Merge branch 'tty-fixes'
[pandora-kernel.git] / drivers / firewire / sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
53
54 #include <asm/byteorder.h>
55 #include <asm/system.h>
56
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_device.h>
60 #include <scsi/scsi_host.h>
61
62 /*
63  * So far only bridges from Oxford Semiconductor are known to support
64  * concurrent logins. Depending on firmware, four or two concurrent logins
65  * are possible on OXFW911 and newer Oxsemi bridges.
66  *
67  * Concurrent logins are useful together with cluster filesystems.
68  */
69 static int sbp2_param_exclusive_login = 1;
70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72                  "(default = Y, use N for concurrent initiators)");
73
74 /*
75  * Flags for firmware oddities
76  *
77  * - 128kB max transfer
78  *   Limit transfer size. Necessary for some old bridges.
79  *
80  * - 36 byte inquiry
81  *   When scsi_mod probes the device, let the inquiry command look like that
82  *   from MS Windows.
83  *
84  * - skip mode page 8
85  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
86  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
87  *
88  * - fix capacity
89  *   Tell sd_mod to correct the last sector number reported by read_capacity.
90  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
91  *   Don't use this with devices which don't have this bug.
92  *
93  * - delay inquiry
94  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
95  *
96  * - power condition
97  *   Set the power condition field in the START STOP UNIT commands sent by
98  *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99  *   Some disks need this to spin down or to resume properly.
100  *
101  * - override internal blacklist
102  *   Instead of adding to the built-in blacklist, use only the workarounds
103  *   specified in the module load parameter.
104  *   Useful if a blacklist entry interfered with a non-broken device.
105  */
106 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
107 #define SBP2_WORKAROUND_INQUIRY_36      0x2
108 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
109 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
110 #define SBP2_WORKAROUND_DELAY_INQUIRY   0x10
111 #define SBP2_INQUIRY_DELAY              12
112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
113 #define SBP2_WORKAROUND_OVERRIDE        0x100
114
115 static int sbp2_param_workarounds;
116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
120         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123         ", set power condition in start stop unit = "
124                                   __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126         ", or a combination)");
127
128 /* I don't know why the SCSI stack doesn't define something like this... */
129 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
130
131 static const char sbp2_driver_name[] = "sbp2";
132
133 /*
134  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
135  * and one struct scsi_device per sbp2_logical_unit.
136  */
137 struct sbp2_logical_unit {
138         struct sbp2_target *tgt;
139         struct list_head link;
140         struct fw_address_handler address_handler;
141         struct list_head orb_list;
142
143         u64 command_block_agent_address;
144         u16 lun;
145         int login_id;
146
147         /*
148          * The generation is updated once we've logged in or reconnected
149          * to the logical unit.  Thus, I/O to the device will automatically
150          * fail and get retried if it happens in a window where the device
151          * is not ready, e.g. after a bus reset but before we reconnect.
152          */
153         int generation;
154         int retries;
155         struct delayed_work work;
156         bool has_sdev;
157         bool blocked;
158 };
159
160 /*
161  * We create one struct sbp2_target per IEEE 1212 Unit Directory
162  * and one struct Scsi_Host per sbp2_target.
163  */
164 struct sbp2_target {
165         struct kref kref;
166         struct fw_unit *unit;
167         const char *bus_id;
168         struct list_head lu_list;
169
170         u64 management_agent_address;
171         u64 guid;
172         int directory_id;
173         int node_id;
174         int address_high;
175         unsigned int workarounds;
176         unsigned int mgt_orb_timeout;
177         unsigned int max_payload;
178
179         int dont_block; /* counter for each logical unit */
180         int blocked;    /* ditto */
181 };
182
183 static struct fw_device *target_device(struct sbp2_target *tgt)
184 {
185         return fw_parent_device(tgt->unit);
186 }
187
188 /* Impossible login_id, to detect logout attempt before successful login */
189 #define INVALID_LOGIN_ID 0x10000
190
191 /*
192  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
193  * provided in the config rom. Most devices do provide a value, which
194  * we'll use for login management orbs, but with some sane limits.
195  */
196 #define SBP2_MIN_LOGIN_ORB_TIMEOUT      5000U   /* Timeout in ms */
197 #define SBP2_MAX_LOGIN_ORB_TIMEOUT      40000U  /* Timeout in ms */
198 #define SBP2_ORB_TIMEOUT                2000U   /* Timeout in ms */
199 #define SBP2_ORB_NULL                   0x80000000
200 #define SBP2_RETRY_LIMIT                0xf             /* 15 retries */
201 #define SBP2_CYCLE_LIMIT                (0xc8 << 12)    /* 200 125us cycles */
202
203 /*
204  * There is no transport protocol limit to the CDB length,  but we implement
205  * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
206  */
207 #define SBP2_MAX_CDB_SIZE               16
208
209 /*
210  * The default maximum s/g segment size of a FireWire controller is
211  * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
212  * be quadlet-aligned, we set the length limit to 0xffff & ~3.
213  */
214 #define SBP2_MAX_SEG_SIZE               0xfffc
215
216 /* Unit directory keys */
217 #define SBP2_CSR_UNIT_CHARACTERISTICS   0x3a
218 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
219 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
220 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
221
222 /* Management orb opcodes */
223 #define SBP2_LOGIN_REQUEST              0x0
224 #define SBP2_QUERY_LOGINS_REQUEST       0x1
225 #define SBP2_RECONNECT_REQUEST          0x3
226 #define SBP2_SET_PASSWORD_REQUEST       0x4
227 #define SBP2_LOGOUT_REQUEST             0x7
228 #define SBP2_ABORT_TASK_REQUEST         0xb
229 #define SBP2_ABORT_TASK_SET             0xc
230 #define SBP2_LOGICAL_UNIT_RESET         0xe
231 #define SBP2_TARGET_RESET_REQUEST       0xf
232
233 /* Offsets for command block agent registers */
234 #define SBP2_AGENT_STATE                0x00
235 #define SBP2_AGENT_RESET                0x04
236 #define SBP2_ORB_POINTER                0x08
237 #define SBP2_DOORBELL                   0x10
238 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
239
240 /* Status write response codes */
241 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
242 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
243 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
244 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
245
246 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
247 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
248 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
249 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
250 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
251 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
252 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
253 #define STATUS_GET_DATA(v)              ((v).data)
254
255 struct sbp2_status {
256         u32 status;
257         u32 orb_low;
258         u8 data[24];
259 };
260
261 struct sbp2_pointer {
262         __be32 high;
263         __be32 low;
264 };
265
266 struct sbp2_orb {
267         struct fw_transaction t;
268         struct kref kref;
269         dma_addr_t request_bus;
270         int rcode;
271         struct sbp2_pointer pointer;
272         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
273         struct list_head link;
274 };
275
276 #define MANAGEMENT_ORB_LUN(v)                   ((v))
277 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
278 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
279 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
280 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
281 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
282
283 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
284 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
285
286 struct sbp2_management_orb {
287         struct sbp2_orb base;
288         struct {
289                 struct sbp2_pointer password;
290                 struct sbp2_pointer response;
291                 __be32 misc;
292                 __be32 length;
293                 struct sbp2_pointer status_fifo;
294         } request;
295         __be32 response[4];
296         dma_addr_t response_bus;
297         struct completion done;
298         struct sbp2_status status;
299 };
300
301 struct sbp2_login_response {
302         __be32 misc;
303         struct sbp2_pointer command_block_agent;
304         __be32 reconnect_hold;
305 };
306 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
307 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
308 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
309 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
310 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
311 #define COMMAND_ORB_DIRECTION           ((1) << 27)
312 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
313 #define COMMAND_ORB_NOTIFY              ((1) << 31)
314
315 struct sbp2_command_orb {
316         struct sbp2_orb base;
317         struct {
318                 struct sbp2_pointer next;
319                 struct sbp2_pointer data_descriptor;
320                 __be32 misc;
321                 u8 command_block[SBP2_MAX_CDB_SIZE];
322         } request;
323         struct scsi_cmnd *cmd;
324         scsi_done_fn_t done;
325         struct sbp2_logical_unit *lu;
326
327         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
328         dma_addr_t page_table_bus;
329 };
330
331 #define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
332 #define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
333
334 /*
335  * List of devices with known bugs.
336  *
337  * The firmware_revision field, masked with 0xffff00, is the best
338  * indicator for the type of bridge chip of a device.  It yields a few
339  * false positives but this did not break correctly behaving devices
340  * so far.
341  */
342 static const struct {
343         u32 firmware_revision;
344         u32 model;
345         unsigned int workarounds;
346 } sbp2_workarounds_table[] = {
347         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
348                 .firmware_revision      = 0x002800,
349                 .model                  = 0x001010,
350                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
351                                           SBP2_WORKAROUND_MODE_SENSE_8 |
352                                           SBP2_WORKAROUND_POWER_CONDITION,
353         },
354         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
355                 .firmware_revision      = 0x002800,
356                 .model                  = 0x000000,
357                 .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
358         },
359         /* Initio bridges, actually only needed for some older ones */ {
360                 .firmware_revision      = 0x000200,
361                 .model                  = SBP2_ROM_VALUE_WILDCARD,
362                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
363         },
364         /* PL-3507 bridge with Prolific firmware */ {
365                 .firmware_revision      = 0x012800,
366                 .model                  = SBP2_ROM_VALUE_WILDCARD,
367                 .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
368         },
369         /* Symbios bridge */ {
370                 .firmware_revision      = 0xa0b800,
371                 .model                  = SBP2_ROM_VALUE_WILDCARD,
372                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
373         },
374         /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
375                 .firmware_revision      = 0x002600,
376                 .model                  = SBP2_ROM_VALUE_WILDCARD,
377                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
378         },
379         /*
380          * iPod 2nd generation: needs 128k max transfer size workaround
381          * iPod 3rd generation: needs fix capacity workaround
382          */
383         {
384                 .firmware_revision      = 0x0a2700,
385                 .model                  = 0x000000,
386                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS |
387                                           SBP2_WORKAROUND_FIX_CAPACITY,
388         },
389         /* iPod 4th generation */ {
390                 .firmware_revision      = 0x0a2700,
391                 .model                  = 0x000021,
392                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
393         },
394         /* iPod mini */ {
395                 .firmware_revision      = 0x0a2700,
396                 .model                  = 0x000022,
397                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
398         },
399         /* iPod mini */ {
400                 .firmware_revision      = 0x0a2700,
401                 .model                  = 0x000023,
402                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
403         },
404         /* iPod Photo */ {
405                 .firmware_revision      = 0x0a2700,
406                 .model                  = 0x00007e,
407                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
408         }
409 };
410
411 static void free_orb(struct kref *kref)
412 {
413         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
414
415         kfree(orb);
416 }
417
418 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
419                               int tcode, int destination, int source,
420                               int generation, int speed,
421                               unsigned long long offset,
422                               void *payload, size_t length, void *callback_data)
423 {
424         struct sbp2_logical_unit *lu = callback_data;
425         struct sbp2_orb *orb;
426         struct sbp2_status status;
427         unsigned long flags;
428
429         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
430             length < 8 || length > sizeof(status)) {
431                 fw_send_response(card, request, RCODE_TYPE_ERROR);
432                 return;
433         }
434
435         status.status  = be32_to_cpup(payload);
436         status.orb_low = be32_to_cpup(payload + 4);
437         memset(status.data, 0, sizeof(status.data));
438         if (length > 8)
439                 memcpy(status.data, payload + 8, length - 8);
440
441         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
442                 fw_notify("non-orb related status write, not handled\n");
443                 fw_send_response(card, request, RCODE_COMPLETE);
444                 return;
445         }
446
447         /* Lookup the orb corresponding to this status write. */
448         spin_lock_irqsave(&card->lock, flags);
449         list_for_each_entry(orb, &lu->orb_list, link) {
450                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
451                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
452                         orb->rcode = RCODE_COMPLETE;
453                         list_del(&orb->link);
454                         break;
455                 }
456         }
457         spin_unlock_irqrestore(&card->lock, flags);
458
459         if (&orb->link != &lu->orb_list) {
460                 orb->callback(orb, &status);
461                 kref_put(&orb->kref, free_orb);
462         } else {
463                 fw_error("status write for unknown orb\n");
464         }
465
466         fw_send_response(card, request, RCODE_COMPLETE);
467 }
468
469 static void complete_transaction(struct fw_card *card, int rcode,
470                                  void *payload, size_t length, void *data)
471 {
472         struct sbp2_orb *orb = data;
473         unsigned long flags;
474
475         /*
476          * This is a little tricky.  We can get the status write for
477          * the orb before we get this callback.  The status write
478          * handler above will assume the orb pointer transaction was
479          * successful and set the rcode to RCODE_COMPLETE for the orb.
480          * So this callback only sets the rcode if it hasn't already
481          * been set and only does the cleanup if the transaction
482          * failed and we didn't already get a status write.
483          */
484         spin_lock_irqsave(&card->lock, flags);
485
486         if (orb->rcode == -1)
487                 orb->rcode = rcode;
488         if (orb->rcode != RCODE_COMPLETE) {
489                 list_del(&orb->link);
490                 spin_unlock_irqrestore(&card->lock, flags);
491                 orb->callback(orb, NULL);
492         } else {
493                 spin_unlock_irqrestore(&card->lock, flags);
494         }
495
496         kref_put(&orb->kref, free_orb);
497 }
498
499 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
500                           int node_id, int generation, u64 offset)
501 {
502         struct fw_device *device = target_device(lu->tgt);
503         unsigned long flags;
504
505         orb->pointer.high = 0;
506         orb->pointer.low = cpu_to_be32(orb->request_bus);
507
508         spin_lock_irqsave(&device->card->lock, flags);
509         list_add_tail(&orb->link, &lu->orb_list);
510         spin_unlock_irqrestore(&device->card->lock, flags);
511
512         /* Take a ref for the orb list and for the transaction callback. */
513         kref_get(&orb->kref);
514         kref_get(&orb->kref);
515
516         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
517                         node_id, generation, device->max_speed, offset,
518                         &orb->pointer, sizeof(orb->pointer),
519                         complete_transaction, orb);
520 }
521
522 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
523 {
524         struct fw_device *device = target_device(lu->tgt);
525         struct sbp2_orb *orb, *next;
526         struct list_head list;
527         unsigned long flags;
528         int retval = -ENOENT;
529
530         INIT_LIST_HEAD(&list);
531         spin_lock_irqsave(&device->card->lock, flags);
532         list_splice_init(&lu->orb_list, &list);
533         spin_unlock_irqrestore(&device->card->lock, flags);
534
535         list_for_each_entry_safe(orb, next, &list, link) {
536                 retval = 0;
537                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
538                         continue;
539
540                 orb->rcode = RCODE_CANCELLED;
541                 orb->callback(orb, NULL);
542         }
543
544         return retval;
545 }
546
547 static void complete_management_orb(struct sbp2_orb *base_orb,
548                                     struct sbp2_status *status)
549 {
550         struct sbp2_management_orb *orb =
551                 container_of(base_orb, struct sbp2_management_orb, base);
552
553         if (status)
554                 memcpy(&orb->status, status, sizeof(*status));
555         complete(&orb->done);
556 }
557
558 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
559                                     int generation, int function,
560                                     int lun_or_login_id, void *response)
561 {
562         struct fw_device *device = target_device(lu->tgt);
563         struct sbp2_management_orb *orb;
564         unsigned int timeout;
565         int retval = -ENOMEM;
566
567         if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
568                 return 0;
569
570         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
571         if (orb == NULL)
572                 return -ENOMEM;
573
574         kref_init(&orb->base.kref);
575         orb->response_bus =
576                 dma_map_single(device->card->device, &orb->response,
577                                sizeof(orb->response), DMA_FROM_DEVICE);
578         if (dma_mapping_error(device->card->device, orb->response_bus))
579                 goto fail_mapping_response;
580
581         orb->request.response.high = 0;
582         orb->request.response.low  = cpu_to_be32(orb->response_bus);
583
584         orb->request.misc = cpu_to_be32(
585                 MANAGEMENT_ORB_NOTIFY |
586                 MANAGEMENT_ORB_FUNCTION(function) |
587                 MANAGEMENT_ORB_LUN(lun_or_login_id));
588         orb->request.length = cpu_to_be32(
589                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
590
591         orb->request.status_fifo.high =
592                 cpu_to_be32(lu->address_handler.offset >> 32);
593         orb->request.status_fifo.low  =
594                 cpu_to_be32(lu->address_handler.offset);
595
596         if (function == SBP2_LOGIN_REQUEST) {
597                 /* Ask for 2^2 == 4 seconds reconnect grace period */
598                 orb->request.misc |= cpu_to_be32(
599                         MANAGEMENT_ORB_RECONNECT(2) |
600                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
601                 timeout = lu->tgt->mgt_orb_timeout;
602         } else {
603                 timeout = SBP2_ORB_TIMEOUT;
604         }
605
606         init_completion(&orb->done);
607         orb->base.callback = complete_management_orb;
608
609         orb->base.request_bus =
610                 dma_map_single(device->card->device, &orb->request,
611                                sizeof(orb->request), DMA_TO_DEVICE);
612         if (dma_mapping_error(device->card->device, orb->base.request_bus))
613                 goto fail_mapping_request;
614
615         sbp2_send_orb(&orb->base, lu, node_id, generation,
616                       lu->tgt->management_agent_address);
617
618         wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
619
620         retval = -EIO;
621         if (sbp2_cancel_orbs(lu) == 0) {
622                 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
623                          lu->tgt->bus_id, orb->base.rcode);
624                 goto out;
625         }
626
627         if (orb->base.rcode != RCODE_COMPLETE) {
628                 fw_error("%s: management write failed, rcode 0x%02x\n",
629                          lu->tgt->bus_id, orb->base.rcode);
630                 goto out;
631         }
632
633         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
634             STATUS_GET_SBP_STATUS(orb->status) != 0) {
635                 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
636                          STATUS_GET_RESPONSE(orb->status),
637                          STATUS_GET_SBP_STATUS(orb->status));
638                 goto out;
639         }
640
641         retval = 0;
642  out:
643         dma_unmap_single(device->card->device, orb->base.request_bus,
644                          sizeof(orb->request), DMA_TO_DEVICE);
645  fail_mapping_request:
646         dma_unmap_single(device->card->device, orb->response_bus,
647                          sizeof(orb->response), DMA_FROM_DEVICE);
648  fail_mapping_response:
649         if (response)
650                 memcpy(response, orb->response, sizeof(orb->response));
651         kref_put(&orb->base.kref, free_orb);
652
653         return retval;
654 }
655
656 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
657 {
658         struct fw_device *device = target_device(lu->tgt);
659         __be32 d = 0;
660
661         fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
662                            lu->tgt->node_id, lu->generation, device->max_speed,
663                            lu->command_block_agent_address + SBP2_AGENT_RESET,
664                            &d, sizeof(d));
665 }
666
667 static void complete_agent_reset_write_no_wait(struct fw_card *card,
668                 int rcode, void *payload, size_t length, void *data)
669 {
670         kfree(data);
671 }
672
673 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
674 {
675         struct fw_device *device = target_device(lu->tgt);
676         struct fw_transaction *t;
677         static __be32 d;
678
679         t = kmalloc(sizeof(*t), GFP_ATOMIC);
680         if (t == NULL)
681                 return;
682
683         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
684                         lu->tgt->node_id, lu->generation, device->max_speed,
685                         lu->command_block_agent_address + SBP2_AGENT_RESET,
686                         &d, sizeof(d), complete_agent_reset_write_no_wait, t);
687 }
688
689 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
690 {
691         /*
692          * We may access dont_block without taking card->lock here:
693          * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
694          * are currently serialized against each other.
695          * And a wrong result in sbp2_conditionally_block()'s access of
696          * dont_block is rather harmless, it simply misses its first chance.
697          */
698         --lu->tgt->dont_block;
699 }
700
701 /*
702  * Blocks lu->tgt if all of the following conditions are met:
703  *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
704  *     logical units have been finished (indicated by dont_block == 0).
705  *   - lu->generation is stale.
706  *
707  * Note, scsi_block_requests() must be called while holding card->lock,
708  * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
709  * unblock the target.
710  */
711 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
712 {
713         struct sbp2_target *tgt = lu->tgt;
714         struct fw_card *card = target_device(tgt)->card;
715         struct Scsi_Host *shost =
716                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
717         unsigned long flags;
718
719         spin_lock_irqsave(&card->lock, flags);
720         if (!tgt->dont_block && !lu->blocked &&
721             lu->generation != card->generation) {
722                 lu->blocked = true;
723                 if (++tgt->blocked == 1)
724                         scsi_block_requests(shost);
725         }
726         spin_unlock_irqrestore(&card->lock, flags);
727 }
728
729 /*
730  * Unblocks lu->tgt as soon as all its logical units can be unblocked.
731  * Note, it is harmless to run scsi_unblock_requests() outside the
732  * card->lock protected section.  On the other hand, running it inside
733  * the section might clash with shost->host_lock.
734  */
735 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
736 {
737         struct sbp2_target *tgt = lu->tgt;
738         struct fw_card *card = target_device(tgt)->card;
739         struct Scsi_Host *shost =
740                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
741         unsigned long flags;
742         bool unblock = false;
743
744         spin_lock_irqsave(&card->lock, flags);
745         if (lu->blocked && lu->generation == card->generation) {
746                 lu->blocked = false;
747                 unblock = --tgt->blocked == 0;
748         }
749         spin_unlock_irqrestore(&card->lock, flags);
750
751         if (unblock)
752                 scsi_unblock_requests(shost);
753 }
754
755 /*
756  * Prevents future blocking of tgt and unblocks it.
757  * Note, it is harmless to run scsi_unblock_requests() outside the
758  * card->lock protected section.  On the other hand, running it inside
759  * the section might clash with shost->host_lock.
760  */
761 static void sbp2_unblock(struct sbp2_target *tgt)
762 {
763         struct fw_card *card = target_device(tgt)->card;
764         struct Scsi_Host *shost =
765                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
766         unsigned long flags;
767
768         spin_lock_irqsave(&card->lock, flags);
769         ++tgt->dont_block;
770         spin_unlock_irqrestore(&card->lock, flags);
771
772         scsi_unblock_requests(shost);
773 }
774
775 static int sbp2_lun2int(u16 lun)
776 {
777         struct scsi_lun eight_bytes_lun;
778
779         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
780         eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
781         eight_bytes_lun.scsi_lun[1] = lun & 0xff;
782
783         return scsilun_to_int(&eight_bytes_lun);
784 }
785
786 static void sbp2_release_target(struct kref *kref)
787 {
788         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
789         struct sbp2_logical_unit *lu, *next;
790         struct Scsi_Host *shost =
791                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
792         struct scsi_device *sdev;
793         struct fw_device *device = target_device(tgt);
794
795         /* prevent deadlocks */
796         sbp2_unblock(tgt);
797
798         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
799                 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
800                 if (sdev) {
801                         scsi_remove_device(sdev);
802                         scsi_device_put(sdev);
803                 }
804                 if (lu->login_id != INVALID_LOGIN_ID) {
805                         int generation, node_id;
806                         /*
807                          * tgt->node_id may be obsolete here if we failed
808                          * during initial login or after a bus reset where
809                          * the topology changed.
810                          */
811                         generation = device->generation;
812                         smp_rmb(); /* node_id vs. generation */
813                         node_id    = device->node_id;
814                         sbp2_send_management_orb(lu, node_id, generation,
815                                                  SBP2_LOGOUT_REQUEST,
816                                                  lu->login_id, NULL);
817                 }
818                 fw_core_remove_address_handler(&lu->address_handler);
819                 list_del(&lu->link);
820                 kfree(lu);
821         }
822         scsi_remove_host(shost);
823         fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
824
825         fw_unit_put(tgt->unit);
826         scsi_host_put(shost);
827         fw_device_put(device);
828 }
829
830 static struct workqueue_struct *sbp2_wq;
831
832 static void sbp2_target_put(struct sbp2_target *tgt)
833 {
834         kref_put(&tgt->kref, sbp2_release_target);
835 }
836
837 /*
838  * Always get the target's kref when scheduling work on one its units.
839  * Each workqueue job is responsible to call sbp2_target_put() upon return.
840  */
841 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
842 {
843         kref_get(&lu->tgt->kref);
844         if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
845                 sbp2_target_put(lu->tgt);
846 }
847
848 /*
849  * Write retransmit retry values into the BUSY_TIMEOUT register.
850  * - The single-phase retry protocol is supported by all SBP-2 devices, but the
851  *   default retry_limit value is 0 (i.e. never retry transmission). We write a
852  *   saner value after logging into the device.
853  * - The dual-phase retry protocol is optional to implement, and if not
854  *   supported, writes to the dual-phase portion of the register will be
855  *   ignored. We try to write the original 1394-1995 default here.
856  * - In the case of devices that are also SBP-3-compliant, all writes are
857  *   ignored, as the register is read-only, but contains single-phase retry of
858  *   15, which is what we're trying to set for all SBP-2 device anyway, so this
859  *   write attempt is safe and yields more consistent behavior for all devices.
860  *
861  * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
862  * and section 6.4 of the SBP-3 spec for further details.
863  */
864 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
865 {
866         struct fw_device *device = target_device(lu->tgt);
867         __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
868
869         fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
870                            lu->tgt->node_id, lu->generation, device->max_speed,
871                            CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT,
872                            &d, sizeof(d));
873 }
874
875 static void sbp2_reconnect(struct work_struct *work);
876
877 static void sbp2_login(struct work_struct *work)
878 {
879         struct sbp2_logical_unit *lu =
880                 container_of(work, struct sbp2_logical_unit, work.work);
881         struct sbp2_target *tgt = lu->tgt;
882         struct fw_device *device = target_device(tgt);
883         struct Scsi_Host *shost;
884         struct scsi_device *sdev;
885         struct sbp2_login_response response;
886         int generation, node_id, local_node_id;
887
888         if (fw_device_is_shutdown(device))
889                 goto out;
890
891         generation    = device->generation;
892         smp_rmb();    /* node IDs must not be older than generation */
893         node_id       = device->node_id;
894         local_node_id = device->card->node_id;
895
896         /* If this is a re-login attempt, log out, or we might be rejected. */
897         if (lu->has_sdev)
898                 sbp2_send_management_orb(lu, device->node_id, generation,
899                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
900
901         if (sbp2_send_management_orb(lu, node_id, generation,
902                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
903                 if (lu->retries++ < 5) {
904                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
905                 } else {
906                         fw_error("%s: failed to login to LUN %04x\n",
907                                  tgt->bus_id, lu->lun);
908                         /* Let any waiting I/O fail from now on. */
909                         sbp2_unblock(lu->tgt);
910                 }
911                 goto out;
912         }
913
914         tgt->node_id      = node_id;
915         tgt->address_high = local_node_id << 16;
916         smp_wmb();        /* node IDs must not be older than generation */
917         lu->generation    = generation;
918
919         lu->command_block_agent_address =
920                 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
921                       << 32) | be32_to_cpu(response.command_block_agent.low);
922         lu->login_id = be32_to_cpu(response.misc) & 0xffff;
923
924         fw_notify("%s: logged in to LUN %04x (%d retries)\n",
925                   tgt->bus_id, lu->lun, lu->retries);
926
927         /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
928         sbp2_set_busy_timeout(lu);
929
930         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
931         sbp2_agent_reset(lu);
932
933         /* This was a re-login. */
934         if (lu->has_sdev) {
935                 sbp2_cancel_orbs(lu);
936                 sbp2_conditionally_unblock(lu);
937                 goto out;
938         }
939
940         if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
941                 ssleep(SBP2_INQUIRY_DELAY);
942
943         shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
944         sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
945         /*
946          * FIXME:  We are unable to perform reconnects while in sbp2_login().
947          * Therefore __scsi_add_device() will get into trouble if a bus reset
948          * happens in parallel.  It will either fail or leave us with an
949          * unusable sdev.  As a workaround we check for this and retry the
950          * whole login and SCSI probing.
951          */
952
953         /* Reported error during __scsi_add_device() */
954         if (IS_ERR(sdev))
955                 goto out_logout_login;
956
957         /* Unreported error during __scsi_add_device() */
958         smp_rmb(); /* get current card generation */
959         if (generation != device->card->generation) {
960                 scsi_remove_device(sdev);
961                 scsi_device_put(sdev);
962                 goto out_logout_login;
963         }
964
965         /* No error during __scsi_add_device() */
966         lu->has_sdev = true;
967         scsi_device_put(sdev);
968         sbp2_allow_block(lu);
969         goto out;
970
971  out_logout_login:
972         smp_rmb(); /* generation may have changed */
973         generation = device->generation;
974         smp_rmb(); /* node_id must not be older than generation */
975
976         sbp2_send_management_orb(lu, device->node_id, generation,
977                                  SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
978         /*
979          * If a bus reset happened, sbp2_update will have requeued
980          * lu->work already.  Reset the work from reconnect to login.
981          */
982         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
983  out:
984         sbp2_target_put(tgt);
985 }
986
987 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
988 {
989         struct sbp2_logical_unit *lu;
990
991         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
992         if (!lu)
993                 return -ENOMEM;
994
995         lu->address_handler.length           = 0x100;
996         lu->address_handler.address_callback = sbp2_status_write;
997         lu->address_handler.callback_data    = lu;
998
999         if (fw_core_add_address_handler(&lu->address_handler,
1000                                         &fw_high_memory_region) < 0) {
1001                 kfree(lu);
1002                 return -ENOMEM;
1003         }
1004
1005         lu->tgt      = tgt;
1006         lu->lun      = lun_entry & 0xffff;
1007         lu->login_id = INVALID_LOGIN_ID;
1008         lu->retries  = 0;
1009         lu->has_sdev = false;
1010         lu->blocked  = false;
1011         ++tgt->dont_block;
1012         INIT_LIST_HEAD(&lu->orb_list);
1013         INIT_DELAYED_WORK(&lu->work, sbp2_login);
1014
1015         list_add_tail(&lu->link, &tgt->lu_list);
1016         return 0;
1017 }
1018
1019 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
1020 {
1021         struct fw_csr_iterator ci;
1022         int key, value;
1023
1024         fw_csr_iterator_init(&ci, directory);
1025         while (fw_csr_iterator_next(&ci, &key, &value))
1026                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1027                     sbp2_add_logical_unit(tgt, value) < 0)
1028                         return -ENOMEM;
1029         return 0;
1030 }
1031
1032 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
1033                               u32 *model, u32 *firmware_revision)
1034 {
1035         struct fw_csr_iterator ci;
1036         int key, value;
1037         unsigned int timeout;
1038
1039         fw_csr_iterator_init(&ci, directory);
1040         while (fw_csr_iterator_next(&ci, &key, &value)) {
1041                 switch (key) {
1042
1043                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1044                         tgt->management_agent_address =
1045                                         CSR_REGISTER_BASE + 4 * value;
1046                         break;
1047
1048                 case CSR_DIRECTORY_ID:
1049                         tgt->directory_id = value;
1050                         break;
1051
1052                 case CSR_MODEL:
1053                         *model = value;
1054                         break;
1055
1056                 case SBP2_CSR_FIRMWARE_REVISION:
1057                         *firmware_revision = value;
1058                         break;
1059
1060                 case SBP2_CSR_UNIT_CHARACTERISTICS:
1061                         /* the timeout value is stored in 500ms units */
1062                         timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1063                         timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1064                         tgt->mgt_orb_timeout =
1065                                   min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1066
1067                         if (timeout > tgt->mgt_orb_timeout)
1068                                 fw_notify("%s: config rom contains %ds "
1069                                           "management ORB timeout, limiting "
1070                                           "to %ds\n", tgt->bus_id,
1071                                           timeout / 1000,
1072                                           tgt->mgt_orb_timeout / 1000);
1073                         break;
1074
1075                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1076                         if (sbp2_add_logical_unit(tgt, value) < 0)
1077                                 return -ENOMEM;
1078                         break;
1079
1080                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1081                         /* Adjust for the increment in the iterator */
1082                         if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1083                                 return -ENOMEM;
1084                         break;
1085                 }
1086         }
1087         return 0;
1088 }
1089
1090 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1091                                   u32 firmware_revision)
1092 {
1093         int i;
1094         unsigned int w = sbp2_param_workarounds;
1095
1096         if (w)
1097                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1098                           "if you need the workarounds parameter for %s\n",
1099                           tgt->bus_id);
1100
1101         if (w & SBP2_WORKAROUND_OVERRIDE)
1102                 goto out;
1103
1104         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1105
1106                 if (sbp2_workarounds_table[i].firmware_revision !=
1107                     (firmware_revision & 0xffffff00))
1108                         continue;
1109
1110                 if (sbp2_workarounds_table[i].model != model &&
1111                     sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1112                         continue;
1113
1114                 w |= sbp2_workarounds_table[i].workarounds;
1115                 break;
1116         }
1117  out:
1118         if (w)
1119                 fw_notify("Workarounds for %s: 0x%x "
1120                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1121                           tgt->bus_id, w, firmware_revision, model);
1122         tgt->workarounds = w;
1123 }
1124
1125 static struct scsi_host_template scsi_driver_template;
1126
1127 static int sbp2_probe(struct device *dev)
1128 {
1129         struct fw_unit *unit = fw_unit(dev);
1130         struct fw_device *device = fw_parent_device(unit);
1131         struct sbp2_target *tgt;
1132         struct sbp2_logical_unit *lu;
1133         struct Scsi_Host *shost;
1134         u32 model, firmware_revision;
1135
1136         if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1137                 BUG_ON(dma_set_max_seg_size(device->card->device,
1138                                             SBP2_MAX_SEG_SIZE));
1139
1140         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1141         if (shost == NULL)
1142                 return -ENOMEM;
1143
1144         tgt = (struct sbp2_target *)shost->hostdata;
1145         dev_set_drvdata(&unit->device, tgt);
1146         tgt->unit = unit;
1147         kref_init(&tgt->kref);
1148         INIT_LIST_HEAD(&tgt->lu_list);
1149         tgt->bus_id = dev_name(&unit->device);
1150         tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1151
1152         if (fw_device_enable_phys_dma(device) < 0)
1153                 goto fail_shost_put;
1154
1155         shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1156
1157         if (scsi_add_host(shost, &unit->device) < 0)
1158                 goto fail_shost_put;
1159
1160         fw_device_get(device);
1161         fw_unit_get(unit);
1162
1163         /* implicit directory ID */
1164         tgt->directory_id = ((unit->directory - device->config_rom) * 4
1165                              + CSR_CONFIG_ROM) & 0xffffff;
1166
1167         firmware_revision = SBP2_ROM_VALUE_MISSING;
1168         model             = SBP2_ROM_VALUE_MISSING;
1169
1170         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1171                                &firmware_revision) < 0)
1172                 goto fail_tgt_put;
1173
1174         sbp2_init_workarounds(tgt, model, firmware_revision);
1175
1176         /*
1177          * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1178          * and so on up to 4096 bytes.  The SBP-2 max_payload field
1179          * specifies the max payload size as 2 ^ (max_payload + 2), so
1180          * if we set this to max_speed + 7, we get the right value.
1181          */
1182         tgt->max_payload = min(device->max_speed + 7, 10U);
1183         tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1184
1185         /* Do the login in a workqueue so we can easily reschedule retries. */
1186         list_for_each_entry(lu, &tgt->lu_list, link)
1187                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1188         return 0;
1189
1190  fail_tgt_put:
1191         sbp2_target_put(tgt);
1192         return -ENOMEM;
1193
1194  fail_shost_put:
1195         scsi_host_put(shost);
1196         return -ENOMEM;
1197 }
1198
1199 static int sbp2_remove(struct device *dev)
1200 {
1201         struct fw_unit *unit = fw_unit(dev);
1202         struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1203
1204         sbp2_target_put(tgt);
1205         return 0;
1206 }
1207
1208 static void sbp2_reconnect(struct work_struct *work)
1209 {
1210         struct sbp2_logical_unit *lu =
1211                 container_of(work, struct sbp2_logical_unit, work.work);
1212         struct sbp2_target *tgt = lu->tgt;
1213         struct fw_device *device = target_device(tgt);
1214         int generation, node_id, local_node_id;
1215
1216         if (fw_device_is_shutdown(device))
1217                 goto out;
1218
1219         generation    = device->generation;
1220         smp_rmb();    /* node IDs must not be older than generation */
1221         node_id       = device->node_id;
1222         local_node_id = device->card->node_id;
1223
1224         if (sbp2_send_management_orb(lu, node_id, generation,
1225                                      SBP2_RECONNECT_REQUEST,
1226                                      lu->login_id, NULL) < 0) {
1227                 /*
1228                  * If reconnect was impossible even though we are in the
1229                  * current generation, fall back and try to log in again.
1230                  *
1231                  * We could check for "Function rejected" status, but
1232                  * looking at the bus generation as simpler and more general.
1233                  */
1234                 smp_rmb(); /* get current card generation */
1235                 if (generation == device->card->generation ||
1236                     lu->retries++ >= 5) {
1237                         fw_error("%s: failed to reconnect\n", tgt->bus_id);
1238                         lu->retries = 0;
1239                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1240                 }
1241                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1242                 goto out;
1243         }
1244
1245         tgt->node_id      = node_id;
1246         tgt->address_high = local_node_id << 16;
1247         smp_wmb();        /* node IDs must not be older than generation */
1248         lu->generation    = generation;
1249
1250         fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1251                   tgt->bus_id, lu->lun, lu->retries);
1252
1253         sbp2_agent_reset(lu);
1254         sbp2_cancel_orbs(lu);
1255         sbp2_conditionally_unblock(lu);
1256  out:
1257         sbp2_target_put(tgt);
1258 }
1259
1260 static void sbp2_update(struct fw_unit *unit)
1261 {
1262         struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1263         struct sbp2_logical_unit *lu;
1264
1265         fw_device_enable_phys_dma(fw_parent_device(unit));
1266
1267         /*
1268          * Fw-core serializes sbp2_update() against sbp2_remove().
1269          * Iteration over tgt->lu_list is therefore safe here.
1270          */
1271         list_for_each_entry(lu, &tgt->lu_list, link) {
1272                 sbp2_conditionally_block(lu);
1273                 lu->retries = 0;
1274                 sbp2_queue_work(lu, 0);
1275         }
1276 }
1277
1278 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1279 #define SBP2_SW_VERSION_ENTRY   0x00010483
1280
1281 static const struct ieee1394_device_id sbp2_id_table[] = {
1282         {
1283                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1284                                 IEEE1394_MATCH_VERSION,
1285                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1286                 .version      = SBP2_SW_VERSION_ENTRY,
1287         },
1288         { }
1289 };
1290
1291 static struct fw_driver sbp2_driver = {
1292         .driver   = {
1293                 .owner  = THIS_MODULE,
1294                 .name   = sbp2_driver_name,
1295                 .bus    = &fw_bus_type,
1296                 .probe  = sbp2_probe,
1297                 .remove = sbp2_remove,
1298         },
1299         .update   = sbp2_update,
1300         .id_table = sbp2_id_table,
1301 };
1302
1303 static void sbp2_unmap_scatterlist(struct device *card_device,
1304                                    struct sbp2_command_orb *orb)
1305 {
1306         if (scsi_sg_count(orb->cmd))
1307                 dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1308                              scsi_sg_count(orb->cmd),
1309                              orb->cmd->sc_data_direction);
1310
1311         if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1312                 dma_unmap_single(card_device, orb->page_table_bus,
1313                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1314 }
1315
1316 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1317 {
1318         int sam_status;
1319
1320         sense_data[0] = 0x70;
1321         sense_data[1] = 0x0;
1322         sense_data[2] = sbp2_status[1];
1323         sense_data[3] = sbp2_status[4];
1324         sense_data[4] = sbp2_status[5];
1325         sense_data[5] = sbp2_status[6];
1326         sense_data[6] = sbp2_status[7];
1327         sense_data[7] = 10;
1328         sense_data[8] = sbp2_status[8];
1329         sense_data[9] = sbp2_status[9];
1330         sense_data[10] = sbp2_status[10];
1331         sense_data[11] = sbp2_status[11];
1332         sense_data[12] = sbp2_status[2];
1333         sense_data[13] = sbp2_status[3];
1334         sense_data[14] = sbp2_status[12];
1335         sense_data[15] = sbp2_status[13];
1336
1337         sam_status = sbp2_status[0] & 0x3f;
1338
1339         switch (sam_status) {
1340         case SAM_STAT_GOOD:
1341         case SAM_STAT_CHECK_CONDITION:
1342         case SAM_STAT_CONDITION_MET:
1343         case SAM_STAT_BUSY:
1344         case SAM_STAT_RESERVATION_CONFLICT:
1345         case SAM_STAT_COMMAND_TERMINATED:
1346                 return DID_OK << 16 | sam_status;
1347
1348         default:
1349                 return DID_ERROR << 16;
1350         }
1351 }
1352
1353 static void complete_command_orb(struct sbp2_orb *base_orb,
1354                                  struct sbp2_status *status)
1355 {
1356         struct sbp2_command_orb *orb =
1357                 container_of(base_orb, struct sbp2_command_orb, base);
1358         struct fw_device *device = target_device(orb->lu->tgt);
1359         int result;
1360
1361         if (status != NULL) {
1362                 if (STATUS_GET_DEAD(*status))
1363                         sbp2_agent_reset_no_wait(orb->lu);
1364
1365                 switch (STATUS_GET_RESPONSE(*status)) {
1366                 case SBP2_STATUS_REQUEST_COMPLETE:
1367                         result = DID_OK << 16;
1368                         break;
1369                 case SBP2_STATUS_TRANSPORT_FAILURE:
1370                         result = DID_BUS_BUSY << 16;
1371                         break;
1372                 case SBP2_STATUS_ILLEGAL_REQUEST:
1373                 case SBP2_STATUS_VENDOR_DEPENDENT:
1374                 default:
1375                         result = DID_ERROR << 16;
1376                         break;
1377                 }
1378
1379                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1380                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1381                                                            orb->cmd->sense_buffer);
1382         } else {
1383                 /*
1384                  * If the orb completes with status == NULL, something
1385                  * went wrong, typically a bus reset happened mid-orb
1386                  * or when sending the write (less likely).
1387                  */
1388                 result = DID_BUS_BUSY << 16;
1389                 sbp2_conditionally_block(orb->lu);
1390         }
1391
1392         dma_unmap_single(device->card->device, orb->base.request_bus,
1393                          sizeof(orb->request), DMA_TO_DEVICE);
1394         sbp2_unmap_scatterlist(device->card->device, orb);
1395
1396         orb->cmd->result = result;
1397         orb->done(orb->cmd);
1398 }
1399
1400 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1401                 struct fw_device *device, struct sbp2_logical_unit *lu)
1402 {
1403         struct scatterlist *sg = scsi_sglist(orb->cmd);
1404         int i, n;
1405
1406         n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1407                        orb->cmd->sc_data_direction);
1408         if (n == 0)
1409                 goto fail;
1410
1411         /*
1412          * Handle the special case where there is only one element in
1413          * the scatter list by converting it to an immediate block
1414          * request. This is also a workaround for broken devices such
1415          * as the second generation iPod which doesn't support page
1416          * tables.
1417          */
1418         if (n == 1) {
1419                 orb->request.data_descriptor.high =
1420                         cpu_to_be32(lu->tgt->address_high);
1421                 orb->request.data_descriptor.low  =
1422                         cpu_to_be32(sg_dma_address(sg));
1423                 orb->request.misc |=
1424                         cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1425                 return 0;
1426         }
1427
1428         for_each_sg(sg, sg, n, i) {
1429                 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1430                 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1431         }
1432
1433         orb->page_table_bus =
1434                 dma_map_single(device->card->device, orb->page_table,
1435                                sizeof(orb->page_table), DMA_TO_DEVICE);
1436         if (dma_mapping_error(device->card->device, orb->page_table_bus))
1437                 goto fail_page_table;
1438
1439         /*
1440          * The data_descriptor pointer is the one case where we need
1441          * to fill in the node ID part of the address.  All other
1442          * pointers assume that the data referenced reside on the
1443          * initiator (i.e. us), but data_descriptor can refer to data
1444          * on other nodes so we need to put our ID in descriptor.high.
1445          */
1446         orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1447         orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1448         orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1449                                          COMMAND_ORB_DATA_SIZE(n));
1450
1451         return 0;
1452
1453  fail_page_table:
1454         dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1455                      scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1456  fail:
1457         return -ENOMEM;
1458 }
1459
1460 /* SCSI stack integration */
1461
1462 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1463 {
1464         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1465         struct fw_device *device = target_device(lu->tgt);
1466         struct sbp2_command_orb *orb;
1467         int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1468
1469         /*
1470          * Bidirectional commands are not yet implemented, and unknown
1471          * transfer direction not handled.
1472          */
1473         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1474                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1475                 cmd->result = DID_ERROR << 16;
1476                 done(cmd);
1477                 return 0;
1478         }
1479
1480         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1481         if (orb == NULL) {
1482                 fw_notify("failed to alloc orb\n");
1483                 return SCSI_MLQUEUE_HOST_BUSY;
1484         }
1485
1486         /* Initialize rcode to something not RCODE_COMPLETE. */
1487         orb->base.rcode = -1;
1488         kref_init(&orb->base.kref);
1489
1490         orb->lu   = lu;
1491         orb->done = done;
1492         orb->cmd  = cmd;
1493
1494         orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1495         orb->request.misc = cpu_to_be32(
1496                 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1497                 COMMAND_ORB_SPEED(device->max_speed) |
1498                 COMMAND_ORB_NOTIFY);
1499
1500         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1501                 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1502
1503         generation = device->generation;
1504         smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1505
1506         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1507                 goto out;
1508
1509         memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1510
1511         orb->base.callback = complete_command_orb;
1512         orb->base.request_bus =
1513                 dma_map_single(device->card->device, &orb->request,
1514                                sizeof(orb->request), DMA_TO_DEVICE);
1515         if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1516                 sbp2_unmap_scatterlist(device->card->device, orb);
1517                 goto out;
1518         }
1519
1520         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1521                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1522         retval = 0;
1523  out:
1524         kref_put(&orb->base.kref, free_orb);
1525         return retval;
1526 }
1527
1528 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1529 {
1530         struct sbp2_logical_unit *lu = sdev->hostdata;
1531
1532         /* (Re-)Adding logical units via the SCSI stack is not supported. */
1533         if (!lu)
1534                 return -ENOSYS;
1535
1536         sdev->allow_restart = 1;
1537
1538         /* SBP-2 requires quadlet alignment of the data buffers. */
1539         blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1540
1541         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1542                 sdev->inquiry_len = 36;
1543
1544         return 0;
1545 }
1546
1547 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1548 {
1549         struct sbp2_logical_unit *lu = sdev->hostdata;
1550
1551         sdev->use_10_for_rw = 1;
1552
1553         if (sbp2_param_exclusive_login)
1554                 sdev->manage_start_stop = 1;
1555
1556         if (sdev->type == TYPE_ROM)
1557                 sdev->use_10_for_ms = 1;
1558
1559         if (sdev->type == TYPE_DISK &&
1560             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1561                 sdev->skip_ms_page_8 = 1;
1562
1563         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1564                 sdev->fix_capacity = 1;
1565
1566         if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1567                 sdev->start_stop_pwr_cond = 1;
1568
1569         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1570                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1571
1572         blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1573
1574         return 0;
1575 }
1576
1577 /*
1578  * Called by scsi stack when something has really gone wrong.  Usually
1579  * called when a command has timed-out for some reason.
1580  */
1581 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1582 {
1583         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1584
1585         fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1586         sbp2_agent_reset(lu);
1587         sbp2_cancel_orbs(lu);
1588
1589         return SUCCESS;
1590 }
1591
1592 /*
1593  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1594  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1595  *
1596  * This is the concatenation of target port identifier and logical unit
1597  * identifier as per SAM-2...SAM-4 annex A.
1598  */
1599 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1600                         struct device_attribute *attr, char *buf)
1601 {
1602         struct scsi_device *sdev = to_scsi_device(dev);
1603         struct sbp2_logical_unit *lu;
1604
1605         if (!sdev)
1606                 return 0;
1607
1608         lu = sdev->hostdata;
1609
1610         return sprintf(buf, "%016llx:%06x:%04x\n",
1611                         (unsigned long long)lu->tgt->guid,
1612                         lu->tgt->directory_id, lu->lun);
1613 }
1614
1615 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1616
1617 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1618         &dev_attr_ieee1394_id,
1619         NULL
1620 };
1621
1622 static struct scsi_host_template scsi_driver_template = {
1623         .module                 = THIS_MODULE,
1624         .name                   = "SBP-2 IEEE-1394",
1625         .proc_name              = sbp2_driver_name,
1626         .queuecommand           = sbp2_scsi_queuecommand,
1627         .slave_alloc            = sbp2_scsi_slave_alloc,
1628         .slave_configure        = sbp2_scsi_slave_configure,
1629         .eh_abort_handler       = sbp2_scsi_abort,
1630         .this_id                = -1,
1631         .sg_tablesize           = SG_ALL,
1632         .use_clustering         = ENABLE_CLUSTERING,
1633         .cmd_per_lun            = 1,
1634         .can_queue              = 1,
1635         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1636 };
1637
1638 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1639 MODULE_DESCRIPTION("SCSI over IEEE1394");
1640 MODULE_LICENSE("GPL");
1641 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1642
1643 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1644 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1645 MODULE_ALIAS("sbp2");
1646 #endif
1647
1648 static int __init sbp2_init(void)
1649 {
1650         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1651         if (!sbp2_wq)
1652                 return -ENOMEM;
1653
1654         return driver_register(&sbp2_driver.driver);
1655 }
1656
1657 static void __exit sbp2_cleanup(void)
1658 {
1659         driver_unregister(&sbp2_driver.driver);
1660         destroy_workqueue(sbp2_wq);
1661 }
1662
1663 module_init(sbp2_init);
1664 module_exit(sbp2_cleanup);