percpu: fix per_cpu_ptr_to_phys() handling of non-page-aligned addresses
[pandora-kernel.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  */
28
29 #include "drmP.h"
30 #include "drm.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 struct change_domains {
37         uint32_t invalidate_domains;
38         uint32_t flush_domains;
39         uint32_t flush_rings;
40         uint32_t flips;
41 };
42
43 /*
44  * Set the next domain for the specified object. This
45  * may not actually perform the necessary flushing/invaliding though,
46  * as that may want to be batched with other set_domain operations
47  *
48  * This is (we hope) the only really tricky part of gem. The goal
49  * is fairly simple -- track which caches hold bits of the object
50  * and make sure they remain coherent. A few concrete examples may
51  * help to explain how it works. For shorthand, we use the notation
52  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
53  * a pair of read and write domain masks.
54  *
55  * Case 1: the batch buffer
56  *
57  *      1. Allocated
58  *      2. Written by CPU
59  *      3. Mapped to GTT
60  *      4. Read by GPU
61  *      5. Unmapped from GTT
62  *      6. Freed
63  *
64  *      Let's take these a step at a time
65  *
66  *      1. Allocated
67  *              Pages allocated from the kernel may still have
68  *              cache contents, so we set them to (CPU, CPU) always.
69  *      2. Written by CPU (using pwrite)
70  *              The pwrite function calls set_domain (CPU, CPU) and
71  *              this function does nothing (as nothing changes)
72  *      3. Mapped by GTT
73  *              This function asserts that the object is not
74  *              currently in any GPU-based read or write domains
75  *      4. Read by GPU
76  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
77  *              As write_domain is zero, this function adds in the
78  *              current read domains (CPU+COMMAND, 0).
79  *              flush_domains is set to CPU.
80  *              invalidate_domains is set to COMMAND
81  *              clflush is run to get data out of the CPU caches
82  *              then i915_dev_set_domain calls i915_gem_flush to
83  *              emit an MI_FLUSH and drm_agp_chipset_flush
84  *      5. Unmapped from GTT
85  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
86  *              flush_domains and invalidate_domains end up both zero
87  *              so no flushing/invalidating happens
88  *      6. Freed
89  *              yay, done
90  *
91  * Case 2: The shared render buffer
92  *
93  *      1. Allocated
94  *      2. Mapped to GTT
95  *      3. Read/written by GPU
96  *      4. set_domain to (CPU,CPU)
97  *      5. Read/written by CPU
98  *      6. Read/written by GPU
99  *
100  *      1. Allocated
101  *              Same as last example, (CPU, CPU)
102  *      2. Mapped to GTT
103  *              Nothing changes (assertions find that it is not in the GPU)
104  *      3. Read/written by GPU
105  *              execbuffer calls set_domain (RENDER, RENDER)
106  *              flush_domains gets CPU
107  *              invalidate_domains gets GPU
108  *              clflush (obj)
109  *              MI_FLUSH and drm_agp_chipset_flush
110  *      4. set_domain (CPU, CPU)
111  *              flush_domains gets GPU
112  *              invalidate_domains gets CPU
113  *              wait_rendering (obj) to make sure all drawing is complete.
114  *              This will include an MI_FLUSH to get the data from GPU
115  *              to memory
116  *              clflush (obj) to invalidate the CPU cache
117  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
118  *      5. Read/written by CPU
119  *              cache lines are loaded and dirtied
120  *      6. Read written by GPU
121  *              Same as last GPU access
122  *
123  * Case 3: The constant buffer
124  *
125  *      1. Allocated
126  *      2. Written by CPU
127  *      3. Read by GPU
128  *      4. Updated (written) by CPU again
129  *      5. Read by GPU
130  *
131  *      1. Allocated
132  *              (CPU, CPU)
133  *      2. Written by CPU
134  *              (CPU, CPU)
135  *      3. Read by GPU
136  *              (CPU+RENDER, 0)
137  *              flush_domains = CPU
138  *              invalidate_domains = RENDER
139  *              clflush (obj)
140  *              MI_FLUSH
141  *              drm_agp_chipset_flush
142  *      4. Updated (written) by CPU again
143  *              (CPU, CPU)
144  *              flush_domains = 0 (no previous write domain)
145  *              invalidate_domains = 0 (no new read domains)
146  *      5. Read by GPU
147  *              (CPU+RENDER, 0)
148  *              flush_domains = CPU
149  *              invalidate_domains = RENDER
150  *              clflush (obj)
151  *              MI_FLUSH
152  *              drm_agp_chipset_flush
153  */
154 static void
155 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
156                                   struct intel_ring_buffer *ring,
157                                   struct change_domains *cd)
158 {
159         uint32_t invalidate_domains = 0, flush_domains = 0;
160
161         /*
162          * If the object isn't moving to a new write domain,
163          * let the object stay in multiple read domains
164          */
165         if (obj->base.pending_write_domain == 0)
166                 obj->base.pending_read_domains |= obj->base.read_domains;
167
168         /*
169          * Flush the current write domain if
170          * the new read domains don't match. Invalidate
171          * any read domains which differ from the old
172          * write domain
173          */
174         if (obj->base.write_domain &&
175             (((obj->base.write_domain != obj->base.pending_read_domains ||
176                obj->ring != ring)) ||
177              (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
178                 flush_domains |= obj->base.write_domain;
179                 invalidate_domains |=
180                         obj->base.pending_read_domains & ~obj->base.write_domain;
181         }
182         /*
183          * Invalidate any read caches which may have
184          * stale data. That is, any new read domains.
185          */
186         invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
187         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
188                 i915_gem_clflush_object(obj);
189
190         if (obj->base.pending_write_domain)
191                 cd->flips |= atomic_read(&obj->pending_flip);
192
193         /* The actual obj->write_domain will be updated with
194          * pending_write_domain after we emit the accumulated flush for all
195          * of our domain changes in execbuffers (which clears objects'
196          * write_domains).  So if we have a current write domain that we
197          * aren't changing, set pending_write_domain to that.
198          */
199         if (flush_domains == 0 && obj->base.pending_write_domain == 0)
200                 obj->base.pending_write_domain = obj->base.write_domain;
201
202         cd->invalidate_domains |= invalidate_domains;
203         cd->flush_domains |= flush_domains;
204         if (flush_domains & I915_GEM_GPU_DOMAINS)
205                 cd->flush_rings |= obj->ring->id;
206         if (invalidate_domains & I915_GEM_GPU_DOMAINS)
207                 cd->flush_rings |= ring->id;
208 }
209
210 struct eb_objects {
211         int and;
212         struct hlist_head buckets[0];
213 };
214
215 static struct eb_objects *
216 eb_create(int size)
217 {
218         struct eb_objects *eb;
219         int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
220         while (count > size)
221                 count >>= 1;
222         eb = kzalloc(count*sizeof(struct hlist_head) +
223                      sizeof(struct eb_objects),
224                      GFP_KERNEL);
225         if (eb == NULL)
226                 return eb;
227
228         eb->and = count - 1;
229         return eb;
230 }
231
232 static void
233 eb_reset(struct eb_objects *eb)
234 {
235         memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
236 }
237
238 static void
239 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
240 {
241         hlist_add_head(&obj->exec_node,
242                        &eb->buckets[obj->exec_handle & eb->and]);
243 }
244
245 static struct drm_i915_gem_object *
246 eb_get_object(struct eb_objects *eb, unsigned long handle)
247 {
248         struct hlist_head *head;
249         struct hlist_node *node;
250         struct drm_i915_gem_object *obj;
251
252         head = &eb->buckets[handle & eb->and];
253         hlist_for_each(node, head) {
254                 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
255                 if (obj->exec_handle == handle)
256                         return obj;
257         }
258
259         return NULL;
260 }
261
262 static void
263 eb_destroy(struct eb_objects *eb)
264 {
265         kfree(eb);
266 }
267
268 static int
269 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
270                                    struct eb_objects *eb,
271                                    struct drm_i915_gem_relocation_entry *reloc)
272 {
273         struct drm_device *dev = obj->base.dev;
274         struct drm_gem_object *target_obj;
275         uint32_t target_offset;
276         int ret = -EINVAL;
277
278         /* we've already hold a reference to all valid objects */
279         target_obj = &eb_get_object(eb, reloc->target_handle)->base;
280         if (unlikely(target_obj == NULL))
281                 return -ENOENT;
282
283         target_offset = to_intel_bo(target_obj)->gtt_offset;
284
285         /* The target buffer should have appeared before us in the
286          * exec_object list, so it should have a GTT space bound by now.
287          */
288         if (unlikely(target_offset == 0)) {
289                 DRM_ERROR("No GTT space found for object %d\n",
290                           reloc->target_handle);
291                 return ret;
292         }
293
294         /* Validate that the target is in a valid r/w GPU domain */
295         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
296                 DRM_ERROR("reloc with multiple write domains: "
297                           "obj %p target %d offset %d "
298                           "read %08x write %08x",
299                           obj, reloc->target_handle,
300                           (int) reloc->offset,
301                           reloc->read_domains,
302                           reloc->write_domain);
303                 return ret;
304         }
305         if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
306                 DRM_ERROR("reloc with read/write CPU domains: "
307                           "obj %p target %d offset %d "
308                           "read %08x write %08x",
309                           obj, reloc->target_handle,
310                           (int) reloc->offset,
311                           reloc->read_domains,
312                           reloc->write_domain);
313                 return ret;
314         }
315         if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
316                      reloc->write_domain != target_obj->pending_write_domain)) {
317                 DRM_ERROR("Write domain conflict: "
318                           "obj %p target %d offset %d "
319                           "new %08x old %08x\n",
320                           obj, reloc->target_handle,
321                           (int) reloc->offset,
322                           reloc->write_domain,
323                           target_obj->pending_write_domain);
324                 return ret;
325         }
326
327         target_obj->pending_read_domains |= reloc->read_domains;
328         target_obj->pending_write_domain |= reloc->write_domain;
329
330         /* If the relocation already has the right value in it, no
331          * more work needs to be done.
332          */
333         if (target_offset == reloc->presumed_offset)
334                 return 0;
335
336         /* Check that the relocation address is valid... */
337         if (unlikely(reloc->offset > obj->base.size - 4)) {
338                 DRM_ERROR("Relocation beyond object bounds: "
339                           "obj %p target %d offset %d size %d.\n",
340                           obj, reloc->target_handle,
341                           (int) reloc->offset,
342                           (int) obj->base.size);
343                 return ret;
344         }
345         if (unlikely(reloc->offset & 3)) {
346                 DRM_ERROR("Relocation not 4-byte aligned: "
347                           "obj %p target %d offset %d.\n",
348                           obj, reloc->target_handle,
349                           (int) reloc->offset);
350                 return ret;
351         }
352
353         reloc->delta += target_offset;
354         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
355                 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
356                 char *vaddr;
357
358                 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
359                 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
360                 kunmap_atomic(vaddr);
361         } else {
362                 struct drm_i915_private *dev_priv = dev->dev_private;
363                 uint32_t __iomem *reloc_entry;
364                 void __iomem *reloc_page;
365
366                 /* We can't wait for rendering with pagefaults disabled */
367                 if (obj->active && in_atomic())
368                         return -EFAULT;
369
370                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
371                 if (ret)
372                         return ret;
373
374                 /* Map the page containing the relocation we're going to perform.  */
375                 reloc->offset += obj->gtt_offset;
376                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
377                                                       reloc->offset & PAGE_MASK);
378                 reloc_entry = (uint32_t __iomem *)
379                         (reloc_page + (reloc->offset & ~PAGE_MASK));
380                 iowrite32(reloc->delta, reloc_entry);
381                 io_mapping_unmap_atomic(reloc_page);
382         }
383
384         /* and update the user's relocation entry */
385         reloc->presumed_offset = target_offset;
386
387         return 0;
388 }
389
390 static int
391 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
392                                     struct eb_objects *eb)
393 {
394         struct drm_i915_gem_relocation_entry __user *user_relocs;
395         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
396         int i, ret;
397
398         user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
399         for (i = 0; i < entry->relocation_count; i++) {
400                 struct drm_i915_gem_relocation_entry reloc;
401
402                 if (__copy_from_user_inatomic(&reloc,
403                                               user_relocs+i,
404                                               sizeof(reloc)))
405                         return -EFAULT;
406
407                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
408                 if (ret)
409                         return ret;
410
411                 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
412                                             &reloc.presumed_offset,
413                                             sizeof(reloc.presumed_offset)))
414                         return -EFAULT;
415         }
416
417         return 0;
418 }
419
420 static int
421 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
422                                          struct eb_objects *eb,
423                                          struct drm_i915_gem_relocation_entry *relocs)
424 {
425         const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
426         int i, ret;
427
428         for (i = 0; i < entry->relocation_count; i++) {
429                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
430                 if (ret)
431                         return ret;
432         }
433
434         return 0;
435 }
436
437 static int
438 i915_gem_execbuffer_relocate(struct drm_device *dev,
439                              struct eb_objects *eb,
440                              struct list_head *objects)
441 {
442         struct drm_i915_gem_object *obj;
443         int ret = 0;
444
445         /* This is the fast path and we cannot handle a pagefault whilst
446          * holding the struct mutex lest the user pass in the relocations
447          * contained within a mmaped bo. For in such a case we, the page
448          * fault handler would call i915_gem_fault() and we would try to
449          * acquire the struct mutex again. Obviously this is bad and so
450          * lockdep complains vehemently.
451          */
452         pagefault_disable();
453         list_for_each_entry(obj, objects, exec_list) {
454                 ret = i915_gem_execbuffer_relocate_object(obj, eb);
455                 if (ret)
456                         break;
457         }
458         pagefault_enable();
459
460         return ret;
461 }
462
463 static int
464 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
465                             struct drm_file *file,
466                             struct list_head *objects)
467 {
468         struct drm_i915_gem_object *obj;
469         int ret, retry;
470         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
471         struct list_head ordered_objects;
472
473         INIT_LIST_HEAD(&ordered_objects);
474         while (!list_empty(objects)) {
475                 struct drm_i915_gem_exec_object2 *entry;
476                 bool need_fence, need_mappable;
477
478                 obj = list_first_entry(objects,
479                                        struct drm_i915_gem_object,
480                                        exec_list);
481                 entry = obj->exec_entry;
482
483                 need_fence =
484                         has_fenced_gpu_access &&
485                         entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
486                         obj->tiling_mode != I915_TILING_NONE;
487                 need_mappable =
488                         entry->relocation_count ? true : need_fence;
489
490                 if (need_mappable)
491                         list_move(&obj->exec_list, &ordered_objects);
492                 else
493                         list_move_tail(&obj->exec_list, &ordered_objects);
494
495                 obj->base.pending_read_domains = 0;
496                 obj->base.pending_write_domain = 0;
497         }
498         list_splice(&ordered_objects, objects);
499
500         /* Attempt to pin all of the buffers into the GTT.
501          * This is done in 3 phases:
502          *
503          * 1a. Unbind all objects that do not match the GTT constraints for
504          *     the execbuffer (fenceable, mappable, alignment etc).
505          * 1b. Increment pin count for already bound objects.
506          * 2.  Bind new objects.
507          * 3.  Decrement pin count.
508          *
509          * This avoid unnecessary unbinding of later objects in order to makr
510          * room for the earlier objects *unless* we need to defragment.
511          */
512         retry = 0;
513         do {
514                 ret = 0;
515
516                 /* Unbind any ill-fitting objects or pin. */
517                 list_for_each_entry(obj, objects, exec_list) {
518                         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
519                         bool need_fence, need_mappable;
520                         if (!obj->gtt_space)
521                                 continue;
522
523                         need_fence =
524                                 has_fenced_gpu_access &&
525                                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
526                                 obj->tiling_mode != I915_TILING_NONE;
527                         need_mappable =
528                                 entry->relocation_count ? true : need_fence;
529
530                         if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
531                             (need_mappable && !obj->map_and_fenceable))
532                                 ret = i915_gem_object_unbind(obj);
533                         else
534                                 ret = i915_gem_object_pin(obj,
535                                                           entry->alignment,
536                                                           need_mappable);
537                         if (ret)
538                                 goto err;
539
540                         entry++;
541                 }
542
543                 /* Bind fresh objects */
544                 list_for_each_entry(obj, objects, exec_list) {
545                         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
546                         bool need_fence;
547
548                         need_fence =
549                                 has_fenced_gpu_access &&
550                                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
551                                 obj->tiling_mode != I915_TILING_NONE;
552
553                         if (!obj->gtt_space) {
554                                 bool need_mappable =
555                                         entry->relocation_count ? true : need_fence;
556
557                                 ret = i915_gem_object_pin(obj,
558                                                           entry->alignment,
559                                                           need_mappable);
560                                 if (ret)
561                                         break;
562                         }
563
564                         if (has_fenced_gpu_access) {
565                                 if (need_fence) {
566                                         ret = i915_gem_object_get_fence(obj, ring);
567                                         if (ret)
568                                                 break;
569                                 } else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
570                                            obj->tiling_mode == I915_TILING_NONE) {
571                                         /* XXX pipelined! */
572                                         ret = i915_gem_object_put_fence(obj);
573                                         if (ret)
574                                                 break;
575                                 }
576                                 obj->pending_fenced_gpu_access = need_fence;
577                         }
578
579                         entry->offset = obj->gtt_offset;
580                 }
581
582                 /* Decrement pin count for bound objects */
583                 list_for_each_entry(obj, objects, exec_list) {
584                         if (obj->gtt_space)
585                                 i915_gem_object_unpin(obj);
586                 }
587
588                 if (ret != -ENOSPC || retry > 1)
589                         return ret;
590
591                 /* First attempt, just clear anything that is purgeable.
592                  * Second attempt, clear the entire GTT.
593                  */
594                 ret = i915_gem_evict_everything(ring->dev, retry == 0);
595                 if (ret)
596                         return ret;
597
598                 retry++;
599         } while (1);
600
601 err:
602         obj = list_entry(obj->exec_list.prev,
603                          struct drm_i915_gem_object,
604                          exec_list);
605         while (objects != &obj->exec_list) {
606                 if (obj->gtt_space)
607                         i915_gem_object_unpin(obj);
608
609                 obj = list_entry(obj->exec_list.prev,
610                                  struct drm_i915_gem_object,
611                                  exec_list);
612         }
613
614         return ret;
615 }
616
617 static int
618 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
619                                   struct drm_file *file,
620                                   struct intel_ring_buffer *ring,
621                                   struct list_head *objects,
622                                   struct eb_objects *eb,
623                                   struct drm_i915_gem_exec_object2 *exec,
624                                   int count)
625 {
626         struct drm_i915_gem_relocation_entry *reloc;
627         struct drm_i915_gem_object *obj;
628         int *reloc_offset;
629         int i, total, ret;
630
631         /* We may process another execbuffer during the unlock... */
632         while (!list_empty(objects)) {
633                 obj = list_first_entry(objects,
634                                        struct drm_i915_gem_object,
635                                        exec_list);
636                 list_del_init(&obj->exec_list);
637                 drm_gem_object_unreference(&obj->base);
638         }
639
640         mutex_unlock(&dev->struct_mutex);
641
642         total = 0;
643         for (i = 0; i < count; i++)
644                 total += exec[i].relocation_count;
645
646         reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
647         reloc = drm_malloc_ab(total, sizeof(*reloc));
648         if (reloc == NULL || reloc_offset == NULL) {
649                 drm_free_large(reloc);
650                 drm_free_large(reloc_offset);
651                 mutex_lock(&dev->struct_mutex);
652                 return -ENOMEM;
653         }
654
655         total = 0;
656         for (i = 0; i < count; i++) {
657                 struct drm_i915_gem_relocation_entry __user *user_relocs;
658
659                 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
660
661                 if (copy_from_user(reloc+total, user_relocs,
662                                    exec[i].relocation_count * sizeof(*reloc))) {
663                         ret = -EFAULT;
664                         mutex_lock(&dev->struct_mutex);
665                         goto err;
666                 }
667
668                 reloc_offset[i] = total;
669                 total += exec[i].relocation_count;
670         }
671
672         ret = i915_mutex_lock_interruptible(dev);
673         if (ret) {
674                 mutex_lock(&dev->struct_mutex);
675                 goto err;
676         }
677
678         /* reacquire the objects */
679         eb_reset(eb);
680         for (i = 0; i < count; i++) {
681                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
682                                                         exec[i].handle));
683                 if (&obj->base == NULL) {
684                         DRM_ERROR("Invalid object handle %d at index %d\n",
685                                    exec[i].handle, i);
686                         ret = -ENOENT;
687                         goto err;
688                 }
689
690                 list_add_tail(&obj->exec_list, objects);
691                 obj->exec_handle = exec[i].handle;
692                 obj->exec_entry = &exec[i];
693                 eb_add_object(eb, obj);
694         }
695
696         ret = i915_gem_execbuffer_reserve(ring, file, objects);
697         if (ret)
698                 goto err;
699
700         list_for_each_entry(obj, objects, exec_list) {
701                 int offset = obj->exec_entry - exec;
702                 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
703                                                                reloc + reloc_offset[offset]);
704                 if (ret)
705                         goto err;
706         }
707
708         /* Leave the user relocations as are, this is the painfully slow path,
709          * and we want to avoid the complication of dropping the lock whilst
710          * having buffers reserved in the aperture and so causing spurious
711          * ENOSPC for random operations.
712          */
713
714 err:
715         drm_free_large(reloc);
716         drm_free_large(reloc_offset);
717         return ret;
718 }
719
720 static int
721 i915_gem_execbuffer_flush(struct drm_device *dev,
722                           uint32_t invalidate_domains,
723                           uint32_t flush_domains,
724                           uint32_t flush_rings)
725 {
726         drm_i915_private_t *dev_priv = dev->dev_private;
727         int i, ret;
728
729         if (flush_domains & I915_GEM_DOMAIN_CPU)
730                 intel_gtt_chipset_flush();
731
732         if (flush_domains & I915_GEM_DOMAIN_GTT)
733                 wmb();
734
735         if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
736                 for (i = 0; i < I915_NUM_RINGS; i++)
737                         if (flush_rings & (1 << i)) {
738                                 ret = i915_gem_flush_ring(&dev_priv->ring[i],
739                                                           invalidate_domains,
740                                                           flush_domains);
741                                 if (ret)
742                                         return ret;
743                         }
744         }
745
746         return 0;
747 }
748
749 static int
750 i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
751                                struct intel_ring_buffer *to)
752 {
753         struct intel_ring_buffer *from = obj->ring;
754         u32 seqno;
755         int ret, idx;
756
757         if (from == NULL || to == from)
758                 return 0;
759
760         /* XXX gpu semaphores are implicated in various hard hangs on SNB */
761         if (INTEL_INFO(obj->base.dev)->gen < 6 || !i915_semaphores)
762                 return i915_gem_object_wait_rendering(obj);
763
764         idx = intel_ring_sync_index(from, to);
765
766         seqno = obj->last_rendering_seqno;
767         if (seqno <= from->sync_seqno[idx])
768                 return 0;
769
770         if (seqno == from->outstanding_lazy_request) {
771                 struct drm_i915_gem_request *request;
772
773                 request = kzalloc(sizeof(*request), GFP_KERNEL);
774                 if (request == NULL)
775                         return -ENOMEM;
776
777                 ret = i915_add_request(from, NULL, request);
778                 if (ret) {
779                         kfree(request);
780                         return ret;
781                 }
782
783                 seqno = request->seqno;
784         }
785
786         from->sync_seqno[idx] = seqno;
787
788         return to->sync_to(to, from, seqno - 1);
789 }
790
791 static int
792 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
793 {
794         u32 plane, flip_mask;
795         int ret;
796
797         /* Check for any pending flips. As we only maintain a flip queue depth
798          * of 1, we can simply insert a WAIT for the next display flip prior
799          * to executing the batch and avoid stalling the CPU.
800          */
801
802         for (plane = 0; flips >> plane; plane++) {
803                 if (((flips >> plane) & 1) == 0)
804                         continue;
805
806                 if (plane)
807                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
808                 else
809                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
810
811                 ret = intel_ring_begin(ring, 2);
812                 if (ret)
813                         return ret;
814
815                 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
816                 intel_ring_emit(ring, MI_NOOP);
817                 intel_ring_advance(ring);
818         }
819
820         return 0;
821 }
822
823
824 static int
825 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
826                                 struct list_head *objects)
827 {
828         struct drm_i915_gem_object *obj;
829         struct change_domains cd;
830         int ret;
831
832         memset(&cd, 0, sizeof(cd));
833         list_for_each_entry(obj, objects, exec_list)
834                 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
835
836         if (cd.invalidate_domains | cd.flush_domains) {
837                 ret = i915_gem_execbuffer_flush(ring->dev,
838                                                 cd.invalidate_domains,
839                                                 cd.flush_domains,
840                                                 cd.flush_rings);
841                 if (ret)
842                         return ret;
843         }
844
845         if (cd.flips) {
846                 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
847                 if (ret)
848                         return ret;
849         }
850
851         list_for_each_entry(obj, objects, exec_list) {
852                 ret = i915_gem_execbuffer_sync_rings(obj, ring);
853                 if (ret)
854                         return ret;
855         }
856
857         return 0;
858 }
859
860 static bool
861 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
862 {
863         return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
864 }
865
866 static int
867 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
868                    int count)
869 {
870         int i;
871
872         for (i = 0; i < count; i++) {
873                 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
874                 int length; /* limited by fault_in_pages_readable() */
875
876                 /* First check for malicious input causing overflow */
877                 if (exec[i].relocation_count >
878                     INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
879                         return -EINVAL;
880
881                 length = exec[i].relocation_count *
882                         sizeof(struct drm_i915_gem_relocation_entry);
883                 if (!access_ok(VERIFY_READ, ptr, length))
884                         return -EFAULT;
885
886                 /* we may also need to update the presumed offsets */
887                 if (!access_ok(VERIFY_WRITE, ptr, length))
888                         return -EFAULT;
889
890                 if (fault_in_pages_readable(ptr, length))
891                         return -EFAULT;
892         }
893
894         return 0;
895 }
896
897 static void
898 i915_gem_execbuffer_move_to_active(struct list_head *objects,
899                                    struct intel_ring_buffer *ring,
900                                    u32 seqno)
901 {
902         struct drm_i915_gem_object *obj;
903
904         list_for_each_entry(obj, objects, exec_list) {
905                   u32 old_read = obj->base.read_domains;
906                   u32 old_write = obj->base.write_domain;
907
908
909                 obj->base.read_domains = obj->base.pending_read_domains;
910                 obj->base.write_domain = obj->base.pending_write_domain;
911                 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
912
913                 i915_gem_object_move_to_active(obj, ring, seqno);
914                 if (obj->base.write_domain) {
915                         obj->dirty = 1;
916                         obj->pending_gpu_write = true;
917                         list_move_tail(&obj->gpu_write_list,
918                                        &ring->gpu_write_list);
919                         intel_mark_busy(ring->dev, obj);
920                 }
921
922                 trace_i915_gem_object_change_domain(obj, old_read, old_write);
923         }
924 }
925
926 static void
927 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
928                                     struct drm_file *file,
929                                     struct intel_ring_buffer *ring)
930 {
931         struct drm_i915_gem_request *request;
932         u32 invalidate;
933
934         /*
935          * Ensure that the commands in the batch buffer are
936          * finished before the interrupt fires.
937          *
938          * The sampler always gets flushed on i965 (sigh).
939          */
940         invalidate = I915_GEM_DOMAIN_COMMAND;
941         if (INTEL_INFO(dev)->gen >= 4)
942                 invalidate |= I915_GEM_DOMAIN_SAMPLER;
943         if (ring->flush(ring, invalidate, 0)) {
944                 i915_gem_next_request_seqno(ring);
945                 return;
946         }
947
948         /* Add a breadcrumb for the completion of the batch buffer */
949         request = kzalloc(sizeof(*request), GFP_KERNEL);
950         if (request == NULL || i915_add_request(ring, file, request)) {
951                 i915_gem_next_request_seqno(ring);
952                 kfree(request);
953         }
954 }
955
956 static int
957 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
958                        struct drm_file *file,
959                        struct drm_i915_gem_execbuffer2 *args,
960                        struct drm_i915_gem_exec_object2 *exec)
961 {
962         drm_i915_private_t *dev_priv = dev->dev_private;
963         struct list_head objects;
964         struct eb_objects *eb;
965         struct drm_i915_gem_object *batch_obj;
966         struct drm_clip_rect *cliprects = NULL;
967         struct intel_ring_buffer *ring;
968         u32 exec_start, exec_len;
969         u32 seqno;
970         int ret, mode, i;
971
972         if (!i915_gem_check_execbuffer(args)) {
973                 DRM_ERROR("execbuf with invalid offset/length\n");
974                 return -EINVAL;
975         }
976
977         ret = validate_exec_list(exec, args->buffer_count);
978         if (ret)
979                 return ret;
980
981         switch (args->flags & I915_EXEC_RING_MASK) {
982         case I915_EXEC_DEFAULT:
983         case I915_EXEC_RENDER:
984                 ring = &dev_priv->ring[RCS];
985                 break;
986         case I915_EXEC_BSD:
987                 if (!HAS_BSD(dev)) {
988                         DRM_ERROR("execbuf with invalid ring (BSD)\n");
989                         return -EINVAL;
990                 }
991                 ring = &dev_priv->ring[VCS];
992                 break;
993         case I915_EXEC_BLT:
994                 if (!HAS_BLT(dev)) {
995                         DRM_ERROR("execbuf with invalid ring (BLT)\n");
996                         return -EINVAL;
997                 }
998                 ring = &dev_priv->ring[BCS];
999                 break;
1000         default:
1001                 DRM_ERROR("execbuf with unknown ring: %d\n",
1002                           (int)(args->flags & I915_EXEC_RING_MASK));
1003                 return -EINVAL;
1004         }
1005
1006         mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1007         switch (mode) {
1008         case I915_EXEC_CONSTANTS_REL_GENERAL:
1009         case I915_EXEC_CONSTANTS_ABSOLUTE:
1010         case I915_EXEC_CONSTANTS_REL_SURFACE:
1011                 if (ring == &dev_priv->ring[RCS] &&
1012                     mode != dev_priv->relative_constants_mode) {
1013                         if (INTEL_INFO(dev)->gen < 4)
1014                                 return -EINVAL;
1015
1016                         if (INTEL_INFO(dev)->gen > 5 &&
1017                             mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1018                                 return -EINVAL;
1019
1020                         ret = intel_ring_begin(ring, 4);
1021                         if (ret)
1022                                 return ret;
1023
1024                         intel_ring_emit(ring, MI_NOOP);
1025                         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1026                         intel_ring_emit(ring, INSTPM);
1027                         intel_ring_emit(ring,
1028                                         I915_EXEC_CONSTANTS_MASK << 16 | mode);
1029                         intel_ring_advance(ring);
1030
1031                         dev_priv->relative_constants_mode = mode;
1032                 }
1033                 break;
1034         default:
1035                 DRM_ERROR("execbuf with unknown constants: %d\n", mode);
1036                 return -EINVAL;
1037         }
1038
1039         if (args->buffer_count < 1) {
1040                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1041                 return -EINVAL;
1042         }
1043
1044         if (args->num_cliprects != 0) {
1045                 if (ring != &dev_priv->ring[RCS]) {
1046                         DRM_ERROR("clip rectangles are only valid with the render ring\n");
1047                         return -EINVAL;
1048                 }
1049
1050                 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1051                                     GFP_KERNEL);
1052                 if (cliprects == NULL) {
1053                         ret = -ENOMEM;
1054                         goto pre_mutex_err;
1055                 }
1056
1057                 if (copy_from_user(cliprects,
1058                                      (struct drm_clip_rect __user *)(uintptr_t)
1059                                      args->cliprects_ptr,
1060                                      sizeof(*cliprects)*args->num_cliprects)) {
1061                         ret = -EFAULT;
1062                         goto pre_mutex_err;
1063                 }
1064         }
1065
1066         ret = i915_mutex_lock_interruptible(dev);
1067         if (ret)
1068                 goto pre_mutex_err;
1069
1070         if (dev_priv->mm.suspended) {
1071                 mutex_unlock(&dev->struct_mutex);
1072                 ret = -EBUSY;
1073                 goto pre_mutex_err;
1074         }
1075
1076         eb = eb_create(args->buffer_count);
1077         if (eb == NULL) {
1078                 mutex_unlock(&dev->struct_mutex);
1079                 ret = -ENOMEM;
1080                 goto pre_mutex_err;
1081         }
1082
1083         /* Look up object handles */
1084         INIT_LIST_HEAD(&objects);
1085         for (i = 0; i < args->buffer_count; i++) {
1086                 struct drm_i915_gem_object *obj;
1087
1088                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1089                                                         exec[i].handle));
1090                 if (&obj->base == NULL) {
1091                         DRM_ERROR("Invalid object handle %d at index %d\n",
1092                                    exec[i].handle, i);
1093                         /* prevent error path from reading uninitialized data */
1094                         ret = -ENOENT;
1095                         goto err;
1096                 }
1097
1098                 if (!list_empty(&obj->exec_list)) {
1099                         DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
1100                                    obj, exec[i].handle, i);
1101                         ret = -EINVAL;
1102                         goto err;
1103                 }
1104
1105                 list_add_tail(&obj->exec_list, &objects);
1106                 obj->exec_handle = exec[i].handle;
1107                 obj->exec_entry = &exec[i];
1108                 eb_add_object(eb, obj);
1109         }
1110
1111         /* take note of the batch buffer before we might reorder the lists */
1112         batch_obj = list_entry(objects.prev,
1113                                struct drm_i915_gem_object,
1114                                exec_list);
1115
1116         /* Move the objects en-masse into the GTT, evicting if necessary. */
1117         ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1118         if (ret)
1119                 goto err;
1120
1121         /* The objects are in their final locations, apply the relocations. */
1122         ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1123         if (ret) {
1124                 if (ret == -EFAULT) {
1125                         ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1126                                                                 &objects, eb,
1127                                                                 exec,
1128                                                                 args->buffer_count);
1129                         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1130                 }
1131                 if (ret)
1132                         goto err;
1133         }
1134
1135         /* Set the pending read domains for the batch buffer to COMMAND */
1136         if (batch_obj->base.pending_write_domain) {
1137                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
1138                 ret = -EINVAL;
1139                 goto err;
1140         }
1141         batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1142
1143         ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1144         if (ret)
1145                 goto err;
1146
1147         seqno = i915_gem_next_request_seqno(ring);
1148         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1149                 if (seqno < ring->sync_seqno[i]) {
1150                         /* The GPU can not handle its semaphore value wrapping,
1151                          * so every billion or so execbuffers, we need to stall
1152                          * the GPU in order to reset the counters.
1153                          */
1154                         ret = i915_gpu_idle(dev);
1155                         if (ret)
1156                                 goto err;
1157
1158                         BUG_ON(ring->sync_seqno[i]);
1159                 }
1160         }
1161
1162         trace_i915_gem_ring_dispatch(ring, seqno);
1163
1164         exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1165         exec_len = args->batch_len;
1166         if (cliprects) {
1167                 for (i = 0; i < args->num_cliprects; i++) {
1168                         ret = i915_emit_box(dev, &cliprects[i],
1169                                             args->DR1, args->DR4);
1170                         if (ret)
1171                                 goto err;
1172
1173                         ret = ring->dispatch_execbuffer(ring,
1174                                                         exec_start, exec_len);
1175                         if (ret)
1176                                 goto err;
1177                 }
1178         } else {
1179                 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1180                 if (ret)
1181                         goto err;
1182         }
1183
1184         i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1185         i915_gem_execbuffer_retire_commands(dev, file, ring);
1186
1187 err:
1188         eb_destroy(eb);
1189         while (!list_empty(&objects)) {
1190                 struct drm_i915_gem_object *obj;
1191
1192                 obj = list_first_entry(&objects,
1193                                        struct drm_i915_gem_object,
1194                                        exec_list);
1195                 list_del_init(&obj->exec_list);
1196                 drm_gem_object_unreference(&obj->base);
1197         }
1198
1199         mutex_unlock(&dev->struct_mutex);
1200
1201 pre_mutex_err:
1202         kfree(cliprects);
1203         return ret;
1204 }
1205
1206 /*
1207  * Legacy execbuffer just creates an exec2 list from the original exec object
1208  * list array and passes it to the real function.
1209  */
1210 int
1211 i915_gem_execbuffer(struct drm_device *dev, void *data,
1212                     struct drm_file *file)
1213 {
1214         struct drm_i915_gem_execbuffer *args = data;
1215         struct drm_i915_gem_execbuffer2 exec2;
1216         struct drm_i915_gem_exec_object *exec_list = NULL;
1217         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1218         int ret, i;
1219
1220         if (args->buffer_count < 1) {
1221                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1222                 return -EINVAL;
1223         }
1224
1225         /* Copy in the exec list from userland */
1226         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1227         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1228         if (exec_list == NULL || exec2_list == NULL) {
1229                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1230                           args->buffer_count);
1231                 drm_free_large(exec_list);
1232                 drm_free_large(exec2_list);
1233                 return -ENOMEM;
1234         }
1235         ret = copy_from_user(exec_list,
1236                              (struct drm_i915_relocation_entry __user *)
1237                              (uintptr_t) args->buffers_ptr,
1238                              sizeof(*exec_list) * args->buffer_count);
1239         if (ret != 0) {
1240                 DRM_ERROR("copy %d exec entries failed %d\n",
1241                           args->buffer_count, ret);
1242                 drm_free_large(exec_list);
1243                 drm_free_large(exec2_list);
1244                 return -EFAULT;
1245         }
1246
1247         for (i = 0; i < args->buffer_count; i++) {
1248                 exec2_list[i].handle = exec_list[i].handle;
1249                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1250                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1251                 exec2_list[i].alignment = exec_list[i].alignment;
1252                 exec2_list[i].offset = exec_list[i].offset;
1253                 if (INTEL_INFO(dev)->gen < 4)
1254                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1255                 else
1256                         exec2_list[i].flags = 0;
1257         }
1258
1259         exec2.buffers_ptr = args->buffers_ptr;
1260         exec2.buffer_count = args->buffer_count;
1261         exec2.batch_start_offset = args->batch_start_offset;
1262         exec2.batch_len = args->batch_len;
1263         exec2.DR1 = args->DR1;
1264         exec2.DR4 = args->DR4;
1265         exec2.num_cliprects = args->num_cliprects;
1266         exec2.cliprects_ptr = args->cliprects_ptr;
1267         exec2.flags = I915_EXEC_RENDER;
1268
1269         ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1270         if (!ret) {
1271                 /* Copy the new buffer offsets back to the user's exec list. */
1272                 for (i = 0; i < args->buffer_count; i++)
1273                         exec_list[i].offset = exec2_list[i].offset;
1274                 /* ... and back out to userspace */
1275                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1276                                    (uintptr_t) args->buffers_ptr,
1277                                    exec_list,
1278                                    sizeof(*exec_list) * args->buffer_count);
1279                 if (ret) {
1280                         ret = -EFAULT;
1281                         DRM_ERROR("failed to copy %d exec entries "
1282                                   "back to user (%d)\n",
1283                                   args->buffer_count, ret);
1284                 }
1285         }
1286
1287         drm_free_large(exec_list);
1288         drm_free_large(exec2_list);
1289         return ret;
1290 }
1291
1292 int
1293 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1294                      struct drm_file *file)
1295 {
1296         struct drm_i915_gem_execbuffer2 *args = data;
1297         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1298         int ret;
1299
1300         if (args->buffer_count < 1) {
1301                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
1302                 return -EINVAL;
1303         }
1304
1305         exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1306                              GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1307         if (exec2_list == NULL)
1308                 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1309                                            args->buffer_count);
1310         if (exec2_list == NULL) {
1311                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1312                           args->buffer_count);
1313                 return -ENOMEM;
1314         }
1315         ret = copy_from_user(exec2_list,
1316                              (struct drm_i915_relocation_entry __user *)
1317                              (uintptr_t) args->buffers_ptr,
1318                              sizeof(*exec2_list) * args->buffer_count);
1319         if (ret != 0) {
1320                 DRM_ERROR("copy %d exec entries failed %d\n",
1321                           args->buffer_count, ret);
1322                 drm_free_large(exec2_list);
1323                 return -EFAULT;
1324         }
1325
1326         ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1327         if (!ret) {
1328                 /* Copy the new buffer offsets back to the user's exec list. */
1329                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1330                                    (uintptr_t) args->buffers_ptr,
1331                                    exec2_list,
1332                                    sizeof(*exec2_list) * args->buffer_count);
1333                 if (ret) {
1334                         ret = -EFAULT;
1335                         DRM_ERROR("failed to copy %d exec entries "
1336                                   "back to user (%d)\n",
1337                                   args->buffer_count, ret);
1338                 }
1339         }
1340
1341         drm_free_large(exec2_list);
1342         return ret;
1343 }