Merge branch 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43                                              int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45                                                      uint64_t offset,
46                                                      uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50                                            unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55                                 struct drm_i915_gem_pwrite *args,
56                                 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62                      unsigned long end)
63 {
64         drm_i915_private_t *dev_priv = dev->dev_private;
65
66         if (start >= end ||
67             (start & (PAGE_SIZE - 1)) != 0 ||
68             (end & (PAGE_SIZE - 1)) != 0) {
69                 return -EINVAL;
70         }
71
72         drm_mm_init(&dev_priv->mm.gtt_space, start,
73                     end - start);
74
75         dev->gtt_total = (uint32_t) (end - start);
76
77         return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82                     struct drm_file *file_priv)
83 {
84         struct drm_i915_gem_init *args = data;
85         int ret;
86
87         mutex_lock(&dev->struct_mutex);
88         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89         mutex_unlock(&dev->struct_mutex);
90
91         return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96                             struct drm_file *file_priv)
97 {
98         struct drm_i915_gem_get_aperture *args = data;
99
100         if (!(dev->driver->driver_features & DRIVER_GEM))
101                 return -ENODEV;
102
103         args->aper_size = dev->gtt_total;
104         args->aper_available_size = (args->aper_size -
105                                      atomic_read(&dev->pin_memory));
106
107         return 0;
108 }
109
110
111 /**
112  * Creates a new mm object and returns a handle to it.
113  */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116                       struct drm_file *file_priv)
117 {
118         struct drm_i915_gem_create *args = data;
119         struct drm_gem_object *obj;
120         int ret;
121         u32 handle;
122
123         args->size = roundup(args->size, PAGE_SIZE);
124
125         /* Allocate the new object */
126         obj = drm_gem_object_alloc(dev, args->size);
127         if (obj == NULL)
128                 return -ENOMEM;
129
130         ret = drm_gem_handle_create(file_priv, obj, &handle);
131         mutex_lock(&dev->struct_mutex);
132         drm_gem_object_handle_unreference(obj);
133         mutex_unlock(&dev->struct_mutex);
134
135         if (ret)
136                 return ret;
137
138         args->handle = handle;
139
140         return 0;
141 }
142
143 static inline int
144 fast_shmem_read(struct page **pages,
145                 loff_t page_base, int page_offset,
146                 char __user *data,
147                 int length)
148 {
149         char __iomem *vaddr;
150         int unwritten;
151
152         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153         if (vaddr == NULL)
154                 return -ENOMEM;
155         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156         kunmap_atomic(vaddr, KM_USER0);
157
158         if (unwritten)
159                 return -EFAULT;
160
161         return 0;
162 }
163
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
165 {
166         drm_i915_private_t *dev_priv = obj->dev->dev_private;
167         struct drm_i915_gem_object *obj_priv = obj->driver_private;
168
169         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170                 obj_priv->tiling_mode != I915_TILING_NONE;
171 }
172
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175                 int dst_offset,
176                 struct page *src_page,
177                 int src_offset,
178                 int length)
179 {
180         char *dst_vaddr, *src_vaddr;
181
182         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183         if (dst_vaddr == NULL)
184                 return -ENOMEM;
185
186         src_vaddr = kmap_atomic(src_page, KM_USER1);
187         if (src_vaddr == NULL) {
188                 kunmap_atomic(dst_vaddr, KM_USER0);
189                 return -ENOMEM;
190         }
191
192         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
193
194         kunmap_atomic(src_vaddr, KM_USER1);
195         kunmap_atomic(dst_vaddr, KM_USER0);
196
197         return 0;
198 }
199
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202                       int gpu_offset,
203                       struct page *cpu_page,
204                       int cpu_offset,
205                       int length,
206                       int is_read)
207 {
208         char *gpu_vaddr, *cpu_vaddr;
209
210         /* Use the unswizzled path if this page isn't affected. */
211         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212                 if (is_read)
213                         return slow_shmem_copy(cpu_page, cpu_offset,
214                                                gpu_page, gpu_offset, length);
215                 else
216                         return slow_shmem_copy(gpu_page, gpu_offset,
217                                                cpu_page, cpu_offset, length);
218         }
219
220         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221         if (gpu_vaddr == NULL)
222                 return -ENOMEM;
223
224         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225         if (cpu_vaddr == NULL) {
226                 kunmap_atomic(gpu_vaddr, KM_USER0);
227                 return -ENOMEM;
228         }
229
230         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
231          * XORing with the other bits (A9 for Y, A9 and A10 for X)
232          */
233         while (length > 0) {
234                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
235                 int this_length = min(cacheline_end - gpu_offset, length);
236                 int swizzled_gpu_offset = gpu_offset ^ 64;
237
238                 if (is_read) {
239                         memcpy(cpu_vaddr + cpu_offset,
240                                gpu_vaddr + swizzled_gpu_offset,
241                                this_length);
242                 } else {
243                         memcpy(gpu_vaddr + swizzled_gpu_offset,
244                                cpu_vaddr + cpu_offset,
245                                this_length);
246                 }
247                 cpu_offset += this_length;
248                 gpu_offset += this_length;
249                 length -= this_length;
250         }
251
252         kunmap_atomic(cpu_vaddr, KM_USER1);
253         kunmap_atomic(gpu_vaddr, KM_USER0);
254
255         return 0;
256 }
257
258 /**
259  * This is the fast shmem pread path, which attempts to copy_from_user directly
260  * from the backing pages of the object to the user's address space.  On a
261  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
262  */
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265                           struct drm_i915_gem_pread *args,
266                           struct drm_file *file_priv)
267 {
268         struct drm_i915_gem_object *obj_priv = obj->driver_private;
269         ssize_t remain;
270         loff_t offset, page_base;
271         char __user *user_data;
272         int page_offset, page_length;
273         int ret;
274
275         user_data = (char __user *) (uintptr_t) args->data_ptr;
276         remain = args->size;
277
278         mutex_lock(&dev->struct_mutex);
279
280         ret = i915_gem_object_get_pages(obj);
281         if (ret != 0)
282                 goto fail_unlock;
283
284         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285                                                         args->size);
286         if (ret != 0)
287                 goto fail_put_pages;
288
289         obj_priv = obj->driver_private;
290         offset = args->offset;
291
292         while (remain > 0) {
293                 /* Operation in this page
294                  *
295                  * page_base = page offset within aperture
296                  * page_offset = offset within page
297                  * page_length = bytes to copy for this page
298                  */
299                 page_base = (offset & ~(PAGE_SIZE-1));
300                 page_offset = offset & (PAGE_SIZE-1);
301                 page_length = remain;
302                 if ((page_offset + remain) > PAGE_SIZE)
303                         page_length = PAGE_SIZE - page_offset;
304
305                 ret = fast_shmem_read(obj_priv->pages,
306                                       page_base, page_offset,
307                                       user_data, page_length);
308                 if (ret)
309                         goto fail_put_pages;
310
311                 remain -= page_length;
312                 user_data += page_length;
313                 offset += page_length;
314         }
315
316 fail_put_pages:
317         i915_gem_object_put_pages(obj);
318 fail_unlock:
319         mutex_unlock(&dev->struct_mutex);
320
321         return ret;
322 }
323
324 static inline gfp_t
325 i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
326 {
327         return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
328 }
329
330 static inline void
331 i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
332 {
333         mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
334 }
335
336 static int
337 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
338 {
339         int ret;
340
341         ret = i915_gem_object_get_pages(obj);
342
343         /* If we've insufficient memory to map in the pages, attempt
344          * to make some space by throwing out some old buffers.
345          */
346         if (ret == -ENOMEM) {
347                 struct drm_device *dev = obj->dev;
348                 gfp_t gfp;
349
350                 ret = i915_gem_evict_something(dev, obj->size);
351                 if (ret)
352                         return ret;
353
354                 gfp = i915_gem_object_get_page_gfp_mask(obj);
355                 i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
356                 ret = i915_gem_object_get_pages(obj);
357                 i915_gem_object_set_page_gfp_mask (obj, gfp);
358         }
359
360         return ret;
361 }
362
363 /**
364  * This is the fallback shmem pread path, which allocates temporary storage
365  * in kernel space to copy_to_user into outside of the struct_mutex, so we
366  * can copy out of the object's backing pages while holding the struct mutex
367  * and not take page faults.
368  */
369 static int
370 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
371                           struct drm_i915_gem_pread *args,
372                           struct drm_file *file_priv)
373 {
374         struct drm_i915_gem_object *obj_priv = obj->driver_private;
375         struct mm_struct *mm = current->mm;
376         struct page **user_pages;
377         ssize_t remain;
378         loff_t offset, pinned_pages, i;
379         loff_t first_data_page, last_data_page, num_pages;
380         int shmem_page_index, shmem_page_offset;
381         int data_page_index,  data_page_offset;
382         int page_length;
383         int ret;
384         uint64_t data_ptr = args->data_ptr;
385         int do_bit17_swizzling;
386
387         remain = args->size;
388
389         /* Pin the user pages containing the data.  We can't fault while
390          * holding the struct mutex, yet we want to hold it while
391          * dereferencing the user data.
392          */
393         first_data_page = data_ptr / PAGE_SIZE;
394         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
395         num_pages = last_data_page - first_data_page + 1;
396
397         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
398         if (user_pages == NULL)
399                 return -ENOMEM;
400
401         down_read(&mm->mmap_sem);
402         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
403                                       num_pages, 1, 0, user_pages, NULL);
404         up_read(&mm->mmap_sem);
405         if (pinned_pages < num_pages) {
406                 ret = -EFAULT;
407                 goto fail_put_user_pages;
408         }
409
410         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
411
412         mutex_lock(&dev->struct_mutex);
413
414         ret = i915_gem_object_get_pages_or_evict(obj);
415         if (ret)
416                 goto fail_unlock;
417
418         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
419                                                         args->size);
420         if (ret != 0)
421                 goto fail_put_pages;
422
423         obj_priv = obj->driver_private;
424         offset = args->offset;
425
426         while (remain > 0) {
427                 /* Operation in this page
428                  *
429                  * shmem_page_index = page number within shmem file
430                  * shmem_page_offset = offset within page in shmem file
431                  * data_page_index = page number in get_user_pages return
432                  * data_page_offset = offset with data_page_index page.
433                  * page_length = bytes to copy for this page
434                  */
435                 shmem_page_index = offset / PAGE_SIZE;
436                 shmem_page_offset = offset & ~PAGE_MASK;
437                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
438                 data_page_offset = data_ptr & ~PAGE_MASK;
439
440                 page_length = remain;
441                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
442                         page_length = PAGE_SIZE - shmem_page_offset;
443                 if ((data_page_offset + page_length) > PAGE_SIZE)
444                         page_length = PAGE_SIZE - data_page_offset;
445
446                 if (do_bit17_swizzling) {
447                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
448                                                     shmem_page_offset,
449                                                     user_pages[data_page_index],
450                                                     data_page_offset,
451                                                     page_length,
452                                                     1);
453                 } else {
454                         ret = slow_shmem_copy(user_pages[data_page_index],
455                                               data_page_offset,
456                                               obj_priv->pages[shmem_page_index],
457                                               shmem_page_offset,
458                                               page_length);
459                 }
460                 if (ret)
461                         goto fail_put_pages;
462
463                 remain -= page_length;
464                 data_ptr += page_length;
465                 offset += page_length;
466         }
467
468 fail_put_pages:
469         i915_gem_object_put_pages(obj);
470 fail_unlock:
471         mutex_unlock(&dev->struct_mutex);
472 fail_put_user_pages:
473         for (i = 0; i < pinned_pages; i++) {
474                 SetPageDirty(user_pages[i]);
475                 page_cache_release(user_pages[i]);
476         }
477         drm_free_large(user_pages);
478
479         return ret;
480 }
481
482 /**
483  * Reads data from the object referenced by handle.
484  *
485  * On error, the contents of *data are undefined.
486  */
487 int
488 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489                      struct drm_file *file_priv)
490 {
491         struct drm_i915_gem_pread *args = data;
492         struct drm_gem_object *obj;
493         struct drm_i915_gem_object *obj_priv;
494         int ret;
495
496         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
497         if (obj == NULL)
498                 return -EBADF;
499         obj_priv = obj->driver_private;
500
501         /* Bounds check source.
502          *
503          * XXX: This could use review for overflow issues...
504          */
505         if (args->offset > obj->size || args->size > obj->size ||
506             args->offset + args->size > obj->size) {
507                 drm_gem_object_unreference(obj);
508                 return -EINVAL;
509         }
510
511         if (i915_gem_object_needs_bit17_swizzle(obj)) {
512                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
513         } else {
514                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
515                 if (ret != 0)
516                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
517                                                         file_priv);
518         }
519
520         drm_gem_object_unreference(obj);
521
522         return ret;
523 }
524
525 /* This is the fast write path which cannot handle
526  * page faults in the source data
527  */
528
529 static inline int
530 fast_user_write(struct io_mapping *mapping,
531                 loff_t page_base, int page_offset,
532                 char __user *user_data,
533                 int length)
534 {
535         char *vaddr_atomic;
536         unsigned long unwritten;
537
538         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
539         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
540                                                       user_data, length);
541         io_mapping_unmap_atomic(vaddr_atomic);
542         if (unwritten)
543                 return -EFAULT;
544         return 0;
545 }
546
547 /* Here's the write path which can sleep for
548  * page faults
549  */
550
551 static inline int
552 slow_kernel_write(struct io_mapping *mapping,
553                   loff_t gtt_base, int gtt_offset,
554                   struct page *user_page, int user_offset,
555                   int length)
556 {
557         char *src_vaddr, *dst_vaddr;
558         unsigned long unwritten;
559
560         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
561         src_vaddr = kmap_atomic(user_page, KM_USER1);
562         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
563                                                       src_vaddr + user_offset,
564                                                       length);
565         kunmap_atomic(src_vaddr, KM_USER1);
566         io_mapping_unmap_atomic(dst_vaddr);
567         if (unwritten)
568                 return -EFAULT;
569         return 0;
570 }
571
572 static inline int
573 fast_shmem_write(struct page **pages,
574                  loff_t page_base, int page_offset,
575                  char __user *data,
576                  int length)
577 {
578         char __iomem *vaddr;
579         unsigned long unwritten;
580
581         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
582         if (vaddr == NULL)
583                 return -ENOMEM;
584         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
585         kunmap_atomic(vaddr, KM_USER0);
586
587         if (unwritten)
588                 return -EFAULT;
589         return 0;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
598                          struct drm_i915_gem_pwrite *args,
599                          struct drm_file *file_priv)
600 {
601         struct drm_i915_gem_object *obj_priv = obj->driver_private;
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length;
607         int ret;
608
609         user_data = (char __user *) (uintptr_t) args->data_ptr;
610         remain = args->size;
611         if (!access_ok(VERIFY_READ, user_data, remain))
612                 return -EFAULT;
613
614
615         mutex_lock(&dev->struct_mutex);
616         ret = i915_gem_object_pin(obj, 0);
617         if (ret) {
618                 mutex_unlock(&dev->struct_mutex);
619                 return ret;
620         }
621         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
622         if (ret)
623                 goto fail;
624
625         obj_priv = obj->driver_private;
626         offset = obj_priv->gtt_offset + args->offset;
627
628         while (remain > 0) {
629                 /* Operation in this page
630                  *
631                  * page_base = page offset within aperture
632                  * page_offset = offset within page
633                  * page_length = bytes to copy for this page
634                  */
635                 page_base = (offset & ~(PAGE_SIZE-1));
636                 page_offset = offset & (PAGE_SIZE-1);
637                 page_length = remain;
638                 if ((page_offset + remain) > PAGE_SIZE)
639                         page_length = PAGE_SIZE - page_offset;
640
641                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
642                                        page_offset, user_data, page_length);
643
644                 /* If we get a fault while copying data, then (presumably) our
645                  * source page isn't available.  Return the error and we'll
646                  * retry in the slow path.
647                  */
648                 if (ret)
649                         goto fail;
650
651                 remain -= page_length;
652                 user_data += page_length;
653                 offset += page_length;
654         }
655
656 fail:
657         i915_gem_object_unpin(obj);
658         mutex_unlock(&dev->struct_mutex);
659
660         return ret;
661 }
662
663 /**
664  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
665  * the memory and maps it using kmap_atomic for copying.
666  *
667  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
668  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
669  */
670 static int
671 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
672                          struct drm_i915_gem_pwrite *args,
673                          struct drm_file *file_priv)
674 {
675         struct drm_i915_gem_object *obj_priv = obj->driver_private;
676         drm_i915_private_t *dev_priv = dev->dev_private;
677         ssize_t remain;
678         loff_t gtt_page_base, offset;
679         loff_t first_data_page, last_data_page, num_pages;
680         loff_t pinned_pages, i;
681         struct page **user_pages;
682         struct mm_struct *mm = current->mm;
683         int gtt_page_offset, data_page_offset, data_page_index, page_length;
684         int ret;
685         uint64_t data_ptr = args->data_ptr;
686
687         remain = args->size;
688
689         /* Pin the user pages containing the data.  We can't fault while
690          * holding the struct mutex, and all of the pwrite implementations
691          * want to hold it while dereferencing the user data.
692          */
693         first_data_page = data_ptr / PAGE_SIZE;
694         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
695         num_pages = last_data_page - first_data_page + 1;
696
697         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
698         if (user_pages == NULL)
699                 return -ENOMEM;
700
701         down_read(&mm->mmap_sem);
702         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
703                                       num_pages, 0, 0, user_pages, NULL);
704         up_read(&mm->mmap_sem);
705         if (pinned_pages < num_pages) {
706                 ret = -EFAULT;
707                 goto out_unpin_pages;
708         }
709
710         mutex_lock(&dev->struct_mutex);
711         ret = i915_gem_object_pin(obj, 0);
712         if (ret)
713                 goto out_unlock;
714
715         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
716         if (ret)
717                 goto out_unpin_object;
718
719         obj_priv = obj->driver_private;
720         offset = obj_priv->gtt_offset + args->offset;
721
722         while (remain > 0) {
723                 /* Operation in this page
724                  *
725                  * gtt_page_base = page offset within aperture
726                  * gtt_page_offset = offset within page in aperture
727                  * data_page_index = page number in get_user_pages return
728                  * data_page_offset = offset with data_page_index page.
729                  * page_length = bytes to copy for this page
730                  */
731                 gtt_page_base = offset & PAGE_MASK;
732                 gtt_page_offset = offset & ~PAGE_MASK;
733                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
734                 data_page_offset = data_ptr & ~PAGE_MASK;
735
736                 page_length = remain;
737                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
738                         page_length = PAGE_SIZE - gtt_page_offset;
739                 if ((data_page_offset + page_length) > PAGE_SIZE)
740                         page_length = PAGE_SIZE - data_page_offset;
741
742                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
743                                         gtt_page_base, gtt_page_offset,
744                                         user_pages[data_page_index],
745                                         data_page_offset,
746                                         page_length);
747
748                 /* If we get a fault while copying data, then (presumably) our
749                  * source page isn't available.  Return the error and we'll
750                  * retry in the slow path.
751                  */
752                 if (ret)
753                         goto out_unpin_object;
754
755                 remain -= page_length;
756                 offset += page_length;
757                 data_ptr += page_length;
758         }
759
760 out_unpin_object:
761         i915_gem_object_unpin(obj);
762 out_unlock:
763         mutex_unlock(&dev->struct_mutex);
764 out_unpin_pages:
765         for (i = 0; i < pinned_pages; i++)
766                 page_cache_release(user_pages[i]);
767         drm_free_large(user_pages);
768
769         return ret;
770 }
771
772 /**
773  * This is the fast shmem pwrite path, which attempts to directly
774  * copy_from_user into the kmapped pages backing the object.
775  */
776 static int
777 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
778                            struct drm_i915_gem_pwrite *args,
779                            struct drm_file *file_priv)
780 {
781         struct drm_i915_gem_object *obj_priv = obj->driver_private;
782         ssize_t remain;
783         loff_t offset, page_base;
784         char __user *user_data;
785         int page_offset, page_length;
786         int ret;
787
788         user_data = (char __user *) (uintptr_t) args->data_ptr;
789         remain = args->size;
790
791         mutex_lock(&dev->struct_mutex);
792
793         ret = i915_gem_object_get_pages(obj);
794         if (ret != 0)
795                 goto fail_unlock;
796
797         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
798         if (ret != 0)
799                 goto fail_put_pages;
800
801         obj_priv = obj->driver_private;
802         offset = args->offset;
803         obj_priv->dirty = 1;
804
805         while (remain > 0) {
806                 /* Operation in this page
807                  *
808                  * page_base = page offset within aperture
809                  * page_offset = offset within page
810                  * page_length = bytes to copy for this page
811                  */
812                 page_base = (offset & ~(PAGE_SIZE-1));
813                 page_offset = offset & (PAGE_SIZE-1);
814                 page_length = remain;
815                 if ((page_offset + remain) > PAGE_SIZE)
816                         page_length = PAGE_SIZE - page_offset;
817
818                 ret = fast_shmem_write(obj_priv->pages,
819                                        page_base, page_offset,
820                                        user_data, page_length);
821                 if (ret)
822                         goto fail_put_pages;
823
824                 remain -= page_length;
825                 user_data += page_length;
826                 offset += page_length;
827         }
828
829 fail_put_pages:
830         i915_gem_object_put_pages(obj);
831 fail_unlock:
832         mutex_unlock(&dev->struct_mutex);
833
834         return ret;
835 }
836
837 /**
838  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
839  * the memory and maps it using kmap_atomic for copying.
840  *
841  * This avoids taking mmap_sem for faulting on the user's address while the
842  * struct_mutex is held.
843  */
844 static int
845 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
846                            struct drm_i915_gem_pwrite *args,
847                            struct drm_file *file_priv)
848 {
849         struct drm_i915_gem_object *obj_priv = obj->driver_private;
850         struct mm_struct *mm = current->mm;
851         struct page **user_pages;
852         ssize_t remain;
853         loff_t offset, pinned_pages, i;
854         loff_t first_data_page, last_data_page, num_pages;
855         int shmem_page_index, shmem_page_offset;
856         int data_page_index,  data_page_offset;
857         int page_length;
858         int ret;
859         uint64_t data_ptr = args->data_ptr;
860         int do_bit17_swizzling;
861
862         remain = args->size;
863
864         /* Pin the user pages containing the data.  We can't fault while
865          * holding the struct mutex, and all of the pwrite implementations
866          * want to hold it while dereferencing the user data.
867          */
868         first_data_page = data_ptr / PAGE_SIZE;
869         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
870         num_pages = last_data_page - first_data_page + 1;
871
872         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
873         if (user_pages == NULL)
874                 return -ENOMEM;
875
876         down_read(&mm->mmap_sem);
877         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
878                                       num_pages, 0, 0, user_pages, NULL);
879         up_read(&mm->mmap_sem);
880         if (pinned_pages < num_pages) {
881                 ret = -EFAULT;
882                 goto fail_put_user_pages;
883         }
884
885         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
886
887         mutex_lock(&dev->struct_mutex);
888
889         ret = i915_gem_object_get_pages_or_evict(obj);
890         if (ret)
891                 goto fail_unlock;
892
893         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
894         if (ret != 0)
895                 goto fail_put_pages;
896
897         obj_priv = obj->driver_private;
898         offset = args->offset;
899         obj_priv->dirty = 1;
900
901         while (remain > 0) {
902                 /* Operation in this page
903                  *
904                  * shmem_page_index = page number within shmem file
905                  * shmem_page_offset = offset within page in shmem file
906                  * data_page_index = page number in get_user_pages return
907                  * data_page_offset = offset with data_page_index page.
908                  * page_length = bytes to copy for this page
909                  */
910                 shmem_page_index = offset / PAGE_SIZE;
911                 shmem_page_offset = offset & ~PAGE_MASK;
912                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
913                 data_page_offset = data_ptr & ~PAGE_MASK;
914
915                 page_length = remain;
916                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
917                         page_length = PAGE_SIZE - shmem_page_offset;
918                 if ((data_page_offset + page_length) > PAGE_SIZE)
919                         page_length = PAGE_SIZE - data_page_offset;
920
921                 if (do_bit17_swizzling) {
922                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
923                                                     shmem_page_offset,
924                                                     user_pages[data_page_index],
925                                                     data_page_offset,
926                                                     page_length,
927                                                     0);
928                 } else {
929                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
930                                               shmem_page_offset,
931                                               user_pages[data_page_index],
932                                               data_page_offset,
933                                               page_length);
934                 }
935                 if (ret)
936                         goto fail_put_pages;
937
938                 remain -= page_length;
939                 data_ptr += page_length;
940                 offset += page_length;
941         }
942
943 fail_put_pages:
944         i915_gem_object_put_pages(obj);
945 fail_unlock:
946         mutex_unlock(&dev->struct_mutex);
947 fail_put_user_pages:
948         for (i = 0; i < pinned_pages; i++)
949                 page_cache_release(user_pages[i]);
950         drm_free_large(user_pages);
951
952         return ret;
953 }
954
955 /**
956  * Writes data to the object referenced by handle.
957  *
958  * On error, the contents of the buffer that were to be modified are undefined.
959  */
960 int
961 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
962                       struct drm_file *file_priv)
963 {
964         struct drm_i915_gem_pwrite *args = data;
965         struct drm_gem_object *obj;
966         struct drm_i915_gem_object *obj_priv;
967         int ret = 0;
968
969         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
970         if (obj == NULL)
971                 return -EBADF;
972         obj_priv = obj->driver_private;
973
974         /* Bounds check destination.
975          *
976          * XXX: This could use review for overflow issues...
977          */
978         if (args->offset > obj->size || args->size > obj->size ||
979             args->offset + args->size > obj->size) {
980                 drm_gem_object_unreference(obj);
981                 return -EINVAL;
982         }
983
984         /* We can only do the GTT pwrite on untiled buffers, as otherwise
985          * it would end up going through the fenced access, and we'll get
986          * different detiling behavior between reading and writing.
987          * pread/pwrite currently are reading and writing from the CPU
988          * perspective, requiring manual detiling by the client.
989          */
990         if (obj_priv->phys_obj)
991                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
992         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
993                  dev->gtt_total != 0) {
994                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
995                 if (ret == -EFAULT) {
996                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
997                                                        file_priv);
998                 }
999         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1000                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1001         } else {
1002                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1003                 if (ret == -EFAULT) {
1004                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1005                                                          file_priv);
1006                 }
1007         }
1008
1009 #if WATCH_PWRITE
1010         if (ret)
1011                 DRM_INFO("pwrite failed %d\n", ret);
1012 #endif
1013
1014         drm_gem_object_unreference(obj);
1015
1016         return ret;
1017 }
1018
1019 /**
1020  * Called when user space prepares to use an object with the CPU, either
1021  * through the mmap ioctl's mapping or a GTT mapping.
1022  */
1023 int
1024 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1025                           struct drm_file *file_priv)
1026 {
1027         struct drm_i915_private *dev_priv = dev->dev_private;
1028         struct drm_i915_gem_set_domain *args = data;
1029         struct drm_gem_object *obj;
1030         struct drm_i915_gem_object *obj_priv;
1031         uint32_t read_domains = args->read_domains;
1032         uint32_t write_domain = args->write_domain;
1033         int ret;
1034
1035         if (!(dev->driver->driver_features & DRIVER_GEM))
1036                 return -ENODEV;
1037
1038         /* Only handle setting domains to types used by the CPU. */
1039         if (write_domain & I915_GEM_GPU_DOMAINS)
1040                 return -EINVAL;
1041
1042         if (read_domains & I915_GEM_GPU_DOMAINS)
1043                 return -EINVAL;
1044
1045         /* Having something in the write domain implies it's in the read
1046          * domain, and only that read domain.  Enforce that in the request.
1047          */
1048         if (write_domain != 0 && read_domains != write_domain)
1049                 return -EINVAL;
1050
1051         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1052         if (obj == NULL)
1053                 return -EBADF;
1054         obj_priv = obj->driver_private;
1055
1056         mutex_lock(&dev->struct_mutex);
1057
1058         intel_mark_busy(dev, obj);
1059
1060 #if WATCH_BUF
1061         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1062                  obj, obj->size, read_domains, write_domain);
1063 #endif
1064         if (read_domains & I915_GEM_DOMAIN_GTT) {
1065                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1066
1067                 /* Update the LRU on the fence for the CPU access that's
1068                  * about to occur.
1069                  */
1070                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1071                         list_move_tail(&obj_priv->fence_list,
1072                                        &dev_priv->mm.fence_list);
1073                 }
1074
1075                 /* Silently promote "you're not bound, there was nothing to do"
1076                  * to success, since the client was just asking us to
1077                  * make sure everything was done.
1078                  */
1079                 if (ret == -EINVAL)
1080                         ret = 0;
1081         } else {
1082                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1083         }
1084
1085         drm_gem_object_unreference(obj);
1086         mutex_unlock(&dev->struct_mutex);
1087         return ret;
1088 }
1089
1090 /**
1091  * Called when user space has done writes to this buffer
1092  */
1093 int
1094 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1095                       struct drm_file *file_priv)
1096 {
1097         struct drm_i915_gem_sw_finish *args = data;
1098         struct drm_gem_object *obj;
1099         struct drm_i915_gem_object *obj_priv;
1100         int ret = 0;
1101
1102         if (!(dev->driver->driver_features & DRIVER_GEM))
1103                 return -ENODEV;
1104
1105         mutex_lock(&dev->struct_mutex);
1106         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1107         if (obj == NULL) {
1108                 mutex_unlock(&dev->struct_mutex);
1109                 return -EBADF;
1110         }
1111
1112 #if WATCH_BUF
1113         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1114                  __func__, args->handle, obj, obj->size);
1115 #endif
1116         obj_priv = obj->driver_private;
1117
1118         /* Pinned buffers may be scanout, so flush the cache */
1119         if (obj_priv->pin_count)
1120                 i915_gem_object_flush_cpu_write_domain(obj);
1121
1122         drm_gem_object_unreference(obj);
1123         mutex_unlock(&dev->struct_mutex);
1124         return ret;
1125 }
1126
1127 /**
1128  * Maps the contents of an object, returning the address it is mapped
1129  * into.
1130  *
1131  * While the mapping holds a reference on the contents of the object, it doesn't
1132  * imply a ref on the object itself.
1133  */
1134 int
1135 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1136                    struct drm_file *file_priv)
1137 {
1138         struct drm_i915_gem_mmap *args = data;
1139         struct drm_gem_object *obj;
1140         loff_t offset;
1141         unsigned long addr;
1142
1143         if (!(dev->driver->driver_features & DRIVER_GEM))
1144                 return -ENODEV;
1145
1146         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1147         if (obj == NULL)
1148                 return -EBADF;
1149
1150         offset = args->offset;
1151
1152         down_write(&current->mm->mmap_sem);
1153         addr = do_mmap(obj->filp, 0, args->size,
1154                        PROT_READ | PROT_WRITE, MAP_SHARED,
1155                        args->offset);
1156         up_write(&current->mm->mmap_sem);
1157         mutex_lock(&dev->struct_mutex);
1158         drm_gem_object_unreference(obj);
1159         mutex_unlock(&dev->struct_mutex);
1160         if (IS_ERR((void *)addr))
1161                 return addr;
1162
1163         args->addr_ptr = (uint64_t) addr;
1164
1165         return 0;
1166 }
1167
1168 /**
1169  * i915_gem_fault - fault a page into the GTT
1170  * vma: VMA in question
1171  * vmf: fault info
1172  *
1173  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1174  * from userspace.  The fault handler takes care of binding the object to
1175  * the GTT (if needed), allocating and programming a fence register (again,
1176  * only if needed based on whether the old reg is still valid or the object
1177  * is tiled) and inserting a new PTE into the faulting process.
1178  *
1179  * Note that the faulting process may involve evicting existing objects
1180  * from the GTT and/or fence registers to make room.  So performance may
1181  * suffer if the GTT working set is large or there are few fence registers
1182  * left.
1183  */
1184 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1185 {
1186         struct drm_gem_object *obj = vma->vm_private_data;
1187         struct drm_device *dev = obj->dev;
1188         struct drm_i915_private *dev_priv = dev->dev_private;
1189         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1190         pgoff_t page_offset;
1191         unsigned long pfn;
1192         int ret = 0;
1193         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1194
1195         /* We don't use vmf->pgoff since that has the fake offset */
1196         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1197                 PAGE_SHIFT;
1198
1199         /* Now bind it into the GTT if needed */
1200         mutex_lock(&dev->struct_mutex);
1201         if (!obj_priv->gtt_space) {
1202                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1203                 if (ret)
1204                         goto unlock;
1205
1206                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1207
1208                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1209                 if (ret)
1210                         goto unlock;
1211         }
1212
1213         /* Need a new fence register? */
1214         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1215                 ret = i915_gem_object_get_fence_reg(obj);
1216                 if (ret)
1217                         goto unlock;
1218         }
1219
1220         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1221                 page_offset;
1222
1223         /* Finally, remap it using the new GTT offset */
1224         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1225 unlock:
1226         mutex_unlock(&dev->struct_mutex);
1227
1228         switch (ret) {
1229         case 0:
1230         case -ERESTARTSYS:
1231                 return VM_FAULT_NOPAGE;
1232         case -ENOMEM:
1233         case -EAGAIN:
1234                 return VM_FAULT_OOM;
1235         default:
1236                 return VM_FAULT_SIGBUS;
1237         }
1238 }
1239
1240 /**
1241  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1242  * @obj: obj in question
1243  *
1244  * GEM memory mapping works by handing back to userspace a fake mmap offset
1245  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1246  * up the object based on the offset and sets up the various memory mapping
1247  * structures.
1248  *
1249  * This routine allocates and attaches a fake offset for @obj.
1250  */
1251 static int
1252 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1253 {
1254         struct drm_device *dev = obj->dev;
1255         struct drm_gem_mm *mm = dev->mm_private;
1256         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1257         struct drm_map_list *list;
1258         struct drm_local_map *map;
1259         int ret = 0;
1260
1261         /* Set the object up for mmap'ing */
1262         list = &obj->map_list;
1263         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1264         if (!list->map)
1265                 return -ENOMEM;
1266
1267         map = list->map;
1268         map->type = _DRM_GEM;
1269         map->size = obj->size;
1270         map->handle = obj;
1271
1272         /* Get a DRM GEM mmap offset allocated... */
1273         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1274                                                     obj->size / PAGE_SIZE, 0, 0);
1275         if (!list->file_offset_node) {
1276                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1277                 ret = -ENOMEM;
1278                 goto out_free_list;
1279         }
1280
1281         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1282                                                   obj->size / PAGE_SIZE, 0);
1283         if (!list->file_offset_node) {
1284                 ret = -ENOMEM;
1285                 goto out_free_list;
1286         }
1287
1288         list->hash.key = list->file_offset_node->start;
1289         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1290                 DRM_ERROR("failed to add to map hash\n");
1291                 goto out_free_mm;
1292         }
1293
1294         /* By now we should be all set, any drm_mmap request on the offset
1295          * below will get to our mmap & fault handler */
1296         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1297
1298         return 0;
1299
1300 out_free_mm:
1301         drm_mm_put_block(list->file_offset_node);
1302 out_free_list:
1303         kfree(list->map);
1304
1305         return ret;
1306 }
1307
1308 /**
1309  * i915_gem_release_mmap - remove physical page mappings
1310  * @obj: obj in question
1311  *
1312  * Preserve the reservation of the mmaping with the DRM core code, but
1313  * relinquish ownership of the pages back to the system.
1314  *
1315  * It is vital that we remove the page mapping if we have mapped a tiled
1316  * object through the GTT and then lose the fence register due to
1317  * resource pressure. Similarly if the object has been moved out of the
1318  * aperture, than pages mapped into userspace must be revoked. Removing the
1319  * mapping will then trigger a page fault on the next user access, allowing
1320  * fixup by i915_gem_fault().
1321  */
1322 void
1323 i915_gem_release_mmap(struct drm_gem_object *obj)
1324 {
1325         struct drm_device *dev = obj->dev;
1326         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1327
1328         if (dev->dev_mapping)
1329                 unmap_mapping_range(dev->dev_mapping,
1330                                     obj_priv->mmap_offset, obj->size, 1);
1331 }
1332
1333 static void
1334 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1335 {
1336         struct drm_device *dev = obj->dev;
1337         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1338         struct drm_gem_mm *mm = dev->mm_private;
1339         struct drm_map_list *list;
1340
1341         list = &obj->map_list;
1342         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1343
1344         if (list->file_offset_node) {
1345                 drm_mm_put_block(list->file_offset_node);
1346                 list->file_offset_node = NULL;
1347         }
1348
1349         if (list->map) {
1350                 kfree(list->map);
1351                 list->map = NULL;
1352         }
1353
1354         obj_priv->mmap_offset = 0;
1355 }
1356
1357 /**
1358  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1359  * @obj: object to check
1360  *
1361  * Return the required GTT alignment for an object, taking into account
1362  * potential fence register mapping if needed.
1363  */
1364 static uint32_t
1365 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1366 {
1367         struct drm_device *dev = obj->dev;
1368         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1369         int start, i;
1370
1371         /*
1372          * Minimum alignment is 4k (GTT page size), but might be greater
1373          * if a fence register is needed for the object.
1374          */
1375         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1376                 return 4096;
1377
1378         /*
1379          * Previous chips need to be aligned to the size of the smallest
1380          * fence register that can contain the object.
1381          */
1382         if (IS_I9XX(dev))
1383                 start = 1024*1024;
1384         else
1385                 start = 512*1024;
1386
1387         for (i = start; i < obj->size; i <<= 1)
1388                 ;
1389
1390         return i;
1391 }
1392
1393 /**
1394  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1395  * @dev: DRM device
1396  * @data: GTT mapping ioctl data
1397  * @file_priv: GEM object info
1398  *
1399  * Simply returns the fake offset to userspace so it can mmap it.
1400  * The mmap call will end up in drm_gem_mmap(), which will set things
1401  * up so we can get faults in the handler above.
1402  *
1403  * The fault handler will take care of binding the object into the GTT
1404  * (since it may have been evicted to make room for something), allocating
1405  * a fence register, and mapping the appropriate aperture address into
1406  * userspace.
1407  */
1408 int
1409 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1410                         struct drm_file *file_priv)
1411 {
1412         struct drm_i915_gem_mmap_gtt *args = data;
1413         struct drm_i915_private *dev_priv = dev->dev_private;
1414         struct drm_gem_object *obj;
1415         struct drm_i915_gem_object *obj_priv;
1416         int ret;
1417
1418         if (!(dev->driver->driver_features & DRIVER_GEM))
1419                 return -ENODEV;
1420
1421         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1422         if (obj == NULL)
1423                 return -EBADF;
1424
1425         mutex_lock(&dev->struct_mutex);
1426
1427         obj_priv = obj->driver_private;
1428
1429         if (obj_priv->madv != I915_MADV_WILLNEED) {
1430                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1431                 drm_gem_object_unreference(obj);
1432                 mutex_unlock(&dev->struct_mutex);
1433                 return -EINVAL;
1434         }
1435
1436
1437         if (!obj_priv->mmap_offset) {
1438                 ret = i915_gem_create_mmap_offset(obj);
1439                 if (ret) {
1440                         drm_gem_object_unreference(obj);
1441                         mutex_unlock(&dev->struct_mutex);
1442                         return ret;
1443                 }
1444         }
1445
1446         args->offset = obj_priv->mmap_offset;
1447
1448         /*
1449          * Pull it into the GTT so that we have a page list (makes the
1450          * initial fault faster and any subsequent flushing possible).
1451          */
1452         if (!obj_priv->agp_mem) {
1453                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1454                 if (ret) {
1455                         drm_gem_object_unreference(obj);
1456                         mutex_unlock(&dev->struct_mutex);
1457                         return ret;
1458                 }
1459                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1460         }
1461
1462         drm_gem_object_unreference(obj);
1463         mutex_unlock(&dev->struct_mutex);
1464
1465         return 0;
1466 }
1467
1468 void
1469 i915_gem_object_put_pages(struct drm_gem_object *obj)
1470 {
1471         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1472         int page_count = obj->size / PAGE_SIZE;
1473         int i;
1474
1475         BUG_ON(obj_priv->pages_refcount == 0);
1476         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1477
1478         if (--obj_priv->pages_refcount != 0)
1479                 return;
1480
1481         if (obj_priv->tiling_mode != I915_TILING_NONE)
1482                 i915_gem_object_save_bit_17_swizzle(obj);
1483
1484         if (obj_priv->madv == I915_MADV_DONTNEED)
1485                 obj_priv->dirty = 0;
1486
1487         for (i = 0; i < page_count; i++) {
1488                 if (obj_priv->pages[i] == NULL)
1489                         break;
1490
1491                 if (obj_priv->dirty)
1492                         set_page_dirty(obj_priv->pages[i]);
1493
1494                 if (obj_priv->madv == I915_MADV_WILLNEED)
1495                         mark_page_accessed(obj_priv->pages[i]);
1496
1497                 page_cache_release(obj_priv->pages[i]);
1498         }
1499         obj_priv->dirty = 0;
1500
1501         drm_free_large(obj_priv->pages);
1502         obj_priv->pages = NULL;
1503 }
1504
1505 static void
1506 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1507 {
1508         struct drm_device *dev = obj->dev;
1509         drm_i915_private_t *dev_priv = dev->dev_private;
1510         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1511
1512         /* Add a reference if we're newly entering the active list. */
1513         if (!obj_priv->active) {
1514                 drm_gem_object_reference(obj);
1515                 obj_priv->active = 1;
1516         }
1517         /* Move from whatever list we were on to the tail of execution. */
1518         spin_lock(&dev_priv->mm.active_list_lock);
1519         list_move_tail(&obj_priv->list,
1520                        &dev_priv->mm.active_list);
1521         spin_unlock(&dev_priv->mm.active_list_lock);
1522         obj_priv->last_rendering_seqno = seqno;
1523 }
1524
1525 static void
1526 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1527 {
1528         struct drm_device *dev = obj->dev;
1529         drm_i915_private_t *dev_priv = dev->dev_private;
1530         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1531
1532         BUG_ON(!obj_priv->active);
1533         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1534         obj_priv->last_rendering_seqno = 0;
1535 }
1536
1537 /* Immediately discard the backing storage */
1538 static void
1539 i915_gem_object_truncate(struct drm_gem_object *obj)
1540 {
1541         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1542         struct inode *inode;
1543
1544         inode = obj->filp->f_path.dentry->d_inode;
1545         if (inode->i_op->truncate)
1546                 inode->i_op->truncate (inode);
1547
1548         obj_priv->madv = __I915_MADV_PURGED;
1549 }
1550
1551 static inline int
1552 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1553 {
1554         return obj_priv->madv == I915_MADV_DONTNEED;
1555 }
1556
1557 static void
1558 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1559 {
1560         struct drm_device *dev = obj->dev;
1561         drm_i915_private_t *dev_priv = dev->dev_private;
1562         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1563
1564         i915_verify_inactive(dev, __FILE__, __LINE__);
1565         if (obj_priv->pin_count != 0)
1566                 list_del_init(&obj_priv->list);
1567         else
1568                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1569
1570         obj_priv->last_rendering_seqno = 0;
1571         if (obj_priv->active) {
1572                 obj_priv->active = 0;
1573                 drm_gem_object_unreference(obj);
1574         }
1575         i915_verify_inactive(dev, __FILE__, __LINE__);
1576 }
1577
1578 /**
1579  * Creates a new sequence number, emitting a write of it to the status page
1580  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1581  *
1582  * Must be called with struct_lock held.
1583  *
1584  * Returned sequence numbers are nonzero on success.
1585  */
1586 static uint32_t
1587 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1588                  uint32_t flush_domains)
1589 {
1590         drm_i915_private_t *dev_priv = dev->dev_private;
1591         struct drm_i915_file_private *i915_file_priv = NULL;
1592         struct drm_i915_gem_request *request;
1593         uint32_t seqno;
1594         int was_empty;
1595         RING_LOCALS;
1596
1597         if (file_priv != NULL)
1598                 i915_file_priv = file_priv->driver_priv;
1599
1600         request = kzalloc(sizeof(*request), GFP_KERNEL);
1601         if (request == NULL)
1602                 return 0;
1603
1604         /* Grab the seqno we're going to make this request be, and bump the
1605          * next (skipping 0 so it can be the reserved no-seqno value).
1606          */
1607         seqno = dev_priv->mm.next_gem_seqno;
1608         dev_priv->mm.next_gem_seqno++;
1609         if (dev_priv->mm.next_gem_seqno == 0)
1610                 dev_priv->mm.next_gem_seqno++;
1611
1612         BEGIN_LP_RING(4);
1613         OUT_RING(MI_STORE_DWORD_INDEX);
1614         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1615         OUT_RING(seqno);
1616
1617         OUT_RING(MI_USER_INTERRUPT);
1618         ADVANCE_LP_RING();
1619
1620         DRM_DEBUG("%d\n", seqno);
1621
1622         request->seqno = seqno;
1623         request->emitted_jiffies = jiffies;
1624         was_empty = list_empty(&dev_priv->mm.request_list);
1625         list_add_tail(&request->list, &dev_priv->mm.request_list);
1626         if (i915_file_priv) {
1627                 list_add_tail(&request->client_list,
1628                               &i915_file_priv->mm.request_list);
1629         } else {
1630                 INIT_LIST_HEAD(&request->client_list);
1631         }
1632
1633         /* Associate any objects on the flushing list matching the write
1634          * domain we're flushing with our flush.
1635          */
1636         if (flush_domains != 0) {
1637                 struct drm_i915_gem_object *obj_priv, *next;
1638
1639                 list_for_each_entry_safe(obj_priv, next,
1640                                          &dev_priv->mm.flushing_list, list) {
1641                         struct drm_gem_object *obj = obj_priv->obj;
1642
1643                         if ((obj->write_domain & flush_domains) ==
1644                             obj->write_domain) {
1645                                 uint32_t old_write_domain = obj->write_domain;
1646
1647                                 obj->write_domain = 0;
1648                                 i915_gem_object_move_to_active(obj, seqno);
1649
1650                                 trace_i915_gem_object_change_domain(obj,
1651                                                                     obj->read_domains,
1652                                                                     old_write_domain);
1653                         }
1654                 }
1655
1656         }
1657
1658         if (!dev_priv->mm.suspended) {
1659                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1660                 if (was_empty)
1661                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1662         }
1663         return seqno;
1664 }
1665
1666 /**
1667  * Command execution barrier
1668  *
1669  * Ensures that all commands in the ring are finished
1670  * before signalling the CPU
1671  */
1672 static uint32_t
1673 i915_retire_commands(struct drm_device *dev)
1674 {
1675         drm_i915_private_t *dev_priv = dev->dev_private;
1676         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1677         uint32_t flush_domains = 0;
1678         RING_LOCALS;
1679
1680         /* The sampler always gets flushed on i965 (sigh) */
1681         if (IS_I965G(dev))
1682                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1683         BEGIN_LP_RING(2);
1684         OUT_RING(cmd);
1685         OUT_RING(0); /* noop */
1686         ADVANCE_LP_RING();
1687         return flush_domains;
1688 }
1689
1690 /**
1691  * Moves buffers associated only with the given active seqno from the active
1692  * to inactive list, potentially freeing them.
1693  */
1694 static void
1695 i915_gem_retire_request(struct drm_device *dev,
1696                         struct drm_i915_gem_request *request)
1697 {
1698         drm_i915_private_t *dev_priv = dev->dev_private;
1699
1700         trace_i915_gem_request_retire(dev, request->seqno);
1701
1702         /* Move any buffers on the active list that are no longer referenced
1703          * by the ringbuffer to the flushing/inactive lists as appropriate.
1704          */
1705         spin_lock(&dev_priv->mm.active_list_lock);
1706         while (!list_empty(&dev_priv->mm.active_list)) {
1707                 struct drm_gem_object *obj;
1708                 struct drm_i915_gem_object *obj_priv;
1709
1710                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1711                                             struct drm_i915_gem_object,
1712                                             list);
1713                 obj = obj_priv->obj;
1714
1715                 /* If the seqno being retired doesn't match the oldest in the
1716                  * list, then the oldest in the list must still be newer than
1717                  * this seqno.
1718                  */
1719                 if (obj_priv->last_rendering_seqno != request->seqno)
1720                         goto out;
1721
1722 #if WATCH_LRU
1723                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1724                          __func__, request->seqno, obj);
1725 #endif
1726
1727                 if (obj->write_domain != 0)
1728                         i915_gem_object_move_to_flushing(obj);
1729                 else {
1730                         /* Take a reference on the object so it won't be
1731                          * freed while the spinlock is held.  The list
1732                          * protection for this spinlock is safe when breaking
1733                          * the lock like this since the next thing we do
1734                          * is just get the head of the list again.
1735                          */
1736                         drm_gem_object_reference(obj);
1737                         i915_gem_object_move_to_inactive(obj);
1738                         spin_unlock(&dev_priv->mm.active_list_lock);
1739                         drm_gem_object_unreference(obj);
1740                         spin_lock(&dev_priv->mm.active_list_lock);
1741                 }
1742         }
1743 out:
1744         spin_unlock(&dev_priv->mm.active_list_lock);
1745 }
1746
1747 /**
1748  * Returns true if seq1 is later than seq2.
1749  */
1750 bool
1751 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1752 {
1753         return (int32_t)(seq1 - seq2) >= 0;
1754 }
1755
1756 uint32_t
1757 i915_get_gem_seqno(struct drm_device *dev)
1758 {
1759         drm_i915_private_t *dev_priv = dev->dev_private;
1760
1761         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1762 }
1763
1764 /**
1765  * This function clears the request list as sequence numbers are passed.
1766  */
1767 void
1768 i915_gem_retire_requests(struct drm_device *dev)
1769 {
1770         drm_i915_private_t *dev_priv = dev->dev_private;
1771         uint32_t seqno;
1772
1773         if (!dev_priv->hw_status_page)
1774                 return;
1775
1776         seqno = i915_get_gem_seqno(dev);
1777
1778         while (!list_empty(&dev_priv->mm.request_list)) {
1779                 struct drm_i915_gem_request *request;
1780                 uint32_t retiring_seqno;
1781
1782                 request = list_first_entry(&dev_priv->mm.request_list,
1783                                            struct drm_i915_gem_request,
1784                                            list);
1785                 retiring_seqno = request->seqno;
1786
1787                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1788                     atomic_read(&dev_priv->mm.wedged)) {
1789                         i915_gem_retire_request(dev, request);
1790
1791                         list_del(&request->list);
1792                         list_del(&request->client_list);
1793                         kfree(request);
1794                 } else
1795                         break;
1796         }
1797 }
1798
1799 void
1800 i915_gem_retire_work_handler(struct work_struct *work)
1801 {
1802         drm_i915_private_t *dev_priv;
1803         struct drm_device *dev;
1804
1805         dev_priv = container_of(work, drm_i915_private_t,
1806                                 mm.retire_work.work);
1807         dev = dev_priv->dev;
1808
1809         mutex_lock(&dev->struct_mutex);
1810         i915_gem_retire_requests(dev);
1811         if (!dev_priv->mm.suspended &&
1812             !list_empty(&dev_priv->mm.request_list))
1813                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1814         mutex_unlock(&dev->struct_mutex);
1815 }
1816
1817 /**
1818  * Waits for a sequence number to be signaled, and cleans up the
1819  * request and object lists appropriately for that event.
1820  */
1821 static int
1822 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1823 {
1824         drm_i915_private_t *dev_priv = dev->dev_private;
1825         u32 ier;
1826         int ret = 0;
1827
1828         BUG_ON(seqno == 0);
1829
1830         if (atomic_read(&dev_priv->mm.wedged))
1831                 return -EIO;
1832
1833         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1834                 if (IS_IGDNG(dev))
1835                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1836                 else
1837                         ier = I915_READ(IER);
1838                 if (!ier) {
1839                         DRM_ERROR("something (likely vbetool) disabled "
1840                                   "interrupts, re-enabling\n");
1841                         i915_driver_irq_preinstall(dev);
1842                         i915_driver_irq_postinstall(dev);
1843                 }
1844
1845                 trace_i915_gem_request_wait_begin(dev, seqno);
1846
1847                 dev_priv->mm.waiting_gem_seqno = seqno;
1848                 i915_user_irq_get(dev);
1849                 ret = wait_event_interruptible(dev_priv->irq_queue,
1850                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1851                                                                  seqno) ||
1852                                                atomic_read(&dev_priv->mm.wedged));
1853                 i915_user_irq_put(dev);
1854                 dev_priv->mm.waiting_gem_seqno = 0;
1855
1856                 trace_i915_gem_request_wait_end(dev, seqno);
1857         }
1858         if (atomic_read(&dev_priv->mm.wedged))
1859                 ret = -EIO;
1860
1861         if (ret && ret != -ERESTARTSYS)
1862                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1863                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1864
1865         /* Directly dispatch request retiring.  While we have the work queue
1866          * to handle this, the waiter on a request often wants an associated
1867          * buffer to have made it to the inactive list, and we would need
1868          * a separate wait queue to handle that.
1869          */
1870         if (ret == 0)
1871                 i915_gem_retire_requests(dev);
1872
1873         return ret;
1874 }
1875
1876 static void
1877 i915_gem_flush(struct drm_device *dev,
1878                uint32_t invalidate_domains,
1879                uint32_t flush_domains)
1880 {
1881         drm_i915_private_t *dev_priv = dev->dev_private;
1882         uint32_t cmd;
1883         RING_LOCALS;
1884
1885 #if WATCH_EXEC
1886         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1887                   invalidate_domains, flush_domains);
1888 #endif
1889         trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1890                                      invalidate_domains, flush_domains);
1891
1892         if (flush_domains & I915_GEM_DOMAIN_CPU)
1893                 drm_agp_chipset_flush(dev);
1894
1895         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1896                 /*
1897                  * read/write caches:
1898                  *
1899                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1900                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1901                  * also flushed at 2d versus 3d pipeline switches.
1902                  *
1903                  * read-only caches:
1904                  *
1905                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1906                  * MI_READ_FLUSH is set, and is always flushed on 965.
1907                  *
1908                  * I915_GEM_DOMAIN_COMMAND may not exist?
1909                  *
1910                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1911                  * invalidated when MI_EXE_FLUSH is set.
1912                  *
1913                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1914                  * invalidated with every MI_FLUSH.
1915                  *
1916                  * TLBs:
1917                  *
1918                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1919                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1920                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1921                  * are flushed at any MI_FLUSH.
1922                  */
1923
1924                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1925                 if ((invalidate_domains|flush_domains) &
1926                     I915_GEM_DOMAIN_RENDER)
1927                         cmd &= ~MI_NO_WRITE_FLUSH;
1928                 if (!IS_I965G(dev)) {
1929                         /*
1930                          * On the 965, the sampler cache always gets flushed
1931                          * and this bit is reserved.
1932                          */
1933                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1934                                 cmd |= MI_READ_FLUSH;
1935                 }
1936                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1937                         cmd |= MI_EXE_FLUSH;
1938
1939 #if WATCH_EXEC
1940                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1941 #endif
1942                 BEGIN_LP_RING(2);
1943                 OUT_RING(cmd);
1944                 OUT_RING(0); /* noop */
1945                 ADVANCE_LP_RING();
1946         }
1947 }
1948
1949 /**
1950  * Ensures that all rendering to the object has completed and the object is
1951  * safe to unbind from the GTT or access from the CPU.
1952  */
1953 static int
1954 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1955 {
1956         struct drm_device *dev = obj->dev;
1957         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1958         int ret;
1959
1960         /* This function only exists to support waiting for existing rendering,
1961          * not for emitting required flushes.
1962          */
1963         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1964
1965         /* If there is rendering queued on the buffer being evicted, wait for
1966          * it.
1967          */
1968         if (obj_priv->active) {
1969 #if WATCH_BUF
1970                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1971                           __func__, obj, obj_priv->last_rendering_seqno);
1972 #endif
1973                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1974                 if (ret != 0)
1975                         return ret;
1976         }
1977
1978         return 0;
1979 }
1980
1981 /**
1982  * Unbinds an object from the GTT aperture.
1983  */
1984 int
1985 i915_gem_object_unbind(struct drm_gem_object *obj)
1986 {
1987         struct drm_device *dev = obj->dev;
1988         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1989         int ret = 0;
1990
1991 #if WATCH_BUF
1992         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1993         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1994 #endif
1995         if (obj_priv->gtt_space == NULL)
1996                 return 0;
1997
1998         if (obj_priv->pin_count != 0) {
1999                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2000                 return -EINVAL;
2001         }
2002
2003         /* blow away mappings if mapped through GTT */
2004         i915_gem_release_mmap(obj);
2005
2006         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2007                 i915_gem_clear_fence_reg(obj);
2008
2009         /* Move the object to the CPU domain to ensure that
2010          * any possible CPU writes while it's not in the GTT
2011          * are flushed when we go to remap it. This will
2012          * also ensure that all pending GPU writes are finished
2013          * before we unbind.
2014          */
2015         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2016         if (ret) {
2017                 if (ret != -ERESTARTSYS)
2018                         DRM_ERROR("set_domain failed: %d\n", ret);
2019                 return ret;
2020         }
2021
2022         BUG_ON(obj_priv->active);
2023
2024         if (obj_priv->agp_mem != NULL) {
2025                 drm_unbind_agp(obj_priv->agp_mem);
2026                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2027                 obj_priv->agp_mem = NULL;
2028         }
2029
2030         i915_gem_object_put_pages(obj);
2031         BUG_ON(obj_priv->pages_refcount);
2032
2033         if (obj_priv->gtt_space) {
2034                 atomic_dec(&dev->gtt_count);
2035                 atomic_sub(obj->size, &dev->gtt_memory);
2036
2037                 drm_mm_put_block(obj_priv->gtt_space);
2038                 obj_priv->gtt_space = NULL;
2039         }
2040
2041         /* Remove ourselves from the LRU list if present. */
2042         if (!list_empty(&obj_priv->list))
2043                 list_del_init(&obj_priv->list);
2044
2045         if (i915_gem_object_is_purgeable(obj_priv))
2046                 i915_gem_object_truncate(obj);
2047
2048         trace_i915_gem_object_unbind(obj);
2049
2050         return 0;
2051 }
2052
2053 static struct drm_gem_object *
2054 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2055 {
2056         drm_i915_private_t *dev_priv = dev->dev_private;
2057         struct drm_i915_gem_object *obj_priv;
2058         struct drm_gem_object *best = NULL;
2059         struct drm_gem_object *first = NULL;
2060
2061         /* Try to find the smallest clean object */
2062         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2063                 struct drm_gem_object *obj = obj_priv->obj;
2064                 if (obj->size >= min_size) {
2065                         if ((!obj_priv->dirty ||
2066                              i915_gem_object_is_purgeable(obj_priv)) &&
2067                             (!best || obj->size < best->size)) {
2068                                 best = obj;
2069                                 if (best->size == min_size)
2070                                         return best;
2071                         }
2072                         if (!first)
2073                             first = obj;
2074                 }
2075         }
2076
2077         return best ? best : first;
2078 }
2079
2080 static int
2081 i915_gem_evict_everything(struct drm_device *dev)
2082 {
2083         drm_i915_private_t *dev_priv = dev->dev_private;
2084         uint32_t seqno;
2085         int ret;
2086         bool lists_empty;
2087
2088         spin_lock(&dev_priv->mm.active_list_lock);
2089         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2090                        list_empty(&dev_priv->mm.flushing_list) &&
2091                        list_empty(&dev_priv->mm.active_list));
2092         spin_unlock(&dev_priv->mm.active_list_lock);
2093
2094         if (lists_empty)
2095                 return -ENOSPC;
2096
2097         /* Flush everything (on to the inactive lists) and evict */
2098         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2099         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2100         if (seqno == 0)
2101                 return -ENOMEM;
2102
2103         ret = i915_wait_request(dev, seqno);
2104         if (ret)
2105                 return ret;
2106
2107         ret = i915_gem_evict_from_inactive_list(dev);
2108         if (ret)
2109                 return ret;
2110
2111         spin_lock(&dev_priv->mm.active_list_lock);
2112         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2113                        list_empty(&dev_priv->mm.flushing_list) &&
2114                        list_empty(&dev_priv->mm.active_list));
2115         spin_unlock(&dev_priv->mm.active_list_lock);
2116         BUG_ON(!lists_empty);
2117
2118         return 0;
2119 }
2120
2121 static int
2122 i915_gem_evict_something(struct drm_device *dev, int min_size)
2123 {
2124         drm_i915_private_t *dev_priv = dev->dev_private;
2125         struct drm_gem_object *obj;
2126         int ret;
2127
2128         for (;;) {
2129                 i915_gem_retire_requests(dev);
2130
2131                 /* If there's an inactive buffer available now, grab it
2132                  * and be done.
2133                  */
2134                 obj = i915_gem_find_inactive_object(dev, min_size);
2135                 if (obj) {
2136                         struct drm_i915_gem_object *obj_priv;
2137
2138 #if WATCH_LRU
2139                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2140 #endif
2141                         obj_priv = obj->driver_private;
2142                         BUG_ON(obj_priv->pin_count != 0);
2143                         BUG_ON(obj_priv->active);
2144
2145                         /* Wait on the rendering and unbind the buffer. */
2146                         return i915_gem_object_unbind(obj);
2147                 }
2148
2149                 /* If we didn't get anything, but the ring is still processing
2150                  * things, wait for the next to finish and hopefully leave us
2151                  * a buffer to evict.
2152                  */
2153                 if (!list_empty(&dev_priv->mm.request_list)) {
2154                         struct drm_i915_gem_request *request;
2155
2156                         request = list_first_entry(&dev_priv->mm.request_list,
2157                                                    struct drm_i915_gem_request,
2158                                                    list);
2159
2160                         ret = i915_wait_request(dev, request->seqno);
2161                         if (ret)
2162                                 return ret;
2163
2164                         continue;
2165                 }
2166
2167                 /* If we didn't have anything on the request list but there
2168                  * are buffers awaiting a flush, emit one and try again.
2169                  * When we wait on it, those buffers waiting for that flush
2170                  * will get moved to inactive.
2171                  */
2172                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2173                         struct drm_i915_gem_object *obj_priv;
2174
2175                         /* Find an object that we can immediately reuse */
2176                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2177                                 obj = obj_priv->obj;
2178                                 if (obj->size >= min_size)
2179                                         break;
2180
2181                                 obj = NULL;
2182                         }
2183
2184                         if (obj != NULL) {
2185                                 uint32_t seqno;
2186
2187                                 i915_gem_flush(dev,
2188                                                obj->write_domain,
2189                                                obj->write_domain);
2190                                 seqno = i915_add_request(dev, NULL, obj->write_domain);
2191                                 if (seqno == 0)
2192                                         return -ENOMEM;
2193
2194                                 ret = i915_wait_request(dev, seqno);
2195                                 if (ret)
2196                                         return ret;
2197
2198                                 continue;
2199                         }
2200                 }
2201
2202                 /* If we didn't do any of the above, there's no single buffer
2203                  * large enough to swap out for the new one, so just evict
2204                  * everything and start again. (This should be rare.)
2205                  */
2206                 if (!list_empty (&dev_priv->mm.inactive_list))
2207                         return i915_gem_evict_from_inactive_list(dev);
2208                 else
2209                         return i915_gem_evict_everything(dev);
2210         }
2211 }
2212
2213 int
2214 i915_gem_object_get_pages(struct drm_gem_object *obj)
2215 {
2216         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2217         int page_count, i;
2218         struct address_space *mapping;
2219         struct inode *inode;
2220         struct page *page;
2221         int ret;
2222
2223         if (obj_priv->pages_refcount++ != 0)
2224                 return 0;
2225
2226         /* Get the list of pages out of our struct file.  They'll be pinned
2227          * at this point until we release them.
2228          */
2229         page_count = obj->size / PAGE_SIZE;
2230         BUG_ON(obj_priv->pages != NULL);
2231         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2232         if (obj_priv->pages == NULL) {
2233                 obj_priv->pages_refcount--;
2234                 return -ENOMEM;
2235         }
2236
2237         inode = obj->filp->f_path.dentry->d_inode;
2238         mapping = inode->i_mapping;
2239         for (i = 0; i < page_count; i++) {
2240                 page = read_mapping_page(mapping, i, NULL);
2241                 if (IS_ERR(page)) {
2242                         ret = PTR_ERR(page);
2243                         i915_gem_object_put_pages(obj);
2244                         return ret;
2245                 }
2246                 obj_priv->pages[i] = page;
2247         }
2248
2249         if (obj_priv->tiling_mode != I915_TILING_NONE)
2250                 i915_gem_object_do_bit_17_swizzle(obj);
2251
2252         return 0;
2253 }
2254
2255 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2256 {
2257         struct drm_gem_object *obj = reg->obj;
2258         struct drm_device *dev = obj->dev;
2259         drm_i915_private_t *dev_priv = dev->dev_private;
2260         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2261         int regnum = obj_priv->fence_reg;
2262         uint64_t val;
2263
2264         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2265                     0xfffff000) << 32;
2266         val |= obj_priv->gtt_offset & 0xfffff000;
2267         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2268         if (obj_priv->tiling_mode == I915_TILING_Y)
2269                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2270         val |= I965_FENCE_REG_VALID;
2271
2272         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2273 }
2274
2275 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2276 {
2277         struct drm_gem_object *obj = reg->obj;
2278         struct drm_device *dev = obj->dev;
2279         drm_i915_private_t *dev_priv = dev->dev_private;
2280         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2281         int regnum = obj_priv->fence_reg;
2282         int tile_width;
2283         uint32_t fence_reg, val;
2284         uint32_t pitch_val;
2285
2286         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2287             (obj_priv->gtt_offset & (obj->size - 1))) {
2288                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2289                      __func__, obj_priv->gtt_offset, obj->size);
2290                 return;
2291         }
2292
2293         if (obj_priv->tiling_mode == I915_TILING_Y &&
2294             HAS_128_BYTE_Y_TILING(dev))
2295                 tile_width = 128;
2296         else
2297                 tile_width = 512;
2298
2299         /* Note: pitch better be a power of two tile widths */
2300         pitch_val = obj_priv->stride / tile_width;
2301         pitch_val = ffs(pitch_val) - 1;
2302
2303         val = obj_priv->gtt_offset;
2304         if (obj_priv->tiling_mode == I915_TILING_Y)
2305                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2306         val |= I915_FENCE_SIZE_BITS(obj->size);
2307         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2308         val |= I830_FENCE_REG_VALID;
2309
2310         if (regnum < 8)
2311                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2312         else
2313                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2314         I915_WRITE(fence_reg, val);
2315 }
2316
2317 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2318 {
2319         struct drm_gem_object *obj = reg->obj;
2320         struct drm_device *dev = obj->dev;
2321         drm_i915_private_t *dev_priv = dev->dev_private;
2322         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2323         int regnum = obj_priv->fence_reg;
2324         uint32_t val;
2325         uint32_t pitch_val;
2326         uint32_t fence_size_bits;
2327
2328         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2329             (obj_priv->gtt_offset & (obj->size - 1))) {
2330                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2331                      __func__, obj_priv->gtt_offset);
2332                 return;
2333         }
2334
2335         pitch_val = obj_priv->stride / 128;
2336         pitch_val = ffs(pitch_val) - 1;
2337         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2338
2339         val = obj_priv->gtt_offset;
2340         if (obj_priv->tiling_mode == I915_TILING_Y)
2341                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2342         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2343         WARN_ON(fence_size_bits & ~0x00000f00);
2344         val |= fence_size_bits;
2345         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2346         val |= I830_FENCE_REG_VALID;
2347
2348         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2349 }
2350
2351 /**
2352  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2353  * @obj: object to map through a fence reg
2354  *
2355  * When mapping objects through the GTT, userspace wants to be able to write
2356  * to them without having to worry about swizzling if the object is tiled.
2357  *
2358  * This function walks the fence regs looking for a free one for @obj,
2359  * stealing one if it can't find any.
2360  *
2361  * It then sets up the reg based on the object's properties: address, pitch
2362  * and tiling format.
2363  */
2364 int
2365 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2366 {
2367         struct drm_device *dev = obj->dev;
2368         struct drm_i915_private *dev_priv = dev->dev_private;
2369         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2370         struct drm_i915_fence_reg *reg = NULL;
2371         struct drm_i915_gem_object *old_obj_priv = NULL;
2372         int i, ret, avail;
2373
2374         /* Just update our place in the LRU if our fence is getting used. */
2375         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2376                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2377                 return 0;
2378         }
2379
2380         switch (obj_priv->tiling_mode) {
2381         case I915_TILING_NONE:
2382                 WARN(1, "allocating a fence for non-tiled object?\n");
2383                 break;
2384         case I915_TILING_X:
2385                 if (!obj_priv->stride)
2386                         return -EINVAL;
2387                 WARN((obj_priv->stride & (512 - 1)),
2388                      "object 0x%08x is X tiled but has non-512B pitch\n",
2389                      obj_priv->gtt_offset);
2390                 break;
2391         case I915_TILING_Y:
2392                 if (!obj_priv->stride)
2393                         return -EINVAL;
2394                 WARN((obj_priv->stride & (128 - 1)),
2395                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2396                      obj_priv->gtt_offset);
2397                 break;
2398         }
2399
2400         /* First try to find a free reg */
2401         avail = 0;
2402         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2403                 reg = &dev_priv->fence_regs[i];
2404                 if (!reg->obj)
2405                         break;
2406
2407                 old_obj_priv = reg->obj->driver_private;
2408                 if (!old_obj_priv->pin_count)
2409                     avail++;
2410         }
2411
2412         /* None available, try to steal one or wait for a user to finish */
2413         if (i == dev_priv->num_fence_regs) {
2414                 struct drm_gem_object *old_obj = NULL;
2415
2416                 if (avail == 0)
2417                         return -ENOSPC;
2418
2419                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2420                                     fence_list) {
2421                         old_obj = old_obj_priv->obj;
2422
2423                         if (old_obj_priv->pin_count)
2424                                 continue;
2425
2426                         /* Take a reference, as otherwise the wait_rendering
2427                          * below may cause the object to get freed out from
2428                          * under us.
2429                          */
2430                         drm_gem_object_reference(old_obj);
2431
2432                         /* i915 uses fences for GPU access to tiled buffers */
2433                         if (IS_I965G(dev) || !old_obj_priv->active)
2434                                 break;
2435
2436                         /* This brings the object to the head of the LRU if it
2437                          * had been written to.  The only way this should
2438                          * result in us waiting longer than the expected
2439                          * optimal amount of time is if there was a
2440                          * fence-using buffer later that was read-only.
2441                          */
2442                         i915_gem_object_flush_gpu_write_domain(old_obj);
2443                         ret = i915_gem_object_wait_rendering(old_obj);
2444                         if (ret != 0) {
2445                                 drm_gem_object_unreference(old_obj);
2446                                 return ret;
2447                         }
2448
2449                         break;
2450                 }
2451
2452                 /*
2453                  * Zap this virtual mapping so we can set up a fence again
2454                  * for this object next time we need it.
2455                  */
2456                 i915_gem_release_mmap(old_obj);
2457
2458                 i = old_obj_priv->fence_reg;
2459                 reg = &dev_priv->fence_regs[i];
2460
2461                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2462                 list_del_init(&old_obj_priv->fence_list);
2463
2464                 drm_gem_object_unreference(old_obj);
2465         }
2466
2467         obj_priv->fence_reg = i;
2468         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2469
2470         reg->obj = obj;
2471
2472         if (IS_I965G(dev))
2473                 i965_write_fence_reg(reg);
2474         else if (IS_I9XX(dev))
2475                 i915_write_fence_reg(reg);
2476         else
2477                 i830_write_fence_reg(reg);
2478
2479         trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2480
2481         return 0;
2482 }
2483
2484 /**
2485  * i915_gem_clear_fence_reg - clear out fence register info
2486  * @obj: object to clear
2487  *
2488  * Zeroes out the fence register itself and clears out the associated
2489  * data structures in dev_priv and obj_priv.
2490  */
2491 static void
2492 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2493 {
2494         struct drm_device *dev = obj->dev;
2495         drm_i915_private_t *dev_priv = dev->dev_private;
2496         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2497
2498         if (IS_I965G(dev))
2499                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2500         else {
2501                 uint32_t fence_reg;
2502
2503                 if (obj_priv->fence_reg < 8)
2504                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2505                 else
2506                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2507                                                        8) * 4;
2508
2509                 I915_WRITE(fence_reg, 0);
2510         }
2511
2512         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2513         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2514         list_del_init(&obj_priv->fence_list);
2515 }
2516
2517 /**
2518  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2519  * to the buffer to finish, and then resets the fence register.
2520  * @obj: tiled object holding a fence register.
2521  *
2522  * Zeroes out the fence register itself and clears out the associated
2523  * data structures in dev_priv and obj_priv.
2524  */
2525 int
2526 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2527 {
2528         struct drm_device *dev = obj->dev;
2529         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2530
2531         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2532                 return 0;
2533
2534         /* On the i915, GPU access to tiled buffers is via a fence,
2535          * therefore we must wait for any outstanding access to complete
2536          * before clearing the fence.
2537          */
2538         if (!IS_I965G(dev)) {
2539                 int ret;
2540
2541                 i915_gem_object_flush_gpu_write_domain(obj);
2542                 i915_gem_object_flush_gtt_write_domain(obj);
2543                 ret = i915_gem_object_wait_rendering(obj);
2544                 if (ret != 0)
2545                         return ret;
2546         }
2547
2548         i915_gem_clear_fence_reg (obj);
2549
2550         return 0;
2551 }
2552
2553 /**
2554  * Finds free space in the GTT aperture and binds the object there.
2555  */
2556 static int
2557 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2558 {
2559         struct drm_device *dev = obj->dev;
2560         drm_i915_private_t *dev_priv = dev->dev_private;
2561         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2562         struct drm_mm_node *free_space;
2563         bool retry_alloc = false;
2564         int ret;
2565
2566         if (dev_priv->mm.suspended)
2567                 return -EBUSY;
2568
2569         if (obj_priv->madv != I915_MADV_WILLNEED) {
2570                 DRM_ERROR("Attempting to bind a purgeable object\n");
2571                 return -EINVAL;
2572         }
2573
2574         if (alignment == 0)
2575                 alignment = i915_gem_get_gtt_alignment(obj);
2576         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2577                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2578                 return -EINVAL;
2579         }
2580
2581  search_free:
2582         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2583                                         obj->size, alignment, 0);
2584         if (free_space != NULL) {
2585                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2586                                                        alignment);
2587                 if (obj_priv->gtt_space != NULL) {
2588                         obj_priv->gtt_space->private = obj;
2589                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2590                 }
2591         }
2592         if (obj_priv->gtt_space == NULL) {
2593                 /* If the gtt is empty and we're still having trouble
2594                  * fitting our object in, we're out of memory.
2595                  */
2596 #if WATCH_LRU
2597                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2598 #endif
2599                 ret = i915_gem_evict_something(dev, obj->size);
2600                 if (ret)
2601                         return ret;
2602
2603                 goto search_free;
2604         }
2605
2606 #if WATCH_BUF
2607         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2608                  obj->size, obj_priv->gtt_offset);
2609 #endif
2610         if (retry_alloc) {
2611                 i915_gem_object_set_page_gfp_mask (obj,
2612                                                    i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
2613         }
2614         ret = i915_gem_object_get_pages(obj);
2615         if (retry_alloc) {
2616                 i915_gem_object_set_page_gfp_mask (obj,
2617                                                    i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
2618         }
2619         if (ret) {
2620                 drm_mm_put_block(obj_priv->gtt_space);
2621                 obj_priv->gtt_space = NULL;
2622
2623                 if (ret == -ENOMEM) {
2624                         /* first try to clear up some space from the GTT */
2625                         ret = i915_gem_evict_something(dev, obj->size);
2626                         if (ret) {
2627                                 /* now try to shrink everyone else */
2628                                 if (! retry_alloc) {
2629                                     retry_alloc = true;
2630                                     goto search_free;
2631                                 }
2632
2633                                 return ret;
2634                         }
2635
2636                         goto search_free;
2637                 }
2638
2639                 return ret;
2640         }
2641
2642         /* Create an AGP memory structure pointing at our pages, and bind it
2643          * into the GTT.
2644          */
2645         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2646                                                obj_priv->pages,
2647                                                obj->size >> PAGE_SHIFT,
2648                                                obj_priv->gtt_offset,
2649                                                obj_priv->agp_type);
2650         if (obj_priv->agp_mem == NULL) {
2651                 i915_gem_object_put_pages(obj);
2652                 drm_mm_put_block(obj_priv->gtt_space);
2653                 obj_priv->gtt_space = NULL;
2654
2655                 ret = i915_gem_evict_something(dev, obj->size);
2656                 if (ret)
2657                         return ret;
2658
2659                 goto search_free;
2660         }
2661         atomic_inc(&dev->gtt_count);
2662         atomic_add(obj->size, &dev->gtt_memory);
2663
2664         /* Assert that the object is not currently in any GPU domain. As it
2665          * wasn't in the GTT, there shouldn't be any way it could have been in
2666          * a GPU cache
2667          */
2668         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2669         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2670
2671         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2672
2673         return 0;
2674 }
2675
2676 void
2677 i915_gem_clflush_object(struct drm_gem_object *obj)
2678 {
2679         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2680
2681         /* If we don't have a page list set up, then we're not pinned
2682          * to GPU, and we can ignore the cache flush because it'll happen
2683          * again at bind time.
2684          */
2685         if (obj_priv->pages == NULL)
2686                 return;
2687
2688         trace_i915_gem_object_clflush(obj);
2689
2690         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2691 }
2692
2693 /** Flushes any GPU write domain for the object if it's dirty. */
2694 static void
2695 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2696 {
2697         struct drm_device *dev = obj->dev;
2698         uint32_t seqno;
2699         uint32_t old_write_domain;
2700
2701         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2702                 return;
2703
2704         /* Queue the GPU write cache flushing we need. */
2705         old_write_domain = obj->write_domain;
2706         i915_gem_flush(dev, 0, obj->write_domain);
2707         seqno = i915_add_request(dev, NULL, obj->write_domain);
2708         obj->write_domain = 0;
2709         i915_gem_object_move_to_active(obj, seqno);
2710
2711         trace_i915_gem_object_change_domain(obj,
2712                                             obj->read_domains,
2713                                             old_write_domain);
2714 }
2715
2716 /** Flushes the GTT write domain for the object if it's dirty. */
2717 static void
2718 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2719 {
2720         uint32_t old_write_domain;
2721
2722         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2723                 return;
2724
2725         /* No actual flushing is required for the GTT write domain.   Writes
2726          * to it immediately go to main memory as far as we know, so there's
2727          * no chipset flush.  It also doesn't land in render cache.
2728          */
2729         old_write_domain = obj->write_domain;
2730         obj->write_domain = 0;
2731
2732         trace_i915_gem_object_change_domain(obj,
2733                                             obj->read_domains,
2734                                             old_write_domain);
2735 }
2736
2737 /** Flushes the CPU write domain for the object if it's dirty. */
2738 static void
2739 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2740 {
2741         struct drm_device *dev = obj->dev;
2742         uint32_t old_write_domain;
2743
2744         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2745                 return;
2746
2747         i915_gem_clflush_object(obj);
2748         drm_agp_chipset_flush(dev);
2749         old_write_domain = obj->write_domain;
2750         obj->write_domain = 0;
2751
2752         trace_i915_gem_object_change_domain(obj,
2753                                             obj->read_domains,
2754                                             old_write_domain);
2755 }
2756
2757 /**
2758  * Moves a single object to the GTT read, and possibly write domain.
2759  *
2760  * This function returns when the move is complete, including waiting on
2761  * flushes to occur.
2762  */
2763 int
2764 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2765 {
2766         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2767         uint32_t old_write_domain, old_read_domains;
2768         int ret;
2769
2770         /* Not valid to be called on unbound objects. */
2771         if (obj_priv->gtt_space == NULL)
2772                 return -EINVAL;
2773
2774         i915_gem_object_flush_gpu_write_domain(obj);
2775         /* Wait on any GPU rendering and flushing to occur. */
2776         ret = i915_gem_object_wait_rendering(obj);
2777         if (ret != 0)
2778                 return ret;
2779
2780         old_write_domain = obj->write_domain;
2781         old_read_domains = obj->read_domains;
2782
2783         /* If we're writing through the GTT domain, then CPU and GPU caches
2784          * will need to be invalidated at next use.
2785          */
2786         if (write)
2787                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2788
2789         i915_gem_object_flush_cpu_write_domain(obj);
2790
2791         /* It should now be out of any other write domains, and we can update
2792          * the domain values for our changes.
2793          */
2794         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2795         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2796         if (write) {
2797                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2798                 obj_priv->dirty = 1;
2799         }
2800
2801         trace_i915_gem_object_change_domain(obj,
2802                                             old_read_domains,
2803                                             old_write_domain);
2804
2805         return 0;
2806 }
2807
2808 /**
2809  * Moves a single object to the CPU read, and possibly write domain.
2810  *
2811  * This function returns when the move is complete, including waiting on
2812  * flushes to occur.
2813  */
2814 static int
2815 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2816 {
2817         uint32_t old_write_domain, old_read_domains;
2818         int ret;
2819
2820         i915_gem_object_flush_gpu_write_domain(obj);
2821         /* Wait on any GPU rendering and flushing to occur. */
2822         ret = i915_gem_object_wait_rendering(obj);
2823         if (ret != 0)
2824                 return ret;
2825
2826         i915_gem_object_flush_gtt_write_domain(obj);
2827
2828         /* If we have a partially-valid cache of the object in the CPU,
2829          * finish invalidating it and free the per-page flags.
2830          */
2831         i915_gem_object_set_to_full_cpu_read_domain(obj);
2832
2833         old_write_domain = obj->write_domain;
2834         old_read_domains = obj->read_domains;
2835
2836         /* Flush the CPU cache if it's still invalid. */
2837         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2838                 i915_gem_clflush_object(obj);
2839
2840                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2841         }
2842
2843         /* It should now be out of any other write domains, and we can update
2844          * the domain values for our changes.
2845          */
2846         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2847
2848         /* If we're writing through the CPU, then the GPU read domains will
2849          * need to be invalidated at next use.
2850          */
2851         if (write) {
2852                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2853                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2854         }
2855
2856         trace_i915_gem_object_change_domain(obj,
2857                                             old_read_domains,
2858                                             old_write_domain);
2859
2860         return 0;
2861 }
2862
2863 /*
2864  * Set the next domain for the specified object. This
2865  * may not actually perform the necessary flushing/invaliding though,
2866  * as that may want to be batched with other set_domain operations
2867  *
2868  * This is (we hope) the only really tricky part of gem. The goal
2869  * is fairly simple -- track which caches hold bits of the object
2870  * and make sure they remain coherent. A few concrete examples may
2871  * help to explain how it works. For shorthand, we use the notation
2872  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2873  * a pair of read and write domain masks.
2874  *
2875  * Case 1: the batch buffer
2876  *
2877  *      1. Allocated
2878  *      2. Written by CPU
2879  *      3. Mapped to GTT
2880  *      4. Read by GPU
2881  *      5. Unmapped from GTT
2882  *      6. Freed
2883  *
2884  *      Let's take these a step at a time
2885  *
2886  *      1. Allocated
2887  *              Pages allocated from the kernel may still have
2888  *              cache contents, so we set them to (CPU, CPU) always.
2889  *      2. Written by CPU (using pwrite)
2890  *              The pwrite function calls set_domain (CPU, CPU) and
2891  *              this function does nothing (as nothing changes)
2892  *      3. Mapped by GTT
2893  *              This function asserts that the object is not
2894  *              currently in any GPU-based read or write domains
2895  *      4. Read by GPU
2896  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2897  *              As write_domain is zero, this function adds in the
2898  *              current read domains (CPU+COMMAND, 0).
2899  *              flush_domains is set to CPU.
2900  *              invalidate_domains is set to COMMAND
2901  *              clflush is run to get data out of the CPU caches
2902  *              then i915_dev_set_domain calls i915_gem_flush to
2903  *              emit an MI_FLUSH and drm_agp_chipset_flush
2904  *      5. Unmapped from GTT
2905  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2906  *              flush_domains and invalidate_domains end up both zero
2907  *              so no flushing/invalidating happens
2908  *      6. Freed
2909  *              yay, done
2910  *
2911  * Case 2: The shared render buffer
2912  *
2913  *      1. Allocated
2914  *      2. Mapped to GTT
2915  *      3. Read/written by GPU
2916  *      4. set_domain to (CPU,CPU)
2917  *      5. Read/written by CPU
2918  *      6. Read/written by GPU
2919  *
2920  *      1. Allocated
2921  *              Same as last example, (CPU, CPU)
2922  *      2. Mapped to GTT
2923  *              Nothing changes (assertions find that it is not in the GPU)
2924  *      3. Read/written by GPU
2925  *              execbuffer calls set_domain (RENDER, RENDER)
2926  *              flush_domains gets CPU
2927  *              invalidate_domains gets GPU
2928  *              clflush (obj)
2929  *              MI_FLUSH and drm_agp_chipset_flush
2930  *      4. set_domain (CPU, CPU)
2931  *              flush_domains gets GPU
2932  *              invalidate_domains gets CPU
2933  *              wait_rendering (obj) to make sure all drawing is complete.
2934  *              This will include an MI_FLUSH to get the data from GPU
2935  *              to memory
2936  *              clflush (obj) to invalidate the CPU cache
2937  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2938  *      5. Read/written by CPU
2939  *              cache lines are loaded and dirtied
2940  *      6. Read written by GPU
2941  *              Same as last GPU access
2942  *
2943  * Case 3: The constant buffer
2944  *
2945  *      1. Allocated
2946  *      2. Written by CPU
2947  *      3. Read by GPU
2948  *      4. Updated (written) by CPU again
2949  *      5. Read by GPU
2950  *
2951  *      1. Allocated
2952  *              (CPU, CPU)
2953  *      2. Written by CPU
2954  *              (CPU, CPU)
2955  *      3. Read by GPU
2956  *              (CPU+RENDER, 0)
2957  *              flush_domains = CPU
2958  *              invalidate_domains = RENDER
2959  *              clflush (obj)
2960  *              MI_FLUSH
2961  *              drm_agp_chipset_flush
2962  *      4. Updated (written) by CPU again
2963  *              (CPU, CPU)
2964  *              flush_domains = 0 (no previous write domain)
2965  *              invalidate_domains = 0 (no new read domains)
2966  *      5. Read by GPU
2967  *              (CPU+RENDER, 0)
2968  *              flush_domains = CPU
2969  *              invalidate_domains = RENDER
2970  *              clflush (obj)
2971  *              MI_FLUSH
2972  *              drm_agp_chipset_flush
2973  */
2974 static void
2975 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2976 {
2977         struct drm_device               *dev = obj->dev;
2978         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2979         uint32_t                        invalidate_domains = 0;
2980         uint32_t                        flush_domains = 0;
2981         uint32_t                        old_read_domains;
2982
2983         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2984         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2985
2986         intel_mark_busy(dev, obj);
2987
2988 #if WATCH_BUF
2989         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2990                  __func__, obj,
2991                  obj->read_domains, obj->pending_read_domains,
2992                  obj->write_domain, obj->pending_write_domain);
2993 #endif
2994         /*
2995          * If the object isn't moving to a new write domain,
2996          * let the object stay in multiple read domains
2997          */
2998         if (obj->pending_write_domain == 0)
2999                 obj->pending_read_domains |= obj->read_domains;
3000         else
3001                 obj_priv->dirty = 1;
3002
3003         /*
3004          * Flush the current write domain if
3005          * the new read domains don't match. Invalidate
3006          * any read domains which differ from the old
3007          * write domain
3008          */
3009         if (obj->write_domain &&
3010             obj->write_domain != obj->pending_read_domains) {
3011                 flush_domains |= obj->write_domain;
3012                 invalidate_domains |=
3013                         obj->pending_read_domains & ~obj->write_domain;
3014         }
3015         /*
3016          * Invalidate any read caches which may have
3017          * stale data. That is, any new read domains.
3018          */
3019         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3020         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3021 #if WATCH_BUF
3022                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3023                          __func__, flush_domains, invalidate_domains);
3024 #endif
3025                 i915_gem_clflush_object(obj);
3026         }
3027
3028         old_read_domains = obj->read_domains;
3029
3030         /* The actual obj->write_domain will be updated with
3031          * pending_write_domain after we emit the accumulated flush for all
3032          * of our domain changes in execbuffers (which clears objects'
3033          * write_domains).  So if we have a current write domain that we
3034          * aren't changing, set pending_write_domain to that.
3035          */
3036         if (flush_domains == 0 && obj->pending_write_domain == 0)
3037                 obj->pending_write_domain = obj->write_domain;
3038         obj->read_domains = obj->pending_read_domains;
3039
3040         dev->invalidate_domains |= invalidate_domains;
3041         dev->flush_domains |= flush_domains;
3042 #if WATCH_BUF
3043         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3044                  __func__,
3045                  obj->read_domains, obj->write_domain,
3046                  dev->invalidate_domains, dev->flush_domains);
3047 #endif
3048
3049         trace_i915_gem_object_change_domain(obj,
3050                                             old_read_domains,
3051                                             obj->write_domain);
3052 }
3053
3054 /**
3055  * Moves the object from a partially CPU read to a full one.
3056  *
3057  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3058  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3059  */
3060 static void
3061 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3062 {
3063         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3064
3065         if (!obj_priv->page_cpu_valid)
3066                 return;
3067
3068         /* If we're partially in the CPU read domain, finish moving it in.
3069          */
3070         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3071                 int i;
3072
3073                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3074                         if (obj_priv->page_cpu_valid[i])
3075                                 continue;
3076                         drm_clflush_pages(obj_priv->pages + i, 1);
3077                 }
3078         }
3079
3080         /* Free the page_cpu_valid mappings which are now stale, whether
3081          * or not we've got I915_GEM_DOMAIN_CPU.
3082          */
3083         kfree(obj_priv->page_cpu_valid);
3084         obj_priv->page_cpu_valid = NULL;
3085 }
3086
3087 /**
3088  * Set the CPU read domain on a range of the object.
3089  *
3090  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3091  * not entirely valid.  The page_cpu_valid member of the object flags which
3092  * pages have been flushed, and will be respected by
3093  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3094  * of the whole object.
3095  *
3096  * This function returns when the move is complete, including waiting on
3097  * flushes to occur.
3098  */
3099 static int
3100 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3101                                           uint64_t offset, uint64_t size)
3102 {
3103         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3104         uint32_t old_read_domains;
3105         int i, ret;
3106
3107         if (offset == 0 && size == obj->size)
3108                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3109
3110         i915_gem_object_flush_gpu_write_domain(obj);
3111         /* Wait on any GPU rendering and flushing to occur. */
3112         ret = i915_gem_object_wait_rendering(obj);
3113         if (ret != 0)
3114                 return ret;
3115         i915_gem_object_flush_gtt_write_domain(obj);
3116
3117         /* If we're already fully in the CPU read domain, we're done. */
3118         if (obj_priv->page_cpu_valid == NULL &&
3119             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3120                 return 0;
3121
3122         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3123          * newly adding I915_GEM_DOMAIN_CPU
3124          */
3125         if (obj_priv->page_cpu_valid == NULL) {
3126                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3127                                                    GFP_KERNEL);
3128                 if (obj_priv->page_cpu_valid == NULL)
3129                         return -ENOMEM;
3130         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3131                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3132
3133         /* Flush the cache on any pages that are still invalid from the CPU's
3134          * perspective.
3135          */
3136         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3137              i++) {
3138                 if (obj_priv->page_cpu_valid[i])
3139                         continue;
3140
3141                 drm_clflush_pages(obj_priv->pages + i, 1);
3142
3143                 obj_priv->page_cpu_valid[i] = 1;
3144         }
3145
3146         /* It should now be out of any other write domains, and we can update
3147          * the domain values for our changes.
3148          */
3149         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3150
3151         old_read_domains = obj->read_domains;
3152         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3153
3154         trace_i915_gem_object_change_domain(obj,
3155                                             old_read_domains,
3156                                             obj->write_domain);
3157
3158         return 0;
3159 }
3160
3161 /**
3162  * Pin an object to the GTT and evaluate the relocations landing in it.
3163  */
3164 static int
3165 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3166                                  struct drm_file *file_priv,
3167                                  struct drm_i915_gem_exec_object *entry,
3168                                  struct drm_i915_gem_relocation_entry *relocs)
3169 {
3170         struct drm_device *dev = obj->dev;
3171         drm_i915_private_t *dev_priv = dev->dev_private;
3172         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3173         int i, ret;
3174         void __iomem *reloc_page;
3175
3176         /* Choose the GTT offset for our buffer and put it there. */
3177         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3178         if (ret)
3179                 return ret;
3180
3181         entry->offset = obj_priv->gtt_offset;
3182
3183         /* Apply the relocations, using the GTT aperture to avoid cache
3184          * flushing requirements.
3185          */
3186         for (i = 0; i < entry->relocation_count; i++) {
3187                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3188                 struct drm_gem_object *target_obj;
3189                 struct drm_i915_gem_object *target_obj_priv;
3190                 uint32_t reloc_val, reloc_offset;
3191                 uint32_t __iomem *reloc_entry;
3192
3193                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3194                                                    reloc->target_handle);
3195                 if (target_obj == NULL) {
3196                         i915_gem_object_unpin(obj);
3197                         return -EBADF;
3198                 }
3199                 target_obj_priv = target_obj->driver_private;
3200
3201 #if WATCH_RELOC
3202                 DRM_INFO("%s: obj %p offset %08x target %d "
3203                          "read %08x write %08x gtt %08x "
3204                          "presumed %08x delta %08x\n",
3205                          __func__,
3206                          obj,
3207                          (int) reloc->offset,
3208                          (int) reloc->target_handle,
3209                          (int) reloc->read_domains,
3210                          (int) reloc->write_domain,
3211                          (int) target_obj_priv->gtt_offset,
3212                          (int) reloc->presumed_offset,
3213                          reloc->delta);
3214 #endif
3215
3216                 /* The target buffer should have appeared before us in the
3217                  * exec_object list, so it should have a GTT space bound by now.
3218                  */
3219                 if (target_obj_priv->gtt_space == NULL) {
3220                         DRM_ERROR("No GTT space found for object %d\n",
3221                                   reloc->target_handle);
3222                         drm_gem_object_unreference(target_obj);
3223                         i915_gem_object_unpin(obj);
3224                         return -EINVAL;
3225                 }
3226
3227                 /* Validate that the target is in a valid r/w GPU domain */
3228                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3229                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3230                         DRM_ERROR("reloc with read/write CPU domains: "
3231                                   "obj %p target %d offset %d "
3232                                   "read %08x write %08x",
3233                                   obj, reloc->target_handle,
3234                                   (int) reloc->offset,
3235                                   reloc->read_domains,
3236                                   reloc->write_domain);
3237                         drm_gem_object_unreference(target_obj);
3238                         i915_gem_object_unpin(obj);
3239                         return -EINVAL;
3240                 }
3241                 if (reloc->write_domain && target_obj->pending_write_domain &&
3242                     reloc->write_domain != target_obj->pending_write_domain) {
3243                         DRM_ERROR("Write domain conflict: "
3244                                   "obj %p target %d offset %d "
3245                                   "new %08x old %08x\n",
3246                                   obj, reloc->target_handle,
3247                                   (int) reloc->offset,
3248                                   reloc->write_domain,
3249                                   target_obj->pending_write_domain);
3250                         drm_gem_object_unreference(target_obj);
3251                         i915_gem_object_unpin(obj);
3252                         return -EINVAL;
3253                 }
3254
3255                 target_obj->pending_read_domains |= reloc->read_domains;
3256                 target_obj->pending_write_domain |= reloc->write_domain;
3257
3258                 /* If the relocation already has the right value in it, no
3259                  * more work needs to be done.
3260                  */
3261                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3262                         drm_gem_object_unreference(target_obj);
3263                         continue;
3264                 }
3265
3266                 /* Check that the relocation address is valid... */
3267                 if (reloc->offset > obj->size - 4) {
3268                         DRM_ERROR("Relocation beyond object bounds: "
3269                                   "obj %p target %d offset %d size %d.\n",
3270                                   obj, reloc->target_handle,
3271                                   (int) reloc->offset, (int) obj->size);
3272                         drm_gem_object_unreference(target_obj);
3273                         i915_gem_object_unpin(obj);
3274                         return -EINVAL;
3275                 }
3276                 if (reloc->offset & 3) {
3277                         DRM_ERROR("Relocation not 4-byte aligned: "
3278                                   "obj %p target %d offset %d.\n",
3279                                   obj, reloc->target_handle,
3280                                   (int) reloc->offset);
3281                         drm_gem_object_unreference(target_obj);
3282                         i915_gem_object_unpin(obj);
3283                         return -EINVAL;
3284                 }
3285
3286                 /* and points to somewhere within the target object. */
3287                 if (reloc->delta >= target_obj->size) {
3288                         DRM_ERROR("Relocation beyond target object bounds: "
3289                                   "obj %p target %d delta %d size %d.\n",
3290                                   obj, reloc->target_handle,
3291                                   (int) reloc->delta, (int) target_obj->size);
3292                         drm_gem_object_unreference(target_obj);
3293                         i915_gem_object_unpin(obj);
3294                         return -EINVAL;
3295                 }
3296
3297                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3298                 if (ret != 0) {
3299                         drm_gem_object_unreference(target_obj);
3300                         i915_gem_object_unpin(obj);
3301                         return -EINVAL;
3302                 }
3303
3304                 /* Map the page containing the relocation we're going to
3305                  * perform.
3306                  */
3307                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3308                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3309                                                       (reloc_offset &
3310                                                        ~(PAGE_SIZE - 1)));
3311                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3312                                                    (reloc_offset & (PAGE_SIZE - 1)));
3313                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3314
3315 #if WATCH_BUF
3316                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3317                           obj, (unsigned int) reloc->offset,
3318                           readl(reloc_entry), reloc_val);
3319 #endif
3320                 writel(reloc_val, reloc_entry);
3321                 io_mapping_unmap_atomic(reloc_page);
3322
3323                 /* The updated presumed offset for this entry will be
3324                  * copied back out to the user.
3325                  */
3326                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3327
3328                 drm_gem_object_unreference(target_obj);
3329         }
3330
3331 #if WATCH_BUF
3332         if (0)
3333                 i915_gem_dump_object(obj, 128, __func__, ~0);
3334 #endif
3335         return 0;
3336 }
3337
3338 /** Dispatch a batchbuffer to the ring
3339  */
3340 static int
3341 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3342                               struct drm_i915_gem_execbuffer *exec,
3343                               struct drm_clip_rect *cliprects,
3344                               uint64_t exec_offset)
3345 {
3346         drm_i915_private_t *dev_priv = dev->dev_private;
3347         int nbox = exec->num_cliprects;
3348         int i = 0, count;
3349         uint32_t exec_start, exec_len;
3350         RING_LOCALS;
3351
3352         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3353         exec_len = (uint32_t) exec->batch_len;
3354
3355         trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno);
3356
3357         count = nbox ? nbox : 1;
3358
3359         for (i = 0; i < count; i++) {
3360                 if (i < nbox) {
3361                         int ret = i915_emit_box(dev, cliprects, i,
3362                                                 exec->DR1, exec->DR4);
3363                         if (ret)
3364                                 return ret;
3365                 }
3366
3367                 if (IS_I830(dev) || IS_845G(dev)) {
3368                         BEGIN_LP_RING(4);
3369                         OUT_RING(MI_BATCH_BUFFER);
3370                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3371                         OUT_RING(exec_start + exec_len - 4);
3372                         OUT_RING(0);
3373                         ADVANCE_LP_RING();
3374                 } else {
3375                         BEGIN_LP_RING(2);
3376                         if (IS_I965G(dev)) {
3377                                 OUT_RING(MI_BATCH_BUFFER_START |
3378                                          (2 << 6) |
3379                                          MI_BATCH_NON_SECURE_I965);
3380                                 OUT_RING(exec_start);
3381                         } else {
3382                                 OUT_RING(MI_BATCH_BUFFER_START |
3383                                          (2 << 6));
3384                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3385                         }
3386                         ADVANCE_LP_RING();
3387                 }
3388         }
3389
3390         /* XXX breadcrumb */
3391         return 0;
3392 }
3393
3394 /* Throttle our rendering by waiting until the ring has completed our requests
3395  * emitted over 20 msec ago.
3396  *
3397  * Note that if we were to use the current jiffies each time around the loop,
3398  * we wouldn't escape the function with any frames outstanding if the time to
3399  * render a frame was over 20ms.
3400  *
3401  * This should get us reasonable parallelism between CPU and GPU but also
3402  * relatively low latency when blocking on a particular request to finish.
3403  */
3404 static int
3405 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3406 {
3407         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3408         int ret = 0;
3409         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3410
3411         mutex_lock(&dev->struct_mutex);
3412         while (!list_empty(&i915_file_priv->mm.request_list)) {
3413                 struct drm_i915_gem_request *request;
3414
3415                 request = list_first_entry(&i915_file_priv->mm.request_list,
3416                                            struct drm_i915_gem_request,
3417                                            client_list);
3418
3419                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3420                         break;
3421
3422                 ret = i915_wait_request(dev, request->seqno);
3423                 if (ret != 0)
3424                         break;
3425         }
3426         mutex_unlock(&dev->struct_mutex);
3427
3428         return ret;
3429 }
3430
3431 static int
3432 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3433                               uint32_t buffer_count,
3434                               struct drm_i915_gem_relocation_entry **relocs)
3435 {
3436         uint32_t reloc_count = 0, reloc_index = 0, i;
3437         int ret;
3438
3439         *relocs = NULL;
3440         for (i = 0; i < buffer_count; i++) {
3441                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3442                         return -EINVAL;
3443                 reloc_count += exec_list[i].relocation_count;
3444         }
3445
3446         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3447         if (*relocs == NULL)
3448                 return -ENOMEM;
3449
3450         for (i = 0; i < buffer_count; i++) {
3451                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3452
3453                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3454
3455                 ret = copy_from_user(&(*relocs)[reloc_index],
3456                                      user_relocs,
3457                                      exec_list[i].relocation_count *
3458                                      sizeof(**relocs));
3459                 if (ret != 0) {
3460                         drm_free_large(*relocs);
3461                         *relocs = NULL;
3462                         return -EFAULT;
3463                 }
3464
3465                 reloc_index += exec_list[i].relocation_count;
3466         }
3467
3468         return 0;
3469 }
3470
3471 static int
3472 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3473                             uint32_t buffer_count,
3474                             struct drm_i915_gem_relocation_entry *relocs)
3475 {
3476         uint32_t reloc_count = 0, i;
3477         int ret = 0;
3478
3479         for (i = 0; i < buffer_count; i++) {
3480                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3481                 int unwritten;
3482
3483                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3484
3485                 unwritten = copy_to_user(user_relocs,
3486                                          &relocs[reloc_count],
3487                                          exec_list[i].relocation_count *
3488                                          sizeof(*relocs));
3489
3490                 if (unwritten) {
3491                         ret = -EFAULT;
3492                         goto err;
3493                 }
3494
3495                 reloc_count += exec_list[i].relocation_count;
3496         }
3497
3498 err:
3499         drm_free_large(relocs);
3500
3501         return ret;
3502 }
3503
3504 static int
3505 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3506                            uint64_t exec_offset)
3507 {
3508         uint32_t exec_start, exec_len;
3509
3510         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3511         exec_len = (uint32_t) exec->batch_len;
3512
3513         if ((exec_start | exec_len) & 0x7)
3514                 return -EINVAL;
3515
3516         if (!exec_start)
3517                 return -EINVAL;
3518
3519         return 0;
3520 }
3521
3522 int
3523 i915_gem_execbuffer(struct drm_device *dev, void *data,
3524                     struct drm_file *file_priv)
3525 {
3526         drm_i915_private_t *dev_priv = dev->dev_private;
3527         struct drm_i915_gem_execbuffer *args = data;
3528         struct drm_i915_gem_exec_object *exec_list = NULL;
3529         struct drm_gem_object **object_list = NULL;
3530         struct drm_gem_object *batch_obj;
3531         struct drm_i915_gem_object *obj_priv;
3532         struct drm_clip_rect *cliprects = NULL;
3533         struct drm_i915_gem_relocation_entry *relocs;
3534         int ret, ret2, i, pinned = 0;
3535         uint64_t exec_offset;
3536         uint32_t seqno, flush_domains, reloc_index;
3537         int pin_tries;
3538
3539 #if WATCH_EXEC
3540         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3541                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3542 #endif
3543
3544         if (args->buffer_count < 1) {
3545                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3546                 return -EINVAL;
3547         }
3548         /* Copy in the exec list from userland */
3549         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3550         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3551         if (exec_list == NULL || object_list == NULL) {
3552                 DRM_ERROR("Failed to allocate exec or object list "
3553                           "for %d buffers\n",
3554                           args->buffer_count);
3555                 ret = -ENOMEM;
3556                 goto pre_mutex_err;
3557         }
3558         ret = copy_from_user(exec_list,
3559                              (struct drm_i915_relocation_entry __user *)
3560                              (uintptr_t) args->buffers_ptr,
3561                              sizeof(*exec_list) * args->buffer_count);
3562         if (ret != 0) {
3563                 DRM_ERROR("copy %d exec entries failed %d\n",
3564                           args->buffer_count, ret);
3565                 goto pre_mutex_err;
3566         }
3567
3568         if (args->num_cliprects != 0) {
3569                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3570                                     GFP_KERNEL);
3571                 if (cliprects == NULL)
3572                         goto pre_mutex_err;
3573
3574                 ret = copy_from_user(cliprects,
3575                                      (struct drm_clip_rect __user *)
3576                                      (uintptr_t) args->cliprects_ptr,
3577                                      sizeof(*cliprects) * args->num_cliprects);
3578                 if (ret != 0) {
3579                         DRM_ERROR("copy %d cliprects failed: %d\n",
3580                                   args->num_cliprects, ret);
3581                         goto pre_mutex_err;
3582                 }
3583         }
3584
3585         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3586                                             &relocs);
3587         if (ret != 0)
3588                 goto pre_mutex_err;
3589
3590         mutex_lock(&dev->struct_mutex);
3591
3592         i915_verify_inactive(dev, __FILE__, __LINE__);
3593
3594         if (atomic_read(&dev_priv->mm.wedged)) {
3595                 DRM_ERROR("Execbuf while wedged\n");
3596                 mutex_unlock(&dev->struct_mutex);
3597                 ret = -EIO;
3598                 goto pre_mutex_err;
3599         }
3600
3601         if (dev_priv->mm.suspended) {
3602                 DRM_ERROR("Execbuf while VT-switched.\n");
3603                 mutex_unlock(&dev->struct_mutex);
3604                 ret = -EBUSY;
3605                 goto pre_mutex_err;
3606         }
3607
3608         /* Look up object handles */
3609         for (i = 0; i < args->buffer_count; i++) {
3610                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3611                                                        exec_list[i].handle);
3612                 if (object_list[i] == NULL) {
3613                         DRM_ERROR("Invalid object handle %d at index %d\n",
3614                                    exec_list[i].handle, i);
3615                         ret = -EBADF;
3616                         goto err;
3617                 }
3618
3619                 obj_priv = object_list[i]->driver_private;
3620                 if (obj_priv->in_execbuffer) {
3621                         DRM_ERROR("Object %p appears more than once in object list\n",
3622                                    object_list[i]);
3623                         ret = -EBADF;
3624                         goto err;
3625                 }
3626                 obj_priv->in_execbuffer = true;
3627         }
3628
3629         /* Pin and relocate */
3630         for (pin_tries = 0; ; pin_tries++) {
3631                 ret = 0;
3632                 reloc_index = 0;
3633
3634                 for (i = 0; i < args->buffer_count; i++) {
3635                         object_list[i]->pending_read_domains = 0;
3636                         object_list[i]->pending_write_domain = 0;
3637                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3638                                                                file_priv,
3639                                                                &exec_list[i],
3640                                                                &relocs[reloc_index]);
3641                         if (ret)
3642                                 break;
3643                         pinned = i + 1;
3644                         reloc_index += exec_list[i].relocation_count;
3645                 }
3646                 /* success */
3647                 if (ret == 0)
3648                         break;
3649
3650                 /* error other than GTT full, or we've already tried again */
3651                 if (ret != -ENOSPC || pin_tries >= 1) {
3652                         if (ret != -ERESTARTSYS) {
3653                                 unsigned long long total_size = 0;
3654                                 for (i = 0; i < args->buffer_count; i++)
3655                                         total_size += object_list[i]->size;
3656                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3657                                           pinned+1, args->buffer_count,
3658                                           total_size, ret);
3659                                 DRM_ERROR("%d objects [%d pinned], "
3660                                           "%d object bytes [%d pinned], "
3661                                           "%d/%d gtt bytes\n",
3662                                           atomic_read(&dev->object_count),
3663                                           atomic_read(&dev->pin_count),
3664                                           atomic_read(&dev->object_memory),
3665                                           atomic_read(&dev->pin_memory),
3666                                           atomic_read(&dev->gtt_memory),
3667                                           dev->gtt_total);
3668                         }
3669                         goto err;
3670                 }
3671
3672                 /* unpin all of our buffers */
3673                 for (i = 0; i < pinned; i++)
3674                         i915_gem_object_unpin(object_list[i]);
3675                 pinned = 0;
3676
3677                 /* evict everyone we can from the aperture */
3678                 ret = i915_gem_evict_everything(dev);
3679                 if (ret && ret != -ENOSPC)
3680                         goto err;
3681         }
3682
3683         /* Set the pending read domains for the batch buffer to COMMAND */
3684         batch_obj = object_list[args->buffer_count-1];
3685         if (batch_obj->pending_write_domain) {
3686                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3687                 ret = -EINVAL;
3688                 goto err;
3689         }
3690         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3691
3692         /* Sanity check the batch buffer, prior to moving objects */
3693         exec_offset = exec_list[args->buffer_count - 1].offset;
3694         ret = i915_gem_check_execbuffer (args, exec_offset);
3695         if (ret != 0) {
3696                 DRM_ERROR("execbuf with invalid offset/length\n");
3697                 goto err;
3698         }
3699
3700         i915_verify_inactive(dev, __FILE__, __LINE__);
3701
3702         /* Zero the global flush/invalidate flags. These
3703          * will be modified as new domains are computed
3704          * for each object
3705          */
3706         dev->invalidate_domains = 0;
3707         dev->flush_domains = 0;
3708
3709         for (i = 0; i < args->buffer_count; i++) {
3710                 struct drm_gem_object *obj = object_list[i];
3711
3712                 /* Compute new gpu domains and update invalidate/flush */
3713                 i915_gem_object_set_to_gpu_domain(obj);
3714         }
3715
3716         i915_verify_inactive(dev, __FILE__, __LINE__);
3717
3718         if (dev->invalidate_domains | dev->flush_domains) {
3719 #if WATCH_EXEC
3720                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3721                           __func__,
3722                          dev->invalidate_domains,
3723                          dev->flush_domains);
3724 #endif
3725                 i915_gem_flush(dev,
3726                                dev->invalidate_domains,
3727                                dev->flush_domains);
3728                 if (dev->flush_domains)
3729                         (void)i915_add_request(dev, file_priv,
3730                                                dev->flush_domains);
3731         }
3732
3733         for (i = 0; i < args->buffer_count; i++) {
3734                 struct drm_gem_object *obj = object_list[i];
3735                 uint32_t old_write_domain = obj->write_domain;
3736
3737                 obj->write_domain = obj->pending_write_domain;
3738                 trace_i915_gem_object_change_domain(obj,
3739                                                     obj->read_domains,
3740                                                     old_write_domain);
3741         }
3742
3743         i915_verify_inactive(dev, __FILE__, __LINE__);
3744
3745 #if WATCH_COHERENCY
3746         for (i = 0; i < args->buffer_count; i++) {
3747                 i915_gem_object_check_coherency(object_list[i],
3748                                                 exec_list[i].handle);
3749         }
3750 #endif
3751
3752 #if WATCH_EXEC
3753         i915_gem_dump_object(batch_obj,
3754                               args->batch_len,
3755                               __func__,
3756                               ~0);
3757 #endif
3758
3759         /* Exec the batchbuffer */
3760         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3761         if (ret) {
3762                 DRM_ERROR("dispatch failed %d\n", ret);
3763                 goto err;
3764         }
3765
3766         /*
3767          * Ensure that the commands in the batch buffer are
3768          * finished before the interrupt fires
3769          */
3770         flush_domains = i915_retire_commands(dev);
3771
3772         i915_verify_inactive(dev, __FILE__, __LINE__);
3773
3774         /*
3775          * Get a seqno representing the execution of the current buffer,
3776          * which we can wait on.  We would like to mitigate these interrupts,
3777          * likely by only creating seqnos occasionally (so that we have
3778          * *some* interrupts representing completion of buffers that we can
3779          * wait on when trying to clear up gtt space).
3780          */
3781         seqno = i915_add_request(dev, file_priv, flush_domains);
3782         BUG_ON(seqno == 0);
3783         for (i = 0; i < args->buffer_count; i++) {
3784                 struct drm_gem_object *obj = object_list[i];
3785
3786                 i915_gem_object_move_to_active(obj, seqno);
3787 #if WATCH_LRU
3788                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3789 #endif
3790         }
3791 #if WATCH_LRU
3792         i915_dump_lru(dev, __func__);
3793 #endif
3794
3795         i915_verify_inactive(dev, __FILE__, __LINE__);
3796
3797 err:
3798         for (i = 0; i < pinned; i++)
3799                 i915_gem_object_unpin(object_list[i]);
3800
3801         for (i = 0; i < args->buffer_count; i++) {
3802                 if (object_list[i]) {
3803                         obj_priv = object_list[i]->driver_private;
3804                         obj_priv->in_execbuffer = false;
3805                 }
3806                 drm_gem_object_unreference(object_list[i]);
3807         }
3808
3809         mutex_unlock(&dev->struct_mutex);
3810
3811         if (!ret) {
3812                 /* Copy the new buffer offsets back to the user's exec list. */
3813                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3814                                    (uintptr_t) args->buffers_ptr,
3815                                    exec_list,
3816                                    sizeof(*exec_list) * args->buffer_count);
3817                 if (ret) {
3818                         ret = -EFAULT;
3819                         DRM_ERROR("failed to copy %d exec entries "
3820                                   "back to user (%d)\n",
3821                                   args->buffer_count, ret);
3822                 }
3823         }
3824
3825         /* Copy the updated relocations out regardless of current error
3826          * state.  Failure to update the relocs would mean that the next
3827          * time userland calls execbuf, it would do so with presumed offset
3828          * state that didn't match the actual object state.
3829          */
3830         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3831                                            relocs);
3832         if (ret2 != 0) {
3833                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3834
3835                 if (ret == 0)
3836                         ret = ret2;
3837         }
3838
3839 pre_mutex_err:
3840         drm_free_large(object_list);
3841         drm_free_large(exec_list);
3842         kfree(cliprects);
3843
3844         return ret;
3845 }
3846
3847 int
3848 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3849 {
3850         struct drm_device *dev = obj->dev;
3851         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3852         int ret;
3853
3854         i915_verify_inactive(dev, __FILE__, __LINE__);
3855         if (obj_priv->gtt_space == NULL) {
3856                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3857                 if (ret)
3858                         return ret;
3859         }
3860         /*
3861          * Pre-965 chips need a fence register set up in order to
3862          * properly handle tiled surfaces.
3863          */
3864         if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3865                 ret = i915_gem_object_get_fence_reg(obj);
3866                 if (ret != 0) {
3867                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3868                                 DRM_ERROR("Failure to install fence: %d\n",
3869                                           ret);
3870                         return ret;
3871                 }
3872         }
3873         obj_priv->pin_count++;
3874
3875         /* If the object is not active and not pending a flush,
3876          * remove it from the inactive list
3877          */
3878         if (obj_priv->pin_count == 1) {
3879                 atomic_inc(&dev->pin_count);
3880                 atomic_add(obj->size, &dev->pin_memory);
3881                 if (!obj_priv->active &&
3882                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3883                     !list_empty(&obj_priv->list))
3884                         list_del_init(&obj_priv->list);
3885         }
3886         i915_verify_inactive(dev, __FILE__, __LINE__);
3887
3888         return 0;
3889 }
3890
3891 void
3892 i915_gem_object_unpin(struct drm_gem_object *obj)
3893 {
3894         struct drm_device *dev = obj->dev;
3895         drm_i915_private_t *dev_priv = dev->dev_private;
3896         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3897
3898         i915_verify_inactive(dev, __FILE__, __LINE__);
3899         obj_priv->pin_count--;
3900         BUG_ON(obj_priv->pin_count < 0);
3901         BUG_ON(obj_priv->gtt_space == NULL);
3902
3903         /* If the object is no longer pinned, and is
3904          * neither active nor being flushed, then stick it on
3905          * the inactive list
3906          */
3907         if (obj_priv->pin_count == 0) {
3908                 if (!obj_priv->active &&
3909                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3910                         list_move_tail(&obj_priv->list,
3911                                        &dev_priv->mm.inactive_list);
3912                 atomic_dec(&dev->pin_count);
3913                 atomic_sub(obj->size, &dev->pin_memory);
3914         }
3915         i915_verify_inactive(dev, __FILE__, __LINE__);
3916 }
3917
3918 int
3919 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3920                    struct drm_file *file_priv)
3921 {
3922         struct drm_i915_gem_pin *args = data;
3923         struct drm_gem_object *obj;
3924         struct drm_i915_gem_object *obj_priv;
3925         int ret;
3926
3927         mutex_lock(&dev->struct_mutex);
3928
3929         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3930         if (obj == NULL) {
3931                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3932                           args->handle);
3933                 mutex_unlock(&dev->struct_mutex);
3934                 return -EBADF;
3935         }
3936         obj_priv = obj->driver_private;
3937
3938         if (obj_priv->madv != I915_MADV_WILLNEED) {
3939                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3940                 drm_gem_object_unreference(obj);
3941                 mutex_unlock(&dev->struct_mutex);
3942                 return -EINVAL;
3943         }
3944
3945         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3946                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3947                           args->handle);
3948                 drm_gem_object_unreference(obj);
3949                 mutex_unlock(&dev->struct_mutex);
3950                 return -EINVAL;
3951         }
3952
3953         obj_priv->user_pin_count++;
3954         obj_priv->pin_filp = file_priv;
3955         if (obj_priv->user_pin_count == 1) {
3956                 ret = i915_gem_object_pin(obj, args->alignment);
3957                 if (ret != 0) {
3958                         drm_gem_object_unreference(obj);
3959                         mutex_unlock(&dev->struct_mutex);
3960                         return ret;
3961                 }
3962         }
3963
3964         /* XXX - flush the CPU caches for pinned objects
3965          * as the X server doesn't manage domains yet
3966          */
3967         i915_gem_object_flush_cpu_write_domain(obj);
3968         args->offset = obj_priv->gtt_offset;
3969         drm_gem_object_unreference(obj);
3970         mutex_unlock(&dev->struct_mutex);
3971
3972         return 0;
3973 }
3974
3975 int
3976 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3977                      struct drm_file *file_priv)
3978 {
3979         struct drm_i915_gem_pin *args = data;
3980         struct drm_gem_object *obj;
3981         struct drm_i915_gem_object *obj_priv;
3982
3983         mutex_lock(&dev->struct_mutex);
3984
3985         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3986         if (obj == NULL) {
3987                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3988                           args->handle);
3989                 mutex_unlock(&dev->struct_mutex);
3990                 return -EBADF;
3991         }
3992
3993         obj_priv = obj->driver_private;
3994         if (obj_priv->pin_filp != file_priv) {
3995                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3996                           args->handle);
3997                 drm_gem_object_unreference(obj);
3998                 mutex_unlock(&dev->struct_mutex);
3999                 return -EINVAL;
4000         }
4001         obj_priv->user_pin_count--;
4002         if (obj_priv->user_pin_count == 0) {
4003                 obj_priv->pin_filp = NULL;
4004                 i915_gem_object_unpin(obj);
4005         }
4006
4007         drm_gem_object_unreference(obj);
4008         mutex_unlock(&dev->struct_mutex);
4009         return 0;
4010 }
4011
4012 int
4013 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4014                     struct drm_file *file_priv)
4015 {
4016         struct drm_i915_gem_busy *args = data;
4017         struct drm_gem_object *obj;
4018         struct drm_i915_gem_object *obj_priv;
4019
4020         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4021         if (obj == NULL) {
4022                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4023                           args->handle);
4024                 return -EBADF;
4025         }
4026
4027         mutex_lock(&dev->struct_mutex);
4028         /* Update the active list for the hardware's current position.
4029          * Otherwise this only updates on a delayed timer or when irqs are
4030          * actually unmasked, and our working set ends up being larger than
4031          * required.
4032          */
4033         i915_gem_retire_requests(dev);
4034
4035         obj_priv = obj->driver_private;
4036         /* Don't count being on the flushing list against the object being
4037          * done.  Otherwise, a buffer left on the flushing list but not getting
4038          * flushed (because nobody's flushing that domain) won't ever return
4039          * unbusy and get reused by libdrm's bo cache.  The other expected
4040          * consumer of this interface, OpenGL's occlusion queries, also specs
4041          * that the objects get unbusy "eventually" without any interference.
4042          */
4043         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4044
4045         drm_gem_object_unreference(obj);
4046         mutex_unlock(&dev->struct_mutex);
4047         return 0;
4048 }
4049
4050 int
4051 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4052                         struct drm_file *file_priv)
4053 {
4054     return i915_gem_ring_throttle(dev, file_priv);
4055 }
4056
4057 int
4058 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4059                        struct drm_file *file_priv)
4060 {
4061         struct drm_i915_gem_madvise *args = data;
4062         struct drm_gem_object *obj;
4063         struct drm_i915_gem_object *obj_priv;
4064
4065         switch (args->madv) {
4066         case I915_MADV_DONTNEED:
4067         case I915_MADV_WILLNEED:
4068             break;
4069         default:
4070             return -EINVAL;
4071         }
4072
4073         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4074         if (obj == NULL) {
4075                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4076                           args->handle);
4077                 return -EBADF;
4078         }
4079
4080         mutex_lock(&dev->struct_mutex);
4081         obj_priv = obj->driver_private;
4082
4083         if (obj_priv->pin_count) {
4084                 drm_gem_object_unreference(obj);
4085                 mutex_unlock(&dev->struct_mutex);
4086
4087                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4088                 return -EINVAL;
4089         }
4090
4091         if (obj_priv->madv != __I915_MADV_PURGED)
4092                 obj_priv->madv = args->madv;
4093
4094         /* if the object is no longer bound, discard its backing storage */
4095         if (i915_gem_object_is_purgeable(obj_priv) &&
4096             obj_priv->gtt_space == NULL)
4097                 i915_gem_object_truncate(obj);
4098
4099         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4100
4101         drm_gem_object_unreference(obj);
4102         mutex_unlock(&dev->struct_mutex);
4103
4104         return 0;
4105 }
4106
4107 int i915_gem_init_object(struct drm_gem_object *obj)
4108 {
4109         struct drm_i915_gem_object *obj_priv;
4110
4111         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4112         if (obj_priv == NULL)
4113                 return -ENOMEM;
4114
4115         /*
4116          * We've just allocated pages from the kernel,
4117          * so they've just been written by the CPU with
4118          * zeros. They'll need to be clflushed before we
4119          * use them with the GPU.
4120          */
4121         obj->write_domain = I915_GEM_DOMAIN_CPU;
4122         obj->read_domains = I915_GEM_DOMAIN_CPU;
4123
4124         obj_priv->agp_type = AGP_USER_MEMORY;
4125
4126         obj->driver_private = obj_priv;
4127         obj_priv->obj = obj;
4128         obj_priv->fence_reg = I915_FENCE_REG_NONE;
4129         INIT_LIST_HEAD(&obj_priv->list);
4130         INIT_LIST_HEAD(&obj_priv->fence_list);
4131         obj_priv->madv = I915_MADV_WILLNEED;
4132
4133         trace_i915_gem_object_create(obj);
4134
4135         return 0;
4136 }
4137
4138 void i915_gem_free_object(struct drm_gem_object *obj)
4139 {
4140         struct drm_device *dev = obj->dev;
4141         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4142
4143         trace_i915_gem_object_destroy(obj);
4144
4145         while (obj_priv->pin_count > 0)
4146                 i915_gem_object_unpin(obj);
4147
4148         if (obj_priv->phys_obj)
4149                 i915_gem_detach_phys_object(dev, obj);
4150
4151         i915_gem_object_unbind(obj);
4152
4153         if (obj_priv->mmap_offset)
4154                 i915_gem_free_mmap_offset(obj);
4155
4156         kfree(obj_priv->page_cpu_valid);
4157         kfree(obj_priv->bit_17);
4158         kfree(obj->driver_private);
4159 }
4160
4161 /** Unbinds all inactive objects. */
4162 static int
4163 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4164 {
4165         drm_i915_private_t *dev_priv = dev->dev_private;
4166
4167         while (!list_empty(&dev_priv->mm.inactive_list)) {
4168                 struct drm_gem_object *obj;
4169                 int ret;
4170
4171                 obj = list_first_entry(&dev_priv->mm.inactive_list,
4172                                        struct drm_i915_gem_object,
4173                                        list)->obj;
4174
4175                 ret = i915_gem_object_unbind(obj);
4176                 if (ret != 0) {
4177                         DRM_ERROR("Error unbinding object: %d\n", ret);
4178                         return ret;
4179                 }
4180         }
4181
4182         return 0;
4183 }
4184
4185 int
4186 i915_gem_idle(struct drm_device *dev)
4187 {
4188         drm_i915_private_t *dev_priv = dev->dev_private;
4189         uint32_t seqno, cur_seqno, last_seqno;
4190         int stuck, ret;
4191
4192         mutex_lock(&dev->struct_mutex);
4193
4194         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4195                 mutex_unlock(&dev->struct_mutex);
4196                 return 0;
4197         }
4198
4199         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4200          * We need to replace this with a semaphore, or something.
4201          */
4202         dev_priv->mm.suspended = 1;
4203         del_timer(&dev_priv->hangcheck_timer);
4204
4205         /* Cancel the retire work handler, wait for it to finish if running
4206          */
4207         mutex_unlock(&dev->struct_mutex);
4208         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4209         mutex_lock(&dev->struct_mutex);
4210
4211         i915_kernel_lost_context(dev);
4212
4213         /* Flush the GPU along with all non-CPU write domains
4214          */
4215         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4216         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4217
4218         if (seqno == 0) {
4219                 mutex_unlock(&dev->struct_mutex);
4220                 return -ENOMEM;
4221         }
4222
4223         dev_priv->mm.waiting_gem_seqno = seqno;
4224         last_seqno = 0;
4225         stuck = 0;
4226         for (;;) {
4227                 cur_seqno = i915_get_gem_seqno(dev);
4228                 if (i915_seqno_passed(cur_seqno, seqno))
4229                         break;
4230                 if (last_seqno == cur_seqno) {
4231                         if (stuck++ > 100) {
4232                                 DRM_ERROR("hardware wedged\n");
4233                                 atomic_set(&dev_priv->mm.wedged, 1);
4234                                 DRM_WAKEUP(&dev_priv->irq_queue);
4235                                 break;
4236                         }
4237                 }
4238                 msleep(10);
4239                 last_seqno = cur_seqno;
4240         }
4241         dev_priv->mm.waiting_gem_seqno = 0;
4242
4243         i915_gem_retire_requests(dev);
4244
4245         spin_lock(&dev_priv->mm.active_list_lock);
4246         if (!atomic_read(&dev_priv->mm.wedged)) {
4247                 /* Active and flushing should now be empty as we've
4248                  * waited for a sequence higher than any pending execbuffer
4249                  */
4250                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4251                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4252                 /* Request should now be empty as we've also waited
4253                  * for the last request in the list
4254                  */
4255                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4256         }
4257
4258         /* Empty the active and flushing lists to inactive.  If there's
4259          * anything left at this point, it means that we're wedged and
4260          * nothing good's going to happen by leaving them there.  So strip
4261          * the GPU domains and just stuff them onto inactive.
4262          */
4263         while (!list_empty(&dev_priv->mm.active_list)) {
4264                 struct drm_gem_object *obj;
4265                 uint32_t old_write_domain;
4266
4267                 obj = list_first_entry(&dev_priv->mm.active_list,
4268                                        struct drm_i915_gem_object,
4269                                        list)->obj;
4270                 old_write_domain = obj->write_domain;
4271                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4272                 i915_gem_object_move_to_inactive(obj);
4273
4274                 trace_i915_gem_object_change_domain(obj,
4275                                                     obj->read_domains,
4276                                                     old_write_domain);
4277         }
4278         spin_unlock(&dev_priv->mm.active_list_lock);
4279
4280         while (!list_empty(&dev_priv->mm.flushing_list)) {
4281                 struct drm_gem_object *obj;
4282                 uint32_t old_write_domain;
4283
4284                 obj = list_first_entry(&dev_priv->mm.flushing_list,
4285                                        struct drm_i915_gem_object,
4286                                        list)->obj;
4287                 old_write_domain = obj->write_domain;
4288                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4289                 i915_gem_object_move_to_inactive(obj);
4290
4291                 trace_i915_gem_object_change_domain(obj,
4292                                                     obj->read_domains,
4293                                                     old_write_domain);
4294         }
4295
4296
4297         /* Move all inactive buffers out of the GTT. */
4298         ret = i915_gem_evict_from_inactive_list(dev);
4299         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4300         if (ret) {
4301                 mutex_unlock(&dev->struct_mutex);
4302                 return ret;
4303         }
4304
4305         i915_gem_cleanup_ringbuffer(dev);
4306         mutex_unlock(&dev->struct_mutex);
4307
4308         return 0;
4309 }
4310
4311 static int
4312 i915_gem_init_hws(struct drm_device *dev)
4313 {
4314         drm_i915_private_t *dev_priv = dev->dev_private;
4315         struct drm_gem_object *obj;
4316         struct drm_i915_gem_object *obj_priv;
4317         int ret;
4318
4319         /* If we need a physical address for the status page, it's already
4320          * initialized at driver load time.
4321          */
4322         if (!I915_NEED_GFX_HWS(dev))
4323                 return 0;
4324
4325         obj = drm_gem_object_alloc(dev, 4096);
4326         if (obj == NULL) {
4327                 DRM_ERROR("Failed to allocate status page\n");
4328                 return -ENOMEM;
4329         }
4330         obj_priv = obj->driver_private;
4331         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4332
4333         ret = i915_gem_object_pin(obj, 4096);
4334         if (ret != 0) {
4335                 drm_gem_object_unreference(obj);
4336                 return ret;
4337         }
4338
4339         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4340
4341         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4342         if (dev_priv->hw_status_page == NULL) {
4343                 DRM_ERROR("Failed to map status page.\n");
4344                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4345                 i915_gem_object_unpin(obj);
4346                 drm_gem_object_unreference(obj);
4347                 return -EINVAL;
4348         }
4349         dev_priv->hws_obj = obj;
4350         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4351         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4352         I915_READ(HWS_PGA); /* posting read */
4353         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4354
4355         return 0;
4356 }
4357
4358 static void
4359 i915_gem_cleanup_hws(struct drm_device *dev)
4360 {
4361         drm_i915_private_t *dev_priv = dev->dev_private;
4362         struct drm_gem_object *obj;
4363         struct drm_i915_gem_object *obj_priv;
4364
4365         if (dev_priv->hws_obj == NULL)
4366                 return;
4367
4368         obj = dev_priv->hws_obj;
4369         obj_priv = obj->driver_private;
4370
4371         kunmap(obj_priv->pages[0]);
4372         i915_gem_object_unpin(obj);
4373         drm_gem_object_unreference(obj);
4374         dev_priv->hws_obj = NULL;
4375
4376         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4377         dev_priv->hw_status_page = NULL;
4378
4379         /* Write high address into HWS_PGA when disabling. */
4380         I915_WRITE(HWS_PGA, 0x1ffff000);
4381 }
4382
4383 int
4384 i915_gem_init_ringbuffer(struct drm_device *dev)
4385 {
4386         drm_i915_private_t *dev_priv = dev->dev_private;
4387         struct drm_gem_object *obj;
4388         struct drm_i915_gem_object *obj_priv;
4389         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4390         int ret;
4391         u32 head;
4392
4393         ret = i915_gem_init_hws(dev);
4394         if (ret != 0)
4395                 return ret;
4396
4397         obj = drm_gem_object_alloc(dev, 128 * 1024);
4398         if (obj == NULL) {
4399                 DRM_ERROR("Failed to allocate ringbuffer\n");
4400                 i915_gem_cleanup_hws(dev);
4401                 return -ENOMEM;
4402         }
4403         obj_priv = obj->driver_private;
4404
4405         ret = i915_gem_object_pin(obj, 4096);
4406         if (ret != 0) {
4407                 drm_gem_object_unreference(obj);
4408                 i915_gem_cleanup_hws(dev);
4409                 return ret;
4410         }
4411
4412         /* Set up the kernel mapping for the ring. */
4413         ring->Size = obj->size;
4414
4415         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4416         ring->map.size = obj->size;
4417         ring->map.type = 0;
4418         ring->map.flags = 0;
4419         ring->map.mtrr = 0;
4420
4421         drm_core_ioremap_wc(&ring->map, dev);
4422         if (ring->map.handle == NULL) {
4423                 DRM_ERROR("Failed to map ringbuffer.\n");
4424                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4425                 i915_gem_object_unpin(obj);
4426                 drm_gem_object_unreference(obj);
4427                 i915_gem_cleanup_hws(dev);
4428                 return -EINVAL;
4429         }
4430         ring->ring_obj = obj;
4431         ring->virtual_start = ring->map.handle;
4432
4433         /* Stop the ring if it's running. */
4434         I915_WRITE(PRB0_CTL, 0);
4435         I915_WRITE(PRB0_TAIL, 0);
4436         I915_WRITE(PRB0_HEAD, 0);
4437
4438         /* Initialize the ring. */
4439         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4440         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4441
4442         /* G45 ring initialization fails to reset head to zero */
4443         if (head != 0) {
4444                 DRM_ERROR("Ring head not reset to zero "
4445                           "ctl %08x head %08x tail %08x start %08x\n",
4446                           I915_READ(PRB0_CTL),
4447                           I915_READ(PRB0_HEAD),
4448                           I915_READ(PRB0_TAIL),
4449                           I915_READ(PRB0_START));
4450                 I915_WRITE(PRB0_HEAD, 0);
4451
4452                 DRM_ERROR("Ring head forced to zero "
4453                           "ctl %08x head %08x tail %08x start %08x\n",
4454                           I915_READ(PRB0_CTL),
4455                           I915_READ(PRB0_HEAD),
4456                           I915_READ(PRB0_TAIL),
4457                           I915_READ(PRB0_START));
4458         }
4459
4460         I915_WRITE(PRB0_CTL,
4461                    ((obj->size - 4096) & RING_NR_PAGES) |
4462                    RING_NO_REPORT |
4463                    RING_VALID);
4464
4465         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4466
4467         /* If the head is still not zero, the ring is dead */
4468         if (head != 0) {
4469                 DRM_ERROR("Ring initialization failed "
4470                           "ctl %08x head %08x tail %08x start %08x\n",
4471                           I915_READ(PRB0_CTL),
4472                           I915_READ(PRB0_HEAD),
4473                           I915_READ(PRB0_TAIL),
4474                           I915_READ(PRB0_START));
4475                 return -EIO;
4476         }
4477
4478         /* Update our cache of the ring state */
4479         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4480                 i915_kernel_lost_context(dev);
4481         else {
4482                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4483                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4484                 ring->space = ring->head - (ring->tail + 8);
4485                 if (ring->space < 0)
4486                         ring->space += ring->Size;
4487         }
4488
4489         return 0;
4490 }
4491
4492 void
4493 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4494 {
4495         drm_i915_private_t *dev_priv = dev->dev_private;
4496
4497         if (dev_priv->ring.ring_obj == NULL)
4498                 return;
4499
4500         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4501
4502         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4503         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4504         dev_priv->ring.ring_obj = NULL;
4505         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4506
4507         i915_gem_cleanup_hws(dev);
4508 }
4509
4510 int
4511 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4512                        struct drm_file *file_priv)
4513 {
4514         drm_i915_private_t *dev_priv = dev->dev_private;
4515         int ret;
4516
4517         if (drm_core_check_feature(dev, DRIVER_MODESET))
4518                 return 0;
4519
4520         if (atomic_read(&dev_priv->mm.wedged)) {
4521                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4522                 atomic_set(&dev_priv->mm.wedged, 0);
4523         }
4524
4525         mutex_lock(&dev->struct_mutex);
4526         dev_priv->mm.suspended = 0;
4527
4528         ret = i915_gem_init_ringbuffer(dev);
4529         if (ret != 0) {
4530                 mutex_unlock(&dev->struct_mutex);
4531                 return ret;
4532         }
4533
4534         spin_lock(&dev_priv->mm.active_list_lock);
4535         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4536         spin_unlock(&dev_priv->mm.active_list_lock);
4537
4538         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4539         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4540         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4541         mutex_unlock(&dev->struct_mutex);
4542
4543         drm_irq_install(dev);
4544
4545         return 0;
4546 }
4547
4548 int
4549 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4550                        struct drm_file *file_priv)
4551 {
4552         if (drm_core_check_feature(dev, DRIVER_MODESET))
4553                 return 0;
4554
4555         drm_irq_uninstall(dev);
4556         return i915_gem_idle(dev);
4557 }
4558
4559 void
4560 i915_gem_lastclose(struct drm_device *dev)
4561 {
4562         int ret;
4563
4564         if (drm_core_check_feature(dev, DRIVER_MODESET))
4565                 return;
4566
4567         ret = i915_gem_idle(dev);
4568         if (ret)
4569                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4570 }
4571
4572 void
4573 i915_gem_load(struct drm_device *dev)
4574 {
4575         int i;
4576         drm_i915_private_t *dev_priv = dev->dev_private;
4577
4578         spin_lock_init(&dev_priv->mm.active_list_lock);
4579         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4580         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4581         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4582         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4583         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4584         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4585                           i915_gem_retire_work_handler);
4586         dev_priv->mm.next_gem_seqno = 1;
4587
4588         spin_lock(&shrink_list_lock);
4589         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4590         spin_unlock(&shrink_list_lock);
4591
4592         /* Old X drivers will take 0-2 for front, back, depth buffers */
4593         dev_priv->fence_reg_start = 3;
4594
4595         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4596                 dev_priv->num_fence_regs = 16;
4597         else
4598                 dev_priv->num_fence_regs = 8;
4599
4600         /* Initialize fence registers to zero */
4601         if (IS_I965G(dev)) {
4602                 for (i = 0; i < 16; i++)
4603                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4604         } else {
4605                 for (i = 0; i < 8; i++)
4606                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4607                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4608                         for (i = 0; i < 8; i++)
4609                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4610         }
4611
4612         i915_gem_detect_bit_6_swizzle(dev);
4613 }
4614
4615 /*
4616  * Create a physically contiguous memory object for this object
4617  * e.g. for cursor + overlay regs
4618  */
4619 int i915_gem_init_phys_object(struct drm_device *dev,
4620                               int id, int size)
4621 {
4622         drm_i915_private_t *dev_priv = dev->dev_private;
4623         struct drm_i915_gem_phys_object *phys_obj;
4624         int ret;
4625
4626         if (dev_priv->mm.phys_objs[id - 1] || !size)
4627                 return 0;
4628
4629         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4630         if (!phys_obj)
4631                 return -ENOMEM;
4632
4633         phys_obj->id = id;
4634
4635         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4636         if (!phys_obj->handle) {
4637                 ret = -ENOMEM;
4638                 goto kfree_obj;
4639         }
4640 #ifdef CONFIG_X86
4641         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4642 #endif
4643
4644         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4645
4646         return 0;
4647 kfree_obj:
4648         kfree(phys_obj);
4649         return ret;
4650 }
4651
4652 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4653 {
4654         drm_i915_private_t *dev_priv = dev->dev_private;
4655         struct drm_i915_gem_phys_object *phys_obj;
4656
4657         if (!dev_priv->mm.phys_objs[id - 1])
4658                 return;
4659
4660         phys_obj = dev_priv->mm.phys_objs[id - 1];
4661         if (phys_obj->cur_obj) {
4662                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4663         }
4664
4665 #ifdef CONFIG_X86
4666         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4667 #endif
4668         drm_pci_free(dev, phys_obj->handle);
4669         kfree(phys_obj);
4670         dev_priv->mm.phys_objs[id - 1] = NULL;
4671 }
4672
4673 void i915_gem_free_all_phys_object(struct drm_device *dev)
4674 {
4675         int i;
4676
4677         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4678                 i915_gem_free_phys_object(dev, i);
4679 }
4680
4681 void i915_gem_detach_phys_object(struct drm_device *dev,
4682                                  struct drm_gem_object *obj)
4683 {
4684         struct drm_i915_gem_object *obj_priv;
4685         int i;
4686         int ret;
4687         int page_count;
4688
4689         obj_priv = obj->driver_private;
4690         if (!obj_priv->phys_obj)
4691                 return;
4692
4693         ret = i915_gem_object_get_pages(obj);
4694         if (ret)
4695                 goto out;
4696
4697         page_count = obj->size / PAGE_SIZE;
4698
4699         for (i = 0; i < page_count; i++) {
4700                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4701                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4702
4703                 memcpy(dst, src, PAGE_SIZE);
4704                 kunmap_atomic(dst, KM_USER0);
4705         }
4706         drm_clflush_pages(obj_priv->pages, page_count);
4707         drm_agp_chipset_flush(dev);
4708
4709         i915_gem_object_put_pages(obj);
4710 out:
4711         obj_priv->phys_obj->cur_obj = NULL;
4712         obj_priv->phys_obj = NULL;
4713 }
4714
4715 int
4716 i915_gem_attach_phys_object(struct drm_device *dev,
4717                             struct drm_gem_object *obj, int id)
4718 {
4719         drm_i915_private_t *dev_priv = dev->dev_private;
4720         struct drm_i915_gem_object *obj_priv;
4721         int ret = 0;
4722         int page_count;
4723         int i;
4724
4725         if (id > I915_MAX_PHYS_OBJECT)
4726                 return -EINVAL;
4727
4728         obj_priv = obj->driver_private;
4729
4730         if (obj_priv->phys_obj) {
4731                 if (obj_priv->phys_obj->id == id)
4732                         return 0;
4733                 i915_gem_detach_phys_object(dev, obj);
4734         }
4735
4736
4737         /* create a new object */
4738         if (!dev_priv->mm.phys_objs[id - 1]) {
4739                 ret = i915_gem_init_phys_object(dev, id,
4740                                                 obj->size);
4741                 if (ret) {
4742                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4743                         goto out;
4744                 }
4745         }
4746
4747         /* bind to the object */
4748         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4749         obj_priv->phys_obj->cur_obj = obj;
4750
4751         ret = i915_gem_object_get_pages(obj);
4752         if (ret) {
4753                 DRM_ERROR("failed to get page list\n");
4754                 goto out;
4755         }
4756
4757         page_count = obj->size / PAGE_SIZE;
4758
4759         for (i = 0; i < page_count; i++) {
4760                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4761                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4762
4763                 memcpy(dst, src, PAGE_SIZE);
4764                 kunmap_atomic(src, KM_USER0);
4765         }
4766
4767         i915_gem_object_put_pages(obj);
4768
4769         return 0;
4770 out:
4771         return ret;
4772 }
4773
4774 static int
4775 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4776                      struct drm_i915_gem_pwrite *args,
4777                      struct drm_file *file_priv)
4778 {
4779         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4780         void *obj_addr;
4781         int ret;
4782         char __user *user_data;
4783
4784         user_data = (char __user *) (uintptr_t) args->data_ptr;
4785         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4786
4787         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4788         ret = copy_from_user(obj_addr, user_data, args->size);
4789         if (ret)
4790                 return -EFAULT;
4791
4792         drm_agp_chipset_flush(dev);
4793         return 0;
4794 }
4795
4796 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4797 {
4798         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4799
4800         /* Clean up our request list when the client is going away, so that
4801          * later retire_requests won't dereference our soon-to-be-gone
4802          * file_priv.
4803          */
4804         mutex_lock(&dev->struct_mutex);
4805         while (!list_empty(&i915_file_priv->mm.request_list))
4806                 list_del_init(i915_file_priv->mm.request_list.next);
4807         mutex_unlock(&dev->struct_mutex);
4808 }
4809
4810 static int
4811 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4812 {
4813         drm_i915_private_t *dev_priv, *next_dev;
4814         struct drm_i915_gem_object *obj_priv, *next_obj;
4815         int cnt = 0;
4816         int would_deadlock = 1;
4817
4818         /* "fast-path" to count number of available objects */
4819         if (nr_to_scan == 0) {
4820                 spin_lock(&shrink_list_lock);
4821                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4822                         struct drm_device *dev = dev_priv->dev;
4823
4824                         if (mutex_trylock(&dev->struct_mutex)) {
4825                                 list_for_each_entry(obj_priv,
4826                                                     &dev_priv->mm.inactive_list,
4827                                                     list)
4828                                         cnt++;
4829                                 mutex_unlock(&dev->struct_mutex);
4830                         }
4831                 }
4832                 spin_unlock(&shrink_list_lock);
4833
4834                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4835         }
4836
4837         spin_lock(&shrink_list_lock);
4838
4839         /* first scan for clean buffers */
4840         list_for_each_entry_safe(dev_priv, next_dev,
4841                                  &shrink_list, mm.shrink_list) {
4842                 struct drm_device *dev = dev_priv->dev;
4843
4844                 if (! mutex_trylock(&dev->struct_mutex))
4845                         continue;
4846
4847                 spin_unlock(&shrink_list_lock);
4848
4849                 i915_gem_retire_requests(dev);
4850
4851                 list_for_each_entry_safe(obj_priv, next_obj,
4852                                          &dev_priv->mm.inactive_list,
4853                                          list) {
4854                         if (i915_gem_object_is_purgeable(obj_priv)) {
4855                                 i915_gem_object_unbind(obj_priv->obj);
4856                                 if (--nr_to_scan <= 0)
4857                                         break;
4858                         }
4859                 }
4860
4861                 spin_lock(&shrink_list_lock);
4862                 mutex_unlock(&dev->struct_mutex);
4863
4864                 would_deadlock = 0;
4865
4866                 if (nr_to_scan <= 0)
4867                         break;
4868         }
4869
4870         /* second pass, evict/count anything still on the inactive list */
4871         list_for_each_entry_safe(dev_priv, next_dev,
4872                                  &shrink_list, mm.shrink_list) {
4873                 struct drm_device *dev = dev_priv->dev;
4874
4875                 if (! mutex_trylock(&dev->struct_mutex))
4876                         continue;
4877
4878                 spin_unlock(&shrink_list_lock);
4879
4880                 list_for_each_entry_safe(obj_priv, next_obj,
4881                                          &dev_priv->mm.inactive_list,
4882                                          list) {
4883                         if (nr_to_scan > 0) {
4884                                 i915_gem_object_unbind(obj_priv->obj);
4885                                 nr_to_scan--;
4886                         } else
4887                                 cnt++;
4888                 }
4889
4890                 spin_lock(&shrink_list_lock);
4891                 mutex_unlock(&dev->struct_mutex);
4892
4893                 would_deadlock = 0;
4894         }
4895
4896         spin_unlock(&shrink_list_lock);
4897
4898         if (would_deadlock)
4899                 return -1;
4900         else if (cnt > 0)
4901                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4902         else
4903                 return 0;
4904 }
4905
4906 static struct shrinker shrinker = {
4907         .shrink = i915_gem_shrink,
4908         .seeks = DEFAULT_SEEKS,
4909 };
4910
4911 __init void
4912 i915_gem_shrinker_init(void)
4913 {
4914     register_shrinker(&shrinker);
4915 }
4916
4917 __exit void
4918 i915_gem_shrinker_exit(void)
4919 {
4920     unregister_shrinker(&shrinker);
4921 }