7547 {
7548         struct drm_i915_private *dev_priv = dev->dev_private;
7549
7550         if (dev_priv->renderctx == NULL)
7551                 dev_priv->renderctx = intel_alloc_context_page(dev);
7552         if (!dev_priv->renderctx)
7553                 return -ENOMEM;
7554
7555         if (dev_priv->pwrctx == NULL)
7556                 dev_priv->pwrctx = intel_alloc_context_page(dev);
7557         if (!dev_priv->pwrctx) {
7558                 ironlake_teardown_rc6(dev);
7559                 return -ENOMEM;
7560         }
7561
7562         return 0;
7563 }
7564
7565 void ironlake_enable_rc6(struct drm_device *dev)
7566 {
7567         struct drm_i915_private *dev_priv = dev->dev_private;
7568         int ret;
7569
7570         /* rc6 disabled by default due to repeated reports of hanging during
7571          * boot and resume.
7572          */
7573         if (!i915_enable_rc6)
7574                 return;
7575
7576         mutex_lock(&dev->struct_mutex);
7577         ret = ironlake_setup_rc6(dev);
7578         if (ret) {
7579                 mutex_unlock(&dev->struct_mutex);
7580                 return;
7581         }
7582
7583         /*
7584          * GPU can automatically power down the render unit if given a page
7585          * to save state.
7586          */
7587         ret = BEGIN_LP_RING(6);
7588         if (ret) {
7589                 ironlake_teardown_rc6(dev);
7590                 mutex_unlock(&dev->struct_mutex);
7591                 return;
7592         }
7593
7594         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7595         OUT_RING(MI_SET_CONTEXT);
7596         OUT_RING(dev_priv->renderctx->gtt_offset |
7597                  MI_MM_SPACE_GTT |
7598                  MI_SAVE_EXT_STATE_EN |
7599                  MI_RESTORE_EXT_STATE_EN |
7600                  MI_RESTORE_INHIBIT);
7601         OUT_RING(MI_SUSPEND_FLUSH);
7602         OUT_RING(MI_NOOP);
7603         OUT_RING(MI_FLUSH);
7604         ADVANCE_LP_RING();
7605
7606         /*
7607          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
7608          * does an implicit flush, combined with MI_FLUSH above, it should be
7609          * safe to assume that renderctx is valid
7610          */
7611         ret = intel_wait_ring_idle(LP_RING(dev_priv));
7612         if (ret) {
7613                 DRM_ERROR("failed to enable ironlake power power savings\n");
7614                 ironlake_teardown_rc6(dev);
7615                 mutex_unlock(&dev->struct_mutex);
7616                 return;
7617         }
7618
7619         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
7620         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7621         mutex_unlock(&dev->struct_mutex);
7622 }
7623
7624 void intel_init_clock_gating(struct drm_device *dev)
7625 {
7626         struct drm_i915_private *dev_priv = dev->dev_private;
7627
7628         dev_priv->display.init_clock_gating(dev);
7629
7630         if (dev_priv->display.init_pch_clock_gating)
7631                 dev_priv->display.init_pch_clock_gating(dev);
7632 }
7633
7634 /* Set up chip specific display functions */
7635 static void intel_init_display(struct drm_device *dev)
7636 {
7637         struct drm_i915_private *dev_priv = dev->dev_private;
7638
7639         /* We always want a DPMS function */
7640         if (HAS_PCH_SPLIT(dev)) {
7641                 dev_priv->display.dpms = ironlake_crtc_dpms;
7642                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7643         } else {
7644                 dev_priv->display.dpms = i9xx_crtc_dpms;
7645                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7646         }
7647
7648         if (I915_HAS_FBC(dev)) {
7649                 if (HAS_PCH_SPLIT(dev)) {
7650                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7651                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
7652                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7653                 } else if (IS_GM45(dev)) {
7654                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7655                         dev_priv->display.enable_fbc = g4x_enable_fbc;
7656                         dev_priv->display.disable_fbc = g4x_disable_fbc;
7657                 } else if (IS_CRESTLINE(dev)) {
7658                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7659                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
7660                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
7661                 }
7662                 /* 855GM needs testing */
7663         }
7664
7665         /* Returns the core display clock speed */
7666         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
7667                 dev_priv->display.get_display_clock_speed =
7668                         i945_get_display_clock_speed;
7669         else if (IS_I915G(dev))
7670                 dev_priv->display.get_display_clock_speed =
7671                         i915_get_display_clock_speed;
7672         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7673                 dev_priv->display.get_display_clock_speed =
7674                         i9xx_misc_get_display_clock_speed;
7675         else if (IS_I915GM(dev))
7676                 dev_priv->display.get_display_clock_speed =
7677                         i915gm_get_display_clock_speed;
7678         else if (IS_I865G(dev))
7679                 dev_priv->display.get_display_clock_speed =
7680                         i865_get_display_clock_speed;
7681         else if (IS_I85X(dev))
7682                 dev_priv->display.get_display_clock_speed =
7683                         i855_get_display_clock_speed;
7684         else /* 852, 830 */
7685                 dev_priv->display.get_display_clock_speed =
7686                         i830_get_display_clock_speed;
7687
7688         /* For FIFO watermark updates */
7689         if (HAS_PCH_SPLIT(dev)) {
7690                 if (HAS_PCH_IBX(dev))
7691                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
7692                 else if (HAS_PCH_CPT(dev))
7693                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
7694
7695                 if (IS_GEN5(dev)) {
7696                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
7697                                 dev_priv->display.update_wm = ironlake_update_wm;
7698                         else {
7699                                 DRM_DEBUG_KMS("Failed to get proper latency. "
7700                                               "Disable CxSR\n");
7701                                 dev_priv->display.update_wm = NULL;
7702                         }
7703                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7704                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7705                 } else if (IS_GEN6(dev)) {
7706                         if (SNB_READ_WM0_LATENCY()) {
7707                                 dev_priv->display.update_wm = sandybridge_update_wm;
7708                         } else {
7709                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
7710                                               "Disable CxSR\n");
7711                                 dev_priv->display.update_wm = NULL;
7712                         }
7713                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7714                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7715                 } else if (IS_IVYBRIDGE(dev)) {
7716                         /* FIXME: detect B0+ stepping and use auto training */
7717                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7718                         if (SNB_READ_WM0_LATENCY()) {
7719                                 dev_priv->display.update_wm = sandybridge_update_wm;
7720                         } else {
7721                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
7722                                               "Disable CxSR\n");
7723                                 dev_priv->display.update_wm = NULL;
7724                         }
7725                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7726
7727                 } else
7728                         dev_priv->display.update_wm = NULL;
7729         } else if (IS_PINEVIEW(dev)) {
7730                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7731                                             dev_priv->is_ddr3,
7732                                             dev_priv->fsb_freq,
7733                                             dev_priv->mem_freq)) {
7734                         DRM_INFO("failed to find known CxSR latency "
7735                                  "(found ddr%s fsb freq %d, mem freq %d), "
7736                                  "disabling CxSR\n",
7737                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
7738                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7739                         /* Disable CxSR and never update its watermark again */
7740                         pineview_disable_cxsr(dev);
7741                         dev_priv->display.update_wm = NULL;
7742                 } else
7743                         dev_priv->display.update_wm = pineview_update_wm;
7744                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7745         } else if (IS_G4X(dev)) {
7746                 dev_priv->display.update_wm = g4x_update_wm;
7747                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7748         } else if (IS_GEN4(dev)) {
7749                 dev_priv->display.update_wm = i965_update_wm;
7750                 if (IS_CRESTLINE(dev))
7751                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7752                 else if (IS_BROADWATER(dev))
7753                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7754         } else if (IS_GEN3(dev)) {
7755                 dev_priv->display.update_wm = i9xx_update_wm;
7756                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7757                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7758         } else if (IS_I865G(dev)) {
7759                 dev_priv->display.update_wm = i830_update_wm;
7760                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7761                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7762         } else if (IS_I85X(dev)) {
7763                 dev_priv->display.update_wm = i9xx_update_wm;
7764                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
7765                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7766         } else {
7767                 dev_priv->display.update_wm = i830_update_wm;
7768                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7769                 if (IS_845G(dev))
7770                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7771                 else
7772                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7773         }
7774
7775         /* Default just returns -ENODEV to indicate unsupported */
7776         dev_priv->display.queue_flip = intel_default_queue_flip;
7777
7778         switch (INTEL_INFO(dev)->gen) {
7779         case 2:
7780                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7781                 break;
7782
7783         case 3:
7784                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7785                 break;
7786
7787         case 4:
7788         case 5:
7789                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7790                 break;
7791
7792         case 6:
7793                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7794                 break;
7795         case 7:
7796                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7797                 break;
7798         }
7799 }
7800
7801 /*
7802  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7803  * resume, or other times.  This quirk makes sure that's the case for
7804  * affected systems.
7805  */
7806 static void quirk_pipea_force (struct drm_device *dev)
7807 {
7808         struct drm_i915_private *dev_priv = dev->dev_private;
7809
7810         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7811         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
7812 }
7813
7814 /*
7815  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7816  */
7817 static void quirk_ssc_force_disable(struct drm_device *dev)
7818 {
7819         struct drm_i915_private *dev_priv = dev->dev_private;
7820         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
7821 }
7822
7823 struct intel_quirk {
7824         int device;
7825         int subsystem_vendor;
7826         int subsystem_device;
7827         void (*hook)(struct drm_device *dev);
7828 };
7829
7830 struct intel_quirk intel_quirks[] = {
7831         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
7832         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
7833         /* HP Mini needs pipe A force quirk (LP: #322104) */
7834         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
7835
7836         /* Thinkpad R31 needs pipe A force quirk */
7837         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7838         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7839         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7840
7841         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7842         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
7843         /* ThinkPad X40 needs pipe A force quirk */
7844
7845         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7846         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7847
7848         /* 855 & before need to leave pipe A & dpll A up */
7849         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7850         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7851
7852         /* Lenovo U160 cannot use SSC on LVDS */
7853         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
7854 };
7855
7856 static void intel_init_quirks(struct drm_device *dev)
7857 {
7858         struct pci_dev *d = dev->pdev;
7859         int i;
7860
7861         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7862                 struct intel_quirk *q = &intel_quirks[i];
7863
7864                 if (d->device == q->device &&
7865                     (d->subsystem_vendor == q->subsystem_vendor ||
7866                      q->subsystem_vendor == PCI_ANY_ID) &&
7867                     (d->subsystem_device == q->subsystem_device ||
7868                      q->subsystem_device == PCI_ANY_ID))
7869                         q->hook(dev);
7870         }
7871 }
7872
7873 /* Disable the VGA plane that we never use */
7874 static void i915_disable_vga(struct drm_device *dev)
7875 {
7876         struct drm_i915_private *dev_priv = dev->dev_private;
7877         u8 sr1;
7878         u32 vga_reg;
7879
7880         if (HAS_PCH_SPLIT(dev))
7881                 vga_reg = CPU_VGACNTRL;
7882         else
7883                 vga_reg = VGACNTRL;
7884
7885         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7886         outb(1, VGA_SR_INDEX);
7887         sr1 = inb(VGA_SR_DATA);
7888         outb(sr1 | 1<<5, VGA_SR_DATA);
7889         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7890         udelay(300);
7891
7892         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7893         POSTING_READ(vga_reg);
7894 }
7895
7896 void intel_modeset_init(struct drm_device *dev)
7897 {
7898         struct drm_i915_private *dev_priv = dev->dev_private;
7899         int i;
7900
7901         drm_mode_config_init(dev);
7902
7903         dev->mode_config.min_width = 0;
7904         dev->mode_config.min_height = 0;
7905
7906         dev->mode_config.funcs = (void *)&intel_mode_funcs;
7907
7908         intel_init_quirks(dev);
7909
7910         intel_init_display(dev);
7911
7912         if (IS_GEN2(dev)) {
7913                 dev->mode_config.max_width = 2048;
7914                 dev->mode_config.max_height = 2048;
7915         } else if (IS_GEN3(dev)) {
7916                 dev->mode_config.max_width = 4096;
7917                 dev->mode_config.max_height = 4096;
7918         } else {
7919                 dev->mode_config.max_width = 8192;
7920                 dev->mode_config.max_height = 8192;
7921         }
7922         dev->mode_config.fb_base = dev->agp->base;
7923
7924         DRM_DEBUG_KMS("%d display pipe%s available.\n",
7925                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7926
7927         for (i = 0; i < dev_priv->num_pipe; i++) {
7928                 intel_crtc_init(dev, i);
7929         }
7930
7931         /* Just disable it once at startup */
7932         i915_disable_vga(dev);
7933         intel_setup_outputs(dev);
7934
7935         intel_init_clock_gating(dev);
7936
7937         if (IS_IRONLAKE_M(dev)) {
7938                 ironlake_enable_drps(dev);
7939                 intel_init_emon(dev);
7940         }
7941
7942         if (IS_GEN6(dev))
7943                 gen6_enable_rps(dev_priv);
7944
7945         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
7946         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
7947                     (unsigned long)dev);
7948 }
7949
7950 void intel_modeset_gem_init(struct drm_device *dev)
7951 {
7952         if (IS_IRONLAKE_M(dev))
7953                 ironlake_enable_rc6(dev);
7954
7955         intel_setup_overlay(dev);
7956 }
7957
7958 void intel_modeset_cleanup(struct drm_device *dev)
7959 {
7960         struct drm_i915_private *dev_priv = dev->dev_private;
7961         struct drm_crtc *crtc;
7962         struct intel_crtc *intel_crtc;
7963
7964         drm_kms_helper_poll_fini(dev);
7965         mutex_lock(&dev->struct_mutex);
7966
7967         intel_unregister_dsm_handler();
7968
7969
7970         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7971                 /* Skip inactive CRTCs */
7972                 if (!crtc->fb)
7973                         continue;
7974
7975                 intel_crtc = to_intel_crtc(crtc);
7976                 intel_increase_pllclock(crtc);
7977         }
7978
7979         if (dev_priv->display.disable_fbc)
7980                 dev_priv->display.disable_fbc(dev);
7981
7982         if (IS_IRONLAKE_M(dev))
7983                 ironlake_disable_drps(dev);
7984         if (IS_GEN6(dev))
7985                 gen6_disable_rps(dev);
7986
7987         if (IS_IRONLAKE_M(dev))
7988                 ironlake_disable_rc6(dev);
7989
7990         mutex_unlock(&dev->struct_mutex);
7991
7992         /* Disable the irq before mode object teardown, for the irq might
7993          * enqueue unpin/hotplug work. */
7994         drm_irq_uninstall(dev);
7995         cancel_work_sync(&dev_priv->hotplug_work);
7996
7997         /* Shut off idle work before the crtcs get freed. */
7998         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7999                 intel_crtc = to_intel_crtc(crtc);
8000                 del_timer_sync(&intel_crtc->idle_timer);
8001         }
8002         del_timer_sync(&dev_priv->idle_timer);
8003         cancel_work_sync(&dev_priv->idle_work);
8004
8005         drm_mode_config_cleanup(dev);
8006 }
8007
8008 /*
8009  * Return which encoder is currently attached for connector.
8010  */
8011 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8012 {
8013         return &intel_attached_encoder(connector)->base;
8014 }
8015
8016 void intel_connector_attach_encoder(struct intel_connector *connector,
8017                                     struct intel_encoder *encoder)
8018 {
8019         connector->encoder = encoder;
8020         drm_mode_connector_attach_encoder(&connector->base,
8021                                           &encoder->base);
8022 }
8023
8024 /*
8025  * set vga decode state - true == enable VGA decode
8026  */
8027 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8028 {
8029         struct drm_i915_private *dev_priv = dev->dev_private;
8030         u16 gmch_ctrl;
8031
8032         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8033         if (state)
8034                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8035         else
8036                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8037         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8038         return 0;
8039 }
8040
8041 #ifdef CONFIG_DEBUG_FS
8042 #include <linux/seq_file.h>
8043
8044 struct intel_display_error_state {
8045         struct intel_cursor_error_state {
8046                 u32 control;
8047                 u32 position;
8048                 u32 base;
8049                 u32 size;
8050         } cursor[2];
8051
8052         struct intel_pipe_error_state {
8053                 u32 conf;
8054                 u32 source;
8055
8056                 u32 htotal;
8057                 u32 hblank;
8058                 u32 hsync;
8059                 u32 vtotal;
8060                 u32 vblank;
8061                 u32 vsync;
8062         } pipe[2];
8063
8064         struct intel_plane_error_state {
8065                 u32 control;
8066                 u32 stride;
8067                 u32 size;
8068                 u32 pos;
8069                 u32 addr;
8070                 u32 surface;
8071                 u32 tile_offset;
8072         } plane[2];
8073 };
8074
8075 struct intel_display_error_state *
8076 intel_display_capture_error_state(struct drm_device *dev)
8077 {
8078         drm_i915_private_t *dev_priv = dev->dev_private;
8079         struct intel_display_error_state *error;
8080         int i;
8081
8082         error = kmalloc(sizeof(*error), GFP_ATOMIC);
8083         if (error == NULL)
8084                 return NULL;
8085
8086         for (i = 0; i < 2; i++) {
8087                 error->cursor[i].control = I915_READ(CURCNTR(i));
8088                 error->cursor[i].position = I915_READ(CURPOS(i));
8089                 error->cursor[i].base = I915_READ(CURBASE(i));
8090
8091                 error->plane[i].control = I915_READ(DSPCNTR(i));
8092                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8093                 error->plane[i].size = I915_READ(DSPSIZE(i));
8094                 error->plane[i].pos= I915_READ(DSPPOS(i));
8095                 error->plane[i].addr = I915_READ(DSPADDR(i));
8096                 if (INTEL_INFO(dev)->gen >= 4) {
8097                         error->plane[i].surface = I915_READ(DSPSURF(i));
8098                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8099                 }
8100
8101                 error->pipe[i].conf = I915_READ(PIPECONF(i));
8102                 error->pipe[i].source = I915_READ(PIPESRC(i));
8103                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8104                 error->pipe[i].hblank = I915_READ(HBLANK(i));
8105                 error->pipe[i].hsync = I915_READ(HSYNC(i));
8106                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8107                 error->pipe[i].vblank = I915_READ(VBLANK(i));
8108                 error->pipe[i].vsync = I915_READ(VSYNC(i));
8109         }
8110
8111         return error;
8112 }
8113
8114 void
8115 intel_display_print_error_state(struct seq_file *m,
8116                                 struct drm_device *dev,
8117                                 struct intel_display_error_state *error)
8118 {
8119         int i;
8120
8121         for (i = 0; i < 2; i++) {
8122                 seq_printf(m, "Pipe [%d]:\n", i);
8123                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
8124                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
8125                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
8126                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
8127                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
8128                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
8129                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
8130                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
8131
8132                 seq_printf(m, "Plane [%d]:\n", i);
8133                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
8134                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
8135                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
8136                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
8137                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
8138                 if (INTEL_INFO(dev)->gen >= 4) {
8139                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
8140                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
8141                 }
8142
8143                 seq_printf(m, "Cursor [%d]:\n", i);
8144                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
8145                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
8146                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
8147         }
8148 }
8149 #endif