Merge branch 'topic/hda' into for-linus
[pandora-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43                                              int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45                                                      uint64_t offset,
46                                                      uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50                                            unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55                                 struct drm_i915_gem_pwrite *args,
56                                 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62                      unsigned long end)
63 {
64         drm_i915_private_t *dev_priv = dev->dev_private;
65
66         if (start >= end ||
67             (start & (PAGE_SIZE - 1)) != 0 ||
68             (end & (PAGE_SIZE - 1)) != 0) {
69                 return -EINVAL;
70         }
71
72         drm_mm_init(&dev_priv->mm.gtt_space, start,
73                     end - start);
74
75         dev->gtt_total = (uint32_t) (end - start);
76
77         return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82                     struct drm_file *file_priv)
83 {
84         struct drm_i915_gem_init *args = data;
85         int ret;
86
87         mutex_lock(&dev->struct_mutex);
88         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89         mutex_unlock(&dev->struct_mutex);
90
91         return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96                             struct drm_file *file_priv)
97 {
98         struct drm_i915_gem_get_aperture *args = data;
99
100         if (!(dev->driver->driver_features & DRIVER_GEM))
101                 return -ENODEV;
102
103         args->aper_size = dev->gtt_total;
104         args->aper_available_size = (args->aper_size -
105                                      atomic_read(&dev->pin_memory));
106
107         return 0;
108 }
109
110
111 /**
112  * Creates a new mm object and returns a handle to it.
113  */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116                       struct drm_file *file_priv)
117 {
118         struct drm_i915_gem_create *args = data;
119         struct drm_gem_object *obj;
120         int ret;
121         u32 handle;
122
123         args->size = roundup(args->size, PAGE_SIZE);
124
125         /* Allocate the new object */
126         obj = drm_gem_object_alloc(dev, args->size);
127         if (obj == NULL)
128                 return -ENOMEM;
129
130         ret = drm_gem_handle_create(file_priv, obj, &handle);
131         mutex_lock(&dev->struct_mutex);
132         drm_gem_object_handle_unreference(obj);
133         mutex_unlock(&dev->struct_mutex);
134
135         if (ret)
136                 return ret;
137
138         args->handle = handle;
139
140         return 0;
141 }
142
143 static inline int
144 fast_shmem_read(struct page **pages,
145                 loff_t page_base, int page_offset,
146                 char __user *data,
147                 int length)
148 {
149         char __iomem *vaddr;
150         int unwritten;
151
152         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153         if (vaddr == NULL)
154                 return -ENOMEM;
155         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156         kunmap_atomic(vaddr, KM_USER0);
157
158         if (unwritten)
159                 return -EFAULT;
160
161         return 0;
162 }
163
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
165 {
166         drm_i915_private_t *dev_priv = obj->dev->dev_private;
167         struct drm_i915_gem_object *obj_priv = obj->driver_private;
168
169         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170                 obj_priv->tiling_mode != I915_TILING_NONE;
171 }
172
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175                 int dst_offset,
176                 struct page *src_page,
177                 int src_offset,
178                 int length)
179 {
180         char *dst_vaddr, *src_vaddr;
181
182         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183         if (dst_vaddr == NULL)
184                 return -ENOMEM;
185
186         src_vaddr = kmap_atomic(src_page, KM_USER1);
187         if (src_vaddr == NULL) {
188                 kunmap_atomic(dst_vaddr, KM_USER0);
189                 return -ENOMEM;
190         }
191
192         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
193
194         kunmap_atomic(src_vaddr, KM_USER1);
195         kunmap_atomic(dst_vaddr, KM_USER0);
196
197         return 0;
198 }
199
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202                       int gpu_offset,
203                       struct page *cpu_page,
204                       int cpu_offset,
205                       int length,
206                       int is_read)
207 {
208         char *gpu_vaddr, *cpu_vaddr;
209
210         /* Use the unswizzled path if this page isn't affected. */
211         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212                 if (is_read)
213                         return slow_shmem_copy(cpu_page, cpu_offset,
214                                                gpu_page, gpu_offset, length);
215                 else
216                         return slow_shmem_copy(gpu_page, gpu_offset,
217                                                cpu_page, cpu_offset, length);
218         }
219
220         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221         if (gpu_vaddr == NULL)
222                 return -ENOMEM;
223
224         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225         if (cpu_vaddr == NULL) {
226                 kunmap_atomic(gpu_vaddr, KM_USER0);
227                 return -ENOMEM;
228         }
229
230         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
231          * XORing with the other bits (A9 for Y, A9 and A10 for X)
232          */
233         while (length > 0) {
234                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
235                 int this_length = min(cacheline_end - gpu_offset, length);
236                 int swizzled_gpu_offset = gpu_offset ^ 64;
237
238                 if (is_read) {
239                         memcpy(cpu_vaddr + cpu_offset,
240                                gpu_vaddr + swizzled_gpu_offset,
241                                this_length);
242                 } else {
243                         memcpy(gpu_vaddr + swizzled_gpu_offset,
244                                cpu_vaddr + cpu_offset,
245                                this_length);
246                 }
247                 cpu_offset += this_length;
248                 gpu_offset += this_length;
249                 length -= this_length;
250         }
251
252         kunmap_atomic(cpu_vaddr, KM_USER1);
253         kunmap_atomic(gpu_vaddr, KM_USER0);
254
255         return 0;
256 }
257
258 /**
259  * This is the fast shmem pread path, which attempts to copy_from_user directly
260  * from the backing pages of the object to the user's address space.  On a
261  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
262  */
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265                           struct drm_i915_gem_pread *args,
266                           struct drm_file *file_priv)
267 {
268         struct drm_i915_gem_object *obj_priv = obj->driver_private;
269         ssize_t remain;
270         loff_t offset, page_base;
271         char __user *user_data;
272         int page_offset, page_length;
273         int ret;
274
275         user_data = (char __user *) (uintptr_t) args->data_ptr;
276         remain = args->size;
277
278         mutex_lock(&dev->struct_mutex);
279
280         ret = i915_gem_object_get_pages(obj, 0);
281         if (ret != 0)
282                 goto fail_unlock;
283
284         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285                                                         args->size);
286         if (ret != 0)
287                 goto fail_put_pages;
288
289         obj_priv = obj->driver_private;
290         offset = args->offset;
291
292         while (remain > 0) {
293                 /* Operation in this page
294                  *
295                  * page_base = page offset within aperture
296                  * page_offset = offset within page
297                  * page_length = bytes to copy for this page
298                  */
299                 page_base = (offset & ~(PAGE_SIZE-1));
300                 page_offset = offset & (PAGE_SIZE-1);
301                 page_length = remain;
302                 if ((page_offset + remain) > PAGE_SIZE)
303                         page_length = PAGE_SIZE - page_offset;
304
305                 ret = fast_shmem_read(obj_priv->pages,
306                                       page_base, page_offset,
307                                       user_data, page_length);
308                 if (ret)
309                         goto fail_put_pages;
310
311                 remain -= page_length;
312                 user_data += page_length;
313                 offset += page_length;
314         }
315
316 fail_put_pages:
317         i915_gem_object_put_pages(obj);
318 fail_unlock:
319         mutex_unlock(&dev->struct_mutex);
320
321         return ret;
322 }
323
324 static int
325 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
326 {
327         int ret;
328
329         ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
330
331         /* If we've insufficient memory to map in the pages, attempt
332          * to make some space by throwing out some old buffers.
333          */
334         if (ret == -ENOMEM) {
335                 struct drm_device *dev = obj->dev;
336
337                 ret = i915_gem_evict_something(dev, obj->size);
338                 if (ret)
339                         return ret;
340
341                 ret = i915_gem_object_get_pages(obj, 0);
342         }
343
344         return ret;
345 }
346
347 /**
348  * This is the fallback shmem pread path, which allocates temporary storage
349  * in kernel space to copy_to_user into outside of the struct_mutex, so we
350  * can copy out of the object's backing pages while holding the struct mutex
351  * and not take page faults.
352  */
353 static int
354 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
355                           struct drm_i915_gem_pread *args,
356                           struct drm_file *file_priv)
357 {
358         struct drm_i915_gem_object *obj_priv = obj->driver_private;
359         struct mm_struct *mm = current->mm;
360         struct page **user_pages;
361         ssize_t remain;
362         loff_t offset, pinned_pages, i;
363         loff_t first_data_page, last_data_page, num_pages;
364         int shmem_page_index, shmem_page_offset;
365         int data_page_index,  data_page_offset;
366         int page_length;
367         int ret;
368         uint64_t data_ptr = args->data_ptr;
369         int do_bit17_swizzling;
370
371         remain = args->size;
372
373         /* Pin the user pages containing the data.  We can't fault while
374          * holding the struct mutex, yet we want to hold it while
375          * dereferencing the user data.
376          */
377         first_data_page = data_ptr / PAGE_SIZE;
378         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
379         num_pages = last_data_page - first_data_page + 1;
380
381         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
382         if (user_pages == NULL)
383                 return -ENOMEM;
384
385         down_read(&mm->mmap_sem);
386         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
387                                       num_pages, 1, 0, user_pages, NULL);
388         up_read(&mm->mmap_sem);
389         if (pinned_pages < num_pages) {
390                 ret = -EFAULT;
391                 goto fail_put_user_pages;
392         }
393
394         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
395
396         mutex_lock(&dev->struct_mutex);
397
398         ret = i915_gem_object_get_pages_or_evict(obj);
399         if (ret)
400                 goto fail_unlock;
401
402         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
403                                                         args->size);
404         if (ret != 0)
405                 goto fail_put_pages;
406
407         obj_priv = obj->driver_private;
408         offset = args->offset;
409
410         while (remain > 0) {
411                 /* Operation in this page
412                  *
413                  * shmem_page_index = page number within shmem file
414                  * shmem_page_offset = offset within page in shmem file
415                  * data_page_index = page number in get_user_pages return
416                  * data_page_offset = offset with data_page_index page.
417                  * page_length = bytes to copy for this page
418                  */
419                 shmem_page_index = offset / PAGE_SIZE;
420                 shmem_page_offset = offset & ~PAGE_MASK;
421                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
422                 data_page_offset = data_ptr & ~PAGE_MASK;
423
424                 page_length = remain;
425                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
426                         page_length = PAGE_SIZE - shmem_page_offset;
427                 if ((data_page_offset + page_length) > PAGE_SIZE)
428                         page_length = PAGE_SIZE - data_page_offset;
429
430                 if (do_bit17_swizzling) {
431                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
432                                                     shmem_page_offset,
433                                                     user_pages[data_page_index],
434                                                     data_page_offset,
435                                                     page_length,
436                                                     1);
437                 } else {
438                         ret = slow_shmem_copy(user_pages[data_page_index],
439                                               data_page_offset,
440                                               obj_priv->pages[shmem_page_index],
441                                               shmem_page_offset,
442                                               page_length);
443                 }
444                 if (ret)
445                         goto fail_put_pages;
446
447                 remain -= page_length;
448                 data_ptr += page_length;
449                 offset += page_length;
450         }
451
452 fail_put_pages:
453         i915_gem_object_put_pages(obj);
454 fail_unlock:
455         mutex_unlock(&dev->struct_mutex);
456 fail_put_user_pages:
457         for (i = 0; i < pinned_pages; i++) {
458                 SetPageDirty(user_pages[i]);
459                 page_cache_release(user_pages[i]);
460         }
461         drm_free_large(user_pages);
462
463         return ret;
464 }
465
466 /**
467  * Reads data from the object referenced by handle.
468  *
469  * On error, the contents of *data are undefined.
470  */
471 int
472 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
473                      struct drm_file *file_priv)
474 {
475         struct drm_i915_gem_pread *args = data;
476         struct drm_gem_object *obj;
477         struct drm_i915_gem_object *obj_priv;
478         int ret;
479
480         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
481         if (obj == NULL)
482                 return -EBADF;
483         obj_priv = obj->driver_private;
484
485         /* Bounds check source.
486          *
487          * XXX: This could use review for overflow issues...
488          */
489         if (args->offset > obj->size || args->size > obj->size ||
490             args->offset + args->size > obj->size) {
491                 drm_gem_object_unreference(obj);
492                 return -EINVAL;
493         }
494
495         if (i915_gem_object_needs_bit17_swizzle(obj)) {
496                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
497         } else {
498                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
499                 if (ret != 0)
500                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
501                                                         file_priv);
502         }
503
504         drm_gem_object_unreference(obj);
505
506         return ret;
507 }
508
509 /* This is the fast write path which cannot handle
510  * page faults in the source data
511  */
512
513 static inline int
514 fast_user_write(struct io_mapping *mapping,
515                 loff_t page_base, int page_offset,
516                 char __user *user_data,
517                 int length)
518 {
519         char *vaddr_atomic;
520         unsigned long unwritten;
521
522         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
523         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
524                                                       user_data, length);
525         io_mapping_unmap_atomic(vaddr_atomic);
526         if (unwritten)
527                 return -EFAULT;
528         return 0;
529 }
530
531 /* Here's the write path which can sleep for
532  * page faults
533  */
534
535 static inline int
536 slow_kernel_write(struct io_mapping *mapping,
537                   loff_t gtt_base, int gtt_offset,
538                   struct page *user_page, int user_offset,
539                   int length)
540 {
541         char *src_vaddr, *dst_vaddr;
542         unsigned long unwritten;
543
544         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
545         src_vaddr = kmap_atomic(user_page, KM_USER1);
546         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
547                                                       src_vaddr + user_offset,
548                                                       length);
549         kunmap_atomic(src_vaddr, KM_USER1);
550         io_mapping_unmap_atomic(dst_vaddr);
551         if (unwritten)
552                 return -EFAULT;
553         return 0;
554 }
555
556 static inline int
557 fast_shmem_write(struct page **pages,
558                  loff_t page_base, int page_offset,
559                  char __user *data,
560                  int length)
561 {
562         char __iomem *vaddr;
563         unsigned long unwritten;
564
565         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
566         if (vaddr == NULL)
567                 return -ENOMEM;
568         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
569         kunmap_atomic(vaddr, KM_USER0);
570
571         if (unwritten)
572                 return -EFAULT;
573         return 0;
574 }
575
576 /**
577  * This is the fast pwrite path, where we copy the data directly from the
578  * user into the GTT, uncached.
579  */
580 static int
581 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
582                          struct drm_i915_gem_pwrite *args,
583                          struct drm_file *file_priv)
584 {
585         struct drm_i915_gem_object *obj_priv = obj->driver_private;
586         drm_i915_private_t *dev_priv = dev->dev_private;
587         ssize_t remain;
588         loff_t offset, page_base;
589         char __user *user_data;
590         int page_offset, page_length;
591         int ret;
592
593         user_data = (char __user *) (uintptr_t) args->data_ptr;
594         remain = args->size;
595         if (!access_ok(VERIFY_READ, user_data, remain))
596                 return -EFAULT;
597
598
599         mutex_lock(&dev->struct_mutex);
600         ret = i915_gem_object_pin(obj, 0);
601         if (ret) {
602                 mutex_unlock(&dev->struct_mutex);
603                 return ret;
604         }
605         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
606         if (ret)
607                 goto fail;
608
609         obj_priv = obj->driver_private;
610         offset = obj_priv->gtt_offset + args->offset;
611
612         while (remain > 0) {
613                 /* Operation in this page
614                  *
615                  * page_base = page offset within aperture
616                  * page_offset = offset within page
617                  * page_length = bytes to copy for this page
618                  */
619                 page_base = (offset & ~(PAGE_SIZE-1));
620                 page_offset = offset & (PAGE_SIZE-1);
621                 page_length = remain;
622                 if ((page_offset + remain) > PAGE_SIZE)
623                         page_length = PAGE_SIZE - page_offset;
624
625                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
626                                        page_offset, user_data, page_length);
627
628                 /* If we get a fault while copying data, then (presumably) our
629                  * source page isn't available.  Return the error and we'll
630                  * retry in the slow path.
631                  */
632                 if (ret)
633                         goto fail;
634
635                 remain -= page_length;
636                 user_data += page_length;
637                 offset += page_length;
638         }
639
640 fail:
641         i915_gem_object_unpin(obj);
642         mutex_unlock(&dev->struct_mutex);
643
644         return ret;
645 }
646
647 /**
648  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
649  * the memory and maps it using kmap_atomic for copying.
650  *
651  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
652  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
653  */
654 static int
655 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
656                          struct drm_i915_gem_pwrite *args,
657                          struct drm_file *file_priv)
658 {
659         struct drm_i915_gem_object *obj_priv = obj->driver_private;
660         drm_i915_private_t *dev_priv = dev->dev_private;
661         ssize_t remain;
662         loff_t gtt_page_base, offset;
663         loff_t first_data_page, last_data_page, num_pages;
664         loff_t pinned_pages, i;
665         struct page **user_pages;
666         struct mm_struct *mm = current->mm;
667         int gtt_page_offset, data_page_offset, data_page_index, page_length;
668         int ret;
669         uint64_t data_ptr = args->data_ptr;
670
671         remain = args->size;
672
673         /* Pin the user pages containing the data.  We can't fault while
674          * holding the struct mutex, and all of the pwrite implementations
675          * want to hold it while dereferencing the user data.
676          */
677         first_data_page = data_ptr / PAGE_SIZE;
678         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
679         num_pages = last_data_page - first_data_page + 1;
680
681         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
682         if (user_pages == NULL)
683                 return -ENOMEM;
684
685         down_read(&mm->mmap_sem);
686         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
687                                       num_pages, 0, 0, user_pages, NULL);
688         up_read(&mm->mmap_sem);
689         if (pinned_pages < num_pages) {
690                 ret = -EFAULT;
691                 goto out_unpin_pages;
692         }
693
694         mutex_lock(&dev->struct_mutex);
695         ret = i915_gem_object_pin(obj, 0);
696         if (ret)
697                 goto out_unlock;
698
699         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
700         if (ret)
701                 goto out_unpin_object;
702
703         obj_priv = obj->driver_private;
704         offset = obj_priv->gtt_offset + args->offset;
705
706         while (remain > 0) {
707                 /* Operation in this page
708                  *
709                  * gtt_page_base = page offset within aperture
710                  * gtt_page_offset = offset within page in aperture
711                  * data_page_index = page number in get_user_pages return
712                  * data_page_offset = offset with data_page_index page.
713                  * page_length = bytes to copy for this page
714                  */
715                 gtt_page_base = offset & PAGE_MASK;
716                 gtt_page_offset = offset & ~PAGE_MASK;
717                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
718                 data_page_offset = data_ptr & ~PAGE_MASK;
719
720                 page_length = remain;
721                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
722                         page_length = PAGE_SIZE - gtt_page_offset;
723                 if ((data_page_offset + page_length) > PAGE_SIZE)
724                         page_length = PAGE_SIZE - data_page_offset;
725
726                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
727                                         gtt_page_base, gtt_page_offset,
728                                         user_pages[data_page_index],
729                                         data_page_offset,
730                                         page_length);
731
732                 /* If we get a fault while copying data, then (presumably) our
733                  * source page isn't available.  Return the error and we'll
734                  * retry in the slow path.
735                  */
736                 if (ret)
737                         goto out_unpin_object;
738
739                 remain -= page_length;
740                 offset += page_length;
741                 data_ptr += page_length;
742         }
743
744 out_unpin_object:
745         i915_gem_object_unpin(obj);
746 out_unlock:
747         mutex_unlock(&dev->struct_mutex);
748 out_unpin_pages:
749         for (i = 0; i < pinned_pages; i++)
750                 page_cache_release(user_pages[i]);
751         drm_free_large(user_pages);
752
753         return ret;
754 }
755
756 /**
757  * This is the fast shmem pwrite path, which attempts to directly
758  * copy_from_user into the kmapped pages backing the object.
759  */
760 static int
761 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
762                            struct drm_i915_gem_pwrite *args,
763                            struct drm_file *file_priv)
764 {
765         struct drm_i915_gem_object *obj_priv = obj->driver_private;
766         ssize_t remain;
767         loff_t offset, page_base;
768         char __user *user_data;
769         int page_offset, page_length;
770         int ret;
771
772         user_data = (char __user *) (uintptr_t) args->data_ptr;
773         remain = args->size;
774
775         mutex_lock(&dev->struct_mutex);
776
777         ret = i915_gem_object_get_pages(obj, 0);
778         if (ret != 0)
779                 goto fail_unlock;
780
781         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
782         if (ret != 0)
783                 goto fail_put_pages;
784
785         obj_priv = obj->driver_private;
786         offset = args->offset;
787         obj_priv->dirty = 1;
788
789         while (remain > 0) {
790                 /* Operation in this page
791                  *
792                  * page_base = page offset within aperture
793                  * page_offset = offset within page
794                  * page_length = bytes to copy for this page
795                  */
796                 page_base = (offset & ~(PAGE_SIZE-1));
797                 page_offset = offset & (PAGE_SIZE-1);
798                 page_length = remain;
799                 if ((page_offset + remain) > PAGE_SIZE)
800                         page_length = PAGE_SIZE - page_offset;
801
802                 ret = fast_shmem_write(obj_priv->pages,
803                                        page_base, page_offset,
804                                        user_data, page_length);
805                 if (ret)
806                         goto fail_put_pages;
807
808                 remain -= page_length;
809                 user_data += page_length;
810                 offset += page_length;
811         }
812
813 fail_put_pages:
814         i915_gem_object_put_pages(obj);
815 fail_unlock:
816         mutex_unlock(&dev->struct_mutex);
817
818         return ret;
819 }
820
821 /**
822  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
823  * the memory and maps it using kmap_atomic for copying.
824  *
825  * This avoids taking mmap_sem for faulting on the user's address while the
826  * struct_mutex is held.
827  */
828 static int
829 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
830                            struct drm_i915_gem_pwrite *args,
831                            struct drm_file *file_priv)
832 {
833         struct drm_i915_gem_object *obj_priv = obj->driver_private;
834         struct mm_struct *mm = current->mm;
835         struct page **user_pages;
836         ssize_t remain;
837         loff_t offset, pinned_pages, i;
838         loff_t first_data_page, last_data_page, num_pages;
839         int shmem_page_index, shmem_page_offset;
840         int data_page_index,  data_page_offset;
841         int page_length;
842         int ret;
843         uint64_t data_ptr = args->data_ptr;
844         int do_bit17_swizzling;
845
846         remain = args->size;
847
848         /* Pin the user pages containing the data.  We can't fault while
849          * holding the struct mutex, and all of the pwrite implementations
850          * want to hold it while dereferencing the user data.
851          */
852         first_data_page = data_ptr / PAGE_SIZE;
853         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
854         num_pages = last_data_page - first_data_page + 1;
855
856         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
857         if (user_pages == NULL)
858                 return -ENOMEM;
859
860         down_read(&mm->mmap_sem);
861         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
862                                       num_pages, 0, 0, user_pages, NULL);
863         up_read(&mm->mmap_sem);
864         if (pinned_pages < num_pages) {
865                 ret = -EFAULT;
866                 goto fail_put_user_pages;
867         }
868
869         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
870
871         mutex_lock(&dev->struct_mutex);
872
873         ret = i915_gem_object_get_pages_or_evict(obj);
874         if (ret)
875                 goto fail_unlock;
876
877         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
878         if (ret != 0)
879                 goto fail_put_pages;
880
881         obj_priv = obj->driver_private;
882         offset = args->offset;
883         obj_priv->dirty = 1;
884
885         while (remain > 0) {
886                 /* Operation in this page
887                  *
888                  * shmem_page_index = page number within shmem file
889                  * shmem_page_offset = offset within page in shmem file
890                  * data_page_index = page number in get_user_pages return
891                  * data_page_offset = offset with data_page_index page.
892                  * page_length = bytes to copy for this page
893                  */
894                 shmem_page_index = offset / PAGE_SIZE;
895                 shmem_page_offset = offset & ~PAGE_MASK;
896                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
897                 data_page_offset = data_ptr & ~PAGE_MASK;
898
899                 page_length = remain;
900                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
901                         page_length = PAGE_SIZE - shmem_page_offset;
902                 if ((data_page_offset + page_length) > PAGE_SIZE)
903                         page_length = PAGE_SIZE - data_page_offset;
904
905                 if (do_bit17_swizzling) {
906                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
907                                                     shmem_page_offset,
908                                                     user_pages[data_page_index],
909                                                     data_page_offset,
910                                                     page_length,
911                                                     0);
912                 } else {
913                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
914                                               shmem_page_offset,
915                                               user_pages[data_page_index],
916                                               data_page_offset,
917                                               page_length);
918                 }
919                 if (ret)
920                         goto fail_put_pages;
921
922                 remain -= page_length;
923                 data_ptr += page_length;
924                 offset += page_length;
925         }
926
927 fail_put_pages:
928         i915_gem_object_put_pages(obj);
929 fail_unlock:
930         mutex_unlock(&dev->struct_mutex);
931 fail_put_user_pages:
932         for (i = 0; i < pinned_pages; i++)
933                 page_cache_release(user_pages[i]);
934         drm_free_large(user_pages);
935
936         return ret;
937 }
938
939 /**
940  * Writes data to the object referenced by handle.
941  *
942  * On error, the contents of the buffer that were to be modified are undefined.
943  */
944 int
945 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
946                       struct drm_file *file_priv)
947 {
948         struct drm_i915_gem_pwrite *args = data;
949         struct drm_gem_object *obj;
950         struct drm_i915_gem_object *obj_priv;
951         int ret = 0;
952
953         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
954         if (obj == NULL)
955                 return -EBADF;
956         obj_priv = obj->driver_private;
957
958         /* Bounds check destination.
959          *
960          * XXX: This could use review for overflow issues...
961          */
962         if (args->offset > obj->size || args->size > obj->size ||
963             args->offset + args->size > obj->size) {
964                 drm_gem_object_unreference(obj);
965                 return -EINVAL;
966         }
967
968         /* We can only do the GTT pwrite on untiled buffers, as otherwise
969          * it would end up going through the fenced access, and we'll get
970          * different detiling behavior between reading and writing.
971          * pread/pwrite currently are reading and writing from the CPU
972          * perspective, requiring manual detiling by the client.
973          */
974         if (obj_priv->phys_obj)
975                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
976         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
977                  dev->gtt_total != 0) {
978                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
979                 if (ret == -EFAULT) {
980                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
981                                                        file_priv);
982                 }
983         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
984                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
985         } else {
986                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
987                 if (ret == -EFAULT) {
988                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
989                                                          file_priv);
990                 }
991         }
992
993 #if WATCH_PWRITE
994         if (ret)
995                 DRM_INFO("pwrite failed %d\n", ret);
996 #endif
997
998         drm_gem_object_unreference(obj);
999
1000         return ret;
1001 }
1002
1003 /**
1004  * Called when user space prepares to use an object with the CPU, either
1005  * through the mmap ioctl's mapping or a GTT mapping.
1006  */
1007 int
1008 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1009                           struct drm_file *file_priv)
1010 {
1011         struct drm_i915_private *dev_priv = dev->dev_private;
1012         struct drm_i915_gem_set_domain *args = data;
1013         struct drm_gem_object *obj;
1014         struct drm_i915_gem_object *obj_priv;
1015         uint32_t read_domains = args->read_domains;
1016         uint32_t write_domain = args->write_domain;
1017         int ret;
1018
1019         if (!(dev->driver->driver_features & DRIVER_GEM))
1020                 return -ENODEV;
1021
1022         /* Only handle setting domains to types used by the CPU. */
1023         if (write_domain & I915_GEM_GPU_DOMAINS)
1024                 return -EINVAL;
1025
1026         if (read_domains & I915_GEM_GPU_DOMAINS)
1027                 return -EINVAL;
1028
1029         /* Having something in the write domain implies it's in the read
1030          * domain, and only that read domain.  Enforce that in the request.
1031          */
1032         if (write_domain != 0 && read_domains != write_domain)
1033                 return -EINVAL;
1034
1035         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1036         if (obj == NULL)
1037                 return -EBADF;
1038         obj_priv = obj->driver_private;
1039
1040         mutex_lock(&dev->struct_mutex);
1041
1042         intel_mark_busy(dev, obj);
1043
1044 #if WATCH_BUF
1045         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1046                  obj, obj->size, read_domains, write_domain);
1047 #endif
1048         if (read_domains & I915_GEM_DOMAIN_GTT) {
1049                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1050
1051                 /* Update the LRU on the fence for the CPU access that's
1052                  * about to occur.
1053                  */
1054                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1055                         list_move_tail(&obj_priv->fence_list,
1056                                        &dev_priv->mm.fence_list);
1057                 }
1058
1059                 /* Silently promote "you're not bound, there was nothing to do"
1060                  * to success, since the client was just asking us to
1061                  * make sure everything was done.
1062                  */
1063                 if (ret == -EINVAL)
1064                         ret = 0;
1065         } else {
1066                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1067         }
1068
1069         drm_gem_object_unreference(obj);
1070         mutex_unlock(&dev->struct_mutex);
1071         return ret;
1072 }
1073
1074 /**
1075  * Called when user space has done writes to this buffer
1076  */
1077 int
1078 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1079                       struct drm_file *file_priv)
1080 {
1081         struct drm_i915_gem_sw_finish *args = data;
1082         struct drm_gem_object *obj;
1083         struct drm_i915_gem_object *obj_priv;
1084         int ret = 0;
1085
1086         if (!(dev->driver->driver_features & DRIVER_GEM))
1087                 return -ENODEV;
1088
1089         mutex_lock(&dev->struct_mutex);
1090         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1091         if (obj == NULL) {
1092                 mutex_unlock(&dev->struct_mutex);
1093                 return -EBADF;
1094         }
1095
1096 #if WATCH_BUF
1097         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1098                  __func__, args->handle, obj, obj->size);
1099 #endif
1100         obj_priv = obj->driver_private;
1101
1102         /* Pinned buffers may be scanout, so flush the cache */
1103         if (obj_priv->pin_count)
1104                 i915_gem_object_flush_cpu_write_domain(obj);
1105
1106         drm_gem_object_unreference(obj);
1107         mutex_unlock(&dev->struct_mutex);
1108         return ret;
1109 }
1110
1111 /**
1112  * Maps the contents of an object, returning the address it is mapped
1113  * into.
1114  *
1115  * While the mapping holds a reference on the contents of the object, it doesn't
1116  * imply a ref on the object itself.
1117  */
1118 int
1119 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1120                    struct drm_file *file_priv)
1121 {
1122         struct drm_i915_gem_mmap *args = data;
1123         struct drm_gem_object *obj;
1124         loff_t offset;
1125         unsigned long addr;
1126
1127         if (!(dev->driver->driver_features & DRIVER_GEM))
1128                 return -ENODEV;
1129
1130         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1131         if (obj == NULL)
1132                 return -EBADF;
1133
1134         offset = args->offset;
1135
1136         down_write(&current->mm->mmap_sem);
1137         addr = do_mmap(obj->filp, 0, args->size,
1138                        PROT_READ | PROT_WRITE, MAP_SHARED,
1139                        args->offset);
1140         up_write(&current->mm->mmap_sem);
1141         mutex_lock(&dev->struct_mutex);
1142         drm_gem_object_unreference(obj);
1143         mutex_unlock(&dev->struct_mutex);
1144         if (IS_ERR((void *)addr))
1145                 return addr;
1146
1147         args->addr_ptr = (uint64_t) addr;
1148
1149         return 0;
1150 }
1151
1152 /**
1153  * i915_gem_fault - fault a page into the GTT
1154  * vma: VMA in question
1155  * vmf: fault info
1156  *
1157  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1158  * from userspace.  The fault handler takes care of binding the object to
1159  * the GTT (if needed), allocating and programming a fence register (again,
1160  * only if needed based on whether the old reg is still valid or the object
1161  * is tiled) and inserting a new PTE into the faulting process.
1162  *
1163  * Note that the faulting process may involve evicting existing objects
1164  * from the GTT and/or fence registers to make room.  So performance may
1165  * suffer if the GTT working set is large or there are few fence registers
1166  * left.
1167  */
1168 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1169 {
1170         struct drm_gem_object *obj = vma->vm_private_data;
1171         struct drm_device *dev = obj->dev;
1172         struct drm_i915_private *dev_priv = dev->dev_private;
1173         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1174         pgoff_t page_offset;
1175         unsigned long pfn;
1176         int ret = 0;
1177         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1178
1179         /* We don't use vmf->pgoff since that has the fake offset */
1180         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1181                 PAGE_SHIFT;
1182
1183         /* Now bind it into the GTT if needed */
1184         mutex_lock(&dev->struct_mutex);
1185         if (!obj_priv->gtt_space) {
1186                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1187                 if (ret)
1188                         goto unlock;
1189
1190                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1191
1192                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1193                 if (ret)
1194                         goto unlock;
1195         }
1196
1197         /* Need a new fence register? */
1198         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1199                 ret = i915_gem_object_get_fence_reg(obj);
1200                 if (ret)
1201                         goto unlock;
1202         }
1203
1204         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1205                 page_offset;
1206
1207         /* Finally, remap it using the new GTT offset */
1208         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1209 unlock:
1210         mutex_unlock(&dev->struct_mutex);
1211
1212         switch (ret) {
1213         case 0:
1214         case -ERESTARTSYS:
1215                 return VM_FAULT_NOPAGE;
1216         case -ENOMEM:
1217         case -EAGAIN:
1218                 return VM_FAULT_OOM;
1219         default:
1220                 return VM_FAULT_SIGBUS;
1221         }
1222 }
1223
1224 /**
1225  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1226  * @obj: obj in question
1227  *
1228  * GEM memory mapping works by handing back to userspace a fake mmap offset
1229  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1230  * up the object based on the offset and sets up the various memory mapping
1231  * structures.
1232  *
1233  * This routine allocates and attaches a fake offset for @obj.
1234  */
1235 static int
1236 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1237 {
1238         struct drm_device *dev = obj->dev;
1239         struct drm_gem_mm *mm = dev->mm_private;
1240         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1241         struct drm_map_list *list;
1242         struct drm_local_map *map;
1243         int ret = 0;
1244
1245         /* Set the object up for mmap'ing */
1246         list = &obj->map_list;
1247         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1248         if (!list->map)
1249                 return -ENOMEM;
1250
1251         map = list->map;
1252         map->type = _DRM_GEM;
1253         map->size = obj->size;
1254         map->handle = obj;
1255
1256         /* Get a DRM GEM mmap offset allocated... */
1257         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1258                                                     obj->size / PAGE_SIZE, 0, 0);
1259         if (!list->file_offset_node) {
1260                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1261                 ret = -ENOMEM;
1262                 goto out_free_list;
1263         }
1264
1265         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1266                                                   obj->size / PAGE_SIZE, 0);
1267         if (!list->file_offset_node) {
1268                 ret = -ENOMEM;
1269                 goto out_free_list;
1270         }
1271
1272         list->hash.key = list->file_offset_node->start;
1273         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1274                 DRM_ERROR("failed to add to map hash\n");
1275                 ret = -ENOMEM;
1276                 goto out_free_mm;
1277         }
1278
1279         /* By now we should be all set, any drm_mmap request on the offset
1280          * below will get to our mmap & fault handler */
1281         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1282
1283         return 0;
1284
1285 out_free_mm:
1286         drm_mm_put_block(list->file_offset_node);
1287 out_free_list:
1288         kfree(list->map);
1289
1290         return ret;
1291 }
1292
1293 /**
1294  * i915_gem_release_mmap - remove physical page mappings
1295  * @obj: obj in question
1296  *
1297  * Preserve the reservation of the mmapping with the DRM core code, but
1298  * relinquish ownership of the pages back to the system.
1299  *
1300  * It is vital that we remove the page mapping if we have mapped a tiled
1301  * object through the GTT and then lose the fence register due to
1302  * resource pressure. Similarly if the object has been moved out of the
1303  * aperture, than pages mapped into userspace must be revoked. Removing the
1304  * mapping will then trigger a page fault on the next user access, allowing
1305  * fixup by i915_gem_fault().
1306  */
1307 void
1308 i915_gem_release_mmap(struct drm_gem_object *obj)
1309 {
1310         struct drm_device *dev = obj->dev;
1311         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1312
1313         if (dev->dev_mapping)
1314                 unmap_mapping_range(dev->dev_mapping,
1315                                     obj_priv->mmap_offset, obj->size, 1);
1316 }
1317
1318 static void
1319 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1320 {
1321         struct drm_device *dev = obj->dev;
1322         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1323         struct drm_gem_mm *mm = dev->mm_private;
1324         struct drm_map_list *list;
1325
1326         list = &obj->map_list;
1327         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1328
1329         if (list->file_offset_node) {
1330                 drm_mm_put_block(list->file_offset_node);
1331                 list->file_offset_node = NULL;
1332         }
1333
1334         if (list->map) {
1335                 kfree(list->map);
1336                 list->map = NULL;
1337         }
1338
1339         obj_priv->mmap_offset = 0;
1340 }
1341
1342 /**
1343  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1344  * @obj: object to check
1345  *
1346  * Return the required GTT alignment for an object, taking into account
1347  * potential fence register mapping if needed.
1348  */
1349 static uint32_t
1350 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1351 {
1352         struct drm_device *dev = obj->dev;
1353         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1354         int start, i;
1355
1356         /*
1357          * Minimum alignment is 4k (GTT page size), but might be greater
1358          * if a fence register is needed for the object.
1359          */
1360         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1361                 return 4096;
1362
1363         /*
1364          * Previous chips need to be aligned to the size of the smallest
1365          * fence register that can contain the object.
1366          */
1367         if (IS_I9XX(dev))
1368                 start = 1024*1024;
1369         else
1370                 start = 512*1024;
1371
1372         for (i = start; i < obj->size; i <<= 1)
1373                 ;
1374
1375         return i;
1376 }
1377
1378 /**
1379  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1380  * @dev: DRM device
1381  * @data: GTT mapping ioctl data
1382  * @file_priv: GEM object info
1383  *
1384  * Simply returns the fake offset to userspace so it can mmap it.
1385  * The mmap call will end up in drm_gem_mmap(), which will set things
1386  * up so we can get faults in the handler above.
1387  *
1388  * The fault handler will take care of binding the object into the GTT
1389  * (since it may have been evicted to make room for something), allocating
1390  * a fence register, and mapping the appropriate aperture address into
1391  * userspace.
1392  */
1393 int
1394 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1395                         struct drm_file *file_priv)
1396 {
1397         struct drm_i915_gem_mmap_gtt *args = data;
1398         struct drm_i915_private *dev_priv = dev->dev_private;
1399         struct drm_gem_object *obj;
1400         struct drm_i915_gem_object *obj_priv;
1401         int ret;
1402
1403         if (!(dev->driver->driver_features & DRIVER_GEM))
1404                 return -ENODEV;
1405
1406         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1407         if (obj == NULL)
1408                 return -EBADF;
1409
1410         mutex_lock(&dev->struct_mutex);
1411
1412         obj_priv = obj->driver_private;
1413
1414         if (obj_priv->madv != I915_MADV_WILLNEED) {
1415                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1416                 drm_gem_object_unreference(obj);
1417                 mutex_unlock(&dev->struct_mutex);
1418                 return -EINVAL;
1419         }
1420
1421
1422         if (!obj_priv->mmap_offset) {
1423                 ret = i915_gem_create_mmap_offset(obj);
1424                 if (ret) {
1425                         drm_gem_object_unreference(obj);
1426                         mutex_unlock(&dev->struct_mutex);
1427                         return ret;
1428                 }
1429         }
1430
1431         args->offset = obj_priv->mmap_offset;
1432
1433         /*
1434          * Pull it into the GTT so that we have a page list (makes the
1435          * initial fault faster and any subsequent flushing possible).
1436          */
1437         if (!obj_priv->agp_mem) {
1438                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1439                 if (ret) {
1440                         drm_gem_object_unreference(obj);
1441                         mutex_unlock(&dev->struct_mutex);
1442                         return ret;
1443                 }
1444                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1445         }
1446
1447         drm_gem_object_unreference(obj);
1448         mutex_unlock(&dev->struct_mutex);
1449
1450         return 0;
1451 }
1452
1453 void
1454 i915_gem_object_put_pages(struct drm_gem_object *obj)
1455 {
1456         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1457         int page_count = obj->size / PAGE_SIZE;
1458         int i;
1459
1460         BUG_ON(obj_priv->pages_refcount == 0);
1461         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1462
1463         if (--obj_priv->pages_refcount != 0)
1464                 return;
1465
1466         if (obj_priv->tiling_mode != I915_TILING_NONE)
1467                 i915_gem_object_save_bit_17_swizzle(obj);
1468
1469         if (obj_priv->madv == I915_MADV_DONTNEED)
1470                 obj_priv->dirty = 0;
1471
1472         for (i = 0; i < page_count; i++) {
1473                 if (obj_priv->pages[i] == NULL)
1474                         break;
1475
1476                 if (obj_priv->dirty)
1477                         set_page_dirty(obj_priv->pages[i]);
1478
1479                 if (obj_priv->madv == I915_MADV_WILLNEED)
1480                         mark_page_accessed(obj_priv->pages[i]);
1481
1482                 page_cache_release(obj_priv->pages[i]);
1483         }
1484         obj_priv->dirty = 0;
1485
1486         drm_free_large(obj_priv->pages);
1487         obj_priv->pages = NULL;
1488 }
1489
1490 static void
1491 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1492 {
1493         struct drm_device *dev = obj->dev;
1494         drm_i915_private_t *dev_priv = dev->dev_private;
1495         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1496
1497         /* Add a reference if we're newly entering the active list. */
1498         if (!obj_priv->active) {
1499                 drm_gem_object_reference(obj);
1500                 obj_priv->active = 1;
1501         }
1502         /* Move from whatever list we were on to the tail of execution. */
1503         spin_lock(&dev_priv->mm.active_list_lock);
1504         list_move_tail(&obj_priv->list,
1505                        &dev_priv->mm.active_list);
1506         spin_unlock(&dev_priv->mm.active_list_lock);
1507         obj_priv->last_rendering_seqno = seqno;
1508 }
1509
1510 static void
1511 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1512 {
1513         struct drm_device *dev = obj->dev;
1514         drm_i915_private_t *dev_priv = dev->dev_private;
1515         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1516
1517         BUG_ON(!obj_priv->active);
1518         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1519         obj_priv->last_rendering_seqno = 0;
1520 }
1521
1522 /* Immediately discard the backing storage */
1523 static void
1524 i915_gem_object_truncate(struct drm_gem_object *obj)
1525 {
1526         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1527         struct inode *inode;
1528
1529         inode = obj->filp->f_path.dentry->d_inode;
1530         if (inode->i_op->truncate)
1531                 inode->i_op->truncate (inode);
1532
1533         obj_priv->madv = __I915_MADV_PURGED;
1534 }
1535
1536 static inline int
1537 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1538 {
1539         return obj_priv->madv == I915_MADV_DONTNEED;
1540 }
1541
1542 static void
1543 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1544 {
1545         struct drm_device *dev = obj->dev;
1546         drm_i915_private_t *dev_priv = dev->dev_private;
1547         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1548
1549         i915_verify_inactive(dev, __FILE__, __LINE__);
1550         if (obj_priv->pin_count != 0)
1551                 list_del_init(&obj_priv->list);
1552         else
1553                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1554
1555         BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1556
1557         obj_priv->last_rendering_seqno = 0;
1558         if (obj_priv->active) {
1559                 obj_priv->active = 0;
1560                 drm_gem_object_unreference(obj);
1561         }
1562         i915_verify_inactive(dev, __FILE__, __LINE__);
1563 }
1564
1565 /**
1566  * Creates a new sequence number, emitting a write of it to the status page
1567  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1568  *
1569  * Must be called with struct_lock held.
1570  *
1571  * Returned sequence numbers are nonzero on success.
1572  */
1573 uint32_t
1574 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1575                  uint32_t flush_domains)
1576 {
1577         drm_i915_private_t *dev_priv = dev->dev_private;
1578         struct drm_i915_file_private *i915_file_priv = NULL;
1579         struct drm_i915_gem_request *request;
1580         uint32_t seqno;
1581         int was_empty;
1582         RING_LOCALS;
1583
1584         if (file_priv != NULL)
1585                 i915_file_priv = file_priv->driver_priv;
1586
1587         request = kzalloc(sizeof(*request), GFP_KERNEL);
1588         if (request == NULL)
1589                 return 0;
1590
1591         /* Grab the seqno we're going to make this request be, and bump the
1592          * next (skipping 0 so it can be the reserved no-seqno value).
1593          */
1594         seqno = dev_priv->mm.next_gem_seqno;
1595         dev_priv->mm.next_gem_seqno++;
1596         if (dev_priv->mm.next_gem_seqno == 0)
1597                 dev_priv->mm.next_gem_seqno++;
1598
1599         BEGIN_LP_RING(4);
1600         OUT_RING(MI_STORE_DWORD_INDEX);
1601         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1602         OUT_RING(seqno);
1603
1604         OUT_RING(MI_USER_INTERRUPT);
1605         ADVANCE_LP_RING();
1606
1607         DRM_DEBUG_DRIVER("%d\n", seqno);
1608
1609         request->seqno = seqno;
1610         request->emitted_jiffies = jiffies;
1611         was_empty = list_empty(&dev_priv->mm.request_list);
1612         list_add_tail(&request->list, &dev_priv->mm.request_list);
1613         if (i915_file_priv) {
1614                 list_add_tail(&request->client_list,
1615                               &i915_file_priv->mm.request_list);
1616         } else {
1617                 INIT_LIST_HEAD(&request->client_list);
1618         }
1619
1620         /* Associate any objects on the flushing list matching the write
1621          * domain we're flushing with our flush.
1622          */
1623         if (flush_domains != 0) {
1624                 struct drm_i915_gem_object *obj_priv, *next;
1625
1626                 list_for_each_entry_safe(obj_priv, next,
1627                                          &dev_priv->mm.gpu_write_list,
1628                                          gpu_write_list) {
1629                         struct drm_gem_object *obj = obj_priv->obj;
1630
1631                         if ((obj->write_domain & flush_domains) ==
1632                             obj->write_domain) {
1633                                 uint32_t old_write_domain = obj->write_domain;
1634
1635                                 obj->write_domain = 0;
1636                                 list_del_init(&obj_priv->gpu_write_list);
1637                                 i915_gem_object_move_to_active(obj, seqno);
1638
1639                                 trace_i915_gem_object_change_domain(obj,
1640                                                                     obj->read_domains,
1641                                                                     old_write_domain);
1642                         }
1643                 }
1644
1645         }
1646
1647         if (!dev_priv->mm.suspended) {
1648                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1649                 if (was_empty)
1650                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1651         }
1652         return seqno;
1653 }
1654
1655 /**
1656  * Command execution barrier
1657  *
1658  * Ensures that all commands in the ring are finished
1659  * before signalling the CPU
1660  */
1661 static uint32_t
1662 i915_retire_commands(struct drm_device *dev)
1663 {
1664         drm_i915_private_t *dev_priv = dev->dev_private;
1665         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1666         uint32_t flush_domains = 0;
1667         RING_LOCALS;
1668
1669         /* The sampler always gets flushed on i965 (sigh) */
1670         if (IS_I965G(dev))
1671                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1672         BEGIN_LP_RING(2);
1673         OUT_RING(cmd);
1674         OUT_RING(0); /* noop */
1675         ADVANCE_LP_RING();
1676         return flush_domains;
1677 }
1678
1679 /**
1680  * Moves buffers associated only with the given active seqno from the active
1681  * to inactive list, potentially freeing them.
1682  */
1683 static void
1684 i915_gem_retire_request(struct drm_device *dev,
1685                         struct drm_i915_gem_request *request)
1686 {
1687         drm_i915_private_t *dev_priv = dev->dev_private;
1688
1689         trace_i915_gem_request_retire(dev, request->seqno);
1690
1691         /* Move any buffers on the active list that are no longer referenced
1692          * by the ringbuffer to the flushing/inactive lists as appropriate.
1693          */
1694         spin_lock(&dev_priv->mm.active_list_lock);
1695         while (!list_empty(&dev_priv->mm.active_list)) {
1696                 struct drm_gem_object *obj;
1697                 struct drm_i915_gem_object *obj_priv;
1698
1699                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1700                                             struct drm_i915_gem_object,
1701                                             list);
1702                 obj = obj_priv->obj;
1703
1704                 /* If the seqno being retired doesn't match the oldest in the
1705                  * list, then the oldest in the list must still be newer than
1706                  * this seqno.
1707                  */
1708                 if (obj_priv->last_rendering_seqno != request->seqno)
1709                         goto out;
1710
1711 #if WATCH_LRU
1712                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1713                          __func__, request->seqno, obj);
1714 #endif
1715
1716                 if (obj->write_domain != 0)
1717                         i915_gem_object_move_to_flushing(obj);
1718                 else {
1719                         /* Take a reference on the object so it won't be
1720                          * freed while the spinlock is held.  The list
1721                          * protection for this spinlock is safe when breaking
1722                          * the lock like this since the next thing we do
1723                          * is just get the head of the list again.
1724                          */
1725                         drm_gem_object_reference(obj);
1726                         i915_gem_object_move_to_inactive(obj);
1727                         spin_unlock(&dev_priv->mm.active_list_lock);
1728                         drm_gem_object_unreference(obj);
1729                         spin_lock(&dev_priv->mm.active_list_lock);
1730                 }
1731         }
1732 out:
1733         spin_unlock(&dev_priv->mm.active_list_lock);
1734 }
1735
1736 /**
1737  * Returns true if seq1 is later than seq2.
1738  */
1739 bool
1740 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1741 {
1742         return (int32_t)(seq1 - seq2) >= 0;
1743 }
1744
1745 uint32_t
1746 i915_get_gem_seqno(struct drm_device *dev)
1747 {
1748         drm_i915_private_t *dev_priv = dev->dev_private;
1749
1750         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1751 }
1752
1753 /**
1754  * This function clears the request list as sequence numbers are passed.
1755  */
1756 void
1757 i915_gem_retire_requests(struct drm_device *dev)
1758 {
1759         drm_i915_private_t *dev_priv = dev->dev_private;
1760         uint32_t seqno;
1761
1762         if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1763                 return;
1764
1765         seqno = i915_get_gem_seqno(dev);
1766
1767         while (!list_empty(&dev_priv->mm.request_list)) {
1768                 struct drm_i915_gem_request *request;
1769                 uint32_t retiring_seqno;
1770
1771                 request = list_first_entry(&dev_priv->mm.request_list,
1772                                            struct drm_i915_gem_request,
1773                                            list);
1774                 retiring_seqno = request->seqno;
1775
1776                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1777                     atomic_read(&dev_priv->mm.wedged)) {
1778                         i915_gem_retire_request(dev, request);
1779
1780                         list_del(&request->list);
1781                         list_del(&request->client_list);
1782                         kfree(request);
1783                 } else
1784                         break;
1785         }
1786
1787         if (unlikely (dev_priv->trace_irq_seqno &&
1788                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1789                 i915_user_irq_put(dev);
1790                 dev_priv->trace_irq_seqno = 0;
1791         }
1792 }
1793
1794 void
1795 i915_gem_retire_work_handler(struct work_struct *work)
1796 {
1797         drm_i915_private_t *dev_priv;
1798         struct drm_device *dev;
1799
1800         dev_priv = container_of(work, drm_i915_private_t,
1801                                 mm.retire_work.work);
1802         dev = dev_priv->dev;
1803
1804         mutex_lock(&dev->struct_mutex);
1805         i915_gem_retire_requests(dev);
1806         if (!dev_priv->mm.suspended &&
1807             !list_empty(&dev_priv->mm.request_list))
1808                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1809         mutex_unlock(&dev->struct_mutex);
1810 }
1811
1812 int
1813 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1814 {
1815         drm_i915_private_t *dev_priv = dev->dev_private;
1816         u32 ier;
1817         int ret = 0;
1818
1819         BUG_ON(seqno == 0);
1820
1821         if (atomic_read(&dev_priv->mm.wedged))
1822                 return -EIO;
1823
1824         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1825                 if (IS_IRONLAKE(dev))
1826                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1827                 else
1828                         ier = I915_READ(IER);
1829                 if (!ier) {
1830                         DRM_ERROR("something (likely vbetool) disabled "
1831                                   "interrupts, re-enabling\n");
1832                         i915_driver_irq_preinstall(dev);
1833                         i915_driver_irq_postinstall(dev);
1834                 }
1835
1836                 trace_i915_gem_request_wait_begin(dev, seqno);
1837
1838                 dev_priv->mm.waiting_gem_seqno = seqno;
1839                 i915_user_irq_get(dev);
1840                 if (interruptible)
1841                         ret = wait_event_interruptible(dev_priv->irq_queue,
1842                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1843                                 atomic_read(&dev_priv->mm.wedged));
1844                 else
1845                         wait_event(dev_priv->irq_queue,
1846                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1847                                 atomic_read(&dev_priv->mm.wedged));
1848
1849                 i915_user_irq_put(dev);
1850                 dev_priv->mm.waiting_gem_seqno = 0;
1851
1852                 trace_i915_gem_request_wait_end(dev, seqno);
1853         }
1854         if (atomic_read(&dev_priv->mm.wedged))
1855                 ret = -EIO;
1856
1857         if (ret && ret != -ERESTARTSYS)
1858                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1859                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1860
1861         /* Directly dispatch request retiring.  While we have the work queue
1862          * to handle this, the waiter on a request often wants an associated
1863          * buffer to have made it to the inactive list, and we would need
1864          * a separate wait queue to handle that.
1865          */
1866         if (ret == 0)
1867                 i915_gem_retire_requests(dev);
1868
1869         return ret;
1870 }
1871
1872 /**
1873  * Waits for a sequence number to be signaled, and cleans up the
1874  * request and object lists appropriately for that event.
1875  */
1876 static int
1877 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1878 {
1879         return i915_do_wait_request(dev, seqno, 1);
1880 }
1881
1882 static void
1883 i915_gem_flush(struct drm_device *dev,
1884                uint32_t invalidate_domains,
1885                uint32_t flush_domains)
1886 {
1887         drm_i915_private_t *dev_priv = dev->dev_private;
1888         uint32_t cmd;
1889         RING_LOCALS;
1890
1891 #if WATCH_EXEC
1892         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1893                   invalidate_domains, flush_domains);
1894 #endif
1895         trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1896                                      invalidate_domains, flush_domains);
1897
1898         if (flush_domains & I915_GEM_DOMAIN_CPU)
1899                 drm_agp_chipset_flush(dev);
1900
1901         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1902                 /*
1903                  * read/write caches:
1904                  *
1905                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1906                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1907                  * also flushed at 2d versus 3d pipeline switches.
1908                  *
1909                  * read-only caches:
1910                  *
1911                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1912                  * MI_READ_FLUSH is set, and is always flushed on 965.
1913                  *
1914                  * I915_GEM_DOMAIN_COMMAND may not exist?
1915                  *
1916                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1917                  * invalidated when MI_EXE_FLUSH is set.
1918                  *
1919                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1920                  * invalidated with every MI_FLUSH.
1921                  *
1922                  * TLBs:
1923                  *
1924                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1925                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1926                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1927                  * are flushed at any MI_FLUSH.
1928                  */
1929
1930                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1931                 if ((invalidate_domains|flush_domains) &
1932                     I915_GEM_DOMAIN_RENDER)
1933                         cmd &= ~MI_NO_WRITE_FLUSH;
1934                 if (!IS_I965G(dev)) {
1935                         /*
1936                          * On the 965, the sampler cache always gets flushed
1937                          * and this bit is reserved.
1938                          */
1939                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1940                                 cmd |= MI_READ_FLUSH;
1941                 }
1942                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1943                         cmd |= MI_EXE_FLUSH;
1944
1945 #if WATCH_EXEC
1946                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1947 #endif
1948                 BEGIN_LP_RING(2);
1949                 OUT_RING(cmd);
1950                 OUT_RING(MI_NOOP);
1951                 ADVANCE_LP_RING();
1952         }
1953 }
1954
1955 /**
1956  * Ensures that all rendering to the object has completed and the object is
1957  * safe to unbind from the GTT or access from the CPU.
1958  */
1959 static int
1960 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1961 {
1962         struct drm_device *dev = obj->dev;
1963         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1964         int ret;
1965
1966         /* This function only exists to support waiting for existing rendering,
1967          * not for emitting required flushes.
1968          */
1969         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1970
1971         /* If there is rendering queued on the buffer being evicted, wait for
1972          * it.
1973          */
1974         if (obj_priv->active) {
1975 #if WATCH_BUF
1976                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1977                           __func__, obj, obj_priv->last_rendering_seqno);
1978 #endif
1979                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1980                 if (ret != 0)
1981                         return ret;
1982         }
1983
1984         return 0;
1985 }
1986
1987 /**
1988  * Unbinds an object from the GTT aperture.
1989  */
1990 int
1991 i915_gem_object_unbind(struct drm_gem_object *obj)
1992 {
1993         struct drm_device *dev = obj->dev;
1994         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1995         int ret = 0;
1996
1997 #if WATCH_BUF
1998         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1999         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2000 #endif
2001         if (obj_priv->gtt_space == NULL)
2002                 return 0;
2003
2004         if (obj_priv->pin_count != 0) {
2005                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2006                 return -EINVAL;
2007         }
2008
2009         /* blow away mappings if mapped through GTT */
2010         i915_gem_release_mmap(obj);
2011
2012         /* Move the object to the CPU domain to ensure that
2013          * any possible CPU writes while it's not in the GTT
2014          * are flushed when we go to remap it. This will
2015          * also ensure that all pending GPU writes are finished
2016          * before we unbind.
2017          */
2018         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2019         if (ret) {
2020                 if (ret != -ERESTARTSYS)
2021                         DRM_ERROR("set_domain failed: %d\n", ret);
2022                 return ret;
2023         }
2024
2025         BUG_ON(obj_priv->active);
2026
2027         /* release the fence reg _after_ flushing */
2028         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2029                 i915_gem_clear_fence_reg(obj);
2030
2031         if (obj_priv->agp_mem != NULL) {
2032                 drm_unbind_agp(obj_priv->agp_mem);
2033                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2034                 obj_priv->agp_mem = NULL;
2035         }
2036
2037         i915_gem_object_put_pages(obj);
2038         BUG_ON(obj_priv->pages_refcount);
2039
2040         if (obj_priv->gtt_space) {
2041                 atomic_dec(&dev->gtt_count);
2042                 atomic_sub(obj->size, &dev->gtt_memory);
2043
2044                 drm_mm_put_block(obj_priv->gtt_space);
2045                 obj_priv->gtt_space = NULL;
2046         }
2047
2048         /* Remove ourselves from the LRU list if present. */
2049         if (!list_empty(&obj_priv->list))
2050                 list_del_init(&obj_priv->list);
2051
2052         if (i915_gem_object_is_purgeable(obj_priv))
2053                 i915_gem_object_truncate(obj);
2054
2055         trace_i915_gem_object_unbind(obj);
2056
2057         return 0;
2058 }
2059
2060 static struct drm_gem_object *
2061 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2062 {
2063         drm_i915_private_t *dev_priv = dev->dev_private;
2064         struct drm_i915_gem_object *obj_priv;
2065         struct drm_gem_object *best = NULL;
2066         struct drm_gem_object *first = NULL;
2067
2068         /* Try to find the smallest clean object */
2069         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2070                 struct drm_gem_object *obj = obj_priv->obj;
2071                 if (obj->size >= min_size) {
2072                         if ((!obj_priv->dirty ||
2073                              i915_gem_object_is_purgeable(obj_priv)) &&
2074                             (!best || obj->size < best->size)) {
2075                                 best = obj;
2076                                 if (best->size == min_size)
2077                                         return best;
2078                         }
2079                         if (!first)
2080                             first = obj;
2081                 }
2082         }
2083
2084         return best ? best : first;
2085 }
2086
2087 static int
2088 i915_gem_evict_everything(struct drm_device *dev)
2089 {
2090         drm_i915_private_t *dev_priv = dev->dev_private;
2091         int ret;
2092         uint32_t seqno;
2093         bool lists_empty;
2094
2095         spin_lock(&dev_priv->mm.active_list_lock);
2096         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2097                        list_empty(&dev_priv->mm.flushing_list) &&
2098                        list_empty(&dev_priv->mm.active_list));
2099         spin_unlock(&dev_priv->mm.active_list_lock);
2100
2101         if (lists_empty)
2102                 return -ENOSPC;
2103
2104         /* Flush everything (on to the inactive lists) and evict */
2105         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2106         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2107         if (seqno == 0)
2108                 return -ENOMEM;
2109
2110         ret = i915_wait_request(dev, seqno);
2111         if (ret)
2112                 return ret;
2113
2114         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2115
2116         ret = i915_gem_evict_from_inactive_list(dev);
2117         if (ret)
2118                 return ret;
2119
2120         spin_lock(&dev_priv->mm.active_list_lock);
2121         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2122                        list_empty(&dev_priv->mm.flushing_list) &&
2123                        list_empty(&dev_priv->mm.active_list));
2124         spin_unlock(&dev_priv->mm.active_list_lock);
2125         BUG_ON(!lists_empty);
2126
2127         return 0;
2128 }
2129
2130 static int
2131 i915_gem_evict_something(struct drm_device *dev, int min_size)
2132 {
2133         drm_i915_private_t *dev_priv = dev->dev_private;
2134         struct drm_gem_object *obj;
2135         int ret;
2136
2137         for (;;) {
2138                 i915_gem_retire_requests(dev);
2139
2140                 /* If there's an inactive buffer available now, grab it
2141                  * and be done.
2142                  */
2143                 obj = i915_gem_find_inactive_object(dev, min_size);
2144                 if (obj) {
2145                         struct drm_i915_gem_object *obj_priv;
2146
2147 #if WATCH_LRU
2148                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2149 #endif
2150                         obj_priv = obj->driver_private;
2151                         BUG_ON(obj_priv->pin_count != 0);
2152                         BUG_ON(obj_priv->active);
2153
2154                         /* Wait on the rendering and unbind the buffer. */
2155                         return i915_gem_object_unbind(obj);
2156                 }
2157
2158                 /* If we didn't get anything, but the ring is still processing
2159                  * things, wait for the next to finish and hopefully leave us
2160                  * a buffer to evict.
2161                  */
2162                 if (!list_empty(&dev_priv->mm.request_list)) {
2163                         struct drm_i915_gem_request *request;
2164
2165                         request = list_first_entry(&dev_priv->mm.request_list,
2166                                                    struct drm_i915_gem_request,
2167                                                    list);
2168
2169                         ret = i915_wait_request(dev, request->seqno);
2170                         if (ret)
2171                                 return ret;
2172
2173                         continue;
2174                 }
2175
2176                 /* If we didn't have anything on the request list but there
2177                  * are buffers awaiting a flush, emit one and try again.
2178                  * When we wait on it, those buffers waiting for that flush
2179                  * will get moved to inactive.
2180                  */
2181                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2182                         struct drm_i915_gem_object *obj_priv;
2183
2184                         /* Find an object that we can immediately reuse */
2185                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2186                                 obj = obj_priv->obj;
2187                                 if (obj->size >= min_size)
2188                                         break;
2189
2190                                 obj = NULL;
2191                         }
2192
2193                         if (obj != NULL) {
2194                                 uint32_t seqno;
2195
2196                                 i915_gem_flush(dev,
2197                                                obj->write_domain,
2198                                                obj->write_domain);
2199                                 seqno = i915_add_request(dev, NULL, obj->write_domain);
2200                                 if (seqno == 0)
2201                                         return -ENOMEM;
2202
2203                                 ret = i915_wait_request(dev, seqno);
2204                                 if (ret)
2205                                         return ret;
2206
2207                                 continue;
2208                         }
2209                 }
2210
2211                 /* If we didn't do any of the above, there's no single buffer
2212                  * large enough to swap out for the new one, so just evict
2213                  * everything and start again. (This should be rare.)
2214                  */
2215                 if (!list_empty (&dev_priv->mm.inactive_list))
2216                         return i915_gem_evict_from_inactive_list(dev);
2217                 else
2218                         return i915_gem_evict_everything(dev);
2219         }
2220 }
2221
2222 int
2223 i915_gem_object_get_pages(struct drm_gem_object *obj,
2224                           gfp_t gfpmask)
2225 {
2226         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2227         int page_count, i;
2228         struct address_space *mapping;
2229         struct inode *inode;
2230         struct page *page;
2231         int ret;
2232
2233         if (obj_priv->pages_refcount++ != 0)
2234                 return 0;
2235
2236         /* Get the list of pages out of our struct file.  They'll be pinned
2237          * at this point until we release them.
2238          */
2239         page_count = obj->size / PAGE_SIZE;
2240         BUG_ON(obj_priv->pages != NULL);
2241         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2242         if (obj_priv->pages == NULL) {
2243                 obj_priv->pages_refcount--;
2244                 return -ENOMEM;
2245         }
2246
2247         inode = obj->filp->f_path.dentry->d_inode;
2248         mapping = inode->i_mapping;
2249         for (i = 0; i < page_count; i++) {
2250                 page = read_cache_page_gfp(mapping, i,
2251                                            mapping_gfp_mask (mapping) |
2252                                            __GFP_COLD |
2253                                            gfpmask);
2254                 if (IS_ERR(page)) {
2255                         ret = PTR_ERR(page);
2256                         i915_gem_object_put_pages(obj);
2257                         return ret;
2258                 }
2259                 obj_priv->pages[i] = page;
2260         }
2261
2262         if (obj_priv->tiling_mode != I915_TILING_NONE)
2263                 i915_gem_object_do_bit_17_swizzle(obj);
2264
2265         return 0;
2266 }
2267
2268 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2269 {
2270         struct drm_gem_object *obj = reg->obj;
2271         struct drm_device *dev = obj->dev;
2272         drm_i915_private_t *dev_priv = dev->dev_private;
2273         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2274         int regnum = obj_priv->fence_reg;
2275         uint64_t val;
2276
2277         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2278                     0xfffff000) << 32;
2279         val |= obj_priv->gtt_offset & 0xfffff000;
2280         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2281         if (obj_priv->tiling_mode == I915_TILING_Y)
2282                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2283         val |= I965_FENCE_REG_VALID;
2284
2285         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2286 }
2287
2288 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2289 {
2290         struct drm_gem_object *obj = reg->obj;
2291         struct drm_device *dev = obj->dev;
2292         drm_i915_private_t *dev_priv = dev->dev_private;
2293         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2294         int regnum = obj_priv->fence_reg;
2295         int tile_width;
2296         uint32_t fence_reg, val;
2297         uint32_t pitch_val;
2298
2299         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2300             (obj_priv->gtt_offset & (obj->size - 1))) {
2301                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2302                      __func__, obj_priv->gtt_offset, obj->size);
2303                 return;
2304         }
2305
2306         if (obj_priv->tiling_mode == I915_TILING_Y &&
2307             HAS_128_BYTE_Y_TILING(dev))
2308                 tile_width = 128;
2309         else
2310                 tile_width = 512;
2311
2312         /* Note: pitch better be a power of two tile widths */
2313         pitch_val = obj_priv->stride / tile_width;
2314         pitch_val = ffs(pitch_val) - 1;
2315
2316         val = obj_priv->gtt_offset;
2317         if (obj_priv->tiling_mode == I915_TILING_Y)
2318                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2319         val |= I915_FENCE_SIZE_BITS(obj->size);
2320         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2321         val |= I830_FENCE_REG_VALID;
2322
2323         if (regnum < 8)
2324                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2325         else
2326                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2327         I915_WRITE(fence_reg, val);
2328 }
2329
2330 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2331 {
2332         struct drm_gem_object *obj = reg->obj;
2333         struct drm_device *dev = obj->dev;
2334         drm_i915_private_t *dev_priv = dev->dev_private;
2335         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2336         int regnum = obj_priv->fence_reg;
2337         uint32_t val;
2338         uint32_t pitch_val;
2339         uint32_t fence_size_bits;
2340
2341         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2342             (obj_priv->gtt_offset & (obj->size - 1))) {
2343                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2344                      __func__, obj_priv->gtt_offset);
2345                 return;
2346         }
2347
2348         pitch_val = obj_priv->stride / 128;
2349         pitch_val = ffs(pitch_val) - 1;
2350         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2351
2352         val = obj_priv->gtt_offset;
2353         if (obj_priv->tiling_mode == I915_TILING_Y)
2354                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2355         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2356         WARN_ON(fence_size_bits & ~0x00000f00);
2357         val |= fence_size_bits;
2358         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2359         val |= I830_FENCE_REG_VALID;
2360
2361         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2362 }
2363
2364 /**
2365  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2366  * @obj: object to map through a fence reg
2367  *
2368  * When mapping objects through the GTT, userspace wants to be able to write
2369  * to them without having to worry about swizzling if the object is tiled.
2370  *
2371  * This function walks the fence regs looking for a free one for @obj,
2372  * stealing one if it can't find any.
2373  *
2374  * It then sets up the reg based on the object's properties: address, pitch
2375  * and tiling format.
2376  */
2377 int
2378 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2379 {
2380         struct drm_device *dev = obj->dev;
2381         struct drm_i915_private *dev_priv = dev->dev_private;
2382         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2383         struct drm_i915_fence_reg *reg = NULL;
2384         struct drm_i915_gem_object *old_obj_priv = NULL;
2385         int i, ret, avail;
2386
2387         /* Just update our place in the LRU if our fence is getting used. */
2388         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2389                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2390                 return 0;
2391         }
2392
2393         switch (obj_priv->tiling_mode) {
2394         case I915_TILING_NONE:
2395                 WARN(1, "allocating a fence for non-tiled object?\n");
2396                 break;
2397         case I915_TILING_X:
2398                 if (!obj_priv->stride)
2399                         return -EINVAL;
2400                 WARN((obj_priv->stride & (512 - 1)),
2401                      "object 0x%08x is X tiled but has non-512B pitch\n",
2402                      obj_priv->gtt_offset);
2403                 break;
2404         case I915_TILING_Y:
2405                 if (!obj_priv->stride)
2406                         return -EINVAL;
2407                 WARN((obj_priv->stride & (128 - 1)),
2408                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2409                      obj_priv->gtt_offset);
2410                 break;
2411         }
2412
2413         /* First try to find a free reg */
2414         avail = 0;
2415         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2416                 reg = &dev_priv->fence_regs[i];
2417                 if (!reg->obj)
2418                         break;
2419
2420                 old_obj_priv = reg->obj->driver_private;
2421                 if (!old_obj_priv->pin_count)
2422                     avail++;
2423         }
2424
2425         /* None available, try to steal one or wait for a user to finish */
2426         if (i == dev_priv->num_fence_regs) {
2427                 struct drm_gem_object *old_obj = NULL;
2428
2429                 if (avail == 0)
2430                         return -ENOSPC;
2431
2432                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2433                                     fence_list) {
2434                         old_obj = old_obj_priv->obj;
2435
2436                         if (old_obj_priv->pin_count)
2437                                 continue;
2438
2439                         /* Take a reference, as otherwise the wait_rendering
2440                          * below may cause the object to get freed out from
2441                          * under us.
2442                          */
2443                         drm_gem_object_reference(old_obj);
2444
2445                         /* i915 uses fences for GPU access to tiled buffers */
2446                         if (IS_I965G(dev) || !old_obj_priv->active)
2447                                 break;
2448
2449                         /* This brings the object to the head of the LRU if it
2450                          * had been written to.  The only way this should
2451                          * result in us waiting longer than the expected
2452                          * optimal amount of time is if there was a
2453                          * fence-using buffer later that was read-only.
2454                          */
2455                         i915_gem_object_flush_gpu_write_domain(old_obj);
2456                         ret = i915_gem_object_wait_rendering(old_obj);
2457                         if (ret != 0) {
2458                                 drm_gem_object_unreference(old_obj);
2459                                 return ret;
2460                         }
2461
2462                         break;
2463                 }
2464
2465                 /*
2466                  * Zap this virtual mapping so we can set up a fence again
2467                  * for this object next time we need it.
2468                  */
2469                 i915_gem_release_mmap(old_obj);
2470
2471                 i = old_obj_priv->fence_reg;
2472                 reg = &dev_priv->fence_regs[i];
2473
2474                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2475                 list_del_init(&old_obj_priv->fence_list);
2476
2477                 drm_gem_object_unreference(old_obj);
2478         }
2479
2480         obj_priv->fence_reg = i;
2481         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2482
2483         reg->obj = obj;
2484
2485         if (IS_I965G(dev))
2486                 i965_write_fence_reg(reg);
2487         else if (IS_I9XX(dev))
2488                 i915_write_fence_reg(reg);
2489         else
2490                 i830_write_fence_reg(reg);
2491
2492         trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2493
2494         return 0;
2495 }
2496
2497 /**
2498  * i915_gem_clear_fence_reg - clear out fence register info
2499  * @obj: object to clear
2500  *
2501  * Zeroes out the fence register itself and clears out the associated
2502  * data structures in dev_priv and obj_priv.
2503  */
2504 static void
2505 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2506 {
2507         struct drm_device *dev = obj->dev;
2508         drm_i915_private_t *dev_priv = dev->dev_private;
2509         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2510
2511         if (IS_I965G(dev))
2512                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2513         else {
2514                 uint32_t fence_reg;
2515
2516                 if (obj_priv->fence_reg < 8)
2517                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2518                 else
2519                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2520                                                        8) * 4;
2521
2522                 I915_WRITE(fence_reg, 0);
2523         }
2524
2525         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2526         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2527         list_del_init(&obj_priv->fence_list);
2528 }
2529
2530 /**
2531  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2532  * to the buffer to finish, and then resets the fence register.
2533  * @obj: tiled object holding a fence register.
2534  *
2535  * Zeroes out the fence register itself and clears out the associated
2536  * data structures in dev_priv and obj_priv.
2537  */
2538 int
2539 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2540 {
2541         struct drm_device *dev = obj->dev;
2542         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2543
2544         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2545                 return 0;
2546
2547         /* On the i915, GPU access to tiled buffers is via a fence,
2548          * therefore we must wait for any outstanding access to complete
2549          * before clearing the fence.
2550          */
2551         if (!IS_I965G(dev)) {
2552                 int ret;
2553
2554                 i915_gem_object_flush_gpu_write_domain(obj);
2555                 i915_gem_object_flush_gtt_write_domain(obj);
2556                 ret = i915_gem_object_wait_rendering(obj);
2557                 if (ret != 0)
2558                         return ret;
2559         }
2560
2561         i915_gem_clear_fence_reg (obj);
2562
2563         return 0;
2564 }
2565
2566 /**
2567  * Finds free space in the GTT aperture and binds the object there.
2568  */
2569 static int
2570 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2571 {
2572         struct drm_device *dev = obj->dev;
2573         drm_i915_private_t *dev_priv = dev->dev_private;
2574         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2575         struct drm_mm_node *free_space;
2576         gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2577         int ret;
2578
2579         if (obj_priv->madv != I915_MADV_WILLNEED) {
2580                 DRM_ERROR("Attempting to bind a purgeable object\n");
2581                 return -EINVAL;
2582         }
2583
2584         if (alignment == 0)
2585                 alignment = i915_gem_get_gtt_alignment(obj);
2586         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2587                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2588                 return -EINVAL;
2589         }
2590
2591  search_free:
2592         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2593                                         obj->size, alignment, 0);
2594         if (free_space != NULL) {
2595                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2596                                                        alignment);
2597                 if (obj_priv->gtt_space != NULL) {
2598                         obj_priv->gtt_space->private = obj;
2599                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2600                 }
2601         }
2602         if (obj_priv->gtt_space == NULL) {
2603                 /* If the gtt is empty and we're still having trouble
2604                  * fitting our object in, we're out of memory.
2605                  */
2606 #if WATCH_LRU
2607                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2608 #endif
2609                 ret = i915_gem_evict_something(dev, obj->size);
2610                 if (ret)
2611                         return ret;
2612
2613                 goto search_free;
2614         }
2615
2616 #if WATCH_BUF
2617         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2618                  obj->size, obj_priv->gtt_offset);
2619 #endif
2620         ret = i915_gem_object_get_pages(obj, gfpmask);
2621         if (ret) {
2622                 drm_mm_put_block(obj_priv->gtt_space);
2623                 obj_priv->gtt_space = NULL;
2624
2625                 if (ret == -ENOMEM) {
2626                         /* first try to clear up some space from the GTT */
2627                         ret = i915_gem_evict_something(dev, obj->size);
2628                         if (ret) {
2629                                 /* now try to shrink everyone else */
2630                                 if (gfpmask) {
2631                                         gfpmask = 0;
2632                                         goto search_free;
2633                                 }
2634
2635                                 return ret;
2636                         }
2637
2638                         goto search_free;
2639                 }
2640
2641                 return ret;
2642         }
2643
2644         /* Create an AGP memory structure pointing at our pages, and bind it
2645          * into the GTT.
2646          */
2647         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2648                                                obj_priv->pages,
2649                                                obj->size >> PAGE_SHIFT,
2650                                                obj_priv->gtt_offset,
2651                                                obj_priv->agp_type);
2652         if (obj_priv->agp_mem == NULL) {
2653                 i915_gem_object_put_pages(obj);
2654                 drm_mm_put_block(obj_priv->gtt_space);
2655                 obj_priv->gtt_space = NULL;
2656
2657                 ret = i915_gem_evict_something(dev, obj->size);
2658                 if (ret)
2659                         return ret;
2660
2661                 goto search_free;
2662         }
2663         atomic_inc(&dev->gtt_count);
2664         atomic_add(obj->size, &dev->gtt_memory);
2665
2666         /* Assert that the object is not currently in any GPU domain. As it
2667          * wasn't in the GTT, there shouldn't be any way it could have been in
2668          * a GPU cache
2669          */
2670         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2671         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2672
2673         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2674
2675         return 0;
2676 }
2677
2678 void
2679 i915_gem_clflush_object(struct drm_gem_object *obj)
2680 {
2681         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2682
2683         /* If we don't have a page list set up, then we're not pinned
2684          * to GPU, and we can ignore the cache flush because it'll happen
2685          * again at bind time.
2686          */
2687         if (obj_priv->pages == NULL)
2688                 return;
2689
2690         trace_i915_gem_object_clflush(obj);
2691
2692         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2693 }
2694
2695 /** Flushes any GPU write domain for the object if it's dirty. */
2696 static void
2697 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2698 {
2699         struct drm_device *dev = obj->dev;
2700         uint32_t seqno;
2701         uint32_t old_write_domain;
2702
2703         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2704                 return;
2705
2706         /* Queue the GPU write cache flushing we need. */
2707         old_write_domain = obj->write_domain;
2708         i915_gem_flush(dev, 0, obj->write_domain);
2709         seqno = i915_add_request(dev, NULL, obj->write_domain);
2710         BUG_ON(obj->write_domain);
2711         i915_gem_object_move_to_active(obj, seqno);
2712
2713         trace_i915_gem_object_change_domain(obj,
2714                                             obj->read_domains,
2715                                             old_write_domain);
2716 }
2717
2718 /** Flushes the GTT write domain for the object if it's dirty. */
2719 static void
2720 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2721 {
2722         uint32_t old_write_domain;
2723
2724         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2725                 return;
2726
2727         /* No actual flushing is required for the GTT write domain.   Writes
2728          * to it immediately go to main memory as far as we know, so there's
2729          * no chipset flush.  It also doesn't land in render cache.
2730          */
2731         old_write_domain = obj->write_domain;
2732         obj->write_domain = 0;
2733
2734         trace_i915_gem_object_change_domain(obj,
2735                                             obj->read_domains,
2736                                             old_write_domain);
2737 }
2738
2739 /** Flushes the CPU write domain for the object if it's dirty. */
2740 static void
2741 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2742 {
2743         struct drm_device *dev = obj->dev;
2744         uint32_t old_write_domain;
2745
2746         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2747                 return;
2748
2749         i915_gem_clflush_object(obj);
2750         drm_agp_chipset_flush(dev);
2751         old_write_domain = obj->write_domain;
2752         obj->write_domain = 0;
2753
2754         trace_i915_gem_object_change_domain(obj,
2755                                             obj->read_domains,
2756                                             old_write_domain);
2757 }
2758
2759 void
2760 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2761 {
2762         switch (obj->write_domain) {
2763         case I915_GEM_DOMAIN_GTT:
2764                 i915_gem_object_flush_gtt_write_domain(obj);
2765                 break;
2766         case I915_GEM_DOMAIN_CPU:
2767                 i915_gem_object_flush_cpu_write_domain(obj);
2768                 break;
2769         default:
2770                 i915_gem_object_flush_gpu_write_domain(obj);
2771                 break;
2772         }
2773 }
2774
2775 /**
2776  * Moves a single object to the GTT read, and possibly write domain.
2777  *
2778  * This function returns when the move is complete, including waiting on
2779  * flushes to occur.
2780  */
2781 int
2782 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2783 {
2784         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2785         uint32_t old_write_domain, old_read_domains;
2786         int ret;
2787
2788         /* Not valid to be called on unbound objects. */
2789         if (obj_priv->gtt_space == NULL)
2790                 return -EINVAL;
2791
2792         i915_gem_object_flush_gpu_write_domain(obj);
2793         /* Wait on any GPU rendering and flushing to occur. */
2794         ret = i915_gem_object_wait_rendering(obj);
2795         if (ret != 0)
2796                 return ret;
2797
2798         old_write_domain = obj->write_domain;
2799         old_read_domains = obj->read_domains;
2800
2801         /* If we're writing through the GTT domain, then CPU and GPU caches
2802          * will need to be invalidated at next use.
2803          */
2804         if (write)
2805                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2806
2807         i915_gem_object_flush_cpu_write_domain(obj);
2808
2809         /* It should now be out of any other write domains, and we can update
2810          * the domain values for our changes.
2811          */
2812         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2813         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2814         if (write) {
2815                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2816                 obj_priv->dirty = 1;
2817         }
2818
2819         trace_i915_gem_object_change_domain(obj,
2820                                             old_read_domains,
2821                                             old_write_domain);
2822
2823         return 0;
2824 }
2825
2826 /*
2827  * Prepare buffer for display plane. Use uninterruptible for possible flush
2828  * wait, as in modesetting process we're not supposed to be interrupted.
2829  */
2830 int
2831 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2832 {
2833         struct drm_device *dev = obj->dev;
2834         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2835         uint32_t old_write_domain, old_read_domains;
2836         int ret;
2837
2838         /* Not valid to be called on unbound objects. */
2839         if (obj_priv->gtt_space == NULL)
2840                 return -EINVAL;
2841
2842         i915_gem_object_flush_gpu_write_domain(obj);
2843
2844         /* Wait on any GPU rendering and flushing to occur. */
2845         if (obj_priv->active) {
2846 #if WATCH_BUF
2847                 DRM_INFO("%s: object %p wait for seqno %08x\n",
2848                           __func__, obj, obj_priv->last_rendering_seqno);
2849 #endif
2850                 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2851                 if (ret != 0)
2852                         return ret;
2853         }
2854
2855         old_write_domain = obj->write_domain;
2856         old_read_domains = obj->read_domains;
2857
2858         obj->read_domains &= I915_GEM_DOMAIN_GTT;
2859
2860         i915_gem_object_flush_cpu_write_domain(obj);
2861
2862         /* It should now be out of any other write domains, and we can update
2863          * the domain values for our changes.
2864          */
2865         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2866         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2867         obj->write_domain = I915_GEM_DOMAIN_GTT;
2868         obj_priv->dirty = 1;
2869
2870         trace_i915_gem_object_change_domain(obj,
2871                                             old_read_domains,
2872                                             old_write_domain);
2873
2874         return 0;
2875 }
2876
2877 /**
2878  * Moves a single object to the CPU read, and possibly write domain.
2879  *
2880  * This function returns when the move is complete, including waiting on
2881  * flushes to occur.
2882  */
2883 static int
2884 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2885 {
2886         uint32_t old_write_domain, old_read_domains;
2887         int ret;
2888
2889         i915_gem_object_flush_gpu_write_domain(obj);
2890         /* Wait on any GPU rendering and flushing to occur. */
2891         ret = i915_gem_object_wait_rendering(obj);
2892         if (ret != 0)
2893                 return ret;
2894
2895         i915_gem_object_flush_gtt_write_domain(obj);
2896
2897         /* If we have a partially-valid cache of the object in the CPU,
2898          * finish invalidating it and free the per-page flags.
2899          */
2900         i915_gem_object_set_to_full_cpu_read_domain(obj);
2901
2902         old_write_domain = obj->write_domain;
2903         old_read_domains = obj->read_domains;
2904
2905         /* Flush the CPU cache if it's still invalid. */
2906         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2907                 i915_gem_clflush_object(obj);
2908
2909                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2910         }
2911
2912         /* It should now be out of any other write domains, and we can update
2913          * the domain values for our changes.
2914          */
2915         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2916
2917         /* If we're writing through the CPU, then the GPU read domains will
2918          * need to be invalidated at next use.
2919          */
2920         if (write) {
2921                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2922                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2923         }
2924
2925         trace_i915_gem_object_change_domain(obj,
2926                                             old_read_domains,
2927                                             old_write_domain);
2928
2929         return 0;
2930 }
2931
2932 /*
2933  * Set the next domain for the specified object. This
2934  * may not actually perform the necessary flushing/invaliding though,
2935  * as that may want to be batched with other set_domain operations
2936  *
2937  * This is (we hope) the only really tricky part of gem. The goal
2938  * is fairly simple -- track which caches hold bits of the object
2939  * and make sure they remain coherent. A few concrete examples may
2940  * help to explain how it works. For shorthand, we use the notation
2941  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2942  * a pair of read and write domain masks.
2943  *
2944  * Case 1: the batch buffer
2945  *
2946  *      1. Allocated
2947  *      2. Written by CPU
2948  *      3. Mapped to GTT
2949  *      4. Read by GPU
2950  *      5. Unmapped from GTT
2951  *      6. Freed
2952  *
2953  *      Let's take these a step at a time
2954  *
2955  *      1. Allocated
2956  *              Pages allocated from the kernel may still have
2957  *              cache contents, so we set them to (CPU, CPU) always.
2958  *      2. Written by CPU (using pwrite)
2959  *              The pwrite function calls set_domain (CPU, CPU) and
2960  *              this function does nothing (as nothing changes)
2961  *      3. Mapped by GTT
2962  *              This function asserts that the object is not
2963  *              currently in any GPU-based read or write domains
2964  *      4. Read by GPU
2965  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2966  *              As write_domain is zero, this function adds in the
2967  *              current read domains (CPU+COMMAND, 0).
2968  *              flush_domains is set to CPU.
2969  *              invalidate_domains is set to COMMAND
2970  *              clflush is run to get data out of the CPU caches
2971  *              then i915_dev_set_domain calls i915_gem_flush to
2972  *              emit an MI_FLUSH and drm_agp_chipset_flush
2973  *      5. Unmapped from GTT
2974  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2975  *              flush_domains and invalidate_domains end up both zero
2976  *              so no flushing/invalidating happens
2977  *      6. Freed
2978  *              yay, done
2979  *
2980  * Case 2: The shared render buffer
2981  *
2982  *      1. Allocated
2983  *      2. Mapped to GTT
2984  *      3. Read/written by GPU
2985  *      4. set_domain to (CPU,CPU)
2986  *      5. Read/written by CPU
2987  *      6. Read/written by GPU
2988  *
2989  *      1. Allocated
2990  *              Same as last example, (CPU, CPU)
2991  *      2. Mapped to GTT
2992  *              Nothing changes (assertions find that it is not in the GPU)
2993  *      3. Read/written by GPU
2994  *              execbuffer calls set_domain (RENDER, RENDER)
2995  *              flush_domains gets CPU
2996  *              invalidate_domains gets GPU
2997  *              clflush (obj)
2998  *              MI_FLUSH and drm_agp_chipset_flush
2999  *      4. set_domain (CPU, CPU)
3000  *              flush_domains gets GPU
3001  *              invalidate_domains gets CPU
3002  *              wait_rendering (obj) to make sure all drawing is complete.
3003  *              This will include an MI_FLUSH to get the data from GPU
3004  *              to memory
3005  *              clflush (obj) to invalidate the CPU cache
3006  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3007  *      5. Read/written by CPU
3008  *              cache lines are loaded and dirtied
3009  *      6. Read written by GPU
3010  *              Same as last GPU access
3011  *
3012  * Case 3: The constant buffer
3013  *
3014  *      1. Allocated
3015  *      2. Written by CPU
3016  *      3. Read by GPU
3017  *      4. Updated (written) by CPU again
3018  *      5. Read by GPU
3019  *
3020  *      1. Allocated
3021  *              (CPU, CPU)
3022  *      2. Written by CPU
3023  *              (CPU, CPU)
3024  *      3. Read by GPU
3025  *              (CPU+RENDER, 0)
3026  *              flush_domains = CPU
3027  *              invalidate_domains = RENDER
3028  *              clflush (obj)
3029  *              MI_FLUSH
3030  *              drm_agp_chipset_flush
3031  *      4. Updated (written) by CPU again
3032  *              (CPU, CPU)
3033  *              flush_domains = 0 (no previous write domain)
3034  *              invalidate_domains = 0 (no new read domains)
3035  *      5. Read by GPU
3036  *              (CPU+RENDER, 0)
3037  *              flush_domains = CPU
3038  *              invalidate_domains = RENDER
3039  *              clflush (obj)
3040  *              MI_FLUSH
3041  *              drm_agp_chipset_flush
3042  */
3043 static void
3044 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3045 {
3046         struct drm_device               *dev = obj->dev;
3047         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
3048         uint32_t                        invalidate_domains = 0;
3049         uint32_t                        flush_domains = 0;
3050         uint32_t                        old_read_domains;
3051
3052         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3053         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3054
3055         intel_mark_busy(dev, obj);
3056
3057 #if WATCH_BUF
3058         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3059                  __func__, obj,
3060                  obj->read_domains, obj->pending_read_domains,
3061                  obj->write_domain, obj->pending_write_domain);
3062 #endif
3063         /*
3064          * If the object isn't moving to a new write domain,
3065          * let the object stay in multiple read domains
3066          */
3067         if (obj->pending_write_domain == 0)
3068                 obj->pending_read_domains |= obj->read_domains;
3069         else
3070                 obj_priv->dirty = 1;
3071
3072         /*
3073          * Flush the current write domain if
3074          * the new read domains don't match. Invalidate
3075          * any read domains which differ from the old
3076          * write domain
3077          */
3078         if (obj->write_domain &&
3079             obj->write_domain != obj->pending_read_domains) {
3080                 flush_domains |= obj->write_domain;
3081                 invalidate_domains |=
3082                         obj->pending_read_domains & ~obj->write_domain;
3083         }
3084         /*
3085          * Invalidate any read caches which may have
3086          * stale data. That is, any new read domains.
3087          */
3088         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3089         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3090 #if WATCH_BUF
3091                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3092                          __func__, flush_domains, invalidate_domains);
3093 #endif
3094                 i915_gem_clflush_object(obj);
3095         }
3096
3097         old_read_domains = obj->read_domains;
3098
3099         /* The actual obj->write_domain will be updated with
3100          * pending_write_domain after we emit the accumulated flush for all
3101          * of our domain changes in execbuffers (which clears objects'
3102          * write_domains).  So if we have a current write domain that we
3103          * aren't changing, set pending_write_domain to that.
3104          */
3105         if (flush_domains == 0 && obj->pending_write_domain == 0)
3106                 obj->pending_write_domain = obj->write_domain;
3107         obj->read_domains = obj->pending_read_domains;
3108
3109         dev->invalidate_domains |= invalidate_domains;
3110         dev->flush_domains |= flush_domains;
3111 #if WATCH_BUF
3112         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3113                  __func__,
3114                  obj->read_domains, obj->write_domain,
3115                  dev->invalidate_domains, dev->flush_domains);
3116 #endif
3117
3118         trace_i915_gem_object_change_domain(obj,
3119                                             old_read_domains,
3120                                             obj->write_domain);
3121 }
3122
3123 /**
3124  * Moves the object from a partially CPU read to a full one.
3125  *
3126  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3127  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3128  */
3129 static void
3130 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3131 {
3132         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3133
3134         if (!obj_priv->page_cpu_valid)
3135                 return;
3136
3137         /* If we're partially in the CPU read domain, finish moving it in.
3138          */
3139         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3140                 int i;
3141
3142                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3143                         if (obj_priv->page_cpu_valid[i])
3144                                 continue;
3145                         drm_clflush_pages(obj_priv->pages + i, 1);
3146                 }
3147         }
3148
3149         /* Free the page_cpu_valid mappings which are now stale, whether
3150          * or not we've got I915_GEM_DOMAIN_CPU.
3151          */
3152         kfree(obj_priv->page_cpu_valid);
3153         obj_priv->page_cpu_valid = NULL;
3154 }
3155
3156 /**
3157  * Set the CPU read domain on a range of the object.
3158  *
3159  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3160  * not entirely valid.  The page_cpu_valid member of the object flags which
3161  * pages have been flushed, and will be respected by
3162  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3163  * of the whole object.
3164  *
3165  * This function returns when the move is complete, including waiting on
3166  * flushes to occur.
3167  */
3168 static int
3169 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3170                                           uint64_t offset, uint64_t size)
3171 {
3172         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3173         uint32_t old_read_domains;
3174         int i, ret;
3175
3176         if (offset == 0 && size == obj->size)
3177                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3178
3179         i915_gem_object_flush_gpu_write_domain(obj);
3180         /* Wait on any GPU rendering and flushing to occur. */
3181         ret = i915_gem_object_wait_rendering(obj);
3182         if (ret != 0)
3183                 return ret;
3184         i915_gem_object_flush_gtt_write_domain(obj);
3185
3186         /* If we're already fully in the CPU read domain, we're done. */
3187         if (obj_priv->page_cpu_valid == NULL &&
3188             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3189                 return 0;
3190
3191         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3192          * newly adding I915_GEM_DOMAIN_CPU
3193          */
3194         if (obj_priv->page_cpu_valid == NULL) {
3195                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3196                                                    GFP_KERNEL);
3197                 if (obj_priv->page_cpu_valid == NULL)
3198                         return -ENOMEM;
3199         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3200                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3201
3202         /* Flush the cache on any pages that are still invalid from the CPU's
3203          * perspective.
3204          */
3205         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3206              i++) {
3207                 if (obj_priv->page_cpu_valid[i])
3208                         continue;
3209
3210                 drm_clflush_pages(obj_priv->pages + i, 1);
3211
3212                 obj_priv->page_cpu_valid[i] = 1;
3213         }
3214
3215         /* It should now be out of any other write domains, and we can update
3216          * the domain values for our changes.
3217          */
3218         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3219
3220         old_read_domains = obj->read_domains;
3221         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3222
3223         trace_i915_gem_object_change_domain(obj,
3224                                             old_read_domains,
3225                                             obj->write_domain);
3226
3227         return 0;
3228 }
3229
3230 /**
3231  * Pin an object to the GTT and evaluate the relocations landing in it.
3232  */
3233 static int
3234 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3235                                  struct drm_file *file_priv,
3236                                  struct drm_i915_gem_exec_object2 *entry,
3237                                  struct drm_i915_gem_relocation_entry *relocs)
3238 {
3239         struct drm_device *dev = obj->dev;
3240         drm_i915_private_t *dev_priv = dev->dev_private;
3241         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3242         int i, ret;
3243         void __iomem *reloc_page;
3244         bool need_fence;
3245
3246         need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3247                      obj_priv->tiling_mode != I915_TILING_NONE;
3248
3249         /* Check fence reg constraints and rebind if necessary */
3250         if (need_fence && !i915_obj_fenceable(dev, obj))
3251                 i915_gem_object_unbind(obj);
3252
3253         /* Choose the GTT offset for our buffer and put it there. */
3254         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3255         if (ret)
3256                 return ret;
3257
3258         /*
3259          * Pre-965 chips need a fence register set up in order to
3260          * properly handle blits to/from tiled surfaces.
3261          */
3262         if (need_fence) {
3263                 ret = i915_gem_object_get_fence_reg(obj);
3264                 if (ret != 0) {
3265                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3266                                 DRM_ERROR("Failure to install fence: %d\n",
3267                                           ret);
3268                         i915_gem_object_unpin(obj);
3269                         return ret;
3270                 }
3271         }
3272
3273         entry->offset = obj_priv->gtt_offset;
3274
3275         /* Apply the relocations, using the GTT aperture to avoid cache
3276          * flushing requirements.
3277          */
3278         for (i = 0; i < entry->relocation_count; i++) {
3279                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3280                 struct drm_gem_object *target_obj;
3281                 struct drm_i915_gem_object *target_obj_priv;
3282                 uint32_t reloc_val, reloc_offset;
3283                 uint32_t __iomem *reloc_entry;
3284
3285                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3286                                                    reloc->target_handle);
3287                 if (target_obj == NULL) {
3288                         i915_gem_object_unpin(obj);
3289                         return -EBADF;
3290                 }
3291                 target_obj_priv = target_obj->driver_private;
3292
3293 #if WATCH_RELOC
3294                 DRM_INFO("%s: obj %p offset %08x target %d "
3295                          "read %08x write %08x gtt %08x "
3296                          "presumed %08x delta %08x\n",
3297                          __func__,
3298                          obj,
3299                          (int) reloc->offset,
3300                          (int) reloc->target_handle,
3301                          (int) reloc->read_domains,
3302                          (int) reloc->write_domain,
3303                          (int) target_obj_priv->gtt_offset,
3304                          (int) reloc->presumed_offset,
3305                          reloc->delta);
3306 #endif
3307
3308                 /* The target buffer should have appeared before us in the
3309                  * exec_object list, so it should have a GTT space bound by now.
3310                  */
3311                 if (target_obj_priv->gtt_space == NULL) {
3312                         DRM_ERROR("No GTT space found for object %d\n",
3313                                   reloc->target_handle);
3314                         drm_gem_object_unreference(target_obj);
3315                         i915_gem_object_unpin(obj);
3316                         return -EINVAL;
3317                 }
3318
3319                 /* Validate that the target is in a valid r/w GPU domain */
3320                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3321                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3322                         DRM_ERROR("reloc with read/write CPU domains: "
3323                                   "obj %p target %d offset %d "
3324                                   "read %08x write %08x",
3325                                   obj, reloc->target_handle,
3326                                   (int) reloc->offset,
3327                                   reloc->read_domains,
3328                                   reloc->write_domain);
3329                         drm_gem_object_unreference(target_obj);
3330                         i915_gem_object_unpin(obj);
3331                         return -EINVAL;
3332                 }
3333                 if (reloc->write_domain && target_obj->pending_write_domain &&
3334                     reloc->write_domain != target_obj->pending_write_domain) {
3335                         DRM_ERROR("Write domain conflict: "
3336                                   "obj %p target %d offset %d "
3337                                   "new %08x old %08x\n",
3338                                   obj, reloc->target_handle,
3339                                   (int) reloc->offset,
3340                                   reloc->write_domain,
3341                                   target_obj->pending_write_domain);
3342                         drm_gem_object_unreference(target_obj);
3343                         i915_gem_object_unpin(obj);
3344                         return -EINVAL;
3345                 }
3346
3347                 target_obj->pending_read_domains |= reloc->read_domains;
3348                 target_obj->pending_write_domain |= reloc->write_domain;
3349
3350                 /* If the relocation already has the right value in it, no
3351                  * more work needs to be done.
3352                  */
3353                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3354                         drm_gem_object_unreference(target_obj);
3355                         continue;
3356                 }
3357
3358                 /* Check that the relocation address is valid... */
3359                 if (reloc->offset > obj->size - 4) {
3360                         DRM_ERROR("Relocation beyond object bounds: "
3361                                   "obj %p target %d offset %d size %d.\n",
3362                                   obj, reloc->target_handle,
3363                                   (int) reloc->offset, (int) obj->size);
3364                         drm_gem_object_unreference(target_obj);
3365                         i915_gem_object_unpin(obj);
3366                         return -EINVAL;
3367                 }
3368                 if (reloc->offset & 3) {
3369                         DRM_ERROR("Relocation not 4-byte aligned: "
3370                                   "obj %p target %d offset %d.\n",
3371                                   obj, reloc->target_handle,
3372                                   (int) reloc->offset);
3373                         drm_gem_object_unreference(target_obj);
3374                         i915_gem_object_unpin(obj);
3375                         return -EINVAL;
3376                 }
3377
3378                 /* and points to somewhere within the target object. */
3379                 if (reloc->delta >= target_obj->size) {
3380                         DRM_ERROR("Relocation beyond target object bounds: "
3381                                   "obj %p target %d delta %d size %d.\n",
3382                                   obj, reloc->target_handle,
3383                                   (int) reloc->delta, (int) target_obj->size);
3384                         drm_gem_object_unreference(target_obj);
3385                         i915_gem_object_unpin(obj);
3386                         return -EINVAL;
3387                 }
3388
3389                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3390                 if (ret != 0) {
3391                         drm_gem_object_unreference(target_obj);
3392                         i915_gem_object_unpin(obj);
3393                         return -EINVAL;
3394                 }
3395
3396                 /* Map the page containing the relocation we're going to
3397                  * perform.
3398                  */
3399                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3400                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3401                                                       (reloc_offset &
3402                                                        ~(PAGE_SIZE - 1)));
3403                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3404                                                    (reloc_offset & (PAGE_SIZE - 1)));
3405                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3406
3407 #if WATCH_BUF
3408                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3409                           obj, (unsigned int) reloc->offset,
3410                           readl(reloc_entry), reloc_val);
3411 #endif
3412                 writel(reloc_val, reloc_entry);
3413                 io_mapping_unmap_atomic(reloc_page);
3414
3415                 /* The updated presumed offset for this entry will be
3416                  * copied back out to the user.
3417                  */
3418                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3419
3420                 drm_gem_object_unreference(target_obj);
3421         }
3422
3423 #if WATCH_BUF
3424         if (0)
3425                 i915_gem_dump_object(obj, 128, __func__, ~0);
3426 #endif
3427         return 0;
3428 }
3429
3430 /** Dispatch a batchbuffer to the ring
3431  */
3432 static int
3433 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3434                               struct drm_i915_gem_execbuffer2 *exec,
3435                               struct drm_clip_rect *cliprects,
3436                               uint64_t exec_offset)
3437 {
3438         drm_i915_private_t *dev_priv = dev->dev_private;
3439         int nbox = exec->num_cliprects;
3440         int i = 0, count;
3441         uint32_t exec_start, exec_len;
3442         RING_LOCALS;
3443
3444         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3445         exec_len = (uint32_t) exec->batch_len;
3446
3447         trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3448
3449         count = nbox ? nbox : 1;
3450
3451         for (i = 0; i < count; i++) {
3452                 if (i < nbox) {
3453                         int ret = i915_emit_box(dev, cliprects, i,
3454                                                 exec->DR1, exec->DR4);
3455                         if (ret)
3456                                 return ret;
3457                 }
3458
3459                 if (IS_I830(dev) || IS_845G(dev)) {
3460                         BEGIN_LP_RING(4);
3461                         OUT_RING(MI_BATCH_BUFFER);
3462                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3463                         OUT_RING(exec_start + exec_len - 4);
3464                         OUT_RING(0);
3465                         ADVANCE_LP_RING();
3466                 } else {
3467                         BEGIN_LP_RING(2);
3468                         if (IS_I965G(dev)) {
3469                                 OUT_RING(MI_BATCH_BUFFER_START |
3470                                          (2 << 6) |
3471                                          MI_BATCH_NON_SECURE_I965);
3472                                 OUT_RING(exec_start);
3473                         } else {
3474                                 OUT_RING(MI_BATCH_BUFFER_START |
3475                                          (2 << 6));
3476                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3477                         }
3478                         ADVANCE_LP_RING();
3479                 }
3480         }
3481
3482         /* XXX breadcrumb */
3483         return 0;
3484 }
3485
3486 /* Throttle our rendering by waiting until the ring has completed our requests
3487  * emitted over 20 msec ago.
3488  *
3489  * Note that if we were to use the current jiffies each time around the loop,
3490  * we wouldn't escape the function with any frames outstanding if the time to
3491  * render a frame was over 20ms.
3492  *
3493  * This should get us reasonable parallelism between CPU and GPU but also
3494  * relatively low latency when blocking on a particular request to finish.
3495  */
3496 static int
3497 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3498 {
3499         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3500         int ret = 0;
3501         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3502
3503         mutex_lock(&dev->struct_mutex);
3504         while (!list_empty(&i915_file_priv->mm.request_list)) {
3505                 struct drm_i915_gem_request *request;
3506
3507                 request = list_first_entry(&i915_file_priv->mm.request_list,
3508                                            struct drm_i915_gem_request,
3509                                            client_list);
3510
3511                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3512                         break;
3513
3514                 ret = i915_wait_request(dev, request->seqno);
3515                 if (ret != 0)
3516                         break;
3517         }
3518         mutex_unlock(&dev->struct_mutex);
3519
3520         return ret;
3521 }
3522
3523 static int
3524 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3525                               uint32_t buffer_count,
3526                               struct drm_i915_gem_relocation_entry **relocs)
3527 {
3528         uint32_t reloc_count = 0, reloc_index = 0, i;
3529         int ret;
3530
3531         *relocs = NULL;
3532         for (i = 0; i < buffer_count; i++) {
3533                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3534                         return -EINVAL;
3535                 reloc_count += exec_list[i].relocation_count;
3536         }
3537
3538         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3539         if (*relocs == NULL) {
3540                 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3541                 return -ENOMEM;
3542         }
3543
3544         for (i = 0; i < buffer_count; i++) {
3545                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3546
3547                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3548
3549                 ret = copy_from_user(&(*relocs)[reloc_index],
3550                                      user_relocs,
3551                                      exec_list[i].relocation_count *
3552                                      sizeof(**relocs));
3553                 if (ret != 0) {
3554                         drm_free_large(*relocs);
3555                         *relocs = NULL;
3556                         return -EFAULT;
3557                 }
3558
3559                 reloc_index += exec_list[i].relocation_count;
3560         }
3561
3562         return 0;
3563 }
3564
3565 static int
3566 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3567                             uint32_t buffer_count,
3568                             struct drm_i915_gem_relocation_entry *relocs)
3569 {
3570         uint32_t reloc_count = 0, i;
3571         int ret = 0;
3572
3573         if (relocs == NULL)
3574             return 0;
3575
3576         for (i = 0; i < buffer_count; i++) {
3577                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3578                 int unwritten;
3579
3580                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3581
3582                 unwritten = copy_to_user(user_relocs,
3583                                          &relocs[reloc_count],
3584                                          exec_list[i].relocation_count *
3585                                          sizeof(*relocs));
3586
3587                 if (unwritten) {
3588                         ret = -EFAULT;
3589                         goto err;
3590                 }
3591
3592                 reloc_count += exec_list[i].relocation_count;
3593         }
3594
3595 err:
3596         drm_free_large(relocs);
3597
3598         return ret;
3599 }
3600
3601 static int
3602 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3603                            uint64_t exec_offset)
3604 {
3605         uint32_t exec_start, exec_len;
3606
3607         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3608         exec_len = (uint32_t) exec->batch_len;
3609
3610         if ((exec_start | exec_len) & 0x7)
3611                 return -EINVAL;
3612
3613         if (!exec_start)
3614                 return -EINVAL;
3615
3616         return 0;
3617 }
3618
3619 static int
3620 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3621                                struct drm_gem_object **object_list,
3622                                int count)
3623 {
3624         drm_i915_private_t *dev_priv = dev->dev_private;
3625         struct drm_i915_gem_object *obj_priv;
3626         DEFINE_WAIT(wait);
3627         int i, ret = 0;
3628
3629         for (;;) {
3630                 prepare_to_wait(&dev_priv->pending_flip_queue,
3631                                 &wait, TASK_INTERRUPTIBLE);
3632                 for (i = 0; i < count; i++) {
3633                         obj_priv = object_list[i]->driver_private;
3634                         if (atomic_read(&obj_priv->pending_flip) > 0)
3635                                 break;
3636                 }
3637                 if (i == count)
3638                         break;
3639
3640                 if (!signal_pending(current)) {
3641                         mutex_unlock(&dev->struct_mutex);
3642                         schedule();
3643                         mutex_lock(&dev->struct_mutex);
3644                         continue;
3645                 }
3646                 ret = -ERESTARTSYS;
3647                 break;
3648         }
3649         finish_wait(&dev_priv->pending_flip_queue, &wait);
3650
3651         return ret;
3652 }
3653
3654 int
3655 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3656                        struct drm_file *file_priv,
3657                        struct drm_i915_gem_execbuffer2 *args,
3658                        struct drm_i915_gem_exec_object2 *exec_list)
3659 {
3660         drm_i915_private_t *dev_priv = dev->dev_private;
3661         struct drm_gem_object **object_list = NULL;
3662         struct drm_gem_object *batch_obj;
3663         struct drm_i915_gem_object *obj_priv;
3664         struct drm_clip_rect *cliprects = NULL;
3665         struct drm_i915_gem_relocation_entry *relocs = NULL;
3666         int ret = 0, ret2, i, pinned = 0;
3667         uint64_t exec_offset;
3668         uint32_t seqno, flush_domains, reloc_index;
3669         int pin_tries, flips;
3670
3671 #if WATCH_EXEC
3672         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3673                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3674 #endif
3675
3676         if (args->buffer_count < 1) {
3677                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3678                 return -EINVAL;
3679         }
3680         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3681         if (object_list == NULL) {
3682                 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3683                           args->buffer_count);
3684                 ret = -ENOMEM;
3685                 goto pre_mutex_err;
3686         }
3687
3688         if (args->num_cliprects != 0) {
3689                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3690                                     GFP_KERNEL);
3691                 if (cliprects == NULL) {
3692                         ret = -ENOMEM;
3693                         goto pre_mutex_err;
3694                 }
3695
3696                 ret = copy_from_user(cliprects,
3697                                      (struct drm_clip_rect __user *)
3698                                      (uintptr_t) args->cliprects_ptr,
3699                                      sizeof(*cliprects) * args->num_cliprects);
3700                 if (ret != 0) {
3701                         DRM_ERROR("copy %d cliprects failed: %d\n",
3702                                   args->num_cliprects, ret);
3703                         goto pre_mutex_err;
3704                 }
3705         }
3706
3707         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3708                                             &relocs);
3709         if (ret != 0)
3710                 goto pre_mutex_err;
3711
3712         mutex_lock(&dev->struct_mutex);
3713
3714         i915_verify_inactive(dev, __FILE__, __LINE__);
3715
3716         if (atomic_read(&dev_priv->mm.wedged)) {
3717                 mutex_unlock(&dev->struct_mutex);
3718                 ret = -EIO;
3719                 goto pre_mutex_err;
3720         }
3721
3722         if (dev_priv->mm.suspended) {
3723                 mutex_unlock(&dev->struct_mutex);
3724                 ret = -EBUSY;
3725                 goto pre_mutex_err;
3726         }
3727
3728         /* Look up object handles */
3729         flips = 0;
3730         for (i = 0; i < args->buffer_count; i++) {
3731                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3732                                                        exec_list[i].handle);
3733                 if (object_list[i] == NULL) {
3734                         DRM_ERROR("Invalid object handle %d at index %d\n",
3735                                    exec_list[i].handle, i);
3736                         /* prevent error path from reading uninitialized data */
3737                         args->buffer_count = i + 1;
3738                         ret = -EBADF;
3739                         goto err;
3740                 }
3741
3742                 obj_priv = object_list[i]->driver_private;
3743                 if (obj_priv->in_execbuffer) {
3744                         DRM_ERROR("Object %p appears more than once in object list\n",
3745                                    object_list[i]);
3746                         /* prevent error path from reading uninitialized data */
3747                         args->buffer_count = i + 1;
3748                         ret = -EBADF;
3749                         goto err;
3750                 }
3751                 obj_priv->in_execbuffer = true;
3752                 flips += atomic_read(&obj_priv->pending_flip);
3753         }
3754
3755         if (flips > 0) {
3756                 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3757                                                      args->buffer_count);
3758                 if (ret)
3759                         goto err;
3760         }
3761
3762         /* Pin and relocate */
3763         for (pin_tries = 0; ; pin_tries++) {
3764                 ret = 0;
3765                 reloc_index = 0;
3766
3767                 for (i = 0; i < args->buffer_count; i++) {
3768                         object_list[i]->pending_read_domains = 0;
3769                         object_list[i]->pending_write_domain = 0;
3770                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3771                                                                file_priv,
3772                                                                &exec_list[i],
3773                                                                &relocs[reloc_index]);
3774                         if (ret)
3775                                 break;
3776                         pinned = i + 1;
3777                         reloc_index += exec_list[i].relocation_count;
3778                 }
3779                 /* success */
3780                 if (ret == 0)
3781                         break;
3782
3783                 /* error other than GTT full, or we've already tried again */
3784                 if (ret != -ENOSPC || pin_tries >= 1) {
3785                         if (ret != -ERESTARTSYS) {
3786                                 unsigned long long total_size = 0;
3787                                 for (i = 0; i < args->buffer_count; i++)
3788                                         total_size += object_list[i]->size;
3789                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3790                                           pinned+1, args->buffer_count,
3791                                           total_size, ret);
3792                                 DRM_ERROR("%d objects [%d pinned], "
3793                                           "%d object bytes [%d pinned], "
3794                                           "%d/%d gtt bytes\n",
3795                                           atomic_read(&dev->object_count),
3796                                           atomic_read(&dev->pin_count),
3797                                           atomic_read(&dev->object_memory),
3798                                           atomic_read(&dev->pin_memory),
3799                                           atomic_read(&dev->gtt_memory),
3800                                           dev->gtt_total);
3801                         }
3802                         goto err;
3803                 }
3804
3805                 /* unpin all of our buffers */
3806                 for (i = 0; i < pinned; i++)
3807                         i915_gem_object_unpin(object_list[i]);
3808                 pinned = 0;
3809
3810                 /* evict everyone we can from the aperture */
3811                 ret = i915_gem_evict_everything(dev);
3812                 if (ret && ret != -ENOSPC)
3813                         goto err;
3814         }
3815
3816         /* Set the pending read domains for the batch buffer to COMMAND */
3817         batch_obj = object_list[args->buffer_count-1];
3818         if (batch_obj->pending_write_domain) {
3819                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3820                 ret = -EINVAL;
3821                 goto err;
3822         }
3823         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3824
3825         /* Sanity check the batch buffer, prior to moving objects */
3826         exec_offset = exec_list[args->buffer_count - 1].offset;
3827         ret = i915_gem_check_execbuffer (args, exec_offset);
3828         if (ret != 0) {
3829                 DRM_ERROR("execbuf with invalid offset/length\n");
3830                 goto err;
3831         }
3832
3833         i915_verify_inactive(dev, __FILE__, __LINE__);
3834
3835         /* Zero the global flush/invalidate flags. These
3836          * will be modified as new domains are computed
3837          * for each object
3838          */
3839         dev->invalidate_domains = 0;
3840         dev->flush_domains = 0;
3841
3842         for (i = 0; i < args->buffer_count; i++) {
3843                 struct drm_gem_object *obj = object_list[i];
3844
3845                 /* Compute new gpu domains and update invalidate/flush */
3846                 i915_gem_object_set_to_gpu_domain(obj);
3847         }
3848
3849         i915_verify_inactive(dev, __FILE__, __LINE__);
3850
3851         if (dev->invalidate_domains | dev->flush_domains) {
3852 #if WATCH_EXEC
3853                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3854                           __func__,
3855                          dev->invalidate_domains,
3856                          dev->flush_domains);
3857 #endif
3858                 i915_gem_flush(dev,
3859                                dev->invalidate_domains,
3860                                dev->flush_domains);
3861                 if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
3862                         (void)i915_add_request(dev, file_priv,
3863                                                dev->flush_domains);
3864         }
3865
3866         for (i = 0; i < args->buffer_count; i++) {
3867                 struct drm_gem_object *obj = object_list[i];
3868                 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3869                 uint32_t old_write_domain = obj->write_domain;
3870
3871                 obj->write_domain = obj->pending_write_domain;
3872                 if (obj->write_domain)
3873                         list_move_tail(&obj_priv->gpu_write_list,
3874                                        &dev_priv->mm.gpu_write_list);
3875                 else
3876                         list_del_init(&obj_priv->gpu_write_list);
3877
3878                 trace_i915_gem_object_change_domain(obj,
3879                                                     obj->read_domains,
3880                                                     old_write_domain);
3881         }
3882
3883         i915_verify_inactive(dev, __FILE__, __LINE__);
3884
3885 #if WATCH_COHERENCY
3886         for (i = 0; i < args->buffer_count; i++) {
3887                 i915_gem_object_check_coherency(object_list[i],
3888                                                 exec_list[i].handle);
3889         }
3890 #endif
3891
3892 #if WATCH_EXEC
3893         i915_gem_dump_object(batch_obj,
3894                               args->batch_len,
3895                               __func__,
3896                               ~0);
3897 #endif
3898
3899         /* Exec the batchbuffer */
3900         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3901         if (ret) {
3902                 DRM_ERROR("dispatch failed %d\n", ret);
3903                 goto err;
3904         }
3905
3906         /*
3907          * Ensure that the commands in the batch buffer are
3908          * finished before the interrupt fires
3909          */
3910         flush_domains = i915_retire_commands(dev);
3911
3912         i915_verify_inactive(dev, __FILE__, __LINE__);
3913
3914         /*
3915          * Get a seqno representing the execution of the current buffer,
3916          * which we can wait on.  We would like to mitigate these interrupts,
3917          * likely by only creating seqnos occasionally (so that we have
3918          * *some* interrupts representing completion of buffers that we can
3919          * wait on when trying to clear up gtt space).
3920          */
3921         seqno = i915_add_request(dev, file_priv, flush_domains);
3922         BUG_ON(seqno == 0);
3923         for (i = 0; i < args->buffer_count; i++) {
3924                 struct drm_gem_object *obj = object_list[i];
3925
3926                 i915_gem_object_move_to_active(obj, seqno);
3927 #if WATCH_LRU
3928                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3929 #endif
3930         }
3931 #if WATCH_LRU
3932         i915_dump_lru(dev, __func__);
3933 #endif
3934
3935         i915_verify_inactive(dev, __FILE__, __LINE__);
3936
3937 err:
3938         for (i = 0; i < pinned; i++)
3939                 i915_gem_object_unpin(object_list[i]);
3940
3941         for (i = 0; i < args->buffer_count; i++) {
3942                 if (object_list[i]) {
3943                         obj_priv = object_list[i]->driver_private;
3944                         obj_priv->in_execbuffer = false;
3945                 }
3946                 drm_gem_object_unreference(object_list[i]);
3947         }
3948
3949         mutex_unlock(&dev->struct_mutex);
3950
3951 pre_mutex_err:
3952         /* Copy the updated relocations out regardless of current error
3953          * state.  Failure to update the relocs would mean that the next
3954          * time userland calls execbuf, it would do so with presumed offset
3955          * state that didn't match the actual object state.
3956          */
3957         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3958                                            relocs);
3959         if (ret2 != 0) {
3960                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3961
3962                 if (ret == 0)
3963                         ret = ret2;
3964         }
3965
3966         drm_free_large(object_list);
3967         kfree(cliprects);
3968
3969         return ret;
3970 }
3971
3972 /*
3973  * Legacy execbuffer just creates an exec2 list from the original exec object
3974  * list array and passes it to the real function.
3975  */
3976 int
3977 i915_gem_execbuffer(struct drm_device *dev, void *data,
3978                     struct drm_file *file_priv)
3979 {
3980         struct drm_i915_gem_execbuffer *args = data;
3981         struct drm_i915_gem_execbuffer2 exec2;
3982         struct drm_i915_gem_exec_object *exec_list = NULL;
3983         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3984         int ret, i;
3985
3986 #if WATCH_EXEC
3987         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3988                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3989 #endif
3990
3991         if (args->buffer_count < 1) {
3992                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3993                 return -EINVAL;
3994         }
3995
3996         /* Copy in the exec list from userland */
3997         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3998         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3999         if (exec_list == NULL || exec2_list == NULL) {
4000                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4001                           args->buffer_count);
4002                 drm_free_large(exec_list);
4003                 drm_free_large(exec2_list);
4004                 return -ENOMEM;
4005         }
4006         ret = copy_from_user(exec_list,
4007                              (struct drm_i915_relocation_entry __user *)
4008                              (uintptr_t) args->buffers_ptr,
4009                              sizeof(*exec_list) * args->buffer_count);
4010         if (ret != 0) {
4011                 DRM_ERROR("copy %d exec entries failed %d\n",
4012                           args->buffer_count, ret);
4013                 drm_free_large(exec_list);
4014                 drm_free_large(exec2_list);
4015                 return -EFAULT;
4016         }
4017
4018         for (i = 0; i < args->buffer_count; i++) {
4019                 exec2_list[i].handle = exec_list[i].handle;
4020                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4021                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4022                 exec2_list[i].alignment = exec_list[i].alignment;
4023                 exec2_list[i].offset = exec_list[i].offset;
4024                 if (!IS_I965G(dev))
4025                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4026                 else
4027                         exec2_list[i].flags = 0;
4028         }
4029
4030         exec2.buffers_ptr = args->buffers_ptr;
4031         exec2.buffer_count = args->buffer_count;
4032         exec2.batch_start_offset = args->batch_start_offset;
4033         exec2.batch_len = args->batch_len;
4034         exec2.DR1 = args->DR1;
4035         exec2.DR4 = args->DR4;
4036         exec2.num_cliprects = args->num_cliprects;
4037         exec2.cliprects_ptr = args->cliprects_ptr;
4038         exec2.flags = 0;
4039
4040         ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4041         if (!ret) {
4042                 /* Copy the new buffer offsets back to the user's exec list. */
4043                 for (i = 0; i < args->buffer_count; i++)
4044                         exec_list[i].offset = exec2_list[i].offset;
4045                 /* ... and back out to userspace */
4046                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4047                                    (uintptr_t) args->buffers_ptr,
4048                                    exec_list,
4049                                    sizeof(*exec_list) * args->buffer_count);
4050                 if (ret) {
4051                         ret = -EFAULT;
4052                         DRM_ERROR("failed to copy %d exec entries "
4053                                   "back to user (%d)\n",
4054                                   args->buffer_count, ret);
4055                 }
4056         }
4057
4058         drm_free_large(exec_list);
4059         drm_free_large(exec2_list);
4060         return ret;
4061 }
4062
4063 int
4064 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4065                      struct drm_file *file_priv)
4066 {
4067         struct drm_i915_gem_execbuffer2 *args = data;
4068         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4069         int ret;
4070
4071 #if WATCH_EXEC
4072         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4073                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4074 #endif
4075
4076         if (args->buffer_count < 1) {
4077                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4078                 return -EINVAL;
4079         }
4080
4081         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4082         if (exec2_list == NULL) {
4083                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4084                           args->buffer_count);
4085                 return -ENOMEM;
4086         }
4087         ret = copy_from_user(exec2_list,
4088                              (struct drm_i915_relocation_entry __user *)
4089                              (uintptr_t) args->buffers_ptr,
4090                              sizeof(*exec2_list) * args->buffer_count);
4091         if (ret != 0) {
4092                 DRM_ERROR("copy %d exec entries failed %d\n",
4093                           args->buffer_count, ret);
4094                 drm_free_large(exec2_list);
4095                 return -EFAULT;
4096         }
4097
4098         ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4099         if (!ret) {
4100                 /* Copy the new buffer offsets back to the user's exec list. */
4101                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4102                                    (uintptr_t) args->buffers_ptr,
4103                                    exec2_list,
4104                                    sizeof(*exec2_list) * args->buffer_count);
4105                 if (ret) {
4106                         ret = -EFAULT;
4107                         DRM_ERROR("failed to copy %d exec entries "
4108                                   "back to user (%d)\n",
4109                                   args->buffer_count, ret);
4110                 }
4111         }
4112
4113         drm_free_large(exec2_list);
4114         return ret;
4115 }
4116
4117 int
4118 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4119 {
4120         struct drm_device *dev = obj->dev;
4121         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4122         int ret;
4123
4124         i915_verify_inactive(dev, __FILE__, __LINE__);
4125         if (obj_priv->gtt_space == NULL) {
4126                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4127                 if (ret)
4128                         return ret;
4129         }
4130
4131         obj_priv->pin_count++;
4132
4133         /* If the object is not active and not pending a flush,
4134          * remove it from the inactive list
4135          */
4136         if (obj_priv->pin_count == 1) {
4137                 atomic_inc(&dev->pin_count);
4138                 atomic_add(obj->size, &dev->pin_memory);
4139                 if (!obj_priv->active &&
4140                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4141                     !list_empty(&obj_priv->list))
4142                         list_del_init(&obj_priv->list);
4143         }
4144         i915_verify_inactive(dev, __FILE__, __LINE__);
4145
4146         return 0;
4147 }
4148
4149 void
4150 i915_gem_object_unpin(struct drm_gem_object *obj)
4151 {
4152         struct drm_device *dev = obj->dev;
4153         drm_i915_private_t *dev_priv = dev->dev_private;
4154         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4155
4156         i915_verify_inactive(dev, __FILE__, __LINE__);
4157         obj_priv->pin_count--;
4158         BUG_ON(obj_priv->pin_count < 0);
4159         BUG_ON(obj_priv->gtt_space == NULL);
4160
4161         /* If the object is no longer pinned, and is
4162          * neither active nor being flushed, then stick it on
4163          * the inactive list
4164          */
4165         if (obj_priv->pin_count == 0) {
4166                 if (!obj_priv->active &&
4167                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4168                         list_move_tail(&obj_priv->list,
4169                                        &dev_priv->mm.inactive_list);
4170                 atomic_dec(&dev->pin_count);
4171                 atomic_sub(obj->size, &dev->pin_memory);
4172         }
4173         i915_verify_inactive(dev, __FILE__, __LINE__);
4174 }
4175
4176 int
4177 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4178                    struct drm_file *file_priv)
4179 {
4180         struct drm_i915_gem_pin *args = data;
4181         struct drm_gem_object *obj;
4182         struct drm_i915_gem_object *obj_priv;
4183         int ret;
4184
4185         mutex_lock(&dev->struct_mutex);
4186
4187         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4188         if (obj == NULL) {
4189                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4190                           args->handle);
4191                 mutex_unlock(&dev->struct_mutex);
4192                 return -EBADF;
4193         }
4194         obj_priv = obj->driver_private;
4195
4196         if (obj_priv->madv != I915_MADV_WILLNEED) {
4197                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4198                 drm_gem_object_unreference(obj);
4199                 mutex_unlock(&dev->struct_mutex);
4200                 return -EINVAL;
4201         }
4202
4203         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4204                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4205                           args->handle);
4206                 drm_gem_object_unreference(obj);
4207                 mutex_unlock(&dev->struct_mutex);
4208                 return -EINVAL;
4209         }
4210
4211         obj_priv->user_pin_count++;
4212         obj_priv->pin_filp = file_priv;
4213         if (obj_priv->user_pin_count == 1) {
4214                 ret = i915_gem_object_pin(obj, args->alignment);
4215                 if (ret != 0) {
4216                         drm_gem_object_unreference(obj);
4217                         mutex_unlock(&dev->struct_mutex);
4218                         return ret;
4219                 }
4220         }
4221
4222         /* XXX - flush the CPU caches for pinned objects
4223          * as the X server doesn't manage domains yet
4224          */
4225         i915_gem_object_flush_cpu_write_domain(obj);
4226         args->offset = obj_priv->gtt_offset;
4227         drm_gem_object_unreference(obj);
4228         mutex_unlock(&dev->struct_mutex);
4229
4230         return 0;
4231 }
4232
4233 int
4234 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4235                      struct drm_file *file_priv)
4236 {
4237         struct drm_i915_gem_pin *args = data;
4238         struct drm_gem_object *obj;
4239         struct drm_i915_gem_object *obj_priv;
4240
4241         mutex_lock(&dev->struct_mutex);
4242
4243         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4244         if (obj == NULL) {
4245                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4246                           args->handle);
4247                 mutex_unlock(&dev->struct_mutex);
4248                 return -EBADF;
4249         }
4250
4251         obj_priv = obj->driver_private;
4252         if (obj_priv->pin_filp != file_priv) {
4253                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4254                           args->handle);
4255                 drm_gem_object_unreference(obj);
4256                 mutex_unlock(&dev->struct_mutex);
4257                 return -EINVAL;
4258         }
4259         obj_priv->user_pin_count--;
4260         if (obj_priv->user_pin_count == 0) {
4261                 obj_priv->pin_filp = NULL;
4262                 i915_gem_object_unpin(obj);
4263         }
4264
4265         drm_gem_object_unreference(obj);
4266         mutex_unlock(&dev->struct_mutex);
4267         return 0;
4268 }
4269
4270 int
4271 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4272                     struct drm_file *file_priv)
4273 {
4274         struct drm_i915_gem_busy *args = data;
4275         struct drm_gem_object *obj;
4276         struct drm_i915_gem_object *obj_priv;
4277
4278         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4279         if (obj == NULL) {
4280                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4281                           args->handle);
4282                 return -EBADF;
4283         }
4284
4285         mutex_lock(&dev->struct_mutex);
4286         /* Update the active list for the hardware's current position.
4287          * Otherwise this only updates on a delayed timer or when irqs are
4288          * actually unmasked, and our working set ends up being larger than
4289          * required.
4290          */
4291         i915_gem_retire_requests(dev);
4292
4293         obj_priv = obj->driver_private;
4294         /* Don't count being on the flushing list against the object being
4295          * done.  Otherwise, a buffer left on the flushing list but not getting
4296          * flushed (because nobody's flushing that domain) won't ever return
4297          * unbusy and get reused by libdrm's bo cache.  The other expected
4298          * consumer of this interface, OpenGL's occlusion queries, also specs
4299          * that the objects get unbusy "eventually" without any interference.
4300          */
4301         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4302
4303         drm_gem_object_unreference(obj);
4304         mutex_unlock(&dev->struct_mutex);
4305         return 0;
4306 }
4307
4308 int
4309 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4310                         struct drm_file *file_priv)
4311 {
4312     return i915_gem_ring_throttle(dev, file_priv);
4313 }
4314
4315 int
4316 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4317                        struct drm_file *file_priv)
4318 {
4319         struct drm_i915_gem_madvise *args = data;
4320         struct drm_gem_object *obj;
4321         struct drm_i915_gem_object *obj_priv;
4322
4323         switch (args->madv) {
4324         case I915_MADV_DONTNEED:
4325         case I915_MADV_WILLNEED:
4326             break;
4327         default:
4328             return -EINVAL;
4329         }
4330
4331         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4332         if (obj == NULL) {
4333                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4334                           args->handle);
4335                 return -EBADF;
4336         }
4337
4338         mutex_lock(&dev->struct_mutex);
4339         obj_priv = obj->driver_private;
4340
4341         if (obj_priv->pin_count) {
4342                 drm_gem_object_unreference(obj);
4343                 mutex_unlock(&dev->struct_mutex);
4344
4345                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4346                 return -EINVAL;
4347         }
4348
4349         if (obj_priv->madv != __I915_MADV_PURGED)
4350                 obj_priv->madv = args->madv;
4351
4352         /* if the object is no longer bound, discard its backing storage */
4353         if (i915_gem_object_is_purgeable(obj_priv) &&
4354             obj_priv->gtt_space == NULL)
4355                 i915_gem_object_truncate(obj);
4356
4357         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4358
4359         drm_gem_object_unreference(obj);
4360         mutex_unlock(&dev->struct_mutex);
4361
4362         return 0;
4363 }
4364
4365 int i915_gem_init_object(struct drm_gem_object *obj)
4366 {
4367         struct drm_i915_gem_object *obj_priv;
4368
4369         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4370         if (obj_priv == NULL)
4371                 return -ENOMEM;
4372
4373         /*
4374          * We've just allocated pages from the kernel,
4375          * so they've just been written by the CPU with
4376          * zeros. They'll need to be clflushed before we
4377          * use them with the GPU.
4378          */
4379         obj->write_domain = I915_GEM_DOMAIN_CPU;
4380         obj->read_domains = I915_GEM_DOMAIN_CPU;
4381
4382         obj_priv->agp_type = AGP_USER_MEMORY;
4383
4384         obj->driver_private = obj_priv;
4385         obj_priv->obj = obj;
4386         obj_priv->fence_reg = I915_FENCE_REG_NONE;
4387         INIT_LIST_HEAD(&obj_priv->list);
4388         INIT_LIST_HEAD(&obj_priv->gpu_write_list);
4389         INIT_LIST_HEAD(&obj_priv->fence_list);
4390         obj_priv->madv = I915_MADV_WILLNEED;
4391
4392         trace_i915_gem_object_create(obj);
4393
4394         return 0;
4395 }
4396
4397 void i915_gem_free_object(struct drm_gem_object *obj)
4398 {
4399         struct drm_device *dev = obj->dev;
4400         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4401
4402         trace_i915_gem_object_destroy(obj);
4403
4404         while (obj_priv->pin_count > 0)
4405                 i915_gem_object_unpin(obj);
4406
4407         if (obj_priv->phys_obj)
4408                 i915_gem_detach_phys_object(dev, obj);
4409
4410         i915_gem_object_unbind(obj);
4411
4412         if (obj_priv->mmap_offset)
4413                 i915_gem_free_mmap_offset(obj);
4414
4415         kfree(obj_priv->page_cpu_valid);
4416         kfree(obj_priv->bit_17);
4417         kfree(obj->driver_private);
4418 }
4419
4420 /** Unbinds all inactive objects. */
4421 static int
4422 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4423 {
4424         drm_i915_private_t *dev_priv = dev->dev_private;
4425
4426         while (!list_empty(&dev_priv->mm.inactive_list)) {
4427                 struct drm_gem_object *obj;
4428                 int ret;
4429
4430                 obj = list_first_entry(&dev_priv->mm.inactive_list,
4431                                        struct drm_i915_gem_object,
4432                                        list)->obj;
4433
4434                 ret = i915_gem_object_unbind(obj);
4435                 if (ret != 0) {
4436                         DRM_ERROR("Error unbinding object: %d\n", ret);
4437                         return ret;
4438                 }
4439         }
4440
4441         return 0;
4442 }
4443
4444 int
4445 i915_gem_idle(struct drm_device *dev)
4446 {
4447         drm_i915_private_t *dev_priv = dev->dev_private;
4448         uint32_t seqno, cur_seqno, last_seqno;
4449         int stuck, ret;
4450
4451         mutex_lock(&dev->struct_mutex);
4452
4453         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4454                 mutex_unlock(&dev->struct_mutex);
4455                 return 0;
4456         }
4457
4458         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4459          * We need to replace this with a semaphore, or something.
4460          */
4461         dev_priv->mm.suspended = 1;
4462         del_timer(&dev_priv->hangcheck_timer);
4463
4464         /* Cancel the retire work handler, wait for it to finish if running
4465          */
4466         mutex_unlock(&dev->struct_mutex);
4467         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4468         mutex_lock(&dev->struct_mutex);
4469
4470         i915_kernel_lost_context(dev);
4471
4472         /* Flush the GPU along with all non-CPU write domains
4473          */
4474         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4475         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4476
4477         if (seqno == 0) {
4478                 mutex_unlock(&dev->struct_mutex);
4479                 return -ENOMEM;
4480         }
4481
4482         dev_priv->mm.waiting_gem_seqno = seqno;
4483         last_seqno = 0;
4484         stuck = 0;
4485         for (;;) {
4486                 cur_seqno = i915_get_gem_seqno(dev);
4487                 if (i915_seqno_passed(cur_seqno, seqno))
4488                         break;
4489                 if (last_seqno == cur_seqno) {
4490                         if (stuck++ > 100) {
4491                                 DRM_ERROR("hardware wedged\n");
4492                                 atomic_set(&dev_priv->mm.wedged, 1);
4493                                 DRM_WAKEUP(&dev_priv->irq_queue);
4494                                 break;
4495                         }
4496                 }
4497                 msleep(10);
4498                 last_seqno = cur_seqno;
4499         }
4500         dev_priv->mm.waiting_gem_seqno = 0;
4501
4502         i915_gem_retire_requests(dev);
4503
4504         spin_lock(&dev_priv->mm.active_list_lock);
4505         if (!atomic_read(&dev_priv->mm.wedged)) {
4506                 /* Active and flushing should now be empty as we've
4507                  * waited for a sequence higher than any pending execbuffer
4508                  */
4509                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4510                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4511                 /* Request should now be empty as we've also waited
4512                  * for the last request in the list
4513                  */
4514                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4515         }
4516
4517         /* Empty the active and flushing lists to inactive.  If there's
4518          * anything left at this point, it means that we're wedged and
4519          * nothing good's going to happen by leaving them there.  So strip
4520          * the GPU domains and just stuff them onto inactive.
4521          */
4522         while (!list_empty(&dev_priv->mm.active_list)) {
4523                 struct drm_gem_object *obj;
4524                 uint32_t old_write_domain;
4525
4526                 obj = list_first_entry(&dev_priv->mm.active_list,
4527                                        struct drm_i915_gem_object,
4528                                        list)->obj;
4529                 old_write_domain = obj->write_domain;
4530                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4531                 i915_gem_object_move_to_inactive(obj);
4532
4533                 trace_i915_gem_object_change_domain(obj,
4534                                                     obj->read_domains,
4535                                                     old_write_domain);
4536         }
4537         spin_unlock(&dev_priv->mm.active_list_lock);
4538
4539         while (!list_empty(&dev_priv->mm.flushing_list)) {
4540                 struct drm_gem_object *obj;
4541                 uint32_t old_write_domain;
4542
4543                 obj = list_first_entry(&dev_priv->mm.flushing_list,
4544                                        struct drm_i915_gem_object,
4545                                        list)->obj;
4546                 old_write_domain = obj->write_domain;
4547                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4548                 i915_gem_object_move_to_inactive(obj);
4549
4550                 trace_i915_gem_object_change_domain(obj,
4551                                                     obj->read_domains,
4552                                                     old_write_domain);
4553         }
4554
4555
4556         /* Move all inactive buffers out of the GTT. */
4557         ret = i915_gem_evict_from_inactive_list(dev);
4558         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4559         if (ret) {
4560                 mutex_unlock(&dev->struct_mutex);
4561                 return ret;
4562         }
4563
4564         i915_gem_cleanup_ringbuffer(dev);
4565         mutex_unlock(&dev->struct_mutex);
4566
4567         return 0;
4568 }
4569
4570 static int
4571 i915_gem_init_hws(struct drm_device *dev)
4572 {
4573         drm_i915_private_t *dev_priv = dev->dev_private;
4574         struct drm_gem_object *obj;
4575         struct drm_i915_gem_object *obj_priv;
4576         int ret;
4577
4578         /* If we need a physical address for the status page, it's already
4579          * initialized at driver load time.
4580          */
4581         if (!I915_NEED_GFX_HWS(dev))
4582                 return 0;
4583
4584         obj = drm_gem_object_alloc(dev, 4096);
4585         if (obj == NULL) {
4586                 DRM_ERROR("Failed to allocate status page\n");
4587                 return -ENOMEM;
4588         }
4589         obj_priv = obj->driver_private;
4590         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4591
4592         ret = i915_gem_object_pin(obj, 4096);
4593         if (ret != 0) {
4594                 drm_gem_object_unreference(obj);
4595                 return ret;
4596         }
4597
4598         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4599
4600         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4601         if (dev_priv->hw_status_page == NULL) {
4602                 DRM_ERROR("Failed to map status page.\n");
4603                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4604                 i915_gem_object_unpin(obj);
4605                 drm_gem_object_unreference(obj);
4606                 return -EINVAL;
4607         }
4608         dev_priv->hws_obj = obj;
4609         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4610         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4611         I915_READ(HWS_PGA); /* posting read */
4612         DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4613
4614         return 0;
4615 }
4616
4617 static void
4618 i915_gem_cleanup_hws(struct drm_device *dev)
4619 {
4620         drm_i915_private_t *dev_priv = dev->dev_private;
4621         struct drm_gem_object *obj;
4622         struct drm_i915_gem_object *obj_priv;
4623
4624         if (dev_priv->hws_obj == NULL)
4625                 return;
4626
4627         obj = dev_priv->hws_obj;
4628         obj_priv = obj->driver_private;
4629
4630         kunmap(obj_priv->pages[0]);
4631         i915_gem_object_unpin(obj);
4632         drm_gem_object_unreference(obj);
4633         dev_priv->hws_obj = NULL;
4634
4635         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4636         dev_priv->hw_status_page = NULL;
4637
4638         /* Write high address into HWS_PGA when disabling. */
4639         I915_WRITE(HWS_PGA, 0x1ffff000);
4640 }
4641
4642 int
4643 i915_gem_init_ringbuffer(struct drm_device *dev)
4644 {
4645         drm_i915_private_t *dev_priv = dev->dev_private;
4646         struct drm_gem_object *obj;
4647         struct drm_i915_gem_object *obj_priv;
4648         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4649         int ret;
4650         u32 head;
4651
4652         ret = i915_gem_init_hws(dev);
4653         if (ret != 0)
4654                 return ret;
4655
4656         obj = drm_gem_object_alloc(dev, 128 * 1024);
4657         if (obj == NULL) {
4658                 DRM_ERROR("Failed to allocate ringbuffer\n");
4659                 i915_gem_cleanup_hws(dev);
4660                 return -ENOMEM;
4661         }
4662         obj_priv = obj->driver_private;
4663
4664         ret = i915_gem_object_pin(obj, 4096);
4665         if (ret != 0) {
4666                 drm_gem_object_unreference(obj);
4667                 i915_gem_cleanup_hws(dev);
4668                 return ret;
4669         }
4670
4671         /* Set up the kernel mapping for the ring. */
4672         ring->Size = obj->size;
4673
4674         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4675         ring->map.size = obj->size;
4676         ring->map.type = 0;
4677         ring->map.flags = 0;
4678         ring->map.mtrr = 0;
4679
4680         drm_core_ioremap_wc(&ring->map, dev);
4681         if (ring->map.handle == NULL) {
4682                 DRM_ERROR("Failed to map ringbuffer.\n");
4683                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4684                 i915_gem_object_unpin(obj);
4685                 drm_gem_object_unreference(obj);
4686                 i915_gem_cleanup_hws(dev);
4687                 return -EINVAL;
4688         }
4689         ring->ring_obj = obj;
4690         ring->virtual_start = ring->map.handle;
4691
4692         /* Stop the ring if it's running. */
4693         I915_WRITE(PRB0_CTL, 0);
4694         I915_WRITE(PRB0_TAIL, 0);
4695         I915_WRITE(PRB0_HEAD, 0);
4696
4697         /* Initialize the ring. */
4698         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4699         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4700
4701         /* G45 ring initialization fails to reset head to zero */
4702         if (head != 0) {
4703                 DRM_ERROR("Ring head not reset to zero "
4704                           "ctl %08x head %08x tail %08x start %08x\n",
4705                           I915_READ(PRB0_CTL),
4706                           I915_READ(PRB0_HEAD),
4707                           I915_READ(PRB0_TAIL),
4708                           I915_READ(PRB0_START));
4709                 I915_WRITE(PRB0_HEAD, 0);
4710
4711                 DRM_ERROR("Ring head forced to zero "
4712                           "ctl %08x head %08x tail %08x start %08x\n",
4713                           I915_READ(PRB0_CTL),
4714                           I915_READ(PRB0_HEAD),
4715                           I915_READ(PRB0_TAIL),
4716                           I915_READ(PRB0_START));
4717         }
4718
4719         I915_WRITE(PRB0_CTL,
4720                    ((obj->size - 4096) & RING_NR_PAGES) |
4721                    RING_NO_REPORT |
4722                    RING_VALID);
4723
4724         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4725
4726         /* If the head is still not zero, the ring is dead */
4727         if (head != 0) {
4728                 DRM_ERROR("Ring initialization failed "
4729                           "ctl %08x head %08x tail %08x start %08x\n",
4730                           I915_READ(PRB0_CTL),
4731                           I915_READ(PRB0_HEAD),
4732                           I915_READ(PRB0_TAIL),
4733                           I915_READ(PRB0_START));
4734                 return -EIO;
4735         }
4736
4737         /* Update our cache of the ring state */
4738         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4739                 i915_kernel_lost_context(dev);
4740         else {
4741                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4742                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4743                 ring->space = ring->head - (ring->tail + 8);
4744                 if (ring->space < 0)
4745                         ring->space += ring->Size;
4746         }
4747
4748         return 0;
4749 }
4750
4751 void
4752 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4753 {
4754         drm_i915_private_t *dev_priv = dev->dev_private;
4755
4756         if (dev_priv->ring.ring_obj == NULL)
4757                 return;
4758
4759         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4760
4761         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4762         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4763         dev_priv->ring.ring_obj = NULL;
4764         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4765
4766         i915_gem_cleanup_hws(dev);
4767 }
4768
4769 int
4770 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4771                        struct drm_file *file_priv)
4772 {
4773         drm_i915_private_t *dev_priv = dev->dev_private;
4774         int ret;
4775
4776         if (drm_core_check_feature(dev, DRIVER_MODESET))
4777                 return 0;
4778
4779         if (atomic_read(&dev_priv->mm.wedged)) {
4780                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4781                 atomic_set(&dev_priv->mm.wedged, 0);
4782         }
4783
4784         mutex_lock(&dev->struct_mutex);
4785         dev_priv->mm.suspended = 0;
4786
4787         ret = i915_gem_init_ringbuffer(dev);
4788         if (ret != 0) {
4789                 mutex_unlock(&dev->struct_mutex);
4790                 return ret;
4791         }
4792
4793         spin_lock(&dev_priv->mm.active_list_lock);
4794         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4795         spin_unlock(&dev_priv->mm.active_list_lock);
4796
4797         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4798         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4799         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4800         mutex_unlock(&dev->struct_mutex);
4801
4802         drm_irq_install(dev);
4803
4804         return 0;
4805 }
4806
4807 int
4808 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4809                        struct drm_file *file_priv)
4810 {
4811         if (drm_core_check_feature(dev, DRIVER_MODESET))
4812                 return 0;
4813
4814         drm_irq_uninstall(dev);
4815         return i915_gem_idle(dev);
4816 }
4817
4818 void
4819 i915_gem_lastclose(struct drm_device *dev)
4820 {
4821         int ret;
4822
4823         if (drm_core_check_feature(dev, DRIVER_MODESET))
4824                 return;
4825
4826         ret = i915_gem_idle(dev);
4827         if (ret)
4828                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4829 }
4830
4831 void
4832 i915_gem_load(struct drm_device *dev)
4833 {
4834         int i;
4835         drm_i915_private_t *dev_priv = dev->dev_private;
4836
4837         spin_lock_init(&dev_priv->mm.active_list_lock);
4838         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4839         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4840         INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4841         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4842         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4843         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4844         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4845                           i915_gem_retire_work_handler);
4846         dev_priv->mm.next_gem_seqno = 1;
4847
4848         spin_lock(&shrink_list_lock);
4849         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4850         spin_unlock(&shrink_list_lock);
4851
4852         /* Old X drivers will take 0-2 for front, back, depth buffers */
4853         dev_priv->fence_reg_start = 3;
4854
4855         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4856                 dev_priv->num_fence_regs = 16;
4857         else
4858                 dev_priv->num_fence_regs = 8;
4859
4860         /* Initialize fence registers to zero */
4861         if (IS_I965G(dev)) {
4862                 for (i = 0; i < 16; i++)
4863                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4864         } else {
4865                 for (i = 0; i < 8; i++)
4866                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4867                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4868                         for (i = 0; i < 8; i++)
4869                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4870         }
4871         i915_gem_detect_bit_6_swizzle(dev);
4872         init_waitqueue_head(&dev_priv->pending_flip_queue);
4873 }
4874
4875 /*
4876  * Create a physically contiguous memory object for this object
4877  * e.g. for cursor + overlay regs
4878  */
4879 int i915_gem_init_phys_object(struct drm_device *dev,
4880                               int id, int size)
4881 {
4882         drm_i915_private_t *dev_priv = dev->dev_private;
4883         struct drm_i915_gem_phys_object *phys_obj;
4884         int ret;
4885
4886         if (dev_priv->mm.phys_objs[id - 1] || !size)
4887                 return 0;
4888
4889         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4890         if (!phys_obj)
4891                 return -ENOMEM;
4892
4893         phys_obj->id = id;
4894
4895         phys_obj->handle = drm_pci_alloc(dev, size, 0);
4896         if (!phys_obj->handle) {
4897                 ret = -ENOMEM;
4898                 goto kfree_obj;
4899         }
4900 #ifdef CONFIG_X86
4901         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4902 #endif
4903
4904         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4905
4906         return 0;
4907 kfree_obj:
4908         kfree(phys_obj);
4909         return ret;
4910 }
4911
4912 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4913 {
4914         drm_i915_private_t *dev_priv = dev->dev_private;
4915         struct drm_i915_gem_phys_object *phys_obj;
4916
4917         if (!dev_priv->mm.phys_objs[id - 1])
4918                 return;
4919
4920         phys_obj = dev_priv->mm.phys_objs[id - 1];
4921         if (phys_obj->cur_obj) {
4922                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4923         }
4924
4925 #ifdef CONFIG_X86
4926         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4927 #endif
4928         drm_pci_free(dev, phys_obj->handle);
4929         kfree(phys_obj);
4930         dev_priv->mm.phys_objs[id - 1] = NULL;
4931 }
4932
4933 void i915_gem_free_all_phys_object(struct drm_device *dev)
4934 {
4935         int i;
4936
4937         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4938                 i915_gem_free_phys_object(dev, i);
4939 }
4940
4941 void i915_gem_detach_phys_object(struct drm_device *dev,
4942                                  struct drm_gem_object *obj)
4943 {
4944         struct drm_i915_gem_object *obj_priv;
4945         int i;
4946         int ret;
4947         int page_count;
4948
4949         obj_priv = obj->driver_private;
4950         if (!obj_priv->phys_obj)
4951                 return;
4952
4953         ret = i915_gem_object_get_pages(obj, 0);
4954         if (ret)
4955                 goto out;
4956
4957         page_count = obj->size / PAGE_SIZE;
4958
4959         for (i = 0; i < page_count; i++) {
4960                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4961                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4962
4963                 memcpy(dst, src, PAGE_SIZE);
4964                 kunmap_atomic(dst, KM_USER0);
4965         }
4966         drm_clflush_pages(obj_priv->pages, page_count);
4967         drm_agp_chipset_flush(dev);
4968
4969         i915_gem_object_put_pages(obj);
4970 out:
4971         obj_priv->phys_obj->cur_obj = NULL;
4972         obj_priv->phys_obj = NULL;
4973 }
4974
4975 int
4976 i915_gem_attach_phys_object(struct drm_device *dev,
4977                             struct drm_gem_object *obj, int id)
4978 {
4979         drm_i915_private_t *dev_priv = dev->dev_private;
4980         struct drm_i915_gem_object *obj_priv;
4981         int ret = 0;
4982         int page_count;
4983         int i;
4984
4985         if (id > I915_MAX_PHYS_OBJECT)
4986                 return -EINVAL;
4987
4988         obj_priv = obj->driver_private;
4989
4990         if (obj_priv->phys_obj) {
4991                 if (obj_priv->phys_obj->id == id)
4992                         return 0;
4993                 i915_gem_detach_phys_object(dev, obj);
4994         }
4995
4996
4997         /* create a new object */
4998         if (!dev_priv->mm.phys_objs[id - 1]) {
4999                 ret = i915_gem_init_phys_object(dev, id,
5000                                                 obj->size);
5001                 if (ret) {
5002                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
5003                         goto out;
5004                 }
5005         }
5006
5007         /* bind to the object */
5008         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
5009         obj_priv->phys_obj->cur_obj = obj;
5010
5011         ret = i915_gem_object_get_pages(obj, 0);
5012         if (ret) {
5013                 DRM_ERROR("failed to get page list\n");
5014                 goto out;
5015         }
5016
5017         page_count = obj->size / PAGE_SIZE;
5018
5019         for (i = 0; i < page_count; i++) {
5020                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
5021                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5022
5023                 memcpy(dst, src, PAGE_SIZE);
5024                 kunmap_atomic(src, KM_USER0);
5025         }
5026
5027         i915_gem_object_put_pages(obj);
5028
5029         return 0;
5030 out:
5031         return ret;
5032 }
5033
5034 static int
5035 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5036                      struct drm_i915_gem_pwrite *args,
5037                      struct drm_file *file_priv)
5038 {
5039         struct drm_i915_gem_object *obj_priv = obj->driver_private;
5040         void *obj_addr;
5041         int ret;
5042         char __user *user_data;
5043
5044         user_data = (char __user *) (uintptr_t) args->data_ptr;
5045         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5046
5047         DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
5048         ret = copy_from_user(obj_addr, user_data, args->size);
5049         if (ret)
5050                 return -EFAULT;
5051
5052         drm_agp_chipset_flush(dev);
5053         return 0;
5054 }
5055
5056 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5057 {
5058         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5059
5060         /* Clean up our request list when the client is going away, so that
5061          * later retire_requests won't dereference our soon-to-be-gone
5062          * file_priv.
5063          */
5064         mutex_lock(&dev->struct_mutex);
5065         while (!list_empty(&i915_file_priv->mm.request_list))
5066                 list_del_init(i915_file_priv->mm.request_list.next);
5067         mutex_unlock(&dev->struct_mutex);
5068 }
5069
5070 static int
5071 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5072 {
5073         drm_i915_private_t *dev_priv, *next_dev;
5074         struct drm_i915_gem_object *obj_priv, *next_obj;
5075         int cnt = 0;
5076         int would_deadlock = 1;
5077
5078         /* "fast-path" to count number of available objects */
5079         if (nr_to_scan == 0) {
5080                 spin_lock(&shrink_list_lock);
5081                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5082                         struct drm_device *dev = dev_priv->dev;
5083
5084                         if (mutex_trylock(&dev->struct_mutex)) {
5085                                 list_for_each_entry(obj_priv,
5086                                                     &dev_priv->mm.inactive_list,
5087                                                     list)
5088                                         cnt++;
5089                                 mutex_unlock(&dev->struct_mutex);
5090                         }
5091                 }
5092                 spin_unlock(&shrink_list_lock);
5093
5094                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5095         }
5096
5097         spin_lock(&shrink_list_lock);
5098
5099         /* first scan for clean buffers */
5100         list_for_each_entry_safe(dev_priv, next_dev,
5101                                  &shrink_list, mm.shrink_list) {
5102                 struct drm_device *dev = dev_priv->dev;
5103
5104                 if (! mutex_trylock(&dev->struct_mutex))
5105                         continue;
5106
5107                 spin_unlock(&shrink_list_lock);
5108
5109                 i915_gem_retire_requests(dev);
5110
5111                 list_for_each_entry_safe(obj_priv, next_obj,
5112                                          &dev_priv->mm.inactive_list,
5113                                          list) {
5114                         if (i915_gem_object_is_purgeable(obj_priv)) {
5115                                 i915_gem_object_unbind(obj_priv->obj);
5116                                 if (--nr_to_scan <= 0)
5117                                         break;
5118                         }
5119                 }
5120
5121                 spin_lock(&shrink_list_lock);
5122                 mutex_unlock(&dev->struct_mutex);
5123
5124                 would_deadlock = 0;
5125
5126                 if (nr_to_scan <= 0)
5127                         break;
5128         }
5129
5130         /* second pass, evict/count anything still on the inactive list */
5131         list_for_each_entry_safe(dev_priv, next_dev,
5132                                  &shrink_list, mm.shrink_list) {
5133                 struct drm_device *dev = dev_priv->dev;
5134
5135                 if (! mutex_trylock(&dev->struct_mutex))
5136                         continue;
5137
5138                 spin_unlock(&shrink_list_lock);
5139
5140                 list_for_each_entry_safe(obj_priv, next_obj,
5141                                          &dev_priv->mm.inactive_list,
5142                                          list) {
5143                         if (nr_to_scan > 0) {
5144                                 i915_gem_object_unbind(obj_priv->obj);
5145                                 nr_to_scan--;
5146                         } else
5147                                 cnt++;
5148                 }
5149
5150                 spin_lock(&shrink_list_lock);
5151                 mutex_unlock(&dev->struct_mutex);
5152
5153                 would_deadlock = 0;
5154         }
5155
5156         spin_unlock(&shrink_list_lock);
5157
5158         if (would_deadlock)
5159                 return -1;
5160         else if (cnt > 0)
5161                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5162         else
5163                 return 0;
5164 }
5165
5166 static struct shrinker shrinker = {
5167         .shrink = i915_gem_shrink,
5168         .seeks = DEFAULT_SEEKS,
5169 };
5170
5171 __init void
5172 i915_gem_shrinker_init(void)
5173 {
5174     register_shrinker(&shrinker);
5175 }
5176
5177 __exit void
5178 i915_gem_shrinker_exit(void)
5179 {
5180     unregister_shrinker(&shrinker);
5181 }