Merge branch 'for-linus' of git://git.open-osd.org/linux-open-osd
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include "drmP.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "i915_trace.h"
39 #include "drm_dp_helper.h"
40
41 #include "drm_crtc_helper.h"
42
43 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44
45 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
46 static void intel_update_watermarks(struct drm_device *dev);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51     /* given values */
52     int n;
53     int m1, m2;
54     int p1, p2;
55     /* derived values */
56     int dot;
57     int vco;
58     int m;
59     int p;
60 } intel_clock_t;
61
62 typedef struct {
63     int min, max;
64 } intel_range_t;
65
66 typedef struct {
67     int dot_limit;
68     int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75     intel_p2_t      p2;
76     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                       int, int, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85                     int target, int refclk, intel_clock_t *best_clock);
86 static bool
87 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
88                         int target, int refclk, intel_clock_t *best_clock);
89
90 static bool
91 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
92                       int target, int refclk, intel_clock_t *best_clock);
93 static bool
94 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
95                            int target, int refclk, intel_clock_t *best_clock);
96
97 static inline u32 /* units of 100MHz */
98 intel_fdi_link_freq(struct drm_device *dev)
99 {
100         if (IS_GEN5(dev)) {
101                 struct drm_i915_private *dev_priv = dev->dev_private;
102                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
103         } else
104                 return 27;
105 }
106
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108         .dot = { .min = 25000, .max = 350000 },
109         .vco = { .min = 930000, .max = 1400000 },
110         .n = { .min = 3, .max = 16 },
111         .m = { .min = 96, .max = 140 },
112         .m1 = { .min = 18, .max = 26 },
113         .m2 = { .min = 6, .max = 16 },
114         .p = { .min = 4, .max = 128 },
115         .p1 = { .min = 2, .max = 33 },
116         .p2 = { .dot_limit = 165000,
117                 .p2_slow = 4, .p2_fast = 2 },
118         .find_pll = intel_find_best_PLL,
119 };
120
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122         .dot = { .min = 25000, .max = 350000 },
123         .vco = { .min = 930000, .max = 1400000 },
124         .n = { .min = 3, .max = 16 },
125         .m = { .min = 96, .max = 140 },
126         .m1 = { .min = 18, .max = 26 },
127         .m2 = { .min = 6, .max = 16 },
128         .p = { .min = 4, .max = 128 },
129         .p1 = { .min = 1, .max = 6 },
130         .p2 = { .dot_limit = 165000,
131                 .p2_slow = 14, .p2_fast = 7 },
132         .find_pll = intel_find_best_PLL,
133 };
134
135 static const intel_limit_t intel_limits_i9xx_sdvo = {
136         .dot = { .min = 20000, .max = 400000 },
137         .vco = { .min = 1400000, .max = 2800000 },
138         .n = { .min = 1, .max = 6 },
139         .m = { .min = 70, .max = 120 },
140         .m1 = { .min = 10, .max = 22 },
141         .m2 = { .min = 5, .max = 9 },
142         .p = { .min = 5, .max = 80 },
143         .p1 = { .min = 1, .max = 8 },
144         .p2 = { .dot_limit = 200000,
145                 .p2_slow = 10, .p2_fast = 5 },
146         .find_pll = intel_find_best_PLL,
147 };
148
149 static const intel_limit_t intel_limits_i9xx_lvds = {
150         .dot = { .min = 20000, .max = 400000 },
151         .vco = { .min = 1400000, .max = 2800000 },
152         .n = { .min = 1, .max = 6 },
153         .m = { .min = 70, .max = 120 },
154         .m1 = { .min = 10, .max = 22 },
155         .m2 = { .min = 5, .max = 9 },
156         .p = { .min = 7, .max = 98 },
157         .p1 = { .min = 1, .max = 8 },
158         .p2 = { .dot_limit = 112000,
159                 .p2_slow = 14, .p2_fast = 7 },
160         .find_pll = intel_find_best_PLL,
161 };
162
163
164 static const intel_limit_t intel_limits_g4x_sdvo = {
165         .dot = { .min = 25000, .max = 270000 },
166         .vco = { .min = 1750000, .max = 3500000},
167         .n = { .min = 1, .max = 4 },
168         .m = { .min = 104, .max = 138 },
169         .m1 = { .min = 17, .max = 23 },
170         .m2 = { .min = 5, .max = 11 },
171         .p = { .min = 10, .max = 30 },
172         .p1 = { .min = 1, .max = 3},
173         .p2 = { .dot_limit = 270000,
174                 .p2_slow = 10,
175                 .p2_fast = 10
176         },
177         .find_pll = intel_g4x_find_best_PLL,
178 };
179
180 static const intel_limit_t intel_limits_g4x_hdmi = {
181         .dot = { .min = 22000, .max = 400000 },
182         .vco = { .min = 1750000, .max = 3500000},
183         .n = { .min = 1, .max = 4 },
184         .m = { .min = 104, .max = 138 },
185         .m1 = { .min = 16, .max = 23 },
186         .m2 = { .min = 5, .max = 11 },
187         .p = { .min = 5, .max = 80 },
188         .p1 = { .min = 1, .max = 8},
189         .p2 = { .dot_limit = 165000,
190                 .p2_slow = 10, .p2_fast = 5 },
191         .find_pll = intel_g4x_find_best_PLL,
192 };
193
194 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
195         .dot = { .min = 20000, .max = 115000 },
196         .vco = { .min = 1750000, .max = 3500000 },
197         .n = { .min = 1, .max = 3 },
198         .m = { .min = 104, .max = 138 },
199         .m1 = { .min = 17, .max = 23 },
200         .m2 = { .min = 5, .max = 11 },
201         .p = { .min = 28, .max = 112 },
202         .p1 = { .min = 2, .max = 8 },
203         .p2 = { .dot_limit = 0,
204                 .p2_slow = 14, .p2_fast = 14
205         },
206         .find_pll = intel_g4x_find_best_PLL,
207 };
208
209 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
210         .dot = { .min = 80000, .max = 224000 },
211         .vco = { .min = 1750000, .max = 3500000 },
212         .n = { .min = 1, .max = 3 },
213         .m = { .min = 104, .max = 138 },
214         .m1 = { .min = 17, .max = 23 },
215         .m2 = { .min = 5, .max = 11 },
216         .p = { .min = 14, .max = 42 },
217         .p1 = { .min = 2, .max = 6 },
218         .p2 = { .dot_limit = 0,
219                 .p2_slow = 7, .p2_fast = 7
220         },
221         .find_pll = intel_g4x_find_best_PLL,
222 };
223
224 static const intel_limit_t intel_limits_g4x_display_port = {
225         .dot = { .min = 161670, .max = 227000 },
226         .vco = { .min = 1750000, .max = 3500000},
227         .n = { .min = 1, .max = 2 },
228         .m = { .min = 97, .max = 108 },
229         .m1 = { .min = 0x10, .max = 0x12 },
230         .m2 = { .min = 0x05, .max = 0x06 },
231         .p = { .min = 10, .max = 20 },
232         .p1 = { .min = 1, .max = 2},
233         .p2 = { .dot_limit = 0,
234                 .p2_slow = 10, .p2_fast = 10 },
235         .find_pll = intel_find_pll_g4x_dp,
236 };
237
238 static const intel_limit_t intel_limits_pineview_sdvo = {
239         .dot = { .min = 20000, .max = 400000},
240         .vco = { .min = 1700000, .max = 3500000 },
241         /* Pineview's Ncounter is a ring counter */
242         .n = { .min = 3, .max = 6 },
243         .m = { .min = 2, .max = 256 },
244         /* Pineview only has one combined m divider, which we treat as m2. */
245         .m1 = { .min = 0, .max = 0 },
246         .m2 = { .min = 0, .max = 254 },
247         .p = { .min = 5, .max = 80 },
248         .p1 = { .min = 1, .max = 8 },
249         .p2 = { .dot_limit = 200000,
250                 .p2_slow = 10, .p2_fast = 5 },
251         .find_pll = intel_find_best_PLL,
252 };
253
254 static const intel_limit_t intel_limits_pineview_lvds = {
255         .dot = { .min = 20000, .max = 400000 },
256         .vco = { .min = 1700000, .max = 3500000 },
257         .n = { .min = 3, .max = 6 },
258         .m = { .min = 2, .max = 256 },
259         .m1 = { .min = 0, .max = 0 },
260         .m2 = { .min = 0, .max = 254 },
261         .p = { .min = 7, .max = 112 },
262         .p1 = { .min = 1, .max = 8 },
263         .p2 = { .dot_limit = 112000,
264                 .p2_slow = 14, .p2_fast = 14 },
265         .find_pll = intel_find_best_PLL,
266 };
267
268 /* Ironlake / Sandybridge
269  *
270  * We calculate clock using (register_value + 2) for N/M1/M2, so here
271  * the range value for them is (actual_value - 2).
272  */
273 static const intel_limit_t intel_limits_ironlake_dac = {
274         .dot = { .min = 25000, .max = 350000 },
275         .vco = { .min = 1760000, .max = 3510000 },
276         .n = { .min = 1, .max = 5 },
277         .m = { .min = 79, .max = 127 },
278         .m1 = { .min = 12, .max = 22 },
279         .m2 = { .min = 5, .max = 9 },
280         .p = { .min = 5, .max = 80 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 225000,
283                 .p2_slow = 10, .p2_fast = 5 },
284         .find_pll = intel_g4x_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_ironlake_single_lvds = {
288         .dot = { .min = 25000, .max = 350000 },
289         .vco = { .min = 1760000, .max = 3510000 },
290         .n = { .min = 1, .max = 3 },
291         .m = { .min = 79, .max = 118 },
292         .m1 = { .min = 12, .max = 22 },
293         .m2 = { .min = 5, .max = 9 },
294         .p = { .min = 28, .max = 112 },
295         .p1 = { .min = 2, .max = 8 },
296         .p2 = { .dot_limit = 225000,
297                 .p2_slow = 14, .p2_fast = 14 },
298         .find_pll = intel_g4x_find_best_PLL,
299 };
300
301 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
302         .dot = { .min = 25000, .max = 350000 },
303         .vco = { .min = 1760000, .max = 3510000 },
304         .n = { .min = 1, .max = 3 },
305         .m = { .min = 79, .max = 127 },
306         .m1 = { .min = 12, .max = 22 },
307         .m2 = { .min = 5, .max = 9 },
308         .p = { .min = 14, .max = 56 },
309         .p1 = { .min = 2, .max = 8 },
310         .p2 = { .dot_limit = 225000,
311                 .p2_slow = 7, .p2_fast = 7 },
312         .find_pll = intel_g4x_find_best_PLL,
313 };
314
315 /* LVDS 100mhz refclk limits. */
316 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
317         .dot = { .min = 25000, .max = 350000 },
318         .vco = { .min = 1760000, .max = 3510000 },
319         .n = { .min = 1, .max = 2 },
320         .m = { .min = 79, .max = 126 },
321         .m1 = { .min = 12, .max = 22 },
322         .m2 = { .min = 5, .max = 9 },
323         .p = { .min = 28, .max = 112 },
324         .p1 = { .min = 2,.max = 8 },
325         .p2 = { .dot_limit = 225000,
326                 .p2_slow = 14, .p2_fast = 14 },
327         .find_pll = intel_g4x_find_best_PLL,
328 };
329
330 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
331         .dot = { .min = 25000, .max = 350000 },
332         .vco = { .min = 1760000, .max = 3510000 },
333         .n = { .min = 1, .max = 3 },
334         .m = { .min = 79, .max = 126 },
335         .m1 = { .min = 12, .max = 22 },
336         .m2 = { .min = 5, .max = 9 },
337         .p = { .min = 14, .max = 42 },
338         .p1 = { .min = 2,.max = 6 },
339         .p2 = { .dot_limit = 225000,
340                 .p2_slow = 7, .p2_fast = 7 },
341         .find_pll = intel_g4x_find_best_PLL,
342 };
343
344 static const intel_limit_t intel_limits_ironlake_display_port = {
345         .dot = { .min = 25000, .max = 350000 },
346         .vco = { .min = 1760000, .max = 3510000},
347         .n = { .min = 1, .max = 2 },
348         .m = { .min = 81, .max = 90 },
349         .m1 = { .min = 12, .max = 22 },
350         .m2 = { .min = 5, .max = 9 },
351         .p = { .min = 10, .max = 20 },
352         .p1 = { .min = 1, .max = 2},
353         .p2 = { .dot_limit = 0,
354                 .p2_slow = 10, .p2_fast = 10 },
355         .find_pll = intel_find_pll_ironlake_dp,
356 };
357
358 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
359                                                 int refclk)
360 {
361         struct drm_device *dev = crtc->dev;
362         struct drm_i915_private *dev_priv = dev->dev_private;
363         const intel_limit_t *limit;
364
365         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
366                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
367                     LVDS_CLKB_POWER_UP) {
368                         /* LVDS dual channel */
369                         if (refclk == 100000)
370                                 limit = &intel_limits_ironlake_dual_lvds_100m;
371                         else
372                                 limit = &intel_limits_ironlake_dual_lvds;
373                 } else {
374                         if (refclk == 100000)
375                                 limit = &intel_limits_ironlake_single_lvds_100m;
376                         else
377                                 limit = &intel_limits_ironlake_single_lvds;
378                 }
379         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
380                         HAS_eDP)
381                 limit = &intel_limits_ironlake_display_port;
382         else
383                 limit = &intel_limits_ironlake_dac;
384
385         return limit;
386 }
387
388 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
389 {
390         struct drm_device *dev = crtc->dev;
391         struct drm_i915_private *dev_priv = dev->dev_private;
392         const intel_limit_t *limit;
393
394         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
395                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
396                     LVDS_CLKB_POWER_UP)
397                         /* LVDS with dual channel */
398                         limit = &intel_limits_g4x_dual_channel_lvds;
399                 else
400                         /* LVDS with dual channel */
401                         limit = &intel_limits_g4x_single_channel_lvds;
402         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
403                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
404                 limit = &intel_limits_g4x_hdmi;
405         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
406                 limit = &intel_limits_g4x_sdvo;
407         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
408                 limit = &intel_limits_g4x_display_port;
409         } else /* The option is for other outputs */
410                 limit = &intel_limits_i9xx_sdvo;
411
412         return limit;
413 }
414
415 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
416 {
417         struct drm_device *dev = crtc->dev;
418         const intel_limit_t *limit;
419
420         if (HAS_PCH_SPLIT(dev))
421                 limit = intel_ironlake_limit(crtc, refclk);
422         else if (IS_G4X(dev)) {
423                 limit = intel_g4x_limit(crtc);
424         } else if (IS_PINEVIEW(dev)) {
425                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
426                         limit = &intel_limits_pineview_lvds;
427                 else
428                         limit = &intel_limits_pineview_sdvo;
429         } else if (!IS_GEN2(dev)) {
430                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431                         limit = &intel_limits_i9xx_lvds;
432                 else
433                         limit = &intel_limits_i9xx_sdvo;
434         } else {
435                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
436                         limit = &intel_limits_i8xx_lvds;
437                 else
438                         limit = &intel_limits_i8xx_dvo;
439         }
440         return limit;
441 }
442
443 /* m1 is reserved as 0 in Pineview, n is a ring counter */
444 static void pineview_clock(int refclk, intel_clock_t *clock)
445 {
446         clock->m = clock->m2 + 2;
447         clock->p = clock->p1 * clock->p2;
448         clock->vco = refclk * clock->m / clock->n;
449         clock->dot = clock->vco / clock->p;
450 }
451
452 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
453 {
454         if (IS_PINEVIEW(dev)) {
455                 pineview_clock(refclk, clock);
456                 return;
457         }
458         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
459         clock->p = clock->p1 * clock->p2;
460         clock->vco = refclk * clock->m / (clock->n + 2);
461         clock->dot = clock->vco / clock->p;
462 }
463
464 /**
465  * Returns whether any output on the specified pipe is of the specified type
466  */
467 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
468 {
469         struct drm_device *dev = crtc->dev;
470         struct drm_mode_config *mode_config = &dev->mode_config;
471         struct intel_encoder *encoder;
472
473         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
474                 if (encoder->base.crtc == crtc && encoder->type == type)
475                         return true;
476
477         return false;
478 }
479
480 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
481 /**
482  * Returns whether the given set of divisors are valid for a given refclk with
483  * the given connectors.
484  */
485
486 static bool intel_PLL_is_valid(struct drm_device *dev,
487                                const intel_limit_t *limit,
488                                const intel_clock_t *clock)
489 {
490         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
491                 INTELPllInvalid ("p1 out of range\n");
492         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
493                 INTELPllInvalid ("p out of range\n");
494         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
495                 INTELPllInvalid ("m2 out of range\n");
496         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
497                 INTELPllInvalid ("m1 out of range\n");
498         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
499                 INTELPllInvalid ("m1 <= m2\n");
500         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
501                 INTELPllInvalid ("m out of range\n");
502         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
503                 INTELPllInvalid ("n out of range\n");
504         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
505                 INTELPllInvalid ("vco out of range\n");
506         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
507          * connector, etc., rather than just a single range.
508          */
509         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
510                 INTELPllInvalid ("dot out of range\n");
511
512         return true;
513 }
514
515 static bool
516 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
517                     int target, int refclk, intel_clock_t *best_clock)
518
519 {
520         struct drm_device *dev = crtc->dev;
521         struct drm_i915_private *dev_priv = dev->dev_private;
522         intel_clock_t clock;
523         int err = target;
524
525         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
526             (I915_READ(LVDS)) != 0) {
527                 /*
528                  * For LVDS, if the panel is on, just rely on its current
529                  * settings for dual-channel.  We haven't figured out how to
530                  * reliably set up different single/dual channel state, if we
531                  * even can.
532                  */
533                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
534                     LVDS_CLKB_POWER_UP)
535                         clock.p2 = limit->p2.p2_fast;
536                 else
537                         clock.p2 = limit->p2.p2_slow;
538         } else {
539                 if (target < limit->p2.dot_limit)
540                         clock.p2 = limit->p2.p2_slow;
541                 else
542                         clock.p2 = limit->p2.p2_fast;
543         }
544
545         memset (best_clock, 0, sizeof (*best_clock));
546
547         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
548              clock.m1++) {
549                 for (clock.m2 = limit->m2.min;
550                      clock.m2 <= limit->m2.max; clock.m2++) {
551                         /* m1 is always 0 in Pineview */
552                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
553                                 break;
554                         for (clock.n = limit->n.min;
555                              clock.n <= limit->n.max; clock.n++) {
556                                 for (clock.p1 = limit->p1.min;
557                                         clock.p1 <= limit->p1.max; clock.p1++) {
558                                         int this_err;
559
560                                         intel_clock(dev, refclk, &clock);
561                                         if (!intel_PLL_is_valid(dev, limit,
562                                                                 &clock))
563                                                 continue;
564
565                                         this_err = abs(clock.dot - target);
566                                         if (this_err < err) {
567                                                 *best_clock = clock;
568                                                 err = this_err;
569                                         }
570                                 }
571                         }
572                 }
573         }
574
575         return (err != target);
576 }
577
578 static bool
579 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
580                         int target, int refclk, intel_clock_t *best_clock)
581 {
582         struct drm_device *dev = crtc->dev;
583         struct drm_i915_private *dev_priv = dev->dev_private;
584         intel_clock_t clock;
585         int max_n;
586         bool found;
587         /* approximately equals target * 0.00585 */
588         int err_most = (target >> 8) + (target >> 9);
589         found = false;
590
591         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
592                 int lvds_reg;
593
594                 if (HAS_PCH_SPLIT(dev))
595                         lvds_reg = PCH_LVDS;
596                 else
597                         lvds_reg = LVDS;
598                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
599                     LVDS_CLKB_POWER_UP)
600                         clock.p2 = limit->p2.p2_fast;
601                 else
602                         clock.p2 = limit->p2.p2_slow;
603         } else {
604                 if (target < limit->p2.dot_limit)
605                         clock.p2 = limit->p2.p2_slow;
606                 else
607                         clock.p2 = limit->p2.p2_fast;
608         }
609
610         memset(best_clock, 0, sizeof(*best_clock));
611         max_n = limit->n.max;
612         /* based on hardware requirement, prefer smaller n to precision */
613         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
614                 /* based on hardware requirement, prefere larger m1,m2 */
615                 for (clock.m1 = limit->m1.max;
616                      clock.m1 >= limit->m1.min; clock.m1--) {
617                         for (clock.m2 = limit->m2.max;
618                              clock.m2 >= limit->m2.min; clock.m2--) {
619                                 for (clock.p1 = limit->p1.max;
620                                      clock.p1 >= limit->p1.min; clock.p1--) {
621                                         int this_err;
622
623                                         intel_clock(dev, refclk, &clock);
624                                         if (!intel_PLL_is_valid(dev, limit,
625                                                                 &clock))
626                                                 continue;
627
628                                         this_err = abs(clock.dot - target);
629                                         if (this_err < err_most) {
630                                                 *best_clock = clock;
631                                                 err_most = this_err;
632                                                 max_n = clock.n;
633                                                 found = true;
634                                         }
635                                 }
636                         }
637                 }
638         }
639         return found;
640 }
641
642 static bool
643 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
644                            int target, int refclk, intel_clock_t *best_clock)
645 {
646         struct drm_device *dev = crtc->dev;
647         intel_clock_t clock;
648
649         if (target < 200000) {
650                 clock.n = 1;
651                 clock.p1 = 2;
652                 clock.p2 = 10;
653                 clock.m1 = 12;
654                 clock.m2 = 9;
655         } else {
656                 clock.n = 2;
657                 clock.p1 = 1;
658                 clock.p2 = 10;
659                 clock.m1 = 14;
660                 clock.m2 = 8;
661         }
662         intel_clock(dev, refclk, &clock);
663         memcpy(best_clock, &clock, sizeof(intel_clock_t));
664         return true;
665 }
666
667 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
668 static bool
669 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
670                       int target, int refclk, intel_clock_t *best_clock)
671 {
672         intel_clock_t clock;
673         if (target < 200000) {
674                 clock.p1 = 2;
675                 clock.p2 = 10;
676                 clock.n = 2;
677                 clock.m1 = 23;
678                 clock.m2 = 8;
679         } else {
680                 clock.p1 = 1;
681                 clock.p2 = 10;
682                 clock.n = 1;
683                 clock.m1 = 14;
684                 clock.m2 = 2;
685         }
686         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
687         clock.p = (clock.p1 * clock.p2);
688         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
689         clock.vco = 0;
690         memcpy(best_clock, &clock, sizeof(intel_clock_t));
691         return true;
692 }
693
694 /**
695  * intel_wait_for_vblank - wait for vblank on a given pipe
696  * @dev: drm device
697  * @pipe: pipe to wait for
698  *
699  * Wait for vblank to occur on a given pipe.  Needed for various bits of
700  * mode setting code.
701  */
702 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
703 {
704         struct drm_i915_private *dev_priv = dev->dev_private;
705         int pipestat_reg = PIPESTAT(pipe);
706
707         /* Clear existing vblank status. Note this will clear any other
708          * sticky status fields as well.
709          *
710          * This races with i915_driver_irq_handler() with the result
711          * that either function could miss a vblank event.  Here it is not
712          * fatal, as we will either wait upon the next vblank interrupt or
713          * timeout.  Generally speaking intel_wait_for_vblank() is only
714          * called during modeset at which time the GPU should be idle and
715          * should *not* be performing page flips and thus not waiting on
716          * vblanks...
717          * Currently, the result of us stealing a vblank from the irq
718          * handler is that a single frame will be skipped during swapbuffers.
719          */
720         I915_WRITE(pipestat_reg,
721                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
722
723         /* Wait for vblank interrupt bit to set */
724         if (wait_for(I915_READ(pipestat_reg) &
725                      PIPE_VBLANK_INTERRUPT_STATUS,
726                      50))
727                 DRM_DEBUG_KMS("vblank wait timed out\n");
728 }
729
730 /*
731  * intel_wait_for_pipe_off - wait for pipe to turn off
732  * @dev: drm device
733  * @pipe: pipe to wait for
734  *
735  * After disabling a pipe, we can't wait for vblank in the usual way,
736  * spinning on the vblank interrupt status bit, since we won't actually
737  * see an interrupt when the pipe is disabled.
738  *
739  * On Gen4 and above:
740  *   wait for the pipe register state bit to turn off
741  *
742  * Otherwise:
743  *   wait for the display line value to settle (it usually
744  *   ends up stopping at the start of the next frame).
745  *
746  */
747 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
748 {
749         struct drm_i915_private *dev_priv = dev->dev_private;
750
751         if (INTEL_INFO(dev)->gen >= 4) {
752                 int reg = PIPECONF(pipe);
753
754                 /* Wait for the Pipe State to go off */
755                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
756                              100))
757                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
758         } else {
759                 u32 last_line;
760                 int reg = PIPEDSL(pipe);
761                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
762
763                 /* Wait for the display line to settle */
764                 do {
765                         last_line = I915_READ(reg) & DSL_LINEMASK;
766                         mdelay(5);
767                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
768                          time_after(timeout, jiffies));
769                 if (time_after(jiffies, timeout))
770                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
771         }
772 }
773
774 static const char *state_string(bool enabled)
775 {
776         return enabled ? "on" : "off";
777 }
778
779 /* Only for pre-ILK configs */
780 static void assert_pll(struct drm_i915_private *dev_priv,
781                        enum pipe pipe, bool state)
782 {
783         int reg;
784         u32 val;
785         bool cur_state;
786
787         reg = DPLL(pipe);
788         val = I915_READ(reg);
789         cur_state = !!(val & DPLL_VCO_ENABLE);
790         WARN(cur_state != state,
791              "PLL state assertion failure (expected %s, current %s)\n",
792              state_string(state), state_string(cur_state));
793 }
794 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
795 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
796
797 /* For ILK+ */
798 static void assert_pch_pll(struct drm_i915_private *dev_priv,
799                            enum pipe pipe, bool state)
800 {
801         int reg;
802         u32 val;
803         bool cur_state;
804
805         reg = PCH_DPLL(pipe);
806         val = I915_READ(reg);
807         cur_state = !!(val & DPLL_VCO_ENABLE);
808         WARN(cur_state != state,
809              "PCH PLL state assertion failure (expected %s, current %s)\n",
810              state_string(state), state_string(cur_state));
811 }
812 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
813 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
814
815 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
816                           enum pipe pipe, bool state)
817 {
818         int reg;
819         u32 val;
820         bool cur_state;
821
822         reg = FDI_TX_CTL(pipe);
823         val = I915_READ(reg);
824         cur_state = !!(val & FDI_TX_ENABLE);
825         WARN(cur_state != state,
826              "FDI TX state assertion failure (expected %s, current %s)\n",
827              state_string(state), state_string(cur_state));
828 }
829 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
830 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
831
832 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
833                           enum pipe pipe, bool state)
834 {
835         int reg;
836         u32 val;
837         bool cur_state;
838
839         reg = FDI_RX_CTL(pipe);
840         val = I915_READ(reg);
841         cur_state = !!(val & FDI_RX_ENABLE);
842         WARN(cur_state != state,
843              "FDI RX state assertion failure (expected %s, current %s)\n",
844              state_string(state), state_string(cur_state));
845 }
846 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
847 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
848
849 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
850                                       enum pipe pipe)
851 {
852         int reg;
853         u32 val;
854
855         /* ILK FDI PLL is always enabled */
856         if (dev_priv->info->gen == 5)
857                 return;
858
859         reg = FDI_TX_CTL(pipe);
860         val = I915_READ(reg);
861         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
862 }
863
864 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
865                                       enum pipe pipe)
866 {
867         int reg;
868         u32 val;
869
870         reg = FDI_RX_CTL(pipe);
871         val = I915_READ(reg);
872         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
873 }
874
875 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
876                                   enum pipe pipe)
877 {
878         int pp_reg, lvds_reg;
879         u32 val;
880         enum pipe panel_pipe = PIPE_A;
881         bool locked = true;
882
883         if (HAS_PCH_SPLIT(dev_priv->dev)) {
884                 pp_reg = PCH_PP_CONTROL;
885                 lvds_reg = PCH_LVDS;
886         } else {
887                 pp_reg = PP_CONTROL;
888                 lvds_reg = LVDS;
889         }
890
891         val = I915_READ(pp_reg);
892         if (!(val & PANEL_POWER_ON) ||
893             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
894                 locked = false;
895
896         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
897                 panel_pipe = PIPE_B;
898
899         WARN(panel_pipe == pipe && locked,
900              "panel assertion failure, pipe %c regs locked\n",
901              pipe_name(pipe));
902 }
903
904 static void assert_pipe(struct drm_i915_private *dev_priv,
905                         enum pipe pipe, bool state)
906 {
907         int reg;
908         u32 val;
909         bool cur_state;
910
911         reg = PIPECONF(pipe);
912         val = I915_READ(reg);
913         cur_state = !!(val & PIPECONF_ENABLE);
914         WARN(cur_state != state,
915              "pipe %c assertion failure (expected %s, current %s)\n",
916              pipe_name(pipe), state_string(state), state_string(cur_state));
917 }
918 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
919 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
920
921 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
922                                  enum plane plane)
923 {
924         int reg;
925         u32 val;
926
927         reg = DSPCNTR(plane);
928         val = I915_READ(reg);
929         WARN(!(val & DISPLAY_PLANE_ENABLE),
930              "plane %c assertion failure, should be active but is disabled\n",
931              plane_name(plane));
932 }
933
934 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
935                                    enum pipe pipe)
936 {
937         int reg, i;
938         u32 val;
939         int cur_pipe;
940
941         /* Planes are fixed to pipes on ILK+ */
942         if (HAS_PCH_SPLIT(dev_priv->dev))
943                 return;
944
945         /* Need to check both planes against the pipe */
946         for (i = 0; i < 2; i++) {
947                 reg = DSPCNTR(i);
948                 val = I915_READ(reg);
949                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
950                         DISPPLANE_SEL_PIPE_SHIFT;
951                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
952                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
953                      plane_name(i), pipe_name(pipe));
954         }
955 }
956
957 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
958 {
959         u32 val;
960         bool enabled;
961
962         val = I915_READ(PCH_DREF_CONTROL);
963         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
964                             DREF_SUPERSPREAD_SOURCE_MASK));
965         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
966 }
967
968 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
969                                        enum pipe pipe)
970 {
971         int reg;
972         u32 val;
973         bool enabled;
974
975         reg = TRANSCONF(pipe);
976         val = I915_READ(reg);
977         enabled = !!(val & TRANS_ENABLE);
978         WARN(enabled,
979              "transcoder assertion failed, should be off on pipe %c but is still active\n",
980              pipe_name(pipe));
981 }
982
983 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
984                             enum pipe pipe, u32 port_sel, u32 val)
985 {
986         if ((val & DP_PORT_EN) == 0)
987                 return false;
988
989         if (HAS_PCH_CPT(dev_priv->dev)) {
990                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
991                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
992                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
993                         return false;
994         } else {
995                 if ((val & DP_PIPE_MASK) != (pipe << 30))
996                         return false;
997         }
998         return true;
999 }
1000
1001 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1002                               enum pipe pipe, u32 val)
1003 {
1004         if ((val & PORT_ENABLE) == 0)
1005                 return false;
1006
1007         if (HAS_PCH_CPT(dev_priv->dev)) {
1008                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1009                         return false;
1010         } else {
1011                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1012                         return false;
1013         }
1014         return true;
1015 }
1016
1017 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1018                               enum pipe pipe, u32 val)
1019 {
1020         if ((val & LVDS_PORT_EN) == 0)
1021                 return false;
1022
1023         if (HAS_PCH_CPT(dev_priv->dev)) {
1024                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1025                         return false;
1026         } else {
1027                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1028                         return false;
1029         }
1030         return true;
1031 }
1032
1033 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1034                               enum pipe pipe, u32 val)
1035 {
1036         if ((val & ADPA_DAC_ENABLE) == 0)
1037                 return false;
1038         if (HAS_PCH_CPT(dev_priv->dev)) {
1039                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1040                         return false;
1041         } else {
1042                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1043                         return false;
1044         }
1045         return true;
1046 }
1047
1048 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1049                                    enum pipe pipe, int reg, u32 port_sel)
1050 {
1051         u32 val = I915_READ(reg);
1052         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1053              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1054              reg, pipe_name(pipe));
1055 }
1056
1057 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1058                                      enum pipe pipe, int reg)
1059 {
1060         u32 val = I915_READ(reg);
1061         WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1062              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1063              reg, pipe_name(pipe));
1064 }
1065
1066 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1067                                       enum pipe pipe)
1068 {
1069         int reg;
1070         u32 val;
1071
1072         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1073         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1074         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1075
1076         reg = PCH_ADPA;
1077         val = I915_READ(reg);
1078         WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1079              "PCH VGA enabled on transcoder %c, should be disabled\n",
1080              pipe_name(pipe));
1081
1082         reg = PCH_LVDS;
1083         val = I915_READ(reg);
1084         WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1085              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1086              pipe_name(pipe));
1087
1088         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1089         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1090         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1091 }
1092
1093 /**
1094  * intel_enable_pll - enable a PLL
1095  * @dev_priv: i915 private structure
1096  * @pipe: pipe PLL to enable
1097  *
1098  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1099  * make sure the PLL reg is writable first though, since the panel write
1100  * protect mechanism may be enabled.
1101  *
1102  * Note!  This is for pre-ILK only.
1103  */
1104 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1105 {
1106         int reg;
1107         u32 val;
1108
1109         /* No really, not for ILK+ */
1110         BUG_ON(dev_priv->info->gen >= 5);
1111
1112         /* PLL is protected by panel, make sure we can write it */
1113         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1114                 assert_panel_unlocked(dev_priv, pipe);
1115
1116         reg = DPLL(pipe);
1117         val = I915_READ(reg);
1118         val |= DPLL_VCO_ENABLE;
1119
1120         /* We do this three times for luck */
1121         I915_WRITE(reg, val);
1122         POSTING_READ(reg);
1123         udelay(150); /* wait for warmup */
1124         I915_WRITE(reg, val);
1125         POSTING_READ(reg);
1126         udelay(150); /* wait for warmup */
1127         I915_WRITE(reg, val);
1128         POSTING_READ(reg);
1129         udelay(150); /* wait for warmup */
1130 }
1131
1132 /**
1133  * intel_disable_pll - disable a PLL
1134  * @dev_priv: i915 private structure
1135  * @pipe: pipe PLL to disable
1136  *
1137  * Disable the PLL for @pipe, making sure the pipe is off first.
1138  *
1139  * Note!  This is for pre-ILK only.
1140  */
1141 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1142 {
1143         int reg;
1144         u32 val;
1145
1146         /* Don't disable pipe A or pipe A PLLs if needed */
1147         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1148                 return;
1149
1150         /* Make sure the pipe isn't still relying on us */
1151         assert_pipe_disabled(dev_priv, pipe);
1152
1153         reg = DPLL(pipe);
1154         val = I915_READ(reg);
1155         val &= ~DPLL_VCO_ENABLE;
1156         I915_WRITE(reg, val);
1157         POSTING_READ(reg);
1158 }
1159
1160 /**
1161  * intel_enable_pch_pll - enable PCH PLL
1162  * @dev_priv: i915 private structure
1163  * @pipe: pipe PLL to enable
1164  *
1165  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1166  * drives the transcoder clock.
1167  */
1168 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1169                                  enum pipe pipe)
1170 {
1171         int reg;
1172         u32 val;
1173
1174         /* PCH only available on ILK+ */
1175         BUG_ON(dev_priv->info->gen < 5);
1176
1177         /* PCH refclock must be enabled first */
1178         assert_pch_refclk_enabled(dev_priv);
1179
1180         reg = PCH_DPLL(pipe);
1181         val = I915_READ(reg);
1182         val |= DPLL_VCO_ENABLE;
1183         I915_WRITE(reg, val);
1184         POSTING_READ(reg);
1185         udelay(200);
1186 }
1187
1188 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1189                                   enum pipe pipe)
1190 {
1191         int reg;
1192         u32 val;
1193
1194         /* PCH only available on ILK+ */
1195         BUG_ON(dev_priv->info->gen < 5);
1196
1197         /* Make sure transcoder isn't still depending on us */
1198         assert_transcoder_disabled(dev_priv, pipe);
1199
1200         reg = PCH_DPLL(pipe);
1201         val = I915_READ(reg);
1202         val &= ~DPLL_VCO_ENABLE;
1203         I915_WRITE(reg, val);
1204         POSTING_READ(reg);
1205         udelay(200);
1206 }
1207
1208 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1209                                     enum pipe pipe)
1210 {
1211         int reg;
1212         u32 val;
1213
1214         /* PCH only available on ILK+ */
1215         BUG_ON(dev_priv->info->gen < 5);
1216
1217         /* Make sure PCH DPLL is enabled */
1218         assert_pch_pll_enabled(dev_priv, pipe);
1219
1220         /* FDI must be feeding us bits for PCH ports */
1221         assert_fdi_tx_enabled(dev_priv, pipe);
1222         assert_fdi_rx_enabled(dev_priv, pipe);
1223
1224         reg = TRANSCONF(pipe);
1225         val = I915_READ(reg);
1226
1227         if (HAS_PCH_IBX(dev_priv->dev)) {
1228                 /*
1229                  * make the BPC in transcoder be consistent with
1230                  * that in pipeconf reg.
1231                  */
1232                 val &= ~PIPE_BPC_MASK;
1233                 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1234         }
1235         I915_WRITE(reg, val | TRANS_ENABLE);
1236         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1237                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1238 }
1239
1240 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1241                                      enum pipe pipe)
1242 {
1243         int reg;
1244         u32 val;
1245
1246         /* FDI relies on the transcoder */
1247         assert_fdi_tx_disabled(dev_priv, pipe);
1248         assert_fdi_rx_disabled(dev_priv, pipe);
1249
1250         /* Ports must be off as well */
1251         assert_pch_ports_disabled(dev_priv, pipe);
1252
1253         reg = TRANSCONF(pipe);
1254         val = I915_READ(reg);
1255         val &= ~TRANS_ENABLE;
1256         I915_WRITE(reg, val);
1257         /* wait for PCH transcoder off, transcoder state */
1258         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1259                 DRM_ERROR("failed to disable transcoder\n");
1260 }
1261
1262 /**
1263  * intel_enable_pipe - enable a pipe, asserting requirements
1264  * @dev_priv: i915 private structure
1265  * @pipe: pipe to enable
1266  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1267  *
1268  * Enable @pipe, making sure that various hardware specific requirements
1269  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1270  *
1271  * @pipe should be %PIPE_A or %PIPE_B.
1272  *
1273  * Will wait until the pipe is actually running (i.e. first vblank) before
1274  * returning.
1275  */
1276 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1277                               bool pch_port)
1278 {
1279         int reg;
1280         u32 val;
1281
1282         /*
1283          * A pipe without a PLL won't actually be able to drive bits from
1284          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1285          * need the check.
1286          */
1287         if (!HAS_PCH_SPLIT(dev_priv->dev))
1288                 assert_pll_enabled(dev_priv, pipe);
1289         else {
1290                 if (pch_port) {
1291                         /* if driving the PCH, we need FDI enabled */
1292                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1293                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1294                 }
1295                 /* FIXME: assert CPU port conditions for SNB+ */
1296         }
1297
1298         reg = PIPECONF(pipe);
1299         val = I915_READ(reg);
1300         if (val & PIPECONF_ENABLE)
1301                 return;
1302
1303         I915_WRITE(reg, val | PIPECONF_ENABLE);
1304         intel_wait_for_vblank(dev_priv->dev, pipe);
1305 }
1306
1307 /**
1308  * intel_disable_pipe - disable a pipe, asserting requirements
1309  * @dev_priv: i915 private structure
1310  * @pipe: pipe to disable
1311  *
1312  * Disable @pipe, making sure that various hardware specific requirements
1313  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1314  *
1315  * @pipe should be %PIPE_A or %PIPE_B.
1316  *
1317  * Will wait until the pipe has shut down before returning.
1318  */
1319 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1320                                enum pipe pipe)
1321 {
1322         int reg;
1323         u32 val;
1324
1325         /*
1326          * Make sure planes won't keep trying to pump pixels to us,
1327          * or we might hang the display.
1328          */
1329         assert_planes_disabled(dev_priv, pipe);
1330
1331         /* Don't disable pipe A or pipe A PLLs if needed */
1332         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1333                 return;
1334
1335         reg = PIPECONF(pipe);
1336         val = I915_READ(reg);
1337         if ((val & PIPECONF_ENABLE) == 0)
1338                 return;
1339
1340         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1341         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1342 }
1343
1344 /*
1345  * Plane regs are double buffered, going from enabled->disabled needs a
1346  * trigger in order to latch.  The display address reg provides this.
1347  */
1348 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1349                                       enum plane plane)
1350 {
1351         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1352         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1353 }
1354
1355 /**
1356  * intel_enable_plane - enable a display plane on a given pipe
1357  * @dev_priv: i915 private structure
1358  * @plane: plane to enable
1359  * @pipe: pipe being fed
1360  *
1361  * Enable @plane on @pipe, making sure that @pipe is running first.
1362  */
1363 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1364                                enum plane plane, enum pipe pipe)
1365 {
1366         int reg;
1367         u32 val;
1368
1369         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1370         assert_pipe_enabled(dev_priv, pipe);
1371
1372         reg = DSPCNTR(plane);
1373         val = I915_READ(reg);
1374         if (val & DISPLAY_PLANE_ENABLE)
1375                 return;
1376
1377         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1378         intel_flush_display_plane(dev_priv, plane);
1379         intel_wait_for_vblank(dev_priv->dev, pipe);
1380 }
1381
1382 /**
1383  * intel_disable_plane - disable a display plane
1384  * @dev_priv: i915 private structure
1385  * @plane: plane to disable
1386  * @pipe: pipe consuming the data
1387  *
1388  * Disable @plane; should be an independent operation.
1389  */
1390 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1391                                 enum plane plane, enum pipe pipe)
1392 {
1393         int reg;
1394         u32 val;
1395
1396         reg = DSPCNTR(plane);
1397         val = I915_READ(reg);
1398         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1399                 return;
1400
1401         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1402         intel_flush_display_plane(dev_priv, plane);
1403         intel_wait_for_vblank(dev_priv->dev, pipe);
1404 }
1405
1406 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1407                            enum pipe pipe, int reg, u32 port_sel)
1408 {
1409         u32 val = I915_READ(reg);
1410         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1411                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1412                 I915_WRITE(reg, val & ~DP_PORT_EN);
1413         }
1414 }
1415
1416 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1417                              enum pipe pipe, int reg)
1418 {
1419         u32 val = I915_READ(reg);
1420         if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1421                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1422                               reg, pipe);
1423                 I915_WRITE(reg, val & ~PORT_ENABLE);
1424         }
1425 }
1426
1427 /* Disable any ports connected to this transcoder */
1428 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1429                                     enum pipe pipe)
1430 {
1431         u32 reg, val;
1432
1433         val = I915_READ(PCH_PP_CONTROL);
1434         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1435
1436         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1437         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1438         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1439
1440         reg = PCH_ADPA;
1441         val = I915_READ(reg);
1442         if (adpa_pipe_enabled(dev_priv, val, pipe))
1443                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1444
1445         reg = PCH_LVDS;
1446         val = I915_READ(reg);
1447         if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1448                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1449                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1450                 POSTING_READ(reg);
1451                 udelay(100);
1452         }
1453
1454         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1455         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1456         disable_pch_hdmi(dev_priv, pipe, HDMID);
1457 }
1458
1459 static void i8xx_disable_fbc(struct drm_device *dev)
1460 {
1461         struct drm_i915_private *dev_priv = dev->dev_private;
1462         u32 fbc_ctl;
1463
1464         /* Disable compression */
1465         fbc_ctl = I915_READ(FBC_CONTROL);
1466         if ((fbc_ctl & FBC_CTL_EN) == 0)
1467                 return;
1468
1469         fbc_ctl &= ~FBC_CTL_EN;
1470         I915_WRITE(FBC_CONTROL, fbc_ctl);
1471
1472         /* Wait for compressing bit to clear */
1473         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1474                 DRM_DEBUG_KMS("FBC idle timed out\n");
1475                 return;
1476         }
1477
1478         DRM_DEBUG_KMS("disabled FBC\n");
1479 }
1480
1481 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1482 {
1483         struct drm_device *dev = crtc->dev;
1484         struct drm_i915_private *dev_priv = dev->dev_private;
1485         struct drm_framebuffer *fb = crtc->fb;
1486         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1487         struct drm_i915_gem_object *obj = intel_fb->obj;
1488         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1489         int cfb_pitch;
1490         int plane, i;
1491         u32 fbc_ctl, fbc_ctl2;
1492
1493         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1494         if (fb->pitch < cfb_pitch)
1495                 cfb_pitch = fb->pitch;
1496
1497         /* FBC_CTL wants 64B units */
1498         cfb_pitch = (cfb_pitch / 64) - 1;
1499         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1500
1501         /* Clear old tags */
1502         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1503                 I915_WRITE(FBC_TAG + (i * 4), 0);
1504
1505         /* Set it up... */
1506         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1507         fbc_ctl2 |= plane;
1508         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1509         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1510
1511         /* enable it... */
1512         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1513         if (IS_I945GM(dev))
1514                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1515         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1516         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1517         fbc_ctl |= obj->fence_reg;
1518         I915_WRITE(FBC_CONTROL, fbc_ctl);
1519
1520         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1521                       cfb_pitch, crtc->y, intel_crtc->plane);
1522 }
1523
1524 static bool i8xx_fbc_enabled(struct drm_device *dev)
1525 {
1526         struct drm_i915_private *dev_priv = dev->dev_private;
1527
1528         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1529 }
1530
1531 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1532 {
1533         struct drm_device *dev = crtc->dev;
1534         struct drm_i915_private *dev_priv = dev->dev_private;
1535         struct drm_framebuffer *fb = crtc->fb;
1536         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1537         struct drm_i915_gem_object *obj = intel_fb->obj;
1538         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1539         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1540         unsigned long stall_watermark = 200;
1541         u32 dpfc_ctl;
1542
1543         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1544         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1545         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1546
1547         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1548                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1549                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1550         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1551
1552         /* enable it... */
1553         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1554
1555         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1556 }
1557
1558 static void g4x_disable_fbc(struct drm_device *dev)
1559 {
1560         struct drm_i915_private *dev_priv = dev->dev_private;
1561         u32 dpfc_ctl;
1562
1563         /* Disable compression */
1564         dpfc_ctl = I915_READ(DPFC_CONTROL);
1565         if (dpfc_ctl & DPFC_CTL_EN) {
1566                 dpfc_ctl &= ~DPFC_CTL_EN;
1567                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1568
1569                 DRM_DEBUG_KMS("disabled FBC\n");
1570         }
1571 }
1572
1573 static bool g4x_fbc_enabled(struct drm_device *dev)
1574 {
1575         struct drm_i915_private *dev_priv = dev->dev_private;
1576
1577         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1578 }
1579
1580 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1581 {
1582         struct drm_i915_private *dev_priv = dev->dev_private;
1583         u32 blt_ecoskpd;
1584
1585         /* Make sure blitter notifies FBC of writes */
1586         gen6_gt_force_wake_get(dev_priv);
1587         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1588         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1589                 GEN6_BLITTER_LOCK_SHIFT;
1590         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1591         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1592         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1593         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1594                          GEN6_BLITTER_LOCK_SHIFT);
1595         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1596         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1597         gen6_gt_force_wake_put(dev_priv);
1598 }
1599
1600 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1601 {
1602         struct drm_device *dev = crtc->dev;
1603         struct drm_i915_private *dev_priv = dev->dev_private;
1604         struct drm_framebuffer *fb = crtc->fb;
1605         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1606         struct drm_i915_gem_object *obj = intel_fb->obj;
1607         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1608         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1609         unsigned long stall_watermark = 200;
1610         u32 dpfc_ctl;
1611
1612         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1613         dpfc_ctl &= DPFC_RESERVED;
1614         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1615         /* Set persistent mode for front-buffer rendering, ala X. */
1616         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1617         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1618         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1619
1620         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1621                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1622                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1623         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1624         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1625         /* enable it... */
1626         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1627
1628         if (IS_GEN6(dev)) {
1629                 I915_WRITE(SNB_DPFC_CTL_SA,
1630                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1631                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1632                 sandybridge_blit_fbc_update(dev);
1633         }
1634
1635         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1636 }
1637
1638 static void ironlake_disable_fbc(struct drm_device *dev)
1639 {
1640         struct drm_i915_private *dev_priv = dev->dev_private;
1641         u32 dpfc_ctl;
1642
1643         /* Disable compression */
1644         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1645         if (dpfc_ctl & DPFC_CTL_EN) {
1646                 dpfc_ctl &= ~DPFC_CTL_EN;
1647                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1648
1649                 DRM_DEBUG_KMS("disabled FBC\n");
1650         }
1651 }
1652
1653 static bool ironlake_fbc_enabled(struct drm_device *dev)
1654 {
1655         struct drm_i915_private *dev_priv = dev->dev_private;
1656
1657         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1658 }
1659
1660 bool intel_fbc_enabled(struct drm_device *dev)
1661 {
1662         struct drm_i915_private *dev_priv = dev->dev_private;
1663
1664         if (!dev_priv->display.fbc_enabled)
1665                 return false;
1666
1667         return dev_priv->display.fbc_enabled(dev);
1668 }
1669
1670 static void intel_fbc_work_fn(struct work_struct *__work)
1671 {
1672         struct intel_fbc_work *work =
1673                 container_of(to_delayed_work(__work),
1674                              struct intel_fbc_work, work);
1675         struct drm_device *dev = work->crtc->dev;
1676         struct drm_i915_private *dev_priv = dev->dev_private;
1677
1678         mutex_lock(&dev->struct_mutex);
1679         if (work == dev_priv->fbc_work) {
1680                 /* Double check that we haven't switched fb without cancelling
1681                  * the prior work.
1682                  */
1683                 if (work->crtc->fb == work->fb) {
1684                         dev_priv->display.enable_fbc(work->crtc,
1685                                                      work->interval);
1686
1687                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1688                         dev_priv->cfb_fb = work->crtc->fb->base.id;
1689                         dev_priv->cfb_y = work->crtc->y;
1690                 }
1691
1692                 dev_priv->fbc_work = NULL;
1693         }
1694         mutex_unlock(&dev->struct_mutex);
1695
1696         kfree(work);
1697 }
1698
1699 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1700 {
1701         if (dev_priv->fbc_work == NULL)
1702                 return;
1703
1704         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1705
1706         /* Synchronisation is provided by struct_mutex and checking of
1707          * dev_priv->fbc_work, so we can perform the cancellation
1708          * entirely asynchronously.
1709          */
1710         if (cancel_delayed_work(&dev_priv->fbc_work->work))
1711                 /* tasklet was killed before being run, clean up */
1712                 kfree(dev_priv->fbc_work);
1713
1714         /* Mark the work as no longer wanted so that if it does
1715          * wake-up (because the work was already running and waiting
1716          * for our mutex), it will discover that is no longer
1717          * necessary to run.
1718          */
1719         dev_priv->fbc_work = NULL;
1720 }
1721
1722 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1723 {
1724         struct intel_fbc_work *work;
1725         struct drm_device *dev = crtc->dev;
1726         struct drm_i915_private *dev_priv = dev->dev_private;
1727
1728         if (!dev_priv->display.enable_fbc)
1729                 return;
1730
1731         intel_cancel_fbc_work(dev_priv);
1732
1733         work = kzalloc(sizeof *work, GFP_KERNEL);
1734         if (work == NULL) {
1735                 dev_priv->display.enable_fbc(crtc, interval);
1736                 return;
1737         }
1738
1739         work->crtc = crtc;
1740         work->fb = crtc->fb;
1741         work->interval = interval;
1742         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1743
1744         dev_priv->fbc_work = work;
1745
1746         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1747
1748         /* Delay the actual enabling to let pageflipping cease and the
1749          * display to settle before starting the compression. Note that
1750          * this delay also serves a second purpose: it allows for a
1751          * vblank to pass after disabling the FBC before we attempt
1752          * to modify the control registers.
1753          *
1754          * A more complicated solution would involve tracking vblanks
1755          * following the termination of the page-flipping sequence
1756          * and indeed performing the enable as a co-routine and not
1757          * waiting synchronously upon the vblank.
1758          */
1759         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1760 }
1761
1762 void intel_disable_fbc(struct drm_device *dev)
1763 {
1764         struct drm_i915_private *dev_priv = dev->dev_private;
1765
1766         intel_cancel_fbc_work(dev_priv);
1767
1768         if (!dev_priv->display.disable_fbc)
1769                 return;
1770
1771         dev_priv->display.disable_fbc(dev);
1772         dev_priv->cfb_plane = -1;
1773 }
1774
1775 /**
1776  * intel_update_fbc - enable/disable FBC as needed
1777  * @dev: the drm_device
1778  *
1779  * Set up the framebuffer compression hardware at mode set time.  We
1780  * enable it if possible:
1781  *   - plane A only (on pre-965)
1782  *   - no pixel mulitply/line duplication
1783  *   - no alpha buffer discard
1784  *   - no dual wide
1785  *   - framebuffer <= 2048 in width, 1536 in height
1786  *
1787  * We can't assume that any compression will take place (worst case),
1788  * so the compressed buffer has to be the same size as the uncompressed
1789  * one.  It also must reside (along with the line length buffer) in
1790  * stolen memory.
1791  *
1792  * We need to enable/disable FBC on a global basis.
1793  */
1794 static void intel_update_fbc(struct drm_device *dev)
1795 {
1796         struct drm_i915_private *dev_priv = dev->dev_private;
1797         struct drm_crtc *crtc = NULL, *tmp_crtc;
1798         struct intel_crtc *intel_crtc;
1799         struct drm_framebuffer *fb;
1800         struct intel_framebuffer *intel_fb;
1801         struct drm_i915_gem_object *obj;
1802         int enable_fbc;
1803
1804         DRM_DEBUG_KMS("\n");
1805
1806         if (!i915_powersave)
1807                 return;
1808
1809         if (!I915_HAS_FBC(dev))
1810                 return;
1811
1812         /*
1813          * If FBC is already on, we just have to verify that we can
1814          * keep it that way...
1815          * Need to disable if:
1816          *   - more than one pipe is active
1817          *   - changing FBC params (stride, fence, mode)
1818          *   - new fb is too large to fit in compressed buffer
1819          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1820          */
1821         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1822                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1823                         if (crtc) {
1824                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1825                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1826                                 goto out_disable;
1827                         }
1828                         crtc = tmp_crtc;
1829                 }
1830         }
1831
1832         if (!crtc || crtc->fb == NULL) {
1833                 DRM_DEBUG_KMS("no output, disabling\n");
1834                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1835                 goto out_disable;
1836         }
1837
1838         intel_crtc = to_intel_crtc(crtc);
1839         fb = crtc->fb;
1840         intel_fb = to_intel_framebuffer(fb);
1841         obj = intel_fb->obj;
1842
1843         enable_fbc = i915_enable_fbc;
1844         if (enable_fbc < 0) {
1845                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1846                 enable_fbc = 1;
1847                 if (INTEL_INFO(dev)->gen <= 5)
1848                         enable_fbc = 0;
1849         }
1850         if (!enable_fbc) {
1851                 DRM_DEBUG_KMS("fbc disabled per module param\n");
1852                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1853                 goto out_disable;
1854         }
1855         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1856                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1857                               "compression\n");
1858                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1859                 goto out_disable;
1860         }
1861         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1862             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1863                 DRM_DEBUG_KMS("mode incompatible with compression, "
1864                               "disabling\n");
1865                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1866                 goto out_disable;
1867         }
1868         if ((crtc->mode.hdisplay > 2048) ||
1869             (crtc->mode.vdisplay > 1536)) {
1870                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1871                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1872                 goto out_disable;
1873         }
1874         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1875                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1876                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1877                 goto out_disable;
1878         }
1879
1880         /* The use of a CPU fence is mandatory in order to detect writes
1881          * by the CPU to the scanout and trigger updates to the FBC.
1882          */
1883         if (obj->tiling_mode != I915_TILING_X ||
1884             obj->fence_reg == I915_FENCE_REG_NONE) {
1885                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1886                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1887                 goto out_disable;
1888         }
1889
1890         /* If the kernel debugger is active, always disable compression */
1891         if (in_dbg_master())
1892                 goto out_disable;
1893
1894         /* If the scanout has not changed, don't modify the FBC settings.
1895          * Note that we make the fundamental assumption that the fb->obj
1896          * cannot be unpinned (and have its GTT offset and fence revoked)
1897          * without first being decoupled from the scanout and FBC disabled.
1898          */
1899         if (dev_priv->cfb_plane == intel_crtc->plane &&
1900             dev_priv->cfb_fb == fb->base.id &&
1901             dev_priv->cfb_y == crtc->y)
1902                 return;
1903
1904         if (intel_fbc_enabled(dev)) {
1905                 /* We update FBC along two paths, after changing fb/crtc
1906                  * configuration (modeswitching) and after page-flipping
1907                  * finishes. For the latter, we know that not only did
1908                  * we disable the FBC at the start of the page-flip
1909                  * sequence, but also more than one vblank has passed.
1910                  *
1911                  * For the former case of modeswitching, it is possible
1912                  * to switch between two FBC valid configurations
1913                  * instantaneously so we do need to disable the FBC
1914                  * before we can modify its control registers. We also
1915                  * have to wait for the next vblank for that to take
1916                  * effect. However, since we delay enabling FBC we can
1917                  * assume that a vblank has passed since disabling and
1918                  * that we can safely alter the registers in the deferred
1919                  * callback.
1920                  *
1921                  * In the scenario that we go from a valid to invalid
1922                  * and then back to valid FBC configuration we have
1923                  * no strict enforcement that a vblank occurred since
1924                  * disabling the FBC. However, along all current pipe
1925                  * disabling paths we do need to wait for a vblank at
1926                  * some point. And we wait before enabling FBC anyway.
1927                  */
1928                 DRM_DEBUG_KMS("disabling active FBC for update\n");
1929                 intel_disable_fbc(dev);
1930         }
1931
1932         intel_enable_fbc(crtc, 500);
1933         return;
1934
1935 out_disable:
1936         /* Multiple disables should be harmless */
1937         if (intel_fbc_enabled(dev)) {
1938                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1939                 intel_disable_fbc(dev);
1940         }
1941 }
1942
1943 int
1944 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1945                            struct drm_i915_gem_object *obj,
1946                            struct intel_ring_buffer *pipelined)
1947 {
1948         struct drm_i915_private *dev_priv = dev->dev_private;
1949         u32 alignment;
1950         int ret;
1951
1952         switch (obj->tiling_mode) {
1953         case I915_TILING_NONE:
1954                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1955                         alignment = 128 * 1024;
1956                 else if (INTEL_INFO(dev)->gen >= 4)
1957                         alignment = 4 * 1024;
1958                 else
1959                         alignment = 64 * 1024;
1960                 break;
1961         case I915_TILING_X:
1962                 /* pin() will align the object as required by fence */
1963                 alignment = 0;
1964                 break;
1965         case I915_TILING_Y:
1966                 /* FIXME: Is this true? */
1967                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1968                 return -EINVAL;
1969         default:
1970                 BUG();
1971         }
1972
1973         dev_priv->mm.interruptible = false;
1974         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1975         if (ret)
1976                 goto err_interruptible;
1977
1978         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1979          * fence, whereas 965+ only requires a fence if using
1980          * framebuffer compression.  For simplicity, we always install
1981          * a fence as the cost is not that onerous.
1982          */
1983         if (obj->tiling_mode != I915_TILING_NONE) {
1984                 ret = i915_gem_object_get_fence(obj, pipelined);
1985                 if (ret)
1986                         goto err_unpin;
1987         }
1988
1989         dev_priv->mm.interruptible = true;
1990         return 0;
1991
1992 err_unpin:
1993         i915_gem_object_unpin(obj);
1994 err_interruptible:
1995         dev_priv->mm.interruptible = true;
1996         return ret;
1997 }
1998
1999 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2000                              int x, int y)
2001 {
2002         struct drm_device *dev = crtc->dev;
2003         struct drm_i915_private *dev_priv = dev->dev_private;
2004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2005         struct intel_framebuffer *intel_fb;
2006         struct drm_i915_gem_object *obj;
2007         int plane = intel_crtc->plane;
2008         unsigned long Start, Offset;
2009         u32 dspcntr;
2010         u32 reg;
2011
2012         switch (plane) {
2013         case 0:
2014         case 1:
2015                 break;
2016         default:
2017                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2018                 return -EINVAL;
2019         }
2020
2021         intel_fb = to_intel_framebuffer(fb);
2022         obj = intel_fb->obj;
2023
2024         reg = DSPCNTR(plane);
2025         dspcntr = I915_READ(reg);
2026         /* Mask out pixel format bits in case we change it */
2027         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2028         switch (fb->bits_per_pixel) {
2029         case 8:
2030                 dspcntr |= DISPPLANE_8BPP;
2031                 break;
2032         case 16:
2033                 if (fb->depth == 15)
2034                         dspcntr |= DISPPLANE_15_16BPP;
2035                 else
2036                         dspcntr |= DISPPLANE_16BPP;
2037                 break;
2038         case 24:
2039         case 32:
2040                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2041                 break;
2042         default:
2043                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2044                 return -EINVAL;
2045         }
2046         if (INTEL_INFO(dev)->gen >= 4) {
2047                 if (obj->tiling_mode != I915_TILING_NONE)
2048                         dspcntr |= DISPPLANE_TILED;
2049                 else
2050                         dspcntr &= ~DISPPLANE_TILED;
2051         }
2052
2053         I915_WRITE(reg, dspcntr);
2054
2055         Start = obj->gtt_offset;
2056         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2057
2058         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2059                       Start, Offset, x, y, fb->pitch);
2060         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2061         if (INTEL_INFO(dev)->gen >= 4) {
2062                 I915_WRITE(DSPSURF(plane), Start);
2063                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2064                 I915_WRITE(DSPADDR(plane), Offset);
2065         } else
2066                 I915_WRITE(DSPADDR(plane), Start + Offset);
2067         POSTING_READ(reg);
2068
2069         return 0;
2070 }
2071
2072 static int ironlake_update_plane(struct drm_crtc *crtc,
2073                                  struct drm_framebuffer *fb, int x, int y)
2074 {
2075         struct drm_device *dev = crtc->dev;
2076         struct drm_i915_private *dev_priv = dev->dev_private;
2077         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2078         struct intel_framebuffer *intel_fb;
2079         struct drm_i915_gem_object *obj;
2080         int plane = intel_crtc->plane;
2081         unsigned long Start, Offset;
2082         u32 dspcntr;
2083         u32 reg;
2084
2085         switch (plane) {
2086         case 0:
2087         case 1:
2088                 break;
2089         default:
2090                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2091                 return -EINVAL;
2092         }
2093
2094         intel_fb = to_intel_framebuffer(fb);
2095         obj = intel_fb->obj;
2096
2097         reg = DSPCNTR(plane);
2098         dspcntr = I915_READ(reg);
2099         /* Mask out pixel format bits in case we change it */
2100         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2101         switch (fb->bits_per_pixel) {
2102         case 8:
2103                 dspcntr |= DISPPLANE_8BPP;
2104                 break;
2105         case 16:
2106                 if (fb->depth != 16)
2107                         return -EINVAL;
2108
2109                 dspcntr |= DISPPLANE_16BPP;
2110                 break;
2111         case 24:
2112         case 32:
2113                 if (fb->depth == 24)
2114                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2115                 else if (fb->depth == 30)
2116                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2117                 else
2118                         return -EINVAL;
2119                 break;
2120         default:
2121                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2122                 return -EINVAL;
2123         }
2124
2125         if (obj->tiling_mode != I915_TILING_NONE)
2126                 dspcntr |= DISPPLANE_TILED;
2127         else
2128                 dspcntr &= ~DISPPLANE_TILED;
2129
2130         /* must disable */
2131         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2132
2133         I915_WRITE(reg, dspcntr);
2134
2135         Start = obj->gtt_offset;
2136         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2137
2138         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2139                       Start, Offset, x, y, fb->pitch);
2140         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2141         I915_WRITE(DSPSURF(plane), Start);
2142         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2143         I915_WRITE(DSPADDR(plane), Offset);
2144         POSTING_READ(reg);
2145
2146         return 0;
2147 }
2148
2149 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2150 static int
2151 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2152                            int x, int y, enum mode_set_atomic state)
2153 {
2154         struct drm_device *dev = crtc->dev;
2155         struct drm_i915_private *dev_priv = dev->dev_private;
2156         int ret;
2157
2158         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2159         if (ret)
2160                 return ret;
2161
2162         intel_update_fbc(dev);
2163         intel_increase_pllclock(crtc);
2164
2165         return 0;
2166 }
2167
2168 static int
2169 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2170                     struct drm_framebuffer *old_fb)
2171 {
2172         struct drm_device *dev = crtc->dev;
2173         struct drm_i915_master_private *master_priv;
2174         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2175         int ret;
2176
2177         /* no fb bound */
2178         if (!crtc->fb) {
2179                 DRM_ERROR("No FB bound\n");
2180                 return 0;
2181         }
2182
2183         switch (intel_crtc->plane) {
2184         case 0:
2185         case 1:
2186                 break;
2187         default:
2188                 DRM_ERROR("no plane for crtc\n");
2189                 return -EINVAL;
2190         }
2191
2192         mutex_lock(&dev->struct_mutex);
2193         ret = intel_pin_and_fence_fb_obj(dev,
2194                                          to_intel_framebuffer(crtc->fb)->obj,
2195                                          NULL);
2196         if (ret != 0) {
2197                 mutex_unlock(&dev->struct_mutex);
2198                 DRM_ERROR("pin & fence failed\n");
2199                 return ret;
2200         }
2201
2202         if (old_fb) {
2203                 struct drm_i915_private *dev_priv = dev->dev_private;
2204                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2205
2206                 wait_event(dev_priv->pending_flip_queue,
2207                            atomic_read(&dev_priv->mm.wedged) ||
2208                            atomic_read(&obj->pending_flip) == 0);
2209
2210                 /* Big Hammer, we also need to ensure that any pending
2211                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2212                  * current scanout is retired before unpinning the old
2213                  * framebuffer.
2214                  *
2215                  * This should only fail upon a hung GPU, in which case we
2216                  * can safely continue.
2217                  */
2218                 ret = i915_gem_object_finish_gpu(obj);
2219                 (void) ret;
2220         }
2221
2222         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2223                                          LEAVE_ATOMIC_MODE_SET);
2224         if (ret) {
2225                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2226                 mutex_unlock(&dev->struct_mutex);
2227                 DRM_ERROR("failed to update base address\n");
2228                 return ret;
2229         }
2230
2231         if (old_fb) {
2232                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2233                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2234         }
2235
2236         mutex_unlock(&dev->struct_mutex);
2237
2238         if (!dev->primary->master)
2239                 return 0;
2240
2241         master_priv = dev->primary->master->driver_priv;
2242         if (!master_priv->sarea_priv)
2243                 return 0;
2244
2245         if (intel_crtc->pipe) {
2246                 master_priv->sarea_priv->pipeB_x = x;
2247                 master_priv->sarea_priv->pipeB_y = y;
2248         } else {
2249                 master_priv->sarea_priv->pipeA_x = x;
2250                 master_priv->sarea_priv->pipeA_y = y;
2251         }
2252
2253         return 0;
2254 }
2255
2256 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2257 {
2258         struct drm_device *dev = crtc->dev;
2259         struct drm_i915_private *dev_priv = dev->dev_private;
2260         u32 dpa_ctl;
2261
2262         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2263         dpa_ctl = I915_READ(DP_A);
2264         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2265
2266         if (clock < 200000) {
2267                 u32 temp;
2268                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2269                 /* workaround for 160Mhz:
2270                    1) program 0x4600c bits 15:0 = 0x8124
2271                    2) program 0x46010 bit 0 = 1
2272                    3) program 0x46034 bit 24 = 1
2273                    4) program 0x64000 bit 14 = 1
2274                    */
2275                 temp = I915_READ(0x4600c);
2276                 temp &= 0xffff0000;
2277                 I915_WRITE(0x4600c, temp | 0x8124);
2278
2279                 temp = I915_READ(0x46010);
2280                 I915_WRITE(0x46010, temp | 1);
2281
2282                 temp = I915_READ(0x46034);
2283                 I915_WRITE(0x46034, temp | (1 << 24));
2284         } else {
2285                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2286         }
2287         I915_WRITE(DP_A, dpa_ctl);
2288
2289         POSTING_READ(DP_A);
2290         udelay(500);
2291 }
2292
2293 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2294 {
2295         struct drm_device *dev = crtc->dev;
2296         struct drm_i915_private *dev_priv = dev->dev_private;
2297         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2298         int pipe = intel_crtc->pipe;
2299         u32 reg, temp;
2300
2301         /* enable normal train */
2302         reg = FDI_TX_CTL(pipe);
2303         temp = I915_READ(reg);
2304         if (IS_IVYBRIDGE(dev)) {
2305                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2306                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2307         } else {
2308                 temp &= ~FDI_LINK_TRAIN_NONE;
2309                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2310         }
2311         I915_WRITE(reg, temp);
2312
2313         reg = FDI_RX_CTL(pipe);
2314         temp = I915_READ(reg);
2315         if (HAS_PCH_CPT(dev)) {
2316                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2317                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2318         } else {
2319                 temp &= ~FDI_LINK_TRAIN_NONE;
2320                 temp |= FDI_LINK_TRAIN_NONE;
2321         }
2322         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2323
2324         /* wait one idle pattern time */
2325         POSTING_READ(reg);
2326         udelay(1000);
2327
2328         /* IVB wants error correction enabled */
2329         if (IS_IVYBRIDGE(dev))
2330                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2331                            FDI_FE_ERRC_ENABLE);
2332 }
2333
2334 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2335 {
2336         struct drm_i915_private *dev_priv = dev->dev_private;
2337         u32 flags = I915_READ(SOUTH_CHICKEN1);
2338
2339         flags |= FDI_PHASE_SYNC_OVR(pipe);
2340         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2341         flags |= FDI_PHASE_SYNC_EN(pipe);
2342         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2343         POSTING_READ(SOUTH_CHICKEN1);
2344 }
2345
2346 /* The FDI link training functions for ILK/Ibexpeak. */
2347 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2348 {
2349         struct drm_device *dev = crtc->dev;
2350         struct drm_i915_private *dev_priv = dev->dev_private;
2351         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2352         int pipe = intel_crtc->pipe;
2353         int plane = intel_crtc->plane;
2354         u32 reg, temp, tries;
2355
2356         /* FDI needs bits from pipe & plane first */
2357         assert_pipe_enabled(dev_priv, pipe);
2358         assert_plane_enabled(dev_priv, plane);
2359
2360         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2361            for train result */
2362         reg = FDI_RX_IMR(pipe);
2363         temp = I915_READ(reg);
2364         temp &= ~FDI_RX_SYMBOL_LOCK;
2365         temp &= ~FDI_RX_BIT_LOCK;
2366         I915_WRITE(reg, temp);
2367         I915_READ(reg);
2368         udelay(150);
2369
2370         /* enable CPU FDI TX and PCH FDI RX */
2371         reg = FDI_TX_CTL(pipe);
2372         temp = I915_READ(reg);
2373         temp &= ~(7 << 19);
2374         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2375         temp &= ~FDI_LINK_TRAIN_NONE;
2376         temp |= FDI_LINK_TRAIN_PATTERN_1;
2377         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2378
2379         reg = FDI_RX_CTL(pipe);
2380         temp = I915_READ(reg);
2381         temp &= ~FDI_LINK_TRAIN_NONE;
2382         temp |= FDI_LINK_TRAIN_PATTERN_1;
2383         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2384
2385         POSTING_READ(reg);
2386         udelay(150);
2387
2388         /* Ironlake workaround, enable clock pointer after FDI enable*/
2389         if (HAS_PCH_IBX(dev)) {
2390                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2391                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2392                            FDI_RX_PHASE_SYNC_POINTER_EN);
2393         }
2394
2395         reg = FDI_RX_IIR(pipe);
2396         for (tries = 0; tries < 5; tries++) {
2397                 temp = I915_READ(reg);
2398                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2399
2400                 if ((temp & FDI_RX_BIT_LOCK)) {
2401                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2402                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2403                         break;
2404                 }
2405         }
2406         if (tries == 5)
2407                 DRM_ERROR("FDI train 1 fail!\n");
2408
2409         /* Train 2 */
2410         reg = FDI_TX_CTL(pipe);
2411         temp = I915_READ(reg);
2412         temp &= ~FDI_LINK_TRAIN_NONE;
2413         temp |= FDI_LINK_TRAIN_PATTERN_2;
2414         I915_WRITE(reg, temp);
2415
2416         reg = FDI_RX_CTL(pipe);
2417         temp = I915_READ(reg);
2418         temp &= ~FDI_LINK_TRAIN_NONE;
2419         temp |= FDI_LINK_TRAIN_PATTERN_2;
2420         I915_WRITE(reg, temp);
2421
2422         POSTING_READ(reg);
2423         udelay(150);
2424
2425         reg = FDI_RX_IIR(pipe);
2426         for (tries = 0; tries < 5; tries++) {
2427                 temp = I915_READ(reg);
2428                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2429
2430                 if (temp & FDI_RX_SYMBOL_LOCK) {
2431                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2432                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2433                         break;
2434                 }
2435         }
2436         if (tries == 5)
2437                 DRM_ERROR("FDI train 2 fail!\n");
2438
2439         DRM_DEBUG_KMS("FDI train done\n");
2440
2441 }
2442
2443 static const int snb_b_fdi_train_param [] = {
2444         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2445         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2446         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2447         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2448 };
2449
2450 /* The FDI link training functions for SNB/Cougarpoint. */
2451 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2452 {
2453         struct drm_device *dev = crtc->dev;
2454         struct drm_i915_private *dev_priv = dev->dev_private;
2455         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2456         int pipe = intel_crtc->pipe;
2457         u32 reg, temp, i;
2458
2459         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2460            for train result */
2461         reg = FDI_RX_IMR(pipe);
2462         temp = I915_READ(reg);
2463         temp &= ~FDI_RX_SYMBOL_LOCK;
2464         temp &= ~FDI_RX_BIT_LOCK;
2465         I915_WRITE(reg, temp);
2466
2467         POSTING_READ(reg);
2468         udelay(150);
2469
2470         /* enable CPU FDI TX and PCH FDI RX */
2471         reg = FDI_TX_CTL(pipe);
2472         temp = I915_READ(reg);
2473         temp &= ~(7 << 19);
2474         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2475         temp &= ~FDI_LINK_TRAIN_NONE;
2476         temp |= FDI_LINK_TRAIN_PATTERN_1;
2477         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2478         /* SNB-B */
2479         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2480         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2481
2482         reg = FDI_RX_CTL(pipe);
2483         temp = I915_READ(reg);
2484         if (HAS_PCH_CPT(dev)) {
2485                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2486                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2487         } else {
2488                 temp &= ~FDI_LINK_TRAIN_NONE;
2489                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2490         }
2491         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2492
2493         POSTING_READ(reg);
2494         udelay(150);
2495
2496         if (HAS_PCH_CPT(dev))
2497                 cpt_phase_pointer_enable(dev, pipe);
2498
2499         for (i = 0; i < 4; i++ ) {
2500                 reg = FDI_TX_CTL(pipe);
2501                 temp = I915_READ(reg);
2502                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503                 temp |= snb_b_fdi_train_param[i];
2504                 I915_WRITE(reg, temp);
2505
2506                 POSTING_READ(reg);
2507                 udelay(500);
2508
2509                 reg = FDI_RX_IIR(pipe);
2510                 temp = I915_READ(reg);
2511                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2512
2513                 if (temp & FDI_RX_BIT_LOCK) {
2514                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2515                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2516                         break;
2517                 }
2518         }
2519         if (i == 4)
2520                 DRM_ERROR("FDI train 1 fail!\n");
2521
2522         /* Train 2 */
2523         reg = FDI_TX_CTL(pipe);
2524         temp = I915_READ(reg);
2525         temp &= ~FDI_LINK_TRAIN_NONE;
2526         temp |= FDI_LINK_TRAIN_PATTERN_2;
2527         if (IS_GEN6(dev)) {
2528                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2529                 /* SNB-B */
2530                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2531         }
2532         I915_WRITE(reg, temp);
2533
2534         reg = FDI_RX_CTL(pipe);
2535         temp = I915_READ(reg);
2536         if (HAS_PCH_CPT(dev)) {
2537                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2538                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2539         } else {
2540                 temp &= ~FDI_LINK_TRAIN_NONE;
2541                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2542         }
2543         I915_WRITE(reg, temp);
2544
2545         POSTING_READ(reg);
2546         udelay(150);
2547
2548         for (i = 0; i < 4; i++ ) {
2549                 reg = FDI_TX_CTL(pipe);
2550                 temp = I915_READ(reg);
2551                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2552                 temp |= snb_b_fdi_train_param[i];
2553                 I915_WRITE(reg, temp);
2554
2555                 POSTING_READ(reg);
2556                 udelay(500);
2557
2558                 reg = FDI_RX_IIR(pipe);
2559                 temp = I915_READ(reg);
2560                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2561
2562                 if (temp & FDI_RX_SYMBOL_LOCK) {
2563                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2564                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2565                         break;
2566                 }
2567         }
2568         if (i == 4)
2569                 DRM_ERROR("FDI train 2 fail!\n");
2570
2571         DRM_DEBUG_KMS("FDI train done.\n");
2572 }
2573
2574 /* Manual link training for Ivy Bridge A0 parts */
2575 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2576 {
2577         struct drm_device *dev = crtc->dev;
2578         struct drm_i915_private *dev_priv = dev->dev_private;
2579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2580         int pipe = intel_crtc->pipe;
2581         u32 reg, temp, i;
2582
2583         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2584            for train result */
2585         reg = FDI_RX_IMR(pipe);
2586         temp = I915_READ(reg);
2587         temp &= ~FDI_RX_SYMBOL_LOCK;
2588         temp &= ~FDI_RX_BIT_LOCK;
2589         I915_WRITE(reg, temp);
2590
2591         POSTING_READ(reg);
2592         udelay(150);
2593
2594         /* enable CPU FDI TX and PCH FDI RX */
2595         reg = FDI_TX_CTL(pipe);
2596         temp = I915_READ(reg);
2597         temp &= ~(7 << 19);
2598         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2599         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2600         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2601         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2602         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2603         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2604
2605         reg = FDI_RX_CTL(pipe);
2606         temp = I915_READ(reg);
2607         temp &= ~FDI_LINK_TRAIN_AUTO;
2608         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2609         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2610         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2611
2612         POSTING_READ(reg);
2613         udelay(150);
2614
2615         if (HAS_PCH_CPT(dev))
2616                 cpt_phase_pointer_enable(dev, pipe);
2617
2618         for (i = 0; i < 4; i++ ) {
2619                 reg = FDI_TX_CTL(pipe);
2620                 temp = I915_READ(reg);
2621                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622                 temp |= snb_b_fdi_train_param[i];
2623                 I915_WRITE(reg, temp);
2624
2625                 POSTING_READ(reg);
2626                 udelay(500);
2627
2628                 reg = FDI_RX_IIR(pipe);
2629                 temp = I915_READ(reg);
2630                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2631
2632                 if (temp & FDI_RX_BIT_LOCK ||
2633                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2634                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2635                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2636                         break;
2637                 }
2638         }
2639         if (i == 4)
2640                 DRM_ERROR("FDI train 1 fail!\n");
2641
2642         /* Train 2 */
2643         reg = FDI_TX_CTL(pipe);
2644         temp = I915_READ(reg);
2645         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2646         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2647         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2648         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2649         I915_WRITE(reg, temp);
2650
2651         reg = FDI_RX_CTL(pipe);
2652         temp = I915_READ(reg);
2653         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2654         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2655         I915_WRITE(reg, temp);
2656
2657         POSTING_READ(reg);
2658         udelay(150);
2659
2660         for (i = 0; i < 4; i++ ) {
2661                 reg = FDI_TX_CTL(pipe);
2662                 temp = I915_READ(reg);
2663                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2664                 temp |= snb_b_fdi_train_param[i];
2665                 I915_WRITE(reg, temp);
2666
2667                 POSTING_READ(reg);
2668                 udelay(500);
2669
2670                 reg = FDI_RX_IIR(pipe);
2671                 temp = I915_READ(reg);
2672                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2673
2674                 if (temp & FDI_RX_SYMBOL_LOCK) {
2675                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2676                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2677                         break;
2678                 }
2679         }
2680         if (i == 4)
2681                 DRM_ERROR("FDI train 2 fail!\n");
2682
2683         DRM_DEBUG_KMS("FDI train done.\n");
2684 }
2685
2686 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2687 {
2688         struct drm_device *dev = crtc->dev;
2689         struct drm_i915_private *dev_priv = dev->dev_private;
2690         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2691         int pipe = intel_crtc->pipe;
2692         u32 reg, temp;
2693
2694         /* Write the TU size bits so error detection works */
2695         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2696                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2697
2698         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2699         reg = FDI_RX_CTL(pipe);
2700         temp = I915_READ(reg);
2701         temp &= ~((0x7 << 19) | (0x7 << 16));
2702         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2703         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2704         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2705
2706         POSTING_READ(reg);
2707         udelay(200);
2708
2709         /* Switch from Rawclk to PCDclk */
2710         temp = I915_READ(reg);
2711         I915_WRITE(reg, temp | FDI_PCDCLK);
2712
2713         POSTING_READ(reg);
2714         udelay(200);
2715
2716         /* Enable CPU FDI TX PLL, always on for Ironlake */
2717         reg = FDI_TX_CTL(pipe);
2718         temp = I915_READ(reg);
2719         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2720                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2721
2722                 POSTING_READ(reg);
2723                 udelay(100);
2724         }
2725 }
2726
2727 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2728 {
2729         struct drm_i915_private *dev_priv = dev->dev_private;
2730         u32 flags = I915_READ(SOUTH_CHICKEN1);
2731
2732         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2733         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2734         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2735         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2736         POSTING_READ(SOUTH_CHICKEN1);
2737 }
2738 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2739 {
2740         struct drm_device *dev = crtc->dev;
2741         struct drm_i915_private *dev_priv = dev->dev_private;
2742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2743         int pipe = intel_crtc->pipe;
2744         u32 reg, temp;
2745
2746         /* disable CPU FDI tx and PCH FDI rx */
2747         reg = FDI_TX_CTL(pipe);
2748         temp = I915_READ(reg);
2749         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2750         POSTING_READ(reg);
2751
2752         reg = FDI_RX_CTL(pipe);
2753         temp = I915_READ(reg);
2754         temp &= ~(0x7 << 16);
2755         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2756         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2757
2758         POSTING_READ(reg);
2759         udelay(100);
2760
2761         /* Ironlake workaround, disable clock pointer after downing FDI */
2762         if (HAS_PCH_IBX(dev)) {
2763                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2764                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2765                            I915_READ(FDI_RX_CHICKEN(pipe) &
2766                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2767         } else if (HAS_PCH_CPT(dev)) {
2768                 cpt_phase_pointer_disable(dev, pipe);
2769         }
2770
2771         /* still set train pattern 1 */
2772         reg = FDI_TX_CTL(pipe);
2773         temp = I915_READ(reg);
2774         temp &= ~FDI_LINK_TRAIN_NONE;
2775         temp |= FDI_LINK_TRAIN_PATTERN_1;
2776         I915_WRITE(reg, temp);
2777
2778         reg = FDI_RX_CTL(pipe);
2779         temp = I915_READ(reg);
2780         if (HAS_PCH_CPT(dev)) {
2781                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2782                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2783         } else {
2784                 temp &= ~FDI_LINK_TRAIN_NONE;
2785                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2786         }
2787         /* BPC in FDI rx is consistent with that in PIPECONF */
2788         temp &= ~(0x07 << 16);
2789         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2790         I915_WRITE(reg, temp);
2791
2792         POSTING_READ(reg);
2793         udelay(100);
2794 }
2795
2796 /*
2797  * When we disable a pipe, we need to clear any pending scanline wait events
2798  * to avoid hanging the ring, which we assume we are waiting on.
2799  */
2800 static void intel_clear_scanline_wait(struct drm_device *dev)
2801 {
2802         struct drm_i915_private *dev_priv = dev->dev_private;
2803         struct intel_ring_buffer *ring;
2804         u32 tmp;
2805
2806         if (IS_GEN2(dev))
2807                 /* Can't break the hang on i8xx */
2808                 return;
2809
2810         ring = LP_RING(dev_priv);
2811         tmp = I915_READ_CTL(ring);
2812         if (tmp & RING_WAIT)
2813                 I915_WRITE_CTL(ring, tmp);
2814 }
2815
2816 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2817 {
2818         struct drm_i915_gem_object *obj;
2819         struct drm_i915_private *dev_priv;
2820
2821         if (crtc->fb == NULL)
2822                 return;
2823
2824         obj = to_intel_framebuffer(crtc->fb)->obj;
2825         dev_priv = crtc->dev->dev_private;
2826         wait_event(dev_priv->pending_flip_queue,
2827                    atomic_read(&obj->pending_flip) == 0);
2828 }
2829
2830 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2831 {
2832         struct drm_device *dev = crtc->dev;
2833         struct drm_mode_config *mode_config = &dev->mode_config;
2834         struct intel_encoder *encoder;
2835
2836         /*
2837          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2838          * must be driven by its own crtc; no sharing is possible.
2839          */
2840         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2841                 if (encoder->base.crtc != crtc)
2842                         continue;
2843
2844                 switch (encoder->type) {
2845                 case INTEL_OUTPUT_EDP:
2846                         if (!intel_encoder_is_pch_edp(&encoder->base))
2847                                 return false;
2848                         continue;
2849                 }
2850         }
2851
2852         return true;
2853 }
2854
2855 /*
2856  * Enable PCH resources required for PCH ports:
2857  *   - PCH PLLs
2858  *   - FDI training & RX/TX
2859  *   - update transcoder timings
2860  *   - DP transcoding bits
2861  *   - transcoder
2862  */
2863 static void ironlake_pch_enable(struct drm_crtc *crtc)
2864 {
2865         struct drm_device *dev = crtc->dev;
2866         struct drm_i915_private *dev_priv = dev->dev_private;
2867         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2868         int pipe = intel_crtc->pipe;
2869         u32 reg, temp;
2870
2871         /* For PCH output, training FDI link */
2872         dev_priv->display.fdi_link_train(crtc);
2873
2874         intel_enable_pch_pll(dev_priv, pipe);
2875
2876         if (HAS_PCH_CPT(dev)) {
2877                 /* Be sure PCH DPLL SEL is set */
2878                 temp = I915_READ(PCH_DPLL_SEL);
2879                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2880                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2881                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2882                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2883                 I915_WRITE(PCH_DPLL_SEL, temp);
2884         }
2885
2886         /* set transcoder timing, panel must allow it */
2887         assert_panel_unlocked(dev_priv, pipe);
2888         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2889         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2890         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2891
2892         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2893         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2894         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2895
2896         intel_fdi_normal_train(crtc);
2897
2898         /* For PCH DP, enable TRANS_DP_CTL */
2899         if (HAS_PCH_CPT(dev) &&
2900             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2901                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2902                 reg = TRANS_DP_CTL(pipe);
2903                 temp = I915_READ(reg);
2904                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2905                           TRANS_DP_SYNC_MASK |
2906                           TRANS_DP_BPC_MASK);
2907                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2908                          TRANS_DP_ENH_FRAMING);
2909                 temp |= bpc << 9; /* same format but at 11:9 */
2910
2911                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2912                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2913                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2914                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2915
2916                 switch (intel_trans_dp_port_sel(crtc)) {
2917                 case PCH_DP_B:
2918                         temp |= TRANS_DP_PORT_SEL_B;
2919                         break;
2920                 case PCH_DP_C:
2921                         temp |= TRANS_DP_PORT_SEL_C;
2922                         break;
2923                 case PCH_DP_D:
2924                         temp |= TRANS_DP_PORT_SEL_D;
2925                         break;
2926                 default:
2927                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2928                         temp |= TRANS_DP_PORT_SEL_B;
2929                         break;
2930                 }
2931
2932                 I915_WRITE(reg, temp);
2933         }
2934
2935         intel_enable_transcoder(dev_priv, pipe);
2936 }
2937
2938 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2939 {
2940         struct drm_device *dev = crtc->dev;
2941         struct drm_i915_private *dev_priv = dev->dev_private;
2942         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2943         int pipe = intel_crtc->pipe;
2944         int plane = intel_crtc->plane;
2945         u32 temp;
2946         bool is_pch_port;
2947
2948         if (intel_crtc->active)
2949                 return;
2950
2951         intel_crtc->active = true;
2952         intel_update_watermarks(dev);
2953
2954         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2955                 temp = I915_READ(PCH_LVDS);
2956                 if ((temp & LVDS_PORT_EN) == 0)
2957                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2958         }
2959
2960         is_pch_port = intel_crtc_driving_pch(crtc);
2961
2962         if (is_pch_port)
2963                 ironlake_fdi_pll_enable(crtc);
2964         else
2965                 ironlake_fdi_disable(crtc);
2966
2967         /* Enable panel fitting for LVDS */
2968         if (dev_priv->pch_pf_size &&
2969             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2970                 /* Force use of hard-coded filter coefficients
2971                  * as some pre-programmed values are broken,
2972                  * e.g. x201.
2973                  */
2974                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2975                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2976                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2977         }
2978
2979         /*
2980          * On ILK+ LUT must be loaded before the pipe is running but with
2981          * clocks enabled
2982          */
2983         intel_crtc_load_lut(crtc);
2984
2985         intel_enable_pipe(dev_priv, pipe, is_pch_port);
2986         intel_enable_plane(dev_priv, plane, pipe);
2987
2988         if (is_pch_port)
2989                 ironlake_pch_enable(crtc);
2990
2991         mutex_lock(&dev->struct_mutex);
2992         intel_update_fbc(dev);
2993         mutex_unlock(&dev->struct_mutex);
2994
2995         intel_crtc_update_cursor(crtc, true);
2996 }
2997
2998 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2999 {
3000         struct drm_device *dev = crtc->dev;
3001         struct drm_i915_private *dev_priv = dev->dev_private;
3002         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3003         int pipe = intel_crtc->pipe;
3004         int plane = intel_crtc->plane;
3005         u32 reg, temp;
3006
3007         if (!intel_crtc->active)
3008                 return;
3009
3010         intel_crtc_wait_for_pending_flips(crtc);
3011         drm_vblank_off(dev, pipe);
3012         intel_crtc_update_cursor(crtc, false);
3013
3014         intel_disable_plane(dev_priv, plane, pipe);
3015
3016         if (dev_priv->cfb_plane == plane)
3017                 intel_disable_fbc(dev);
3018
3019         intel_disable_pipe(dev_priv, pipe);
3020
3021         /* Disable PF */
3022         I915_WRITE(PF_CTL(pipe), 0);
3023         I915_WRITE(PF_WIN_SZ(pipe), 0);
3024
3025         ironlake_fdi_disable(crtc);
3026
3027         /* This is a horrible layering violation; we should be doing this in
3028          * the connector/encoder ->prepare instead, but we don't always have
3029          * enough information there about the config to know whether it will
3030          * actually be necessary or just cause undesired flicker.
3031          */
3032         intel_disable_pch_ports(dev_priv, pipe);
3033
3034         intel_disable_transcoder(dev_priv, pipe);
3035
3036         if (HAS_PCH_CPT(dev)) {
3037                 /* disable TRANS_DP_CTL */
3038                 reg = TRANS_DP_CTL(pipe);
3039                 temp = I915_READ(reg);
3040                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3041                 temp |= TRANS_DP_PORT_SEL_NONE;
3042                 I915_WRITE(reg, temp);
3043
3044                 /* disable DPLL_SEL */
3045                 temp = I915_READ(PCH_DPLL_SEL);
3046                 switch (pipe) {
3047                 case 0:
3048                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3049                         break;
3050                 case 1:
3051                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3052                         break;
3053                 case 2:
3054                         /* FIXME: manage transcoder PLLs? */
3055                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3056                         break;
3057                 default:
3058                         BUG(); /* wtf */
3059                 }
3060                 I915_WRITE(PCH_DPLL_SEL, temp);
3061         }
3062
3063         /* disable PCH DPLL */
3064         intel_disable_pch_pll(dev_priv, pipe);
3065
3066         /* Switch from PCDclk to Rawclk */
3067         reg = FDI_RX_CTL(pipe);
3068         temp = I915_READ(reg);
3069         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3070
3071         /* Disable CPU FDI TX PLL */
3072         reg = FDI_TX_CTL(pipe);
3073         temp = I915_READ(reg);
3074         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3075
3076         POSTING_READ(reg);
3077         udelay(100);
3078
3079         reg = FDI_RX_CTL(pipe);
3080         temp = I915_READ(reg);
3081         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3082
3083         /* Wait for the clocks to turn off. */
3084         POSTING_READ(reg);
3085         udelay(100);
3086
3087         intel_crtc->active = false;
3088         intel_update_watermarks(dev);
3089
3090         mutex_lock(&dev->struct_mutex);
3091         intel_update_fbc(dev);
3092         intel_clear_scanline_wait(dev);
3093         mutex_unlock(&dev->struct_mutex);
3094 }
3095
3096 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3097 {
3098         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3099         int pipe = intel_crtc->pipe;
3100         int plane = intel_crtc->plane;
3101
3102         /* XXX: When our outputs are all unaware of DPMS modes other than off
3103          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3104          */
3105         switch (mode) {
3106         case DRM_MODE_DPMS_ON:
3107         case DRM_MODE_DPMS_STANDBY:
3108         case DRM_MODE_DPMS_SUSPEND:
3109                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3110                 ironlake_crtc_enable(crtc);
3111                 break;
3112
3113         case DRM_MODE_DPMS_OFF:
3114                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3115                 ironlake_crtc_disable(crtc);
3116                 break;
3117         }
3118 }
3119
3120 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3121 {
3122         if (!enable && intel_crtc->overlay) {
3123                 struct drm_device *dev = intel_crtc->base.dev;
3124                 struct drm_i915_private *dev_priv = dev->dev_private;
3125
3126                 mutex_lock(&dev->struct_mutex);
3127                 dev_priv->mm.interruptible = false;
3128                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3129                 dev_priv->mm.interruptible = true;
3130                 mutex_unlock(&dev->struct_mutex);
3131         }
3132
3133         /* Let userspace switch the overlay on again. In most cases userspace
3134          * has to recompute where to put it anyway.
3135          */
3136 }
3137
3138 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3139 {
3140         struct drm_device *dev = crtc->dev;
3141         struct drm_i915_private *dev_priv = dev->dev_private;
3142         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3143         int pipe = intel_crtc->pipe;
3144         int plane = intel_crtc->plane;
3145
3146         if (intel_crtc->active)
3147                 return;
3148
3149         intel_crtc->active = true;
3150         intel_update_watermarks(dev);
3151
3152         intel_enable_pll(dev_priv, pipe);
3153         intel_enable_pipe(dev_priv, pipe, false);
3154         intel_enable_plane(dev_priv, plane, pipe);
3155
3156         intel_crtc_load_lut(crtc);
3157         intel_update_fbc(dev);
3158
3159         /* Give the overlay scaler a chance to enable if it's on this pipe */
3160         intel_crtc_dpms_overlay(intel_crtc, true);
3161         intel_crtc_update_cursor(crtc, true);
3162 }
3163
3164 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3165 {
3166         struct drm_device *dev = crtc->dev;
3167         struct drm_i915_private *dev_priv = dev->dev_private;
3168         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3169         int pipe = intel_crtc->pipe;
3170         int plane = intel_crtc->plane;
3171
3172         if (!intel_crtc->active)
3173                 return;
3174
3175         /* Give the overlay scaler a chance to disable if it's on this pipe */
3176         intel_crtc_wait_for_pending_flips(crtc);
3177         drm_vblank_off(dev, pipe);
3178         intel_crtc_dpms_overlay(intel_crtc, false);
3179         intel_crtc_update_cursor(crtc, false);
3180
3181         if (dev_priv->cfb_plane == plane)
3182                 intel_disable_fbc(dev);
3183
3184         intel_disable_plane(dev_priv, plane, pipe);
3185         intel_disable_pipe(dev_priv, pipe);
3186         intel_disable_pll(dev_priv, pipe);
3187
3188         intel_crtc->active = false;
3189         intel_update_fbc(dev);
3190         intel_update_watermarks(dev);
3191         intel_clear_scanline_wait(dev);
3192 }
3193
3194 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3195 {
3196         /* XXX: When our outputs are all unaware of DPMS modes other than off
3197          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3198          */
3199         switch (mode) {
3200         case DRM_MODE_DPMS_ON:
3201         case DRM_MODE_DPMS_STANDBY:
3202         case DRM_MODE_DPMS_SUSPEND:
3203                 i9xx_crtc_enable(crtc);
3204                 break;
3205         case DRM_MODE_DPMS_OFF:
3206                 i9xx_crtc_disable(crtc);
3207                 break;
3208         }
3209 }
3210
3211 /**
3212  * Sets the power management mode of the pipe and plane.
3213  */
3214 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3215 {
3216         struct drm_device *dev = crtc->dev;
3217         struct drm_i915_private *dev_priv = dev->dev_private;
3218         struct drm_i915_master_private *master_priv;
3219         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3220         int pipe = intel_crtc->pipe;
3221         bool enabled;
3222
3223         if (intel_crtc->dpms_mode == mode)
3224                 return;
3225
3226         intel_crtc->dpms_mode = mode;
3227
3228         dev_priv->display.dpms(crtc, mode);
3229
3230         if (!dev->primary->master)
3231                 return;
3232
3233         master_priv = dev->primary->master->driver_priv;
3234         if (!master_priv->sarea_priv)
3235                 return;
3236
3237         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3238
3239         switch (pipe) {
3240         case 0:
3241                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3242                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3243                 break;
3244         case 1:
3245                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3246                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3247                 break;
3248         default:
3249                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3250                 break;
3251         }
3252 }
3253
3254 static void intel_crtc_disable(struct drm_crtc *crtc)
3255 {
3256         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3257         struct drm_device *dev = crtc->dev;
3258
3259         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3260
3261         if (crtc->fb) {
3262                 mutex_lock(&dev->struct_mutex);
3263                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3264                 mutex_unlock(&dev->struct_mutex);
3265         }
3266 }
3267
3268 /* Prepare for a mode set.
3269  *
3270  * Note we could be a lot smarter here.  We need to figure out which outputs
3271  * will be enabled, which disabled (in short, how the config will changes)
3272  * and perform the minimum necessary steps to accomplish that, e.g. updating
3273  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3274  * panel fitting is in the proper state, etc.
3275  */
3276 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3277 {
3278         i9xx_crtc_disable(crtc);
3279 }
3280
3281 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3282 {
3283         i9xx_crtc_enable(crtc);
3284 }
3285
3286 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3287 {
3288         ironlake_crtc_disable(crtc);
3289 }
3290
3291 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3292 {
3293         ironlake_crtc_enable(crtc);
3294 }
3295
3296 void intel_encoder_prepare (struct drm_encoder *encoder)
3297 {
3298         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3299         /* lvds has its own version of prepare see intel_lvds_prepare */
3300         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3301 }
3302
3303 void intel_encoder_commit (struct drm_encoder *encoder)
3304 {
3305         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3306         /* lvds has its own version of commit see intel_lvds_commit */
3307         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3308 }
3309
3310 void intel_encoder_destroy(struct drm_encoder *encoder)
3311 {
3312         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3313
3314         drm_encoder_cleanup(encoder);
3315         kfree(intel_encoder);
3316 }
3317
3318 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3319                                   struct drm_display_mode *mode,
3320                                   struct drm_display_mode *adjusted_mode)
3321 {
3322         struct drm_device *dev = crtc->dev;
3323
3324         if (HAS_PCH_SPLIT(dev)) {
3325                 /* FDI link clock is fixed at 2.7G */
3326                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3327                         return false;
3328         }
3329
3330         /* XXX some encoders set the crtcinfo, others don't.
3331          * Obviously we need some form of conflict resolution here...
3332          */
3333         if (adjusted_mode->crtc_htotal == 0)
3334                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3335
3336         return true;
3337 }
3338
3339 static int i945_get_display_clock_speed(struct drm_device *dev)
3340 {
3341         return 400000;
3342 }
3343
3344 static int i915_get_display_clock_speed(struct drm_device *dev)
3345 {
3346         return 333000;
3347 }
3348
3349 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3350 {
3351         return 200000;
3352 }
3353
3354 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3355 {
3356         u16 gcfgc = 0;
3357
3358         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3359
3360         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3361                 return 133000;
3362         else {
3363                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3364                 case GC_DISPLAY_CLOCK_333_MHZ:
3365                         return 333000;
3366                 default:
3367                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3368                         return 190000;
3369                 }
3370         }
3371 }
3372
3373 static int i865_get_display_clock_speed(struct drm_device *dev)
3374 {
3375         return 266000;
3376 }
3377
3378 static int i855_get_display_clock_speed(struct drm_device *dev)
3379 {
3380         u16 hpllcc = 0;
3381         /* Assume that the hardware is in the high speed state.  This
3382          * should be the default.
3383          */
3384         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3385         case GC_CLOCK_133_200:
3386         case GC_CLOCK_100_200:
3387                 return 200000;
3388         case GC_CLOCK_166_250:
3389                 return 250000;
3390         case GC_CLOCK_100_133:
3391                 return 133000;
3392         }
3393
3394         /* Shouldn't happen */
3395         return 0;
3396 }
3397
3398 static int i830_get_display_clock_speed(struct drm_device *dev)
3399 {
3400         return 133000;
3401 }
3402
3403 struct fdi_m_n {
3404         u32        tu;
3405         u32        gmch_m;
3406         u32        gmch_n;
3407         u32        link_m;
3408         u32        link_n;
3409 };
3410
3411 static void
3412 fdi_reduce_ratio(u32 *num, u32 *den)
3413 {
3414         while (*num > 0xffffff || *den > 0xffffff) {
3415                 *num >>= 1;
3416                 *den >>= 1;
3417         }
3418 }
3419
3420 static void
3421 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3422                      int link_clock, struct fdi_m_n *m_n)
3423 {
3424         m_n->tu = 64; /* default size */
3425
3426         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3427         m_n->gmch_m = bits_per_pixel * pixel_clock;
3428         m_n->gmch_n = link_clock * nlanes * 8;
3429         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3430
3431         m_n->link_m = pixel_clock;
3432         m_n->link_n = link_clock;
3433         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3434 }
3435
3436
3437 struct intel_watermark_params {
3438         unsigned long fifo_size;
3439         unsigned long max_wm;
3440         unsigned long default_wm;
3441         unsigned long guard_size;
3442         unsigned long cacheline_size;
3443 };
3444
3445 /* Pineview has different values for various configs */
3446 static const struct intel_watermark_params pineview_display_wm = {
3447         PINEVIEW_DISPLAY_FIFO,
3448         PINEVIEW_MAX_WM,
3449         PINEVIEW_DFT_WM,
3450         PINEVIEW_GUARD_WM,
3451         PINEVIEW_FIFO_LINE_SIZE
3452 };
3453 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3454         PINEVIEW_DISPLAY_FIFO,
3455         PINEVIEW_MAX_WM,
3456         PINEVIEW_DFT_HPLLOFF_WM,
3457         PINEVIEW_GUARD_WM,
3458         PINEVIEW_FIFO_LINE_SIZE
3459 };
3460 static const struct intel_watermark_params pineview_cursor_wm = {
3461         PINEVIEW_CURSOR_FIFO,
3462         PINEVIEW_CURSOR_MAX_WM,
3463         PINEVIEW_CURSOR_DFT_WM,
3464         PINEVIEW_CURSOR_GUARD_WM,
3465         PINEVIEW_FIFO_LINE_SIZE,
3466 };
3467 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3468         PINEVIEW_CURSOR_FIFO,
3469         PINEVIEW_CURSOR_MAX_WM,
3470         PINEVIEW_CURSOR_DFT_WM,
3471         PINEVIEW_CURSOR_GUARD_WM,
3472         PINEVIEW_FIFO_LINE_SIZE
3473 };
3474 static const struct intel_watermark_params g4x_wm_info = {
3475         G4X_FIFO_SIZE,
3476         G4X_MAX_WM,
3477         G4X_MAX_WM,
3478         2,
3479         G4X_FIFO_LINE_SIZE,
3480 };
3481 static const struct intel_watermark_params g4x_cursor_wm_info = {
3482         I965_CURSOR_FIFO,
3483         I965_CURSOR_MAX_WM,
3484         I965_CURSOR_DFT_WM,
3485         2,
3486         G4X_FIFO_LINE_SIZE,
3487 };
3488 static const struct intel_watermark_params i965_cursor_wm_info = {
3489         I965_CURSOR_FIFO,
3490         I965_CURSOR_MAX_WM,
3491         I965_CURSOR_DFT_WM,
3492         2,
3493         I915_FIFO_LINE_SIZE,
3494 };
3495 static const struct intel_watermark_params i945_wm_info = {
3496         I945_FIFO_SIZE,
3497         I915_MAX_WM,
3498         1,
3499         2,
3500         I915_FIFO_LINE_SIZE
3501 };
3502 static const struct intel_watermark_params i915_wm_info = {
3503         I915_FIFO_SIZE,
3504         I915_MAX_WM,
3505         1,
3506         2,
3507         I915_FIFO_LINE_SIZE
3508 };
3509 static const struct intel_watermark_params i855_wm_info = {
3510         I855GM_FIFO_SIZE,
3511         I915_MAX_WM,
3512         1,
3513         2,
3514         I830_FIFO_LINE_SIZE
3515 };
3516 static const struct intel_watermark_params i830_wm_info = {
3517         I830_FIFO_SIZE,
3518         I915_MAX_WM,
3519         1,
3520         2,
3521         I830_FIFO_LINE_SIZE
3522 };
3523
3524 static const struct intel_watermark_params ironlake_display_wm_info = {
3525         ILK_DISPLAY_FIFO,
3526         ILK_DISPLAY_MAXWM,
3527         ILK_DISPLAY_DFTWM,
3528         2,
3529         ILK_FIFO_LINE_SIZE
3530 };
3531 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3532         ILK_CURSOR_FIFO,
3533         ILK_CURSOR_MAXWM,
3534         ILK_CURSOR_DFTWM,
3535         2,
3536         ILK_FIFO_LINE_SIZE
3537 };
3538 static const struct intel_watermark_params ironlake_display_srwm_info = {
3539         ILK_DISPLAY_SR_FIFO,
3540         ILK_DISPLAY_MAX_SRWM,
3541         ILK_DISPLAY_DFT_SRWM,
3542         2,
3543         ILK_FIFO_LINE_SIZE
3544 };
3545 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3546         ILK_CURSOR_SR_FIFO,
3547         ILK_CURSOR_MAX_SRWM,
3548         ILK_CURSOR_DFT_SRWM,
3549         2,
3550         ILK_FIFO_LINE_SIZE
3551 };
3552
3553 static const struct intel_watermark_params sandybridge_display_wm_info = {
3554         SNB_DISPLAY_FIFO,
3555         SNB_DISPLAY_MAXWM,
3556         SNB_DISPLAY_DFTWM,
3557         2,
3558         SNB_FIFO_LINE_SIZE
3559 };
3560 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3561         SNB_CURSOR_FIFO,
3562         SNB_CURSOR_MAXWM,
3563         SNB_CURSOR_DFTWM,
3564         2,
3565         SNB_FIFO_LINE_SIZE
3566 };
3567 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3568         SNB_DISPLAY_SR_FIFO,
3569         SNB_DISPLAY_MAX_SRWM,
3570         SNB_DISPLAY_DFT_SRWM,
3571         2,
3572         SNB_FIFO_LINE_SIZE
3573 };
3574 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3575         SNB_CURSOR_SR_FIFO,
3576         SNB_CURSOR_MAX_SRWM,
3577         SNB_CURSOR_DFT_SRWM,
3578         2,
3579         SNB_FIFO_LINE_SIZE
3580 };
3581
3582
3583 /**
3584  * intel_calculate_wm - calculate watermark level
3585  * @clock_in_khz: pixel clock
3586  * @wm: chip FIFO params
3587  * @pixel_size: display pixel size
3588  * @latency_ns: memory latency for the platform
3589  *
3590  * Calculate the watermark level (the level at which the display plane will
3591  * start fetching from memory again).  Each chip has a different display
3592  * FIFO size and allocation, so the caller needs to figure that out and pass
3593  * in the correct intel_watermark_params structure.
3594  *
3595  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3596  * on the pixel size.  When it reaches the watermark level, it'll start
3597  * fetching FIFO line sized based chunks from memory until the FIFO fills
3598  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3599  * will occur, and a display engine hang could result.
3600  */
3601 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3602                                         const struct intel_watermark_params *wm,
3603                                         int fifo_size,
3604                                         int pixel_size,
3605                                         unsigned long latency_ns)
3606 {
3607         long entries_required, wm_size;
3608
3609         /*
3610          * Note: we need to make sure we don't overflow for various clock &
3611          * latency values.
3612          * clocks go from a few thousand to several hundred thousand.
3613          * latency is usually a few thousand
3614          */
3615         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3616                 1000;
3617         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3618
3619         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3620
3621         wm_size = fifo_size - (entries_required + wm->guard_size);
3622
3623         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3624
3625         /* Don't promote wm_size to unsigned... */
3626         if (wm_size > (long)wm->max_wm)
3627                 wm_size = wm->max_wm;
3628         if (wm_size <= 0)
3629                 wm_size = wm->default_wm;
3630         return wm_size;
3631 }
3632
3633 struct cxsr_latency {
3634         int is_desktop;
3635         int is_ddr3;
3636         unsigned long fsb_freq;
3637         unsigned long mem_freq;
3638         unsigned long display_sr;
3639         unsigned long display_hpll_disable;
3640         unsigned long cursor_sr;
3641         unsigned long cursor_hpll_disable;
3642 };
3643
3644 static const struct cxsr_latency cxsr_latency_table[] = {
3645         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3646         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3647         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3648         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3649         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3650
3651         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3652         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3653         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3654         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3655         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3656
3657         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3658         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3659         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3660         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3661         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3662
3663         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3664         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3665         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3666         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3667         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3668
3669         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3670         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3671         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3672         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3673         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3674
3675         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3676         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3677         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3678         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3679         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3680 };
3681
3682 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3683                                                          int is_ddr3,
3684                                                          int fsb,
3685                                                          int mem)
3686 {
3687         const struct cxsr_latency *latency;
3688         int i;
3689
3690         if (fsb == 0 || mem == 0)
3691                 return NULL;
3692
3693         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3694                 latency = &cxsr_latency_table[i];
3695                 if (is_desktop == latency->is_desktop &&
3696                     is_ddr3 == latency->is_ddr3 &&
3697                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3698                         return latency;
3699         }
3700
3701         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3702
3703         return NULL;
3704 }
3705
3706 static void pineview_disable_cxsr(struct drm_device *dev)
3707 {
3708         struct drm_i915_private *dev_priv = dev->dev_private;
3709
3710         /* deactivate cxsr */
3711         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3712 }
3713
3714 /*
3715  * Latency for FIFO fetches is dependent on several factors:
3716  *   - memory configuration (speed, channels)
3717  *   - chipset
3718  *   - current MCH state
3719  * It can be fairly high in some situations, so here we assume a fairly
3720  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3721  * set this value too high, the FIFO will fetch frequently to stay full)
3722  * and power consumption (set it too low to save power and we might see
3723  * FIFO underruns and display "flicker").
3724  *
3725  * A value of 5us seems to be a good balance; safe for very low end
3726  * platforms but not overly aggressive on lower latency configs.
3727  */
3728 static const int latency_ns = 5000;
3729
3730 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3731 {
3732         struct drm_i915_private *dev_priv = dev->dev_private;
3733         uint32_t dsparb = I915_READ(DSPARB);
3734         int size;
3735
3736         size = dsparb & 0x7f;
3737         if (plane)
3738                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3739
3740         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3741                       plane ? "B" : "A", size);
3742
3743         return size;
3744 }
3745
3746 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3747 {
3748         struct drm_i915_private *dev_priv = dev->dev_private;
3749         uint32_t dsparb = I915_READ(DSPARB);
3750         int size;
3751
3752         size = dsparb & 0x1ff;
3753         if (plane)
3754                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3755         size >>= 1; /* Convert to cachelines */
3756
3757         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3758                       plane ? "B" : "A", size);
3759
3760         return size;
3761 }
3762
3763 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3764 {
3765         struct drm_i915_private *dev_priv = dev->dev_private;
3766         uint32_t dsparb = I915_READ(DSPARB);
3767         int size;
3768
3769         size = dsparb & 0x7f;
3770         size >>= 2; /* Convert to cachelines */
3771
3772         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3773                       plane ? "B" : "A",
3774                       size);
3775
3776         return size;
3777 }
3778
3779 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3780 {
3781         struct drm_i915_private *dev_priv = dev->dev_private;
3782         uint32_t dsparb = I915_READ(DSPARB);
3783         int size;
3784
3785         size = dsparb & 0x7f;
3786         size >>= 1; /* Convert to cachelines */
3787
3788         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3789                       plane ? "B" : "A", size);
3790
3791         return size;
3792 }
3793
3794 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3795 {
3796         struct drm_crtc *crtc, *enabled = NULL;
3797
3798         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3799                 if (crtc->enabled && crtc->fb) {
3800                         if (enabled)
3801                                 return NULL;
3802                         enabled = crtc;
3803                 }
3804         }
3805
3806         return enabled;
3807 }
3808
3809 static void pineview_update_wm(struct drm_device *dev)
3810 {
3811         struct drm_i915_private *dev_priv = dev->dev_private;
3812         struct drm_crtc *crtc;
3813         const struct cxsr_latency *latency;
3814         u32 reg;
3815         unsigned long wm;
3816
3817         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3818                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3819         if (!latency) {
3820                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3821                 pineview_disable_cxsr(dev);
3822                 return;
3823         }
3824
3825         crtc = single_enabled_crtc(dev);
3826         if (crtc) {
3827                 int clock = crtc->mode.clock;
3828                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3829
3830                 /* Display SR */
3831                 wm = intel_calculate_wm(clock, &pineview_display_wm,
3832                                         pineview_display_wm.fifo_size,
3833                                         pixel_size, latency->display_sr);
3834                 reg = I915_READ(DSPFW1);
3835                 reg &= ~DSPFW_SR_MASK;
3836                 reg |= wm << DSPFW_SR_SHIFT;
3837                 I915_WRITE(DSPFW1, reg);
3838                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3839
3840                 /* cursor SR */
3841                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3842                                         pineview_display_wm.fifo_size,
3843                                         pixel_size, latency->cursor_sr);
3844                 reg = I915_READ(DSPFW3);
3845                 reg &= ~DSPFW_CURSOR_SR_MASK;
3846                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3847                 I915_WRITE(DSPFW3, reg);
3848
3849                 /* Display HPLL off SR */
3850                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3851                                         pineview_display_hplloff_wm.fifo_size,
3852                                         pixel_size, latency->display_hpll_disable);
3853                 reg = I915_READ(DSPFW3);
3854                 reg &= ~DSPFW_HPLL_SR_MASK;
3855                 reg |= wm & DSPFW_HPLL_SR_MASK;
3856                 I915_WRITE(DSPFW3, reg);
3857
3858                 /* cursor HPLL off SR */
3859                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3860                                         pineview_display_hplloff_wm.fifo_size,
3861                                         pixel_size, latency->cursor_hpll_disable);
3862                 reg = I915_READ(DSPFW3);
3863                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3864                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3865                 I915_WRITE(DSPFW3, reg);
3866                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3867
3868                 /* activate cxsr */
3869                 I915_WRITE(DSPFW3,
3870                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3871                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3872         } else {
3873                 pineview_disable_cxsr(dev);
3874                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3875         }
3876 }
3877
3878 static bool g4x_compute_wm0(struct drm_device *dev,
3879                             int plane,
3880                             const struct intel_watermark_params *display,
3881                             int display_latency_ns,
3882                             const struct intel_watermark_params *cursor,
3883                             int cursor_latency_ns,
3884                             int *plane_wm,
3885                             int *cursor_wm)
3886 {
3887         struct drm_crtc *crtc;
3888         int htotal, hdisplay, clock, pixel_size;
3889         int line_time_us, line_count;
3890         int entries, tlb_miss;
3891
3892         crtc = intel_get_crtc_for_plane(dev, plane);
3893         if (crtc->fb == NULL || !crtc->enabled) {
3894                 *cursor_wm = cursor->guard_size;
3895                 *plane_wm = display->guard_size;
3896                 return false;
3897         }
3898
3899         htotal = crtc->mode.htotal;
3900         hdisplay = crtc->mode.hdisplay;
3901         clock = crtc->mode.clock;
3902         pixel_size = crtc->fb->bits_per_pixel / 8;
3903
3904         /* Use the small buffer method to calculate plane watermark */
3905         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3906         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3907         if (tlb_miss > 0)
3908                 entries += tlb_miss;
3909         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3910         *plane_wm = entries + display->guard_size;
3911         if (*plane_wm > (int)display->max_wm)
3912                 *plane_wm = display->max_wm;
3913
3914         /* Use the large buffer method to calculate cursor watermark */
3915         line_time_us = ((htotal * 1000) / clock);
3916         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3917         entries = line_count * 64 * pixel_size;
3918         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3919         if (tlb_miss > 0)
3920                 entries += tlb_miss;
3921         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3922         *cursor_wm = entries + cursor->guard_size;
3923         if (*cursor_wm > (int)cursor->max_wm)
3924                 *cursor_wm = (int)cursor->max_wm;
3925
3926         return true;
3927 }
3928
3929 /*
3930  * Check the wm result.
3931  *
3932  * If any calculated watermark values is larger than the maximum value that
3933  * can be programmed into the associated watermark register, that watermark
3934  * must be disabled.
3935  */
3936 static bool g4x_check_srwm(struct drm_device *dev,
3937                            int display_wm, int cursor_wm,
3938                            const struct intel_watermark_params *display,
3939                            const struct intel_watermark_params *cursor)
3940 {
3941         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3942                       display_wm, cursor_wm);
3943
3944         if (display_wm > display->max_wm) {
3945                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3946                               display_wm, display->max_wm);
3947                 return false;
3948         }
3949
3950         if (cursor_wm > cursor->max_wm) {
3951                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3952                               cursor_wm, cursor->max_wm);
3953                 return false;
3954         }
3955
3956         if (!(display_wm || cursor_wm)) {
3957                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3958                 return false;
3959         }
3960
3961         return true;
3962 }
3963
3964 static bool g4x_compute_srwm(struct drm_device *dev,
3965                              int plane,
3966                              int latency_ns,
3967                              const struct intel_watermark_params *display,
3968                              const struct intel_watermark_params *cursor,
3969                              int *display_wm, int *cursor_wm)
3970 {
3971         struct drm_crtc *crtc;
3972         int hdisplay, htotal, pixel_size, clock;
3973         unsigned long line_time_us;
3974         int line_count, line_size;
3975         int small, large;
3976         int entries;
3977
3978         if (!latency_ns) {
3979                 *display_wm = *cursor_wm = 0;
3980                 return false;
3981         }
3982
3983         crtc = intel_get_crtc_for_plane(dev, plane);
3984         hdisplay = crtc->mode.hdisplay;
3985         htotal = crtc->mode.htotal;
3986         clock = crtc->mode.clock;
3987         pixel_size = crtc->fb->bits_per_pixel / 8;
3988
3989         line_time_us = (htotal * 1000) / clock;
3990         line_count = (latency_ns / line_time_us + 1000) / 1000;
3991         line_size = hdisplay * pixel_size;
3992
3993         /* Use the minimum of the small and large buffer method for primary */
3994         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3995         large = line_count * line_size;
3996
3997         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3998         *display_wm = entries + display->guard_size;
3999
4000         /* calculate the self-refresh watermark for display cursor */
4001         entries = line_count * pixel_size * 64;
4002         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4003         *cursor_wm = entries + cursor->guard_size;
4004
4005         return g4x_check_srwm(dev,
4006                               *display_wm, *cursor_wm,
4007                               display, cursor);
4008 }
4009
4010 #define single_plane_enabled(mask) is_power_of_2(mask)
4011
4012 static void g4x_update_wm(struct drm_device *dev)
4013 {
4014         static const int sr_latency_ns = 12000;
4015         struct drm_i915_private *dev_priv = dev->dev_private;
4016         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4017         int plane_sr, cursor_sr;
4018         unsigned int enabled = 0;
4019
4020         if (g4x_compute_wm0(dev, 0,
4021                             &g4x_wm_info, latency_ns,
4022                             &g4x_cursor_wm_info, latency_ns,
4023                             &planea_wm, &cursora_wm))
4024                 enabled |= 1;
4025
4026         if (g4x_compute_wm0(dev, 1,
4027                             &g4x_wm_info, latency_ns,
4028                             &g4x_cursor_wm_info, latency_ns,
4029                             &planeb_wm, &cursorb_wm))
4030                 enabled |= 2;
4031
4032         plane_sr = cursor_sr = 0;
4033         if (single_plane_enabled(enabled) &&
4034             g4x_compute_srwm(dev, ffs(enabled) - 1,
4035                              sr_latency_ns,
4036                              &g4x_wm_info,
4037                              &g4x_cursor_wm_info,
4038                              &plane_sr, &cursor_sr))
4039                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4040         else
4041                 I915_WRITE(FW_BLC_SELF,
4042                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4043
4044         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4045                       planea_wm, cursora_wm,
4046                       planeb_wm, cursorb_wm,
4047                       plane_sr, cursor_sr);
4048
4049         I915_WRITE(DSPFW1,
4050                    (plane_sr << DSPFW_SR_SHIFT) |
4051                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4052                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
4053                    planea_wm);
4054         I915_WRITE(DSPFW2,
4055                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4056                    (cursora_wm << DSPFW_CURSORA_SHIFT));
4057         /* HPLL off in SR has some issues on G4x... disable it */
4058         I915_WRITE(DSPFW3,
4059                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4060                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4061 }
4062
4063 static void i965_update_wm(struct drm_device *dev)
4064 {
4065         struct drm_i915_private *dev_priv = dev->dev_private;
4066         struct drm_crtc *crtc;
4067         int srwm = 1;
4068         int cursor_sr = 16;
4069
4070         /* Calc sr entries for one plane configs */
4071         crtc = single_enabled_crtc(dev);
4072         if (crtc) {
4073                 /* self-refresh has much higher latency */
4074                 static const int sr_latency_ns = 12000;
4075                 int clock = crtc->mode.clock;
4076                 int htotal = crtc->mode.htotal;
4077                 int hdisplay = crtc->mode.hdisplay;
4078                 int pixel_size = crtc->fb->bits_per_pixel / 8;
4079                 unsigned long line_time_us;
4080                 int entries;
4081
4082                 line_time_us = ((htotal * 1000) / clock);
4083
4084                 /* Use ns/us then divide to preserve precision */
4085                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4086                         pixel_size * hdisplay;
4087                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4088                 srwm = I965_FIFO_SIZE - entries;
4089                 if (srwm < 0)
4090                         srwm = 1;
4091                 srwm &= 0x1ff;
4092                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4093                               entries, srwm);
4094
4095                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4096                         pixel_size * 64;
4097                 entries = DIV_ROUND_UP(entries,
4098                                           i965_cursor_wm_info.cacheline_size);
4099                 cursor_sr = i965_cursor_wm_info.fifo_size -
4100                         (entries + i965_cursor_wm_info.guard_size);
4101
4102                 if (cursor_sr > i965_cursor_wm_info.max_wm)
4103                         cursor_sr = i965_cursor_wm_info.max_wm;
4104
4105                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4106                               "cursor %d\n", srwm, cursor_sr);
4107
4108                 if (IS_CRESTLINE(dev))
4109                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4110         } else {
4111                 /* Turn off self refresh if both pipes are enabled */
4112                 if (IS_CRESTLINE(dev))
4113                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4114                                    & ~FW_BLC_SELF_EN);
4115         }
4116
4117         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4118                       srwm);
4119
4120         /* 965 has limitations... */
4121         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4122                    (8 << 16) | (8 << 8) | (8 << 0));
4123         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4124         /* update cursor SR watermark */
4125         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4126 }
4127
4128 static void i9xx_update_wm(struct drm_device *dev)
4129 {
4130         struct drm_i915_private *dev_priv = dev->dev_private;
4131         const struct intel_watermark_params *wm_info;
4132         uint32_t fwater_lo;
4133         uint32_t fwater_hi;
4134         int cwm, srwm = 1;
4135         int fifo_size;
4136         int planea_wm, planeb_wm;
4137         struct drm_crtc *crtc, *enabled = NULL;
4138
4139         if (IS_I945GM(dev))
4140                 wm_info = &i945_wm_info;
4141         else if (!IS_GEN2(dev))
4142                 wm_info = &i915_wm_info;
4143         else
4144                 wm_info = &i855_wm_info;
4145
4146         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4147         crtc = intel_get_crtc_for_plane(dev, 0);
4148         if (crtc->enabled && crtc->fb) {
4149                 planea_wm = intel_calculate_wm(crtc->mode.clock,
4150                                                wm_info, fifo_size,
4151                                                crtc->fb->bits_per_pixel / 8,
4152                                                latency_ns);
4153                 enabled = crtc;
4154         } else
4155                 planea_wm = fifo_size - wm_info->guard_size;
4156
4157         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4158         crtc = intel_get_crtc_for_plane(dev, 1);
4159         if (crtc->enabled && crtc->fb) {
4160                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4161                                                wm_info, fifo_size,
4162                                                crtc->fb->bits_per_pixel / 8,
4163                                                latency_ns);
4164                 if (enabled == NULL)
4165                         enabled = crtc;
4166                 else
4167                         enabled = NULL;
4168         } else
4169                 planeb_wm = fifo_size - wm_info->guard_size;
4170
4171         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4172
4173         /*
4174          * Overlay gets an aggressive default since video jitter is bad.
4175          */
4176         cwm = 2;
4177
4178         /* Play safe and disable self-refresh before adjusting watermarks. */
4179         if (IS_I945G(dev) || IS_I945GM(dev))
4180                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4181         else if (IS_I915GM(dev))
4182                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4183
4184         /* Calc sr entries for one plane configs */
4185         if (HAS_FW_BLC(dev) && enabled) {
4186                 /* self-refresh has much higher latency */
4187                 static const int sr_latency_ns = 6000;
4188                 int clock = enabled->mode.clock;
4189                 int htotal = enabled->mode.htotal;
4190                 int hdisplay = enabled->mode.hdisplay;
4191                 int pixel_size = enabled->fb->bits_per_pixel / 8;
4192                 unsigned long line_time_us;
4193                 int entries;
4194
4195                 line_time_us = (htotal * 1000) / clock;
4196
4197                 /* Use ns/us then divide to preserve precision */
4198                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4199                         pixel_size * hdisplay;
4200                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4201                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4202                 srwm = wm_info->fifo_size - entries;
4203                 if (srwm < 0)
4204                         srwm = 1;
4205
4206                 if (IS_I945G(dev) || IS_I945GM(dev))
4207                         I915_WRITE(FW_BLC_SELF,
4208                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4209                 else if (IS_I915GM(dev))
4210                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4211         }
4212
4213         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4214                       planea_wm, planeb_wm, cwm, srwm);
4215
4216         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4217         fwater_hi = (cwm & 0x1f);
4218
4219         /* Set request length to 8 cachelines per fetch */
4220         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4221         fwater_hi = fwater_hi | (1 << 8);
4222
4223         I915_WRITE(FW_BLC, fwater_lo);
4224         I915_WRITE(FW_BLC2, fwater_hi);
4225
4226         if (HAS_FW_BLC(dev)) {
4227                 if (enabled) {
4228                         if (IS_I945G(dev) || IS_I945GM(dev))
4229                                 I915_WRITE(FW_BLC_SELF,
4230                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4231                         else if (IS_I915GM(dev))
4232                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4233                         DRM_DEBUG_KMS("memory self refresh enabled\n");
4234                 } else
4235                         DRM_DEBUG_KMS("memory self refresh disabled\n");
4236         }
4237 }
4238
4239 static void i830_update_wm(struct drm_device *dev)
4240 {
4241         struct drm_i915_private *dev_priv = dev->dev_private;
4242         struct drm_crtc *crtc;
4243         uint32_t fwater_lo;
4244         int planea_wm;
4245
4246         crtc = single_enabled_crtc(dev);
4247         if (crtc == NULL)
4248                 return;
4249
4250         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4251                                        dev_priv->display.get_fifo_size(dev, 0),
4252                                        crtc->fb->bits_per_pixel / 8,
4253                                        latency_ns);
4254         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4255         fwater_lo |= (3<<8) | planea_wm;
4256
4257         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4258
4259         I915_WRITE(FW_BLC, fwater_lo);
4260 }
4261
4262 #define ILK_LP0_PLANE_LATENCY           700
4263 #define ILK_LP0_CURSOR_LATENCY          1300
4264
4265 /*
4266  * Check the wm result.
4267  *
4268  * If any calculated watermark values is larger than the maximum value that
4269  * can be programmed into the associated watermark register, that watermark
4270  * must be disabled.
4271  */
4272 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4273                                 int fbc_wm, int display_wm, int cursor_wm,
4274                                 const struct intel_watermark_params *display,
4275                                 const struct intel_watermark_params *cursor)
4276 {
4277         struct drm_i915_private *dev_priv = dev->dev_private;
4278
4279         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4280                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4281
4282         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4283                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4284                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4285
4286                 /* fbc has it's own way to disable FBC WM */
4287                 I915_WRITE(DISP_ARB_CTL,
4288                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4289                 return false;
4290         }
4291
4292         if (display_wm > display->max_wm) {
4293                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4294                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4295                 return false;
4296         }
4297
4298         if (cursor_wm > cursor->max_wm) {
4299                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4300                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4301                 return false;
4302         }
4303
4304         if (!(fbc_wm || display_wm || cursor_wm)) {
4305                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4306                 return false;
4307         }
4308
4309         return true;
4310 }
4311
4312 /*
4313  * Compute watermark values of WM[1-3],
4314  */
4315 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4316                                   int latency_ns,
4317                                   const struct intel_watermark_params *display,
4318                                   const struct intel_watermark_params *cursor,
4319                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4320 {
4321         struct drm_crtc *crtc;
4322         unsigned long line_time_us;
4323         int hdisplay, htotal, pixel_size, clock;
4324         int line_count, line_size;
4325         int small, large;
4326         int entries;
4327
4328         if (!latency_ns) {
4329                 *fbc_wm = *display_wm = *cursor_wm = 0;
4330                 return false;
4331         }
4332
4333         crtc = intel_get_crtc_for_plane(dev, plane);
4334         hdisplay = crtc->mode.hdisplay;
4335         htotal = crtc->mode.htotal;
4336         clock = crtc->mode.clock;
4337         pixel_size = crtc->fb->bits_per_pixel / 8;
4338
4339         line_time_us = (htotal * 1000) / clock;
4340         line_count = (latency_ns / line_time_us + 1000) / 1000;
4341         line_size = hdisplay * pixel_size;
4342
4343         /* Use the minimum of the small and large buffer method for primary */
4344         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4345         large = line_count * line_size;
4346
4347         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4348         *display_wm = entries + display->guard_size;
4349
4350         /*
4351          * Spec says:
4352          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4353          */
4354         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4355
4356         /* calculate the self-refresh watermark for display cursor */
4357         entries = line_count * pixel_size * 64;
4358         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4359         *cursor_wm = entries + cursor->guard_size;
4360
4361         return ironlake_check_srwm(dev, level,
4362                                    *fbc_wm, *display_wm, *cursor_wm,
4363                                    display, cursor);
4364 }
4365
4366 static void ironlake_update_wm(struct drm_device *dev)
4367 {
4368         struct drm_i915_private *dev_priv = dev->dev_private;
4369         int fbc_wm, plane_wm, cursor_wm;
4370         unsigned int enabled;
4371
4372         enabled = 0;
4373         if (g4x_compute_wm0(dev, 0,
4374                             &ironlake_display_wm_info,
4375                             ILK_LP0_PLANE_LATENCY,
4376                             &ironlake_cursor_wm_info,
4377                             ILK_LP0_CURSOR_LATENCY,
4378                             &plane_wm, &cursor_wm)) {
4379                 I915_WRITE(WM0_PIPEA_ILK,
4380                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4381                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4382                               " plane %d, " "cursor: %d\n",
4383                               plane_wm, cursor_wm);
4384                 enabled |= 1;
4385         }
4386
4387         if (g4x_compute_wm0(dev, 1,
4388                             &ironlake_display_wm_info,
4389                             ILK_LP0_PLANE_LATENCY,
4390                             &ironlake_cursor_wm_info,
4391                             ILK_LP0_CURSOR_LATENCY,
4392                             &plane_wm, &cursor_wm)) {
4393                 I915_WRITE(WM0_PIPEB_ILK,
4394                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4395                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4396                               " plane %d, cursor: %d\n",
4397                               plane_wm, cursor_wm);
4398                 enabled |= 2;
4399         }
4400
4401         /*
4402          * Calculate and update the self-refresh watermark only when one
4403          * display plane is used.
4404          */
4405         I915_WRITE(WM3_LP_ILK, 0);
4406         I915_WRITE(WM2_LP_ILK, 0);
4407         I915_WRITE(WM1_LP_ILK, 0);
4408
4409         if (!single_plane_enabled(enabled))
4410                 return;
4411         enabled = ffs(enabled) - 1;
4412
4413         /* WM1 */
4414         if (!ironlake_compute_srwm(dev, 1, enabled,
4415                                    ILK_READ_WM1_LATENCY() * 500,
4416                                    &ironlake_display_srwm_info,
4417                                    &ironlake_cursor_srwm_info,
4418                                    &fbc_wm, &plane_wm, &cursor_wm))
4419                 return;
4420
4421         I915_WRITE(WM1_LP_ILK,
4422                    WM1_LP_SR_EN |
4423                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4424                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4425                    (plane_wm << WM1_LP_SR_SHIFT) |
4426                    cursor_wm);
4427
4428         /* WM2 */
4429         if (!ironlake_compute_srwm(dev, 2, enabled,
4430                                    ILK_READ_WM2_LATENCY() * 500,
4431                                    &ironlake_display_srwm_info,
4432                                    &ironlake_cursor_srwm_info,
4433                                    &fbc_wm, &plane_wm, &cursor_wm))
4434                 return;
4435
4436         I915_WRITE(WM2_LP_ILK,
4437                    WM2_LP_EN |
4438                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4439                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4440                    (plane_wm << WM1_LP_SR_SHIFT) |
4441                    cursor_wm);
4442
4443         /*
4444          * WM3 is unsupported on ILK, probably because we don't have latency
4445          * data for that power state
4446          */
4447 }
4448
4449 static void sandybridge_update_wm(struct drm_device *dev)
4450 {
4451         struct drm_i915_private *dev_priv = dev->dev_private;
4452         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4453         int fbc_wm, plane_wm, cursor_wm;
4454         unsigned int enabled;
4455
4456         enabled = 0;
4457         if (g4x_compute_wm0(dev, 0,
4458                             &sandybridge_display_wm_info, latency,
4459                             &sandybridge_cursor_wm_info, latency,
4460                             &plane_wm, &cursor_wm)) {
4461                 I915_WRITE(WM0_PIPEA_ILK,
4462                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4463                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4464                               " plane %d, " "cursor: %d\n",
4465                               plane_wm, cursor_wm);
4466                 enabled |= 1;
4467         }
4468
4469         if (g4x_compute_wm0(dev, 1,
4470                             &sandybridge_display_wm_info, latency,
4471                             &sandybridge_cursor_wm_info, latency,
4472                             &plane_wm, &cursor_wm)) {
4473                 I915_WRITE(WM0_PIPEB_ILK,
4474                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4475                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4476                               " plane %d, cursor: %d\n",
4477                               plane_wm, cursor_wm);
4478                 enabled |= 2;
4479         }
4480
4481         /*
4482          * Calculate and update the self-refresh watermark only when one
4483          * display plane is used.
4484          *
4485          * SNB support 3 levels of watermark.
4486          *
4487          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4488          * and disabled in the descending order
4489          *
4490          */
4491         I915_WRITE(WM3_LP_ILK, 0);
4492         I915_WRITE(WM2_LP_ILK, 0);
4493         I915_WRITE(WM1_LP_ILK, 0);
4494
4495         if (!single_plane_enabled(enabled))
4496                 return;
4497         enabled = ffs(enabled) - 1;
4498
4499         /* WM1 */
4500         if (!ironlake_compute_srwm(dev, 1, enabled,
4501                                    SNB_READ_WM1_LATENCY() * 500,
4502                                    &sandybridge_display_srwm_info,
4503                                    &sandybridge_cursor_srwm_info,
4504                                    &fbc_wm, &plane_wm, &cursor_wm))
4505                 return;
4506
4507         I915_WRITE(WM1_LP_ILK,
4508                    WM1_LP_SR_EN |
4509                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4510                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4511                    (plane_wm << WM1_LP_SR_SHIFT) |
4512                    cursor_wm);
4513
4514         /* WM2 */
4515         if (!ironlake_compute_srwm(dev, 2, enabled,
4516                                    SNB_READ_WM2_LATENCY() * 500,
4517                                    &sandybridge_display_srwm_info,
4518                                    &sandybridge_cursor_srwm_info,
4519                                    &fbc_wm, &plane_wm, &cursor_wm))
4520                 return;
4521
4522         I915_WRITE(WM2_LP_ILK,
4523                    WM2_LP_EN |
4524                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4525                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4526                    (plane_wm << WM1_LP_SR_SHIFT) |
4527                    cursor_wm);
4528
4529         /* WM3 */
4530         if (!ironlake_compute_srwm(dev, 3, enabled,
4531                                    SNB_READ_WM3_LATENCY() * 500,
4532                                    &sandybridge_display_srwm_info,
4533                                    &sandybridge_cursor_srwm_info,
4534                                    &fbc_wm, &plane_wm, &cursor_wm))
4535                 return;
4536
4537         I915_WRITE(WM3_LP_ILK,
4538                    WM3_LP_EN |
4539                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4540                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4541                    (plane_wm << WM1_LP_SR_SHIFT) |
4542                    cursor_wm);
4543 }
4544
4545 /**
4546  * intel_update_watermarks - update FIFO watermark values based on current modes
4547  *
4548  * Calculate watermark values for the various WM regs based on current mode
4549  * and plane configuration.
4550  *
4551  * There are several cases to deal with here:
4552  *   - normal (i.e. non-self-refresh)
4553  *   - self-refresh (SR) mode
4554  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4555  *   - lines are small relative to FIFO size (buffer can hold more than 2
4556  *     lines), so need to account for TLB latency
4557  *
4558  *   The normal calculation is:
4559  *     watermark = dotclock * bytes per pixel * latency
4560  *   where latency is platform & configuration dependent (we assume pessimal
4561  *   values here).
4562  *
4563  *   The SR calculation is:
4564  *     watermark = (trunc(latency/line time)+1) * surface width *
4565  *       bytes per pixel
4566  *   where
4567  *     line time = htotal / dotclock
4568  *     surface width = hdisplay for normal plane and 64 for cursor
4569  *   and latency is assumed to be high, as above.
4570  *
4571  * The final value programmed to the register should always be rounded up,
4572  * and include an extra 2 entries to account for clock crossings.
4573  *
4574  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4575  * to set the non-SR watermarks to 8.
4576  */
4577 static void intel_update_watermarks(struct drm_device *dev)
4578 {
4579         struct drm_i915_private *dev_priv = dev->dev_private;
4580
4581         if (dev_priv->display.update_wm)
4582                 dev_priv->display.update_wm(dev);
4583 }
4584
4585 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4586 {
4587         return dev_priv->lvds_use_ssc && i915_panel_use_ssc
4588                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4589 }
4590
4591 /**
4592  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4593  * @crtc: CRTC structure
4594  *
4595  * A pipe may be connected to one or more outputs.  Based on the depth of the
4596  * attached framebuffer, choose a good color depth to use on the pipe.
4597  *
4598  * If possible, match the pipe depth to the fb depth.  In some cases, this
4599  * isn't ideal, because the connected output supports a lesser or restricted
4600  * set of depths.  Resolve that here:
4601  *    LVDS typically supports only 6bpc, so clamp down in that case
4602  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4603  *    Displays may support a restricted set as well, check EDID and clamp as
4604  *      appropriate.
4605  *
4606  * RETURNS:
4607  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4608  * true if they don't match).
4609  */
4610 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4611                                          unsigned int *pipe_bpp)
4612 {
4613         struct drm_device *dev = crtc->dev;
4614         struct drm_i915_private *dev_priv = dev->dev_private;
4615         struct drm_encoder *encoder;
4616         struct drm_connector *connector;
4617         unsigned int display_bpc = UINT_MAX, bpc;
4618
4619         /* Walk the encoders & connectors on this crtc, get min bpc */
4620         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4621                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4622
4623                 if (encoder->crtc != crtc)
4624                         continue;
4625
4626                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4627                         unsigned int lvds_bpc;
4628
4629                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4630                             LVDS_A3_POWER_UP)
4631                                 lvds_bpc = 8;
4632                         else
4633                                 lvds_bpc = 6;
4634
4635                         if (lvds_bpc < display_bpc) {
4636                                 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4637                                 display_bpc = lvds_bpc;
4638                         }
4639                         continue;
4640                 }
4641
4642                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4643                         /* Use VBT settings if we have an eDP panel */
4644                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4645
4646                         if (edp_bpc < display_bpc) {
4647                                 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4648                                 display_bpc = edp_bpc;
4649                         }
4650                         continue;
4651                 }
4652
4653                 /* Not one of the known troublemakers, check the EDID */
4654                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4655                                     head) {
4656                         if (connector->encoder != encoder)
4657                                 continue;
4658
4659                         /* Don't use an invalid EDID bpc value */
4660                         if (connector->display_info.bpc &&
4661                             connector->display_info.bpc < display_bpc) {
4662                                 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4663                                 display_bpc = connector->display_info.bpc;
4664                         }
4665                 }
4666
4667                 /*
4668                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4669                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4670                  */
4671                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4672                         if (display_bpc > 8 && display_bpc < 12) {
4673                                 DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
4674                                 display_bpc = 12;
4675                         } else {
4676                                 DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
4677                                 display_bpc = 8;
4678                         }
4679                 }
4680         }
4681
4682         /*
4683          * We could just drive the pipe at the highest bpc all the time and
4684          * enable dithering as needed, but that costs bandwidth.  So choose
4685          * the minimum value that expresses the full color range of the fb but
4686          * also stays within the max display bpc discovered above.
4687          */
4688
4689         switch (crtc->fb->depth) {
4690         case 8:
4691                 bpc = 8; /* since we go through a colormap */
4692                 break;
4693         case 15:
4694         case 16:
4695                 bpc = 6; /* min is 18bpp */
4696                 break;
4697         case 24:
4698                 bpc = 8;
4699                 break;
4700         case 30:
4701                 bpc = 10;
4702                 break;
4703         case 48:
4704                 bpc = 12;
4705                 break;
4706         default:
4707                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4708                 bpc = min((unsigned int)8, display_bpc);
4709                 break;
4710         }
4711
4712         display_bpc = min(display_bpc, bpc);
4713
4714         DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
4715                          bpc, display_bpc);
4716
4717         *pipe_bpp = display_bpc * 3;
4718
4719         return display_bpc != bpc;
4720 }
4721
4722 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4723                               struct drm_display_mode *mode,
4724                               struct drm_display_mode *adjusted_mode,
4725                               int x, int y,
4726                               struct drm_framebuffer *old_fb)
4727 {
4728         struct drm_device *dev = crtc->dev;
4729         struct drm_i915_private *dev_priv = dev->dev_private;
4730         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4731         int pipe = intel_crtc->pipe;
4732         int plane = intel_crtc->plane;
4733         int refclk, num_connectors = 0;
4734         intel_clock_t clock, reduced_clock;
4735         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4736         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4737         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4738         struct drm_mode_config *mode_config = &dev->mode_config;
4739         struct intel_encoder *encoder;
4740         const intel_limit_t *limit;
4741         int ret;
4742         u32 temp;
4743         u32 lvds_sync = 0;
4744
4745         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4746                 if (encoder->base.crtc != crtc)
4747                         continue;
4748
4749                 switch (encoder->type) {
4750                 case INTEL_OUTPUT_LVDS:
4751                         is_lvds = true;
4752                         break;
4753                 case INTEL_OUTPUT_SDVO:
4754                 case INTEL_OUTPUT_HDMI:
4755                         is_sdvo = true;
4756                         if (encoder->needs_tv_clock)
4757                                 is_tv = true;
4758                         break;
4759                 case INTEL_OUTPUT_DVO:
4760                         is_dvo = true;
4761                         break;
4762                 case INTEL_OUTPUT_TVOUT:
4763                         is_tv = true;
4764                         break;
4765                 case INTEL_OUTPUT_ANALOG:
4766                         is_crt = true;
4767                         break;
4768                 case INTEL_OUTPUT_DISPLAYPORT:
4769                         is_dp = true;
4770                         break;
4771                 }
4772
4773                 num_connectors++;
4774         }
4775
4776         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4777                 refclk = dev_priv->lvds_ssc_freq * 1000;
4778                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4779                               refclk / 1000);
4780         } else if (!IS_GEN2(dev)) {
4781                 refclk = 96000;
4782         } else {
4783                 refclk = 48000;
4784         }
4785
4786         /*
4787          * Returns a set of divisors for the desired target clock with the given
4788          * refclk, or FALSE.  The returned values represent the clock equation:
4789          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4790          */
4791         limit = intel_limit(crtc, refclk);
4792         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4793         if (!ok) {
4794                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4795                 return -EINVAL;
4796         }
4797
4798         /* Ensure that the cursor is valid for the new mode before changing... */
4799         intel_crtc_update_cursor(crtc, true);
4800
4801         if (is_lvds && dev_priv->lvds_downclock_avail) {
4802                 has_reduced_clock = limit->find_pll(limit, crtc,
4803                                                     dev_priv->lvds_downclock,
4804                                                     refclk,
4805                                                     &reduced_clock);
4806                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4807                         /*
4808                          * If the different P is found, it means that we can't
4809                          * switch the display clock by using the FP0/FP1.
4810                          * In such case we will disable the LVDS downclock
4811                          * feature.
4812                          */
4813                         DRM_DEBUG_KMS("Different P is found for "
4814                                       "LVDS clock/downclock\n");
4815                         has_reduced_clock = 0;
4816                 }
4817         }
4818         /* SDVO TV has fixed PLL values depend on its clock range,
4819            this mirrors vbios setting. */
4820         if (is_sdvo && is_tv) {
4821                 if (adjusted_mode->clock >= 100000
4822                     && adjusted_mode->clock < 140500) {
4823                         clock.p1 = 2;
4824                         clock.p2 = 10;
4825                         clock.n = 3;
4826                         clock.m1 = 16;
4827                         clock.m2 = 8;
4828                 } else if (adjusted_mode->clock >= 140500
4829                            && adjusted_mode->clock <= 200000) {
4830                         clock.p1 = 1;
4831                         clock.p2 = 10;
4832                         clock.n = 6;
4833                         clock.m1 = 12;
4834                         clock.m2 = 8;
4835                 }
4836         }
4837
4838         if (IS_PINEVIEW(dev)) {
4839                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4840                 if (has_reduced_clock)
4841                         fp2 = (1 << reduced_clock.n) << 16 |
4842                                 reduced_clock.m1 << 8 | reduced_clock.m2;
4843         } else {
4844                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4845                 if (has_reduced_clock)
4846                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4847                                 reduced_clock.m2;
4848         }
4849
4850         dpll = DPLL_VGA_MODE_DIS;
4851
4852         if (!IS_GEN2(dev)) {
4853                 if (is_lvds)
4854                         dpll |= DPLLB_MODE_LVDS;
4855                 else
4856                         dpll |= DPLLB_MODE_DAC_SERIAL;
4857                 if (is_sdvo) {
4858                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4859                         if (pixel_multiplier > 1) {
4860                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4861                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4862                         }
4863                         dpll |= DPLL_DVO_HIGH_SPEED;
4864                 }
4865                 if (is_dp)
4866                         dpll |= DPLL_DVO_HIGH_SPEED;
4867
4868                 /* compute bitmask from p1 value */
4869                 if (IS_PINEVIEW(dev))
4870                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4871                 else {
4872                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4873                         if (IS_G4X(dev) && has_reduced_clock)
4874                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4875                 }
4876                 switch (clock.p2) {
4877                 case 5:
4878                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4879                         break;
4880                 case 7:
4881                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4882                         break;
4883                 case 10:
4884                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4885                         break;
4886                 case 14:
4887                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4888                         break;
4889                 }
4890                 if (INTEL_INFO(dev)->gen >= 4)
4891                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4892         } else {
4893                 if (is_lvds) {
4894                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4895                 } else {
4896                         if (clock.p1 == 2)
4897                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
4898                         else
4899                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4900                         if (clock.p2 == 4)
4901                                 dpll |= PLL_P2_DIVIDE_BY_4;
4902                 }
4903         }
4904
4905         if (is_sdvo && is_tv)
4906                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4907         else if (is_tv)
4908                 /* XXX: just matching BIOS for now */
4909                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4910                 dpll |= 3;
4911         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4912                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4913         else
4914                 dpll |= PLL_REF_INPUT_DREFCLK;
4915
4916         /* setup pipeconf */
4917         pipeconf = I915_READ(PIPECONF(pipe));
4918
4919         /* Set up the display plane register */
4920         dspcntr = DISPPLANE_GAMMA_ENABLE;
4921
4922         /* Ironlake's plane is forced to pipe, bit 24 is to
4923            enable color space conversion */
4924         if (pipe == 0)
4925                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4926         else
4927                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4928
4929         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4930                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4931                  * core speed.
4932                  *
4933                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4934                  * pipe == 0 check?
4935                  */
4936                 if (mode->clock >
4937                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4938                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4939                 else
4940                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4941         }
4942
4943         dpll |= DPLL_VCO_ENABLE;
4944
4945         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4946         drm_mode_debug_printmodeline(mode);
4947
4948         I915_WRITE(FP0(pipe), fp);
4949         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4950
4951         POSTING_READ(DPLL(pipe));
4952         udelay(150);
4953
4954         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4955          * This is an exception to the general rule that mode_set doesn't turn
4956          * things on.
4957          */
4958         if (is_lvds) {
4959                 temp = I915_READ(LVDS);
4960                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4961                 if (pipe == 1) {
4962                         temp |= LVDS_PIPEB_SELECT;
4963                 } else {
4964                         temp &= ~LVDS_PIPEB_SELECT;
4965                 }
4966                 /* set the corresponsding LVDS_BORDER bit */
4967                 temp |= dev_priv->lvds_border_bits;
4968                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4969                  * set the DPLLs for dual-channel mode or not.
4970                  */
4971                 if (clock.p2 == 7)
4972                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4973                 else
4974                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4975
4976                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4977                  * appropriately here, but we need to look more thoroughly into how
4978                  * panels behave in the two modes.
4979                  */
4980                 /* set the dithering flag on LVDS as needed */
4981                 if (INTEL_INFO(dev)->gen >= 4) {
4982                         if (dev_priv->lvds_dither)
4983                                 temp |= LVDS_ENABLE_DITHER;
4984                         else
4985                                 temp &= ~LVDS_ENABLE_DITHER;
4986                 }
4987                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4988                         lvds_sync |= LVDS_HSYNC_POLARITY;
4989                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4990                         lvds_sync |= LVDS_VSYNC_POLARITY;
4991                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4992                     != lvds_sync) {
4993                         char flags[2] = "-+";
4994                         DRM_INFO("Changing LVDS panel from "
4995                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4996                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
4997                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
4998                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4999                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5000                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5001                         temp |= lvds_sync;
5002                 }
5003                 I915_WRITE(LVDS, temp);
5004         }
5005
5006         if (is_dp) {
5007                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5008         }
5009
5010         I915_WRITE(DPLL(pipe), dpll);
5011
5012         /* Wait for the clocks to stabilize. */
5013         POSTING_READ(DPLL(pipe));
5014         udelay(150);
5015
5016         if (INTEL_INFO(dev)->gen >= 4) {
5017                 temp = 0;
5018                 if (is_sdvo) {
5019                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5020                         if (temp > 1)
5021                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5022                         else
5023                                 temp = 0;
5024                 }
5025                 I915_WRITE(DPLL_MD(pipe), temp);
5026         } else {
5027                 /* The pixel multiplier can only be updated once the
5028                  * DPLL is enabled and the clocks are stable.
5029                  *
5030                  * So write it again.
5031                  */
5032                 I915_WRITE(DPLL(pipe), dpll);
5033         }
5034
5035         intel_crtc->lowfreq_avail = false;
5036         if (is_lvds && has_reduced_clock && i915_powersave) {
5037                 I915_WRITE(FP1(pipe), fp2);
5038                 intel_crtc->lowfreq_avail = true;
5039                 if (HAS_PIPE_CXSR(dev)) {
5040                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5041                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5042                 }
5043         } else {
5044                 I915_WRITE(FP1(pipe), fp);
5045                 if (HAS_PIPE_CXSR(dev)) {
5046                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5047                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5048                 }
5049         }
5050
5051         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5052                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5053                 /* the chip adds 2 halflines automatically */
5054                 adjusted_mode->crtc_vdisplay -= 1;
5055                 adjusted_mode->crtc_vtotal -= 1;
5056                 adjusted_mode->crtc_vblank_start -= 1;
5057                 adjusted_mode->crtc_vblank_end -= 1;
5058                 adjusted_mode->crtc_vsync_end -= 1;
5059                 adjusted_mode->crtc_vsync_start -= 1;
5060         } else
5061                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5062
5063         I915_WRITE(HTOTAL(pipe),
5064                    (adjusted_mode->crtc_hdisplay - 1) |
5065                    ((adjusted_mode->crtc_htotal - 1) << 16));
5066         I915_WRITE(HBLANK(pipe),
5067                    (adjusted_mode->crtc_hblank_start - 1) |
5068                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5069         I915_WRITE(HSYNC(pipe),
5070                    (adjusted_mode->crtc_hsync_start - 1) |
5071                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5072
5073         I915_WRITE(VTOTAL(pipe),
5074                    (adjusted_mode->crtc_vdisplay - 1) |
5075                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5076         I915_WRITE(VBLANK(pipe),
5077                    (adjusted_mode->crtc_vblank_start - 1) |
5078                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5079         I915_WRITE(VSYNC(pipe),
5080                    (adjusted_mode->crtc_vsync_start - 1) |
5081                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5082
5083         /* pipesrc and dspsize control the size that is scaled from,
5084          * which should always be the user's requested size.
5085          */
5086         I915_WRITE(DSPSIZE(plane),
5087                    ((mode->vdisplay - 1) << 16) |
5088                    (mode->hdisplay - 1));
5089         I915_WRITE(DSPPOS(plane), 0);
5090         I915_WRITE(PIPESRC(pipe),
5091                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5092
5093         I915_WRITE(PIPECONF(pipe), pipeconf);
5094         POSTING_READ(PIPECONF(pipe));
5095         intel_enable_pipe(dev_priv, pipe, false);
5096
5097         intel_wait_for_vblank(dev, pipe);
5098
5099         I915_WRITE(DSPCNTR(plane), dspcntr);
5100         POSTING_READ(DSPCNTR(plane));
5101         intel_enable_plane(dev_priv, plane, pipe);
5102
5103         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5104
5105         intel_update_watermarks(dev);
5106
5107         return ret;
5108 }
5109
5110 static void ironlake_update_pch_refclk(struct drm_device *dev)
5111 {
5112         struct drm_i915_private *dev_priv = dev->dev_private;
5113         struct drm_mode_config *mode_config = &dev->mode_config;
5114         struct drm_crtc *crtc;
5115         struct intel_encoder *encoder;
5116         struct intel_encoder *has_edp_encoder = NULL;
5117         u32 temp;
5118         bool has_lvds = false;
5119
5120         /* We need to take the global config into account */
5121         list_for_each_entry(crtc, &mode_config->crtc_list, head) {
5122                 if (!crtc->enabled)
5123                         continue;
5124
5125                 list_for_each_entry(encoder, &mode_config->encoder_list,
5126                                     base.head) {
5127                         if (encoder->base.crtc != crtc)
5128                                 continue;
5129
5130                         switch (encoder->type) {
5131                         case INTEL_OUTPUT_LVDS:
5132                                 has_lvds = true;
5133                         case INTEL_OUTPUT_EDP:
5134                                 has_edp_encoder = encoder;
5135                                 break;
5136                         }
5137                 }
5138         }
5139
5140         /* Ironlake: try to setup display ref clock before DPLL
5141          * enabling. This is only under driver's control after
5142          * PCH B stepping, previous chipset stepping should be
5143          * ignoring this setting.
5144          */
5145         temp = I915_READ(PCH_DREF_CONTROL);
5146         /* Always enable nonspread source */
5147         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5148         temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5149         temp &= ~DREF_SSC_SOURCE_MASK;
5150         temp |= DREF_SSC_SOURCE_ENABLE;
5151         I915_WRITE(PCH_DREF_CONTROL, temp);
5152
5153         POSTING_READ(PCH_DREF_CONTROL);
5154         udelay(200);
5155
5156         if (has_edp_encoder) {
5157                 if (intel_panel_use_ssc(dev_priv)) {
5158                         temp |= DREF_SSC1_ENABLE;
5159                         I915_WRITE(PCH_DREF_CONTROL, temp);
5160
5161                         POSTING_READ(PCH_DREF_CONTROL);
5162                         udelay(200);
5163                 }
5164                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5165
5166                 /* Enable CPU source on CPU attached eDP */
5167                 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5168                         if (intel_panel_use_ssc(dev_priv))
5169                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5170                         else
5171                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5172                 } else {
5173                         /* Enable SSC on PCH eDP if needed */
5174                         if (intel_panel_use_ssc(dev_priv)) {
5175                                 DRM_ERROR("enabling SSC on PCH\n");
5176                                 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
5177                         }
5178                 }
5179                 I915_WRITE(PCH_DREF_CONTROL, temp);
5180                 POSTING_READ(PCH_DREF_CONTROL);
5181                 udelay(200);
5182         }
5183 }
5184
5185 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5186                                   struct drm_display_mode *mode,
5187                                   struct drm_display_mode *adjusted_mode,
5188                                   int x, int y,
5189                                   struct drm_framebuffer *old_fb)
5190 {
5191         struct drm_device *dev = crtc->dev;
5192         struct drm_i915_private *dev_priv = dev->dev_private;
5193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5194         int pipe = intel_crtc->pipe;
5195         int plane = intel_crtc->plane;
5196         int refclk, num_connectors = 0;
5197         intel_clock_t clock, reduced_clock;
5198         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5199         bool ok, has_reduced_clock = false, is_sdvo = false;
5200         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5201         struct intel_encoder *has_edp_encoder = NULL;
5202         struct drm_mode_config *mode_config = &dev->mode_config;
5203         struct intel_encoder *encoder;
5204         const intel_limit_t *limit;
5205         int ret;
5206         struct fdi_m_n m_n = {0};
5207         u32 temp;
5208         u32 lvds_sync = 0;
5209         int target_clock, pixel_multiplier, lane, link_bw, factor;
5210         unsigned int pipe_bpp;
5211         bool dither;
5212
5213         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5214                 if (encoder->base.crtc != crtc)
5215                         continue;
5216
5217                 switch (encoder->type) {
5218                 case INTEL_OUTPUT_LVDS:
5219                         is_lvds = true;
5220                         break;
5221                 case INTEL_OUTPUT_SDVO:
5222                 case INTEL_OUTPUT_HDMI:
5223                         is_sdvo = true;
5224                         if (encoder->needs_tv_clock)
5225                                 is_tv = true;
5226                         break;
5227                 case INTEL_OUTPUT_TVOUT:
5228                         is_tv = true;
5229                         break;
5230                 case INTEL_OUTPUT_ANALOG:
5231                         is_crt = true;
5232                         break;
5233                 case INTEL_OUTPUT_DISPLAYPORT:
5234                         is_dp = true;
5235                         break;
5236                 case INTEL_OUTPUT_EDP:
5237                         has_edp_encoder = encoder;
5238                         break;
5239                 }
5240
5241                 num_connectors++;
5242         }
5243
5244         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5245                 refclk = dev_priv->lvds_ssc_freq * 1000;
5246                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5247                               refclk / 1000);
5248         } else {
5249                 refclk = 96000;
5250                 if (!has_edp_encoder ||
5251                     intel_encoder_is_pch_edp(&has_edp_encoder->base))
5252                         refclk = 120000; /* 120Mhz refclk */
5253         }
5254
5255         /*
5256          * Returns a set of divisors for the desired target clock with the given
5257          * refclk, or FALSE.  The returned values represent the clock equation:
5258          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5259          */
5260         limit = intel_limit(crtc, refclk);
5261         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5262         if (!ok) {
5263                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5264                 return -EINVAL;
5265         }
5266
5267         /* Ensure that the cursor is valid for the new mode before changing... */
5268         intel_crtc_update_cursor(crtc, true);
5269
5270         if (is_lvds && dev_priv->lvds_downclock_avail) {
5271                 has_reduced_clock = limit->find_pll(limit, crtc,
5272                                                     dev_priv->lvds_downclock,
5273                                                     refclk,
5274                                                     &reduced_clock);
5275                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5276                         /*
5277                          * If the different P is found, it means that we can't
5278                          * switch the display clock by using the FP0/FP1.
5279                          * In such case we will disable the LVDS downclock
5280                          * feature.
5281                          */
5282                         DRM_DEBUG_KMS("Different P is found for "
5283                                       "LVDS clock/downclock\n");
5284                         has_reduced_clock = 0;
5285                 }
5286         }
5287         /* SDVO TV has fixed PLL values depend on its clock range,
5288            this mirrors vbios setting. */
5289         if (is_sdvo && is_tv) {
5290                 if (adjusted_mode->clock >= 100000
5291                     && adjusted_mode->clock < 140500) {
5292                         clock.p1 = 2;
5293                         clock.p2 = 10;
5294                         clock.n = 3;
5295                         clock.m1 = 16;
5296                         clock.m2 = 8;
5297                 } else if (adjusted_mode->clock >= 140500
5298                            && adjusted_mode->clock <= 200000) {
5299                         clock.p1 = 1;
5300                         clock.p2 = 10;
5301                         clock.n = 6;
5302                         clock.m1 = 12;
5303                         clock.m2 = 8;
5304                 }
5305         }
5306
5307         /* FDI link */
5308         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5309         lane = 0;
5310         /* CPU eDP doesn't require FDI link, so just set DP M/N
5311            according to current link config */
5312         if (has_edp_encoder &&
5313             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5314                 target_clock = mode->clock;
5315                 intel_edp_link_config(has_edp_encoder,
5316                                       &lane, &link_bw);
5317         } else {
5318                 /* [e]DP over FDI requires target mode clock
5319                    instead of link clock */
5320                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5321                         target_clock = mode->clock;
5322                 else
5323                         target_clock = adjusted_mode->clock;
5324
5325                 /* FDI is a binary signal running at ~2.7GHz, encoding
5326                  * each output octet as 10 bits. The actual frequency
5327                  * is stored as a divider into a 100MHz clock, and the
5328                  * mode pixel clock is stored in units of 1KHz.
5329                  * Hence the bw of each lane in terms of the mode signal
5330                  * is:
5331                  */
5332                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5333         }
5334
5335         /* determine panel color depth */
5336         temp = I915_READ(PIPECONF(pipe));
5337         temp &= ~PIPE_BPC_MASK;
5338         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
5339         switch (pipe_bpp) {
5340         case 18:
5341                 temp |= PIPE_6BPC;
5342                 break;
5343         case 24:
5344                 temp |= PIPE_8BPC;
5345                 break;
5346         case 30:
5347                 temp |= PIPE_10BPC;
5348                 break;
5349         case 36:
5350                 temp |= PIPE_12BPC;
5351                 break;
5352         default:
5353                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5354                         pipe_bpp);
5355                 temp |= PIPE_8BPC;
5356                 pipe_bpp = 24;
5357                 break;
5358         }
5359
5360         intel_crtc->bpp = pipe_bpp;
5361         I915_WRITE(PIPECONF(pipe), temp);
5362
5363         if (!lane) {
5364                 /*
5365                  * Account for spread spectrum to avoid
5366                  * oversubscribing the link. Max center spread
5367                  * is 2.5%; use 5% for safety's sake.
5368                  */
5369                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5370                 lane = bps / (link_bw * 8) + 1;
5371         }
5372
5373         intel_crtc->fdi_lanes = lane;
5374
5375         if (pixel_multiplier > 1)
5376                 link_bw *= pixel_multiplier;
5377         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5378                              &m_n);
5379
5380         ironlake_update_pch_refclk(dev);
5381
5382         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5383         if (has_reduced_clock)
5384                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5385                         reduced_clock.m2;
5386
5387         /* Enable autotuning of the PLL clock (if permissible) */
5388         factor = 21;
5389         if (is_lvds) {
5390                 if ((intel_panel_use_ssc(dev_priv) &&
5391                      dev_priv->lvds_ssc_freq == 100) ||
5392                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5393                         factor = 25;
5394         } else if (is_sdvo && is_tv)
5395                 factor = 20;
5396
5397         if (clock.m < factor * clock.n)
5398                 fp |= FP_CB_TUNE;
5399
5400         dpll = 0;
5401
5402         if (is_lvds)
5403                 dpll |= DPLLB_MODE_LVDS;
5404         else
5405                 dpll |= DPLLB_MODE_DAC_SERIAL;
5406         if (is_sdvo) {
5407                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5408                 if (pixel_multiplier > 1) {
5409                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5410                 }
5411                 dpll |= DPLL_DVO_HIGH_SPEED;
5412         }
5413         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5414                 dpll |= DPLL_DVO_HIGH_SPEED;
5415
5416         /* compute bitmask from p1 value */
5417         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5418         /* also FPA1 */
5419         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5420
5421         switch (clock.p2) {
5422         case 5:
5423                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5424                 break;
5425         case 7:
5426                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5427                 break;
5428         case 10:
5429                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5430                 break;
5431         case 14:
5432                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5433                 break;
5434         }
5435
5436         if (is_sdvo && is_tv)
5437                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5438         else if (is_tv)
5439                 /* XXX: just matching BIOS for now */
5440                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5441                 dpll |= 3;
5442         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5443                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5444         else
5445                 dpll |= PLL_REF_INPUT_DREFCLK;
5446
5447         /* setup pipeconf */
5448         pipeconf = I915_READ(PIPECONF(pipe));
5449
5450         /* Set up the display plane register */
5451         dspcntr = DISPPLANE_GAMMA_ENABLE;
5452
5453         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5454         drm_mode_debug_printmodeline(mode);
5455
5456         /* PCH eDP needs FDI, but CPU eDP does not */
5457         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5458                 I915_WRITE(PCH_FP0(pipe), fp);
5459                 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5460
5461                 POSTING_READ(PCH_DPLL(pipe));
5462                 udelay(150);
5463         }
5464
5465         /* enable transcoder DPLL */
5466         if (HAS_PCH_CPT(dev)) {
5467                 temp = I915_READ(PCH_DPLL_SEL);
5468                 switch (pipe) {
5469                 case 0:
5470                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
5471                         break;
5472                 case 1:
5473                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
5474                         break;
5475                 case 2:
5476                         /* FIXME: manage transcoder PLLs? */
5477                         temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5478                         break;
5479                 default:
5480                         BUG();
5481                 }
5482                 I915_WRITE(PCH_DPLL_SEL, temp);
5483
5484                 POSTING_READ(PCH_DPLL_SEL);
5485                 udelay(150);
5486         }
5487
5488         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5489          * This is an exception to the general rule that mode_set doesn't turn
5490          * things on.
5491          */
5492         if (is_lvds) {
5493                 temp = I915_READ(PCH_LVDS);
5494                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5495                 if (pipe == 1) {
5496                         if (HAS_PCH_CPT(dev))
5497                                 temp |= PORT_TRANS_B_SEL_CPT;
5498                         else
5499                                 temp |= LVDS_PIPEB_SELECT;
5500                 } else {
5501                         if (HAS_PCH_CPT(dev))
5502                                 temp &= ~PORT_TRANS_SEL_MASK;
5503                         else
5504                                 temp &= ~LVDS_PIPEB_SELECT;
5505                 }
5506                 /* set the corresponsding LVDS_BORDER bit */
5507                 temp |= dev_priv->lvds_border_bits;
5508                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5509                  * set the DPLLs for dual-channel mode or not.
5510                  */
5511                 if (clock.p2 == 7)
5512                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5513                 else
5514                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5515
5516                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5517                  * appropriately here, but we need to look more thoroughly into how
5518                  * panels behave in the two modes.
5519                  */
5520                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5521                         lvds_sync |= LVDS_HSYNC_POLARITY;
5522                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5523                         lvds_sync |= LVDS_VSYNC_POLARITY;
5524                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5525                     != lvds_sync) {
5526                         char flags[2] = "-+";
5527                         DRM_INFO("Changing LVDS panel from "
5528                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5529                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5530                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5531                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5532                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5533                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5534                         temp |= lvds_sync;
5535                 }
5536                 I915_WRITE(PCH_LVDS, temp);
5537         }
5538
5539         pipeconf &= ~PIPECONF_DITHER_EN;
5540         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5541         if ((is_lvds && dev_priv->lvds_dither) || dither) {
5542                 pipeconf |= PIPECONF_DITHER_EN;
5543                 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5544         }
5545         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5546                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5547         } else {
5548                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5549                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5550                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5551                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5552                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5553         }
5554
5555         if (!has_edp_encoder ||
5556             intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5557                 I915_WRITE(PCH_DPLL(pipe), dpll);
5558
5559                 /* Wait for the clocks to stabilize. */
5560                 POSTING_READ(PCH_DPLL(pipe));
5561                 udelay(150);
5562
5563                 /* The pixel multiplier can only be updated once the
5564                  * DPLL is enabled and the clocks are stable.
5565                  *
5566                  * So write it again.
5567                  */
5568                 I915_WRITE(PCH_DPLL(pipe), dpll);
5569         }
5570
5571         intel_crtc->lowfreq_avail = false;
5572         if (is_lvds && has_reduced_clock && i915_powersave) {
5573                 I915_WRITE(PCH_FP1(pipe), fp2);
5574                 intel_crtc->lowfreq_avail = true;
5575                 if (HAS_PIPE_CXSR(dev)) {
5576                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5577                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5578                 }
5579         } else {
5580                 I915_WRITE(PCH_FP1(pipe), fp);
5581                 if (HAS_PIPE_CXSR(dev)) {
5582                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5583                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5584                 }
5585         }
5586
5587         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5588                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5589                 /* the chip adds 2 halflines automatically */
5590                 adjusted_mode->crtc_vdisplay -= 1;
5591                 adjusted_mode->crtc_vtotal -= 1;
5592                 adjusted_mode->crtc_vblank_start -= 1;
5593                 adjusted_mode->crtc_vblank_end -= 1;
5594                 adjusted_mode->crtc_vsync_end -= 1;
5595                 adjusted_mode->crtc_vsync_start -= 1;
5596         } else
5597                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5598
5599         I915_WRITE(HTOTAL(pipe),
5600                    (adjusted_mode->crtc_hdisplay - 1) |
5601                    ((adjusted_mode->crtc_htotal - 1) << 16));
5602         I915_WRITE(HBLANK(pipe),
5603                    (adjusted_mode->crtc_hblank_start - 1) |
5604                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5605         I915_WRITE(HSYNC(pipe),
5606                    (adjusted_mode->crtc_hsync_start - 1) |
5607                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5608
5609         I915_WRITE(VTOTAL(pipe),
5610                    (adjusted_mode->crtc_vdisplay - 1) |
5611                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5612         I915_WRITE(VBLANK(pipe),
5613                    (adjusted_mode->crtc_vblank_start - 1) |
5614                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5615         I915_WRITE(VSYNC(pipe),
5616                    (adjusted_mode->crtc_vsync_start - 1) |
5617                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5618
5619         /* pipesrc controls the size that is scaled from, which should
5620          * always be the user's requested size.
5621          */
5622         I915_WRITE(PIPESRC(pipe),
5623                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5624
5625         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5626         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5627         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5628         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5629
5630         if (has_edp_encoder &&
5631             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5632                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5633         }
5634
5635         I915_WRITE(PIPECONF(pipe), pipeconf);
5636         POSTING_READ(PIPECONF(pipe));
5637
5638         intel_wait_for_vblank(dev, pipe);
5639
5640         if (IS_GEN5(dev)) {
5641                 /* enable address swizzle for tiling buffer */
5642                 temp = I915_READ(DISP_ARB_CTL);
5643                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5644         }
5645
5646         I915_WRITE(DSPCNTR(plane), dspcntr);
5647         POSTING_READ(DSPCNTR(plane));
5648
5649         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5650
5651         intel_update_watermarks(dev);
5652
5653         return ret;
5654 }
5655
5656 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5657                                struct drm_display_mode *mode,
5658                                struct drm_display_mode *adjusted_mode,
5659                                int x, int y,
5660                                struct drm_framebuffer *old_fb)
5661 {
5662         struct drm_device *dev = crtc->dev;
5663         struct drm_i915_private *dev_priv = dev->dev_private;
5664         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5665         int pipe = intel_crtc->pipe;
5666         int ret;
5667
5668         drm_vblank_pre_modeset(dev, pipe);
5669
5670         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5671                                               x, y, old_fb);
5672
5673         drm_vblank_post_modeset(dev, pipe);
5674
5675         intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
5676
5677         return ret;
5678 }
5679
5680 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5681 void intel_crtc_load_lut(struct drm_crtc *crtc)
5682 {
5683         struct drm_device *dev = crtc->dev;
5684         struct drm_i915_private *dev_priv = dev->dev_private;
5685         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5686         int palreg = PALETTE(intel_crtc->pipe);
5687         int i;
5688
5689         /* The clocks have to be on to load the palette. */
5690         if (!crtc->enabled)
5691                 return;
5692
5693         /* use legacy palette for Ironlake */
5694         if (HAS_PCH_SPLIT(dev))
5695                 palreg = LGC_PALETTE(intel_crtc->pipe);
5696
5697         for (i = 0; i < 256; i++) {
5698                 I915_WRITE(palreg + 4 * i,
5699                            (intel_crtc->lut_r[i] << 16) |
5700                            (intel_crtc->lut_g[i] << 8) |
5701                            intel_crtc->lut_b[i]);
5702         }
5703 }
5704
5705 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5706 {
5707         struct drm_device *dev = crtc->dev;
5708         struct drm_i915_private *dev_priv = dev->dev_private;
5709         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5710         bool visible = base != 0;
5711         u32 cntl;
5712
5713         if (intel_crtc->cursor_visible == visible)
5714                 return;
5715
5716         cntl = I915_READ(_CURACNTR);
5717         if (visible) {
5718                 /* On these chipsets we can only modify the base whilst
5719                  * the cursor is disabled.
5720                  */
5721                 I915_WRITE(_CURABASE, base);
5722
5723                 cntl &= ~(CURSOR_FORMAT_MASK);
5724                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5725                 cntl |= CURSOR_ENABLE |
5726                         CURSOR_GAMMA_ENABLE |
5727                         CURSOR_FORMAT_ARGB;
5728         } else
5729                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5730         I915_WRITE(_CURACNTR, cntl);
5731
5732         intel_crtc->cursor_visible = visible;
5733 }
5734
5735 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5736 {
5737         struct drm_device *dev = crtc->dev;
5738         struct drm_i915_private *dev_priv = dev->dev_private;
5739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5740         int pipe = intel_crtc->pipe;
5741         bool visible = base != 0;
5742
5743         if (intel_crtc->cursor_visible != visible) {
5744                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5745                 if (base) {
5746                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5747                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5748                         cntl |= pipe << 28; /* Connect to correct pipe */
5749                 } else {
5750                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5751                         cntl |= CURSOR_MODE_DISABLE;
5752                 }
5753                 I915_WRITE(CURCNTR(pipe), cntl);
5754
5755                 intel_crtc->cursor_visible = visible;
5756         }
5757         /* and commit changes on next vblank */
5758         I915_WRITE(CURBASE(pipe), base);
5759 }
5760
5761 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5762 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5763                                      bool on)
5764 {
5765         struct drm_device *dev = crtc->dev;
5766         struct drm_i915_private *dev_priv = dev->dev_private;
5767         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5768         int pipe = intel_crtc->pipe;
5769         int x = intel_crtc->cursor_x;
5770         int y = intel_crtc->cursor_y;
5771         u32 base, pos;
5772         bool visible;
5773
5774         pos = 0;
5775
5776         if (on && crtc->enabled && crtc->fb) {
5777                 base = intel_crtc->cursor_addr;
5778                 if (x > (int) crtc->fb->width)
5779                         base = 0;
5780
5781                 if (y > (int) crtc->fb->height)
5782                         base = 0;
5783         } else
5784                 base = 0;
5785
5786         if (x < 0) {
5787                 if (x + intel_crtc->cursor_width < 0)
5788                         base = 0;
5789
5790                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5791                 x = -x;
5792         }
5793         pos |= x << CURSOR_X_SHIFT;
5794
5795         if (y < 0) {
5796                 if (y + intel_crtc->cursor_height < 0)
5797                         base = 0;
5798
5799                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5800                 y = -y;
5801         }
5802         pos |= y << CURSOR_Y_SHIFT;
5803
5804         visible = base != 0;
5805         if (!visible && !intel_crtc->cursor_visible)
5806                 return;
5807
5808         I915_WRITE(CURPOS(pipe), pos);
5809         if (IS_845G(dev) || IS_I865G(dev))
5810                 i845_update_cursor(crtc, base);
5811         else
5812                 i9xx_update_cursor(crtc, base);
5813
5814         if (visible)
5815                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5816 }
5817
5818 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5819                                  struct drm_file *file,
5820                                  uint32_t handle,
5821                                  uint32_t width, uint32_t height)
5822 {
5823         struct drm_device *dev = crtc->dev;
5824         struct drm_i915_private *dev_priv = dev->dev_private;
5825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5826         struct drm_i915_gem_object *obj;
5827         uint32_t addr;
5828         int ret;
5829
5830         DRM_DEBUG_KMS("\n");
5831
5832         /* if we want to turn off the cursor ignore width and height */
5833         if (!handle) {
5834                 DRM_DEBUG_KMS("cursor off\n");
5835                 addr = 0;
5836                 obj = NULL;
5837                 mutex_lock(&dev->struct_mutex);
5838                 goto finish;
5839         }
5840
5841         /* Currently we only support 64x64 cursors */
5842         if (width != 64 || height != 64) {
5843                 DRM_ERROR("we currently only support 64x64 cursors\n");
5844                 return -EINVAL;
5845         }
5846
5847         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5848         if (&obj->base == NULL)
5849                 return -ENOENT;
5850
5851         if (obj->base.size < width * height * 4) {
5852                 DRM_ERROR("buffer is to small\n");
5853                 ret = -ENOMEM;
5854                 goto fail;
5855         }
5856
5857         /* we only need to pin inside GTT if cursor is non-phy */
5858         mutex_lock(&dev->struct_mutex);
5859         if (!dev_priv->info->cursor_needs_physical) {
5860                 if (obj->tiling_mode) {
5861                         DRM_ERROR("cursor cannot be tiled\n");
5862                         ret = -EINVAL;
5863                         goto fail_locked;
5864                 }
5865
5866                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5867                 if (ret) {
5868                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5869                         goto fail_locked;
5870                 }
5871
5872                 ret = i915_gem_object_put_fence(obj);
5873                 if (ret) {
5874                         DRM_ERROR("failed to release fence for cursor");
5875                         goto fail_unpin;
5876                 }
5877
5878                 addr = obj->gtt_offset;
5879         } else {
5880                 int align = IS_I830(dev) ? 16 * 1024 : 256;
5881                 ret = i915_gem_attach_phys_object(dev, obj,
5882                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5883                                                   align);
5884                 if (ret) {
5885                         DRM_ERROR("failed to attach phys object\n");
5886                         goto fail_locked;
5887                 }
5888                 addr = obj->phys_obj->handle->busaddr;
5889         }
5890
5891         if (IS_GEN2(dev))
5892                 I915_WRITE(CURSIZE, (height << 12) | width);
5893
5894  finish:
5895         if (intel_crtc->cursor_bo) {
5896                 if (dev_priv->info->cursor_needs_physical) {
5897                         if (intel_crtc->cursor_bo != obj)
5898                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5899                 } else
5900                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5901                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5902         }
5903
5904         mutex_unlock(&dev->struct_mutex);
5905
5906         intel_crtc->cursor_addr = addr;
5907         intel_crtc->cursor_bo = obj;
5908         intel_crtc->cursor_width = width;
5909         intel_crtc->cursor_height = height;
5910
5911         intel_crtc_update_cursor(crtc, true);
5912
5913         return 0;
5914 fail_unpin:
5915         i915_gem_object_unpin(obj);
5916 fail_locked:
5917         mutex_unlock(&dev->struct_mutex);
5918 fail:
5919         drm_gem_object_unreference_unlocked(&obj->base);
5920         return ret;
5921 }
5922
5923 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5924 {
5925         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5926
5927         intel_crtc->cursor_x = x;
5928         intel_crtc->cursor_y = y;
5929
5930         intel_crtc_update_cursor(crtc, true);
5931
5932         return 0;
5933 }
5934
5935 /** Sets the color ramps on behalf of RandR */
5936 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5937                                  u16 blue, int regno)
5938 {
5939         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5940
5941         intel_crtc->lut_r[regno] = red >> 8;
5942         intel_crtc->lut_g[regno] = green >> 8;
5943         intel_crtc->lut_b[regno] = blue >> 8;
5944 }
5945
5946 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5947                              u16 *blue, int regno)
5948 {
5949         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5950
5951         *red = intel_crtc->lut_r[regno] << 8;
5952         *green = intel_crtc->lut_g[regno] << 8;
5953         *blue = intel_crtc->lut_b[regno] << 8;
5954 }
5955
5956 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5957                                  u16 *blue, uint32_t start, uint32_t size)
5958 {
5959         int end = (start + size > 256) ? 256 : start + size, i;
5960         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5961
5962         for (i = start; i < end; i++) {
5963                 intel_crtc->lut_r[i] = red[i] >> 8;
5964                 intel_crtc->lut_g[i] = green[i] >> 8;
5965                 intel_crtc->lut_b[i] = blue[i] >> 8;
5966         }
5967
5968         intel_crtc_load_lut(crtc);
5969 }
5970
5971 /**
5972  * Get a pipe with a simple mode set on it for doing load-based monitor
5973  * detection.
5974  *
5975  * It will be up to the load-detect code to adjust the pipe as appropriate for
5976  * its requirements.  The pipe will be connected to no other encoders.
5977  *
5978  * Currently this code will only succeed if there is a pipe with no encoders
5979  * configured for it.  In the future, it could choose to temporarily disable
5980  * some outputs to free up a pipe for its use.
5981  *
5982  * \return crtc, or NULL if no pipes are available.
5983  */
5984
5985 /* VESA 640x480x72Hz mode to set on the pipe */
5986 static struct drm_display_mode load_detect_mode = {
5987         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5988                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5989 };
5990
5991 static struct drm_framebuffer *
5992 intel_framebuffer_create(struct drm_device *dev,
5993                          struct drm_mode_fb_cmd *mode_cmd,
5994                          struct drm_i915_gem_object *obj)
5995 {
5996         struct intel_framebuffer *intel_fb;
5997         int ret;
5998
5999         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6000         if (!intel_fb) {
6001                 drm_gem_object_unreference_unlocked(&obj->base);
6002                 return ERR_PTR(-ENOMEM);
6003         }
6004
6005         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6006         if (ret) {
6007                 drm_gem_object_unreference_unlocked(&obj->base);
6008                 kfree(intel_fb);
6009                 return ERR_PTR(ret);
6010         }
6011
6012         return &intel_fb->base;
6013 }
6014
6015 static u32
6016 intel_framebuffer_pitch_for_width(int width, int bpp)
6017 {
6018         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6019         return ALIGN(pitch, 64);
6020 }
6021
6022 static u32
6023 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6024 {
6025         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6026         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6027 }
6028
6029 static struct drm_framebuffer *
6030 intel_framebuffer_create_for_mode(struct drm_device *dev,
6031                                   struct drm_display_mode *mode,
6032                                   int depth, int bpp)
6033 {
6034         struct drm_i915_gem_object *obj;
6035         struct drm_mode_fb_cmd mode_cmd;
6036
6037         obj = i915_gem_alloc_object(dev,
6038                                     intel_framebuffer_size_for_mode(mode, bpp));
6039         if (obj == NULL)
6040                 return ERR_PTR(-ENOMEM);
6041
6042         mode_cmd.width = mode->hdisplay;
6043         mode_cmd.height = mode->vdisplay;
6044         mode_cmd.depth = depth;
6045         mode_cmd.bpp = bpp;
6046         mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
6047
6048         return intel_framebuffer_create(dev, &mode_cmd, obj);
6049 }
6050
6051 static struct drm_framebuffer *
6052 mode_fits_in_fbdev(struct drm_device *dev,
6053                    struct drm_display_mode *mode)
6054 {
6055         struct drm_i915_private *dev_priv = dev->dev_private;
6056         struct drm_i915_gem_object *obj;
6057         struct drm_framebuffer *fb;
6058
6059         if (dev_priv->fbdev == NULL)
6060                 return NULL;
6061
6062         obj = dev_priv->fbdev->ifb.obj;
6063         if (obj == NULL)
6064                 return NULL;
6065
6066         fb = &dev_priv->fbdev->ifb.base;
6067         if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
6068                                                           fb->bits_per_pixel))
6069                 return NULL;
6070
6071         if (obj->base.size < mode->vdisplay * fb->pitch)
6072                 return NULL;
6073
6074         return fb;
6075 }
6076
6077 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6078                                 struct drm_connector *connector,
6079                                 struct drm_display_mode *mode,
6080                                 struct intel_load_detect_pipe *old)
6081 {
6082         struct intel_crtc *intel_crtc;
6083         struct drm_crtc *possible_crtc;
6084         struct drm_encoder *encoder = &intel_encoder->base;
6085         struct drm_crtc *crtc = NULL;
6086         struct drm_device *dev = encoder->dev;
6087         struct drm_framebuffer *old_fb;
6088         int i = -1;
6089
6090         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6091                       connector->base.id, drm_get_connector_name(connector),
6092                       encoder->base.id, drm_get_encoder_name(encoder));
6093
6094         /*
6095          * Algorithm gets a little messy:
6096          *
6097          *   - if the connector already has an assigned crtc, use it (but make
6098          *     sure it's on first)
6099          *
6100          *   - try to find the first unused crtc that can drive this connector,
6101          *     and use that if we find one
6102          */
6103
6104         /* See if we already have a CRTC for this connector */
6105         if (encoder->crtc) {
6106                 crtc = encoder->crtc;
6107
6108                 intel_crtc = to_intel_crtc(crtc);
6109                 old->dpms_mode = intel_crtc->dpms_mode;
6110                 old->load_detect_temp = false;
6111
6112                 /* Make sure the crtc and connector are running */
6113                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6114                         struct drm_encoder_helper_funcs *encoder_funcs;
6115                         struct drm_crtc_helper_funcs *crtc_funcs;
6116
6117                         crtc_funcs = crtc->helper_private;
6118                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6119
6120                         encoder_funcs = encoder->helper_private;
6121                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6122                 }
6123
6124                 return true;
6125         }
6126
6127         /* Find an unused one (if possible) */
6128         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6129                 i++;
6130                 if (!(encoder->possible_crtcs & (1 << i)))
6131                         continue;
6132                 if (!possible_crtc->enabled) {
6133                         crtc = possible_crtc;
6134                         break;
6135                 }
6136         }
6137
6138         /*
6139          * If we didn't find an unused CRTC, don't use any.
6140          */
6141         if (!crtc) {
6142                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6143                 return false;
6144         }
6145
6146         encoder->crtc = crtc;
6147         connector->encoder = encoder;
6148
6149         intel_crtc = to_intel_crtc(crtc);
6150         old->dpms_mode = intel_crtc->dpms_mode;
6151         old->load_detect_temp = true;
6152         old->release_fb = NULL;
6153
6154         if (!mode)
6155                 mode = &load_detect_mode;
6156
6157         old_fb = crtc->fb;
6158
6159         /* We need a framebuffer large enough to accommodate all accesses
6160          * that the plane may generate whilst we perform load detection.
6161          * We can not rely on the fbcon either being present (we get called
6162          * during its initialisation to detect all boot displays, or it may
6163          * not even exist) or that it is large enough to satisfy the
6164          * requested mode.
6165          */
6166         crtc->fb = mode_fits_in_fbdev(dev, mode);
6167         if (crtc->fb == NULL) {
6168                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6169                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6170                 old->release_fb = crtc->fb;
6171         } else
6172                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6173         if (IS_ERR(crtc->fb)) {
6174                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6175                 crtc->fb = old_fb;
6176                 return false;
6177         }
6178
6179         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6180                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6181                 if (old->release_fb)
6182                         old->release_fb->funcs->destroy(old->release_fb);
6183                 crtc->fb = old_fb;
6184                 return false;
6185         }
6186
6187         /* let the connector get through one full cycle before testing */
6188         intel_wait_for_vblank(dev, intel_crtc->pipe);
6189
6190         return true;
6191 }
6192
6193 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6194                                     struct drm_connector *connector,
6195                                     struct intel_load_detect_pipe *old)
6196 {
6197         struct drm_encoder *encoder = &intel_encoder->base;
6198         struct drm_device *dev = encoder->dev;
6199         struct drm_crtc *crtc = encoder->crtc;
6200         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6201         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6202
6203         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6204                       connector->base.id, drm_get_connector_name(connector),
6205                       encoder->base.id, drm_get_encoder_name(encoder));
6206
6207         if (old->load_detect_temp) {
6208                 connector->encoder = NULL;
6209                 drm_helper_disable_unused_functions(dev);
6210
6211                 if (old->release_fb)
6212                         old->release_fb->funcs->destroy(old->release_fb);
6213
6214                 return;
6215         }
6216
6217         /* Switch crtc and encoder back off if necessary */
6218         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6219                 encoder_funcs->dpms(encoder, old->dpms_mode);
6220                 crtc_funcs->dpms(crtc, old->dpms_mode);
6221         }
6222 }
6223
6224 /* Returns the clock of the currently programmed mode of the given pipe. */
6225 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6226 {
6227         struct drm_i915_private *dev_priv = dev->dev_private;
6228         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6229         int pipe = intel_crtc->pipe;
6230         u32 dpll = I915_READ(DPLL(pipe));
6231         u32 fp;
6232         intel_clock_t clock;
6233
6234         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6235                 fp = I915_READ(FP0(pipe));
6236         else
6237                 fp = I915_READ(FP1(pipe));
6238
6239         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6240         if (IS_PINEVIEW(dev)) {
6241                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6242                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6243         } else {
6244                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6245                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6246         }
6247
6248         if (!IS_GEN2(dev)) {
6249                 if (IS_PINEVIEW(dev))
6250                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6251                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6252                 else
6253                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6254                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6255
6256                 switch (dpll & DPLL_MODE_MASK) {
6257                 case DPLLB_MODE_DAC_SERIAL:
6258                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6259                                 5 : 10;
6260                         break;
6261                 case DPLLB_MODE_LVDS:
6262                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6263                                 7 : 14;
6264                         break;
6265                 default:
6266                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6267                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6268                         return 0;
6269                 }
6270
6271                 /* XXX: Handle the 100Mhz refclk */
6272                 intel_clock(dev, 96000, &clock);
6273         } else {
6274                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6275
6276                 if (is_lvds) {
6277                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6278                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6279                         clock.p2 = 14;
6280
6281                         if ((dpll & PLL_REF_INPUT_MASK) ==
6282                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6283                                 /* XXX: might not be 66MHz */
6284                                 intel_clock(dev, 66000, &clock);
6285                         } else
6286                                 intel_clock(dev, 48000, &clock);
6287                 } else {
6288                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6289                                 clock.p1 = 2;
6290                         else {
6291                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6292                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6293                         }
6294                         if (dpll & PLL_P2_DIVIDE_BY_4)
6295                                 clock.p2 = 4;
6296                         else
6297                                 clock.p2 = 2;
6298
6299                         intel_clock(dev, 48000, &clock);
6300                 }
6301         }
6302
6303         /* XXX: It would be nice to validate the clocks, but we can't reuse
6304          * i830PllIsValid() because it relies on the xf86_config connector
6305          * configuration being accurate, which it isn't necessarily.
6306          */
6307
6308         return clock.dot;
6309 }
6310
6311 /** Returns the currently programmed mode of the given pipe. */
6312 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6313                                              struct drm_crtc *crtc)
6314 {
6315         struct drm_i915_private *dev_priv = dev->dev_private;
6316         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6317         int pipe = intel_crtc->pipe;
6318         struct drm_display_mode *mode;
6319         int htot = I915_READ(HTOTAL(pipe));
6320         int hsync = I915_READ(HSYNC(pipe));
6321         int vtot = I915_READ(VTOTAL(pipe));
6322         int vsync = I915_READ(VSYNC(pipe));
6323
6324         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6325         if (!mode)
6326                 return NULL;
6327
6328         mode->clock = intel_crtc_clock_get(dev, crtc);
6329         mode->hdisplay = (htot & 0xffff) + 1;
6330         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6331         mode->hsync_start = (hsync & 0xffff) + 1;
6332         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6333         mode->vdisplay = (vtot & 0xffff) + 1;
6334         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6335         mode->vsync_start = (vsync & 0xffff) + 1;
6336         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6337
6338         drm_mode_set_name(mode);
6339         drm_mode_set_crtcinfo(mode, 0);
6340
6341         return mode;
6342 }
6343
6344 #define GPU_IDLE_TIMEOUT 500 /* ms */
6345
6346 /* When this timer fires, we've been idle for awhile */
6347 static void intel_gpu_idle_timer(unsigned long arg)
6348 {
6349         struct drm_device *dev = (struct drm_device *)arg;
6350         drm_i915_private_t *dev_priv = dev->dev_private;
6351
6352         if (!list_empty(&dev_priv->mm.active_list)) {
6353                 /* Still processing requests, so just re-arm the timer. */
6354                 mod_timer(&dev_priv->idle_timer, jiffies +
6355                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6356                 return;
6357         }
6358
6359         dev_priv->busy = false;
6360         queue_work(dev_priv->wq, &dev_priv->idle_work);
6361 }
6362
6363 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6364
6365 static void intel_crtc_idle_timer(unsigned long arg)
6366 {
6367         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6368         struct drm_crtc *crtc = &intel_crtc->base;
6369         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6370         struct intel_framebuffer *intel_fb;
6371
6372         intel_fb = to_intel_framebuffer(crtc->fb);
6373         if (intel_fb && intel_fb->obj->active) {
6374                 /* The framebuffer is still being accessed by the GPU. */
6375                 mod_timer(&intel_crtc->idle_timer, jiffies +
6376                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6377                 return;
6378         }
6379
6380         intel_crtc->busy = false;
6381         queue_work(dev_priv->wq, &dev_priv->idle_work);
6382 }
6383
6384 static void intel_increase_pllclock(struct drm_crtc *crtc)
6385 {
6386         struct drm_device *dev = crtc->dev;
6387         drm_i915_private_t *dev_priv = dev->dev_private;
6388         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6389         int pipe = intel_crtc->pipe;
6390         int dpll_reg = DPLL(pipe);
6391         int dpll;
6392
6393         if (HAS_PCH_SPLIT(dev))
6394                 return;
6395
6396         if (!dev_priv->lvds_downclock_avail)
6397                 return;
6398
6399         dpll = I915_READ(dpll_reg);
6400         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6401                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6402
6403                 /* Unlock panel regs */
6404                 I915_WRITE(PP_CONTROL,
6405                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6406
6407                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6408                 I915_WRITE(dpll_reg, dpll);
6409                 intel_wait_for_vblank(dev, pipe);
6410
6411                 dpll = I915_READ(dpll_reg);
6412                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6413                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6414
6415                 /* ...and lock them again */
6416                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6417         }
6418
6419         /* Schedule downclock */
6420         mod_timer(&intel_crtc->idle_timer, jiffies +
6421                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6422 }
6423
6424 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6425 {
6426         struct drm_device *dev = crtc->dev;
6427         drm_i915_private_t *dev_priv = dev->dev_private;
6428         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6429         int pipe = intel_crtc->pipe;
6430         int dpll_reg = DPLL(pipe);
6431         int dpll = I915_READ(dpll_reg);
6432
6433         if (HAS_PCH_SPLIT(dev))
6434                 return;
6435
6436         if (!dev_priv->lvds_downclock_avail)
6437                 return;
6438
6439         /*
6440          * Since this is called by a timer, we should never get here in
6441          * the manual case.
6442          */
6443         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6444                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6445
6446                 /* Unlock panel regs */
6447                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6448                            PANEL_UNLOCK_REGS);
6449
6450                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6451                 I915_WRITE(dpll_reg, dpll);
6452                 intel_wait_for_vblank(dev, pipe);
6453                 dpll = I915_READ(dpll_reg);
6454                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6455                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6456
6457                 /* ...and lock them again */
6458                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6459         }
6460
6461 }
6462
6463 /**
6464  * intel_idle_update - adjust clocks for idleness
6465  * @work: work struct
6466  *
6467  * Either the GPU or display (or both) went idle.  Check the busy status
6468  * here and adjust the CRTC and GPU clocks as necessary.
6469  */
6470 static void intel_idle_update(struct work_struct *work)
6471 {
6472         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6473                                                     idle_work);
6474         struct drm_device *dev = dev_priv->dev;
6475         struct drm_crtc *crtc;
6476         struct intel_crtc *intel_crtc;
6477
6478         if (!i915_powersave)
6479                 return;
6480
6481         mutex_lock(&dev->struct_mutex);
6482
6483         i915_update_gfx_val(dev_priv);
6484
6485         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6486                 /* Skip inactive CRTCs */
6487                 if (!crtc->fb)
6488                         continue;
6489
6490                 intel_crtc = to_intel_crtc(crtc);
6491                 if (!intel_crtc->busy)
6492                         intel_decrease_pllclock(crtc);
6493         }
6494
6495
6496         mutex_unlock(&dev->struct_mutex);
6497 }
6498
6499 /**
6500  * intel_mark_busy - mark the GPU and possibly the display busy
6501  * @dev: drm device
6502  * @obj: object we're operating on
6503  *
6504  * Callers can use this function to indicate that the GPU is busy processing
6505  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
6506  * buffer), we'll also mark the display as busy, so we know to increase its
6507  * clock frequency.
6508  */
6509 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6510 {
6511         drm_i915_private_t *dev_priv = dev->dev_private;
6512         struct drm_crtc *crtc = NULL;
6513         struct intel_framebuffer *intel_fb;
6514         struct intel_crtc *intel_crtc;
6515
6516         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6517                 return;
6518
6519         if (!dev_priv->busy)
6520                 dev_priv->busy = true;
6521         else
6522                 mod_timer(&dev_priv->idle_timer, jiffies +
6523                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6524
6525         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6526                 if (!crtc->fb)
6527                         continue;
6528
6529                 intel_crtc = to_intel_crtc(crtc);
6530                 intel_fb = to_intel_framebuffer(crtc->fb);
6531                 if (intel_fb->obj == obj) {
6532                         if (!intel_crtc->busy) {
6533                                 /* Non-busy -> busy, upclock */
6534                                 intel_increase_pllclock(crtc);
6535                                 intel_crtc->busy = true;
6536                         } else {
6537                                 /* Busy -> busy, put off timer */
6538                                 mod_timer(&intel_crtc->idle_timer, jiffies +
6539                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6540                         }
6541                 }
6542         }
6543 }
6544
6545 static void intel_crtc_destroy(struct drm_crtc *crtc)
6546 {
6547         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6548         struct drm_device *dev = crtc->dev;
6549         struct intel_unpin_work *work;
6550         unsigned long flags;
6551
6552         spin_lock_irqsave(&dev->event_lock, flags);
6553         work = intel_crtc->unpin_work;
6554         intel_crtc->unpin_work = NULL;
6555         spin_unlock_irqrestore(&dev->event_lock, flags);
6556
6557         if (work) {
6558                 cancel_work_sync(&work->work);
6559                 kfree(work);
6560         }
6561
6562         drm_crtc_cleanup(crtc);
6563
6564         kfree(intel_crtc);
6565 }
6566
6567 static void intel_unpin_work_fn(struct work_struct *__work)
6568 {
6569         struct intel_unpin_work *work =
6570                 container_of(__work, struct intel_unpin_work, work);
6571
6572         mutex_lock(&work->dev->struct_mutex);
6573         i915_gem_object_unpin(work->old_fb_obj);
6574         drm_gem_object_unreference(&work->pending_flip_obj->base);
6575         drm_gem_object_unreference(&work->old_fb_obj->base);
6576
6577         intel_update_fbc(work->dev);
6578         mutex_unlock(&work->dev->struct_mutex);
6579         kfree(work);
6580 }
6581
6582 static void do_intel_finish_page_flip(struct drm_device *dev,
6583                                       struct drm_crtc *crtc)
6584 {
6585         drm_i915_private_t *dev_priv = dev->dev_private;
6586         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6587         struct intel_unpin_work *work;
6588         struct drm_i915_gem_object *obj;
6589         struct drm_pending_vblank_event *e;
6590         struct timeval tnow, tvbl;
6591         unsigned long flags;
6592
6593         /* Ignore early vblank irqs */
6594         if (intel_crtc == NULL)
6595                 return;
6596
6597         do_gettimeofday(&tnow);
6598
6599         spin_lock_irqsave(&dev->event_lock, flags);
6600         work = intel_crtc->unpin_work;
6601         if (work == NULL || !work->pending) {
6602                 spin_unlock_irqrestore(&dev->event_lock, flags);
6603                 return;
6604         }
6605
6606         intel_crtc->unpin_work = NULL;
6607
6608         if (work->event) {
6609                 e = work->event;
6610                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6611
6612                 /* Called before vblank count and timestamps have
6613                  * been updated for the vblank interval of flip
6614                  * completion? Need to increment vblank count and
6615                  * add one videorefresh duration to returned timestamp
6616                  * to account for this. We assume this happened if we
6617                  * get called over 0.9 frame durations after the last
6618                  * timestamped vblank.
6619                  *
6620                  * This calculation can not be used with vrefresh rates
6621                  * below 5Hz (10Hz to be on the safe side) without
6622                  * promoting to 64 integers.
6623                  */
6624                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6625                     9 * crtc->framedur_ns) {
6626                         e->event.sequence++;
6627                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6628                                              crtc->framedur_ns);
6629                 }
6630
6631                 e->event.tv_sec = tvbl.tv_sec;
6632                 e->event.tv_usec = tvbl.tv_usec;
6633
6634                 list_add_tail(&e->base.link,
6635                               &e->base.file_priv->event_list);
6636                 wake_up_interruptible(&e->base.file_priv->event_wait);
6637         }
6638
6639         drm_vblank_put(dev, intel_crtc->pipe);
6640
6641         spin_unlock_irqrestore(&dev->event_lock, flags);
6642
6643         obj = work->old_fb_obj;
6644
6645         atomic_clear_mask(1 << intel_crtc->plane,
6646                           &obj->pending_flip.counter);
6647         if (atomic_read(&obj->pending_flip) == 0)
6648                 wake_up(&dev_priv->pending_flip_queue);
6649
6650         schedule_work(&work->work);
6651
6652         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6653 }
6654
6655 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6656 {
6657         drm_i915_private_t *dev_priv = dev->dev_private;
6658         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6659
6660         do_intel_finish_page_flip(dev, crtc);
6661 }
6662
6663 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6664 {
6665         drm_i915_private_t *dev_priv = dev->dev_private;
6666         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6667
6668         do_intel_finish_page_flip(dev, crtc);
6669 }
6670
6671 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6672 {
6673         drm_i915_private_t *dev_priv = dev->dev_private;
6674         struct intel_crtc *intel_crtc =
6675                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6676         unsigned long flags;
6677
6678         spin_lock_irqsave(&dev->event_lock, flags);
6679         if (intel_crtc->unpin_work) {
6680                 if ((++intel_crtc->unpin_work->pending) > 1)
6681                         DRM_ERROR("Prepared flip multiple times\n");
6682         } else {
6683                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6684         }
6685         spin_unlock_irqrestore(&dev->event_lock, flags);
6686 }
6687
6688 static int intel_gen2_queue_flip(struct drm_device *dev,
6689                                  struct drm_crtc *crtc,
6690                                  struct drm_framebuffer *fb,
6691                                  struct drm_i915_gem_object *obj)
6692 {
6693         struct drm_i915_private *dev_priv = dev->dev_private;
6694         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6695         unsigned long offset;
6696         u32 flip_mask;
6697         int ret;
6698
6699         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6700         if (ret)
6701                 goto out;
6702
6703         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6704         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6705
6706         ret = BEGIN_LP_RING(6);
6707         if (ret)
6708                 goto out;
6709
6710         /* Can't queue multiple flips, so wait for the previous
6711          * one to finish before executing the next.
6712          */
6713         if (intel_crtc->plane)
6714                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6715         else
6716                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6717         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6718         OUT_RING(MI_NOOP);
6719         OUT_RING(MI_DISPLAY_FLIP |
6720                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6721         OUT_RING(fb->pitch);
6722         OUT_RING(obj->gtt_offset + offset);
6723         OUT_RING(MI_NOOP);
6724         ADVANCE_LP_RING();
6725 out:
6726         return ret;
6727 }
6728
6729 static int intel_gen3_queue_flip(struct drm_device *dev,
6730                                  struct drm_crtc *crtc,
6731                                  struct drm_framebuffer *fb,
6732                                  struct drm_i915_gem_object *obj)
6733 {
6734         struct drm_i915_private *dev_priv = dev->dev_private;
6735         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6736         unsigned long offset;
6737         u32 flip_mask;
6738         int ret;
6739
6740         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6741         if (ret)
6742                 goto out;
6743
6744         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6745         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6746
6747         ret = BEGIN_LP_RING(6);
6748         if (ret)
6749                 goto out;
6750
6751         if (intel_crtc->plane)
6752                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6753         else
6754                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6755         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6756         OUT_RING(MI_NOOP);
6757         OUT_RING(MI_DISPLAY_FLIP_I915 |
6758                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6759         OUT_RING(fb->pitch);
6760         OUT_RING(obj->gtt_offset + offset);
6761         OUT_RING(MI_NOOP);
6762
6763         ADVANCE_LP_RING();
6764 out:
6765         return ret;
6766 }
6767
6768 static int intel_gen4_queue_flip(struct drm_device *dev,
6769                                  struct drm_crtc *crtc,
6770                                  struct drm_framebuffer *fb,
6771                                  struct drm_i915_gem_object *obj)
6772 {
6773         struct drm_i915_private *dev_priv = dev->dev_private;
6774         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6775         uint32_t pf, pipesrc;
6776         int ret;
6777
6778         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6779         if (ret)
6780                 goto out;
6781
6782         ret = BEGIN_LP_RING(4);
6783         if (ret)
6784                 goto out;
6785
6786         /* i965+ uses the linear or tiled offsets from the
6787          * Display Registers (which do not change across a page-flip)
6788          * so we need only reprogram the base address.
6789          */
6790         OUT_RING(MI_DISPLAY_FLIP |
6791                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6792         OUT_RING(fb->pitch);
6793         OUT_RING(obj->gtt_offset | obj->tiling_mode);
6794
6795         /* XXX Enabling the panel-fitter across page-flip is so far
6796          * untested on non-native modes, so ignore it for now.
6797          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6798          */
6799         pf = 0;
6800         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6801         OUT_RING(pf | pipesrc);
6802         ADVANCE_LP_RING();
6803 out:
6804         return ret;
6805 }
6806
6807 static int intel_gen6_queue_flip(struct drm_device *dev,
6808                                  struct drm_crtc *crtc,
6809                                  struct drm_framebuffer *fb,
6810                                  struct drm_i915_gem_object *obj)
6811 {
6812         struct drm_i915_private *dev_priv = dev->dev_private;
6813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6814         uint32_t pf, pipesrc;
6815         int ret;
6816
6817         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6818         if (ret)
6819                 goto out;
6820
6821         ret = BEGIN_LP_RING(4);
6822         if (ret)
6823                 goto out;
6824
6825         OUT_RING(MI_DISPLAY_FLIP |
6826                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6827         OUT_RING(fb->pitch | obj->tiling_mode);
6828         OUT_RING(obj->gtt_offset);
6829
6830         pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6831         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6832         OUT_RING(pf | pipesrc);
6833         ADVANCE_LP_RING();
6834 out:
6835         return ret;
6836 }
6837
6838 /*
6839  * On gen7 we currently use the blit ring because (in early silicon at least)
6840  * the render ring doesn't give us interrpts for page flip completion, which
6841  * means clients will hang after the first flip is queued.  Fortunately the
6842  * blit ring generates interrupts properly, so use it instead.
6843  */
6844 static int intel_gen7_queue_flip(struct drm_device *dev,
6845                                  struct drm_crtc *crtc,
6846                                  struct drm_framebuffer *fb,
6847                                  struct drm_i915_gem_object *obj)
6848 {
6849         struct drm_i915_private *dev_priv = dev->dev_private;
6850         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6851         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6852         int ret;
6853
6854         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6855         if (ret)
6856                 goto out;
6857
6858         ret = intel_ring_begin(ring, 4);
6859         if (ret)
6860                 goto out;
6861
6862         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
6863         intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
6864         intel_ring_emit(ring, (obj->gtt_offset));
6865         intel_ring_emit(ring, (MI_NOOP));
6866         intel_ring_advance(ring);
6867 out:
6868         return ret;
6869 }
6870
6871 static int intel_default_queue_flip(struct drm_device *dev,
6872                                     struct drm_crtc *crtc,
6873                                     struct drm_framebuffer *fb,
6874                                     struct drm_i915_gem_object *obj)
6875 {
6876         return -ENODEV;
6877 }
6878
6879 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6880                                 struct drm_framebuffer *fb,
6881                                 struct drm_pending_vblank_event *event)
6882 {
6883         struct drm_device *dev = crtc->dev;
6884         struct drm_i915_private *dev_priv = dev->dev_private;
6885         struct intel_framebuffer *intel_fb;
6886         struct drm_i915_gem_object *obj;
6887         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6888         struct intel_unpin_work *work;
6889         unsigned long flags;
6890         int ret;
6891
6892         work = kzalloc(sizeof *work, GFP_KERNEL);
6893         if (work == NULL)
6894                 return -ENOMEM;
6895
6896         work->event = event;
6897         work->dev = crtc->dev;
6898         intel_fb = to_intel_framebuffer(crtc->fb);
6899         work->old_fb_obj = intel_fb->obj;
6900         INIT_WORK(&work->work, intel_unpin_work_fn);
6901
6902         /* We borrow the event spin lock for protecting unpin_work */
6903         spin_lock_irqsave(&dev->event_lock, flags);
6904         if (intel_crtc->unpin_work) {
6905                 spin_unlock_irqrestore(&dev->event_lock, flags);
6906                 kfree(work);
6907
6908                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6909                 return -EBUSY;
6910         }
6911         intel_crtc->unpin_work = work;
6912         spin_unlock_irqrestore(&dev->event_lock, flags);
6913
6914         intel_fb = to_intel_framebuffer(fb);
6915         obj = intel_fb->obj;
6916
6917         mutex_lock(&dev->struct_mutex);
6918
6919         /* Reference the objects for the scheduled work. */
6920         drm_gem_object_reference(&work->old_fb_obj->base);
6921         drm_gem_object_reference(&obj->base);
6922
6923         crtc->fb = fb;
6924
6925         ret = drm_vblank_get(dev, intel_crtc->pipe);
6926         if (ret)
6927                 goto cleanup_objs;
6928
6929         work->pending_flip_obj = obj;
6930
6931         work->enable_stall_check = true;
6932
6933         /* Block clients from rendering to the new back buffer until
6934          * the flip occurs and the object is no longer visible.
6935          */
6936         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6937
6938         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6939         if (ret)
6940                 goto cleanup_pending;
6941
6942         intel_disable_fbc(dev);
6943         mutex_unlock(&dev->struct_mutex);
6944
6945         trace_i915_flip_request(intel_crtc->plane, obj);
6946
6947         return 0;
6948
6949 cleanup_pending:
6950         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6951 cleanup_objs:
6952         drm_gem_object_unreference(&work->old_fb_obj->base);
6953         drm_gem_object_unreference(&obj->base);
6954         mutex_unlock(&dev->struct_mutex);
6955
6956         spin_lock_irqsave(&dev->event_lock, flags);
6957         intel_crtc->unpin_work = NULL;
6958         spin_unlock_irqrestore(&dev->event_lock, flags);
6959
6960         kfree(work);
6961
6962         return ret;
6963 }
6964
6965 static void intel_sanitize_modesetting(struct drm_device *dev,
6966                                        int pipe, int plane)
6967 {
6968         struct drm_i915_private *dev_priv = dev->dev_private;
6969         u32 reg, val;
6970
6971         if (HAS_PCH_SPLIT(dev))
6972                 return;
6973
6974         /* Who knows what state these registers were left in by the BIOS or
6975          * grub?
6976          *
6977          * If we leave the registers in a conflicting state (e.g. with the
6978          * display plane reading from the other pipe than the one we intend
6979          * to use) then when we attempt to teardown the active mode, we will
6980          * not disable the pipes and planes in the correct order -- leaving
6981          * a plane reading from a disabled pipe and possibly leading to
6982          * undefined behaviour.
6983          */
6984
6985         reg = DSPCNTR(plane);
6986         val = I915_READ(reg);
6987
6988         if ((val & DISPLAY_PLANE_ENABLE) == 0)
6989                 return;
6990         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6991                 return;
6992
6993         /* This display plane is active and attached to the other CPU pipe. */
6994         pipe = !pipe;
6995
6996         /* Disable the plane and wait for it to stop reading from the pipe. */
6997         intel_disable_plane(dev_priv, plane, pipe);
6998         intel_disable_pipe(dev_priv, pipe);
6999 }
7000
7001 static void intel_crtc_reset(struct drm_crtc *crtc)
7002 {
7003         struct drm_device *dev = crtc->dev;
7004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7005
7006         /* Reset flags back to the 'unknown' status so that they
7007          * will be correctly set on the initial modeset.
7008          */
7009         intel_crtc->dpms_mode = -1;
7010
7011         /* We need to fix up any BIOS configuration that conflicts with
7012          * our expectations.
7013          */
7014         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7015 }
7016
7017 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7018         .dpms = intel_crtc_dpms,
7019         .mode_fixup = intel_crtc_mode_fixup,
7020         .mode_set = intel_crtc_mode_set,
7021         .mode_set_base = intel_pipe_set_base,
7022         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7023         .load_lut = intel_crtc_load_lut,
7024         .disable = intel_crtc_disable,
7025 };
7026
7027 static const struct drm_crtc_funcs intel_crtc_funcs = {
7028         .reset = intel_crtc_reset,
7029         .cursor_set = intel_crtc_cursor_set,
7030         .cursor_move = intel_crtc_cursor_move,
7031         .gamma_set = intel_crtc_gamma_set,
7032         .set_config = drm_crtc_helper_set_config,
7033         .destroy = intel_crtc_destroy,
7034         .page_flip = intel_crtc_page_flip,
7035 };
7036
7037 static void intel_crtc_init(struct drm_device *dev, int pipe)
7038 {
7039         drm_i915_private_t *dev_priv = dev->dev_private;
7040         struct intel_crtc *intel_crtc;
7041         int i;
7042
7043         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7044         if (intel_crtc == NULL)
7045                 return;
7046
7047         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7048
7049         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7050         for (i = 0; i < 256; i++) {
7051                 intel_crtc->lut_r[i] = i;
7052                 intel_crtc->lut_g[i] = i;
7053                 intel_crtc->lut_b[i] = i;
7054         }
7055
7056         /* Swap pipes & planes for FBC on pre-965 */
7057         intel_crtc->pipe = pipe;
7058         intel_crtc->plane = pipe;
7059         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7060                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7061                 intel_crtc->plane = !pipe;
7062         }
7063
7064         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7065                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7066         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7067         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7068
7069         intel_crtc_reset(&intel_crtc->base);
7070         intel_crtc->active = true; /* force the pipe off on setup_init_config */
7071         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7072
7073         if (HAS_PCH_SPLIT(dev)) {
7074                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7075                 intel_helper_funcs.commit = ironlake_crtc_commit;
7076         } else {
7077                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7078                 intel_helper_funcs.commit = i9xx_crtc_commit;
7079         }
7080
7081         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7082
7083         intel_crtc->busy = false;
7084
7085         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7086                     (unsigned long)intel_crtc);
7087 }
7088
7089 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7090                                 struct drm_file *file)
7091 {
7092         drm_i915_private_t *dev_priv = dev->dev_private;
7093         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7094         struct drm_mode_object *drmmode_obj;
7095         struct intel_crtc *crtc;
7096
7097         if (!dev_priv) {
7098                 DRM_ERROR("called with no initialization\n");
7099                 return -EINVAL;
7100         }
7101
7102         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7103                         DRM_MODE_OBJECT_CRTC);
7104
7105         if (!drmmode_obj) {
7106                 DRM_ERROR("no such CRTC id\n");
7107                 return -EINVAL;
7108         }
7109
7110         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7111         pipe_from_crtc_id->pipe = crtc->pipe;
7112
7113         return 0;
7114 }
7115
7116 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7117 {
7118         struct intel_encoder *encoder;
7119         int index_mask = 0;
7120         int entry = 0;
7121
7122         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7123                 if (type_mask & encoder->clone_mask)
7124                         index_mask |= (1 << entry);
7125                 entry++;
7126         }
7127
7128         return index_mask;
7129 }
7130
7131 static bool has_edp_a(struct drm_device *dev)
7132 {
7133         struct drm_i915_private *dev_priv = dev->dev_private;
7134
7135         if (!IS_MOBILE(dev))
7136                 return false;
7137
7138         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7139                 return false;
7140
7141         if (IS_GEN5(dev) &&
7142             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7143                 return false;
7144
7145         return true;
7146 }
7147
7148 static void intel_setup_outputs(struct drm_device *dev)
7149 {
7150         struct drm_i915_private *dev_priv = dev->dev_private;
7151         struct intel_encoder *encoder;
7152         bool dpd_is_edp = false;
7153         bool has_lvds = false;
7154
7155         if (IS_MOBILE(dev) && !IS_I830(dev))
7156                 has_lvds = intel_lvds_init(dev);
7157         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7158                 /* disable the panel fitter on everything but LVDS */
7159                 I915_WRITE(PFIT_CONTROL, 0);
7160         }
7161
7162         if (HAS_PCH_SPLIT(dev)) {
7163                 dpd_is_edp = intel_dpd_is_edp(dev);
7164
7165                 if (has_edp_a(dev))
7166                         intel_dp_init(dev, DP_A);
7167
7168                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7169                         intel_dp_init(dev, PCH_DP_D);
7170         }
7171
7172         intel_crt_init(dev);
7173
7174         if (HAS_PCH_SPLIT(dev)) {
7175                 int found;
7176
7177                 if (I915_READ(HDMIB) & PORT_DETECTED) {
7178                         /* PCH SDVOB multiplex with HDMIB */
7179                         found = intel_sdvo_init(dev, PCH_SDVOB);
7180                         if (!found)
7181                                 intel_hdmi_init(dev, HDMIB);
7182                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7183                                 intel_dp_init(dev, PCH_DP_B);
7184                 }
7185
7186                 if (I915_READ(HDMIC) & PORT_DETECTED)
7187                         intel_hdmi_init(dev, HDMIC);
7188
7189                 if (I915_READ(HDMID) & PORT_DETECTED)
7190                         intel_hdmi_init(dev, HDMID);
7191
7192                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7193                         intel_dp_init(dev, PCH_DP_C);
7194
7195                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7196                         intel_dp_init(dev, PCH_DP_D);
7197
7198         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7199                 bool found = false;
7200
7201                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7202                         DRM_DEBUG_KMS("probing SDVOB\n");
7203                         found = intel_sdvo_init(dev, SDVOB);
7204                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7205                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7206                                 intel_hdmi_init(dev, SDVOB);
7207                         }
7208
7209                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7210                                 DRM_DEBUG_KMS("probing DP_B\n");
7211                                 intel_dp_init(dev, DP_B);
7212                         }
7213                 }
7214
7215                 /* Before G4X SDVOC doesn't have its own detect register */
7216
7217                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7218                         DRM_DEBUG_KMS("probing SDVOC\n");
7219                         found = intel_sdvo_init(dev, SDVOC);
7220                 }
7221
7222                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7223
7224                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7225                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7226                                 intel_hdmi_init(dev, SDVOC);
7227                         }
7228                         if (SUPPORTS_INTEGRATED_DP(dev)) {
7229                                 DRM_DEBUG_KMS("probing DP_C\n");
7230                                 intel_dp_init(dev, DP_C);
7231                         }
7232                 }
7233
7234                 if (SUPPORTS_INTEGRATED_DP(dev) &&
7235                     (I915_READ(DP_D) & DP_DETECTED)) {
7236                         DRM_DEBUG_KMS("probing DP_D\n");
7237                         intel_dp_init(dev, DP_D);
7238                 }
7239         } else if (IS_GEN2(dev))
7240                 intel_dvo_init(dev);
7241
7242         if (SUPPORTS_TV(dev))
7243                 intel_tv_init(dev);
7244
7245         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7246                 encoder->base.possible_crtcs = encoder->crtc_mask;
7247                 encoder->base.possible_clones =
7248                         intel_encoder_clones(dev, encoder->clone_mask);
7249         }
7250
7251         /* disable all the possible outputs/crtcs before entering KMS mode */
7252         drm_helper_disable_unused_functions(dev);
7253 }
7254
7255 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7256 {
7257         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7258
7259         drm_framebuffer_cleanup(fb);
7260         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7261
7262         kfree(intel_fb);
7263 }
7264
7265 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7266                                                 struct drm_file *file,
7267                                                 unsigned int *handle)
7268 {
7269         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7270         struct drm_i915_gem_object *obj = intel_fb->obj;
7271
7272         return drm_gem_handle_create(file, &obj->base, handle);
7273 }
7274
7275 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7276         .destroy = intel_user_framebuffer_destroy,
7277         .create_handle = intel_user_framebuffer_create_handle,
7278 };
7279
7280 int intel_framebuffer_init(struct drm_device *dev,
7281                            struct intel_framebuffer *intel_fb,
7282                            struct drm_mode_fb_cmd *mode_cmd,
7283                            struct drm_i915_gem_object *obj)
7284 {
7285         int ret;
7286
7287         if (obj->tiling_mode == I915_TILING_Y)
7288                 return -EINVAL;
7289
7290         if (mode_cmd->pitch & 63)
7291                 return -EINVAL;
7292
7293         switch (mode_cmd->bpp) {
7294         case 8:
7295         case 16:
7296                 /* Only pre-ILK can handle 5:5:5 */
7297                 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7298                         return -EINVAL;
7299                 break;
7300
7301         case 24:
7302         case 32:
7303                 break;
7304         default:
7305                 return -EINVAL;
7306         }
7307
7308         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7309         if (ret) {
7310                 DRM_ERROR("framebuffer init failed %d\n", ret);
7311                 return ret;
7312         }
7313
7314         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7315         intel_fb->obj = obj;
7316         return 0;
7317 }
7318
7319 static struct drm_framebuffer *
7320 intel_user_framebuffer_create(struct drm_device *dev,
7321                               struct drm_file *filp,
7322                               struct drm_mode_fb_cmd *mode_cmd)
7323 {
7324         struct drm_i915_gem_object *obj;
7325
7326         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
7327         if (&obj->base == NULL)
7328                 return ERR_PTR(-ENOENT);
7329
7330         return intel_framebuffer_create(dev, mode_cmd, obj);
7331 }
7332
7333 static const struct drm_mode_config_funcs intel_mode_funcs = {
7334         .fb_create = intel_user_framebuffer_create,
7335         .output_poll_changed = intel_fb_output_poll_changed,
7336 };
7337
7338 static struct drm_i915_gem_object *
7339 intel_alloc_context_page(struct drm_device *dev)
7340 {
7341         struct drm_i915_gem_object *ctx;
7342         int ret;
7343
7344         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7345
7346         ctx = i915_gem_alloc_object(dev, 4096);
7347         if (!ctx) {
7348                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7349                 return NULL;
7350         }
7351
7352         ret = i915_gem_object_pin(ctx, 4096, true);
7353         if (ret) {
7354                 DRM_ERROR("failed to pin power context: %d\n", ret);
7355                 goto err_unref;
7356         }
7357
7358         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7359         if (ret) {
7360                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7361                 goto err_unpin;
7362         }
7363
7364         return ctx;
7365
7366 err_unpin:
7367         i915_gem_object_unpin(ctx);
7368 err_unref:
7369         drm_gem_object_unreference(&ctx->base);
7370         mutex_unlock(&dev->struct_mutex);
7371         return NULL;
7372 }
7373
7374 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7375 {
7376         struct drm_i915_private *dev_priv = dev->dev_private;
7377         u16 rgvswctl;
7378
7379         rgvswctl = I915_READ16(MEMSWCTL);
7380         if (rgvswctl & MEMCTL_CMD_STS) {
7381                 DRM_DEBUG("gpu busy, RCS change rejected\n");
7382                 return false; /* still busy with another command */
7383         }
7384
7385         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7386                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7387         I915_WRITE16(MEMSWCTL, rgvswctl);
7388         POSTING_READ16(MEMSWCTL);
7389
7390         rgvswctl |= MEMCTL_CMD_STS;
7391         I915_WRITE16(MEMSWCTL, rgvswctl);
7392
7393         return true;
7394 }
7395
7396 void ironlake_enable_drps(struct drm_device *dev)
7397 {
7398         struct drm_i915_private *dev_priv = dev->dev_private;
7399         u32 rgvmodectl = I915_READ(MEMMODECTL);
7400         u8 fmax, fmin, fstart, vstart;
7401
7402         /* Enable temp reporting */
7403         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7404         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7405
7406         /* 100ms RC evaluation intervals */
7407         I915_WRITE(RCUPEI, 100000);
7408         I915_WRITE(RCDNEI, 100000);
7409
7410         /* Set max/min thresholds to 90ms and 80ms respectively */
7411         I915_WRITE(RCBMAXAVG, 90000);
7412         I915_WRITE(RCBMINAVG, 80000);
7413
7414         I915_WRITE(MEMIHYST, 1);
7415
7416         /* Set up min, max, and cur for interrupt handling */
7417         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7418         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7419         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7420                 MEMMODE_FSTART_SHIFT;
7421
7422         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7423                 PXVFREQ_PX_SHIFT;
7424
7425         dev_priv->fmax = fmax; /* IPS callback will increase this */
7426         dev_priv->fstart = fstart;
7427
7428         dev_priv->max_delay = fstart;
7429         dev_priv->min_delay = fmin;
7430         dev_priv->cur_delay = fstart;
7431
7432         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7433                          fmax, fmin, fstart);
7434
7435         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7436
7437         /*
7438          * Interrupts will be enabled in ironlake_irq_postinstall
7439          */
7440
7441         I915_WRITE(VIDSTART, vstart);
7442         POSTING_READ(VIDSTART);
7443
7444         rgvmodectl |= MEMMODE_SWMODE_EN;
7445         I915_WRITE(MEMMODECTL, rgvmodectl);
7446
7447         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7448                 DRM_ERROR("stuck trying to change perf mode\n");
7449         msleep(1);
7450
7451         ironlake_set_drps(dev, fstart);
7452
7453         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7454                 I915_READ(0x112e0);
7455         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7456         dev_priv->last_count2 = I915_READ(0x112f4);
7457         getrawmonotonic(&dev_priv->last_time2);
7458 }
7459
7460 void ironlake_disable_drps(struct drm_device *dev)
7461 {
7462         struct drm_i915_private *dev_priv = dev->dev_private;
7463         u16 rgvswctl = I915_READ16(MEMSWCTL);
7464
7465         /* Ack interrupts, disable EFC interrupt */
7466         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7467         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7468         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7469         I915_WRITE(DEIIR, DE_PCU_EVENT);
7470         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7471
7472         /* Go back to the starting frequency */
7473         ironlake_set_drps(dev, dev_priv->fstart);
7474         msleep(1);
7475         rgvswctl |= MEMCTL_CMD_STS;
7476         I915_WRITE(MEMSWCTL, rgvswctl);
7477         msleep(1);
7478
7479 }
7480
7481 void gen6_set_rps(struct drm_device *dev, u8 val)
7482 {
7483         struct drm_i915_private *dev_priv = dev->dev_private;
7484         u32 swreq;
7485
7486         swreq = (val & 0x3ff) << 25;
7487         I915_WRITE(GEN6_RPNSWREQ, swreq);
7488 }
7489
7490 void gen6_disable_rps(struct drm_device *dev)
7491 {
7492         struct drm_i915_private *dev_priv = dev->dev_private;
7493
7494         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7495         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7496         I915_WRITE(GEN6_PMIER, 0);
7497
7498         spin_lock_irq(&dev_priv->rps_lock);
7499         dev_priv->pm_iir = 0;
7500         spin_unlock_irq(&dev_priv->rps_lock);
7501
7502         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7503 }
7504
7505 static unsigned long intel_pxfreq(u32 vidfreq)
7506 {
7507         unsigned long freq;
7508         int div = (vidfreq & 0x3f0000) >> 16;
7509         int post = (vidfreq & 0x3000) >> 12;
7510         int pre = (vidfreq & 0x7);
7511
7512         if (!pre)
7513                 return 0;
7514
7515         freq = ((div * 133333) / ((1<<post) * pre));
7516
7517         return freq;
7518 }
7519
7520 void intel_init_emon(struct drm_device *dev)
7521 {
7522         struct drm_i915_private *dev_priv = dev->dev_private;
7523         u32 lcfuse;
7524         u8 pxw[16];
7525         int i;
7526
7527         /* Disable to program */
7528         I915_WRITE(ECR, 0);
7529         POSTING_READ(ECR);
7530
7531         /* Program energy weights for various events */
7532         I915_WRITE(SDEW, 0x15040d00);
7533         I915_WRITE(CSIEW0, 0x007f0000);
7534         I915_WRITE(CSIEW1, 0x1e220004);
7535         I915_WRITE(CSIEW2, 0x04000004);
7536
7537         for (i = 0; i < 5; i++)
7538                 I915_WRITE(PEW + (i * 4), 0);
7539         for (i = 0; i < 3; i++)
7540                 I915_WRITE(DEW + (i * 4), 0);
7541
7542         /* Program P-state weights to account for frequency power adjustment */
7543         for (i = 0; i < 16; i++) {
7544                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7545                 unsigned long freq = intel_pxfreq(pxvidfreq);
7546                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7547                         PXVFREQ_PX_SHIFT;
7548                 unsigned long val;
7549
7550                 val = vid * vid;
7551                 val *= (freq / 1000);
7552                 val *= 255;
7553                 val /= (127*127*900);
7554                 if (val > 0xff)
7555                         DRM_ERROR("bad pxval: %ld\n", val);
7556                 pxw[i] = val;
7557         }
7558         /* Render standby states get 0 weight */
7559         pxw[14] = 0;
7560         pxw[15] = 0;
7561
7562         for (i = 0; i < 4; i++) {
7563                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7564                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7565                 I915_WRITE(PXW + (i * 4), val);
7566         }
7567
7568         /* Adjust magic regs to magic values (more experimental results) */
7569         I915_WRITE(OGW0, 0);
7570         I915_WRITE(OGW1, 0);
7571         I915_WRITE(EG0, 0x00007f00);
7572         I915_WRITE(EG1, 0x0000000e);
7573         I915_WRITE(EG2, 0x000e0000);
7574         I915_WRITE(EG3, 0x68000300);
7575         I915_WRITE(EG4, 0x42000000);
7576         I915_WRITE(EG5, 0x00140031);
7577         I915_WRITE(EG6, 0);
7578         I915_WRITE(EG7, 0);
7579
7580         for (i = 0; i < 8; i++)
7581                 I915_WRITE(PXWL + (i * 4), 0);
7582
7583         /* Enable PMON + select events */
7584         I915_WRITE(ECR, 0x80000019);
7585
7586         lcfuse = I915_READ(LCFUSE02);
7587
7588         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7589 }
7590
7591 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7592 {
7593         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7594         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7595         u32 pcu_mbox, rc6_mask = 0;
7596         int cur_freq, min_freq, max_freq;
7597         int i;
7598
7599         /* Here begins a magic sequence of register writes to enable
7600          * auto-downclocking.
7601          *
7602          * Perhaps there might be some value in exposing these to
7603          * userspace...
7604          */
7605         I915_WRITE(GEN6_RC_STATE, 0);
7606         mutex_lock(&dev_priv->dev->struct_mutex);
7607         gen6_gt_force_wake_get(dev_priv);
7608
7609         /* disable the counters and set deterministic thresholds */
7610         I915_WRITE(GEN6_RC_CONTROL, 0);
7611
7612         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7613         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7614         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7615         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7616         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7617
7618         for (i = 0; i < I915_NUM_RINGS; i++)
7619                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7620
7621         I915_WRITE(GEN6_RC_SLEEP, 0);
7622         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7623         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7624         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7625         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7626
7627         if (i915_enable_rc6)
7628                 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7629                         GEN6_RC_CTL_RC6_ENABLE;
7630
7631         I915_WRITE(GEN6_RC_CONTROL,
7632                    rc6_mask |
7633                    GEN6_RC_CTL_EI_MODE(1) |
7634                    GEN6_RC_CTL_HW_ENABLE);
7635
7636         I915_WRITE(GEN6_RPNSWREQ,
7637                    GEN6_FREQUENCY(10) |
7638                    GEN6_OFFSET(0) |
7639                    GEN6_AGGRESSIVE_TURBO);
7640         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7641                    GEN6_FREQUENCY(12));
7642
7643         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7644         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7645                    18 << 24 |
7646                    6 << 16);
7647         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7648         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7649         I915_WRITE(GEN6_RP_UP_EI, 100000);
7650         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7651         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7652         I915_WRITE(GEN6_RP_CONTROL,
7653                    GEN6_RP_MEDIA_TURBO |
7654                    GEN6_RP_USE_NORMAL_FREQ |
7655                    GEN6_RP_MEDIA_IS_GFX |
7656                    GEN6_RP_ENABLE |
7657                    GEN6_RP_UP_BUSY_AVG |
7658                    GEN6_RP_DOWN_IDLE_CONT);
7659
7660         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7661                      500))
7662                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7663
7664         I915_WRITE(GEN6_PCODE_DATA, 0);
7665         I915_WRITE(GEN6_PCODE_MAILBOX,
7666                    GEN6_PCODE_READY |
7667                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7668         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7669                      500))
7670                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7671
7672         min_freq = (rp_state_cap & 0xff0000) >> 16;
7673         max_freq = rp_state_cap & 0xff;
7674         cur_freq = (gt_perf_status & 0xff00) >> 8;
7675
7676         /* Check for overclock support */
7677         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7678                      500))
7679                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7680         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7681         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7682         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7683                      500))
7684                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7685         if (pcu_mbox & (1<<31)) { /* OC supported */
7686                 max_freq = pcu_mbox & 0xff;
7687                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7688         }
7689
7690         /* In units of 100MHz */
7691         dev_priv->max_delay = max_freq;
7692         dev_priv->min_delay = min_freq;
7693         dev_priv->cur_delay = cur_freq;
7694
7695         /* requires MSI enabled */
7696         I915_WRITE(GEN6_PMIER,
7697                    GEN6_PM_MBOX_EVENT |
7698                    GEN6_PM_THERMAL_EVENT |
7699                    GEN6_PM_RP_DOWN_TIMEOUT |
7700                    GEN6_PM_RP_UP_THRESHOLD |
7701                    GEN6_PM_RP_DOWN_THRESHOLD |
7702                    GEN6_PM_RP_UP_EI_EXPIRED |
7703                    GEN6_PM_RP_DOWN_EI_EXPIRED);
7704         spin_lock_irq(&dev_priv->rps_lock);
7705         WARN_ON(dev_priv->pm_iir != 0);
7706         I915_WRITE(GEN6_PMIMR, 0);
7707         spin_unlock_irq(&dev_priv->rps_lock);
7708         /* enable all PM interrupts */
7709         I915_WRITE(GEN6_PMINTRMSK, 0);
7710
7711         gen6_gt_force_wake_put(dev_priv);
7712         mutex_unlock(&dev_priv->dev->struct_mutex);
7713 }
7714
7715 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7716 {
7717         int min_freq = 15;
7718         int gpu_freq, ia_freq, max_ia_freq;
7719         int scaling_factor = 180;
7720
7721         max_ia_freq = cpufreq_quick_get_max(0);
7722         /*
7723          * Default to measured freq if none found, PCU will ensure we don't go
7724          * over
7725          */
7726         if (!max_ia_freq)
7727                 max_ia_freq = tsc_khz;
7728
7729         /* Convert from kHz to MHz */
7730         max_ia_freq /= 1000;
7731
7732         mutex_lock(&dev_priv->dev->struct_mutex);
7733
7734         /*
7735          * For each potential GPU frequency, load a ring frequency we'd like
7736          * to use for memory access.  We do this by specifying the IA frequency
7737          * the PCU should use as a reference to determine the ring frequency.
7738          */
7739         for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
7740              gpu_freq--) {
7741                 int diff = dev_priv->max_delay - gpu_freq;
7742
7743                 /*
7744                  * For GPU frequencies less than 750MHz, just use the lowest
7745                  * ring freq.
7746                  */
7747                 if (gpu_freq < min_freq)
7748                         ia_freq = 800;
7749                 else
7750                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7751                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7752
7753                 I915_WRITE(GEN6_PCODE_DATA,
7754                            (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
7755                            gpu_freq);
7756                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
7757                            GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7758                 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
7759                               GEN6_PCODE_READY) == 0, 10)) {
7760                         DRM_ERROR("pcode write of freq table timed out\n");
7761                         continue;
7762                 }
7763         }
7764
7765         mutex_unlock(&dev_priv->dev->struct_mutex);
7766 }
7767
7768 static void ironlake_init_clock_gating(struct drm_device *dev)
7769 {
7770         struct drm_i915_private *dev_priv = dev->dev_private;
7771         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7772
7773         /* Required for FBC */
7774         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7775                 DPFCRUNIT_CLOCK_GATE_DISABLE |
7776                 DPFDUNIT_CLOCK_GATE_DISABLE;
7777         /* Required for CxSR */
7778         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7779
7780         I915_WRITE(PCH_3DCGDIS0,
7781                    MARIUNIT_CLOCK_GATE_DISABLE |
7782                    SVSMUNIT_CLOCK_GATE_DISABLE);
7783         I915_WRITE(PCH_3DCGDIS1,
7784                    VFMUNIT_CLOCK_GATE_DISABLE);
7785
7786         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7787
7788         /*
7789          * According to the spec the following bits should be set in
7790          * order to enable memory self-refresh
7791          * The bit 22/21 of 0x42004
7792          * The bit 5 of 0x42020
7793          * The bit 15 of 0x45000
7794          */
7795         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7796                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
7797                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7798         I915_WRITE(ILK_DSPCLK_GATE,
7799                    (I915_READ(ILK_DSPCLK_GATE) |
7800                     ILK_DPARB_CLK_GATE));
7801         I915_WRITE(DISP_ARB_CTL,
7802                    (I915_READ(DISP_ARB_CTL) |
7803                     DISP_FBC_WM_DIS));
7804         I915_WRITE(WM3_LP_ILK, 0);
7805         I915_WRITE(WM2_LP_ILK, 0);
7806         I915_WRITE(WM1_LP_ILK, 0);
7807
7808         /*
7809          * Based on the document from hardware guys the following bits
7810          * should be set unconditionally in order to enable FBC.
7811          * The bit 22 of 0x42000
7812          * The bit 22 of 0x42004
7813          * The bit 7,8,9 of 0x42020.
7814          */
7815         if (IS_IRONLAKE_M(dev)) {
7816                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7817                            I915_READ(ILK_DISPLAY_CHICKEN1) |
7818                            ILK_FBCQ_DIS);
7819                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7820                            I915_READ(ILK_DISPLAY_CHICKEN2) |
7821                            ILK_DPARB_GATE);
7822                 I915_WRITE(ILK_DSPCLK_GATE,
7823                            I915_READ(ILK_DSPCLK_GATE) |
7824                            ILK_DPFC_DIS1 |
7825                            ILK_DPFC_DIS2 |
7826                            ILK_CLK_FBC);
7827         }
7828
7829         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7830                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7831                    ILK_ELPIN_409_SELECT);
7832         I915_WRITE(_3D_CHICKEN2,
7833                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7834                    _3D_CHICKEN2_WM_READ_PIPELINED);
7835 }
7836
7837 static void gen6_init_clock_gating(struct drm_device *dev)
7838 {
7839         struct drm_i915_private *dev_priv = dev->dev_private;
7840         int pipe;
7841         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7842
7843         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7844
7845         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7846                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7847                    ILK_ELPIN_409_SELECT);
7848
7849         I915_WRITE(WM3_LP_ILK, 0);
7850         I915_WRITE(WM2_LP_ILK, 0);
7851         I915_WRITE(WM1_LP_ILK, 0);
7852
7853         /*
7854          * According to the spec the following bits should be
7855          * set in order to enable memory self-refresh and fbc:
7856          * The bit21 and bit22 of 0x42000
7857          * The bit21 and bit22 of 0x42004
7858          * The bit5 and bit7 of 0x42020
7859          * The bit14 of 0x70180
7860          * The bit14 of 0x71180
7861          */
7862         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7863                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7864                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7865         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7866                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7867                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7868         I915_WRITE(ILK_DSPCLK_GATE,
7869                    I915_READ(ILK_DSPCLK_GATE) |
7870                    ILK_DPARB_CLK_GATE  |
7871                    ILK_DPFD_CLK_GATE);
7872
7873         for_each_pipe(pipe) {
7874                 I915_WRITE(DSPCNTR(pipe),
7875                            I915_READ(DSPCNTR(pipe)) |
7876                            DISPPLANE_TRICKLE_FEED_DISABLE);
7877                 intel_flush_display_plane(dev_priv, pipe);
7878         }
7879 }
7880
7881 static void ivybridge_init_clock_gating(struct drm_device *dev)
7882 {
7883         struct drm_i915_private *dev_priv = dev->dev_private;
7884         int pipe;
7885         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7886
7887         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7888
7889         I915_WRITE(WM3_LP_ILK, 0);
7890         I915_WRITE(WM2_LP_ILK, 0);
7891         I915_WRITE(WM1_LP_ILK, 0);
7892
7893         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
7894
7895         for_each_pipe(pipe) {
7896                 I915_WRITE(DSPCNTR(pipe),
7897                            I915_READ(DSPCNTR(pipe)) |
7898                            DISPPLANE_TRICKLE_FEED_DISABLE);
7899                 intel_flush_display_plane(dev_priv, pipe);
7900         }
7901 }
7902
7903 static void g4x_init_clock_gating(struct drm_device *dev)
7904 {
7905         struct drm_i915_private *dev_priv = dev->dev_private;
7906         uint32_t dspclk_gate;
7907
7908         I915_WRITE(RENCLK_GATE_D1, 0);
7909         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7910                    GS_UNIT_CLOCK_GATE_DISABLE |
7911                    CL_UNIT_CLOCK_GATE_DISABLE);
7912         I915_WRITE(RAMCLK_GATE_D, 0);
7913         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7914                 OVRUNIT_CLOCK_GATE_DISABLE |
7915                 OVCUNIT_CLOCK_GATE_DISABLE;
7916         if (IS_GM45(dev))
7917                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7918         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7919 }
7920
7921 static void crestline_init_clock_gating(struct drm_device *dev)
7922 {
7923         struct drm_i915_private *dev_priv = dev->dev_private;
7924
7925         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7926         I915_WRITE(RENCLK_GATE_D2, 0);
7927         I915_WRITE(DSPCLK_GATE_D, 0);
7928         I915_WRITE(RAMCLK_GATE_D, 0);
7929         I915_WRITE16(DEUC, 0);
7930 }
7931
7932 static void broadwater_init_clock_gating(struct drm_device *dev)
7933 {
7934         struct drm_i915_private *dev_priv = dev->dev_private;
7935
7936         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7937                    I965_RCC_CLOCK_GATE_DISABLE |
7938                    I965_RCPB_CLOCK_GATE_DISABLE |
7939                    I965_ISC_CLOCK_GATE_DISABLE |
7940                    I965_FBC_CLOCK_GATE_DISABLE);
7941         I915_WRITE(RENCLK_GATE_D2, 0);
7942 }
7943
7944 static void gen3_init_clock_gating(struct drm_device *dev)
7945 {
7946         struct drm_i915_private *dev_priv = dev->dev_private;
7947         u32 dstate = I915_READ(D_STATE);
7948
7949         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7950                 DSTATE_DOT_CLOCK_GATING;
7951         I915_WRITE(D_STATE, dstate);
7952 }
7953
7954 static void i85x_init_clock_gating(struct drm_device *dev)
7955 {
7956         struct drm_i915_private *dev_priv = dev->dev_private;
7957
7958         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7959 }
7960
7961 static void i830_init_clock_gating(struct drm_device *dev)
7962 {
7963         struct drm_i915_private *dev_priv = dev->dev_private;
7964
7965         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7966 }
7967
7968 static void ibx_init_clock_gating(struct drm_device *dev)
7969 {
7970         struct drm_i915_private *dev_priv = dev->dev_private;
7971
7972         /*
7973          * On Ibex Peak and Cougar Point, we need to disable clock
7974          * gating for the panel power sequencer or it will fail to
7975          * start up when no ports are active.
7976          */
7977         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7978 }
7979
7980 static void cpt_init_clock_gating(struct drm_device *dev)
7981 {
7982         struct drm_i915_private *dev_priv = dev->dev_private;
7983         int pipe;
7984
7985         /*
7986          * On Ibex Peak and Cougar Point, we need to disable clock
7987          * gating for the panel power sequencer or it will fail to
7988          * start up when no ports are active.
7989          */
7990         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7991         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7992                    DPLS_EDP_PPS_FIX_DIS);
7993         /* Without this, mode sets may fail silently on FDI */
7994         for_each_pipe(pipe)
7995                 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
7996 }
7997
7998 static void ironlake_teardown_rc6(struct drm_device *dev)
7999 {
8000         struct drm_i915_private *dev_priv = dev->dev_private;
8001
8002         if (dev_priv->renderctx) {
8003                 i915_gem_object_unpin(dev_priv->renderctx);
8004                 drm_gem_object_unreference(&dev_priv->renderctx->base);
8005                 dev_priv->renderctx = NULL;
8006         }
8007
8008         if (dev_priv->pwrctx) {
8009                 i915_gem_object_unpin(dev_priv->pwrctx);
8010                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8011                 dev_priv->pwrctx = NULL;
8012         }
8013 }
8014
8015 static void ironlake_disable_rc6(struct drm_device *dev)
8016 {
8017         struct drm_i915_private *dev_priv = dev->dev_private;
8018
8019         if (I915_READ(PWRCTXA)) {
8020                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8021                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8022                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8023                          50);
8024
8025                 I915_WRITE(PWRCTXA, 0);
8026                 POSTING_READ(PWRCTXA);
8027
8028                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8029                 POSTING_READ(RSTDBYCTL);
8030         }
8031
8032         ironlake_teardown_rc6(dev);
8033 }
8034
8035 static int ironlake_setup_rc6(struct drm_device *dev)
8036 {
8037         struct drm_i915_private *dev_priv = dev->dev_private;
8038
8039         if (dev_priv->renderctx == NULL)
8040                 dev_priv->renderctx = intel_alloc_context_page(dev);
8041         if (!dev_priv->renderctx)
8042                 return -ENOMEM;
8043
8044         if (dev_priv->pwrctx == NULL)
8045                 dev_priv->pwrctx = intel_alloc_context_page(dev);
8046         if (!dev_priv->pwrctx) {
8047                 ironlake_teardown_rc6(dev);
8048                 return -ENOMEM;
8049         }
8050
8051         return 0;
8052 }
8053
8054 void ironlake_enable_rc6(struct drm_device *dev)
8055 {
8056         struct drm_i915_private *dev_priv = dev->dev_private;
8057         int ret;
8058
8059         /* rc6 disabled by default due to repeated reports of hanging during
8060          * boot and resume.
8061          */
8062         if (!i915_enable_rc6)
8063                 return;
8064
8065         mutex_lock(&dev->struct_mutex);
8066         ret = ironlake_setup_rc6(dev);
8067         if (ret) {
8068                 mutex_unlock(&dev->struct_mutex);
8069                 return;
8070         }
8071
8072         /*
8073          * GPU can automatically power down the render unit if given a page
8074          * to save state.
8075          */
8076         ret = BEGIN_LP_RING(6);
8077         if (ret) {
8078                 ironlake_teardown_rc6(dev);
8079                 mutex_unlock(&dev->struct_mutex);
8080                 return;
8081         }
8082
8083         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8084         OUT_RING(MI_SET_CONTEXT);
8085         OUT_RING(dev_priv->renderctx->gtt_offset |
8086                  MI_MM_SPACE_GTT |
8087                  MI_SAVE_EXT_STATE_EN |
8088                  MI_RESTORE_EXT_STATE_EN |
8089                  MI_RESTORE_INHIBIT);
8090         OUT_RING(MI_SUSPEND_FLUSH);
8091         OUT_RING(MI_NOOP);
8092         OUT_RING(MI_FLUSH);
8093         ADVANCE_LP_RING();
8094
8095         /*
8096          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8097          * does an implicit flush, combined with MI_FLUSH above, it should be
8098          * safe to assume that renderctx is valid
8099          */
8100         ret = intel_wait_ring_idle(LP_RING(dev_priv));
8101         if (ret) {
8102                 DRM_ERROR("failed to enable ironlake power power savings\n");
8103                 ironlake_teardown_rc6(dev);
8104                 mutex_unlock(&dev->struct_mutex);
8105                 return;
8106         }
8107
8108         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8109         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8110         mutex_unlock(&dev->struct_mutex);
8111 }
8112
8113 void intel_init_clock_gating(struct drm_device *dev)
8114 {
8115         struct drm_i915_private *dev_priv = dev->dev_private;
8116
8117         dev_priv->display.init_clock_gating(dev);
8118
8119         if (dev_priv->display.init_pch_clock_gating)
8120                 dev_priv->display.init_pch_clock_gating(dev);
8121 }
8122
8123 /* Set up chip specific display functions */
8124 static void intel_init_display(struct drm_device *dev)
8125 {
8126         struct drm_i915_private *dev_priv = dev->dev_private;
8127
8128         /* We always want a DPMS function */
8129         if (HAS_PCH_SPLIT(dev)) {
8130                 dev_priv->display.dpms = ironlake_crtc_dpms;
8131                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8132                 dev_priv->display.update_plane = ironlake_update_plane;
8133         } else {
8134                 dev_priv->display.dpms = i9xx_crtc_dpms;
8135                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8136                 dev_priv->display.update_plane = i9xx_update_plane;
8137         }
8138
8139         if (I915_HAS_FBC(dev)) {
8140                 if (HAS_PCH_SPLIT(dev)) {
8141                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8142                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
8143                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
8144                 } else if (IS_GM45(dev)) {
8145                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8146                         dev_priv->display.enable_fbc = g4x_enable_fbc;
8147                         dev_priv->display.disable_fbc = g4x_disable_fbc;
8148                 } else if (IS_CRESTLINE(dev)) {
8149                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8150                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
8151                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
8152                 }
8153                 /* 855GM needs testing */
8154         }
8155
8156         /* Returns the core display clock speed */
8157         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
8158                 dev_priv->display.get_display_clock_speed =
8159                         i945_get_display_clock_speed;
8160         else if (IS_I915G(dev))
8161                 dev_priv->display.get_display_clock_speed =
8162                         i915_get_display_clock_speed;
8163         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8164                 dev_priv->display.get_display_clock_speed =
8165                         i9xx_misc_get_display_clock_speed;
8166         else if (IS_I915GM(dev))
8167                 dev_priv->display.get_display_clock_speed =
8168                         i915gm_get_display_clock_speed;
8169         else if (IS_I865G(dev))
8170                 dev_priv->display.get_display_clock_speed =
8171                         i865_get_display_clock_speed;
8172         else if (IS_I85X(dev))
8173                 dev_priv->display.get_display_clock_speed =
8174                         i855_get_display_clock_speed;
8175         else /* 852, 830 */
8176                 dev_priv->display.get_display_clock_speed =
8177                         i830_get_display_clock_speed;
8178
8179         /* For FIFO watermark updates */
8180         if (HAS_PCH_SPLIT(dev)) {
8181                 if (HAS_PCH_IBX(dev))
8182                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8183                 else if (HAS_PCH_CPT(dev))
8184                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8185
8186                 if (IS_GEN5(dev)) {
8187                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8188                                 dev_priv->display.update_wm = ironlake_update_wm;
8189                         else {
8190                                 DRM_DEBUG_KMS("Failed to get proper latency. "
8191                                               "Disable CxSR\n");
8192                                 dev_priv->display.update_wm = NULL;
8193                         }
8194                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8195                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8196                 } else if (IS_GEN6(dev)) {
8197                         if (SNB_READ_WM0_LATENCY()) {
8198                                 dev_priv->display.update_wm = sandybridge_update_wm;
8199                         } else {
8200                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8201                                               "Disable CxSR\n");
8202                                 dev_priv->display.update_wm = NULL;
8203                         }
8204                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8205                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8206                 } else if (IS_IVYBRIDGE(dev)) {
8207                         /* FIXME: detect B0+ stepping and use auto training */
8208                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8209                         if (SNB_READ_WM0_LATENCY()) {
8210                                 dev_priv->display.update_wm = sandybridge_update_wm;
8211                         } else {
8212                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8213                                               "Disable CxSR\n");
8214                                 dev_priv->display.update_wm = NULL;
8215                         }
8216                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8217
8218                 } else
8219                         dev_priv->display.update_wm = NULL;
8220         } else if (IS_PINEVIEW(dev)) {
8221                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8222                                             dev_priv->is_ddr3,
8223                                             dev_priv->fsb_freq,
8224                                             dev_priv->mem_freq)) {
8225                         DRM_INFO("failed to find known CxSR latency "
8226                                  "(found ddr%s fsb freq %d, mem freq %d), "
8227                                  "disabling CxSR\n",
8228                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
8229                                  dev_priv->fsb_freq, dev_priv->mem_freq);
8230                         /* Disable CxSR and never update its watermark again */
8231                         pineview_disable_cxsr(dev);
8232                         dev_priv->display.update_wm = NULL;
8233                 } else
8234                         dev_priv->display.update_wm = pineview_update_wm;
8235                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8236         } else if (IS_G4X(dev)) {
8237                 dev_priv->display.update_wm = g4x_update_wm;
8238                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8239         } else if (IS_GEN4(dev)) {
8240                 dev_priv->display.update_wm = i965_update_wm;
8241                 if (IS_CRESTLINE(dev))
8242                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8243                 else if (IS_BROADWATER(dev))
8244                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8245         } else if (IS_GEN3(dev)) {
8246                 dev_priv->display.update_wm = i9xx_update_wm;
8247                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8248                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8249         } else if (IS_I865G(dev)) {
8250                 dev_priv->display.update_wm = i830_update_wm;
8251                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8252                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8253         } else if (IS_I85X(dev)) {
8254                 dev_priv->display.update_wm = i9xx_update_wm;
8255                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8256                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8257         } else {
8258                 dev_priv->display.update_wm = i830_update_wm;
8259                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8260                 if (IS_845G(dev))
8261                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
8262                 else
8263                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
8264         }
8265
8266         /* Default just returns -ENODEV to indicate unsupported */
8267         dev_priv->display.queue_flip = intel_default_queue_flip;
8268
8269         switch (INTEL_INFO(dev)->gen) {
8270         case 2:
8271                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8272                 break;
8273
8274         case 3:
8275                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8276                 break;
8277
8278         case 4:
8279         case 5:
8280                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8281                 break;
8282
8283         case 6:
8284                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8285                 break;
8286         case 7:
8287                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8288                 break;
8289         }
8290 }
8291
8292 /*
8293  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8294  * resume, or other times.  This quirk makes sure that's the case for
8295  * affected systems.
8296  */
8297 static void quirk_pipea_force (struct drm_device *dev)
8298 {
8299         struct drm_i915_private *dev_priv = dev->dev_private;
8300
8301         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8302         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8303 }
8304
8305 /*
8306  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8307  */
8308 static void quirk_ssc_force_disable(struct drm_device *dev)
8309 {
8310         struct drm_i915_private *dev_priv = dev->dev_private;
8311         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8312 }
8313
8314 struct intel_quirk {
8315         int device;
8316         int subsystem_vendor;
8317         int subsystem_device;
8318         void (*hook)(struct drm_device *dev);
8319 };
8320
8321 struct intel_quirk intel_quirks[] = {
8322         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8323         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8324         /* HP Mini needs pipe A force quirk (LP: #322104) */
8325         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
8326
8327         /* Thinkpad R31 needs pipe A force quirk */
8328         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8329         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8330         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8331
8332         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8333         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
8334         /* ThinkPad X40 needs pipe A force quirk */
8335
8336         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8337         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8338
8339         /* 855 & before need to leave pipe A & dpll A up */
8340         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8341         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8342
8343         /* Lenovo U160 cannot use SSC on LVDS */
8344         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8345
8346         /* Sony Vaio Y cannot use SSC on LVDS */
8347         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8348 };
8349
8350 static void intel_init_quirks(struct drm_device *dev)
8351 {
8352         struct pci_dev *d = dev->pdev;
8353         int i;
8354
8355         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8356                 struct intel_quirk *q = &intel_quirks[i];
8357
8358                 if (d->device == q->device &&
8359                     (d->subsystem_vendor == q->subsystem_vendor ||
8360                      q->subsystem_vendor == PCI_ANY_ID) &&
8361                     (d->subsystem_device == q->subsystem_device ||
8362                      q->subsystem_device == PCI_ANY_ID))
8363                         q->hook(dev);
8364         }
8365 }
8366
8367 /* Disable the VGA plane that we never use */
8368 static void i915_disable_vga(struct drm_device *dev)
8369 {
8370         struct drm_i915_private *dev_priv = dev->dev_private;
8371         u8 sr1;
8372         u32 vga_reg;
8373
8374         if (HAS_PCH_SPLIT(dev))
8375                 vga_reg = CPU_VGACNTRL;
8376         else
8377                 vga_reg = VGACNTRL;
8378
8379         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8380         outb(1, VGA_SR_INDEX);
8381         sr1 = inb(VGA_SR_DATA);
8382         outb(sr1 | 1<<5, VGA_SR_DATA);
8383         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8384         udelay(300);
8385
8386         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8387         POSTING_READ(vga_reg);
8388 }
8389
8390 void intel_modeset_init(struct drm_device *dev)
8391 {
8392         struct drm_i915_private *dev_priv = dev->dev_private;
8393         int i;
8394
8395         drm_mode_config_init(dev);
8396
8397         dev->mode_config.min_width = 0;
8398         dev->mode_config.min_height = 0;
8399
8400         dev->mode_config.funcs = (void *)&intel_mode_funcs;
8401
8402         intel_init_quirks(dev);
8403
8404         intel_init_display(dev);
8405
8406         if (IS_GEN2(dev)) {
8407                 dev->mode_config.max_width = 2048;
8408                 dev->mode_config.max_height = 2048;
8409         } else if (IS_GEN3(dev)) {
8410                 dev->mode_config.max_width = 4096;
8411                 dev->mode_config.max_height = 4096;
8412         } else {
8413                 dev->mode_config.max_width = 8192;
8414                 dev->mode_config.max_height = 8192;
8415         }
8416         dev->mode_config.fb_base = dev->agp->base;
8417
8418         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8419                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8420
8421         for (i = 0; i < dev_priv->num_pipe; i++) {
8422                 intel_crtc_init(dev, i);
8423         }
8424
8425         /* Just disable it once at startup */
8426         i915_disable_vga(dev);
8427         intel_setup_outputs(dev);
8428
8429         intel_init_clock_gating(dev);
8430
8431         if (IS_IRONLAKE_M(dev)) {
8432                 ironlake_enable_drps(dev);
8433                 intel_init_emon(dev);
8434         }
8435
8436         if (IS_GEN6(dev) || IS_GEN7(dev)) {
8437                 gen6_enable_rps(dev_priv);
8438                 gen6_update_ring_freq(dev_priv);
8439         }
8440
8441         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8442         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8443                     (unsigned long)dev);
8444 }
8445
8446 void intel_modeset_gem_init(struct drm_device *dev)
8447 {
8448         if (IS_IRONLAKE_M(dev))
8449                 ironlake_enable_rc6(dev);
8450
8451         intel_setup_overlay(dev);
8452 }
8453
8454 void intel_modeset_cleanup(struct drm_device *dev)
8455 {
8456         struct drm_i915_private *dev_priv = dev->dev_private;
8457         struct drm_crtc *crtc;
8458         struct intel_crtc *intel_crtc;
8459
8460         drm_kms_helper_poll_fini(dev);
8461         mutex_lock(&dev->struct_mutex);
8462
8463         intel_unregister_dsm_handler();
8464
8465
8466         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8467                 /* Skip inactive CRTCs */
8468                 if (!crtc->fb)
8469                         continue;
8470
8471                 intel_crtc = to_intel_crtc(crtc);
8472                 intel_increase_pllclock(crtc);
8473         }
8474
8475         intel_disable_fbc(dev);
8476
8477         if (IS_IRONLAKE_M(dev))
8478                 ironlake_disable_drps(dev);
8479         if (IS_GEN6(dev) || IS_GEN7(dev))
8480                 gen6_disable_rps(dev);
8481
8482         if (IS_IRONLAKE_M(dev))
8483                 ironlake_disable_rc6(dev);
8484
8485         mutex_unlock(&dev->struct_mutex);
8486
8487         /* Disable the irq before mode object teardown, for the irq might
8488          * enqueue unpin/hotplug work. */
8489         drm_irq_uninstall(dev);
8490         cancel_work_sync(&dev_priv->hotplug_work);
8491
8492         /* flush any delayed tasks or pending work */
8493         flush_scheduled_work();
8494
8495         /* Shut off idle work before the crtcs get freed. */
8496         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8497                 intel_crtc = to_intel_crtc(crtc);
8498                 del_timer_sync(&intel_crtc->idle_timer);
8499         }
8500         del_timer_sync(&dev_priv->idle_timer);
8501         cancel_work_sync(&dev_priv->idle_work);
8502
8503         drm_mode_config_cleanup(dev);
8504 }
8505
8506 /*
8507  * Return which encoder is currently attached for connector.
8508  */
8509 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8510 {
8511         return &intel_attached_encoder(connector)->base;
8512 }
8513
8514 void intel_connector_attach_encoder(struct intel_connector *connector,
8515                                     struct intel_encoder *encoder)
8516 {
8517         connector->encoder = encoder;
8518         drm_mode_connector_attach_encoder(&connector->base,
8519                                           &encoder->base);
8520 }
8521
8522 /*
8523  * set vga decode state - true == enable VGA decode
8524  */
8525 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8526 {
8527         struct drm_i915_private *dev_priv = dev->dev_private;
8528         u16 gmch_ctrl;
8529
8530         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8531         if (state)
8532                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8533         else
8534                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8535         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8536         return 0;
8537 }
8538
8539 #ifdef CONFIG_DEBUG_FS
8540 #include <linux/seq_file.h>
8541
8542 struct intel_display_error_state {
8543         struct intel_cursor_error_state {
8544                 u32 control;
8545                 u32 position;
8546                 u32 base;
8547                 u32 size;
8548         } cursor[2];
8549
8550         struct intel_pipe_error_state {
8551                 u32 conf;
8552                 u32 source;
8553
8554                 u32 htotal;
8555                 u32 hblank;
8556                 u32 hsync;
8557                 u32 vtotal;
8558                 u32 vblank;
8559                 u32 vsync;
8560         } pipe[2];
8561
8562         struct intel_plane_error_state {
8563                 u32 control;
8564                 u32 stride;
8565                 u32 size;
8566                 u32 pos;
8567                 u32 addr;
8568                 u32 surface;
8569                 u32 tile_offset;
8570         } plane[2];
8571 };
8572
8573 struct intel_display_error_state *
8574 intel_display_capture_error_state(struct drm_device *dev)
8575 {
8576         drm_i915_private_t *dev_priv = dev->dev_private;
8577         struct intel_display_error_state *error;
8578         int i;
8579
8580         error = kmalloc(sizeof(*error), GFP_ATOMIC);
8581         if (error == NULL)
8582                 return NULL;
8583
8584         for (i = 0; i < 2; i++) {
8585                 error->cursor[i].control = I915_READ(CURCNTR(i));
8586                 error->cursor[i].position = I915_READ(CURPOS(i));
8587                 error->cursor[i].base = I915_READ(CURBASE(i));
8588
8589                 error->plane[i].control = I915_READ(DSPCNTR(i));
8590                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8591                 error->plane[i].size = I915_READ(DSPSIZE(i));
8592                 error->plane[i].pos= I915_READ(DSPPOS(i));
8593                 error->plane[i].addr = I915_READ(DSPADDR(i));
8594                 if (INTEL_INFO(dev)->gen >= 4) {
8595                         error->plane[i].surface = I915_READ(DSPSURF(i));
8596                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8597                 }
8598
8599                 error->pipe[i].conf = I915_READ(PIPECONF(i));
8600                 error->pipe[i].source = I915_READ(PIPESRC(i));
8601                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8602                 error->pipe[i].hblank = I915_READ(HBLANK(i));
8603                 error->pipe[i].hsync = I915_READ(HSYNC(i));
8604                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8605                 error->pipe[i].vblank = I915_READ(VBLANK(i));
8606                 error->pipe[i].vsync = I915_READ(VSYNC(i));
8607         }
8608
8609         return error;
8610 }
8611
8612 void
8613 intel_display_print_error_state(struct seq_file *m,
8614                                 struct drm_device *dev,
8615                                 struct intel_display_error_state *error)
8616 {
8617         int i;
8618
8619         for (i = 0; i < 2; i++) {
8620                 seq_printf(m, "Pipe [%d]:\n", i);
8621                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
8622                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
8623                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
8624                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
8625                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
8626                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
8627                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
8628                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
8629
8630                 seq_printf(m, "Plane [%d]:\n", i);
8631                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
8632                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
8633                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
8634                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
8635                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
8636                 if (INTEL_INFO(dev)->gen >= 4) {
8637                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
8638                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
8639                 }
8640
8641                 seq_printf(m, "Cursor [%d]:\n", i);
8642                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
8643                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
8644                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
8645         }
8646 }
8647 #endif