Merge branches 'msm-fixes' and 'msm-video' of git://codeaurora.org/quic/kernel/dwalke...
[pandora-kernel.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/compiler.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/pci_ids.h>
39 #include <linux/slab.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/time.h>
43
44 #include <asm/byteorder.h>
45 #include <asm/page.h>
46 #include <asm/system.h>
47
48 #ifdef CONFIG_PPC_PMAC
49 #include <asm/pmac_feature.h>
50 #endif
51
52 #include "core.h"
53 #include "ohci.h"
54
55 #define DESCRIPTOR_OUTPUT_MORE          0
56 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
57 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
58 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
59 #define DESCRIPTOR_STATUS               (1 << 11)
60 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
61 #define DESCRIPTOR_PING                 (1 << 7)
62 #define DESCRIPTOR_YY                   (1 << 6)
63 #define DESCRIPTOR_NO_IRQ               (0 << 4)
64 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
65 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
66 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
67 #define DESCRIPTOR_WAIT                 (3 << 0)
68
69 struct descriptor {
70         __le16 req_count;
71         __le16 control;
72         __le32 data_address;
73         __le32 branch_address;
74         __le16 res_count;
75         __le16 transfer_status;
76 } __attribute__((aligned(16)));
77
78 #define CONTROL_SET(regs)       (regs)
79 #define CONTROL_CLEAR(regs)     ((regs) + 4)
80 #define COMMAND_PTR(regs)       ((regs) + 12)
81 #define CONTEXT_MATCH(regs)     ((regs) + 16)
82
83 struct ar_buffer {
84         struct descriptor descriptor;
85         struct ar_buffer *next;
86         __le32 data[0];
87 };
88
89 struct ar_context {
90         struct fw_ohci *ohci;
91         struct ar_buffer *current_buffer;
92         struct ar_buffer *last_buffer;
93         void *pointer;
94         u32 regs;
95         struct tasklet_struct tasklet;
96 };
97
98 struct context;
99
100 typedef int (*descriptor_callback_t)(struct context *ctx,
101                                      struct descriptor *d,
102                                      struct descriptor *last);
103
104 /*
105  * A buffer that contains a block of DMA-able coherent memory used for
106  * storing a portion of a DMA descriptor program.
107  */
108 struct descriptor_buffer {
109         struct list_head list;
110         dma_addr_t buffer_bus;
111         size_t buffer_size;
112         size_t used;
113         struct descriptor buffer[0];
114 };
115
116 struct context {
117         struct fw_ohci *ohci;
118         u32 regs;
119         int total_allocation;
120
121         /*
122          * List of page-sized buffers for storing DMA descriptors.
123          * Head of list contains buffers in use and tail of list contains
124          * free buffers.
125          */
126         struct list_head buffer_list;
127
128         /*
129          * Pointer to a buffer inside buffer_list that contains the tail
130          * end of the current DMA program.
131          */
132         struct descriptor_buffer *buffer_tail;
133
134         /*
135          * The descriptor containing the branch address of the first
136          * descriptor that has not yet been filled by the device.
137          */
138         struct descriptor *last;
139
140         /*
141          * The last descriptor in the DMA program.  It contains the branch
142          * address that must be updated upon appending a new descriptor.
143          */
144         struct descriptor *prev;
145
146         descriptor_callback_t callback;
147
148         struct tasklet_struct tasklet;
149 };
150
151 #define IT_HEADER_SY(v)          ((v) <<  0)
152 #define IT_HEADER_TCODE(v)       ((v) <<  4)
153 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
154 #define IT_HEADER_TAG(v)         ((v) << 14)
155 #define IT_HEADER_SPEED(v)       ((v) << 16)
156 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
157
158 struct iso_context {
159         struct fw_iso_context base;
160         struct context context;
161         int excess_bytes;
162         void *header;
163         size_t header_length;
164 };
165
166 #define CONFIG_ROM_SIZE 1024
167
168 struct fw_ohci {
169         struct fw_card card;
170
171         __iomem char *registers;
172         int node_id;
173         int generation;
174         int request_generation; /* for timestamping incoming requests */
175         unsigned quirks;
176         unsigned int pri_req_max;
177         u32 bus_time;
178         bool is_root;
179         bool csr_state_setclear_abdicate;
180
181         /*
182          * Spinlock for accessing fw_ohci data.  Never call out of
183          * this driver with this lock held.
184          */
185         spinlock_t lock;
186
187         struct mutex phy_reg_mutex;
188
189         struct ar_context ar_request_ctx;
190         struct ar_context ar_response_ctx;
191         struct context at_request_ctx;
192         struct context at_response_ctx;
193
194         u32 it_context_mask;     /* unoccupied IT contexts */
195         struct iso_context *it_context_list;
196         u64 ir_context_channels; /* unoccupied channels */
197         u32 ir_context_mask;     /* unoccupied IR contexts */
198         struct iso_context *ir_context_list;
199         u64 mc_channels; /* channels in use by the multichannel IR context */
200         bool mc_allocated;
201
202         __be32    *config_rom;
203         dma_addr_t config_rom_bus;
204         __be32    *next_config_rom;
205         dma_addr_t next_config_rom_bus;
206         __be32     next_header;
207
208         __le32    *self_id_cpu;
209         dma_addr_t self_id_bus;
210         struct tasklet_struct bus_reset_tasklet;
211
212         u32 self_id_buffer[512];
213 };
214
215 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
216 {
217         return container_of(card, struct fw_ohci, card);
218 }
219
220 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
221 #define IR_CONTEXT_BUFFER_FILL          0x80000000
222 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
223 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
224 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
225 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
226
227 #define CONTEXT_RUN     0x8000
228 #define CONTEXT_WAKE    0x1000
229 #define CONTEXT_DEAD    0x0800
230 #define CONTEXT_ACTIVE  0x0400
231
232 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
233 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
234 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
235
236 #define OHCI1394_REGISTER_SIZE          0x800
237 #define OHCI_LOOP_COUNT                 500
238 #define OHCI1394_PCI_HCI_Control        0x40
239 #define SELF_ID_BUF_SIZE                0x800
240 #define OHCI_TCODE_PHY_PACKET           0x0e
241 #define OHCI_VERSION_1_1                0x010010
242
243 static char ohci_driver_name[] = KBUILD_MODNAME;
244
245 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
246 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
247
248 #define QUIRK_CYCLE_TIMER               1
249 #define QUIRK_RESET_PACKET              2
250 #define QUIRK_BE_HEADERS                4
251 #define QUIRK_NO_1394A                  8
252 #define QUIRK_NO_MSI                    16
253
254 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
255 static const struct {
256         unsigned short vendor, device, flags;
257 } ohci_quirks[] = {
258         {PCI_VENDOR_ID_TI,      PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
259                                                             QUIRK_RESET_PACKET |
260                                                             QUIRK_NO_1394A},
261         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
262         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
263         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
264         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
265         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
266         {PCI_VENDOR_ID_RICOH,   PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
267         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
268 };
269
270 /* This overrides anything that was found in ohci_quirks[]. */
271 static int param_quirks;
272 module_param_named(quirks, param_quirks, int, 0644);
273 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
274         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
275         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
276         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
277         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
278         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
279         ")");
280
281 #define OHCI_PARAM_DEBUG_AT_AR          1
282 #define OHCI_PARAM_DEBUG_SELFIDS        2
283 #define OHCI_PARAM_DEBUG_IRQS           4
284 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
285
286 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
287
288 static int param_debug;
289 module_param_named(debug, param_debug, int, 0644);
290 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
291         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
292         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
293         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
294         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
295         ", or a combination, or all = -1)");
296
297 static void log_irqs(u32 evt)
298 {
299         if (likely(!(param_debug &
300                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
301                 return;
302
303         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
304             !(evt & OHCI1394_busReset))
305                 return;
306
307         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
308             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
309             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
310             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
311             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
312             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
313             evt & OHCI1394_isochRx              ? " IR"                 : "",
314             evt & OHCI1394_isochTx              ? " IT"                 : "",
315             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
316             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
317             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
318             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
319             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
320             evt & OHCI1394_busReset             ? " busReset"           : "",
321             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
322                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
323                     OHCI1394_respTxComplete | OHCI1394_isochRx |
324                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
325                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
326                     OHCI1394_cycleInconsistent |
327                     OHCI1394_regAccessFail | OHCI1394_busReset)
328                                                 ? " ?"                  : "");
329 }
330
331 static const char *speed[] = {
332         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
333 };
334 static const char *power[] = {
335         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
336         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
337 };
338 static const char port[] = { '.', '-', 'p', 'c', };
339
340 static char _p(u32 *s, int shift)
341 {
342         return port[*s >> shift & 3];
343 }
344
345 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
346 {
347         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
348                 return;
349
350         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
351                   self_id_count, generation, node_id);
352
353         for (; self_id_count--; ++s)
354                 if ((*s & 1 << 23) == 0)
355                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
356                             "%s gc=%d %s %s%s%s\n",
357                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
358                             speed[*s >> 14 & 3], *s >> 16 & 63,
359                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
360                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
361                 else
362                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
363                             *s, *s >> 24 & 63,
364                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
365                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
366 }
367
368 static const char *evts[] = {
369         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
370         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
371         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
372         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
373         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
374         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
375         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
376         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
377         [0x10] = "-reserved-",          [0x11] = "ack_complete",
378         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
379         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
380         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
381         [0x18] = "-reserved-",          [0x19] = "-reserved-",
382         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
383         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
384         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
385         [0x20] = "pending/cancelled",
386 };
387 static const char *tcodes[] = {
388         [0x0] = "QW req",               [0x1] = "BW req",
389         [0x2] = "W resp",               [0x3] = "-reserved-",
390         [0x4] = "QR req",               [0x5] = "BR req",
391         [0x6] = "QR resp",              [0x7] = "BR resp",
392         [0x8] = "cycle start",          [0x9] = "Lk req",
393         [0xa] = "async stream packet",  [0xb] = "Lk resp",
394         [0xc] = "-reserved-",           [0xd] = "-reserved-",
395         [0xe] = "link internal",        [0xf] = "-reserved-",
396 };
397 static const char *phys[] = {
398         [0x0] = "phy config packet",    [0x1] = "link-on packet",
399         [0x2] = "self-id packet",       [0x3] = "-reserved-",
400 };
401
402 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
403 {
404         int tcode = header[0] >> 4 & 0xf;
405         char specific[12];
406
407         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
408                 return;
409
410         if (unlikely(evt >= ARRAY_SIZE(evts)))
411                         evt = 0x1f;
412
413         if (evt == OHCI1394_evt_bus_reset) {
414                 fw_notify("A%c evt_bus_reset, generation %d\n",
415                     dir, (header[2] >> 16) & 0xff);
416                 return;
417         }
418
419         if (header[0] == ~header[1]) {
420                 fw_notify("A%c %s, %s, %08x\n",
421                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
422                 return;
423         }
424
425         switch (tcode) {
426         case 0x0: case 0x6: case 0x8:
427                 snprintf(specific, sizeof(specific), " = %08x",
428                          be32_to_cpu((__force __be32)header[3]));
429                 break;
430         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
431                 snprintf(specific, sizeof(specific), " %x,%x",
432                          header[3] >> 16, header[3] & 0xffff);
433                 break;
434         default:
435                 specific[0] = '\0';
436         }
437
438         switch (tcode) {
439         case 0xe: case 0xa:
440                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
441                 break;
442         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
443                 fw_notify("A%c spd %x tl %02x, "
444                     "%04x -> %04x, %s, "
445                     "%s, %04x%08x%s\n",
446                     dir, speed, header[0] >> 10 & 0x3f,
447                     header[1] >> 16, header[0] >> 16, evts[evt],
448                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
449                 break;
450         default:
451                 fw_notify("A%c spd %x tl %02x, "
452                     "%04x -> %04x, %s, "
453                     "%s%s\n",
454                     dir, speed, header[0] >> 10 & 0x3f,
455                     header[1] >> 16, header[0] >> 16, evts[evt],
456                     tcodes[tcode], specific);
457         }
458 }
459
460 #else
461
462 #define param_debug 0
463 static inline void log_irqs(u32 evt) {}
464 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
465 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
466
467 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
468
469 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
470 {
471         writel(data, ohci->registers + offset);
472 }
473
474 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
475 {
476         return readl(ohci->registers + offset);
477 }
478
479 static inline void flush_writes(const struct fw_ohci *ohci)
480 {
481         /* Do a dummy read to flush writes. */
482         reg_read(ohci, OHCI1394_Version);
483 }
484
485 static int read_phy_reg(struct fw_ohci *ohci, int addr)
486 {
487         u32 val;
488         int i;
489
490         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
491         for (i = 0; i < 3 + 100; i++) {
492                 val = reg_read(ohci, OHCI1394_PhyControl);
493                 if (val & OHCI1394_PhyControl_ReadDone)
494                         return OHCI1394_PhyControl_ReadData(val);
495
496                 /*
497                  * Try a few times without waiting.  Sleeping is necessary
498                  * only when the link/PHY interface is busy.
499                  */
500                 if (i >= 3)
501                         msleep(1);
502         }
503         fw_error("failed to read phy reg\n");
504
505         return -EBUSY;
506 }
507
508 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
509 {
510         int i;
511
512         reg_write(ohci, OHCI1394_PhyControl,
513                   OHCI1394_PhyControl_Write(addr, val));
514         for (i = 0; i < 3 + 100; i++) {
515                 val = reg_read(ohci, OHCI1394_PhyControl);
516                 if (!(val & OHCI1394_PhyControl_WritePending))
517                         return 0;
518
519                 if (i >= 3)
520                         msleep(1);
521         }
522         fw_error("failed to write phy reg\n");
523
524         return -EBUSY;
525 }
526
527 static int update_phy_reg(struct fw_ohci *ohci, int addr,
528                           int clear_bits, int set_bits)
529 {
530         int ret = read_phy_reg(ohci, addr);
531         if (ret < 0)
532                 return ret;
533
534         /*
535          * The interrupt status bits are cleared by writing a one bit.
536          * Avoid clearing them unless explicitly requested in set_bits.
537          */
538         if (addr == 5)
539                 clear_bits |= PHY_INT_STATUS_BITS;
540
541         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
542 }
543
544 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
545 {
546         int ret;
547
548         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
549         if (ret < 0)
550                 return ret;
551
552         return read_phy_reg(ohci, addr);
553 }
554
555 static int ohci_read_phy_reg(struct fw_card *card, int addr)
556 {
557         struct fw_ohci *ohci = fw_ohci(card);
558         int ret;
559
560         mutex_lock(&ohci->phy_reg_mutex);
561         ret = read_phy_reg(ohci, addr);
562         mutex_unlock(&ohci->phy_reg_mutex);
563
564         return ret;
565 }
566
567 static int ohci_update_phy_reg(struct fw_card *card, int addr,
568                                int clear_bits, int set_bits)
569 {
570         struct fw_ohci *ohci = fw_ohci(card);
571         int ret;
572
573         mutex_lock(&ohci->phy_reg_mutex);
574         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
575         mutex_unlock(&ohci->phy_reg_mutex);
576
577         return ret;
578 }
579
580 static int ar_context_add_page(struct ar_context *ctx)
581 {
582         struct device *dev = ctx->ohci->card.device;
583         struct ar_buffer *ab;
584         dma_addr_t uninitialized_var(ab_bus);
585         size_t offset;
586
587         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
588         if (ab == NULL)
589                 return -ENOMEM;
590
591         ab->next = NULL;
592         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
593         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
594                                                     DESCRIPTOR_STATUS |
595                                                     DESCRIPTOR_BRANCH_ALWAYS);
596         offset = offsetof(struct ar_buffer, data);
597         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
598         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
599         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
600         ab->descriptor.branch_address = 0;
601
602         wmb(); /* finish init of new descriptors before branch_address update */
603         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
604         ctx->last_buffer->next = ab;
605         ctx->last_buffer = ab;
606
607         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
608         flush_writes(ctx->ohci);
609
610         return 0;
611 }
612
613 static void ar_context_release(struct ar_context *ctx)
614 {
615         struct ar_buffer *ab, *ab_next;
616         size_t offset;
617         dma_addr_t ab_bus;
618
619         for (ab = ctx->current_buffer; ab; ab = ab_next) {
620                 ab_next = ab->next;
621                 offset = offsetof(struct ar_buffer, data);
622                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
623                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
624                                   ab, ab_bus);
625         }
626 }
627
628 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
629 #define cond_le32_to_cpu(v) \
630         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
631 #else
632 #define cond_le32_to_cpu(v) le32_to_cpu(v)
633 #endif
634
635 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
636 {
637         struct fw_ohci *ohci = ctx->ohci;
638         struct fw_packet p;
639         u32 status, length, tcode;
640         int evt;
641
642         p.header[0] = cond_le32_to_cpu(buffer[0]);
643         p.header[1] = cond_le32_to_cpu(buffer[1]);
644         p.header[2] = cond_le32_to_cpu(buffer[2]);
645
646         tcode = (p.header[0] >> 4) & 0x0f;
647         switch (tcode) {
648         case TCODE_WRITE_QUADLET_REQUEST:
649         case TCODE_READ_QUADLET_RESPONSE:
650                 p.header[3] = (__force __u32) buffer[3];
651                 p.header_length = 16;
652                 p.payload_length = 0;
653                 break;
654
655         case TCODE_READ_BLOCK_REQUEST :
656                 p.header[3] = cond_le32_to_cpu(buffer[3]);
657                 p.header_length = 16;
658                 p.payload_length = 0;
659                 break;
660
661         case TCODE_WRITE_BLOCK_REQUEST:
662         case TCODE_READ_BLOCK_RESPONSE:
663         case TCODE_LOCK_REQUEST:
664         case TCODE_LOCK_RESPONSE:
665                 p.header[3] = cond_le32_to_cpu(buffer[3]);
666                 p.header_length = 16;
667                 p.payload_length = p.header[3] >> 16;
668                 break;
669
670         case TCODE_WRITE_RESPONSE:
671         case TCODE_READ_QUADLET_REQUEST:
672         case OHCI_TCODE_PHY_PACKET:
673                 p.header_length = 12;
674                 p.payload_length = 0;
675                 break;
676
677         default:
678                 /* FIXME: Stop context, discard everything, and restart? */
679                 p.header_length = 0;
680                 p.payload_length = 0;
681         }
682
683         p.payload = (void *) buffer + p.header_length;
684
685         /* FIXME: What to do about evt_* errors? */
686         length = (p.header_length + p.payload_length + 3) / 4;
687         status = cond_le32_to_cpu(buffer[length]);
688         evt    = (status >> 16) & 0x1f;
689
690         p.ack        = evt - 16;
691         p.speed      = (status >> 21) & 0x7;
692         p.timestamp  = status & 0xffff;
693         p.generation = ohci->request_generation;
694
695         log_ar_at_event('R', p.speed, p.header, evt);
696
697         /*
698          * Several controllers, notably from NEC and VIA, forget to
699          * write ack_complete status at PHY packet reception.
700          */
701         if (evt == OHCI1394_evt_no_status &&
702             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
703                 p.ack = ACK_COMPLETE;
704
705         /*
706          * The OHCI bus reset handler synthesizes a PHY packet with
707          * the new generation number when a bus reset happens (see
708          * section 8.4.2.3).  This helps us determine when a request
709          * was received and make sure we send the response in the same
710          * generation.  We only need this for requests; for responses
711          * we use the unique tlabel for finding the matching
712          * request.
713          *
714          * Alas some chips sometimes emit bus reset packets with a
715          * wrong generation.  We set the correct generation for these
716          * at a slightly incorrect time (in bus_reset_tasklet).
717          */
718         if (evt == OHCI1394_evt_bus_reset) {
719                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
720                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
721         } else if (ctx == &ohci->ar_request_ctx) {
722                 fw_core_handle_request(&ohci->card, &p);
723         } else {
724                 fw_core_handle_response(&ohci->card, &p);
725         }
726
727         return buffer + length + 1;
728 }
729
730 static void ar_context_tasklet(unsigned long data)
731 {
732         struct ar_context *ctx = (struct ar_context *)data;
733         struct fw_ohci *ohci = ctx->ohci;
734         struct ar_buffer *ab;
735         struct descriptor *d;
736         void *buffer, *end;
737
738         ab = ctx->current_buffer;
739         d = &ab->descriptor;
740
741         if (d->res_count == 0) {
742                 size_t size, rest, offset;
743                 dma_addr_t start_bus;
744                 void *start;
745
746                 /*
747                  * This descriptor is finished and we may have a
748                  * packet split across this and the next buffer. We
749                  * reuse the page for reassembling the split packet.
750                  */
751
752                 offset = offsetof(struct ar_buffer, data);
753                 start = buffer = ab;
754                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
755
756                 ab = ab->next;
757                 d = &ab->descriptor;
758                 size = buffer + PAGE_SIZE - ctx->pointer;
759                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
760                 memmove(buffer, ctx->pointer, size);
761                 memcpy(buffer + size, ab->data, rest);
762                 ctx->current_buffer = ab;
763                 ctx->pointer = (void *) ab->data + rest;
764                 end = buffer + size + rest;
765
766                 while (buffer < end)
767                         buffer = handle_ar_packet(ctx, buffer);
768
769                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
770                                   start, start_bus);
771                 ar_context_add_page(ctx);
772         } else {
773                 buffer = ctx->pointer;
774                 ctx->pointer = end =
775                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
776
777                 while (buffer < end)
778                         buffer = handle_ar_packet(ctx, buffer);
779         }
780 }
781
782 static int ar_context_init(struct ar_context *ctx,
783                            struct fw_ohci *ohci, u32 regs)
784 {
785         struct ar_buffer ab;
786
787         ctx->regs        = regs;
788         ctx->ohci        = ohci;
789         ctx->last_buffer = &ab;
790         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
791
792         ar_context_add_page(ctx);
793         ar_context_add_page(ctx);
794         ctx->current_buffer = ab.next;
795         ctx->pointer = ctx->current_buffer->data;
796
797         return 0;
798 }
799
800 static void ar_context_run(struct ar_context *ctx)
801 {
802         struct ar_buffer *ab = ctx->current_buffer;
803         dma_addr_t ab_bus;
804         size_t offset;
805
806         offset = offsetof(struct ar_buffer, data);
807         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
808
809         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
810         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
811         flush_writes(ctx->ohci);
812 }
813
814 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
815 {
816         int b, key;
817
818         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
819         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
820
821         /* figure out which descriptor the branch address goes in */
822         if (z == 2 && (b == 3 || key == 2))
823                 return d;
824         else
825                 return d + z - 1;
826 }
827
828 static void context_tasklet(unsigned long data)
829 {
830         struct context *ctx = (struct context *) data;
831         struct descriptor *d, *last;
832         u32 address;
833         int z;
834         struct descriptor_buffer *desc;
835
836         desc = list_entry(ctx->buffer_list.next,
837                         struct descriptor_buffer, list);
838         last = ctx->last;
839         while (last->branch_address != 0) {
840                 struct descriptor_buffer *old_desc = desc;
841                 address = le32_to_cpu(last->branch_address);
842                 z = address & 0xf;
843                 address &= ~0xf;
844
845                 /* If the branch address points to a buffer outside of the
846                  * current buffer, advance to the next buffer. */
847                 if (address < desc->buffer_bus ||
848                                 address >= desc->buffer_bus + desc->used)
849                         desc = list_entry(desc->list.next,
850                                         struct descriptor_buffer, list);
851                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
852                 last = find_branch_descriptor(d, z);
853
854                 if (!ctx->callback(ctx, d, last))
855                         break;
856
857                 if (old_desc != desc) {
858                         /* If we've advanced to the next buffer, move the
859                          * previous buffer to the free list. */
860                         unsigned long flags;
861                         old_desc->used = 0;
862                         spin_lock_irqsave(&ctx->ohci->lock, flags);
863                         list_move_tail(&old_desc->list, &ctx->buffer_list);
864                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
865                 }
866                 ctx->last = last;
867         }
868 }
869
870 /*
871  * Allocate a new buffer and add it to the list of free buffers for this
872  * context.  Must be called with ohci->lock held.
873  */
874 static int context_add_buffer(struct context *ctx)
875 {
876         struct descriptor_buffer *desc;
877         dma_addr_t uninitialized_var(bus_addr);
878         int offset;
879
880         /*
881          * 16MB of descriptors should be far more than enough for any DMA
882          * program.  This will catch run-away userspace or DoS attacks.
883          */
884         if (ctx->total_allocation >= 16*1024*1024)
885                 return -ENOMEM;
886
887         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
888                         &bus_addr, GFP_ATOMIC);
889         if (!desc)
890                 return -ENOMEM;
891
892         offset = (void *)&desc->buffer - (void *)desc;
893         desc->buffer_size = PAGE_SIZE - offset;
894         desc->buffer_bus = bus_addr + offset;
895         desc->used = 0;
896
897         list_add_tail(&desc->list, &ctx->buffer_list);
898         ctx->total_allocation += PAGE_SIZE;
899
900         return 0;
901 }
902
903 static int context_init(struct context *ctx, struct fw_ohci *ohci,
904                         u32 regs, descriptor_callback_t callback)
905 {
906         ctx->ohci = ohci;
907         ctx->regs = regs;
908         ctx->total_allocation = 0;
909
910         INIT_LIST_HEAD(&ctx->buffer_list);
911         if (context_add_buffer(ctx) < 0)
912                 return -ENOMEM;
913
914         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
915                         struct descriptor_buffer, list);
916
917         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
918         ctx->callback = callback;
919
920         /*
921          * We put a dummy descriptor in the buffer that has a NULL
922          * branch address and looks like it's been sent.  That way we
923          * have a descriptor to append DMA programs to.
924          */
925         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
926         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
927         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
928         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
929         ctx->last = ctx->buffer_tail->buffer;
930         ctx->prev = ctx->buffer_tail->buffer;
931
932         return 0;
933 }
934
935 static void context_release(struct context *ctx)
936 {
937         struct fw_card *card = &ctx->ohci->card;
938         struct descriptor_buffer *desc, *tmp;
939
940         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
941                 dma_free_coherent(card->device, PAGE_SIZE, desc,
942                         desc->buffer_bus -
943                         ((void *)&desc->buffer - (void *)desc));
944 }
945
946 /* Must be called with ohci->lock held */
947 static struct descriptor *context_get_descriptors(struct context *ctx,
948                                                   int z, dma_addr_t *d_bus)
949 {
950         struct descriptor *d = NULL;
951         struct descriptor_buffer *desc = ctx->buffer_tail;
952
953         if (z * sizeof(*d) > desc->buffer_size)
954                 return NULL;
955
956         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
957                 /* No room for the descriptor in this buffer, so advance to the
958                  * next one. */
959
960                 if (desc->list.next == &ctx->buffer_list) {
961                         /* If there is no free buffer next in the list,
962                          * allocate one. */
963                         if (context_add_buffer(ctx) < 0)
964                                 return NULL;
965                 }
966                 desc = list_entry(desc->list.next,
967                                 struct descriptor_buffer, list);
968                 ctx->buffer_tail = desc;
969         }
970
971         d = desc->buffer + desc->used / sizeof(*d);
972         memset(d, 0, z * sizeof(*d));
973         *d_bus = desc->buffer_bus + desc->used;
974
975         return d;
976 }
977
978 static void context_run(struct context *ctx, u32 extra)
979 {
980         struct fw_ohci *ohci = ctx->ohci;
981
982         reg_write(ohci, COMMAND_PTR(ctx->regs),
983                   le32_to_cpu(ctx->last->branch_address));
984         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
985         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
986         flush_writes(ohci);
987 }
988
989 static void context_append(struct context *ctx,
990                            struct descriptor *d, int z, int extra)
991 {
992         dma_addr_t d_bus;
993         struct descriptor_buffer *desc = ctx->buffer_tail;
994
995         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
996
997         desc->used += (z + extra) * sizeof(*d);
998
999         wmb(); /* finish init of new descriptors before branch_address update */
1000         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1001         ctx->prev = find_branch_descriptor(d, z);
1002
1003         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1004         flush_writes(ctx->ohci);
1005 }
1006
1007 static void context_stop(struct context *ctx)
1008 {
1009         u32 reg;
1010         int i;
1011
1012         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1013         flush_writes(ctx->ohci);
1014
1015         for (i = 0; i < 10; i++) {
1016                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1017                 if ((reg & CONTEXT_ACTIVE) == 0)
1018                         return;
1019
1020                 mdelay(1);
1021         }
1022         fw_error("Error: DMA context still active (0x%08x)\n", reg);
1023 }
1024
1025 struct driver_data {
1026         struct fw_packet *packet;
1027 };
1028
1029 /*
1030  * This function apppends a packet to the DMA queue for transmission.
1031  * Must always be called with the ochi->lock held to ensure proper
1032  * generation handling and locking around packet queue manipulation.
1033  */
1034 static int at_context_queue_packet(struct context *ctx,
1035                                    struct fw_packet *packet)
1036 {
1037         struct fw_ohci *ohci = ctx->ohci;
1038         dma_addr_t d_bus, uninitialized_var(payload_bus);
1039         struct driver_data *driver_data;
1040         struct descriptor *d, *last;
1041         __le32 *header;
1042         int z, tcode;
1043         u32 reg;
1044
1045         d = context_get_descriptors(ctx, 4, &d_bus);
1046         if (d == NULL) {
1047                 packet->ack = RCODE_SEND_ERROR;
1048                 return -1;
1049         }
1050
1051         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1052         d[0].res_count = cpu_to_le16(packet->timestamp);
1053
1054         /*
1055          * The DMA format for asyncronous link packets is different
1056          * from the IEEE1394 layout, so shift the fields around
1057          * accordingly.  If header_length is 8, it's a PHY packet, to
1058          * which we need to prepend an extra quadlet.
1059          */
1060
1061         header = (__le32 *) &d[1];
1062         switch (packet->header_length) {
1063         case 16:
1064         case 12:
1065                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1066                                         (packet->speed << 16));
1067                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1068                                         (packet->header[0] & 0xffff0000));
1069                 header[2] = cpu_to_le32(packet->header[2]);
1070
1071                 tcode = (packet->header[0] >> 4) & 0x0f;
1072                 if (TCODE_IS_BLOCK_PACKET(tcode))
1073                         header[3] = cpu_to_le32(packet->header[3]);
1074                 else
1075                         header[3] = (__force __le32) packet->header[3];
1076
1077                 d[0].req_count = cpu_to_le16(packet->header_length);
1078                 break;
1079
1080         case 8:
1081                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1082                                         (packet->speed << 16));
1083                 header[1] = cpu_to_le32(packet->header[0]);
1084                 header[2] = cpu_to_le32(packet->header[1]);
1085                 d[0].req_count = cpu_to_le16(12);
1086
1087                 if (is_ping_packet(packet->header))
1088                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1089                 break;
1090
1091         case 4:
1092                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1093                                         (packet->speed << 16));
1094                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1095                 d[0].req_count = cpu_to_le16(8);
1096                 break;
1097
1098         default:
1099                 /* BUG(); */
1100                 packet->ack = RCODE_SEND_ERROR;
1101                 return -1;
1102         }
1103
1104         driver_data = (struct driver_data *) &d[3];
1105         driver_data->packet = packet;
1106         packet->driver_data = driver_data;
1107
1108         if (packet->payload_length > 0) {
1109                 payload_bus =
1110                         dma_map_single(ohci->card.device, packet->payload,
1111                                        packet->payload_length, DMA_TO_DEVICE);
1112                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1113                         packet->ack = RCODE_SEND_ERROR;
1114                         return -1;
1115                 }
1116                 packet->payload_bus     = payload_bus;
1117                 packet->payload_mapped  = true;
1118
1119                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1120                 d[2].data_address = cpu_to_le32(payload_bus);
1121                 last = &d[2];
1122                 z = 3;
1123         } else {
1124                 last = &d[0];
1125                 z = 2;
1126         }
1127
1128         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1129                                      DESCRIPTOR_IRQ_ALWAYS |
1130                                      DESCRIPTOR_BRANCH_ALWAYS);
1131
1132         /*
1133          * If the controller and packet generations don't match, we need to
1134          * bail out and try again.  If IntEvent.busReset is set, the AT context
1135          * is halted, so appending to the context and trying to run it is
1136          * futile.  Most controllers do the right thing and just flush the AT
1137          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1138          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1139          * up stalling out.  So we just bail out in software and try again
1140          * later, and everyone is happy.
1141          * FIXME: Document how the locking works.
1142          */
1143         if (ohci->generation != packet->generation ||
1144             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1145                 if (packet->payload_mapped)
1146                         dma_unmap_single(ohci->card.device, payload_bus,
1147                                          packet->payload_length, DMA_TO_DEVICE);
1148                 packet->ack = RCODE_GENERATION;
1149                 return -1;
1150         }
1151
1152         context_append(ctx, d, z, 4 - z);
1153
1154         /* If the context isn't already running, start it up. */
1155         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1156         if ((reg & CONTEXT_RUN) == 0)
1157                 context_run(ctx, 0);
1158
1159         return 0;
1160 }
1161
1162 static int handle_at_packet(struct context *context,
1163                             struct descriptor *d,
1164                             struct descriptor *last)
1165 {
1166         struct driver_data *driver_data;
1167         struct fw_packet *packet;
1168         struct fw_ohci *ohci = context->ohci;
1169         int evt;
1170
1171         if (last->transfer_status == 0)
1172                 /* This descriptor isn't done yet, stop iteration. */
1173                 return 0;
1174
1175         driver_data = (struct driver_data *) &d[3];
1176         packet = driver_data->packet;
1177         if (packet == NULL)
1178                 /* This packet was cancelled, just continue. */
1179                 return 1;
1180
1181         if (packet->payload_mapped)
1182                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1183                                  packet->payload_length, DMA_TO_DEVICE);
1184
1185         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1186         packet->timestamp = le16_to_cpu(last->res_count);
1187
1188         log_ar_at_event('T', packet->speed, packet->header, evt);
1189
1190         switch (evt) {
1191         case OHCI1394_evt_timeout:
1192                 /* Async response transmit timed out. */
1193                 packet->ack = RCODE_CANCELLED;
1194                 break;
1195
1196         case OHCI1394_evt_flushed:
1197                 /*
1198                  * The packet was flushed should give same error as
1199                  * when we try to use a stale generation count.
1200                  */
1201                 packet->ack = RCODE_GENERATION;
1202                 break;
1203
1204         case OHCI1394_evt_missing_ack:
1205                 /*
1206                  * Using a valid (current) generation count, but the
1207                  * node is not on the bus or not sending acks.
1208                  */
1209                 packet->ack = RCODE_NO_ACK;
1210                 break;
1211
1212         case ACK_COMPLETE + 0x10:
1213         case ACK_PENDING + 0x10:
1214         case ACK_BUSY_X + 0x10:
1215         case ACK_BUSY_A + 0x10:
1216         case ACK_BUSY_B + 0x10:
1217         case ACK_DATA_ERROR + 0x10:
1218         case ACK_TYPE_ERROR + 0x10:
1219                 packet->ack = evt - 0x10;
1220                 break;
1221
1222         default:
1223                 packet->ack = RCODE_SEND_ERROR;
1224                 break;
1225         }
1226
1227         packet->callback(packet, &ohci->card, packet->ack);
1228
1229         return 1;
1230 }
1231
1232 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1233 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1234 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1235 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1236 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1237
1238 static void handle_local_rom(struct fw_ohci *ohci,
1239                              struct fw_packet *packet, u32 csr)
1240 {
1241         struct fw_packet response;
1242         int tcode, length, i;
1243
1244         tcode = HEADER_GET_TCODE(packet->header[0]);
1245         if (TCODE_IS_BLOCK_PACKET(tcode))
1246                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1247         else
1248                 length = 4;
1249
1250         i = csr - CSR_CONFIG_ROM;
1251         if (i + length > CONFIG_ROM_SIZE) {
1252                 fw_fill_response(&response, packet->header,
1253                                  RCODE_ADDRESS_ERROR, NULL, 0);
1254         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1255                 fw_fill_response(&response, packet->header,
1256                                  RCODE_TYPE_ERROR, NULL, 0);
1257         } else {
1258                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1259                                  (void *) ohci->config_rom + i, length);
1260         }
1261
1262         fw_core_handle_response(&ohci->card, &response);
1263 }
1264
1265 static void handle_local_lock(struct fw_ohci *ohci,
1266                               struct fw_packet *packet, u32 csr)
1267 {
1268         struct fw_packet response;
1269         int tcode, length, ext_tcode, sel, try;
1270         __be32 *payload, lock_old;
1271         u32 lock_arg, lock_data;
1272
1273         tcode = HEADER_GET_TCODE(packet->header[0]);
1274         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1275         payload = packet->payload;
1276         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1277
1278         if (tcode == TCODE_LOCK_REQUEST &&
1279             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1280                 lock_arg = be32_to_cpu(payload[0]);
1281                 lock_data = be32_to_cpu(payload[1]);
1282         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1283                 lock_arg = 0;
1284                 lock_data = 0;
1285         } else {
1286                 fw_fill_response(&response, packet->header,
1287                                  RCODE_TYPE_ERROR, NULL, 0);
1288                 goto out;
1289         }
1290
1291         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1292         reg_write(ohci, OHCI1394_CSRData, lock_data);
1293         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1294         reg_write(ohci, OHCI1394_CSRControl, sel);
1295
1296         for (try = 0; try < 20; try++)
1297                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1298                         lock_old = cpu_to_be32(reg_read(ohci,
1299                                                         OHCI1394_CSRData));
1300                         fw_fill_response(&response, packet->header,
1301                                          RCODE_COMPLETE,
1302                                          &lock_old, sizeof(lock_old));
1303                         goto out;
1304                 }
1305
1306         fw_error("swap not done (CSR lock timeout)\n");
1307         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1308
1309  out:
1310         fw_core_handle_response(&ohci->card, &response);
1311 }
1312
1313 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1314 {
1315         u64 offset, csr;
1316
1317         if (ctx == &ctx->ohci->at_request_ctx) {
1318                 packet->ack = ACK_PENDING;
1319                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1320         }
1321
1322         offset =
1323                 ((unsigned long long)
1324                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1325                 packet->header[2];
1326         csr = offset - CSR_REGISTER_BASE;
1327
1328         /* Handle config rom reads. */
1329         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1330                 handle_local_rom(ctx->ohci, packet, csr);
1331         else switch (csr) {
1332         case CSR_BUS_MANAGER_ID:
1333         case CSR_BANDWIDTH_AVAILABLE:
1334         case CSR_CHANNELS_AVAILABLE_HI:
1335         case CSR_CHANNELS_AVAILABLE_LO:
1336                 handle_local_lock(ctx->ohci, packet, csr);
1337                 break;
1338         default:
1339                 if (ctx == &ctx->ohci->at_request_ctx)
1340                         fw_core_handle_request(&ctx->ohci->card, packet);
1341                 else
1342                         fw_core_handle_response(&ctx->ohci->card, packet);
1343                 break;
1344         }
1345
1346         if (ctx == &ctx->ohci->at_response_ctx) {
1347                 packet->ack = ACK_COMPLETE;
1348                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1349         }
1350 }
1351
1352 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1353 {
1354         unsigned long flags;
1355         int ret;
1356
1357         spin_lock_irqsave(&ctx->ohci->lock, flags);
1358
1359         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1360             ctx->ohci->generation == packet->generation) {
1361                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1362                 handle_local_request(ctx, packet);
1363                 return;
1364         }
1365
1366         ret = at_context_queue_packet(ctx, packet);
1367         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1368
1369         if (ret < 0)
1370                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1371
1372 }
1373
1374 static u32 cycle_timer_ticks(u32 cycle_timer)
1375 {
1376         u32 ticks;
1377
1378         ticks = cycle_timer & 0xfff;
1379         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1380         ticks += (3072 * 8000) * (cycle_timer >> 25);
1381
1382         return ticks;
1383 }
1384
1385 /*
1386  * Some controllers exhibit one or more of the following bugs when updating the
1387  * iso cycle timer register:
1388  *  - When the lowest six bits are wrapping around to zero, a read that happens
1389  *    at the same time will return garbage in the lowest ten bits.
1390  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1391  *    not incremented for about 60 ns.
1392  *  - Occasionally, the entire register reads zero.
1393  *
1394  * To catch these, we read the register three times and ensure that the
1395  * difference between each two consecutive reads is approximately the same, i.e.
1396  * less than twice the other.  Furthermore, any negative difference indicates an
1397  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1398  * execute, so we have enough precision to compute the ratio of the differences.)
1399  */
1400 static u32 get_cycle_time(struct fw_ohci *ohci)
1401 {
1402         u32 c0, c1, c2;
1403         u32 t0, t1, t2;
1404         s32 diff01, diff12;
1405         int i;
1406
1407         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1408
1409         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1410                 i = 0;
1411                 c1 = c2;
1412                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1413                 do {
1414                         c0 = c1;
1415                         c1 = c2;
1416                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1417                         t0 = cycle_timer_ticks(c0);
1418                         t1 = cycle_timer_ticks(c1);
1419                         t2 = cycle_timer_ticks(c2);
1420                         diff01 = t1 - t0;
1421                         diff12 = t2 - t1;
1422                 } while ((diff01 <= 0 || diff12 <= 0 ||
1423                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1424                          && i++ < 20);
1425         }
1426
1427         return c2;
1428 }
1429
1430 /*
1431  * This function has to be called at least every 64 seconds.  The bus_time
1432  * field stores not only the upper 25 bits of the BUS_TIME register but also
1433  * the most significant bit of the cycle timer in bit 6 so that we can detect
1434  * changes in this bit.
1435  */
1436 static u32 update_bus_time(struct fw_ohci *ohci)
1437 {
1438         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1439
1440         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1441                 ohci->bus_time += 0x40;
1442
1443         return ohci->bus_time | cycle_time_seconds;
1444 }
1445
1446 static void bus_reset_tasklet(unsigned long data)
1447 {
1448         struct fw_ohci *ohci = (struct fw_ohci *)data;
1449         int self_id_count, i, j, reg;
1450         int generation, new_generation;
1451         unsigned long flags;
1452         void *free_rom = NULL;
1453         dma_addr_t free_rom_bus = 0;
1454         bool is_new_root;
1455
1456         reg = reg_read(ohci, OHCI1394_NodeID);
1457         if (!(reg & OHCI1394_NodeID_idValid)) {
1458                 fw_notify("node ID not valid, new bus reset in progress\n");
1459                 return;
1460         }
1461         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1462                 fw_notify("malconfigured bus\n");
1463                 return;
1464         }
1465         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1466                                OHCI1394_NodeID_nodeNumber);
1467
1468         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1469         if (!(ohci->is_root && is_new_root))
1470                 reg_write(ohci, OHCI1394_LinkControlSet,
1471                           OHCI1394_LinkControl_cycleMaster);
1472         ohci->is_root = is_new_root;
1473
1474         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1475         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1476                 fw_notify("inconsistent self IDs\n");
1477                 return;
1478         }
1479         /*
1480          * The count in the SelfIDCount register is the number of
1481          * bytes in the self ID receive buffer.  Since we also receive
1482          * the inverted quadlets and a header quadlet, we shift one
1483          * bit extra to get the actual number of self IDs.
1484          */
1485         self_id_count = (reg >> 3) & 0xff;
1486         if (self_id_count == 0 || self_id_count > 252) {
1487                 fw_notify("inconsistent self IDs\n");
1488                 return;
1489         }
1490         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1491         rmb();
1492
1493         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1494                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1495                         fw_notify("inconsistent self IDs\n");
1496                         return;
1497                 }
1498                 ohci->self_id_buffer[j] =
1499                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1500         }
1501         rmb();
1502
1503         /*
1504          * Check the consistency of the self IDs we just read.  The
1505          * problem we face is that a new bus reset can start while we
1506          * read out the self IDs from the DMA buffer. If this happens,
1507          * the DMA buffer will be overwritten with new self IDs and we
1508          * will read out inconsistent data.  The OHCI specification
1509          * (section 11.2) recommends a technique similar to
1510          * linux/seqlock.h, where we remember the generation of the
1511          * self IDs in the buffer before reading them out and compare
1512          * it to the current generation after reading them out.  If
1513          * the two generations match we know we have a consistent set
1514          * of self IDs.
1515          */
1516
1517         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1518         if (new_generation != generation) {
1519                 fw_notify("recursive bus reset detected, "
1520                           "discarding self ids\n");
1521                 return;
1522         }
1523
1524         /* FIXME: Document how the locking works. */
1525         spin_lock_irqsave(&ohci->lock, flags);
1526
1527         ohci->generation = generation;
1528         context_stop(&ohci->at_request_ctx);
1529         context_stop(&ohci->at_response_ctx);
1530         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1531
1532         if (ohci->quirks & QUIRK_RESET_PACKET)
1533                 ohci->request_generation = generation;
1534
1535         /*
1536          * This next bit is unrelated to the AT context stuff but we
1537          * have to do it under the spinlock also.  If a new config rom
1538          * was set up before this reset, the old one is now no longer
1539          * in use and we can free it. Update the config rom pointers
1540          * to point to the current config rom and clear the
1541          * next_config_rom pointer so a new update can take place.
1542          */
1543
1544         if (ohci->next_config_rom != NULL) {
1545                 if (ohci->next_config_rom != ohci->config_rom) {
1546                         free_rom      = ohci->config_rom;
1547                         free_rom_bus  = ohci->config_rom_bus;
1548                 }
1549                 ohci->config_rom      = ohci->next_config_rom;
1550                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1551                 ohci->next_config_rom = NULL;
1552
1553                 /*
1554                  * Restore config_rom image and manually update
1555                  * config_rom registers.  Writing the header quadlet
1556                  * will indicate that the config rom is ready, so we
1557                  * do that last.
1558                  */
1559                 reg_write(ohci, OHCI1394_BusOptions,
1560                           be32_to_cpu(ohci->config_rom[2]));
1561                 ohci->config_rom[0] = ohci->next_header;
1562                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1563                           be32_to_cpu(ohci->next_header));
1564         }
1565
1566 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1567         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1568         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1569 #endif
1570
1571         spin_unlock_irqrestore(&ohci->lock, flags);
1572
1573         if (free_rom)
1574                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1575                                   free_rom, free_rom_bus);
1576
1577         log_selfids(ohci->node_id, generation,
1578                     self_id_count, ohci->self_id_buffer);
1579
1580         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1581                                  self_id_count, ohci->self_id_buffer,
1582                                  ohci->csr_state_setclear_abdicate);
1583         ohci->csr_state_setclear_abdicate = false;
1584 }
1585
1586 static irqreturn_t irq_handler(int irq, void *data)
1587 {
1588         struct fw_ohci *ohci = data;
1589         u32 event, iso_event;
1590         int i;
1591
1592         event = reg_read(ohci, OHCI1394_IntEventClear);
1593
1594         if (!event || !~event)
1595                 return IRQ_NONE;
1596
1597         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1598         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1599         log_irqs(event);
1600
1601         if (event & OHCI1394_selfIDComplete)
1602                 tasklet_schedule(&ohci->bus_reset_tasklet);
1603
1604         if (event & OHCI1394_RQPkt)
1605                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1606
1607         if (event & OHCI1394_RSPkt)
1608                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1609
1610         if (event & OHCI1394_reqTxComplete)
1611                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1612
1613         if (event & OHCI1394_respTxComplete)
1614                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1615
1616         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1617         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1618
1619         while (iso_event) {
1620                 i = ffs(iso_event) - 1;
1621                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1622                 iso_event &= ~(1 << i);
1623         }
1624
1625         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1626         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1627
1628         while (iso_event) {
1629                 i = ffs(iso_event) - 1;
1630                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1631                 iso_event &= ~(1 << i);
1632         }
1633
1634         if (unlikely(event & OHCI1394_regAccessFail))
1635                 fw_error("Register access failure - "
1636                          "please notify linux1394-devel@lists.sf.net\n");
1637
1638         if (unlikely(event & OHCI1394_postedWriteErr))
1639                 fw_error("PCI posted write error\n");
1640
1641         if (unlikely(event & OHCI1394_cycleTooLong)) {
1642                 if (printk_ratelimit())
1643                         fw_notify("isochronous cycle too long\n");
1644                 reg_write(ohci, OHCI1394_LinkControlSet,
1645                           OHCI1394_LinkControl_cycleMaster);
1646         }
1647
1648         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1649                 /*
1650                  * We need to clear this event bit in order to make
1651                  * cycleMatch isochronous I/O work.  In theory we should
1652                  * stop active cycleMatch iso contexts now and restart
1653                  * them at least two cycles later.  (FIXME?)
1654                  */
1655                 if (printk_ratelimit())
1656                         fw_notify("isochronous cycle inconsistent\n");
1657         }
1658
1659         if (event & OHCI1394_cycle64Seconds) {
1660                 spin_lock(&ohci->lock);
1661                 update_bus_time(ohci);
1662                 spin_unlock(&ohci->lock);
1663         }
1664
1665         return IRQ_HANDLED;
1666 }
1667
1668 static int software_reset(struct fw_ohci *ohci)
1669 {
1670         int i;
1671
1672         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1673
1674         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1675                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1676                      OHCI1394_HCControl_softReset) == 0)
1677                         return 0;
1678                 msleep(1);
1679         }
1680
1681         return -EBUSY;
1682 }
1683
1684 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1685 {
1686         size_t size = length * 4;
1687
1688         memcpy(dest, src, size);
1689         if (size < CONFIG_ROM_SIZE)
1690                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1691 }
1692
1693 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1694 {
1695         bool enable_1394a;
1696         int ret, clear, set, offset;
1697
1698         /* Check if the driver should configure link and PHY. */
1699         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1700               OHCI1394_HCControl_programPhyEnable))
1701                 return 0;
1702
1703         /* Paranoia: check whether the PHY supports 1394a, too. */
1704         enable_1394a = false;
1705         ret = read_phy_reg(ohci, 2);
1706         if (ret < 0)
1707                 return ret;
1708         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1709                 ret = read_paged_phy_reg(ohci, 1, 8);
1710                 if (ret < 0)
1711                         return ret;
1712                 if (ret >= 1)
1713                         enable_1394a = true;
1714         }
1715
1716         if (ohci->quirks & QUIRK_NO_1394A)
1717                 enable_1394a = false;
1718
1719         /* Configure PHY and link consistently. */
1720         if (enable_1394a) {
1721                 clear = 0;
1722                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1723         } else {
1724                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1725                 set = 0;
1726         }
1727         ret = update_phy_reg(ohci, 5, clear, set);
1728         if (ret < 0)
1729                 return ret;
1730
1731         if (enable_1394a)
1732                 offset = OHCI1394_HCControlSet;
1733         else
1734                 offset = OHCI1394_HCControlClear;
1735         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1736
1737         /* Clean up: configuration has been taken care of. */
1738         reg_write(ohci, OHCI1394_HCControlClear,
1739                   OHCI1394_HCControl_programPhyEnable);
1740
1741         return 0;
1742 }
1743
1744 static int ohci_enable(struct fw_card *card,
1745                        const __be32 *config_rom, size_t length)
1746 {
1747         struct fw_ohci *ohci = fw_ohci(card);
1748         struct pci_dev *dev = to_pci_dev(card->device);
1749         u32 lps, seconds, version, irqs;
1750         int i, ret;
1751
1752         if (software_reset(ohci)) {
1753                 fw_error("Failed to reset ohci card.\n");
1754                 return -EBUSY;
1755         }
1756
1757         /*
1758          * Now enable LPS, which we need in order to start accessing
1759          * most of the registers.  In fact, on some cards (ALI M5251),
1760          * accessing registers in the SClk domain without LPS enabled
1761          * will lock up the machine.  Wait 50msec to make sure we have
1762          * full link enabled.  However, with some cards (well, at least
1763          * a JMicron PCIe card), we have to try again sometimes.
1764          */
1765         reg_write(ohci, OHCI1394_HCControlSet,
1766                   OHCI1394_HCControl_LPS |
1767                   OHCI1394_HCControl_postedWriteEnable);
1768         flush_writes(ohci);
1769
1770         for (lps = 0, i = 0; !lps && i < 3; i++) {
1771                 msleep(50);
1772                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1773                       OHCI1394_HCControl_LPS;
1774         }
1775
1776         if (!lps) {
1777                 fw_error("Failed to set Link Power Status\n");
1778                 return -EIO;
1779         }
1780
1781         reg_write(ohci, OHCI1394_HCControlClear,
1782                   OHCI1394_HCControl_noByteSwapData);
1783
1784         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1785         reg_write(ohci, OHCI1394_LinkControlSet,
1786                   OHCI1394_LinkControl_rcvSelfID |
1787                   OHCI1394_LinkControl_rcvPhyPkt |
1788                   OHCI1394_LinkControl_cycleTimerEnable |
1789                   OHCI1394_LinkControl_cycleMaster);
1790
1791         reg_write(ohci, OHCI1394_ATRetries,
1792                   OHCI1394_MAX_AT_REQ_RETRIES |
1793                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1794                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1795                   (200 << 16));
1796
1797         seconds = lower_32_bits(get_seconds());
1798         reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1799         ohci->bus_time = seconds & ~0x3f;
1800
1801         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1802         if (version >= OHCI_VERSION_1_1) {
1803                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
1804                           0xfffffffe);
1805                 card->broadcast_channel_auto_allocated = true;
1806         }
1807
1808         /* Get implemented bits of the priority arbitration request counter. */
1809         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
1810         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
1811         reg_write(ohci, OHCI1394_FairnessControl, 0);
1812         card->priority_budget_implemented = ohci->pri_req_max != 0;
1813
1814         ar_context_run(&ohci->ar_request_ctx);
1815         ar_context_run(&ohci->ar_response_ctx);
1816
1817         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1818         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1819         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1820
1821         ret = configure_1394a_enhancements(ohci);
1822         if (ret < 0)
1823                 return ret;
1824
1825         /* Activate link_on bit and contender bit in our self ID packets.*/
1826         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1827         if (ret < 0)
1828                 return ret;
1829
1830         /*
1831          * When the link is not yet enabled, the atomic config rom
1832          * update mechanism described below in ohci_set_config_rom()
1833          * is not active.  We have to update ConfigRomHeader and
1834          * BusOptions manually, and the write to ConfigROMmap takes
1835          * effect immediately.  We tie this to the enabling of the
1836          * link, so we have a valid config rom before enabling - the
1837          * OHCI requires that ConfigROMhdr and BusOptions have valid
1838          * values before enabling.
1839          *
1840          * However, when the ConfigROMmap is written, some controllers
1841          * always read back quadlets 0 and 2 from the config rom to
1842          * the ConfigRomHeader and BusOptions registers on bus reset.
1843          * They shouldn't do that in this initial case where the link
1844          * isn't enabled.  This means we have to use the same
1845          * workaround here, setting the bus header to 0 and then write
1846          * the right values in the bus reset tasklet.
1847          */
1848
1849         if (config_rom) {
1850                 ohci->next_config_rom =
1851                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1852                                            &ohci->next_config_rom_bus,
1853                                            GFP_KERNEL);
1854                 if (ohci->next_config_rom == NULL)
1855                         return -ENOMEM;
1856
1857                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1858         } else {
1859                 /*
1860                  * In the suspend case, config_rom is NULL, which
1861                  * means that we just reuse the old config rom.
1862                  */
1863                 ohci->next_config_rom = ohci->config_rom;
1864                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1865         }
1866
1867         ohci->next_header = ohci->next_config_rom[0];
1868         ohci->next_config_rom[0] = 0;
1869         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1870         reg_write(ohci, OHCI1394_BusOptions,
1871                   be32_to_cpu(ohci->next_config_rom[2]));
1872         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1873
1874         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1875
1876         if (!(ohci->quirks & QUIRK_NO_MSI))
1877                 pci_enable_msi(dev);
1878         if (request_irq(dev->irq, irq_handler,
1879                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1880                         ohci_driver_name, ohci)) {
1881                 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1882                 pci_disable_msi(dev);
1883                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1884                                   ohci->config_rom, ohci->config_rom_bus);
1885                 return -EIO;
1886         }
1887
1888         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1889                 OHCI1394_RQPkt | OHCI1394_RSPkt |
1890                 OHCI1394_isochTx | OHCI1394_isochRx |
1891                 OHCI1394_postedWriteErr |
1892                 OHCI1394_selfIDComplete |
1893                 OHCI1394_regAccessFail |
1894                 OHCI1394_cycle64Seconds |
1895                 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1896                 OHCI1394_masterIntEnable;
1897         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1898                 irqs |= OHCI1394_busReset;
1899         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1900
1901         reg_write(ohci, OHCI1394_HCControlSet,
1902                   OHCI1394_HCControl_linkEnable |
1903                   OHCI1394_HCControl_BIBimageValid);
1904         flush_writes(ohci);
1905
1906         /* We are ready to go, reset bus to finish initialization. */
1907         fw_schedule_bus_reset(&ohci->card, false, true);
1908
1909         return 0;
1910 }
1911
1912 static int ohci_set_config_rom(struct fw_card *card,
1913                                const __be32 *config_rom, size_t length)
1914 {
1915         struct fw_ohci *ohci;
1916         unsigned long flags;
1917         int ret = -EBUSY;
1918         __be32 *next_config_rom;
1919         dma_addr_t uninitialized_var(next_config_rom_bus);
1920
1921         ohci = fw_ohci(card);
1922
1923         /*
1924          * When the OHCI controller is enabled, the config rom update
1925          * mechanism is a bit tricky, but easy enough to use.  See
1926          * section 5.5.6 in the OHCI specification.
1927          *
1928          * The OHCI controller caches the new config rom address in a
1929          * shadow register (ConfigROMmapNext) and needs a bus reset
1930          * for the changes to take place.  When the bus reset is
1931          * detected, the controller loads the new values for the
1932          * ConfigRomHeader and BusOptions registers from the specified
1933          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1934          * shadow register. All automatically and atomically.
1935          *
1936          * Now, there's a twist to this story.  The automatic load of
1937          * ConfigRomHeader and BusOptions doesn't honor the
1938          * noByteSwapData bit, so with a be32 config rom, the
1939          * controller will load be32 values in to these registers
1940          * during the atomic update, even on litte endian
1941          * architectures.  The workaround we use is to put a 0 in the
1942          * header quadlet; 0 is endian agnostic and means that the
1943          * config rom isn't ready yet.  In the bus reset tasklet we
1944          * then set up the real values for the two registers.
1945          *
1946          * We use ohci->lock to avoid racing with the code that sets
1947          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1948          */
1949
1950         next_config_rom =
1951                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1952                                    &next_config_rom_bus, GFP_KERNEL);
1953         if (next_config_rom == NULL)
1954                 return -ENOMEM;
1955
1956         spin_lock_irqsave(&ohci->lock, flags);
1957
1958         if (ohci->next_config_rom == NULL) {
1959                 ohci->next_config_rom = next_config_rom;
1960                 ohci->next_config_rom_bus = next_config_rom_bus;
1961
1962                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1963
1964                 ohci->next_header = config_rom[0];
1965                 ohci->next_config_rom[0] = 0;
1966
1967                 reg_write(ohci, OHCI1394_ConfigROMmap,
1968                           ohci->next_config_rom_bus);
1969                 ret = 0;
1970         }
1971
1972         spin_unlock_irqrestore(&ohci->lock, flags);
1973
1974         /*
1975          * Now initiate a bus reset to have the changes take
1976          * effect. We clean up the old config rom memory and DMA
1977          * mappings in the bus reset tasklet, since the OHCI
1978          * controller could need to access it before the bus reset
1979          * takes effect.
1980          */
1981         if (ret == 0)
1982                 fw_schedule_bus_reset(&ohci->card, true, true);
1983         else
1984                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1985                                   next_config_rom, next_config_rom_bus);
1986
1987         return ret;
1988 }
1989
1990 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1991 {
1992         struct fw_ohci *ohci = fw_ohci(card);
1993
1994         at_context_transmit(&ohci->at_request_ctx, packet);
1995 }
1996
1997 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1998 {
1999         struct fw_ohci *ohci = fw_ohci(card);
2000
2001         at_context_transmit(&ohci->at_response_ctx, packet);
2002 }
2003
2004 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2005 {
2006         struct fw_ohci *ohci = fw_ohci(card);
2007         struct context *ctx = &ohci->at_request_ctx;
2008         struct driver_data *driver_data = packet->driver_data;
2009         int ret = -ENOENT;
2010
2011         tasklet_disable(&ctx->tasklet);
2012
2013         if (packet->ack != 0)
2014                 goto out;
2015
2016         if (packet->payload_mapped)
2017                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2018                                  packet->payload_length, DMA_TO_DEVICE);
2019
2020         log_ar_at_event('T', packet->speed, packet->header, 0x20);
2021         driver_data->packet = NULL;
2022         packet->ack = RCODE_CANCELLED;
2023         packet->callback(packet, &ohci->card, packet->ack);
2024         ret = 0;
2025  out:
2026         tasklet_enable(&ctx->tasklet);
2027
2028         return ret;
2029 }
2030
2031 static int ohci_enable_phys_dma(struct fw_card *card,
2032                                 int node_id, int generation)
2033 {
2034 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2035         return 0;
2036 #else
2037         struct fw_ohci *ohci = fw_ohci(card);
2038         unsigned long flags;
2039         int n, ret = 0;
2040
2041         /*
2042          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2043          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2044          */
2045
2046         spin_lock_irqsave(&ohci->lock, flags);
2047
2048         if (ohci->generation != generation) {
2049                 ret = -ESTALE;
2050                 goto out;
2051         }
2052
2053         /*
2054          * Note, if the node ID contains a non-local bus ID, physical DMA is
2055          * enabled for _all_ nodes on remote buses.
2056          */
2057
2058         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2059         if (n < 32)
2060                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2061         else
2062                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2063
2064         flush_writes(ohci);
2065  out:
2066         spin_unlock_irqrestore(&ohci->lock, flags);
2067
2068         return ret;
2069 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2070 }
2071
2072 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2073 {
2074         struct fw_ohci *ohci = fw_ohci(card);
2075         unsigned long flags;
2076         u32 value;
2077
2078         switch (csr_offset) {
2079         case CSR_STATE_CLEAR:
2080         case CSR_STATE_SET:
2081                 if (ohci->is_root &&
2082                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2083                      OHCI1394_LinkControl_cycleMaster))
2084                         value = CSR_STATE_BIT_CMSTR;
2085                 else
2086                         value = 0;
2087                 if (ohci->csr_state_setclear_abdicate)
2088                         value |= CSR_STATE_BIT_ABDICATE;
2089
2090                 return value;
2091
2092         case CSR_NODE_IDS:
2093                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2094
2095         case CSR_CYCLE_TIME:
2096                 return get_cycle_time(ohci);
2097
2098         case CSR_BUS_TIME:
2099                 /*
2100                  * We might be called just after the cycle timer has wrapped
2101                  * around but just before the cycle64Seconds handler, so we
2102                  * better check here, too, if the bus time needs to be updated.
2103                  */
2104                 spin_lock_irqsave(&ohci->lock, flags);
2105                 value = update_bus_time(ohci);
2106                 spin_unlock_irqrestore(&ohci->lock, flags);
2107                 return value;
2108
2109         case CSR_BUSY_TIMEOUT:
2110                 value = reg_read(ohci, OHCI1394_ATRetries);
2111                 return (value >> 4) & 0x0ffff00f;
2112
2113         case CSR_PRIORITY_BUDGET:
2114                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2115                         (ohci->pri_req_max << 8);
2116
2117         default:
2118                 WARN_ON(1);
2119                 return 0;
2120         }
2121 }
2122
2123 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2124 {
2125         struct fw_ohci *ohci = fw_ohci(card);
2126         unsigned long flags;
2127
2128         switch (csr_offset) {
2129         case CSR_STATE_CLEAR:
2130                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2131                         reg_write(ohci, OHCI1394_LinkControlClear,
2132                                   OHCI1394_LinkControl_cycleMaster);
2133                         flush_writes(ohci);
2134                 }
2135                 if (value & CSR_STATE_BIT_ABDICATE)
2136                         ohci->csr_state_setclear_abdicate = false;
2137                 break;
2138
2139         case CSR_STATE_SET:
2140                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2141                         reg_write(ohci, OHCI1394_LinkControlSet,
2142                                   OHCI1394_LinkControl_cycleMaster);
2143                         flush_writes(ohci);
2144                 }
2145                 if (value & CSR_STATE_BIT_ABDICATE)
2146                         ohci->csr_state_setclear_abdicate = true;
2147                 break;
2148
2149         case CSR_NODE_IDS:
2150                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2151                 flush_writes(ohci);
2152                 break;
2153
2154         case CSR_CYCLE_TIME:
2155                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2156                 reg_write(ohci, OHCI1394_IntEventSet,
2157                           OHCI1394_cycleInconsistent);
2158                 flush_writes(ohci);
2159                 break;
2160
2161         case CSR_BUS_TIME:
2162                 spin_lock_irqsave(&ohci->lock, flags);
2163                 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2164                 spin_unlock_irqrestore(&ohci->lock, flags);
2165                 break;
2166
2167         case CSR_BUSY_TIMEOUT:
2168                 value = (value & 0xf) | ((value & 0xf) << 4) |
2169                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2170                 reg_write(ohci, OHCI1394_ATRetries, value);
2171                 flush_writes(ohci);
2172                 break;
2173
2174         case CSR_PRIORITY_BUDGET:
2175                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2176                 flush_writes(ohci);
2177                 break;
2178
2179         default:
2180                 WARN_ON(1);
2181                 break;
2182         }
2183 }
2184
2185 static void copy_iso_headers(struct iso_context *ctx, void *p)
2186 {
2187         int i = ctx->header_length;
2188
2189         if (i + ctx->base.header_size > PAGE_SIZE)
2190                 return;
2191
2192         /*
2193          * The iso header is byteswapped to little endian by
2194          * the controller, but the remaining header quadlets
2195          * are big endian.  We want to present all the headers
2196          * as big endian, so we have to swap the first quadlet.
2197          */
2198         if (ctx->base.header_size > 0)
2199                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2200         if (ctx->base.header_size > 4)
2201                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2202         if (ctx->base.header_size > 8)
2203                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2204         ctx->header_length += ctx->base.header_size;
2205 }
2206
2207 static int handle_ir_packet_per_buffer(struct context *context,
2208                                        struct descriptor *d,
2209                                        struct descriptor *last)
2210 {
2211         struct iso_context *ctx =
2212                 container_of(context, struct iso_context, context);
2213         struct descriptor *pd;
2214         __le32 *ir_header;
2215         void *p;
2216
2217         for (pd = d; pd <= last; pd++)
2218                 if (pd->transfer_status)
2219                         break;
2220         if (pd > last)
2221                 /* Descriptor(s) not done yet, stop iteration */
2222                 return 0;
2223
2224         p = last + 1;
2225         copy_iso_headers(ctx, p);
2226
2227         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2228                 ir_header = (__le32 *) p;
2229                 ctx->base.callback.sc(&ctx->base,
2230                                       le32_to_cpu(ir_header[0]) & 0xffff,
2231                                       ctx->header_length, ctx->header,
2232                                       ctx->base.callback_data);
2233                 ctx->header_length = 0;
2234         }
2235
2236         return 1;
2237 }
2238
2239 /* d == last because each descriptor block is only a single descriptor. */
2240 static int handle_ir_buffer_fill(struct context *context,
2241                                  struct descriptor *d,
2242                                  struct descriptor *last)
2243 {
2244         struct iso_context *ctx =
2245                 container_of(context, struct iso_context, context);
2246
2247         if (!last->transfer_status)
2248                 /* Descriptor(s) not done yet, stop iteration */
2249                 return 0;
2250
2251         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2252                 ctx->base.callback.mc(&ctx->base,
2253                                       le32_to_cpu(last->data_address) +
2254                                       le16_to_cpu(last->req_count) -
2255                                       le16_to_cpu(last->res_count),
2256                                       ctx->base.callback_data);
2257
2258         return 1;
2259 }
2260
2261 static int handle_it_packet(struct context *context,
2262                             struct descriptor *d,
2263                             struct descriptor *last)
2264 {
2265         struct iso_context *ctx =
2266                 container_of(context, struct iso_context, context);
2267         int i;
2268         struct descriptor *pd;
2269
2270         for (pd = d; pd <= last; pd++)
2271                 if (pd->transfer_status)
2272                         break;
2273         if (pd > last)
2274                 /* Descriptor(s) not done yet, stop iteration */
2275                 return 0;
2276
2277         i = ctx->header_length;
2278         if (i + 4 < PAGE_SIZE) {
2279                 /* Present this value as big-endian to match the receive code */
2280                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2281                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2282                                 le16_to_cpu(pd->res_count));
2283                 ctx->header_length += 4;
2284         }
2285         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2286                 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2287                                       ctx->header_length, ctx->header,
2288                                       ctx->base.callback_data);
2289                 ctx->header_length = 0;
2290         }
2291         return 1;
2292 }
2293
2294 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2295 {
2296         u32 hi = channels >> 32, lo = channels;
2297
2298         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2299         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2300         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2301         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2302         mmiowb();
2303         ohci->mc_channels = channels;
2304 }
2305
2306 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2307                                 int type, int channel, size_t header_size)
2308 {
2309         struct fw_ohci *ohci = fw_ohci(card);
2310         struct iso_context *uninitialized_var(ctx);
2311         descriptor_callback_t uninitialized_var(callback);
2312         u64 *uninitialized_var(channels);
2313         u32 *uninitialized_var(mask), uninitialized_var(regs);
2314         unsigned long flags;
2315         int index, ret = -EBUSY;
2316
2317         spin_lock_irqsave(&ohci->lock, flags);
2318
2319         switch (type) {
2320         case FW_ISO_CONTEXT_TRANSMIT:
2321                 mask     = &ohci->it_context_mask;
2322                 callback = handle_it_packet;
2323                 index    = ffs(*mask) - 1;
2324                 if (index >= 0) {
2325                         *mask &= ~(1 << index);
2326                         regs = OHCI1394_IsoXmitContextBase(index);
2327                         ctx  = &ohci->it_context_list[index];
2328                 }
2329                 break;
2330
2331         case FW_ISO_CONTEXT_RECEIVE:
2332                 channels = &ohci->ir_context_channels;
2333                 mask     = &ohci->ir_context_mask;
2334                 callback = handle_ir_packet_per_buffer;
2335                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2336                 if (index >= 0) {
2337                         *channels &= ~(1ULL << channel);
2338                         *mask     &= ~(1 << index);
2339                         regs = OHCI1394_IsoRcvContextBase(index);
2340                         ctx  = &ohci->ir_context_list[index];
2341                 }
2342                 break;
2343
2344         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2345                 mask     = &ohci->ir_context_mask;
2346                 callback = handle_ir_buffer_fill;
2347                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2348                 if (index >= 0) {
2349                         ohci->mc_allocated = true;
2350                         *mask &= ~(1 << index);
2351                         regs = OHCI1394_IsoRcvContextBase(index);
2352                         ctx  = &ohci->ir_context_list[index];
2353                 }
2354                 break;
2355
2356         default:
2357                 index = -1;
2358                 ret = -ENOSYS;
2359         }
2360
2361         spin_unlock_irqrestore(&ohci->lock, flags);
2362
2363         if (index < 0)
2364                 return ERR_PTR(ret);
2365
2366         memset(ctx, 0, sizeof(*ctx));
2367         ctx->header_length = 0;
2368         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2369         if (ctx->header == NULL) {
2370                 ret = -ENOMEM;
2371                 goto out;
2372         }
2373         ret = context_init(&ctx->context, ohci, regs, callback);
2374         if (ret < 0)
2375                 goto out_with_header;
2376
2377         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2378                 set_multichannel_mask(ohci, 0);
2379
2380         return &ctx->base;
2381
2382  out_with_header:
2383         free_page((unsigned long)ctx->header);
2384  out:
2385         spin_lock_irqsave(&ohci->lock, flags);
2386
2387         switch (type) {
2388         case FW_ISO_CONTEXT_RECEIVE:
2389                 *channels |= 1ULL << channel;
2390                 break;
2391
2392         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2393                 ohci->mc_allocated = false;
2394                 break;
2395         }
2396         *mask |= 1 << index;
2397
2398         spin_unlock_irqrestore(&ohci->lock, flags);
2399
2400         return ERR_PTR(ret);
2401 }
2402
2403 static int ohci_start_iso(struct fw_iso_context *base,
2404                           s32 cycle, u32 sync, u32 tags)
2405 {
2406         struct iso_context *ctx = container_of(base, struct iso_context, base);
2407         struct fw_ohci *ohci = ctx->context.ohci;
2408         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2409         int index;
2410
2411         switch (ctx->base.type) {
2412         case FW_ISO_CONTEXT_TRANSMIT:
2413                 index = ctx - ohci->it_context_list;
2414                 match = 0;
2415                 if (cycle >= 0)
2416                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2417                                 (cycle & 0x7fff) << 16;
2418
2419                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2420                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2421                 context_run(&ctx->context, match);
2422                 break;
2423
2424         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2425                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2426                 /* fall through */
2427         case FW_ISO_CONTEXT_RECEIVE:
2428                 index = ctx - ohci->ir_context_list;
2429                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2430                 if (cycle >= 0) {
2431                         match |= (cycle & 0x07fff) << 12;
2432                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2433                 }
2434
2435                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2436                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2437                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2438                 context_run(&ctx->context, control);
2439                 break;
2440         }
2441
2442         return 0;
2443 }
2444
2445 static int ohci_stop_iso(struct fw_iso_context *base)
2446 {
2447         struct fw_ohci *ohci = fw_ohci(base->card);
2448         struct iso_context *ctx = container_of(base, struct iso_context, base);
2449         int index;
2450
2451         switch (ctx->base.type) {
2452         case FW_ISO_CONTEXT_TRANSMIT:
2453                 index = ctx - ohci->it_context_list;
2454                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2455                 break;
2456
2457         case FW_ISO_CONTEXT_RECEIVE:
2458         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2459                 index = ctx - ohci->ir_context_list;
2460                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2461                 break;
2462         }
2463         flush_writes(ohci);
2464         context_stop(&ctx->context);
2465
2466         return 0;
2467 }
2468
2469 static void ohci_free_iso_context(struct fw_iso_context *base)
2470 {
2471         struct fw_ohci *ohci = fw_ohci(base->card);
2472         struct iso_context *ctx = container_of(base, struct iso_context, base);
2473         unsigned long flags;
2474         int index;
2475
2476         ohci_stop_iso(base);
2477         context_release(&ctx->context);
2478         free_page((unsigned long)ctx->header);
2479
2480         spin_lock_irqsave(&ohci->lock, flags);
2481
2482         switch (base->type) {
2483         case FW_ISO_CONTEXT_TRANSMIT:
2484                 index = ctx - ohci->it_context_list;
2485                 ohci->it_context_mask |= 1 << index;
2486                 break;
2487
2488         case FW_ISO_CONTEXT_RECEIVE:
2489                 index = ctx - ohci->ir_context_list;
2490                 ohci->ir_context_mask |= 1 << index;
2491                 ohci->ir_context_channels |= 1ULL << base->channel;
2492                 break;
2493
2494         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2495                 index = ctx - ohci->ir_context_list;
2496                 ohci->ir_context_mask |= 1 << index;
2497                 ohci->ir_context_channels |= ohci->mc_channels;
2498                 ohci->mc_channels = 0;
2499                 ohci->mc_allocated = false;
2500                 break;
2501         }
2502
2503         spin_unlock_irqrestore(&ohci->lock, flags);
2504 }
2505
2506 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2507 {
2508         struct fw_ohci *ohci = fw_ohci(base->card);
2509         unsigned long flags;
2510         int ret;
2511
2512         switch (base->type) {
2513         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2514
2515                 spin_lock_irqsave(&ohci->lock, flags);
2516
2517                 /* Don't allow multichannel to grab other contexts' channels. */
2518                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2519                         *channels = ohci->ir_context_channels;
2520                         ret = -EBUSY;
2521                 } else {
2522                         set_multichannel_mask(ohci, *channels);
2523                         ret = 0;
2524                 }
2525
2526                 spin_unlock_irqrestore(&ohci->lock, flags);
2527
2528                 break;
2529         default:
2530                 ret = -EINVAL;
2531         }
2532
2533         return ret;
2534 }
2535
2536 static int queue_iso_transmit(struct iso_context *ctx,
2537                               struct fw_iso_packet *packet,
2538                               struct fw_iso_buffer *buffer,
2539                               unsigned long payload)
2540 {
2541         struct descriptor *d, *last, *pd;
2542         struct fw_iso_packet *p;
2543         __le32 *header;
2544         dma_addr_t d_bus, page_bus;
2545         u32 z, header_z, payload_z, irq;
2546         u32 payload_index, payload_end_index, next_page_index;
2547         int page, end_page, i, length, offset;
2548
2549         p = packet;
2550         payload_index = payload;
2551
2552         if (p->skip)
2553                 z = 1;
2554         else
2555                 z = 2;
2556         if (p->header_length > 0)
2557                 z++;
2558
2559         /* Determine the first page the payload isn't contained in. */
2560         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2561         if (p->payload_length > 0)
2562                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2563         else
2564                 payload_z = 0;
2565
2566         z += payload_z;
2567
2568         /* Get header size in number of descriptors. */
2569         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2570
2571         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2572         if (d == NULL)
2573                 return -ENOMEM;
2574
2575         if (!p->skip) {
2576                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2577                 d[0].req_count = cpu_to_le16(8);
2578                 /*
2579                  * Link the skip address to this descriptor itself.  This causes
2580                  * a context to skip a cycle whenever lost cycles or FIFO
2581                  * overruns occur, without dropping the data.  The application
2582                  * should then decide whether this is an error condition or not.
2583                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2584                  */
2585                 d[0].branch_address = cpu_to_le32(d_bus | z);
2586
2587                 header = (__le32 *) &d[1];
2588                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2589                                         IT_HEADER_TAG(p->tag) |
2590                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2591                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2592                                         IT_HEADER_SPEED(ctx->base.speed));
2593                 header[1] =
2594                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2595                                                           p->payload_length));
2596         }
2597
2598         if (p->header_length > 0) {
2599                 d[2].req_count    = cpu_to_le16(p->header_length);
2600                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2601                 memcpy(&d[z], p->header, p->header_length);
2602         }
2603
2604         pd = d + z - payload_z;
2605         payload_end_index = payload_index + p->payload_length;
2606         for (i = 0; i < payload_z; i++) {
2607                 page               = payload_index >> PAGE_SHIFT;
2608                 offset             = payload_index & ~PAGE_MASK;
2609                 next_page_index    = (page + 1) << PAGE_SHIFT;
2610                 length             =
2611                         min(next_page_index, payload_end_index) - payload_index;
2612                 pd[i].req_count    = cpu_to_le16(length);
2613
2614                 page_bus = page_private(buffer->pages[page]);
2615                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2616
2617                 payload_index += length;
2618         }
2619
2620         if (p->interrupt)
2621                 irq = DESCRIPTOR_IRQ_ALWAYS;
2622         else
2623                 irq = DESCRIPTOR_NO_IRQ;
2624
2625         last = z == 2 ? d : d + z - 1;
2626         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2627                                      DESCRIPTOR_STATUS |
2628                                      DESCRIPTOR_BRANCH_ALWAYS |
2629                                      irq);
2630
2631         context_append(&ctx->context, d, z, header_z);
2632
2633         return 0;
2634 }
2635
2636 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2637                                        struct fw_iso_packet *packet,
2638                                        struct fw_iso_buffer *buffer,
2639                                        unsigned long payload)
2640 {
2641         struct descriptor *d, *pd;
2642         dma_addr_t d_bus, page_bus;
2643         u32 z, header_z, rest;
2644         int i, j, length;
2645         int page, offset, packet_count, header_size, payload_per_buffer;
2646
2647         /*
2648          * The OHCI controller puts the isochronous header and trailer in the
2649          * buffer, so we need at least 8 bytes.
2650          */
2651         packet_count = packet->header_length / ctx->base.header_size;
2652         header_size  = max(ctx->base.header_size, (size_t)8);
2653
2654         /* Get header size in number of descriptors. */
2655         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2656         page     = payload >> PAGE_SHIFT;
2657         offset   = payload & ~PAGE_MASK;
2658         payload_per_buffer = packet->payload_length / packet_count;
2659
2660         for (i = 0; i < packet_count; i++) {
2661                 /* d points to the header descriptor */
2662                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2663                 d = context_get_descriptors(&ctx->context,
2664                                 z + header_z, &d_bus);
2665                 if (d == NULL)
2666                         return -ENOMEM;
2667
2668                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2669                                               DESCRIPTOR_INPUT_MORE);
2670                 if (packet->skip && i == 0)
2671                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2672                 d->req_count    = cpu_to_le16(header_size);
2673                 d->res_count    = d->req_count;
2674                 d->transfer_status = 0;
2675                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2676
2677                 rest = payload_per_buffer;
2678                 pd = d;
2679                 for (j = 1; j < z; j++) {
2680                         pd++;
2681                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2682                                                   DESCRIPTOR_INPUT_MORE);
2683
2684                         if (offset + rest < PAGE_SIZE)
2685                                 length = rest;
2686                         else
2687                                 length = PAGE_SIZE - offset;
2688                         pd->req_count = cpu_to_le16(length);
2689                         pd->res_count = pd->req_count;
2690                         pd->transfer_status = 0;
2691
2692                         page_bus = page_private(buffer->pages[page]);
2693                         pd->data_address = cpu_to_le32(page_bus + offset);
2694
2695                         offset = (offset + length) & ~PAGE_MASK;
2696                         rest -= length;
2697                         if (offset == 0)
2698                                 page++;
2699                 }
2700                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2701                                           DESCRIPTOR_INPUT_LAST |
2702                                           DESCRIPTOR_BRANCH_ALWAYS);
2703                 if (packet->interrupt && i == packet_count - 1)
2704                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2705
2706                 context_append(&ctx->context, d, z, header_z);
2707         }
2708
2709         return 0;
2710 }
2711
2712 static int queue_iso_buffer_fill(struct iso_context *ctx,
2713                                  struct fw_iso_packet *packet,
2714                                  struct fw_iso_buffer *buffer,
2715                                  unsigned long payload)
2716 {
2717         struct descriptor *d;
2718         dma_addr_t d_bus, page_bus;
2719         int page, offset, rest, z, i, length;
2720
2721         page   = payload >> PAGE_SHIFT;
2722         offset = payload & ~PAGE_MASK;
2723         rest   = packet->payload_length;
2724
2725         /* We need one descriptor for each page in the buffer. */
2726         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
2727
2728         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
2729                 return -EFAULT;
2730
2731         for (i = 0; i < z; i++) {
2732                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
2733                 if (d == NULL)
2734                         return -ENOMEM;
2735
2736                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
2737                                          DESCRIPTOR_BRANCH_ALWAYS);
2738                 if (packet->skip && i == 0)
2739                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2740                 if (packet->interrupt && i == z - 1)
2741                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2742
2743                 if (offset + rest < PAGE_SIZE)
2744                         length = rest;
2745                 else
2746                         length = PAGE_SIZE - offset;
2747                 d->req_count = cpu_to_le16(length);
2748                 d->res_count = d->req_count;
2749                 d->transfer_status = 0;
2750
2751                 page_bus = page_private(buffer->pages[page]);
2752                 d->data_address = cpu_to_le32(page_bus + offset);
2753
2754                 rest -= length;
2755                 offset = 0;
2756                 page++;
2757
2758                 context_append(&ctx->context, d, 1, 0);
2759         }
2760
2761         return 0;
2762 }
2763
2764 static int ohci_queue_iso(struct fw_iso_context *base,
2765                           struct fw_iso_packet *packet,
2766                           struct fw_iso_buffer *buffer,
2767                           unsigned long payload)
2768 {
2769         struct iso_context *ctx = container_of(base, struct iso_context, base);
2770         unsigned long flags;
2771         int ret = -ENOSYS;
2772
2773         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2774         switch (base->type) {
2775         case FW_ISO_CONTEXT_TRANSMIT:
2776                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
2777                 break;
2778         case FW_ISO_CONTEXT_RECEIVE:
2779                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
2780                 break;
2781         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2782                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
2783                 break;
2784         }
2785         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2786
2787         return ret;
2788 }
2789
2790 static const struct fw_card_driver ohci_driver = {
2791         .enable                 = ohci_enable,
2792         .read_phy_reg           = ohci_read_phy_reg,
2793         .update_phy_reg         = ohci_update_phy_reg,
2794         .set_config_rom         = ohci_set_config_rom,
2795         .send_request           = ohci_send_request,
2796         .send_response          = ohci_send_response,
2797         .cancel_packet          = ohci_cancel_packet,
2798         .enable_phys_dma        = ohci_enable_phys_dma,
2799         .read_csr               = ohci_read_csr,
2800         .write_csr              = ohci_write_csr,
2801
2802         .allocate_iso_context   = ohci_allocate_iso_context,
2803         .free_iso_context       = ohci_free_iso_context,
2804         .set_iso_channels       = ohci_set_iso_channels,
2805         .queue_iso              = ohci_queue_iso,
2806         .start_iso              = ohci_start_iso,
2807         .stop_iso               = ohci_stop_iso,
2808 };
2809
2810 #ifdef CONFIG_PPC_PMAC
2811 static void pmac_ohci_on(struct pci_dev *dev)
2812 {
2813         if (machine_is(powermac)) {
2814                 struct device_node *ofn = pci_device_to_OF_node(dev);
2815
2816                 if (ofn) {
2817                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2818                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2819                 }
2820         }
2821 }
2822
2823 static void pmac_ohci_off(struct pci_dev *dev)
2824 {
2825         if (machine_is(powermac)) {
2826                 struct device_node *ofn = pci_device_to_OF_node(dev);
2827
2828                 if (ofn) {
2829                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2830                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2831                 }
2832         }
2833 }
2834 #else
2835 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2836 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2837 #endif /* CONFIG_PPC_PMAC */
2838
2839 static int __devinit pci_probe(struct pci_dev *dev,
2840                                const struct pci_device_id *ent)
2841 {
2842         struct fw_ohci *ohci;
2843         u32 bus_options, max_receive, link_speed, version;
2844         u64 guid;
2845         int i, err, n_ir, n_it;
2846         size_t size;
2847
2848         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2849         if (ohci == NULL) {
2850                 err = -ENOMEM;
2851                 goto fail;
2852         }
2853
2854         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2855
2856         pmac_ohci_on(dev);
2857
2858         err = pci_enable_device(dev);
2859         if (err) {
2860                 fw_error("Failed to enable OHCI hardware\n");
2861                 goto fail_free;
2862         }
2863
2864         pci_set_master(dev);
2865         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2866         pci_set_drvdata(dev, ohci);
2867
2868         spin_lock_init(&ohci->lock);
2869         mutex_init(&ohci->phy_reg_mutex);
2870
2871         tasklet_init(&ohci->bus_reset_tasklet,
2872                      bus_reset_tasklet, (unsigned long)ohci);
2873
2874         err = pci_request_region(dev, 0, ohci_driver_name);
2875         if (err) {
2876                 fw_error("MMIO resource unavailable\n");
2877                 goto fail_disable;
2878         }
2879
2880         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2881         if (ohci->registers == NULL) {
2882                 fw_error("Failed to remap registers\n");
2883                 err = -ENXIO;
2884                 goto fail_iomem;
2885         }
2886
2887         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2888                 if (ohci_quirks[i].vendor == dev->vendor &&
2889                     (ohci_quirks[i].device == dev->device ||
2890                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2891                         ohci->quirks = ohci_quirks[i].flags;
2892                         break;
2893                 }
2894         if (param_quirks)
2895                 ohci->quirks = param_quirks;
2896
2897         ar_context_init(&ohci->ar_request_ctx, ohci,
2898                         OHCI1394_AsReqRcvContextControlSet);
2899
2900         ar_context_init(&ohci->ar_response_ctx, ohci,
2901                         OHCI1394_AsRspRcvContextControlSet);
2902
2903         context_init(&ohci->at_request_ctx, ohci,
2904                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2905
2906         context_init(&ohci->at_response_ctx, ohci,
2907                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2908
2909         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2910         ohci->ir_context_channels = ~0ULL;
2911         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2912         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2913         n_ir = hweight32(ohci->ir_context_mask);
2914         size = sizeof(struct iso_context) * n_ir;
2915         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2916
2917         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2918         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2919         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2920         n_it = hweight32(ohci->it_context_mask);
2921         size = sizeof(struct iso_context) * n_it;
2922         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2923
2924         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2925                 err = -ENOMEM;
2926                 goto fail_contexts;
2927         }
2928
2929         /* self-id dma buffer allocation */
2930         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2931                                                SELF_ID_BUF_SIZE,
2932                                                &ohci->self_id_bus,
2933                                                GFP_KERNEL);
2934         if (ohci->self_id_cpu == NULL) {
2935                 err = -ENOMEM;
2936                 goto fail_contexts;
2937         }
2938
2939         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2940         max_receive = (bus_options >> 12) & 0xf;
2941         link_speed = bus_options & 0x7;
2942         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2943                 reg_read(ohci, OHCI1394_GUIDLo);
2944
2945         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2946         if (err)
2947                 goto fail_self_id;
2948
2949         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2950         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2951                   "%d IR + %d IT contexts, quirks 0x%x\n",
2952                   dev_name(&dev->dev), version >> 16, version & 0xff,
2953                   n_ir, n_it, ohci->quirks);
2954
2955         return 0;
2956
2957  fail_self_id:
2958         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2959                           ohci->self_id_cpu, ohci->self_id_bus);
2960  fail_contexts:
2961         kfree(ohci->ir_context_list);
2962         kfree(ohci->it_context_list);
2963         context_release(&ohci->at_response_ctx);
2964         context_release(&ohci->at_request_ctx);
2965         ar_context_release(&ohci->ar_response_ctx);
2966         ar_context_release(&ohci->ar_request_ctx);
2967         pci_iounmap(dev, ohci->registers);
2968  fail_iomem:
2969         pci_release_region(dev, 0);
2970  fail_disable:
2971         pci_disable_device(dev);
2972  fail_free:
2973         kfree(&ohci->card);
2974         pmac_ohci_off(dev);
2975  fail:
2976         if (err == -ENOMEM)
2977                 fw_error("Out of memory\n");
2978
2979         return err;
2980 }
2981
2982 static void pci_remove(struct pci_dev *dev)
2983 {
2984         struct fw_ohci *ohci;
2985
2986         ohci = pci_get_drvdata(dev);
2987         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2988         flush_writes(ohci);
2989         fw_core_remove_card(&ohci->card);
2990
2991         /*
2992          * FIXME: Fail all pending packets here, now that the upper
2993          * layers can't queue any more.
2994          */
2995
2996         software_reset(ohci);
2997         free_irq(dev->irq, ohci);
2998
2999         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3000                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3001                                   ohci->next_config_rom, ohci->next_config_rom_bus);
3002         if (ohci->config_rom)
3003                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3004                                   ohci->config_rom, ohci->config_rom_bus);
3005         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
3006                           ohci->self_id_cpu, ohci->self_id_bus);
3007         ar_context_release(&ohci->ar_request_ctx);
3008         ar_context_release(&ohci->ar_response_ctx);
3009         context_release(&ohci->at_request_ctx);
3010         context_release(&ohci->at_response_ctx);
3011         kfree(ohci->it_context_list);
3012         kfree(ohci->ir_context_list);
3013         pci_disable_msi(dev);
3014         pci_iounmap(dev, ohci->registers);
3015         pci_release_region(dev, 0);
3016         pci_disable_device(dev);
3017         kfree(&ohci->card);
3018         pmac_ohci_off(dev);
3019
3020         fw_notify("Removed fw-ohci device.\n");
3021 }
3022
3023 #ifdef CONFIG_PM
3024 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3025 {
3026         struct fw_ohci *ohci = pci_get_drvdata(dev);
3027         int err;
3028
3029         software_reset(ohci);
3030         free_irq(dev->irq, ohci);
3031         pci_disable_msi(dev);
3032         err = pci_save_state(dev);
3033         if (err) {
3034                 fw_error("pci_save_state failed\n");
3035                 return err;
3036         }
3037         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3038         if (err)
3039                 fw_error("pci_set_power_state failed with %d\n", err);
3040         pmac_ohci_off(dev);
3041
3042         return 0;
3043 }
3044
3045 static int pci_resume(struct pci_dev *dev)
3046 {
3047         struct fw_ohci *ohci = pci_get_drvdata(dev);
3048         int err;
3049
3050         pmac_ohci_on(dev);
3051         pci_set_power_state(dev, PCI_D0);
3052         pci_restore_state(dev);
3053         err = pci_enable_device(dev);
3054         if (err) {
3055                 fw_error("pci_enable_device failed\n");
3056                 return err;
3057         }
3058
3059         return ohci_enable(&ohci->card, NULL, 0);
3060 }
3061 #endif
3062
3063 static const struct pci_device_id pci_table[] = {
3064         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3065         { }
3066 };
3067
3068 MODULE_DEVICE_TABLE(pci, pci_table);
3069
3070 static struct pci_driver fw_ohci_pci_driver = {
3071         .name           = ohci_driver_name,
3072         .id_table       = pci_table,
3073         .probe          = pci_probe,
3074         .remove         = pci_remove,
3075 #ifdef CONFIG_PM
3076         .resume         = pci_resume,
3077         .suspend        = pci_suspend,
3078 #endif
3079 };
3080
3081 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3082 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3083 MODULE_LICENSE("GPL");
3084
3085 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3086 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3087 MODULE_ALIAS("ohci1394");
3088 #endif
3089
3090 static int __init fw_ohci_init(void)
3091 {
3092         return pci_register_driver(&fw_ohci_pci_driver);
3093 }
3094
3095 static void __exit fw_ohci_cleanup(void)
3096 {
3097         pci_unregister_driver(&fw_ohci_pci_driver);
3098 }
3099
3100 module_init(fw_ohci_init);
3101 module_exit(fw_ohci_cleanup);