Merge branch 'for-linus' of git://neil.brown.name/md
[pandora-kernel.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  */
28
29 #include "drmP.h"
30 #include "drm.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/dma_remapping.h>
36
37 struct change_domains {
38         uint32_t invalidate_domains;
39         uint32_t flush_domains;
40         uint32_t flush_rings;
41         uint32_t flips;
42 };
43
44 /*
45  * Set the next domain for the specified object. This
46  * may not actually perform the necessary flushing/invaliding though,
47  * as that may want to be batched with other set_domain operations
48  *
49  * This is (we hope) the only really tricky part of gem. The goal
50  * is fairly simple -- track which caches hold bits of the object
51  * and make sure they remain coherent. A few concrete examples may
52  * help to explain how it works. For shorthand, we use the notation
53  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
54  * a pair of read and write domain masks.
55  *
56  * Case 1: the batch buffer
57  *
58  *      1. Allocated
59  *      2. Written by CPU
60  *      3. Mapped to GTT
61  *      4. Read by GPU
62  *      5. Unmapped from GTT
63  *      6. Freed
64  *
65  *      Let's take these a step at a time
66  *
67  *      1. Allocated
68  *              Pages allocated from the kernel may still have
69  *              cache contents, so we set them to (CPU, CPU) always.
70  *      2. Written by CPU (using pwrite)
71  *              The pwrite function calls set_domain (CPU, CPU) and
72  *              this function does nothing (as nothing changes)
73  *      3. Mapped by GTT
74  *              This function asserts that the object is not
75  *              currently in any GPU-based read or write domains
76  *      4. Read by GPU
77  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
78  *              As write_domain is zero, this function adds in the
79  *              current read domains (CPU+COMMAND, 0).
80  *              flush_domains is set to CPU.
81  *              invalidate_domains is set to COMMAND
82  *              clflush is run to get data out of the CPU caches
83  *              then i915_dev_set_domain calls i915_gem_flush to
84  *              emit an MI_FLUSH and drm_agp_chipset_flush
85  *      5. Unmapped from GTT
86  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
87  *              flush_domains and invalidate_domains end up both zero
88  *              so no flushing/invalidating happens
89  *      6. Freed
90  *              yay, done
91  *
92  * Case 2: The shared render buffer
93  *
94  *      1. Allocated
95  *      2. Mapped to GTT
96  *      3. Read/written by GPU
97  *      4. set_domain to (CPU,CPU)
98  *      5. Read/written by CPU
99  *      6. Read/written by GPU
100  *
101  *      1. Allocated
102  *              Same as last example, (CPU, CPU)
103  *      2. Mapped to GTT
104  *              Nothing changes (assertions find that it is not in the GPU)
105  *      3. Read/written by GPU
106  *              execbuffer calls set_domain (RENDER, RENDER)
107  *              flush_domains gets CPU
108  *              invalidate_domains gets GPU
109  *              clflush (obj)
110  *              MI_FLUSH and drm_agp_chipset_flush
111  *      4. set_domain (CPU, CPU)
112  *              flush_domains gets GPU
113  *              invalidate_domains gets CPU
114  *              wait_rendering (obj) to make sure all drawing is complete.
115  *              This will include an MI_FLUSH to get the data from GPU
116  *              to memory
117  *              clflush (obj) to invalidate the CPU cache
118  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
119  *      5. Read/written by CPU
120  *              cache lines are loaded and dirtied
121  *      6. Read written by GPU
122  *              Same as last GPU access
123  *
124  * Case 3: The constant buffer
125  *
126  *      1. Allocated
127  *      2. Written by CPU
128  *      3. Read by GPU
129  *      4. Updated (written) by CPU again
130  *      5. Read by GPU
131  *
132  *      1. Allocated
133  *              (CPU, CPU)
134  *      2. Written by CPU
135  *              (CPU, CPU)
136  *      3. Read by GPU
137  *              (CPU+RENDER, 0)
138  *              flush_domains = CPU
139  *              invalidate_domains = RENDER
140  *              clflush (obj)
141  *              MI_FLUSH
142  *              drm_agp_chipset_flush
143  *      4. Updated (written) by CPU again
144  *              (CPU, CPU)
145  *              flush_domains = 0 (no previous write domain)
146  *              invalidate_domains = 0 (no new read domains)
147  *      5. Read by GPU
148  *              (CPU+RENDER, 0)
149  *              flush_domains = CPU
150  *              invalidate_domains = RENDER
151  *              clflush (obj)
152  *              MI_FLUSH
153  *              drm_agp_chipset_flush
154  */
155 static void
156 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
157                                   struct intel_ring_buffer *ring,
158                                   struct change_domains *cd)
159 {
160         uint32_t invalidate_domains = 0, flush_domains = 0;
161
162         /*
163          * If the object isn't moving to a new write domain,
164          * let the object stay in multiple read domains
165          */
166         if (obj->base.pending_write_domain == 0)
167                 obj->base.pending_read_domains |= obj->base.read_domains;
168
169         /*
170          * Flush the current write domain if
171          * the new read domains don't match. Invalidate
172          * any read domains which differ from the old
173          * write domain
174          */
175         if (obj->base.write_domain &&
176             (((obj->base.write_domain != obj->base.pending_read_domains ||
177                obj->ring != ring)) ||
178              (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
179                 flush_domains |= obj->base.write_domain;
180                 invalidate_domains |=
181                         obj->base.pending_read_domains & ~obj->base.write_domain;
182         }
183         /*
184          * Invalidate any read caches which may have
185          * stale data. That is, any new read domains.
186          */
187         invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
188         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
189                 i915_gem_clflush_object(obj);
190
191         if (obj->base.pending_write_domain)
192                 cd->flips |= atomic_read(&obj->pending_flip);
193
194         /* The actual obj->write_domain will be updated with
195          * pending_write_domain after we emit the accumulated flush for all
196          * of our domain changes in execbuffers (which clears objects'
197          * write_domains).  So if we have a current write domain that we
198          * aren't changing, set pending_write_domain to that.
199          */
200         if (flush_domains == 0 && obj->base.pending_write_domain == 0)
201                 obj->base.pending_write_domain = obj->base.write_domain;
202
203         cd->invalidate_domains |= invalidate_domains;
204         cd->flush_domains |= flush_domains;
205         if (flush_domains & I915_GEM_GPU_DOMAINS)
206                 cd->flush_rings |= obj->ring->id;
207         if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208                 cd->flush_rings |= ring->id;
209 }
210
211 struct eb_objects {
212         int and;
213         struct hlist_head buckets[0];
214 };
215
216 static struct eb_objects *
217 eb_create(int size)
218 {
219         struct eb_objects *eb;
220         int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
221         while (count > size)
222                 count >>= 1;
223         eb = kzalloc(count*sizeof(struct hlist_head) +
224                      sizeof(struct eb_objects),
225                      GFP_KERNEL);
226         if (eb == NULL)
227                 return eb;
228
229         eb->and = count - 1;
230         return eb;
231 }
232
233 static void
234 eb_reset(struct eb_objects *eb)
235 {
236         memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
237 }
238
239 static void
240 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
241 {
242         hlist_add_head(&obj->exec_node,
243                        &eb->buckets[obj->exec_handle & eb->and]);
244 }
245
246 static struct drm_i915_gem_object *
247 eb_get_object(struct eb_objects *eb, unsigned long handle)
248 {
249         struct hlist_head *head;
250         struct hlist_node *node;
251         struct drm_i915_gem_object *obj;
252
253         head = &eb->buckets[handle & eb->and];
254         hlist_for_each(node, head) {
255                 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
256                 if (obj->exec_handle == handle)
257                         return obj;
258         }
259
260         return NULL;
261 }
262
263 static void
264 eb_destroy(struct eb_objects *eb)
265 {
266         kfree(eb);
267 }
268
269 static int
270 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
271                                    struct eb_objects *eb,
272                                    struct drm_i915_gem_relocation_entry *reloc)
273 {
274         struct drm_device *dev = obj->base.dev;
275         struct drm_gem_object *target_obj;
276         uint32_t target_offset;
277         int ret = -EINVAL;
278
279         /* we've already hold a reference to all valid objects */
280         target_obj = &eb_get_object(eb, reloc->target_handle)->base;
281         if (unlikely(target_obj == NULL))
282                 return -ENOENT;
283
284         target_offset = to_intel_bo(target_obj)->gtt_offset;
285
286         /* The target buffer should have appeared before us in the
287          * exec_object list, so it should have a GTT space bound by now.
288          */
289         if (unlikely(target_offset == 0)) {
290                 DRM_ERROR("No GTT space found for object %d\n",
291                           reloc->target_handle);
292                 return ret;
293         }
294
295         /* Validate that the target is in a valid r/w GPU domain */
296         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
297                 DRM_ERROR("reloc with multiple write domains: "
298                           "obj %p target %d offset %d "
299                           "read %08x write %08x",
300                           obj, reloc->target_handle,
301                           (int) reloc->offset,
302                           reloc->read_domains,
303                           reloc->write_domain);
304                 return ret;
305         }
306         if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
307                 DRM_ERROR("reloc with read/write CPU domains: "
308                           "obj %p target %d offset %d "
309                           "read %08x write %08x",
310                           obj, reloc->target_handle,
311                           (int) reloc->offset,
312                           reloc->read_domains,
313                           reloc->write_domain);
314                 return ret;
315         }
316         if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
317                      reloc->write_domain != target_obj->pending_write_domain)) {
318                 DRM_ERROR("Write domain conflict: "
319                           "obj %p target %d offset %d "
320                           "new %08x old %08x\n",
321                           obj, reloc->target_handle,
322                           (int) reloc->offset,
323                           reloc->write_domain,
324                           target_obj->pending_write_domain);
325                 return ret;
326         }
327
328         target_obj->pending_read_domains |= reloc->read_domains;
329         target_obj->pending_write_domain |= reloc->write_domain;
330
331         /* If the relocation already has the right value in it, no
332          * more work needs to be done.
333          */
334         if (target_offset == reloc->presumed_offset)
335                 return 0;
336
337         /* Check that the relocation address is valid... */
338         if (unlikely(reloc->offset > obj->base.size - 4)) {
339                 DRM_ERROR("Relocation beyond object bounds: "
340                           "obj %p target %d offset %d size %d.\n",
341                           obj, reloc->target_handle,
342                           (int) reloc->offset,
343                           (int) obj->base.size);
344                 return ret;
345         }
346         if (unlikely(reloc->offset & 3)) {
347                 DRM_ERROR("Relocation not 4-byte aligned: "
348                           "obj %p target %d offset %d.\n",
349                           obj, reloc->target_handle,
350                           (int) reloc->offset);
351                 return ret;
352         }
353
354         reloc->delta += target_offset;
355         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
356                 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
357                 char *vaddr;
358
359                 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
360                 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
361                 kunmap_atomic(vaddr);
362         } else {
363                 struct drm_i915_private *dev_priv = dev->dev_private;
364                 uint32_t __iomem *reloc_entry;
365                 void __iomem *reloc_page;
366
367                 /* We can't wait for rendering with pagefaults disabled */
368                 if (obj->active && in_atomic())
369                         return -EFAULT;
370
371                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
372                 if (ret)
373                         return ret;
374
375                 /* Map the page containing the relocation we're going to perform.  */
376                 reloc->offset += obj->gtt_offset;
377                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
378                                                       reloc->offset & PAGE_MASK);
379                 reloc_entry = (uint32_t __iomem *)
380                         (reloc_page + (reloc->offset & ~PAGE_MASK));
381                 iowrite32(reloc->delta, reloc_entry);
382                 io_mapping_unmap_atomic(reloc_page);
383         }
384
385         /* and update the user's relocation entry */
386         reloc->presumed_offset = target_offset;
387
388         return 0;
389 }
390
391 static int
392 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
393                                     struct eb_objects *eb)
394 {
395         struct drm_i915_gem_relocation_entry __user *user_relocs;
396         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
397         int i, ret;
398
399         user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
400         for (i = 0; i < entry->relocation_count; i++) {
401                 struct drm_i915_gem_relocation_entry reloc;
402
403                 if (__copy_from_user_inatomic(&reloc,
404                                               user_relocs+i,
405                                               sizeof(reloc)))
406                         return -EFAULT;
407
408                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
409                 if (ret)
410                         return ret;
411
412                 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
413                                             &reloc.presumed_offset,
414                                             sizeof(reloc.presumed_offset)))
415                         return -EFAULT;
416         }
417
418         return 0;
419 }
420
421 static int
422 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
423                                          struct eb_objects *eb,
424                                          struct drm_i915_gem_relocation_entry *relocs)
425 {
426         const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
427         int i, ret;
428
429         for (i = 0; i < entry->relocation_count; i++) {
430                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
431                 if (ret)
432                         return ret;
433         }
434
435         return 0;
436 }
437
438 static int
439 i915_gem_execbuffer_relocate(struct drm_device *dev,
440                              struct eb_objects *eb,
441                              struct list_head *objects)
442 {
443         struct drm_i915_gem_object *obj;
444         int ret = 0;
445
446         /* This is the fast path and we cannot handle a pagefault whilst
447          * holding the struct mutex lest the user pass in the relocations
448          * contained within a mmaped bo. For in such a case we, the page
449          * fault handler would call i915_gem_fault() and we would try to
450          * acquire the struct mutex again. Obviously this is bad and so
451          * lockdep complains vehemently.
452          */
453         pagefault_disable();
454         list_for_each_entry(obj, objects, exec_list) {
455                 ret = i915_gem_execbuffer_relocate_object(obj, eb);
456                 if (ret)
457                         break;
458         }
459         pagefault_enable();
460
461         return ret;
462 }
463
464 static int
465 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
466                             struct drm_file *file,
467                             struct list_head *objects)
468 {
469         struct drm_i915_gem_object *obj;
470         int ret, retry;
471         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
472         struct list_head ordered_objects;
473
474         INIT_LIST_HEAD(&ordered_objects);
475         while (!list_empty(objects)) {
476                 struct drm_i915_gem_exec_object2 *entry;
477                 bool need_fence, need_mappable;
478
479                 obj = list_first_entry(objects,
480                                        struct drm_i915_gem_object,
481                                        exec_list);
482                 entry = obj->exec_entry;
483
484                 need_fence =
485                         has_fenced_gpu_access &&
486                         entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
487                         obj->tiling_mode != I915_TILING_NONE;
488                 need_mappable =
489                         entry->relocation_count ? true : need_fence;
490
491                 if (need_mappable)
492                         list_move(&obj->exec_list, &ordered_objects);
493                 else
494                         list_move_tail(&obj->exec_list, &ordered_objects);
495
496                 obj->base.pending_read_domains = 0;
497                 obj->base.pending_write_domain = 0;
498         }
499         list_splice(&ordered_objects, objects);
500
501         /* Attempt to pin all of the buffers into the GTT.
502          * This is done in 3 phases:
503          *
504          * 1a. Unbind all objects that do not match the GTT constraints for
505          *     the execbuffer (fenceable, mappable, alignment etc).
506          * 1b. Increment pin count for already bound objects.
507          * 2.  Bind new objects.
508          * 3.  Decrement pin count.
509          *
510          * This avoid unnecessary unbinding of later objects in order to makr
511          * room for the earlier objects *unless* we need to defragment.
512          */
513         retry = 0;
514         do {
515                 ret = 0;
516
517                 /* Unbind any ill-fitting objects or pin. */
518                 list_for_each_entry(obj, objects, exec_list) {
519                         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
520                         bool need_fence, need_mappable;
521                         if (!obj->gtt_space)
522                                 continue;
523
524                         need_fence =
525                                 has_fenced_gpu_access &&
526                                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
527                                 obj->tiling_mode != I915_TILING_NONE;
528                         need_mappable =
529                                 entry->relocation_count ? true : need_fence;
530
531                         if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
532                             (need_mappable && !obj->map_and_fenceable))
533                                 ret = i915_gem_object_unbind(obj);
534                         else
535                                 ret = i915_gem_object_pin(obj,
536                                                           entry->alignment,
537                                                           need_mappable);
538                         if (ret)
539                                 goto err;
540
541                         entry++;
542                 }
543
544                 /* Bind fresh objects */
545                 list_for_each_entry(obj, objects, exec_list) {
546                         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
547                         bool need_fence;
548
549                         need_fence =
550                                 has_fenced_gpu_access &&
551                                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
552                                 obj->tiling_mode != I915_TILING_NONE;
553
554                         if (!obj->gtt_space) {
555                                 bool need_mappable =
556                                         entry->relocation_count ? true : need_fence;
557
558                                 ret = i915_gem_object_pin(obj,
559                                                           entry->alignment,
560                                                           need_mappable);
561                                 if (ret)
562                                         break;
563                         }
564
565                         if (has_fenced_gpu_access) {
566                                 if (need_fence) {
567                                         ret = i915_gem_object_get_fence(obj, ring);
568                                         if (ret)
569                                                 break;
570                                 } else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
571                                            obj->tiling_mode == I915_TILING_NONE) {
572                                         /* XXX pipelined! */
573                                         ret = i915_gem_object_put_fence(obj);
574                                         if (ret)
575                                                 break;
576                                 }
577                                 obj->pending_fenced_gpu_access = need_fence;
578                         }
579
580                         entry->offset = obj->gtt_offset;
581                 }
582
583                 /* Decrement pin count for bound objects */
584                 list_for_each_entry(obj, objects, exec_list) {
585                         if (obj->gtt_space)
586                                 i915_gem_object_unpin(obj);
587                 }
588
589                 if (ret != -ENOSPC || retry > 1)
590                         return ret;
591
592                 /* First attempt, just clear anything that is purgeable.
593                  * Second attempt, clear the entire GTT.
594                  */
595                 ret = i915_gem_evict_everything(ring->dev, retry == 0);
596                 if (ret)
597                         return ret;
598
599                 retry++;
600         } while (1);
601
602 err:
603         obj = list_entry(obj->exec_list.prev,
604                          struct drm_i915_gem_object,
605                          exec_list);
606         while (objects != &obj->exec_list) {
607                 if (obj->gtt_space)
608                         i915_gem_object_unpin(obj);
609
610                 obj = list_entry(obj->exec_list.prev,
611                                  struct drm_i915_gem_object,
612                                  exec_list);
613         }
614
615         return ret;
616 }
617
618 static int
619 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
620                                   struct drm_file *file,
621                                   struct intel_ring_buffer *ring,
622                                   struct list_head *objects,
623                                   struct eb_objects *eb,
624                                   struct drm_i915_gem_exec_object2 *exec,
625                                   int count)
626 {
627         struct drm_i915_gem_relocation_entry *reloc;
628         struct drm_i915_gem_object *obj;
629         int *reloc_offset;
630         int i, total, ret;
631
632         /* We may process another execbuffer during the unlock... */
633         while (!list_empty(objects)) {
634                 obj = list_first_entry(objects,
635                                        struct drm_i915_gem_object,
636                                        exec_list);
637                 list_del_init(&obj->exec_list);
638                 drm_gem_object_unreference(&obj->base);
639         }
640
641         mutex_unlock(&dev->struct_mutex);
642
643         total = 0;
644         for (i = 0; i < count; i++)
645                 total += exec[i].relocation_count;
646
647         reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
648         reloc = drm_malloc_ab(total, sizeof(*reloc));
649         if (reloc == NULL || reloc_offset == NULL) {
650                 drm_free_large(reloc);
651                 drm_free_large(reloc_offset);
652                 mutex_lock(&dev->struct_mutex);
653                 return -ENOMEM;
654         }
655
656         total = 0;
657         for (i = 0; i < count; i++) {
658                 struct drm_i915_gem_relocation_entry __user *user_relocs;
659
660                 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
661
662                 if (copy_from_user(reloc+total, user_relocs,
663                                    exec[i].relocation_count * sizeof(*reloc))) {
664                         ret = -EFAULT;
665                         mutex_lock(&dev->struct_mutex);
666                         goto err;
667                 }
668
669                 reloc_offset[i] = total;
670                 total += exec[i].relocation_count;
671         }
672
673         ret = i915_mutex_lock_interruptible(dev);
674         if (ret) {
675                 mutex_lock(&dev->struct_mutex);
676                 goto err;
677         }
678
679         /* reacquire the objects */
680         eb_reset(eb);
681         for (i = 0; i < count; i++) {
682                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
683                                                         exec[i].handle));
684                 if (&obj->base == NULL) {
685                         DRM_ERROR("Invalid object handle %d at index %d\n",
686                                    exec[i].handle, i);
687                         ret = -ENOENT;
688                         goto err;
689                 }
690
691                 list_add_tail(&obj->exec_list, objects);
692                 obj->exec_handle = exec[i].handle;
693                 obj->exec_entry = &exec[i];
694                 eb_add_object(eb, obj);
695         }
696
697         ret = i915_gem_execbuffer_reserve(ring, file, objects);
698         if (ret)
699                 goto err;
700
701         list_for_each_entry(obj, objects, exec_list) {
702                 int offset = obj->exec_entry - exec;
703                 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
704                                                                reloc + reloc_offset[offset]);
705                 if (ret)
706                         goto err;
707         }
708
709         /* Leave the user relocations as are, this is the painfully slow path,
710          * and we want to avoid the complication of dropping the lock whilst
711          * having buffers reserved in the aperture and so causing spurious
712          * ENOSPC for random operations.
713          */
714
715 err:
716         drm_free_large(reloc);
717         drm_free_large(reloc_offset);
718         return ret;
719 }
720
721 static int
722 i915_gem_execbuffer_flush(struct drm_device *dev,
723                           uint32_t invalidate_domains,
724                           uint32_t flush_domains,
725                           uint32_t flush_rings)
726 {
727         drm_i915_private_t *dev_priv = dev->dev_private;
728         int i, ret;
729
730         if (flush_domains & I915_GEM_DOMAIN_CPU)
731                 intel_gtt_chipset_flush();
732
733         if (flush_domains & I915_GEM_DOMAIN_GTT)
734                 wmb();
735
736         if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
737                 for (i = 0; i < I915_NUM_RINGS; i++)
738                         if (flush_rings & (1 << i)) {
739                                 ret = i915_gem_flush_ring(&dev_priv->ring[i],
740                                                           invalidate_domains,
741                                                           flush_domains);
742                                 if (ret)
743                                         return ret;
744                         }
745         }
746
747         return 0;
748 }
749
750 static bool
751 intel_enable_semaphores(struct drm_device *dev)
752 {
753         if (INTEL_INFO(dev)->gen < 6)
754                 return 0;
755
756         if (i915_semaphores >= 0)
757                 return i915_semaphores;
758
759         /* Enable semaphores on SNB when IO remapping is off */
760         if (INTEL_INFO(dev)->gen == 6)
761                 return !intel_iommu_enabled;
762
763         return 1;
764 }
765
766 static int
767 i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
768                                struct intel_ring_buffer *to)
769 {
770         struct intel_ring_buffer *from = obj->ring;
771         u32 seqno;
772         int ret, idx;
773
774         if (from == NULL || to == from)
775                 return 0;
776
777         /* XXX gpu semaphores are implicated in various hard hangs on SNB */
778         if (!intel_enable_semaphores(obj->base.dev))
779                 return i915_gem_object_wait_rendering(obj);
780
781         idx = intel_ring_sync_index(from, to);
782
783         seqno = obj->last_rendering_seqno;
784         if (seqno <= from->sync_seqno[idx])
785                 return 0;
786
787         if (seqno == from->outstanding_lazy_request) {
788                 struct drm_i915_gem_request *request;
789
790                 request = kzalloc(sizeof(*request), GFP_KERNEL);
791                 if (request == NULL)
792                         return -ENOMEM;
793
794                 ret = i915_add_request(from, NULL, request);
795                 if (ret) {
796                         kfree(request);
797                         return ret;
798                 }
799
800                 seqno = request->seqno;
801         }
802
803         from->sync_seqno[idx] = seqno;
804
805         return to->sync_to(to, from, seqno - 1);
806 }
807
808 static int
809 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
810 {
811         u32 plane, flip_mask;
812         int ret;
813
814         /* Check for any pending flips. As we only maintain a flip queue depth
815          * of 1, we can simply insert a WAIT for the next display flip prior
816          * to executing the batch and avoid stalling the CPU.
817          */
818
819         for (plane = 0; flips >> plane; plane++) {
820                 if (((flips >> plane) & 1) == 0)
821                         continue;
822
823                 if (plane)
824                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
825                 else
826                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
827
828                 ret = intel_ring_begin(ring, 2);
829                 if (ret)
830                         return ret;
831
832                 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
833                 intel_ring_emit(ring, MI_NOOP);
834                 intel_ring_advance(ring);
835         }
836
837         return 0;
838 }
839
840
841 static int
842 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
843                                 struct list_head *objects)
844 {
845         struct drm_i915_gem_object *obj;
846         struct change_domains cd;
847         int ret;
848
849         memset(&cd, 0, sizeof(cd));
850         list_for_each_entry(obj, objects, exec_list)
851                 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
852
853         if (cd.invalidate_domains | cd.flush_domains) {
854                 ret = i915_gem_execbuffer_flush(ring->dev,
855                                                 cd.invalidate_domains,
856                                                 cd.flush_domains,
857                                                 cd.flush_rings);
858                 if (ret)
859                         return ret;
860         }
861
862         if (cd.flips) {
863                 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
864                 if (ret)
865                         return ret;
866         }
867
868         list_for_each_entry(obj, objects, exec_list) {
869                 ret = i915_gem_execbuffer_sync_rings(obj, ring);
870                 if (ret)
871                         return ret;
872         }
873
874         return 0;
875 }
876
877 static bool
878 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
879 {
880         return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
881 }
882
883 static int
884 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
885                    int count)
886 {
887         int i;
888
889         for (i = 0; i < count; i++) {
890                 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
891                 int length; /* limited by fault_in_pages_readable() */
892
893                 /* First check for malicious input causing overflow */
894                 if (exec[i].relocation_count >
895                     INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
896                         return -EINVAL;
897
898                 length = exec[i].relocation_count *
899                         sizeof(struct drm_i915_gem_relocation_entry);
900                 if (!access_ok(VERIFY_READ, ptr, length))
901                         return -EFAULT;
902
903                 /* we may also need to update the presumed offsets */
904                 if (!access_ok(VERIFY_WRITE, ptr, length))
905                         return -EFAULT;
906
907                 if (fault_in_pages_readable(ptr, length))
908                         return -EFAULT;
909         }
910
911         return 0;
912 }
913
914 static void
915 i915_gem_execbuffer_move_to_active(struct list_head *objects,
916                                    struct intel_ring_buffer *ring,
917                                    u32 seqno)
918 {
919         struct drm_i915_gem_object *obj;
920
921         list_for_each_entry(obj, objects, exec_list) {
922                   u32 old_read = obj->base.read_domains;
923                   u32 old_write = obj->base.write_domain;
924
925
926                 obj->base.read_domains = obj->base.pending_read_domains;
927                 obj->base.write_domain = obj->base.pending_write_domain;
928                 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
929
930                 i915_gem_object_move_to_active(obj, ring, seqno);
931                 if (obj->base.write_domain) {
932                         obj->dirty = 1;
933                         obj->pending_gpu_write = true;
934                         list_move_tail(&obj->gpu_write_list,
935                                        &ring->gpu_write_list);
936                         intel_mark_busy(ring->dev, obj);
937                 }
938
939                 trace_i915_gem_object_change_domain(obj, old_read, old_write);
940         }
941 }
942
943 static void
944 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
945                                     struct drm_file *file,
946                                     struct intel_ring_buffer *ring)
947 {
948         struct drm_i915_gem_request *request;
949         u32 invalidate;
950
951         /*
952          * Ensure that the commands in the batch buffer are
953          * finished before the interrupt fires.
954          *
955          * The sampler always gets flushed on i965 (sigh).
956          */
957         invalidate = I915_GEM_DOMAIN_COMMAND;
958         if (INTEL_INFO(dev)->gen >= 4)
959                 invalidate |= I915_GEM_DOMAIN_SAMPLER;
960         if (ring->flush(ring, invalidate, 0)) {
961                 i915_gem_next_request_seqno(ring);
962                 return;
963         }
964
965         /* Add a breadcrumb for the completion of the batch buffer */
966         request = kzalloc(sizeof(*request), GFP_KERNEL);
967         if (request == NULL || i915_add_request(ring, file, request)) {
968                 i915_gem_next_request_seqno(ring);
969                 kfree(request);
970         }
971 }
972
973 static int
974 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
975                        struct drm_file *file,
976                        struct drm_i915_gem_execbuffer2 *args,
977                        struct drm_i915_gem_exec_object2 *exec)
978 {
979         drm_i915_private_t *dev_priv = dev->dev_private;
980         struct list_head objects;
981         struct eb_objects *eb;
982         struct drm_i915_gem_object *batch_obj;
983         struct drm_clip_rect *cliprects = NULL;
984         struct intel_ring_buffer *ring;
985         u32 exec_start, exec_len;
986         u32 seqno;
987         int ret, mode, i;
988
989         if (!i915_gem_check_execbuffer(args)) {
990                 DRM_ERROR("execbuf with invalid offset/length\n");
991                 return -EINVAL;
992         }
993
994         ret = validate_exec_list(exec, args->buffer_count);
995         if (ret)
996                 return ret;
997
998         switch (args->flags & I915_EXEC_RING_MASK) {
999         case I915_EXEC_DEFAULT:
1000         case I915_EXEC_RENDER:
1001                 ring = &dev_priv->ring[RCS];
1002                 break;
1003         case I915_EXEC_BSD:
1004                 if (!HAS_BSD(dev)) {
1005                         DRM_ERROR("execbuf with invalid ring (BSD)\n");
1006                         return -EINVAL;
1007                 }
1008                 ring = &dev_priv->ring[VCS];
1009                 break;
1010         case I915_EXEC_BLT:
1011                 if (!HAS_BLT(dev)) {
1012                         DRM_ERROR("execbuf with invalid ring (BLT)\n");
1013                         return -EINVAL;
1014                 }
1015                 ring = &dev_priv->ring[BCS];
1016                 break;
1017         default:
1018                 DRM_ERROR("execbuf with unknown ring: %d\n",
1019                           (int)(args->flags & I915_EXEC_RING_MASK));
1020                 return -EINVAL;
1021         }
1022
1023         mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1024         switch (mode) {
1025         case I915_EXEC_CONSTANTS_REL_GENERAL:
1026         case I915_EXEC_CONSTANTS_ABSOLUTE:
1027         case I915_EXEC_CONSTANTS_REL_SURFACE:
1028                 if (ring == &dev_priv->ring[RCS] &&
1029                     mode != dev_priv->relative_constants_mode) {
1030                         if (INTEL_INFO(dev)->gen < 4)
1031                                 return -EINVAL;
1032
1033                         if (INTEL_INFO(dev)->gen > 5 &&
1034                             mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1035                                 return -EINVAL;
1036
1037                         ret = intel_ring_begin(ring, 4);
1038                         if (ret)
1039                                 return ret;
1040
1041                         intel_ring_emit(ring, MI_NOOP);
1042                         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1043                         intel_ring_emit(ring, INSTPM);
1044                         intel_ring_emit(ring,
1045                                         I915_EXEC_CONSTANTS_MASK << 16 | mode);
1046                         intel_ring_advance(ring);
1047
1048                         dev_priv->relative_constants_mode = mode;
1049                 }
1050                 break;
1051         default:
1052                 DRM_ERROR("execbuf with unknown constants: %d\n", mode);
1053                 return -EINVAL;
1054         }
1055
1056         if (args->buffer_count < 1) {
1057                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1058                 return -EINVAL;
1059         }
1060
1061         if (args->num_cliprects != 0) {
1062                 if (ring != &dev_priv->ring[RCS]) {
1063                         DRM_ERROR("clip rectangles are only valid with the render ring\n");
1064                         return -EINVAL;
1065                 }
1066
1067                 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1068                                     GFP_KERNEL);
1069                 if (cliprects == NULL) {
1070                         ret = -ENOMEM;
1071                         goto pre_mutex_err;
1072                 }
1073
1074                 if (copy_from_user(cliprects,
1075                                      (struct drm_clip_rect __user *)(uintptr_t)
1076                                      args->cliprects_ptr,
1077                                      sizeof(*cliprects)*args->num_cliprects)) {
1078                         ret = -EFAULT;
1079                         goto pre_mutex_err;
1080                 }
1081         }
1082
1083         ret = i915_mutex_lock_interruptible(dev);
1084         if (ret)
1085                 goto pre_mutex_err;
1086
1087         if (dev_priv->mm.suspended) {
1088                 mutex_unlock(&dev->struct_mutex);
1089                 ret = -EBUSY;
1090                 goto pre_mutex_err;
1091         }
1092
1093         eb = eb_create(args->buffer_count);
1094         if (eb == NULL) {
1095                 mutex_unlock(&dev->struct_mutex);
1096                 ret = -ENOMEM;
1097                 goto pre_mutex_err;
1098         }
1099
1100         /* Look up object handles */
1101         INIT_LIST_HEAD(&objects);
1102         for (i = 0; i < args->buffer_count; i++) {
1103                 struct drm_i915_gem_object *obj;
1104
1105                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1106                                                         exec[i].handle));
1107                 if (&obj->base == NULL) {
1108                         DRM_ERROR("Invalid object handle %d at index %d\n",
1109                                    exec[i].handle, i);
1110                         /* prevent error path from reading uninitialized data */
1111                         ret = -ENOENT;
1112                         goto err;
1113                 }
1114
1115                 if (!list_empty(&obj->exec_list)) {
1116                         DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
1117                                    obj, exec[i].handle, i);
1118                         ret = -EINVAL;
1119                         goto err;
1120                 }
1121
1122                 list_add_tail(&obj->exec_list, &objects);
1123                 obj->exec_handle = exec[i].handle;
1124                 obj->exec_entry = &exec[i];
1125                 eb_add_object(eb, obj);
1126         }
1127
1128         /* take note of the batch buffer before we might reorder the lists */
1129         batch_obj = list_entry(objects.prev,
1130                                struct drm_i915_gem_object,
1131                                exec_list);
1132
1133         /* Move the objects en-masse into the GTT, evicting if necessary. */
1134         ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1135         if (ret)
1136                 goto err;
1137
1138         /* The objects are in their final locations, apply the relocations. */
1139         ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1140         if (ret) {
1141                 if (ret == -EFAULT) {
1142                         ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1143                                                                 &objects, eb,
1144                                                                 exec,
1145                                                                 args->buffer_count);
1146                         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147                 }
1148                 if (ret)
1149                         goto err;
1150         }
1151
1152         /* Set the pending read domains for the batch buffer to COMMAND */
1153         if (batch_obj->base.pending_write_domain) {
1154                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
1155                 ret = -EINVAL;
1156                 goto err;
1157         }
1158         batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1159
1160         ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1161         if (ret)
1162                 goto err;
1163
1164         seqno = i915_gem_next_request_seqno(ring);
1165         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1166                 if (seqno < ring->sync_seqno[i]) {
1167                         /* The GPU can not handle its semaphore value wrapping,
1168                          * so every billion or so execbuffers, we need to stall
1169                          * the GPU in order to reset the counters.
1170                          */
1171                         ret = i915_gpu_idle(dev);
1172                         if (ret)
1173                                 goto err;
1174
1175                         BUG_ON(ring->sync_seqno[i]);
1176                 }
1177         }
1178
1179         trace_i915_gem_ring_dispatch(ring, seqno);
1180
1181         exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1182         exec_len = args->batch_len;
1183         if (cliprects) {
1184                 for (i = 0; i < args->num_cliprects; i++) {
1185                         ret = i915_emit_box(dev, &cliprects[i],
1186                                             args->DR1, args->DR4);
1187                         if (ret)
1188                                 goto err;
1189
1190                         ret = ring->dispatch_execbuffer(ring,
1191                                                         exec_start, exec_len);
1192                         if (ret)
1193                                 goto err;
1194                 }
1195         } else {
1196                 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1197                 if (ret)
1198                         goto err;
1199         }
1200
1201         i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1202         i915_gem_execbuffer_retire_commands(dev, file, ring);
1203
1204 err:
1205         eb_destroy(eb);
1206         while (!list_empty(&objects)) {
1207                 struct drm_i915_gem_object *obj;
1208
1209                 obj = list_first_entry(&objects,
1210                                        struct drm_i915_gem_object,
1211                                        exec_list);
1212                 list_del_init(&obj->exec_list);
1213                 drm_gem_object_unreference(&obj->base);
1214         }
1215
1216         mutex_unlock(&dev->struct_mutex);
1217
1218 pre_mutex_err:
1219         kfree(cliprects);
1220         return ret;
1221 }
1222
1223 /*
1224  * Legacy execbuffer just creates an exec2 list from the original exec object
1225  * list array and passes it to the real function.
1226  */
1227 int
1228 i915_gem_execbuffer(struct drm_device *dev, void *data,
1229                     struct drm_file *file)
1230 {
1231         struct drm_i915_gem_execbuffer *args = data;
1232         struct drm_i915_gem_execbuffer2 exec2;
1233         struct drm_i915_gem_exec_object *exec_list = NULL;
1234         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1235         int ret, i;
1236
1237         if (args->buffer_count < 1) {
1238                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1239                 return -EINVAL;
1240         }
1241
1242         /* Copy in the exec list from userland */
1243         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1244         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1245         if (exec_list == NULL || exec2_list == NULL) {
1246                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1247                           args->buffer_count);
1248                 drm_free_large(exec_list);
1249                 drm_free_large(exec2_list);
1250                 return -ENOMEM;
1251         }
1252         ret = copy_from_user(exec_list,
1253                              (struct drm_i915_relocation_entry __user *)
1254                              (uintptr_t) args->buffers_ptr,
1255                              sizeof(*exec_list) * args->buffer_count);
1256         if (ret != 0) {
1257                 DRM_ERROR("copy %d exec entries failed %d\n",
1258                           args->buffer_count, ret);
1259                 drm_free_large(exec_list);
1260                 drm_free_large(exec2_list);
1261                 return -EFAULT;
1262         }
1263
1264         for (i = 0; i < args->buffer_count; i++) {
1265                 exec2_list[i].handle = exec_list[i].handle;
1266                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1267                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1268                 exec2_list[i].alignment = exec_list[i].alignment;
1269                 exec2_list[i].offset = exec_list[i].offset;
1270                 if (INTEL_INFO(dev)->gen < 4)
1271                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1272                 else
1273                         exec2_list[i].flags = 0;
1274         }
1275
1276         exec2.buffers_ptr = args->buffers_ptr;
1277         exec2.buffer_count = args->buffer_count;
1278         exec2.batch_start_offset = args->batch_start_offset;
1279         exec2.batch_len = args->batch_len;
1280         exec2.DR1 = args->DR1;
1281         exec2.DR4 = args->DR4;
1282         exec2.num_cliprects = args->num_cliprects;
1283         exec2.cliprects_ptr = args->cliprects_ptr;
1284         exec2.flags = I915_EXEC_RENDER;
1285
1286         ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1287         if (!ret) {
1288                 /* Copy the new buffer offsets back to the user's exec list. */
1289                 for (i = 0; i < args->buffer_count; i++)
1290                         exec_list[i].offset = exec2_list[i].offset;
1291                 /* ... and back out to userspace */
1292                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1293                                    (uintptr_t) args->buffers_ptr,
1294                                    exec_list,
1295                                    sizeof(*exec_list) * args->buffer_count);
1296                 if (ret) {
1297                         ret = -EFAULT;
1298                         DRM_ERROR("failed to copy %d exec entries "
1299                                   "back to user (%d)\n",
1300                                   args->buffer_count, ret);
1301                 }
1302         }
1303
1304         drm_free_large(exec_list);
1305         drm_free_large(exec2_list);
1306         return ret;
1307 }
1308
1309 int
1310 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1311                      struct drm_file *file)
1312 {
1313         struct drm_i915_gem_execbuffer2 *args = data;
1314         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1315         int ret;
1316
1317         if (args->buffer_count < 1) {
1318                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
1319                 return -EINVAL;
1320         }
1321
1322         exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1323                              GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1324         if (exec2_list == NULL)
1325                 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1326                                            args->buffer_count);
1327         if (exec2_list == NULL) {
1328                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1329                           args->buffer_count);
1330                 return -ENOMEM;
1331         }
1332         ret = copy_from_user(exec2_list,
1333                              (struct drm_i915_relocation_entry __user *)
1334                              (uintptr_t) args->buffers_ptr,
1335                              sizeof(*exec2_list) * args->buffer_count);
1336         if (ret != 0) {
1337                 DRM_ERROR("copy %d exec entries failed %d\n",
1338                           args->buffer_count, ret);
1339                 drm_free_large(exec2_list);
1340                 return -EFAULT;
1341         }
1342
1343         ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1344         if (!ret) {
1345                 /* Copy the new buffer offsets back to the user's exec list. */
1346                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1347                                    (uintptr_t) args->buffers_ptr,
1348                                    exec2_list,
1349                                    sizeof(*exec2_list) * args->buffer_count);
1350                 if (ret) {
1351                         ret = -EFAULT;
1352                         DRM_ERROR("failed to copy %d exec entries "
1353                                   "back to user (%d)\n",
1354                                   args->buffer_count, ret);
1355                 }
1356         }
1357
1358         drm_free_large(exec2_list);
1359         return ret;
1360 }