drm/i915: Avoid might_fault during pwrite whilst holding our mutex
[pandora-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42                                                   bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46                                              int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48                                                      uint64_t offset,
49                                                      uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52                                           bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54                                            unsigned alignment);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57                                 struct drm_i915_gem_pwrite *args,
58                                 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60
61 static int
62 i915_gem_object_get_pages(struct drm_gem_object *obj,
63                           gfp_t gfpmask);
64
65 static void
66 i915_gem_object_put_pages(struct drm_gem_object *obj);
67
68 static LIST_HEAD(shrink_list);
69 static DEFINE_SPINLOCK(shrink_list_lock);
70
71 /* some bookkeeping */
72 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73                                   size_t size)
74 {
75         dev_priv->mm.object_count++;
76         dev_priv->mm.object_memory += size;
77 }
78
79 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80                                      size_t size)
81 {
82         dev_priv->mm.object_count--;
83         dev_priv->mm.object_memory -= size;
84 }
85
86 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87                                   size_t size)
88 {
89         dev_priv->mm.gtt_count++;
90         dev_priv->mm.gtt_memory += size;
91 }
92
93 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94                                      size_t size)
95 {
96         dev_priv->mm.gtt_count--;
97         dev_priv->mm.gtt_memory -= size;
98 }
99
100 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101                                   size_t size)
102 {
103         dev_priv->mm.pin_count++;
104         dev_priv->mm.pin_memory += size;
105 }
106
107 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108                                      size_t size)
109 {
110         dev_priv->mm.pin_count--;
111         dev_priv->mm.pin_memory -= size;
112 }
113
114 int
115 i915_gem_check_is_wedged(struct drm_device *dev)
116 {
117         struct drm_i915_private *dev_priv = dev->dev_private;
118         struct completion *x = &dev_priv->error_completion;
119         unsigned long flags;
120         int ret;
121
122         if (!atomic_read(&dev_priv->mm.wedged))
123                 return 0;
124
125         ret = wait_for_completion_interruptible(x);
126         if (ret)
127                 return ret;
128
129         /* Success, we reset the GPU! */
130         if (!atomic_read(&dev_priv->mm.wedged))
131                 return 0;
132
133         /* GPU is hung, bump the completion count to account for
134          * the token we just consumed so that we never hit zero and
135          * end up waiting upon a subsequent completion event that
136          * will never happen.
137          */
138         spin_lock_irqsave(&x->wait.lock, flags);
139         x->done++;
140         spin_unlock_irqrestore(&x->wait.lock, flags);
141         return -EIO;
142 }
143
144 static int i915_mutex_lock_interruptible(struct drm_device *dev)
145 {
146         struct drm_i915_private *dev_priv = dev->dev_private;
147         int ret;
148
149         ret = i915_gem_check_is_wedged(dev);
150         if (ret)
151                 return ret;
152
153         ret = mutex_lock_interruptible(&dev->struct_mutex);
154         if (ret)
155                 return ret;
156
157         if (atomic_read(&dev_priv->mm.wedged)) {
158                 mutex_unlock(&dev->struct_mutex);
159                 return -EAGAIN;
160         }
161
162         WARN_ON(i915_verify_lists(dev));
163         return 0;
164 }
165
166 static inline bool
167 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
168 {
169         return obj_priv->gtt_space &&
170                 !obj_priv->active &&
171                 obj_priv->pin_count == 0;
172 }
173
174 int i915_gem_do_init(struct drm_device *dev,
175                      unsigned long start,
176                      unsigned long end)
177 {
178         drm_i915_private_t *dev_priv = dev->dev_private;
179
180         if (start >= end ||
181             (start & (PAGE_SIZE - 1)) != 0 ||
182             (end & (PAGE_SIZE - 1)) != 0) {
183                 return -EINVAL;
184         }
185
186         drm_mm_init(&dev_priv->mm.gtt_space, start,
187                     end - start);
188
189         dev_priv->mm.gtt_total = end - start;
190
191         return 0;
192 }
193
194 int
195 i915_gem_init_ioctl(struct drm_device *dev, void *data,
196                     struct drm_file *file_priv)
197 {
198         struct drm_i915_gem_init *args = data;
199         int ret;
200
201         mutex_lock(&dev->struct_mutex);
202         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203         mutex_unlock(&dev->struct_mutex);
204
205         return ret;
206 }
207
208 int
209 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210                             struct drm_file *file_priv)
211 {
212         struct drm_i915_private *dev_priv = dev->dev_private;
213         struct drm_i915_gem_get_aperture *args = data;
214
215         if (!(dev->driver->driver_features & DRIVER_GEM))
216                 return -ENODEV;
217
218         mutex_lock(&dev->struct_mutex);
219         args->aper_size = dev_priv->mm.gtt_total;
220         args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221         mutex_unlock(&dev->struct_mutex);
222
223         return 0;
224 }
225
226
227 /**
228  * Creates a new mm object and returns a handle to it.
229  */
230 int
231 i915_gem_create_ioctl(struct drm_device *dev, void *data,
232                       struct drm_file *file_priv)
233 {
234         struct drm_i915_gem_create *args = data;
235         struct drm_gem_object *obj;
236         int ret;
237         u32 handle;
238
239         args->size = roundup(args->size, PAGE_SIZE);
240
241         /* Allocate the new object */
242         obj = i915_gem_alloc_object(dev, args->size);
243         if (obj == NULL)
244                 return -ENOMEM;
245
246         ret = drm_gem_handle_create(file_priv, obj, &handle);
247         if (ret) {
248                 drm_gem_object_release(obj);
249                 i915_gem_info_remove_obj(dev->dev_private, obj->size);
250                 kfree(obj);
251                 return ret;
252         }
253
254         /* drop reference from allocate - handle holds it now */
255         drm_gem_object_unreference(obj);
256         trace_i915_gem_object_create(obj);
257
258         args->handle = handle;
259         return 0;
260 }
261
262 static inline int
263 fast_shmem_read(struct page **pages,
264                 loff_t page_base, int page_offset,
265                 char __user *data,
266                 int length)
267 {
268         char *vaddr;
269         int ret;
270
271         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
272         ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
273         kunmap_atomic(vaddr);
274
275         return ret;
276 }
277
278 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
279 {
280         drm_i915_private_t *dev_priv = obj->dev->dev_private;
281         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
282
283         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
284                 obj_priv->tiling_mode != I915_TILING_NONE;
285 }
286
287 static inline void
288 slow_shmem_copy(struct page *dst_page,
289                 int dst_offset,
290                 struct page *src_page,
291                 int src_offset,
292                 int length)
293 {
294         char *dst_vaddr, *src_vaddr;
295
296         dst_vaddr = kmap(dst_page);
297         src_vaddr = kmap(src_page);
298
299         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
300
301         kunmap(src_page);
302         kunmap(dst_page);
303 }
304
305 static inline void
306 slow_shmem_bit17_copy(struct page *gpu_page,
307                       int gpu_offset,
308                       struct page *cpu_page,
309                       int cpu_offset,
310                       int length,
311                       int is_read)
312 {
313         char *gpu_vaddr, *cpu_vaddr;
314
315         /* Use the unswizzled path if this page isn't affected. */
316         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
317                 if (is_read)
318                         return slow_shmem_copy(cpu_page, cpu_offset,
319                                                gpu_page, gpu_offset, length);
320                 else
321                         return slow_shmem_copy(gpu_page, gpu_offset,
322                                                cpu_page, cpu_offset, length);
323         }
324
325         gpu_vaddr = kmap(gpu_page);
326         cpu_vaddr = kmap(cpu_page);
327
328         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
329          * XORing with the other bits (A9 for Y, A9 and A10 for X)
330          */
331         while (length > 0) {
332                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
333                 int this_length = min(cacheline_end - gpu_offset, length);
334                 int swizzled_gpu_offset = gpu_offset ^ 64;
335
336                 if (is_read) {
337                         memcpy(cpu_vaddr + cpu_offset,
338                                gpu_vaddr + swizzled_gpu_offset,
339                                this_length);
340                 } else {
341                         memcpy(gpu_vaddr + swizzled_gpu_offset,
342                                cpu_vaddr + cpu_offset,
343                                this_length);
344                 }
345                 cpu_offset += this_length;
346                 gpu_offset += this_length;
347                 length -= this_length;
348         }
349
350         kunmap(cpu_page);
351         kunmap(gpu_page);
352 }
353
354 /**
355  * This is the fast shmem pread path, which attempts to copy_from_user directly
356  * from the backing pages of the object to the user's address space.  On a
357  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
358  */
359 static int
360 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
361                           struct drm_i915_gem_pread *args,
362                           struct drm_file *file_priv)
363 {
364         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365         ssize_t remain;
366         loff_t offset, page_base;
367         char __user *user_data;
368         int page_offset, page_length;
369
370         user_data = (char __user *) (uintptr_t) args->data_ptr;
371         remain = args->size;
372
373         obj_priv = to_intel_bo(obj);
374         offset = args->offset;
375
376         while (remain > 0) {
377                 /* Operation in this page
378                  *
379                  * page_base = page offset within aperture
380                  * page_offset = offset within page
381                  * page_length = bytes to copy for this page
382                  */
383                 page_base = (offset & ~(PAGE_SIZE-1));
384                 page_offset = offset & (PAGE_SIZE-1);
385                 page_length = remain;
386                 if ((page_offset + remain) > PAGE_SIZE)
387                         page_length = PAGE_SIZE - page_offset;
388
389                 if (fast_shmem_read(obj_priv->pages,
390                                     page_base, page_offset,
391                                     user_data, page_length))
392                         return -EFAULT;
393
394                 remain -= page_length;
395                 user_data += page_length;
396                 offset += page_length;
397         }
398
399         return 0;
400 }
401
402 static int
403 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
404 {
405         int ret;
406
407         ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
408
409         /* If we've insufficient memory to map in the pages, attempt
410          * to make some space by throwing out some old buffers.
411          */
412         if (ret == -ENOMEM) {
413                 struct drm_device *dev = obj->dev;
414
415                 ret = i915_gem_evict_something(dev, obj->size,
416                                                i915_gem_get_gtt_alignment(obj));
417                 if (ret)
418                         return ret;
419
420                 ret = i915_gem_object_get_pages(obj, 0);
421         }
422
423         return ret;
424 }
425
426 /**
427  * This is the fallback shmem pread path, which allocates temporary storage
428  * in kernel space to copy_to_user into outside of the struct_mutex, so we
429  * can copy out of the object's backing pages while holding the struct mutex
430  * and not take page faults.
431  */
432 static int
433 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
434                           struct drm_i915_gem_pread *args,
435                           struct drm_file *file_priv)
436 {
437         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
438         struct mm_struct *mm = current->mm;
439         struct page **user_pages;
440         ssize_t remain;
441         loff_t offset, pinned_pages, i;
442         loff_t first_data_page, last_data_page, num_pages;
443         int shmem_page_index, shmem_page_offset;
444         int data_page_index,  data_page_offset;
445         int page_length;
446         int ret;
447         uint64_t data_ptr = args->data_ptr;
448         int do_bit17_swizzling;
449
450         remain = args->size;
451
452         /* Pin the user pages containing the data.  We can't fault while
453          * holding the struct mutex, yet we want to hold it while
454          * dereferencing the user data.
455          */
456         first_data_page = data_ptr / PAGE_SIZE;
457         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
458         num_pages = last_data_page - first_data_page + 1;
459
460         user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
461         if (user_pages == NULL)
462                 return -ENOMEM;
463
464         mutex_unlock(&dev->struct_mutex);
465         down_read(&mm->mmap_sem);
466         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
467                                       num_pages, 1, 0, user_pages, NULL);
468         up_read(&mm->mmap_sem);
469         mutex_lock(&dev->struct_mutex);
470         if (pinned_pages < num_pages) {
471                 ret = -EFAULT;
472                 goto out;
473         }
474
475         ret = i915_gem_object_set_cpu_read_domain_range(obj,
476                                                         args->offset,
477                                                         args->size);
478         if (ret)
479                 goto out;
480
481         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
482
483         obj_priv = to_intel_bo(obj);
484         offset = args->offset;
485
486         while (remain > 0) {
487                 /* Operation in this page
488                  *
489                  * shmem_page_index = page number within shmem file
490                  * shmem_page_offset = offset within page in shmem file
491                  * data_page_index = page number in get_user_pages return
492                  * data_page_offset = offset with data_page_index page.
493                  * page_length = bytes to copy for this page
494                  */
495                 shmem_page_index = offset / PAGE_SIZE;
496                 shmem_page_offset = offset & ~PAGE_MASK;
497                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
498                 data_page_offset = data_ptr & ~PAGE_MASK;
499
500                 page_length = remain;
501                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
502                         page_length = PAGE_SIZE - shmem_page_offset;
503                 if ((data_page_offset + page_length) > PAGE_SIZE)
504                         page_length = PAGE_SIZE - data_page_offset;
505
506                 if (do_bit17_swizzling) {
507                         slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
508                                               shmem_page_offset,
509                                               user_pages[data_page_index],
510                                               data_page_offset,
511                                               page_length,
512                                               1);
513                 } else {
514                         slow_shmem_copy(user_pages[data_page_index],
515                                         data_page_offset,
516                                         obj_priv->pages[shmem_page_index],
517                                         shmem_page_offset,
518                                         page_length);
519                 }
520
521                 remain -= page_length;
522                 data_ptr += page_length;
523                 offset += page_length;
524         }
525
526 out:
527         for (i = 0; i < pinned_pages; i++) {
528                 SetPageDirty(user_pages[i]);
529                 page_cache_release(user_pages[i]);
530         }
531         drm_free_large(user_pages);
532
533         return ret;
534 }
535
536 /**
537  * Reads data from the object referenced by handle.
538  *
539  * On error, the contents of *data are undefined.
540  */
541 int
542 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
543                      struct drm_file *file_priv)
544 {
545         struct drm_i915_gem_pread *args = data;
546         struct drm_gem_object *obj;
547         struct drm_i915_gem_object *obj_priv;
548         int ret = 0;
549
550         ret = i915_mutex_lock_interruptible(dev);
551         if (ret)
552                 return ret;
553
554         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
555         if (obj == NULL) {
556                 ret = -ENOENT;
557                 goto unlock;
558         }
559         obj_priv = to_intel_bo(obj);
560
561         /* Bounds check source.  */
562         if (args->offset > obj->size || args->size > obj->size - args->offset) {
563                 ret = -EINVAL;
564                 goto out;
565         }
566
567         if (args->size == 0)
568                 goto out;
569
570         if (!access_ok(VERIFY_WRITE,
571                        (char __user *)(uintptr_t)args->data_ptr,
572                        args->size)) {
573                 ret = -EFAULT;
574                 goto out;
575         }
576
577         ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
578                                        args->size);
579         if (ret) {
580                 ret = -EFAULT;
581                 goto out;
582         }
583
584         ret = i915_gem_object_get_pages_or_evict(obj);
585         if (ret)
586                 goto out;
587
588         ret = i915_gem_object_set_cpu_read_domain_range(obj,
589                                                         args->offset,
590                                                         args->size);
591         if (ret)
592                 goto out_put;
593
594         ret = -EFAULT;
595         if (!i915_gem_object_needs_bit17_swizzle(obj))
596                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
597         if (ret == -EFAULT)
598                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
599
600 out_put:
601         i915_gem_object_put_pages(obj);
602 out:
603         drm_gem_object_unreference(obj);
604 unlock:
605         mutex_unlock(&dev->struct_mutex);
606         return ret;
607 }
608
609 /* This is the fast write path which cannot handle
610  * page faults in the source data
611  */
612
613 static inline int
614 fast_user_write(struct io_mapping *mapping,
615                 loff_t page_base, int page_offset,
616                 char __user *user_data,
617                 int length)
618 {
619         char *vaddr_atomic;
620         unsigned long unwritten;
621
622         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
623         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
624                                                       user_data, length);
625         io_mapping_unmap_atomic(vaddr_atomic);
626         return unwritten;
627 }
628
629 /* Here's the write path which can sleep for
630  * page faults
631  */
632
633 static inline void
634 slow_kernel_write(struct io_mapping *mapping,
635                   loff_t gtt_base, int gtt_offset,
636                   struct page *user_page, int user_offset,
637                   int length)
638 {
639         char __iomem *dst_vaddr;
640         char *src_vaddr;
641
642         dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
643         src_vaddr = kmap(user_page);
644
645         memcpy_toio(dst_vaddr + gtt_offset,
646                     src_vaddr + user_offset,
647                     length);
648
649         kunmap(user_page);
650         io_mapping_unmap(dst_vaddr);
651 }
652
653 static inline int
654 fast_shmem_write(struct page **pages,
655                  loff_t page_base, int page_offset,
656                  char __user *data,
657                  int length)
658 {
659         char *vaddr;
660         int ret;
661
662         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
663         ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
664         kunmap_atomic(vaddr);
665
666         return ret;
667 }
668
669 /**
670  * This is the fast pwrite path, where we copy the data directly from the
671  * user into the GTT, uncached.
672  */
673 static int
674 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
675                          struct drm_i915_gem_pwrite *args,
676                          struct drm_file *file_priv)
677 {
678         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
679         drm_i915_private_t *dev_priv = dev->dev_private;
680         ssize_t remain;
681         loff_t offset, page_base;
682         char __user *user_data;
683         int page_offset, page_length;
684
685         user_data = (char __user *) (uintptr_t) args->data_ptr;
686         remain = args->size;
687
688         obj_priv = to_intel_bo(obj);
689         offset = obj_priv->gtt_offset + args->offset;
690
691         while (remain > 0) {
692                 /* Operation in this page
693                  *
694                  * page_base = page offset within aperture
695                  * page_offset = offset within page
696                  * page_length = bytes to copy for this page
697                  */
698                 page_base = (offset & ~(PAGE_SIZE-1));
699                 page_offset = offset & (PAGE_SIZE-1);
700                 page_length = remain;
701                 if ((page_offset + remain) > PAGE_SIZE)
702                         page_length = PAGE_SIZE - page_offset;
703
704                 /* If we get a fault while copying data, then (presumably) our
705                  * source page isn't available.  Return the error and we'll
706                  * retry in the slow path.
707                  */
708                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
709                                     page_offset, user_data, page_length))
710
711                         return -EFAULT;
712
713                 remain -= page_length;
714                 user_data += page_length;
715                 offset += page_length;
716         }
717
718         return 0;
719 }
720
721 /**
722  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
723  * the memory and maps it using kmap_atomic for copying.
724  *
725  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
726  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
727  */
728 static int
729 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
730                          struct drm_i915_gem_pwrite *args,
731                          struct drm_file *file_priv)
732 {
733         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
734         drm_i915_private_t *dev_priv = dev->dev_private;
735         ssize_t remain;
736         loff_t gtt_page_base, offset;
737         loff_t first_data_page, last_data_page, num_pages;
738         loff_t pinned_pages, i;
739         struct page **user_pages;
740         struct mm_struct *mm = current->mm;
741         int gtt_page_offset, data_page_offset, data_page_index, page_length;
742         int ret;
743         uint64_t data_ptr = args->data_ptr;
744
745         remain = args->size;
746
747         /* Pin the user pages containing the data.  We can't fault while
748          * holding the struct mutex, and all of the pwrite implementations
749          * want to hold it while dereferencing the user data.
750          */
751         first_data_page = data_ptr / PAGE_SIZE;
752         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
753         num_pages = last_data_page - first_data_page + 1;
754
755         user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
756         if (user_pages == NULL)
757                 return -ENOMEM;
758
759         mutex_unlock(&dev->struct_mutex);
760         down_read(&mm->mmap_sem);
761         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
762                                       num_pages, 0, 0, user_pages, NULL);
763         up_read(&mm->mmap_sem);
764         mutex_lock(&dev->struct_mutex);
765         if (pinned_pages < num_pages) {
766                 ret = -EFAULT;
767                 goto out_unpin_pages;
768         }
769
770         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
771         if (ret)
772                 goto out_unpin_pages;
773
774         obj_priv = to_intel_bo(obj);
775         offset = obj_priv->gtt_offset + args->offset;
776
777         while (remain > 0) {
778                 /* Operation in this page
779                  *
780                  * gtt_page_base = page offset within aperture
781                  * gtt_page_offset = offset within page in aperture
782                  * data_page_index = page number in get_user_pages return
783                  * data_page_offset = offset with data_page_index page.
784                  * page_length = bytes to copy for this page
785                  */
786                 gtt_page_base = offset & PAGE_MASK;
787                 gtt_page_offset = offset & ~PAGE_MASK;
788                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
789                 data_page_offset = data_ptr & ~PAGE_MASK;
790
791                 page_length = remain;
792                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
793                         page_length = PAGE_SIZE - gtt_page_offset;
794                 if ((data_page_offset + page_length) > PAGE_SIZE)
795                         page_length = PAGE_SIZE - data_page_offset;
796
797                 slow_kernel_write(dev_priv->mm.gtt_mapping,
798                                   gtt_page_base, gtt_page_offset,
799                                   user_pages[data_page_index],
800                                   data_page_offset,
801                                   page_length);
802
803                 remain -= page_length;
804                 offset += page_length;
805                 data_ptr += page_length;
806         }
807
808 out_unpin_pages:
809         for (i = 0; i < pinned_pages; i++)
810                 page_cache_release(user_pages[i]);
811         drm_free_large(user_pages);
812
813         return ret;
814 }
815
816 /**
817  * This is the fast shmem pwrite path, which attempts to directly
818  * copy_from_user into the kmapped pages backing the object.
819  */
820 static int
821 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
822                            struct drm_i915_gem_pwrite *args,
823                            struct drm_file *file_priv)
824 {
825         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
826         ssize_t remain;
827         loff_t offset, page_base;
828         char __user *user_data;
829         int page_offset, page_length;
830
831         user_data = (char __user *) (uintptr_t) args->data_ptr;
832         remain = args->size;
833
834         obj_priv = to_intel_bo(obj);
835         offset = args->offset;
836         obj_priv->dirty = 1;
837
838         while (remain > 0) {
839                 /* Operation in this page
840                  *
841                  * page_base = page offset within aperture
842                  * page_offset = offset within page
843                  * page_length = bytes to copy for this page
844                  */
845                 page_base = (offset & ~(PAGE_SIZE-1));
846                 page_offset = offset & (PAGE_SIZE-1);
847                 page_length = remain;
848                 if ((page_offset + remain) > PAGE_SIZE)
849                         page_length = PAGE_SIZE - page_offset;
850
851                 if (fast_shmem_write(obj_priv->pages,
852                                        page_base, page_offset,
853                                        user_data, page_length))
854                         return -EFAULT;
855
856                 remain -= page_length;
857                 user_data += page_length;
858                 offset += page_length;
859         }
860
861         return 0;
862 }
863
864 /**
865  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
866  * the memory and maps it using kmap_atomic for copying.
867  *
868  * This avoids taking mmap_sem for faulting on the user's address while the
869  * struct_mutex is held.
870  */
871 static int
872 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
873                            struct drm_i915_gem_pwrite *args,
874                            struct drm_file *file_priv)
875 {
876         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
877         struct mm_struct *mm = current->mm;
878         struct page **user_pages;
879         ssize_t remain;
880         loff_t offset, pinned_pages, i;
881         loff_t first_data_page, last_data_page, num_pages;
882         int shmem_page_index, shmem_page_offset;
883         int data_page_index,  data_page_offset;
884         int page_length;
885         int ret;
886         uint64_t data_ptr = args->data_ptr;
887         int do_bit17_swizzling;
888
889         remain = args->size;
890
891         /* Pin the user pages containing the data.  We can't fault while
892          * holding the struct mutex, and all of the pwrite implementations
893          * want to hold it while dereferencing the user data.
894          */
895         first_data_page = data_ptr / PAGE_SIZE;
896         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
897         num_pages = last_data_page - first_data_page + 1;
898
899         user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
900         if (user_pages == NULL)
901                 return -ENOMEM;
902
903         mutex_unlock(&dev->struct_mutex);
904         down_read(&mm->mmap_sem);
905         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
906                                       num_pages, 0, 0, user_pages, NULL);
907         up_read(&mm->mmap_sem);
908         mutex_lock(&dev->struct_mutex);
909         if (pinned_pages < num_pages) {
910                 ret = -EFAULT;
911                 goto out;
912         }
913
914         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
915         if (ret)
916                 goto out;
917
918         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
919
920         obj_priv = to_intel_bo(obj);
921         offset = args->offset;
922         obj_priv->dirty = 1;
923
924         while (remain > 0) {
925                 /* Operation in this page
926                  *
927                  * shmem_page_index = page number within shmem file
928                  * shmem_page_offset = offset within page in shmem file
929                  * data_page_index = page number in get_user_pages return
930                  * data_page_offset = offset with data_page_index page.
931                  * page_length = bytes to copy for this page
932                  */
933                 shmem_page_index = offset / PAGE_SIZE;
934                 shmem_page_offset = offset & ~PAGE_MASK;
935                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
936                 data_page_offset = data_ptr & ~PAGE_MASK;
937
938                 page_length = remain;
939                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
940                         page_length = PAGE_SIZE - shmem_page_offset;
941                 if ((data_page_offset + page_length) > PAGE_SIZE)
942                         page_length = PAGE_SIZE - data_page_offset;
943
944                 if (do_bit17_swizzling) {
945                         slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
946                                               shmem_page_offset,
947                                               user_pages[data_page_index],
948                                               data_page_offset,
949                                               page_length,
950                                               0);
951                 } else {
952                         slow_shmem_copy(obj_priv->pages[shmem_page_index],
953                                         shmem_page_offset,
954                                         user_pages[data_page_index],
955                                         data_page_offset,
956                                         page_length);
957                 }
958
959                 remain -= page_length;
960                 data_ptr += page_length;
961                 offset += page_length;
962         }
963
964 out:
965         for (i = 0; i < pinned_pages; i++)
966                 page_cache_release(user_pages[i]);
967         drm_free_large(user_pages);
968
969         return ret;
970 }
971
972 /**
973  * Writes data to the object referenced by handle.
974  *
975  * On error, the contents of the buffer that were to be modified are undefined.
976  */
977 int
978 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
979                       struct drm_file *file)
980 {
981         struct drm_i915_gem_pwrite *args = data;
982         struct drm_gem_object *obj;
983         struct drm_i915_gem_object *obj_priv;
984         int ret = 0;
985
986         ret = i915_mutex_lock_interruptible(dev);
987         if (ret)
988                 return ret;
989
990         obj = drm_gem_object_lookup(dev, file, args->handle);
991         if (obj == NULL) {
992                 ret = -ENOENT;
993                 goto unlock;
994         }
995         obj_priv = to_intel_bo(obj);
996
997
998         /* Bounds check destination. */
999         if (args->offset > obj->size || args->size > obj->size - args->offset) {
1000                 ret = -EINVAL;
1001                 goto out;
1002         }
1003
1004         if (args->size == 0)
1005                 goto out;
1006
1007         if (!access_ok(VERIFY_READ,
1008                        (char __user *)(uintptr_t)args->data_ptr,
1009                        args->size)) {
1010                 ret = -EFAULT;
1011                 goto out;
1012         }
1013
1014         ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1015                                       args->size);
1016         if (ret) {
1017                 ret = -EFAULT;
1018                 goto out;
1019         }
1020
1021         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1022          * it would end up going through the fenced access, and we'll get
1023          * different detiling behavior between reading and writing.
1024          * pread/pwrite currently are reading and writing from the CPU
1025          * perspective, requiring manual detiling by the client.
1026          */
1027         if (obj_priv->phys_obj)
1028                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1029         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1030                  obj_priv->gtt_space &&
1031                  obj->write_domain != I915_GEM_DOMAIN_CPU) {
1032                 ret = i915_gem_object_pin(obj, 0);
1033                 if (ret)
1034                         goto out;
1035
1036                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1037                 if (ret)
1038                         goto out_unpin;
1039
1040                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1041                 if (ret == -EFAULT)
1042                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1043
1044 out_unpin:
1045                 i915_gem_object_unpin(obj);
1046         } else {
1047                 ret = i915_gem_object_get_pages_or_evict(obj);
1048                 if (ret)
1049                         goto out;
1050
1051                 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1052                 if (ret)
1053                         goto out_put;
1054
1055                 ret = -EFAULT;
1056                 if (!i915_gem_object_needs_bit17_swizzle(obj))
1057                         ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1058                 if (ret == -EFAULT)
1059                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1060
1061 out_put:
1062                 i915_gem_object_put_pages(obj);
1063         }
1064
1065 out:
1066         drm_gem_object_unreference(obj);
1067 unlock:
1068         mutex_unlock(&dev->struct_mutex);
1069         return ret;
1070 }
1071
1072 /**
1073  * Called when user space prepares to use an object with the CPU, either
1074  * through the mmap ioctl's mapping or a GTT mapping.
1075  */
1076 int
1077 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1078                           struct drm_file *file_priv)
1079 {
1080         struct drm_i915_private *dev_priv = dev->dev_private;
1081         struct drm_i915_gem_set_domain *args = data;
1082         struct drm_gem_object *obj;
1083         struct drm_i915_gem_object *obj_priv;
1084         uint32_t read_domains = args->read_domains;
1085         uint32_t write_domain = args->write_domain;
1086         int ret;
1087
1088         if (!(dev->driver->driver_features & DRIVER_GEM))
1089                 return -ENODEV;
1090
1091         /* Only handle setting domains to types used by the CPU. */
1092         if (write_domain & I915_GEM_GPU_DOMAINS)
1093                 return -EINVAL;
1094
1095         if (read_domains & I915_GEM_GPU_DOMAINS)
1096                 return -EINVAL;
1097
1098         /* Having something in the write domain implies it's in the read
1099          * domain, and only that read domain.  Enforce that in the request.
1100          */
1101         if (write_domain != 0 && read_domains != write_domain)
1102                 return -EINVAL;
1103
1104         ret = i915_mutex_lock_interruptible(dev);
1105         if (ret)
1106                 return ret;
1107
1108         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1109         if (obj == NULL) {
1110                 ret = -ENOENT;
1111                 goto unlock;
1112         }
1113         obj_priv = to_intel_bo(obj);
1114
1115         intel_mark_busy(dev, obj);
1116
1117         if (read_domains & I915_GEM_DOMAIN_GTT) {
1118                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1119
1120                 /* Update the LRU on the fence for the CPU access that's
1121                  * about to occur.
1122                  */
1123                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1124                         struct drm_i915_fence_reg *reg =
1125                                 &dev_priv->fence_regs[obj_priv->fence_reg];
1126                         list_move_tail(&reg->lru_list,
1127                                        &dev_priv->mm.fence_list);
1128                 }
1129
1130                 /* Silently promote "you're not bound, there was nothing to do"
1131                  * to success, since the client was just asking us to
1132                  * make sure everything was done.
1133                  */
1134                 if (ret == -EINVAL)
1135                         ret = 0;
1136         } else {
1137                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1138         }
1139
1140         /* Maintain LRU order of "inactive" objects */
1141         if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1142                 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1143
1144         drm_gem_object_unreference(obj);
1145 unlock:
1146         mutex_unlock(&dev->struct_mutex);
1147         return ret;
1148 }
1149
1150 /**
1151  * Called when user space has done writes to this buffer
1152  */
1153 int
1154 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1155                       struct drm_file *file_priv)
1156 {
1157         struct drm_i915_gem_sw_finish *args = data;
1158         struct drm_gem_object *obj;
1159         int ret = 0;
1160
1161         if (!(dev->driver->driver_features & DRIVER_GEM))
1162                 return -ENODEV;
1163
1164         ret = i915_mutex_lock_interruptible(dev);
1165         if (ret)
1166                 return ret;
1167
1168         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1169         if (obj == NULL) {
1170                 ret = -ENOENT;
1171                 goto unlock;
1172         }
1173
1174         /* Pinned buffers may be scanout, so flush the cache */
1175         if (to_intel_bo(obj)->pin_count)
1176                 i915_gem_object_flush_cpu_write_domain(obj);
1177
1178         drm_gem_object_unreference(obj);
1179 unlock:
1180         mutex_unlock(&dev->struct_mutex);
1181         return ret;
1182 }
1183
1184 /**
1185  * Maps the contents of an object, returning the address it is mapped
1186  * into.
1187  *
1188  * While the mapping holds a reference on the contents of the object, it doesn't
1189  * imply a ref on the object itself.
1190  */
1191 int
1192 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1193                    struct drm_file *file_priv)
1194 {
1195         struct drm_i915_gem_mmap *args = data;
1196         struct drm_gem_object *obj;
1197         loff_t offset;
1198         unsigned long addr;
1199
1200         if (!(dev->driver->driver_features & DRIVER_GEM))
1201                 return -ENODEV;
1202
1203         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1204         if (obj == NULL)
1205                 return -ENOENT;
1206
1207         offset = args->offset;
1208
1209         down_write(&current->mm->mmap_sem);
1210         addr = do_mmap(obj->filp, 0, args->size,
1211                        PROT_READ | PROT_WRITE, MAP_SHARED,
1212                        args->offset);
1213         up_write(&current->mm->mmap_sem);
1214         drm_gem_object_unreference_unlocked(obj);
1215         if (IS_ERR((void *)addr))
1216                 return addr;
1217
1218         args->addr_ptr = (uint64_t) addr;
1219
1220         return 0;
1221 }
1222
1223 /**
1224  * i915_gem_fault - fault a page into the GTT
1225  * vma: VMA in question
1226  * vmf: fault info
1227  *
1228  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1229  * from userspace.  The fault handler takes care of binding the object to
1230  * the GTT (if needed), allocating and programming a fence register (again,
1231  * only if needed based on whether the old reg is still valid or the object
1232  * is tiled) and inserting a new PTE into the faulting process.
1233  *
1234  * Note that the faulting process may involve evicting existing objects
1235  * from the GTT and/or fence registers to make room.  So performance may
1236  * suffer if the GTT working set is large or there are few fence registers
1237  * left.
1238  */
1239 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1240 {
1241         struct drm_gem_object *obj = vma->vm_private_data;
1242         struct drm_device *dev = obj->dev;
1243         drm_i915_private_t *dev_priv = dev->dev_private;
1244         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1245         pgoff_t page_offset;
1246         unsigned long pfn;
1247         int ret = 0;
1248         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1249
1250         /* We don't use vmf->pgoff since that has the fake offset */
1251         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1252                 PAGE_SHIFT;
1253
1254         /* Now bind it into the GTT if needed */
1255         mutex_lock(&dev->struct_mutex);
1256         if (!obj_priv->gtt_space) {
1257                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1258                 if (ret)
1259                         goto unlock;
1260
1261                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1262                 if (ret)
1263                         goto unlock;
1264         }
1265
1266         /* Need a new fence register? */
1267         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1268                 ret = i915_gem_object_get_fence_reg(obj, true);
1269                 if (ret)
1270                         goto unlock;
1271         }
1272
1273         if (i915_gem_object_is_inactive(obj_priv))
1274                 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1275
1276         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1277                 page_offset;
1278
1279         /* Finally, remap it using the new GTT offset */
1280         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1281 unlock:
1282         mutex_unlock(&dev->struct_mutex);
1283
1284         switch (ret) {
1285         case 0:
1286         case -ERESTARTSYS:
1287                 return VM_FAULT_NOPAGE;
1288         case -ENOMEM:
1289         case -EAGAIN:
1290                 return VM_FAULT_OOM;
1291         default:
1292                 return VM_FAULT_SIGBUS;
1293         }
1294 }
1295
1296 /**
1297  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1298  * @obj: obj in question
1299  *
1300  * GEM memory mapping works by handing back to userspace a fake mmap offset
1301  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1302  * up the object based on the offset and sets up the various memory mapping
1303  * structures.
1304  *
1305  * This routine allocates and attaches a fake offset for @obj.
1306  */
1307 static int
1308 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1309 {
1310         struct drm_device *dev = obj->dev;
1311         struct drm_gem_mm *mm = dev->mm_private;
1312         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1313         struct drm_map_list *list;
1314         struct drm_local_map *map;
1315         int ret = 0;
1316
1317         /* Set the object up for mmap'ing */
1318         list = &obj->map_list;
1319         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1320         if (!list->map)
1321                 return -ENOMEM;
1322
1323         map = list->map;
1324         map->type = _DRM_GEM;
1325         map->size = obj->size;
1326         map->handle = obj;
1327
1328         /* Get a DRM GEM mmap offset allocated... */
1329         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1330                                                     obj->size / PAGE_SIZE, 0, 0);
1331         if (!list->file_offset_node) {
1332                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1333                 ret = -ENOSPC;
1334                 goto out_free_list;
1335         }
1336
1337         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1338                                                   obj->size / PAGE_SIZE, 0);
1339         if (!list->file_offset_node) {
1340                 ret = -ENOMEM;
1341                 goto out_free_list;
1342         }
1343
1344         list->hash.key = list->file_offset_node->start;
1345         ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1346         if (ret) {
1347                 DRM_ERROR("failed to add to map hash\n");
1348                 goto out_free_mm;
1349         }
1350
1351         /* By now we should be all set, any drm_mmap request on the offset
1352          * below will get to our mmap & fault handler */
1353         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1354
1355         return 0;
1356
1357 out_free_mm:
1358         drm_mm_put_block(list->file_offset_node);
1359 out_free_list:
1360         kfree(list->map);
1361
1362         return ret;
1363 }
1364
1365 /**
1366  * i915_gem_release_mmap - remove physical page mappings
1367  * @obj: obj in question
1368  *
1369  * Preserve the reservation of the mmapping with the DRM core code, but
1370  * relinquish ownership of the pages back to the system.
1371  *
1372  * It is vital that we remove the page mapping if we have mapped a tiled
1373  * object through the GTT and then lose the fence register due to
1374  * resource pressure. Similarly if the object has been moved out of the
1375  * aperture, than pages mapped into userspace must be revoked. Removing the
1376  * mapping will then trigger a page fault on the next user access, allowing
1377  * fixup by i915_gem_fault().
1378  */
1379 void
1380 i915_gem_release_mmap(struct drm_gem_object *obj)
1381 {
1382         struct drm_device *dev = obj->dev;
1383         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1384
1385         if (dev->dev_mapping)
1386                 unmap_mapping_range(dev->dev_mapping,
1387                                     obj_priv->mmap_offset, obj->size, 1);
1388 }
1389
1390 static void
1391 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1392 {
1393         struct drm_device *dev = obj->dev;
1394         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1395         struct drm_gem_mm *mm = dev->mm_private;
1396         struct drm_map_list *list;
1397
1398         list = &obj->map_list;
1399         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1400
1401         if (list->file_offset_node) {
1402                 drm_mm_put_block(list->file_offset_node);
1403                 list->file_offset_node = NULL;
1404         }
1405
1406         if (list->map) {
1407                 kfree(list->map);
1408                 list->map = NULL;
1409         }
1410
1411         obj_priv->mmap_offset = 0;
1412 }
1413
1414 /**
1415  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1416  * @obj: object to check
1417  *
1418  * Return the required GTT alignment for an object, taking into account
1419  * potential fence register mapping if needed.
1420  */
1421 static uint32_t
1422 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1423 {
1424         struct drm_device *dev = obj->dev;
1425         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1426         int start, i;
1427
1428         /*
1429          * Minimum alignment is 4k (GTT page size), but might be greater
1430          * if a fence register is needed for the object.
1431          */
1432         if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1433                 return 4096;
1434
1435         /*
1436          * Previous chips need to be aligned to the size of the smallest
1437          * fence register that can contain the object.
1438          */
1439         if (INTEL_INFO(dev)->gen == 3)
1440                 start = 1024*1024;
1441         else
1442                 start = 512*1024;
1443
1444         for (i = start; i < obj->size; i <<= 1)
1445                 ;
1446
1447         return i;
1448 }
1449
1450 /**
1451  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1452  * @dev: DRM device
1453  * @data: GTT mapping ioctl data
1454  * @file_priv: GEM object info
1455  *
1456  * Simply returns the fake offset to userspace so it can mmap it.
1457  * The mmap call will end up in drm_gem_mmap(), which will set things
1458  * up so we can get faults in the handler above.
1459  *
1460  * The fault handler will take care of binding the object into the GTT
1461  * (since it may have been evicted to make room for something), allocating
1462  * a fence register, and mapping the appropriate aperture address into
1463  * userspace.
1464  */
1465 int
1466 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1467                         struct drm_file *file_priv)
1468 {
1469         struct drm_i915_gem_mmap_gtt *args = data;
1470         struct drm_gem_object *obj;
1471         struct drm_i915_gem_object *obj_priv;
1472         int ret;
1473
1474         if (!(dev->driver->driver_features & DRIVER_GEM))
1475                 return -ENODEV;
1476
1477         ret = i915_mutex_lock_interruptible(dev);
1478         if (ret)
1479                 return ret;
1480
1481         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1482         if (obj == NULL) {
1483                 ret = -ENOENT;
1484                 goto unlock;
1485         }
1486         obj_priv = to_intel_bo(obj);
1487
1488         if (obj_priv->madv != I915_MADV_WILLNEED) {
1489                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1490                 ret = -EINVAL;
1491                 goto out;
1492         }
1493
1494         if (!obj_priv->mmap_offset) {
1495                 ret = i915_gem_create_mmap_offset(obj);
1496                 if (ret)
1497                         goto out;
1498         }
1499
1500         args->offset = obj_priv->mmap_offset;
1501
1502         /*
1503          * Pull it into the GTT so that we have a page list (makes the
1504          * initial fault faster and any subsequent flushing possible).
1505          */
1506         if (!obj_priv->agp_mem) {
1507                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1508                 if (ret)
1509                         goto out;
1510         }
1511
1512 out:
1513         drm_gem_object_unreference(obj);
1514 unlock:
1515         mutex_unlock(&dev->struct_mutex);
1516         return ret;
1517 }
1518
1519 static void
1520 i915_gem_object_put_pages(struct drm_gem_object *obj)
1521 {
1522         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1523         int page_count = obj->size / PAGE_SIZE;
1524         int i;
1525
1526         BUG_ON(obj_priv->pages_refcount == 0);
1527         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1528
1529         if (--obj_priv->pages_refcount != 0)
1530                 return;
1531
1532         if (obj_priv->tiling_mode != I915_TILING_NONE)
1533                 i915_gem_object_save_bit_17_swizzle(obj);
1534
1535         if (obj_priv->madv == I915_MADV_DONTNEED)
1536                 obj_priv->dirty = 0;
1537
1538         for (i = 0; i < page_count; i++) {
1539                 if (obj_priv->dirty)
1540                         set_page_dirty(obj_priv->pages[i]);
1541
1542                 if (obj_priv->madv == I915_MADV_WILLNEED)
1543                         mark_page_accessed(obj_priv->pages[i]);
1544
1545                 page_cache_release(obj_priv->pages[i]);
1546         }
1547         obj_priv->dirty = 0;
1548
1549         drm_free_large(obj_priv->pages);
1550         obj_priv->pages = NULL;
1551 }
1552
1553 static uint32_t
1554 i915_gem_next_request_seqno(struct drm_device *dev,
1555                             struct intel_ring_buffer *ring)
1556 {
1557         drm_i915_private_t *dev_priv = dev->dev_private;
1558
1559         ring->outstanding_lazy_request = true;
1560         return dev_priv->next_seqno;
1561 }
1562
1563 static void
1564 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1565                                struct intel_ring_buffer *ring)
1566 {
1567         struct drm_device *dev = obj->dev;
1568         struct drm_i915_private *dev_priv = dev->dev_private;
1569         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1570         uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1571
1572         BUG_ON(ring == NULL);
1573         obj_priv->ring = ring;
1574
1575         /* Add a reference if we're newly entering the active list. */
1576         if (!obj_priv->active) {
1577                 drm_gem_object_reference(obj);
1578                 obj_priv->active = 1;
1579         }
1580
1581         /* Move from whatever list we were on to the tail of execution. */
1582         list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1583         list_move_tail(&obj_priv->ring_list, &ring->active_list);
1584         obj_priv->last_rendering_seqno = seqno;
1585 }
1586
1587 static void
1588 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1589 {
1590         struct drm_device *dev = obj->dev;
1591         drm_i915_private_t *dev_priv = dev->dev_private;
1592         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1593
1594         BUG_ON(!obj_priv->active);
1595         list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1596         list_del_init(&obj_priv->ring_list);
1597         obj_priv->last_rendering_seqno = 0;
1598 }
1599
1600 /* Immediately discard the backing storage */
1601 static void
1602 i915_gem_object_truncate(struct drm_gem_object *obj)
1603 {
1604         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1605         struct inode *inode;
1606
1607         /* Our goal here is to return as much of the memory as
1608          * is possible back to the system as we are called from OOM.
1609          * To do this we must instruct the shmfs to drop all of its
1610          * backing pages, *now*. Here we mirror the actions taken
1611          * when by shmem_delete_inode() to release the backing store.
1612          */
1613         inode = obj->filp->f_path.dentry->d_inode;
1614         truncate_inode_pages(inode->i_mapping, 0);
1615         if (inode->i_op->truncate_range)
1616                 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1617
1618         obj_priv->madv = __I915_MADV_PURGED;
1619 }
1620
1621 static inline int
1622 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1623 {
1624         return obj_priv->madv == I915_MADV_DONTNEED;
1625 }
1626
1627 static void
1628 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1629 {
1630         struct drm_device *dev = obj->dev;
1631         drm_i915_private_t *dev_priv = dev->dev_private;
1632         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1633
1634         if (obj_priv->pin_count != 0)
1635                 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1636         else
1637                 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1638         list_del_init(&obj_priv->ring_list);
1639
1640         BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1641
1642         obj_priv->last_rendering_seqno = 0;
1643         obj_priv->ring = NULL;
1644         if (obj_priv->active) {
1645                 obj_priv->active = 0;
1646                 drm_gem_object_unreference(obj);
1647         }
1648         WARN_ON(i915_verify_lists(dev));
1649 }
1650
1651 static void
1652 i915_gem_process_flushing_list(struct drm_device *dev,
1653                                uint32_t flush_domains,
1654                                struct intel_ring_buffer *ring)
1655 {
1656         drm_i915_private_t *dev_priv = dev->dev_private;
1657         struct drm_i915_gem_object *obj_priv, *next;
1658
1659         list_for_each_entry_safe(obj_priv, next,
1660                                  &ring->gpu_write_list,
1661                                  gpu_write_list) {
1662                 struct drm_gem_object *obj = &obj_priv->base;
1663
1664                 if (obj->write_domain & flush_domains) {
1665                         uint32_t old_write_domain = obj->write_domain;
1666
1667                         obj->write_domain = 0;
1668                         list_del_init(&obj_priv->gpu_write_list);
1669                         i915_gem_object_move_to_active(obj, ring);
1670
1671                         /* update the fence lru list */
1672                         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1673                                 struct drm_i915_fence_reg *reg =
1674                                         &dev_priv->fence_regs[obj_priv->fence_reg];
1675                                 list_move_tail(&reg->lru_list,
1676                                                 &dev_priv->mm.fence_list);
1677                         }
1678
1679                         trace_i915_gem_object_change_domain(obj,
1680                                                             obj->read_domains,
1681                                                             old_write_domain);
1682                 }
1683         }
1684 }
1685
1686 uint32_t
1687 i915_add_request(struct drm_device *dev,
1688                  struct drm_file *file,
1689                  struct drm_i915_gem_request *request,
1690                  struct intel_ring_buffer *ring)
1691 {
1692         drm_i915_private_t *dev_priv = dev->dev_private;
1693         struct drm_i915_file_private *file_priv = NULL;
1694         uint32_t seqno;
1695         int was_empty;
1696
1697         if (file != NULL)
1698                 file_priv = file->driver_priv;
1699
1700         if (request == NULL) {
1701                 request = kzalloc(sizeof(*request), GFP_KERNEL);
1702                 if (request == NULL)
1703                         return 0;
1704         }
1705
1706         seqno = ring->add_request(dev, ring, 0);
1707         ring->outstanding_lazy_request = false;
1708
1709         request->seqno = seqno;
1710         request->ring = ring;
1711         request->emitted_jiffies = jiffies;
1712         was_empty = list_empty(&ring->request_list);
1713         list_add_tail(&request->list, &ring->request_list);
1714
1715         if (file_priv) {
1716                 spin_lock(&file_priv->mm.lock);
1717                 request->file_priv = file_priv;
1718                 list_add_tail(&request->client_list,
1719                               &file_priv->mm.request_list);
1720                 spin_unlock(&file_priv->mm.lock);
1721         }
1722
1723         if (!dev_priv->mm.suspended) {
1724                 mod_timer(&dev_priv->hangcheck_timer,
1725                           jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1726                 if (was_empty)
1727                         queue_delayed_work(dev_priv->wq,
1728                                            &dev_priv->mm.retire_work, HZ);
1729         }
1730         return seqno;
1731 }
1732
1733 /**
1734  * Command execution barrier
1735  *
1736  * Ensures that all commands in the ring are finished
1737  * before signalling the CPU
1738  */
1739 static void
1740 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1741 {
1742         uint32_t flush_domains = 0;
1743
1744         /* The sampler always gets flushed on i965 (sigh) */
1745         if (INTEL_INFO(dev)->gen >= 4)
1746                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1747
1748         ring->flush(dev, ring,
1749                         I915_GEM_DOMAIN_COMMAND, flush_domains);
1750 }
1751
1752 static inline void
1753 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1754 {
1755         struct drm_i915_file_private *file_priv = request->file_priv;
1756
1757         if (!file_priv)
1758                 return;
1759
1760         spin_lock(&file_priv->mm.lock);
1761         list_del(&request->client_list);
1762         request->file_priv = NULL;
1763         spin_unlock(&file_priv->mm.lock);
1764 }
1765
1766 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1767                                       struct intel_ring_buffer *ring)
1768 {
1769         while (!list_empty(&ring->request_list)) {
1770                 struct drm_i915_gem_request *request;
1771
1772                 request = list_first_entry(&ring->request_list,
1773                                            struct drm_i915_gem_request,
1774                                            list);
1775
1776                 list_del(&request->list);
1777                 i915_gem_request_remove_from_client(request);
1778                 kfree(request);
1779         }
1780
1781         while (!list_empty(&ring->active_list)) {
1782                 struct drm_i915_gem_object *obj_priv;
1783
1784                 obj_priv = list_first_entry(&ring->active_list,
1785                                             struct drm_i915_gem_object,
1786                                             ring_list);
1787
1788                 obj_priv->base.write_domain = 0;
1789                 list_del_init(&obj_priv->gpu_write_list);
1790                 i915_gem_object_move_to_inactive(&obj_priv->base);
1791         }
1792 }
1793
1794 void i915_gem_reset(struct drm_device *dev)
1795 {
1796         struct drm_i915_private *dev_priv = dev->dev_private;
1797         struct drm_i915_gem_object *obj_priv;
1798         int i;
1799
1800         i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1801         i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1802         i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1803
1804         /* Remove anything from the flushing lists. The GPU cache is likely
1805          * to be lost on reset along with the data, so simply move the
1806          * lost bo to the inactive list.
1807          */
1808         while (!list_empty(&dev_priv->mm.flushing_list)) {
1809                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1810                                             struct drm_i915_gem_object,
1811                                             mm_list);
1812
1813                 obj_priv->base.write_domain = 0;
1814                 list_del_init(&obj_priv->gpu_write_list);
1815                 i915_gem_object_move_to_inactive(&obj_priv->base);
1816         }
1817
1818         /* Move everything out of the GPU domains to ensure we do any
1819          * necessary invalidation upon reuse.
1820          */
1821         list_for_each_entry(obj_priv,
1822                             &dev_priv->mm.inactive_list,
1823                             mm_list)
1824         {
1825                 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1826         }
1827
1828         /* The fence registers are invalidated so clear them out */
1829         for (i = 0; i < 16; i++) {
1830                 struct drm_i915_fence_reg *reg;
1831
1832                 reg = &dev_priv->fence_regs[i];
1833                 if (!reg->obj)
1834                         continue;
1835
1836                 i915_gem_clear_fence_reg(reg->obj);
1837         }
1838 }
1839
1840 /**
1841  * This function clears the request list as sequence numbers are passed.
1842  */
1843 static void
1844 i915_gem_retire_requests_ring(struct drm_device *dev,
1845                               struct intel_ring_buffer *ring)
1846 {
1847         drm_i915_private_t *dev_priv = dev->dev_private;
1848         uint32_t seqno;
1849
1850         if (!ring->status_page.page_addr ||
1851             list_empty(&ring->request_list))
1852                 return;
1853
1854         WARN_ON(i915_verify_lists(dev));
1855
1856         seqno = ring->get_seqno(dev, ring);
1857         while (!list_empty(&ring->request_list)) {
1858                 struct drm_i915_gem_request *request;
1859
1860                 request = list_first_entry(&ring->request_list,
1861                                            struct drm_i915_gem_request,
1862                                            list);
1863
1864                 if (!i915_seqno_passed(seqno, request->seqno))
1865                         break;
1866
1867                 trace_i915_gem_request_retire(dev, request->seqno);
1868
1869                 list_del(&request->list);
1870                 i915_gem_request_remove_from_client(request);
1871                 kfree(request);
1872         }
1873
1874         /* Move any buffers on the active list that are no longer referenced
1875          * by the ringbuffer to the flushing/inactive lists as appropriate.
1876          */
1877         while (!list_empty(&ring->active_list)) {
1878                 struct drm_gem_object *obj;
1879                 struct drm_i915_gem_object *obj_priv;
1880
1881                 obj_priv = list_first_entry(&ring->active_list,
1882                                             struct drm_i915_gem_object,
1883                                             ring_list);
1884
1885                 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1886                         break;
1887
1888                 obj = &obj_priv->base;
1889                 if (obj->write_domain != 0)
1890                         i915_gem_object_move_to_flushing(obj);
1891                 else
1892                         i915_gem_object_move_to_inactive(obj);
1893         }
1894
1895         if (unlikely (dev_priv->trace_irq_seqno &&
1896                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1897                 ring->user_irq_put(dev, ring);
1898                 dev_priv->trace_irq_seqno = 0;
1899         }
1900
1901         WARN_ON(i915_verify_lists(dev));
1902 }
1903
1904 void
1905 i915_gem_retire_requests(struct drm_device *dev)
1906 {
1907         drm_i915_private_t *dev_priv = dev->dev_private;
1908
1909         if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1910             struct drm_i915_gem_object *obj_priv, *tmp;
1911
1912             /* We must be careful that during unbind() we do not
1913              * accidentally infinitely recurse into retire requests.
1914              * Currently:
1915              *   retire -> free -> unbind -> wait -> retire_ring
1916              */
1917             list_for_each_entry_safe(obj_priv, tmp,
1918                                      &dev_priv->mm.deferred_free_list,
1919                                      mm_list)
1920                     i915_gem_free_object_tail(&obj_priv->base);
1921         }
1922
1923         i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1924         i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1925         i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
1926 }
1927
1928 static void
1929 i915_gem_retire_work_handler(struct work_struct *work)
1930 {
1931         drm_i915_private_t *dev_priv;
1932         struct drm_device *dev;
1933
1934         dev_priv = container_of(work, drm_i915_private_t,
1935                                 mm.retire_work.work);
1936         dev = dev_priv->dev;
1937
1938         /* Come back later if the device is busy... */
1939         if (!mutex_trylock(&dev->struct_mutex)) {
1940                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1941                 return;
1942         }
1943
1944         i915_gem_retire_requests(dev);
1945
1946         if (!dev_priv->mm.suspended &&
1947                 (!list_empty(&dev_priv->render_ring.request_list) ||
1948                  !list_empty(&dev_priv->bsd_ring.request_list) ||
1949                  !list_empty(&dev_priv->blt_ring.request_list)))
1950                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1951         mutex_unlock(&dev->struct_mutex);
1952 }
1953
1954 int
1955 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1956                      bool interruptible, struct intel_ring_buffer *ring)
1957 {
1958         drm_i915_private_t *dev_priv = dev->dev_private;
1959         u32 ier;
1960         int ret = 0;
1961
1962         BUG_ON(seqno == 0);
1963
1964         if (atomic_read(&dev_priv->mm.wedged))
1965                 return -EAGAIN;
1966
1967         if (ring->outstanding_lazy_request) {
1968                 seqno = i915_add_request(dev, NULL, NULL, ring);
1969                 if (seqno == 0)
1970                         return -ENOMEM;
1971         }
1972         BUG_ON(seqno == dev_priv->next_seqno);
1973
1974         if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1975                 if (HAS_PCH_SPLIT(dev))
1976                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1977                 else
1978                         ier = I915_READ(IER);
1979                 if (!ier) {
1980                         DRM_ERROR("something (likely vbetool) disabled "
1981                                   "interrupts, re-enabling\n");
1982                         i915_driver_irq_preinstall(dev);
1983                         i915_driver_irq_postinstall(dev);
1984                 }
1985
1986                 trace_i915_gem_request_wait_begin(dev, seqno);
1987
1988                 ring->waiting_gem_seqno = seqno;
1989                 ring->user_irq_get(dev, ring);
1990                 if (interruptible)
1991                         ret = wait_event_interruptible(ring->irq_queue,
1992                                 i915_seqno_passed(
1993                                         ring->get_seqno(dev, ring), seqno)
1994                                 || atomic_read(&dev_priv->mm.wedged));
1995                 else
1996                         wait_event(ring->irq_queue,
1997                                 i915_seqno_passed(
1998                                         ring->get_seqno(dev, ring), seqno)
1999                                 || atomic_read(&dev_priv->mm.wedged));
2000
2001                 ring->user_irq_put(dev, ring);
2002                 ring->waiting_gem_seqno = 0;
2003
2004                 trace_i915_gem_request_wait_end(dev, seqno);
2005         }
2006         if (atomic_read(&dev_priv->mm.wedged))
2007                 ret = -EAGAIN;
2008
2009         if (ret && ret != -ERESTARTSYS)
2010                 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2011                           __func__, ret, seqno, ring->get_seqno(dev, ring),
2012                           dev_priv->next_seqno);
2013
2014         /* Directly dispatch request retiring.  While we have the work queue
2015          * to handle this, the waiter on a request often wants an associated
2016          * buffer to have made it to the inactive list, and we would need
2017          * a separate wait queue to handle that.
2018          */
2019         if (ret == 0)
2020                 i915_gem_retire_requests_ring(dev, ring);
2021
2022         return ret;
2023 }
2024
2025 /**
2026  * Waits for a sequence number to be signaled, and cleans up the
2027  * request and object lists appropriately for that event.
2028  */
2029 static int
2030 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2031                   struct intel_ring_buffer *ring)
2032 {
2033         return i915_do_wait_request(dev, seqno, 1, ring);
2034 }
2035
2036 static void
2037 i915_gem_flush_ring(struct drm_device *dev,
2038                     struct drm_file *file_priv,
2039                     struct intel_ring_buffer *ring,
2040                     uint32_t invalidate_domains,
2041                     uint32_t flush_domains)
2042 {
2043         ring->flush(dev, ring, invalidate_domains, flush_domains);
2044         i915_gem_process_flushing_list(dev, flush_domains, ring);
2045 }
2046
2047 static void
2048 i915_gem_flush(struct drm_device *dev,
2049                struct drm_file *file_priv,
2050                uint32_t invalidate_domains,
2051                uint32_t flush_domains,
2052                uint32_t flush_rings)
2053 {
2054         drm_i915_private_t *dev_priv = dev->dev_private;
2055
2056         if (flush_domains & I915_GEM_DOMAIN_CPU)
2057                 drm_agp_chipset_flush(dev);
2058
2059         if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2060                 if (flush_rings & RING_RENDER)
2061                         i915_gem_flush_ring(dev, file_priv,
2062                                             &dev_priv->render_ring,
2063                                             invalidate_domains, flush_domains);
2064                 if (flush_rings & RING_BSD)
2065                         i915_gem_flush_ring(dev, file_priv,
2066                                             &dev_priv->bsd_ring,
2067                                             invalidate_domains, flush_domains);
2068                 if (flush_rings & RING_BLT)
2069                         i915_gem_flush_ring(dev, file_priv,
2070                                             &dev_priv->blt_ring,
2071                                             invalidate_domains, flush_domains);
2072         }
2073 }
2074
2075 /**
2076  * Ensures that all rendering to the object has completed and the object is
2077  * safe to unbind from the GTT or access from the CPU.
2078  */
2079 static int
2080 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2081                                bool interruptible)
2082 {
2083         struct drm_device *dev = obj->dev;
2084         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2085         int ret;
2086
2087         /* This function only exists to support waiting for existing rendering,
2088          * not for emitting required flushes.
2089          */
2090         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2091
2092         /* If there is rendering queued on the buffer being evicted, wait for
2093          * it.
2094          */
2095         if (obj_priv->active) {
2096                 ret = i915_do_wait_request(dev,
2097                                            obj_priv->last_rendering_seqno,
2098                                            interruptible,
2099                                            obj_priv->ring);
2100                 if (ret)
2101                         return ret;
2102         }
2103
2104         return 0;
2105 }
2106
2107 /**
2108  * Unbinds an object from the GTT aperture.
2109  */
2110 int
2111 i915_gem_object_unbind(struct drm_gem_object *obj)
2112 {
2113         struct drm_device *dev = obj->dev;
2114         struct drm_i915_private *dev_priv = dev->dev_private;
2115         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2116         int ret = 0;
2117
2118         if (obj_priv->gtt_space == NULL)
2119                 return 0;
2120
2121         if (obj_priv->pin_count != 0) {
2122                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2123                 return -EINVAL;
2124         }
2125
2126         /* blow away mappings if mapped through GTT */
2127         i915_gem_release_mmap(obj);
2128
2129         /* Move the object to the CPU domain to ensure that
2130          * any possible CPU writes while it's not in the GTT
2131          * are flushed when we go to remap it. This will
2132          * also ensure that all pending GPU writes are finished
2133          * before we unbind.
2134          */
2135         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2136         if (ret == -ERESTARTSYS)
2137                 return ret;
2138         /* Continue on if we fail due to EIO, the GPU is hung so we
2139          * should be safe and we need to cleanup or else we might
2140          * cause memory corruption through use-after-free.
2141          */
2142         if (ret) {
2143                 i915_gem_clflush_object(obj);
2144                 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2145         }
2146
2147         /* release the fence reg _after_ flushing */
2148         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2149                 i915_gem_clear_fence_reg(obj);
2150
2151         drm_unbind_agp(obj_priv->agp_mem);
2152         drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2153
2154         i915_gem_object_put_pages(obj);
2155         BUG_ON(obj_priv->pages_refcount);
2156
2157         i915_gem_info_remove_gtt(dev_priv, obj->size);
2158         list_del_init(&obj_priv->mm_list);
2159
2160         drm_mm_put_block(obj_priv->gtt_space);
2161         obj_priv->gtt_space = NULL;
2162         obj_priv->gtt_offset = 0;
2163
2164         if (i915_gem_object_is_purgeable(obj_priv))
2165                 i915_gem_object_truncate(obj);
2166
2167         trace_i915_gem_object_unbind(obj);
2168
2169         return ret;
2170 }
2171
2172 static int i915_ring_idle(struct drm_device *dev,
2173                           struct intel_ring_buffer *ring)
2174 {
2175         if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2176                 return 0;
2177
2178         i915_gem_flush_ring(dev, NULL, ring,
2179                             I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2180         return i915_wait_request(dev,
2181                                  i915_gem_next_request_seqno(dev, ring),
2182                                  ring);
2183 }
2184
2185 int
2186 i915_gpu_idle(struct drm_device *dev)
2187 {
2188         drm_i915_private_t *dev_priv = dev->dev_private;
2189         bool lists_empty;
2190         int ret;
2191
2192         lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2193                        list_empty(&dev_priv->mm.active_list));
2194         if (lists_empty)
2195                 return 0;
2196
2197         /* Flush everything onto the inactive list. */
2198         ret = i915_ring_idle(dev, &dev_priv->render_ring);
2199         if (ret)
2200                 return ret;
2201
2202         ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2203         if (ret)
2204                 return ret;
2205
2206         ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2207         if (ret)
2208                 return ret;
2209
2210         return 0;
2211 }
2212
2213 static int
2214 i915_gem_object_get_pages(struct drm_gem_object *obj,
2215                           gfp_t gfpmask)
2216 {
2217         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2218         int page_count, i;
2219         struct address_space *mapping;
2220         struct inode *inode;
2221         struct page *page;
2222
2223         BUG_ON(obj_priv->pages_refcount
2224                         == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2225
2226         if (obj_priv->pages_refcount++ != 0)
2227                 return 0;
2228
2229         /* Get the list of pages out of our struct file.  They'll be pinned
2230          * at this point until we release them.
2231          */
2232         page_count = obj->size / PAGE_SIZE;
2233         BUG_ON(obj_priv->pages != NULL);
2234         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2235         if (obj_priv->pages == NULL) {
2236                 obj_priv->pages_refcount--;
2237                 return -ENOMEM;
2238         }
2239
2240         inode = obj->filp->f_path.dentry->d_inode;
2241         mapping = inode->i_mapping;
2242         for (i = 0; i < page_count; i++) {
2243                 page = read_cache_page_gfp(mapping, i,
2244                                            GFP_HIGHUSER |
2245                                            __GFP_COLD |
2246                                            __GFP_RECLAIMABLE |
2247                                            gfpmask);
2248                 if (IS_ERR(page))
2249                         goto err_pages;
2250
2251                 obj_priv->pages[i] = page;
2252         }
2253
2254         if (obj_priv->tiling_mode != I915_TILING_NONE)
2255                 i915_gem_object_do_bit_17_swizzle(obj);
2256
2257         return 0;
2258
2259 err_pages:
2260         while (i--)
2261                 page_cache_release(obj_priv->pages[i]);
2262
2263         drm_free_large(obj_priv->pages);
2264         obj_priv->pages = NULL;
2265         obj_priv->pages_refcount--;
2266         return PTR_ERR(page);
2267 }
2268
2269 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2270 {
2271         struct drm_gem_object *obj = reg->obj;
2272         struct drm_device *dev = obj->dev;
2273         drm_i915_private_t *dev_priv = dev->dev_private;
2274         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2275         int regnum = obj_priv->fence_reg;
2276         uint64_t val;
2277
2278         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2279                     0xfffff000) << 32;
2280         val |= obj_priv->gtt_offset & 0xfffff000;
2281         val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2282                 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2283
2284         if (obj_priv->tiling_mode == I915_TILING_Y)
2285                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2286         val |= I965_FENCE_REG_VALID;
2287
2288         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2289 }
2290
2291 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2292 {
2293         struct drm_gem_object *obj = reg->obj;
2294         struct drm_device *dev = obj->dev;
2295         drm_i915_private_t *dev_priv = dev->dev_private;
2296         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2297         int regnum = obj_priv->fence_reg;
2298         uint64_t val;
2299
2300         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2301                     0xfffff000) << 32;
2302         val |= obj_priv->gtt_offset & 0xfffff000;
2303         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2304         if (obj_priv->tiling_mode == I915_TILING_Y)
2305                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2306         val |= I965_FENCE_REG_VALID;
2307
2308         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2309 }
2310
2311 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2312 {
2313         struct drm_gem_object *obj = reg->obj;
2314         struct drm_device *dev = obj->dev;
2315         drm_i915_private_t *dev_priv = dev->dev_private;
2316         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2317         int regnum = obj_priv->fence_reg;
2318         int tile_width;
2319         uint32_t fence_reg, val;
2320         uint32_t pitch_val;
2321
2322         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2323             (obj_priv->gtt_offset & (obj->size - 1))) {
2324                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2325                      __func__, obj_priv->gtt_offset, obj->size);
2326                 return;
2327         }
2328
2329         if (obj_priv->tiling_mode == I915_TILING_Y &&
2330             HAS_128_BYTE_Y_TILING(dev))
2331                 tile_width = 128;
2332         else
2333                 tile_width = 512;
2334
2335         /* Note: pitch better be a power of two tile widths */
2336         pitch_val = obj_priv->stride / tile_width;
2337         pitch_val = ffs(pitch_val) - 1;
2338
2339         if (obj_priv->tiling_mode == I915_TILING_Y &&
2340             HAS_128_BYTE_Y_TILING(dev))
2341                 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2342         else
2343                 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2344
2345         val = obj_priv->gtt_offset;
2346         if (obj_priv->tiling_mode == I915_TILING_Y)
2347                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2348         val |= I915_FENCE_SIZE_BITS(obj->size);
2349         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2350         val |= I830_FENCE_REG_VALID;
2351
2352         if (regnum < 8)
2353                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2354         else
2355                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2356         I915_WRITE(fence_reg, val);
2357 }
2358
2359 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2360 {
2361         struct drm_gem_object *obj = reg->obj;
2362         struct drm_device *dev = obj->dev;
2363         drm_i915_private_t *dev_priv = dev->dev_private;
2364         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2365         int regnum = obj_priv->fence_reg;
2366         uint32_t val;
2367         uint32_t pitch_val;
2368         uint32_t fence_size_bits;
2369
2370         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2371             (obj_priv->gtt_offset & (obj->size - 1))) {
2372                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2373                      __func__, obj_priv->gtt_offset);
2374                 return;
2375         }
2376
2377         pitch_val = obj_priv->stride / 128;
2378         pitch_val = ffs(pitch_val) - 1;
2379         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2380
2381         val = obj_priv->gtt_offset;
2382         if (obj_priv->tiling_mode == I915_TILING_Y)
2383                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2384         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2385         WARN_ON(fence_size_bits & ~0x00000f00);
2386         val |= fence_size_bits;
2387         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2388         val |= I830_FENCE_REG_VALID;
2389
2390         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2391 }
2392
2393 static int i915_find_fence_reg(struct drm_device *dev,
2394                                bool interruptible)
2395 {
2396         struct drm_i915_fence_reg *reg = NULL;
2397         struct drm_i915_gem_object *obj_priv = NULL;
2398         struct drm_i915_private *dev_priv = dev->dev_private;
2399         struct drm_gem_object *obj = NULL;
2400         int i, avail, ret;
2401
2402         /* First try to find a free reg */
2403         avail = 0;
2404         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2405                 reg = &dev_priv->fence_regs[i];
2406                 if (!reg->obj)
2407                         return i;
2408
2409                 obj_priv = to_intel_bo(reg->obj);
2410                 if (!obj_priv->pin_count)
2411                     avail++;
2412         }
2413
2414         if (avail == 0)
2415                 return -ENOSPC;
2416
2417         /* None available, try to steal one or wait for a user to finish */
2418         i = I915_FENCE_REG_NONE;
2419         list_for_each_entry(reg, &dev_priv->mm.fence_list,
2420                             lru_list) {
2421                 obj = reg->obj;
2422                 obj_priv = to_intel_bo(obj);
2423
2424                 if (obj_priv->pin_count)
2425                         continue;
2426
2427                 /* found one! */
2428                 i = obj_priv->fence_reg;
2429                 break;
2430         }
2431
2432         BUG_ON(i == I915_FENCE_REG_NONE);
2433
2434         /* We only have a reference on obj from the active list. put_fence_reg
2435          * might drop that one, causing a use-after-free in it. So hold a
2436          * private reference to obj like the other callers of put_fence_reg
2437          * (set_tiling ioctl) do. */
2438         drm_gem_object_reference(obj);
2439         ret = i915_gem_object_put_fence_reg(obj, interruptible);
2440         drm_gem_object_unreference(obj);
2441         if (ret != 0)
2442                 return ret;
2443
2444         return i;
2445 }
2446
2447 /**
2448  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2449  * @obj: object to map through a fence reg
2450  *
2451  * When mapping objects through the GTT, userspace wants to be able to write
2452  * to them without having to worry about swizzling if the object is tiled.
2453  *
2454  * This function walks the fence regs looking for a free one for @obj,
2455  * stealing one if it can't find any.
2456  *
2457  * It then sets up the reg based on the object's properties: address, pitch
2458  * and tiling format.
2459  */
2460 int
2461 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2462                               bool interruptible)
2463 {
2464         struct drm_device *dev = obj->dev;
2465         struct drm_i915_private *dev_priv = dev->dev_private;
2466         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2467         struct drm_i915_fence_reg *reg = NULL;
2468         int ret;
2469
2470         /* Just update our place in the LRU if our fence is getting used. */
2471         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2472                 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2473                 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2474                 return 0;
2475         }
2476
2477         switch (obj_priv->tiling_mode) {
2478         case I915_TILING_NONE:
2479                 WARN(1, "allocating a fence for non-tiled object?\n");
2480                 break;
2481         case I915_TILING_X:
2482                 if (!obj_priv->stride)
2483                         return -EINVAL;
2484                 WARN((obj_priv->stride & (512 - 1)),
2485                      "object 0x%08x is X tiled but has non-512B pitch\n",
2486                      obj_priv->gtt_offset);
2487                 break;
2488         case I915_TILING_Y:
2489                 if (!obj_priv->stride)
2490                         return -EINVAL;
2491                 WARN((obj_priv->stride & (128 - 1)),
2492                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2493                      obj_priv->gtt_offset);
2494                 break;
2495         }
2496
2497         ret = i915_find_fence_reg(dev, interruptible);
2498         if (ret < 0)
2499                 return ret;
2500
2501         obj_priv->fence_reg = ret;
2502         reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2503         list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2504
2505         reg->obj = obj;
2506
2507         switch (INTEL_INFO(dev)->gen) {
2508         case 6:
2509                 sandybridge_write_fence_reg(reg);
2510                 break;
2511         case 5:
2512         case 4:
2513                 i965_write_fence_reg(reg);
2514                 break;
2515         case 3:
2516                 i915_write_fence_reg(reg);
2517                 break;
2518         case 2:
2519                 i830_write_fence_reg(reg);
2520                 break;
2521         }
2522
2523         trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2524                         obj_priv->tiling_mode);
2525
2526         return 0;
2527 }
2528
2529 /**
2530  * i915_gem_clear_fence_reg - clear out fence register info
2531  * @obj: object to clear
2532  *
2533  * Zeroes out the fence register itself and clears out the associated
2534  * data structures in dev_priv and obj_priv.
2535  */
2536 static void
2537 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2538 {
2539         struct drm_device *dev = obj->dev;
2540         drm_i915_private_t *dev_priv = dev->dev_private;
2541         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2542         struct drm_i915_fence_reg *reg =
2543                 &dev_priv->fence_regs[obj_priv->fence_reg];
2544         uint32_t fence_reg;
2545
2546         switch (INTEL_INFO(dev)->gen) {
2547         case 6:
2548                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2549                              (obj_priv->fence_reg * 8), 0);
2550                 break;
2551         case 5:
2552         case 4:
2553                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2554                 break;
2555         case 3:
2556                 if (obj_priv->fence_reg >= 8)
2557                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2558                 else
2559         case 2:
2560                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2561
2562                 I915_WRITE(fence_reg, 0);
2563                 break;
2564         }
2565
2566         reg->obj = NULL;
2567         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2568         list_del_init(&reg->lru_list);
2569 }
2570
2571 /**
2572  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2573  * to the buffer to finish, and then resets the fence register.
2574  * @obj: tiled object holding a fence register.
2575  * @bool: whether the wait upon the fence is interruptible
2576  *
2577  * Zeroes out the fence register itself and clears out the associated
2578  * data structures in dev_priv and obj_priv.
2579  */
2580 int
2581 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2582                               bool interruptible)
2583 {
2584         struct drm_device *dev = obj->dev;
2585         struct drm_i915_private *dev_priv = dev->dev_private;
2586         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2587         struct drm_i915_fence_reg *reg;
2588
2589         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2590                 return 0;
2591
2592         /* If we've changed tiling, GTT-mappings of the object
2593          * need to re-fault to ensure that the correct fence register
2594          * setup is in place.
2595          */
2596         i915_gem_release_mmap(obj);
2597
2598         /* On the i915, GPU access to tiled buffers is via a fence,
2599          * therefore we must wait for any outstanding access to complete
2600          * before clearing the fence.
2601          */
2602         reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2603         if (reg->gpu) {
2604                 int ret;
2605
2606                 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2607                 if (ret)
2608                         return ret;
2609
2610                 ret = i915_gem_object_wait_rendering(obj, interruptible);
2611                 if (ret)
2612                         return ret;
2613
2614                 reg->gpu = false;
2615         }
2616
2617         i915_gem_object_flush_gtt_write_domain(obj);
2618         i915_gem_clear_fence_reg(obj);
2619
2620         return 0;
2621 }
2622
2623 /**
2624  * Finds free space in the GTT aperture and binds the object there.
2625  */
2626 static int
2627 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2628 {
2629         struct drm_device *dev = obj->dev;
2630         drm_i915_private_t *dev_priv = dev->dev_private;
2631         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2632         struct drm_mm_node *free_space;
2633         gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2634         int ret;
2635
2636         if (obj_priv->madv != I915_MADV_WILLNEED) {
2637                 DRM_ERROR("Attempting to bind a purgeable object\n");
2638                 return -EINVAL;
2639         }
2640
2641         if (alignment == 0)
2642                 alignment = i915_gem_get_gtt_alignment(obj);
2643         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2644                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2645                 return -EINVAL;
2646         }
2647
2648         /* If the object is bigger than the entire aperture, reject it early
2649          * before evicting everything in a vain attempt to find space.
2650          */
2651         if (obj->size > dev_priv->mm.gtt_total) {
2652                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2653                 return -E2BIG;
2654         }
2655
2656  search_free:
2657         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2658                                         obj->size, alignment, 0);
2659         if (free_space != NULL)
2660                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2661                                                        alignment);
2662         if (obj_priv->gtt_space == NULL) {
2663                 /* If the gtt is empty and we're still having trouble
2664                  * fitting our object in, we're out of memory.
2665                  */
2666                 ret = i915_gem_evict_something(dev, obj->size, alignment);
2667                 if (ret)
2668                         return ret;
2669
2670                 goto search_free;
2671         }
2672
2673         ret = i915_gem_object_get_pages(obj, gfpmask);
2674         if (ret) {
2675                 drm_mm_put_block(obj_priv->gtt_space);
2676                 obj_priv->gtt_space = NULL;
2677
2678                 if (ret == -ENOMEM) {
2679                         /* first try to clear up some space from the GTT */
2680                         ret = i915_gem_evict_something(dev, obj->size,
2681                                                        alignment);
2682                         if (ret) {
2683                                 /* now try to shrink everyone else */
2684                                 if (gfpmask) {
2685                                         gfpmask = 0;
2686                                         goto search_free;
2687                                 }
2688
2689                                 return ret;
2690                         }
2691
2692                         goto search_free;
2693                 }
2694
2695                 return ret;
2696         }
2697
2698         /* Create an AGP memory structure pointing at our pages, and bind it
2699          * into the GTT.
2700          */
2701         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2702                                                obj_priv->pages,
2703                                                obj->size >> PAGE_SHIFT,
2704                                                obj_priv->gtt_space->start,
2705                                                obj_priv->agp_type);
2706         if (obj_priv->agp_mem == NULL) {
2707                 i915_gem_object_put_pages(obj);
2708                 drm_mm_put_block(obj_priv->gtt_space);
2709                 obj_priv->gtt_space = NULL;
2710
2711                 ret = i915_gem_evict_something(dev, obj->size, alignment);
2712                 if (ret)
2713                         return ret;
2714
2715                 goto search_free;
2716         }
2717
2718         /* keep track of bounds object by adding it to the inactive list */
2719         list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2720         i915_gem_info_add_gtt(dev_priv, obj->size);
2721
2722         /* Assert that the object is not currently in any GPU domain. As it
2723          * wasn't in the GTT, there shouldn't be any way it could have been in
2724          * a GPU cache
2725          */
2726         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2727         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2728
2729         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2730         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2731
2732         return 0;
2733 }
2734
2735 void
2736 i915_gem_clflush_object(struct drm_gem_object *obj)
2737 {
2738         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
2739
2740         /* If we don't have a page list set up, then we're not pinned
2741          * to GPU, and we can ignore the cache flush because it'll happen
2742          * again at bind time.
2743          */
2744         if (obj_priv->pages == NULL)
2745                 return;
2746
2747         trace_i915_gem_object_clflush(obj);
2748
2749         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2750 }
2751
2752 /** Flushes any GPU write domain for the object if it's dirty. */
2753 static int
2754 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2755                                        bool pipelined)
2756 {
2757         struct drm_device *dev = obj->dev;
2758         uint32_t old_write_domain;
2759
2760         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2761                 return 0;
2762
2763         /* Queue the GPU write cache flushing we need. */
2764         old_write_domain = obj->write_domain;
2765         i915_gem_flush_ring(dev, NULL,
2766                             to_intel_bo(obj)->ring,
2767                             0, obj->write_domain);
2768         BUG_ON(obj->write_domain);
2769
2770         trace_i915_gem_object_change_domain(obj,
2771                                             obj->read_domains,
2772                                             old_write_domain);
2773
2774         if (pipelined)
2775                 return 0;
2776
2777         return i915_gem_object_wait_rendering(obj, true);
2778 }
2779
2780 /** Flushes the GTT write domain for the object if it's dirty. */
2781 static void
2782 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2783 {
2784         uint32_t old_write_domain;
2785
2786         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2787                 return;
2788
2789         /* No actual flushing is required for the GTT write domain.   Writes
2790          * to it immediately go to main memory as far as we know, so there's
2791          * no chipset flush.  It also doesn't land in render cache.
2792          */
2793         old_write_domain = obj->write_domain;
2794         obj->write_domain = 0;
2795
2796         trace_i915_gem_object_change_domain(obj,
2797                                             obj->read_domains,
2798                                             old_write_domain);
2799 }
2800
2801 /** Flushes the CPU write domain for the object if it's dirty. */
2802 static void
2803 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2804 {
2805         struct drm_device *dev = obj->dev;
2806         uint32_t old_write_domain;
2807
2808         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2809                 return;
2810
2811         i915_gem_clflush_object(obj);
2812         drm_agp_chipset_flush(dev);
2813         old_write_domain = obj->write_domain;
2814         obj->write_domain = 0;
2815
2816         trace_i915_gem_object_change_domain(obj,
2817                                             obj->read_domains,
2818                                             old_write_domain);
2819 }
2820
2821 /**
2822  * Moves a single object to the GTT read, and possibly write domain.
2823  *
2824  * This function returns when the move is complete, including waiting on
2825  * flushes to occur.
2826  */
2827 int
2828 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2829 {
2830         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2831         uint32_t old_write_domain, old_read_domains;
2832         int ret;
2833
2834         /* Not valid to be called on unbound objects. */
2835         if (obj_priv->gtt_space == NULL)
2836                 return -EINVAL;
2837
2838         ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2839         if (ret != 0)
2840                 return ret;
2841
2842         i915_gem_object_flush_cpu_write_domain(obj);
2843
2844         if (write) {
2845                 ret = i915_gem_object_wait_rendering(obj, true);
2846                 if (ret)
2847                         return ret;
2848         }
2849
2850         old_write_domain = obj->write_domain;
2851         old_read_domains = obj->read_domains;
2852
2853         /* It should now be out of any other write domains, and we can update
2854          * the domain values for our changes.
2855          */
2856         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2857         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2858         if (write) {
2859                 obj->read_domains = I915_GEM_DOMAIN_GTT;
2860                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2861                 obj_priv->dirty = 1;
2862         }
2863
2864         trace_i915_gem_object_change_domain(obj,
2865                                             old_read_domains,
2866                                             old_write_domain);
2867
2868         return 0;
2869 }
2870
2871 /*
2872  * Prepare buffer for display plane. Use uninterruptible for possible flush
2873  * wait, as in modesetting process we're not supposed to be interrupted.
2874  */
2875 int
2876 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2877                                      bool pipelined)
2878 {
2879         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2880         uint32_t old_read_domains;
2881         int ret;
2882
2883         /* Not valid to be called on unbound objects. */
2884         if (obj_priv->gtt_space == NULL)
2885                 return -EINVAL;
2886
2887         ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2888         if (ret)
2889                 return ret;
2890
2891         /* Currently, we are always called from an non-interruptible context. */
2892         if (!pipelined) {
2893                 ret = i915_gem_object_wait_rendering(obj, false);
2894                 if (ret)
2895                         return ret;
2896         }
2897
2898         i915_gem_object_flush_cpu_write_domain(obj);
2899
2900         old_read_domains = obj->read_domains;
2901         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2902
2903         trace_i915_gem_object_change_domain(obj,
2904                                             old_read_domains,
2905                                             obj->write_domain);
2906
2907         return 0;
2908 }
2909
2910 /**
2911  * Moves a single object to the CPU read, and possibly write domain.
2912  *
2913  * This function returns when the move is complete, including waiting on
2914  * flushes to occur.
2915  */
2916 static int
2917 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2918 {
2919         uint32_t old_write_domain, old_read_domains;
2920         int ret;
2921
2922         ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2923         if (ret != 0)
2924                 return ret;
2925
2926         i915_gem_object_flush_gtt_write_domain(obj);
2927
2928         /* If we have a partially-valid cache of the object in the CPU,
2929          * finish invalidating it and free the per-page flags.
2930          */
2931         i915_gem_object_set_to_full_cpu_read_domain(obj);
2932
2933         if (write) {
2934                 ret = i915_gem_object_wait_rendering(obj, true);
2935                 if (ret)
2936                         return ret;
2937         }
2938
2939         old_write_domain = obj->write_domain;
2940         old_read_domains = obj->read_domains;
2941
2942         /* Flush the CPU cache if it's still invalid. */
2943         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2944                 i915_gem_clflush_object(obj);
2945
2946                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2947         }
2948
2949         /* It should now be out of any other write domains, and we can update
2950          * the domain values for our changes.
2951          */
2952         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2953
2954         /* If we're writing through the CPU, then the GPU read domains will
2955          * need to be invalidated at next use.
2956          */
2957         if (write) {
2958                 obj->read_domains = I915_GEM_DOMAIN_CPU;
2959                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2960         }
2961
2962         trace_i915_gem_object_change_domain(obj,
2963                                             old_read_domains,
2964                                             old_write_domain);
2965
2966         return 0;
2967 }
2968
2969 /*
2970  * Set the next domain for the specified object. This
2971  * may not actually perform the necessary flushing/invaliding though,
2972  * as that may want to be batched with other set_domain operations
2973  *
2974  * This is (we hope) the only really tricky part of gem. The goal
2975  * is fairly simple -- track which caches hold bits of the object
2976  * and make sure they remain coherent. A few concrete examples may
2977  * help to explain how it works. For shorthand, we use the notation
2978  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2979  * a pair of read and write domain masks.
2980  *
2981  * Case 1: the batch buffer
2982  *
2983  *      1. Allocated
2984  *      2. Written by CPU
2985  *      3. Mapped to GTT
2986  *      4. Read by GPU
2987  *      5. Unmapped from GTT
2988  *      6. Freed
2989  *
2990  *      Let's take these a step at a time
2991  *
2992  *      1. Allocated
2993  *              Pages allocated from the kernel may still have
2994  *              cache contents, so we set them to (CPU, CPU) always.
2995  *      2. Written by CPU (using pwrite)
2996  *              The pwrite function calls set_domain (CPU, CPU) and
2997  *              this function does nothing (as nothing changes)
2998  *      3. Mapped by GTT
2999  *              This function asserts that the object is not
3000  *              currently in any GPU-based read or write domains
3001  *      4. Read by GPU
3002  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
3003  *              As write_domain is zero, this function adds in the
3004  *              current read domains (CPU+COMMAND, 0).
3005  *              flush_domains is set to CPU.
3006  *              invalidate_domains is set to COMMAND
3007  *              clflush is run to get data out of the CPU caches
3008  *              then i915_dev_set_domain calls i915_gem_flush to
3009  *              emit an MI_FLUSH and drm_agp_chipset_flush
3010  *      5. Unmapped from GTT
3011  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
3012  *              flush_domains and invalidate_domains end up both zero
3013  *              so no flushing/invalidating happens
3014  *      6. Freed
3015  *              yay, done
3016  *
3017  * Case 2: The shared render buffer
3018  *
3019  *      1. Allocated
3020  *      2. Mapped to GTT
3021  *      3. Read/written by GPU
3022  *      4. set_domain to (CPU,CPU)
3023  *      5. Read/written by CPU
3024  *      6. Read/written by GPU
3025  *
3026  *      1. Allocated
3027  *              Same as last example, (CPU, CPU)
3028  *      2. Mapped to GTT
3029  *              Nothing changes (assertions find that it is not in the GPU)
3030  *      3. Read/written by GPU
3031  *              execbuffer calls set_domain (RENDER, RENDER)
3032  *              flush_domains gets CPU
3033  *              invalidate_domains gets GPU
3034  *              clflush (obj)
3035  *              MI_FLUSH and drm_agp_chipset_flush
3036  *      4. set_domain (CPU, CPU)
3037  *              flush_domains gets GPU
3038  *              invalidate_domains gets CPU
3039  *              wait_rendering (obj) to make sure all drawing is complete.
3040  *              This will include an MI_FLUSH to get the data from GPU
3041  *              to memory
3042  *              clflush (obj) to invalidate the CPU cache
3043  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3044  *      5. Read/written by CPU
3045  *              cache lines are loaded and dirtied
3046  *      6. Read written by GPU
3047  *              Same as last GPU access
3048  *
3049  * Case 3: The constant buffer
3050  *
3051  *      1. Allocated
3052  *      2. Written by CPU
3053  *      3. Read by GPU
3054  *      4. Updated (written) by CPU again
3055  *      5. Read by GPU
3056  *
3057  *      1. Allocated
3058  *              (CPU, CPU)
3059  *      2. Written by CPU
3060  *              (CPU, CPU)
3061  *      3. Read by GPU
3062  *              (CPU+RENDER, 0)
3063  *              flush_domains = CPU
3064  *              invalidate_domains = RENDER
3065  *              clflush (obj)
3066  *              MI_FLUSH
3067  *              drm_agp_chipset_flush
3068  *      4. Updated (written) by CPU again
3069  *              (CPU, CPU)
3070  *              flush_domains = 0 (no previous write domain)
3071  *              invalidate_domains = 0 (no new read domains)
3072  *      5. Read by GPU
3073  *              (CPU+RENDER, 0)
3074  *              flush_domains = CPU
3075  *              invalidate_domains = RENDER
3076  *              clflush (obj)
3077  *              MI_FLUSH
3078  *              drm_agp_chipset_flush
3079  */
3080 static void
3081 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3082                                   struct intel_ring_buffer *ring)
3083 {
3084         struct drm_device               *dev = obj->dev;
3085         struct drm_i915_private         *dev_priv = dev->dev_private;
3086         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
3087         uint32_t                        invalidate_domains = 0;
3088         uint32_t                        flush_domains = 0;
3089         uint32_t                        old_read_domains;
3090
3091         intel_mark_busy(dev, obj);
3092
3093         /*
3094          * If the object isn't moving to a new write domain,
3095          * let the object stay in multiple read domains
3096          */
3097         if (obj->pending_write_domain == 0)
3098                 obj->pending_read_domains |= obj->read_domains;
3099         else
3100                 obj_priv->dirty = 1;
3101
3102         /*
3103          * Flush the current write domain if
3104          * the new read domains don't match. Invalidate
3105          * any read domains which differ from the old
3106          * write domain
3107          */
3108         if (obj->write_domain &&
3109             (obj->write_domain != obj->pending_read_domains ||
3110              obj_priv->ring != ring)) {
3111                 flush_domains |= obj->write_domain;
3112                 invalidate_domains |=
3113                         obj->pending_read_domains & ~obj->write_domain;
3114         }
3115         /*
3116          * Invalidate any read caches which may have
3117          * stale data. That is, any new read domains.
3118          */
3119         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3120         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3121                 i915_gem_clflush_object(obj);
3122
3123         old_read_domains = obj->read_domains;
3124
3125         /* The actual obj->write_domain will be updated with
3126          * pending_write_domain after we emit the accumulated flush for all
3127          * of our domain changes in execbuffers (which clears objects'
3128          * write_domains).  So if we have a current write domain that we
3129          * aren't changing, set pending_write_domain to that.
3130          */
3131         if (flush_domains == 0 && obj->pending_write_domain == 0)
3132                 obj->pending_write_domain = obj->write_domain;
3133         obj->read_domains = obj->pending_read_domains;
3134
3135         dev->invalidate_domains |= invalidate_domains;
3136         dev->flush_domains |= flush_domains;
3137         if (flush_domains & I915_GEM_GPU_DOMAINS)
3138                 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3139         if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3140                 dev_priv->mm.flush_rings |= ring->id;
3141
3142         trace_i915_gem_object_change_domain(obj,
3143                                             old_read_domains,
3144                                             obj->write_domain);
3145 }
3146
3147 /**
3148  * Moves the object from a partially CPU read to a full one.
3149  *
3150  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3151  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3152  */
3153 static void
3154 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3155 {
3156         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3157
3158         if (!obj_priv->page_cpu_valid)
3159                 return;
3160
3161         /* If we're partially in the CPU read domain, finish moving it in.
3162          */
3163         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3164                 int i;
3165
3166                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3167                         if (obj_priv->page_cpu_valid[i])
3168                                 continue;
3169                         drm_clflush_pages(obj_priv->pages + i, 1);
3170                 }
3171         }
3172
3173         /* Free the page_cpu_valid mappings which are now stale, whether
3174          * or not we've got I915_GEM_DOMAIN_CPU.
3175          */
3176         kfree(obj_priv->page_cpu_valid);
3177         obj_priv->page_cpu_valid = NULL;
3178 }
3179
3180 /**
3181  * Set the CPU read domain on a range of the object.
3182  *
3183  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3184  * not entirely valid.  The page_cpu_valid member of the object flags which
3185  * pages have been flushed, and will be respected by
3186  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3187  * of the whole object.
3188  *
3189  * This function returns when the move is complete, including waiting on
3190  * flushes to occur.
3191  */
3192 static int
3193 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3194                                           uint64_t offset, uint64_t size)
3195 {
3196         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3197         uint32_t old_read_domains;
3198         int i, ret;
3199
3200         if (offset == 0 && size == obj->size)
3201                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3202
3203         ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3204         if (ret != 0)
3205                 return ret;
3206         i915_gem_object_flush_gtt_write_domain(obj);
3207
3208         /* If we're already fully in the CPU read domain, we're done. */
3209         if (obj_priv->page_cpu_valid == NULL &&
3210             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3211                 return 0;
3212
3213         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3214          * newly adding I915_GEM_DOMAIN_CPU
3215          */
3216         if (obj_priv->page_cpu_valid == NULL) {
3217                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3218                                                    GFP_KERNEL);
3219                 if (obj_priv->page_cpu_valid == NULL)
3220                         return -ENOMEM;
3221         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3222                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3223
3224         /* Flush the cache on any pages that are still invalid from the CPU's
3225          * perspective.
3226          */
3227         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3228              i++) {
3229                 if (obj_priv->page_cpu_valid[i])
3230                         continue;
3231
3232                 drm_clflush_pages(obj_priv->pages + i, 1);
3233
3234                 obj_priv->page_cpu_valid[i] = 1;
3235         }
3236
3237         /* It should now be out of any other write domains, and we can update
3238          * the domain values for our changes.
3239          */
3240         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3241
3242         old_read_domains = obj->read_domains;
3243         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3244
3245         trace_i915_gem_object_change_domain(obj,
3246                                             old_read_domains,
3247                                             obj->write_domain);
3248
3249         return 0;
3250 }
3251
3252 /**
3253  * Pin an object to the GTT and evaluate the relocations landing in it.
3254  */
3255 static int
3256 i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3257                              struct drm_file *file_priv,
3258                              struct drm_i915_gem_exec_object2 *entry)
3259 {
3260         struct drm_device *dev = obj->base.dev;
3261         drm_i915_private_t *dev_priv = dev->dev_private;
3262         struct drm_i915_gem_relocation_entry __user *user_relocs;
3263         struct drm_gem_object *target_obj = NULL;
3264         uint32_t target_handle = 0;
3265         int i, ret = 0;
3266
3267         user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3268         for (i = 0; i < entry->relocation_count; i++) {
3269                 struct drm_i915_gem_relocation_entry reloc;
3270                 uint32_t target_offset;
3271
3272                 if (__copy_from_user_inatomic(&reloc,
3273                                               user_relocs+i,
3274                                               sizeof(reloc))) {
3275                         ret = -EFAULT;
3276                         break;
3277                 }
3278
3279                 if (reloc.target_handle != target_handle) {
3280                         drm_gem_object_unreference(target_obj);
3281
3282                         target_obj = drm_gem_object_lookup(dev, file_priv,
3283                                                            reloc.target_handle);
3284                         if (target_obj == NULL) {
3285                                 ret = -ENOENT;
3286                                 break;
3287                         }
3288
3289                         target_handle = reloc.target_handle;
3290                 }
3291                 target_offset = to_intel_bo(target_obj)->gtt_offset;
3292
3293 #if WATCH_RELOC
3294                 DRM_INFO("%s: obj %p offset %08x target %d "
3295                          "read %08x write %08x gtt %08x "
3296                          "presumed %08x delta %08x\n",
3297                          __func__,
3298                          obj,
3299                          (int) reloc.offset,
3300                          (int) reloc.target_handle,
3301                          (int) reloc.read_domains,
3302                          (int) reloc.write_domain,
3303                          (int) target_offset,
3304                          (int) reloc.presumed_offset,
3305                          reloc.delta);
3306 #endif
3307
3308                 /* The target buffer should have appeared before us in the
3309                  * exec_object list, so it should have a GTT space bound by now.
3310                  */
3311                 if (target_offset == 0) {
3312                         DRM_ERROR("No GTT space found for object %d\n",
3313                                   reloc.target_handle);
3314                         ret = -EINVAL;
3315                         break;
3316                 }
3317
3318                 /* Validate that the target is in a valid r/w GPU domain */
3319                 if (reloc.write_domain & (reloc.write_domain - 1)) {
3320                         DRM_ERROR("reloc with multiple write domains: "
3321                                   "obj %p target %d offset %d "
3322                                   "read %08x write %08x",
3323                                   obj, reloc.target_handle,
3324                                   (int) reloc.offset,
3325                                   reloc.read_domains,
3326                                   reloc.write_domain);
3327                         ret = -EINVAL;
3328                         break;
3329                 }
3330                 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3331                     reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3332                         DRM_ERROR("reloc with read/write CPU domains: "
3333                                   "obj %p target %d offset %d "
3334                                   "read %08x write %08x",
3335                                   obj, reloc.target_handle,
3336                                   (int) reloc.offset,
3337                                   reloc.read_domains,
3338                                   reloc.write_domain);
3339                         ret = -EINVAL;
3340                         break;
3341                 }
3342                 if (reloc.write_domain && target_obj->pending_write_domain &&
3343                     reloc.write_domain != target_obj->pending_write_domain) {
3344                         DRM_ERROR("Write domain conflict: "
3345                                   "obj %p target %d offset %d "
3346                                   "new %08x old %08x\n",
3347                                   obj, reloc.target_handle,
3348                                   (int) reloc.offset,
3349                                   reloc.write_domain,
3350                                   target_obj->pending_write_domain);
3351                         ret = -EINVAL;
3352                         break;
3353                 }
3354
3355                 target_obj->pending_read_domains |= reloc.read_domains;
3356                 target_obj->pending_write_domain |= reloc.write_domain;
3357
3358                 /* If the relocation already has the right value in it, no
3359                  * more work needs to be done.
3360                  */
3361                 if (target_offset == reloc.presumed_offset)
3362                         continue;
3363
3364                 /* Check that the relocation address is valid... */
3365                 if (reloc.offset > obj->base.size - 4) {
3366                         DRM_ERROR("Relocation beyond object bounds: "
3367                                   "obj %p target %d offset %d size %d.\n",
3368                                   obj, reloc.target_handle,
3369                                   (int) reloc.offset, (int) obj->base.size);
3370                         ret = -EINVAL;
3371                         break;
3372                 }
3373                 if (reloc.offset & 3) {
3374                         DRM_ERROR("Relocation not 4-byte aligned: "
3375                                   "obj %p target %d offset %d.\n",
3376                                   obj, reloc.target_handle,
3377                                   (int) reloc.offset);
3378                         ret = -EINVAL;
3379                         break;
3380                 }
3381
3382                 /* and points to somewhere within the target object. */
3383                 if (reloc.delta >= target_obj->size) {
3384                         DRM_ERROR("Relocation beyond target object bounds: "
3385                                   "obj %p target %d delta %d size %d.\n",
3386                                   obj, reloc.target_handle,
3387                                   (int) reloc.delta, (int) target_obj->size);
3388                         ret = -EINVAL;
3389                         break;
3390                 }
3391
3392                 reloc.delta += target_offset;
3393                 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3394                         uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3395                         char *vaddr;
3396
3397                         vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3398                         *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3399                         kunmap_atomic(vaddr);
3400                 } else {
3401                         uint32_t __iomem *reloc_entry;
3402                         void __iomem *reloc_page;
3403
3404                         ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3405                         if (ret)
3406                                 break;
3407
3408                         /* Map the page containing the relocation we're going to perform.  */
3409                         reloc.offset += obj->gtt_offset;
3410                         reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3411                                                               reloc.offset & PAGE_MASK);
3412                         reloc_entry = (uint32_t __iomem *)
3413                                 (reloc_page + (reloc.offset & ~PAGE_MASK));
3414                         iowrite32(reloc.delta, reloc_entry);
3415                         io_mapping_unmap_atomic(reloc_page);
3416                 }
3417
3418                 /* and update the user's relocation entry */
3419                 reloc.presumed_offset = target_offset;
3420                 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3421                                               &reloc.presumed_offset,
3422                                               sizeof(reloc.presumed_offset))) {
3423                     ret = -EFAULT;
3424                     break;
3425                 }
3426         }
3427
3428         drm_gem_object_unreference(target_obj);
3429         return ret;
3430 }
3431
3432 static int
3433 i915_gem_execbuffer_pin(struct drm_device *dev,
3434                         struct drm_file *file,
3435                         struct drm_gem_object **object_list,
3436                         struct drm_i915_gem_exec_object2 *exec_list,
3437                         int count)
3438 {
3439         struct drm_i915_private *dev_priv = dev->dev_private;
3440         int ret, i, retry;
3441
3442         /* attempt to pin all of the buffers into the GTT */
3443         for (retry = 0; retry < 2; retry++) {
3444                 ret = 0;
3445                 for (i = 0; i < count; i++) {
3446                         struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3447                         struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
3448                         bool need_fence =
3449                                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3450                                 obj->tiling_mode != I915_TILING_NONE;
3451
3452                         /* Check fence reg constraints and rebind if necessary */
3453                         if (need_fence &&
3454                             !i915_gem_object_fence_offset_ok(&obj->base,
3455                                                              obj->tiling_mode)) {
3456                                 ret = i915_gem_object_unbind(&obj->base);
3457                                 if (ret)
3458                                         break;
3459                         }
3460
3461                         ret = i915_gem_object_pin(&obj->base, entry->alignment);
3462                         if (ret)
3463                                 break;
3464
3465                         /*
3466                          * Pre-965 chips need a fence register set up in order
3467                          * to properly handle blits to/from tiled surfaces.
3468                          */
3469                         if (need_fence) {
3470                                 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3471                                 if (ret) {
3472                                         i915_gem_object_unpin(&obj->base);
3473                                         break;
3474                                 }
3475
3476                                 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3477                         }
3478
3479                         entry->offset = obj->gtt_offset;
3480                 }
3481
3482                 while (i--)
3483                         i915_gem_object_unpin(object_list[i]);
3484
3485                 if (ret == 0)
3486                         break;
3487
3488                 if (ret != -ENOSPC || retry)
3489                         return ret;
3490
3491                 ret = i915_gem_evict_everything(dev);
3492                 if (ret)
3493                         return ret;
3494         }
3495
3496         return 0;
3497 }
3498
3499 static int
3500 i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3501                                 struct drm_file *file,
3502                                 struct intel_ring_buffer *ring,
3503                                 struct drm_gem_object **objects,
3504                                 int count)
3505 {
3506         struct drm_i915_private *dev_priv = dev->dev_private;
3507         int ret, i;
3508
3509         /* Zero the global flush/invalidate flags. These
3510          * will be modified as new domains are computed
3511          * for each object
3512          */
3513         dev->invalidate_domains = 0;
3514         dev->flush_domains = 0;
3515         dev_priv->mm.flush_rings = 0;
3516         for (i = 0; i < count; i++)
3517                 i915_gem_object_set_to_gpu_domain(objects[i], ring);
3518
3519         if (dev->invalidate_domains | dev->flush_domains) {
3520 #if WATCH_EXEC
3521                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3522                           __func__,
3523                          dev->invalidate_domains,
3524                          dev->flush_domains);
3525 #endif
3526                 i915_gem_flush(dev, file,
3527                                dev->invalidate_domains,
3528                                dev->flush_domains,
3529                                dev_priv->mm.flush_rings);
3530         }
3531
3532         for (i = 0; i < count; i++) {
3533                 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3534                 /* XXX replace with semaphores */
3535                 if (obj->ring && ring != obj->ring) {
3536                         ret = i915_gem_object_wait_rendering(&obj->base, true);
3537                         if (ret)
3538                                 return ret;
3539                 }
3540         }
3541
3542         return 0;
3543 }
3544
3545 /* Throttle our rendering by waiting until the ring has completed our requests
3546  * emitted over 20 msec ago.
3547  *
3548  * Note that if we were to use the current jiffies each time around the loop,
3549  * we wouldn't escape the function with any frames outstanding if the time to
3550  * render a frame was over 20ms.
3551  *
3552  * This should get us reasonable parallelism between CPU and GPU but also
3553  * relatively low latency when blocking on a particular request to finish.
3554  */
3555 static int
3556 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3557 {
3558         struct drm_i915_private *dev_priv = dev->dev_private;
3559         struct drm_i915_file_private *file_priv = file->driver_priv;
3560         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3561         struct drm_i915_gem_request *request;
3562         struct intel_ring_buffer *ring = NULL;
3563         u32 seqno = 0;
3564         int ret;
3565
3566         spin_lock(&file_priv->mm.lock);
3567         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3568                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3569                         break;
3570
3571                 ring = request->ring;
3572                 seqno = request->seqno;
3573         }
3574         spin_unlock(&file_priv->mm.lock);
3575
3576         if (seqno == 0)
3577                 return 0;
3578
3579         ret = 0;
3580         if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3581                 /* And wait for the seqno passing without holding any locks and
3582                  * causing extra latency for others. This is safe as the irq
3583                  * generation is designed to be run atomically and so is
3584                  * lockless.
3585                  */
3586                 ring->user_irq_get(dev, ring);
3587                 ret = wait_event_interruptible(ring->irq_queue,
3588                                                i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3589                                                || atomic_read(&dev_priv->mm.wedged));
3590                 ring->user_irq_put(dev, ring);
3591
3592                 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3593                         ret = -EIO;
3594         }
3595
3596         if (ret == 0)
3597                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3598
3599         return ret;
3600 }
3601
3602 static int
3603 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3604                           uint64_t exec_offset)
3605 {
3606         uint32_t exec_start, exec_len;
3607
3608         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3609         exec_len = (uint32_t) exec->batch_len;
3610
3611         if ((exec_start | exec_len) & 0x7)
3612                 return -EINVAL;
3613
3614         if (!exec_start)
3615                 return -EINVAL;
3616
3617         return 0;
3618 }
3619
3620 static int
3621 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3622                    int count)
3623 {
3624         int i;
3625
3626         for (i = 0; i < count; i++) {
3627                 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3628                 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3629
3630                 if (!access_ok(VERIFY_READ, ptr, length))
3631                         return -EFAULT;
3632
3633                 /* we may also need to update the presumed offsets */
3634                 if (!access_ok(VERIFY_WRITE, ptr, length))
3635                         return -EFAULT;
3636
3637                 if (fault_in_pages_readable(ptr, length))
3638                         return -EFAULT;
3639         }
3640
3641         return 0;
3642 }
3643
3644 static int
3645 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3646                        struct drm_file *file,
3647                        struct drm_i915_gem_execbuffer2 *args,
3648                        struct drm_i915_gem_exec_object2 *exec_list)
3649 {
3650         drm_i915_private_t *dev_priv = dev->dev_private;
3651         struct drm_gem_object **object_list = NULL;
3652         struct drm_gem_object *batch_obj;
3653         struct drm_i915_gem_object *obj_priv;
3654         struct drm_clip_rect *cliprects = NULL;
3655         struct drm_i915_gem_request *request = NULL;
3656         int ret, i, flips;
3657         uint64_t exec_offset;
3658
3659         struct intel_ring_buffer *ring = NULL;
3660
3661         ret = i915_gem_check_is_wedged(dev);
3662         if (ret)
3663                 return ret;
3664
3665         ret = validate_exec_list(exec_list, args->buffer_count);
3666         if (ret)
3667                 return ret;
3668
3669 #if WATCH_EXEC
3670         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3671                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3672 #endif
3673         switch (args->flags & I915_EXEC_RING_MASK) {
3674         case I915_EXEC_DEFAULT:
3675         case I915_EXEC_RENDER:
3676                 ring = &dev_priv->render_ring;
3677                 break;
3678         case I915_EXEC_BSD:
3679                 if (!HAS_BSD(dev)) {
3680                         DRM_ERROR("execbuf with invalid ring (BSD)\n");
3681                         return -EINVAL;
3682                 }
3683                 ring = &dev_priv->bsd_ring;
3684                 break;
3685         case I915_EXEC_BLT:
3686                 if (!HAS_BLT(dev)) {
3687                         DRM_ERROR("execbuf with invalid ring (BLT)\n");
3688                         return -EINVAL;
3689                 }
3690                 ring = &dev_priv->blt_ring;
3691                 break;
3692         default:
3693                 DRM_ERROR("execbuf with unknown ring: %d\n",
3694                           (int)(args->flags & I915_EXEC_RING_MASK));
3695                 return -EINVAL;
3696         }
3697
3698         if (args->buffer_count < 1) {
3699                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3700                 return -EINVAL;
3701         }
3702         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3703         if (object_list == NULL) {
3704                 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3705                           args->buffer_count);
3706                 ret = -ENOMEM;
3707                 goto pre_mutex_err;
3708         }
3709
3710         if (args->num_cliprects != 0) {
3711                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3712                                     GFP_KERNEL);
3713                 if (cliprects == NULL) {
3714                         ret = -ENOMEM;
3715                         goto pre_mutex_err;
3716                 }
3717
3718                 ret = copy_from_user(cliprects,
3719                                      (struct drm_clip_rect __user *)
3720                                      (uintptr_t) args->cliprects_ptr,
3721                                      sizeof(*cliprects) * args->num_cliprects);
3722                 if (ret != 0) {
3723                         DRM_ERROR("copy %d cliprects failed: %d\n",
3724                                   args->num_cliprects, ret);
3725                         ret = -EFAULT;
3726                         goto pre_mutex_err;
3727                 }
3728         }
3729
3730         request = kzalloc(sizeof(*request), GFP_KERNEL);
3731         if (request == NULL) {
3732                 ret = -ENOMEM;
3733                 goto pre_mutex_err;
3734         }
3735
3736         ret = i915_mutex_lock_interruptible(dev);
3737         if (ret)
3738                 goto pre_mutex_err;
3739
3740         if (dev_priv->mm.suspended) {
3741                 mutex_unlock(&dev->struct_mutex);
3742                 ret = -EBUSY;
3743                 goto pre_mutex_err;
3744         }
3745
3746         /* Look up object handles */
3747         for (i = 0; i < args->buffer_count; i++) {
3748                 object_list[i] = drm_gem_object_lookup(dev, file,
3749                                                        exec_list[i].handle);
3750                 if (object_list[i] == NULL) {
3751                         DRM_ERROR("Invalid object handle %d at index %d\n",
3752                                    exec_list[i].handle, i);
3753                         /* prevent error path from reading uninitialized data */
3754                         args->buffer_count = i + 1;
3755                         ret = -ENOENT;
3756                         goto err;
3757                 }
3758
3759                 obj_priv = to_intel_bo(object_list[i]);
3760                 if (obj_priv->in_execbuffer) {
3761                         DRM_ERROR("Object %p appears more than once in object list\n",
3762                                    object_list[i]);
3763                         /* prevent error path from reading uninitialized data */
3764                         args->buffer_count = i + 1;
3765                         ret = -EINVAL;
3766                         goto err;
3767                 }
3768                 obj_priv->in_execbuffer = true;
3769         }
3770
3771         /* Move the objects en-masse into the GTT, evicting if necessary. */
3772         ret = i915_gem_execbuffer_pin(dev, file,
3773                                       object_list, exec_list,
3774                                       args->buffer_count);
3775         if (ret)
3776                 goto err;
3777
3778         /* The objects are in their final locations, apply the relocations. */
3779         for (i = 0; i < args->buffer_count; i++) {
3780                 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3781                 obj->base.pending_read_domains = 0;
3782                 obj->base.pending_write_domain = 0;
3783                 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3784                 if (ret)
3785                         goto err;
3786         }
3787
3788         /* Set the pending read domains for the batch buffer to COMMAND */
3789         batch_obj = object_list[args->buffer_count-1];
3790         if (batch_obj->pending_write_domain) {
3791                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3792                 ret = -EINVAL;
3793                 goto err;
3794         }
3795         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3796
3797         /* Sanity check the batch buffer */
3798         exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3799         ret = i915_gem_check_execbuffer(args, exec_offset);
3800         if (ret != 0) {
3801                 DRM_ERROR("execbuf with invalid offset/length\n");
3802                 goto err;
3803         }
3804
3805         ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
3806                                               object_list, args->buffer_count);
3807         if (ret)
3808                 goto err;
3809
3810         for (i = 0; i < args->buffer_count; i++) {
3811                 struct drm_gem_object *obj = object_list[i];
3812                 uint32_t old_write_domain = obj->write_domain;
3813                 obj->write_domain = obj->pending_write_domain;
3814                 trace_i915_gem_object_change_domain(obj,
3815                                                     obj->read_domains,
3816                                                     old_write_domain);
3817         }
3818
3819 #if WATCH_COHERENCY
3820         for (i = 0; i < args->buffer_count; i++) {
3821                 i915_gem_object_check_coherency(object_list[i],
3822                                                 exec_list[i].handle);
3823         }
3824 #endif
3825
3826 #if WATCH_EXEC
3827         i915_gem_dump_object(batch_obj,
3828                               args->batch_len,
3829                               __func__,
3830                               ~0);
3831 #endif
3832
3833         /* Check for any pending flips. As we only maintain a flip queue depth
3834          * of 1, we can simply insert a WAIT for the next display flip prior
3835          * to executing the batch and avoid stalling the CPU.
3836          */
3837         flips = 0;
3838         for (i = 0; i < args->buffer_count; i++) {
3839                 if (object_list[i]->write_domain)
3840                         flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3841         }
3842         if (flips) {
3843                 int plane, flip_mask;
3844
3845                 for (plane = 0; flips >> plane; plane++) {
3846                         if (((flips >> plane) & 1) == 0)
3847                                 continue;
3848
3849                         if (plane)
3850                                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3851                         else
3852                                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3853
3854                         intel_ring_begin(dev, ring, 2);
3855                         intel_ring_emit(dev, ring,
3856                                         MI_WAIT_FOR_EVENT | flip_mask);
3857                         intel_ring_emit(dev, ring, MI_NOOP);
3858                         intel_ring_advance(dev, ring);
3859                 }
3860         }
3861
3862         /* Exec the batchbuffer */
3863         ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3864                                             cliprects, exec_offset);
3865         if (ret) {
3866                 DRM_ERROR("dispatch failed %d\n", ret);
3867                 goto err;
3868         }
3869
3870         /*
3871          * Ensure that the commands in the batch buffer are
3872          * finished before the interrupt fires
3873          */
3874         i915_retire_commands(dev, ring);
3875
3876         for (i = 0; i < args->buffer_count; i++) {
3877                 struct drm_gem_object *obj = object_list[i];
3878
3879                 i915_gem_object_move_to_active(obj, ring);
3880                 if (obj->write_domain)
3881                         list_move_tail(&to_intel_bo(obj)->gpu_write_list,
3882                                        &ring->gpu_write_list);
3883         }
3884
3885         i915_add_request(dev, file, request, ring);
3886         request = NULL;
3887
3888 err:
3889         for (i = 0; i < args->buffer_count; i++) {
3890                 if (object_list[i]) {
3891                         obj_priv = to_intel_bo(object_list[i]);
3892                         obj_priv->in_execbuffer = false;
3893                 }
3894                 drm_gem_object_unreference(object_list[i]);
3895         }
3896
3897         mutex_unlock(&dev->struct_mutex);
3898
3899 pre_mutex_err:
3900         drm_free_large(object_list);
3901         kfree(cliprects);
3902         kfree(request);
3903
3904         return ret;
3905 }
3906
3907 /*
3908  * Legacy execbuffer just creates an exec2 list from the original exec object
3909  * list array and passes it to the real function.
3910  */
3911 int
3912 i915_gem_execbuffer(struct drm_device *dev, void *data,
3913                     struct drm_file *file_priv)
3914 {
3915         struct drm_i915_gem_execbuffer *args = data;
3916         struct drm_i915_gem_execbuffer2 exec2;
3917         struct drm_i915_gem_exec_object *exec_list = NULL;
3918         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3919         int ret, i;
3920
3921 #if WATCH_EXEC
3922         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3923                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3924 #endif
3925
3926         if (args->buffer_count < 1) {
3927                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3928                 return -EINVAL;
3929         }
3930
3931         /* Copy in the exec list from userland */
3932         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3933         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3934         if (exec_list == NULL || exec2_list == NULL) {
3935                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3936                           args->buffer_count);
3937                 drm_free_large(exec_list);
3938                 drm_free_large(exec2_list);
3939                 return -ENOMEM;
3940         }
3941         ret = copy_from_user(exec_list,
3942                              (struct drm_i915_relocation_entry __user *)
3943                              (uintptr_t) args->buffers_ptr,
3944                              sizeof(*exec_list) * args->buffer_count);
3945         if (ret != 0) {
3946                 DRM_ERROR("copy %d exec entries failed %d\n",
3947                           args->buffer_count, ret);
3948                 drm_free_large(exec_list);
3949                 drm_free_large(exec2_list);
3950                 return -EFAULT;
3951         }
3952
3953         for (i = 0; i < args->buffer_count; i++) {
3954                 exec2_list[i].handle = exec_list[i].handle;
3955                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3956                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3957                 exec2_list[i].alignment = exec_list[i].alignment;
3958                 exec2_list[i].offset = exec_list[i].offset;
3959                 if (INTEL_INFO(dev)->gen < 4)
3960                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3961                 else
3962                         exec2_list[i].flags = 0;
3963         }
3964
3965         exec2.buffers_ptr = args->buffers_ptr;
3966         exec2.buffer_count = args->buffer_count;
3967         exec2.batch_start_offset = args->batch_start_offset;
3968         exec2.batch_len = args->batch_len;
3969         exec2.DR1 = args->DR1;
3970         exec2.DR4 = args->DR4;
3971         exec2.num_cliprects = args->num_cliprects;
3972         exec2.cliprects_ptr = args->cliprects_ptr;
3973         exec2.flags = I915_EXEC_RENDER;
3974
3975         ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3976         if (!ret) {
3977                 /* Copy the new buffer offsets back to the user's exec list. */
3978                 for (i = 0; i < args->buffer_count; i++)
3979                         exec_list[i].offset = exec2_list[i].offset;
3980                 /* ... and back out to userspace */
3981                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3982                                    (uintptr_t) args->buffers_ptr,
3983                                    exec_list,
3984                                    sizeof(*exec_list) * args->buffer_count);
3985                 if (ret) {
3986                         ret = -EFAULT;
3987                         DRM_ERROR("failed to copy %d exec entries "
3988                                   "back to user (%d)\n",
3989                                   args->buffer_count, ret);
3990                 }
3991         }
3992
3993         drm_free_large(exec_list);
3994         drm_free_large(exec2_list);
3995         return ret;
3996 }
3997
3998 int
3999 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4000                      struct drm_file *file_priv)
4001 {
4002         struct drm_i915_gem_execbuffer2 *args = data;
4003         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4004         int ret;
4005
4006 #if WATCH_EXEC
4007         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4008                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4009 #endif
4010
4011         if (args->buffer_count < 1) {
4012                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4013                 return -EINVAL;
4014         }
4015
4016         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4017         if (exec2_list == NULL) {
4018                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4019                           args->buffer_count);
4020                 return -ENOMEM;
4021         }
4022         ret = copy_from_user(exec2_list,
4023                              (struct drm_i915_relocation_entry __user *)
4024                              (uintptr_t) args->buffers_ptr,
4025                              sizeof(*exec2_list) * args->buffer_count);
4026         if (ret != 0) {
4027                 DRM_ERROR("copy %d exec entries failed %d\n",
4028                           args->buffer_count, ret);
4029                 drm_free_large(exec2_list);
4030                 return -EFAULT;
4031         }
4032
4033         ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4034         if (!ret) {
4035                 /* Copy the new buffer offsets back to the user's exec list. */
4036                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4037                                    (uintptr_t) args->buffers_ptr,
4038                                    exec2_list,
4039                                    sizeof(*exec2_list) * args->buffer_count);
4040                 if (ret) {
4041                         ret = -EFAULT;
4042                         DRM_ERROR("failed to copy %d exec entries "
4043                                   "back to user (%d)\n",
4044                                   args->buffer_count, ret);
4045                 }
4046         }
4047
4048         drm_free_large(exec2_list);
4049         return ret;
4050 }
4051
4052 int
4053 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4054 {
4055         struct drm_device *dev = obj->dev;
4056         struct drm_i915_private *dev_priv = dev->dev_private;
4057         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4058         int ret;
4059
4060         BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4061         WARN_ON(i915_verify_lists(dev));
4062
4063         if (obj_priv->gtt_space != NULL) {
4064                 if (alignment == 0)
4065                         alignment = i915_gem_get_gtt_alignment(obj);
4066                 if (obj_priv->gtt_offset & (alignment - 1)) {
4067                         WARN(obj_priv->pin_count,
4068                              "bo is already pinned with incorrect alignment:"
4069                              " offset=%x, req.alignment=%x\n",
4070                              obj_priv->gtt_offset, alignment);
4071                         ret = i915_gem_object_unbind(obj);
4072                         if (ret)
4073                                 return ret;
4074                 }
4075         }
4076
4077         if (obj_priv->gtt_space == NULL) {
4078                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4079                 if (ret)
4080                         return ret;
4081         }
4082
4083         obj_priv->pin_count++;
4084
4085         /* If the object is not active and not pending a flush,
4086          * remove it from the inactive list
4087          */
4088         if (obj_priv->pin_count == 1) {
4089                 i915_gem_info_add_pin(dev_priv, obj->size);
4090                 if (!obj_priv->active)
4091                         list_move_tail(&obj_priv->mm_list,
4092                                        &dev_priv->mm.pinned_list);
4093         }
4094
4095         WARN_ON(i915_verify_lists(dev));
4096         return 0;
4097 }
4098
4099 void
4100 i915_gem_object_unpin(struct drm_gem_object *obj)
4101 {
4102         struct drm_device *dev = obj->dev;
4103         drm_i915_private_t *dev_priv = dev->dev_private;
4104         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4105
4106         WARN_ON(i915_verify_lists(dev));
4107         obj_priv->pin_count--;
4108         BUG_ON(obj_priv->pin_count < 0);
4109         BUG_ON(obj_priv->gtt_space == NULL);
4110
4111         /* If the object is no longer pinned, and is
4112          * neither active nor being flushed, then stick it on
4113          * the inactive list
4114          */
4115         if (obj_priv->pin_count == 0) {
4116                 if (!obj_priv->active)
4117                         list_move_tail(&obj_priv->mm_list,
4118                                        &dev_priv->mm.inactive_list);
4119                 i915_gem_info_remove_pin(dev_priv, obj->size);
4120         }
4121         WARN_ON(i915_verify_lists(dev));
4122 }
4123
4124 int
4125 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4126                    struct drm_file *file_priv)
4127 {
4128         struct drm_i915_gem_pin *args = data;
4129         struct drm_gem_object *obj;
4130         struct drm_i915_gem_object *obj_priv;
4131         int ret;
4132
4133         ret = i915_mutex_lock_interruptible(dev);
4134         if (ret)
4135                 return ret;
4136
4137         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4138         if (obj == NULL) {
4139                 ret = -ENOENT;
4140                 goto unlock;
4141         }
4142         obj_priv = to_intel_bo(obj);
4143
4144         if (obj_priv->madv != I915_MADV_WILLNEED) {
4145                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4146                 ret = -EINVAL;
4147                 goto out;
4148         }
4149
4150         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4151                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4152                           args->handle);
4153                 ret = -EINVAL;
4154                 goto out;
4155         }
4156
4157         obj_priv->user_pin_count++;
4158         obj_priv->pin_filp = file_priv;
4159         if (obj_priv->user_pin_count == 1) {
4160                 ret = i915_gem_object_pin(obj, args->alignment);
4161                 if (ret)
4162                         goto out;
4163         }
4164
4165         /* XXX - flush the CPU caches for pinned objects
4166          * as the X server doesn't manage domains yet
4167          */
4168         i915_gem_object_flush_cpu_write_domain(obj);
4169         args->offset = obj_priv->gtt_offset;
4170 out:
4171         drm_gem_object_unreference(obj);
4172 unlock:
4173         mutex_unlock(&dev->struct_mutex);
4174         return ret;
4175 }
4176
4177 int
4178 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4179                      struct drm_file *file_priv)
4180 {
4181         struct drm_i915_gem_pin *args = data;
4182         struct drm_gem_object *obj;
4183         struct drm_i915_gem_object *obj_priv;
4184         int ret;
4185
4186         ret = i915_mutex_lock_interruptible(dev);
4187         if (ret)
4188                 return ret;
4189
4190         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4191         if (obj == NULL) {
4192                 ret = -ENOENT;
4193                 goto unlock;
4194         }
4195         obj_priv = to_intel_bo(obj);
4196
4197         if (obj_priv->pin_filp != file_priv) {
4198                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4199                           args->handle);
4200                 ret = -EINVAL;
4201                 goto out;
4202         }
4203         obj_priv->user_pin_count--;
4204         if (obj_priv->user_pin_count == 0) {
4205                 obj_priv->pin_filp = NULL;
4206                 i915_gem_object_unpin(obj);
4207         }
4208
4209 out:
4210         drm_gem_object_unreference(obj);
4211 unlock:
4212         mutex_unlock(&dev->struct_mutex);
4213         return ret;
4214 }
4215
4216 int
4217 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4218                     struct drm_file *file_priv)
4219 {
4220         struct drm_i915_gem_busy *args = data;
4221         struct drm_gem_object *obj;
4222         struct drm_i915_gem_object *obj_priv;
4223         int ret;
4224
4225         ret = i915_mutex_lock_interruptible(dev);
4226         if (ret)
4227                 return ret;
4228
4229         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4230         if (obj == NULL) {
4231                 ret = -ENOENT;
4232                 goto unlock;
4233         }
4234         obj_priv = to_intel_bo(obj);
4235
4236         /* Count all active objects as busy, even if they are currently not used
4237          * by the gpu. Users of this interface expect objects to eventually
4238          * become non-busy without any further actions, therefore emit any
4239          * necessary flushes here.
4240          */
4241         args->busy = obj_priv->active;
4242         if (args->busy) {
4243                 /* Unconditionally flush objects, even when the gpu still uses this
4244                  * object. Userspace calling this function indicates that it wants to
4245                  * use this buffer rather sooner than later, so issuing the required
4246                  * flush earlier is beneficial.
4247                  */
4248                 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4249                         i915_gem_flush_ring(dev, file_priv,
4250                                             obj_priv->ring,
4251                                             0, obj->write_domain);
4252
4253                 /* Update the active list for the hardware's current position.
4254                  * Otherwise this only updates on a delayed timer or when irqs
4255                  * are actually unmasked, and our working set ends up being
4256                  * larger than required.
4257                  */
4258                 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4259
4260                 args->busy = obj_priv->active;
4261         }
4262
4263         drm_gem_object_unreference(obj);
4264 unlock:
4265         mutex_unlock(&dev->struct_mutex);
4266         return ret;
4267 }
4268
4269 int
4270 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4271                         struct drm_file *file_priv)
4272 {
4273     return i915_gem_ring_throttle(dev, file_priv);
4274 }
4275
4276 int
4277 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4278                        struct drm_file *file_priv)
4279 {
4280         struct drm_i915_gem_madvise *args = data;
4281         struct drm_gem_object *obj;
4282         struct drm_i915_gem_object *obj_priv;
4283         int ret;
4284
4285         switch (args->madv) {
4286         case I915_MADV_DONTNEED:
4287         case I915_MADV_WILLNEED:
4288             break;
4289         default:
4290             return -EINVAL;
4291         }
4292
4293         ret = i915_mutex_lock_interruptible(dev);
4294         if (ret)
4295                 return ret;
4296
4297         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4298         if (obj == NULL) {
4299                 ret = -ENOENT;
4300                 goto unlock;
4301         }
4302         obj_priv = to_intel_bo(obj);
4303
4304         if (obj_priv->pin_count) {
4305                 ret = -EINVAL;
4306                 goto out;
4307         }
4308
4309         if (obj_priv->madv != __I915_MADV_PURGED)
4310                 obj_priv->madv = args->madv;
4311
4312         /* if the object is no longer bound, discard its backing storage */
4313         if (i915_gem_object_is_purgeable(obj_priv) &&
4314             obj_priv->gtt_space == NULL)
4315                 i915_gem_object_truncate(obj);
4316
4317         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4318
4319 out:
4320         drm_gem_object_unreference(obj);
4321 unlock:
4322         mutex_unlock(&dev->struct_mutex);
4323         return ret;
4324 }
4325
4326 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4327                                               size_t size)
4328 {
4329         struct drm_i915_private *dev_priv = dev->dev_private;
4330         struct drm_i915_gem_object *obj;
4331
4332         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4333         if (obj == NULL)
4334                 return NULL;
4335
4336         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4337                 kfree(obj);
4338                 return NULL;
4339         }
4340
4341         i915_gem_info_add_obj(dev_priv, size);
4342
4343         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4344         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4345
4346         obj->agp_type = AGP_USER_MEMORY;
4347         obj->base.driver_private = NULL;
4348         obj->fence_reg = I915_FENCE_REG_NONE;
4349         INIT_LIST_HEAD(&obj->mm_list);
4350         INIT_LIST_HEAD(&obj->ring_list);
4351         INIT_LIST_HEAD(&obj->gpu_write_list);
4352         obj->madv = I915_MADV_WILLNEED;
4353
4354         return &obj->base;
4355 }
4356
4357 int i915_gem_init_object(struct drm_gem_object *obj)
4358 {
4359         BUG();
4360
4361         return 0;
4362 }
4363
4364 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4365 {
4366         struct drm_device *dev = obj->dev;
4367         drm_i915_private_t *dev_priv = dev->dev_private;
4368         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4369         int ret;
4370
4371         ret = i915_gem_object_unbind(obj);
4372         if (ret == -ERESTARTSYS) {
4373                 list_move(&obj_priv->mm_list,
4374                           &dev_priv->mm.deferred_free_list);
4375                 return;
4376         }
4377
4378         if (obj_priv->mmap_offset)
4379                 i915_gem_free_mmap_offset(obj);
4380
4381         drm_gem_object_release(obj);
4382         i915_gem_info_remove_obj(dev_priv, obj->size);
4383
4384         kfree(obj_priv->page_cpu_valid);
4385         kfree(obj_priv->bit_17);
4386         kfree(obj_priv);
4387 }
4388
4389 void i915_gem_free_object(struct drm_gem_object *obj)
4390 {
4391         struct drm_device *dev = obj->dev;
4392         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4393
4394         trace_i915_gem_object_destroy(obj);
4395
4396         while (obj_priv->pin_count > 0)
4397                 i915_gem_object_unpin(obj);
4398
4399         if (obj_priv->phys_obj)
4400                 i915_gem_detach_phys_object(dev, obj);
4401
4402         i915_gem_free_object_tail(obj);
4403 }
4404
4405 int
4406 i915_gem_idle(struct drm_device *dev)
4407 {
4408         drm_i915_private_t *dev_priv = dev->dev_private;
4409         int ret;
4410
4411         mutex_lock(&dev->struct_mutex);
4412
4413         if (dev_priv->mm.suspended) {
4414                 mutex_unlock(&dev->struct_mutex);
4415                 return 0;
4416         }
4417
4418         ret = i915_gpu_idle(dev);
4419         if (ret) {
4420                 mutex_unlock(&dev->struct_mutex);
4421                 return ret;
4422         }
4423
4424         /* Under UMS, be paranoid and evict. */
4425         if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4426                 ret = i915_gem_evict_inactive(dev);
4427                 if (ret) {
4428                         mutex_unlock(&dev->struct_mutex);
4429                         return ret;
4430                 }
4431         }
4432
4433         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4434          * We need to replace this with a semaphore, or something.
4435          * And not confound mm.suspended!
4436          */
4437         dev_priv->mm.suspended = 1;
4438         del_timer_sync(&dev_priv->hangcheck_timer);
4439
4440         i915_kernel_lost_context(dev);
4441         i915_gem_cleanup_ringbuffer(dev);
4442
4443         mutex_unlock(&dev->struct_mutex);
4444
4445         /* Cancel the retire work handler, which should be idle now. */
4446         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4447
4448         return 0;
4449 }
4450
4451 /*
4452  * 965+ support PIPE_CONTROL commands, which provide finer grained control
4453  * over cache flushing.
4454  */
4455 static int
4456 i915_gem_init_pipe_control(struct drm_device *dev)
4457 {
4458         drm_i915_private_t *dev_priv = dev->dev_private;
4459         struct drm_gem_object *obj;
4460         struct drm_i915_gem_object *obj_priv;
4461         int ret;
4462
4463         obj = i915_gem_alloc_object(dev, 4096);
4464         if (obj == NULL) {
4465                 DRM_ERROR("Failed to allocate seqno page\n");
4466                 ret = -ENOMEM;
4467                 goto err;
4468         }
4469         obj_priv = to_intel_bo(obj);
4470         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4471
4472         ret = i915_gem_object_pin(obj, 4096);
4473         if (ret)
4474                 goto err_unref;
4475
4476         dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4477         dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
4478         if (dev_priv->seqno_page == NULL)
4479                 goto err_unpin;
4480
4481         dev_priv->seqno_obj = obj;
4482         memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4483
4484         return 0;
4485
4486 err_unpin:
4487         i915_gem_object_unpin(obj);
4488 err_unref:
4489         drm_gem_object_unreference(obj);
4490 err:
4491         return ret;
4492 }
4493
4494
4495 static void
4496 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4497 {
4498         drm_i915_private_t *dev_priv = dev->dev_private;
4499         struct drm_gem_object *obj;
4500         struct drm_i915_gem_object *obj_priv;
4501
4502         obj = dev_priv->seqno_obj;
4503         obj_priv = to_intel_bo(obj);
4504         kunmap(obj_priv->pages[0]);
4505         i915_gem_object_unpin(obj);
4506         drm_gem_object_unreference(obj);
4507         dev_priv->seqno_obj = NULL;
4508
4509         dev_priv->seqno_page = NULL;
4510 }
4511
4512 int
4513 i915_gem_init_ringbuffer(struct drm_device *dev)
4514 {
4515         drm_i915_private_t *dev_priv = dev->dev_private;
4516         int ret;
4517
4518         if (HAS_PIPE_CONTROL(dev)) {
4519                 ret = i915_gem_init_pipe_control(dev);
4520                 if (ret)
4521                         return ret;
4522         }
4523
4524         ret = intel_init_render_ring_buffer(dev);
4525         if (ret)
4526                 goto cleanup_pipe_control;
4527
4528         if (HAS_BSD(dev)) {
4529                 ret = intel_init_bsd_ring_buffer(dev);
4530                 if (ret)
4531                         goto cleanup_render_ring;
4532         }
4533
4534         if (HAS_BLT(dev)) {
4535                 ret = intel_init_blt_ring_buffer(dev);
4536                 if (ret)
4537                         goto cleanup_bsd_ring;
4538         }
4539
4540         dev_priv->next_seqno = 1;
4541
4542         return 0;
4543
4544 cleanup_bsd_ring:
4545         intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4546 cleanup_render_ring:
4547         intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4548 cleanup_pipe_control:
4549         if (HAS_PIPE_CONTROL(dev))
4550                 i915_gem_cleanup_pipe_control(dev);
4551         return ret;
4552 }
4553
4554 void
4555 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4556 {
4557         drm_i915_private_t *dev_priv = dev->dev_private;
4558
4559         intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4560         intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4561         intel_cleanup_ring_buffer(dev, &dev_priv->blt_ring);
4562         if (HAS_PIPE_CONTROL(dev))
4563                 i915_gem_cleanup_pipe_control(dev);
4564 }
4565
4566 int
4567 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4568                        struct drm_file *file_priv)
4569 {
4570         drm_i915_private_t *dev_priv = dev->dev_private;
4571         int ret;
4572
4573         if (drm_core_check_feature(dev, DRIVER_MODESET))
4574                 return 0;
4575
4576         if (atomic_read(&dev_priv->mm.wedged)) {
4577                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4578                 atomic_set(&dev_priv->mm.wedged, 0);
4579         }
4580
4581         mutex_lock(&dev->struct_mutex);
4582         dev_priv->mm.suspended = 0;
4583
4584         ret = i915_gem_init_ringbuffer(dev);
4585         if (ret != 0) {
4586                 mutex_unlock(&dev->struct_mutex);
4587                 return ret;
4588         }
4589
4590         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4591         BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4592         BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4593         BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4594         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4595         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4596         BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4597         BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4598         BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4599         mutex_unlock(&dev->struct_mutex);
4600
4601         ret = drm_irq_install(dev);
4602         if (ret)
4603                 goto cleanup_ringbuffer;
4604
4605         return 0;
4606
4607 cleanup_ringbuffer:
4608         mutex_lock(&dev->struct_mutex);
4609         i915_gem_cleanup_ringbuffer(dev);
4610         dev_priv->mm.suspended = 1;
4611         mutex_unlock(&dev->struct_mutex);
4612
4613         return ret;
4614 }
4615
4616 int
4617 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4618                        struct drm_file *file_priv)
4619 {
4620         if (drm_core_check_feature(dev, DRIVER_MODESET))
4621                 return 0;
4622
4623         drm_irq_uninstall(dev);
4624         return i915_gem_idle(dev);
4625 }
4626
4627 void
4628 i915_gem_lastclose(struct drm_device *dev)
4629 {
4630         int ret;
4631
4632         if (drm_core_check_feature(dev, DRIVER_MODESET))
4633                 return;
4634
4635         ret = i915_gem_idle(dev);
4636         if (ret)
4637                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4638 }
4639
4640 static void
4641 init_ring_lists(struct intel_ring_buffer *ring)
4642 {
4643         INIT_LIST_HEAD(&ring->active_list);
4644         INIT_LIST_HEAD(&ring->request_list);
4645         INIT_LIST_HEAD(&ring->gpu_write_list);
4646 }
4647
4648 void
4649 i915_gem_load(struct drm_device *dev)
4650 {
4651         int i;
4652         drm_i915_private_t *dev_priv = dev->dev_private;
4653
4654         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4655         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4656         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4657         INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4658         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4659         INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4660         init_ring_lists(&dev_priv->render_ring);
4661         init_ring_lists(&dev_priv->bsd_ring);
4662         init_ring_lists(&dev_priv->blt_ring);
4663         for (i = 0; i < 16; i++)
4664                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4665         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4666                           i915_gem_retire_work_handler);
4667         init_completion(&dev_priv->error_completion);
4668         spin_lock(&shrink_list_lock);
4669         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4670         spin_unlock(&shrink_list_lock);
4671
4672         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4673         if (IS_GEN3(dev)) {
4674                 u32 tmp = I915_READ(MI_ARB_STATE);
4675                 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4676                         /* arb state is a masked write, so set bit + bit in mask */
4677                         tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4678                         I915_WRITE(MI_ARB_STATE, tmp);
4679                 }
4680         }
4681
4682         /* Old X drivers will take 0-2 for front, back, depth buffers */
4683         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4684                 dev_priv->fence_reg_start = 3;
4685
4686         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4687                 dev_priv->num_fence_regs = 16;
4688         else
4689                 dev_priv->num_fence_regs = 8;
4690
4691         /* Initialize fence registers to zero */
4692         switch (INTEL_INFO(dev)->gen) {
4693         case 6:
4694                 for (i = 0; i < 16; i++)
4695                         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4696                 break;
4697         case 5:
4698         case 4:
4699                 for (i = 0; i < 16; i++)
4700                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4701                 break;
4702         case 3:
4703                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4704                         for (i = 0; i < 8; i++)
4705                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4706         case 2:
4707                 for (i = 0; i < 8; i++)
4708                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4709                 break;
4710         }
4711         i915_gem_detect_bit_6_swizzle(dev);
4712         init_waitqueue_head(&dev_priv->pending_flip_queue);
4713 }
4714
4715 /*
4716  * Create a physically contiguous memory object for this object
4717  * e.g. for cursor + overlay regs
4718  */
4719 static int i915_gem_init_phys_object(struct drm_device *dev,
4720                                      int id, int size, int align)
4721 {
4722         drm_i915_private_t *dev_priv = dev->dev_private;
4723         struct drm_i915_gem_phys_object *phys_obj;
4724         int ret;
4725
4726         if (dev_priv->mm.phys_objs[id - 1] || !size)
4727                 return 0;
4728
4729         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4730         if (!phys_obj)
4731                 return -ENOMEM;
4732
4733         phys_obj->id = id;
4734
4735         phys_obj->handle = drm_pci_alloc(dev, size, align);
4736         if (!phys_obj->handle) {
4737                 ret = -ENOMEM;
4738                 goto kfree_obj;
4739         }
4740 #ifdef CONFIG_X86
4741         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4742 #endif
4743
4744         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4745
4746         return 0;
4747 kfree_obj:
4748         kfree(phys_obj);
4749         return ret;
4750 }
4751
4752 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4753 {
4754         drm_i915_private_t *dev_priv = dev->dev_private;
4755         struct drm_i915_gem_phys_object *phys_obj;
4756
4757         if (!dev_priv->mm.phys_objs[id - 1])
4758                 return;
4759
4760         phys_obj = dev_priv->mm.phys_objs[id - 1];
4761         if (phys_obj->cur_obj) {
4762                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4763         }
4764
4765 #ifdef CONFIG_X86
4766         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4767 #endif
4768         drm_pci_free(dev, phys_obj->handle);
4769         kfree(phys_obj);
4770         dev_priv->mm.phys_objs[id - 1] = NULL;
4771 }
4772
4773 void i915_gem_free_all_phys_object(struct drm_device *dev)
4774 {
4775         int i;
4776
4777         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4778                 i915_gem_free_phys_object(dev, i);
4779 }
4780
4781 void i915_gem_detach_phys_object(struct drm_device *dev,
4782                                  struct drm_gem_object *obj)
4783 {
4784         struct drm_i915_gem_object *obj_priv;
4785         int i;
4786         int ret;
4787         int page_count;
4788
4789         obj_priv = to_intel_bo(obj);
4790         if (!obj_priv->phys_obj)
4791                 return;
4792
4793         ret = i915_gem_object_get_pages(obj, 0);
4794         if (ret)
4795                 goto out;
4796
4797         page_count = obj->size / PAGE_SIZE;
4798
4799         for (i = 0; i < page_count; i++) {
4800                 char *dst = kmap_atomic(obj_priv->pages[i]);
4801                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4802
4803                 memcpy(dst, src, PAGE_SIZE);
4804                 kunmap_atomic(dst);
4805         }
4806         drm_clflush_pages(obj_priv->pages, page_count);
4807         drm_agp_chipset_flush(dev);
4808
4809         i915_gem_object_put_pages(obj);
4810 out:
4811         obj_priv->phys_obj->cur_obj = NULL;
4812         obj_priv->phys_obj = NULL;
4813 }
4814
4815 int
4816 i915_gem_attach_phys_object(struct drm_device *dev,
4817                             struct drm_gem_object *obj,
4818                             int id,
4819                             int align)
4820 {
4821         drm_i915_private_t *dev_priv = dev->dev_private;
4822         struct drm_i915_gem_object *obj_priv;
4823         int ret = 0;
4824         int page_count;
4825         int i;
4826
4827         if (id > I915_MAX_PHYS_OBJECT)
4828                 return -EINVAL;
4829
4830         obj_priv = to_intel_bo(obj);
4831
4832         if (obj_priv->phys_obj) {
4833                 if (obj_priv->phys_obj->id == id)
4834                         return 0;
4835                 i915_gem_detach_phys_object(dev, obj);
4836         }
4837
4838         /* create a new object */
4839         if (!dev_priv->mm.phys_objs[id - 1]) {
4840                 ret = i915_gem_init_phys_object(dev, id,
4841                                                 obj->size, align);
4842                 if (ret) {
4843                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4844                         goto out;
4845                 }
4846         }
4847
4848         /* bind to the object */
4849         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4850         obj_priv->phys_obj->cur_obj = obj;
4851
4852         ret = i915_gem_object_get_pages(obj, 0);
4853         if (ret) {
4854                 DRM_ERROR("failed to get page list\n");
4855                 goto out;
4856         }
4857
4858         page_count = obj->size / PAGE_SIZE;
4859
4860         for (i = 0; i < page_count; i++) {
4861                 char *src = kmap_atomic(obj_priv->pages[i]);
4862                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4863
4864                 memcpy(dst, src, PAGE_SIZE);
4865                 kunmap_atomic(src);
4866         }
4867
4868         i915_gem_object_put_pages(obj);
4869
4870         return 0;
4871 out:
4872         return ret;
4873 }
4874
4875 static int
4876 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4877                      struct drm_i915_gem_pwrite *args,
4878                      struct drm_file *file_priv)
4879 {
4880         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4881         void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
4882         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4883
4884         DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
4885
4886         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4887                 unsigned long unwritten;
4888
4889                 /* The physical object once assigned is fixed for the lifetime
4890                  * of the obj, so we can safely drop the lock and continue
4891                  * to access vaddr.
4892                  */
4893                 mutex_unlock(&dev->struct_mutex);
4894                 unwritten = copy_from_user(vaddr, user_data, args->size);
4895                 mutex_lock(&dev->struct_mutex);
4896                 if (unwritten)
4897                         return -EFAULT;
4898         }
4899
4900         drm_agp_chipset_flush(dev);
4901         return 0;
4902 }
4903
4904 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4905 {
4906         struct drm_i915_file_private *file_priv = file->driver_priv;
4907
4908         /* Clean up our request list when the client is going away, so that
4909          * later retire_requests won't dereference our soon-to-be-gone
4910          * file_priv.
4911          */
4912         spin_lock(&file_priv->mm.lock);
4913         while (!list_empty(&file_priv->mm.request_list)) {
4914                 struct drm_i915_gem_request *request;
4915
4916                 request = list_first_entry(&file_priv->mm.request_list,
4917                                            struct drm_i915_gem_request,
4918                                            client_list);
4919                 list_del(&request->client_list);
4920                 request->file_priv = NULL;
4921         }
4922         spin_unlock(&file_priv->mm.lock);
4923 }
4924
4925 static int
4926 i915_gpu_is_active(struct drm_device *dev)
4927 {
4928         drm_i915_private_t *dev_priv = dev->dev_private;
4929         int lists_empty;
4930
4931         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4932                       list_empty(&dev_priv->mm.active_list);
4933
4934         return !lists_empty;
4935 }
4936
4937 static int
4938 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4939 {
4940         drm_i915_private_t *dev_priv, *next_dev;
4941         struct drm_i915_gem_object *obj_priv, *next_obj;
4942         int cnt = 0;
4943         int would_deadlock = 1;
4944
4945         /* "fast-path" to count number of available objects */
4946         if (nr_to_scan == 0) {
4947                 spin_lock(&shrink_list_lock);
4948                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4949                         struct drm_device *dev = dev_priv->dev;
4950
4951                         if (mutex_trylock(&dev->struct_mutex)) {
4952                                 list_for_each_entry(obj_priv,
4953                                                     &dev_priv->mm.inactive_list,
4954                                                     mm_list)
4955                                         cnt++;
4956                                 mutex_unlock(&dev->struct_mutex);
4957                         }
4958                 }
4959                 spin_unlock(&shrink_list_lock);
4960
4961                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4962         }
4963
4964         spin_lock(&shrink_list_lock);
4965
4966 rescan:
4967         /* first scan for clean buffers */
4968         list_for_each_entry_safe(dev_priv, next_dev,
4969                                  &shrink_list, mm.shrink_list) {
4970                 struct drm_device *dev = dev_priv->dev;
4971
4972                 if (! mutex_trylock(&dev->struct_mutex))
4973                         continue;
4974
4975                 spin_unlock(&shrink_list_lock);
4976                 i915_gem_retire_requests(dev);
4977
4978                 list_for_each_entry_safe(obj_priv, next_obj,
4979                                          &dev_priv->mm.inactive_list,
4980                                          mm_list) {
4981                         if (i915_gem_object_is_purgeable(obj_priv)) {
4982                                 i915_gem_object_unbind(&obj_priv->base);
4983                                 if (--nr_to_scan <= 0)
4984                                         break;
4985                         }
4986                 }
4987
4988                 spin_lock(&shrink_list_lock);
4989                 mutex_unlock(&dev->struct_mutex);
4990
4991                 would_deadlock = 0;
4992
4993                 if (nr_to_scan <= 0)
4994                         break;
4995         }
4996
4997         /* second pass, evict/count anything still on the inactive list */
4998         list_for_each_entry_safe(dev_priv, next_dev,
4999                                  &shrink_list, mm.shrink_list) {
5000                 struct drm_device *dev = dev_priv->dev;
5001
5002                 if (! mutex_trylock(&dev->struct_mutex))
5003                         continue;
5004
5005                 spin_unlock(&shrink_list_lock);
5006
5007                 list_for_each_entry_safe(obj_priv, next_obj,
5008                                          &dev_priv->mm.inactive_list,
5009                                          mm_list) {
5010                         if (nr_to_scan > 0) {
5011                                 i915_gem_object_unbind(&obj_priv->base);
5012                                 nr_to_scan--;
5013                         } else
5014                                 cnt++;
5015                 }
5016
5017                 spin_lock(&shrink_list_lock);
5018                 mutex_unlock(&dev->struct_mutex);
5019
5020                 would_deadlock = 0;
5021         }
5022
5023         if (nr_to_scan) {
5024                 int active = 0;
5025
5026                 /*
5027                  * We are desperate for pages, so as a last resort, wait
5028                  * for the GPU to finish and discard whatever we can.
5029                  * This has a dramatic impact to reduce the number of
5030                  * OOM-killer events whilst running the GPU aggressively.
5031                  */
5032                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5033                         struct drm_device *dev = dev_priv->dev;
5034
5035                         if (!mutex_trylock(&dev->struct_mutex))
5036                                 continue;
5037
5038                         spin_unlock(&shrink_list_lock);
5039
5040                         if (i915_gpu_is_active(dev)) {
5041                                 i915_gpu_idle(dev);
5042                                 active++;
5043                         }
5044
5045                         spin_lock(&shrink_list_lock);
5046                         mutex_unlock(&dev->struct_mutex);
5047                 }
5048
5049                 if (active)
5050                         goto rescan;
5051         }
5052
5053         spin_unlock(&shrink_list_lock);
5054
5055         if (would_deadlock)
5056                 return -1;
5057         else if (cnt > 0)
5058                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5059         else
5060                 return 0;
5061 }
5062
5063 static struct shrinker shrinker = {
5064         .shrink = i915_gem_shrink,
5065         .seeks = DEFAULT_SEEKS,
5066 };
5067
5068 __init void
5069 i915_gem_shrinker_init(void)
5070 {
5071     register_shrinker(&shrinker);
5072 }
5073
5074 __exit void
5075 i915_gem_shrinker_exit(void)
5076 {
5077     unregister_shrinker(&shrinker);
5078 }