firewire: net: Use posted writes
[pandora-kernel.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
49 #include <asm/system.h>
50
51 #ifdef CONFIG_PPC_PMAC
52 #include <asm/pmac_feature.h>
53 #endif
54
55 #include "core.h"
56 #include "ohci.h"
57
58 #define DESCRIPTOR_OUTPUT_MORE          0
59 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
60 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
61 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
62 #define DESCRIPTOR_STATUS               (1 << 11)
63 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
64 #define DESCRIPTOR_PING                 (1 << 7)
65 #define DESCRIPTOR_YY                   (1 << 6)
66 #define DESCRIPTOR_NO_IRQ               (0 << 4)
67 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
68 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
69 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
70 #define DESCRIPTOR_WAIT                 (3 << 0)
71
72 struct descriptor {
73         __le16 req_count;
74         __le16 control;
75         __le32 data_address;
76         __le32 branch_address;
77         __le16 res_count;
78         __le16 transfer_status;
79 } __attribute__((aligned(16)));
80
81 #define CONTROL_SET(regs)       (regs)
82 #define CONTROL_CLEAR(regs)     ((regs) + 4)
83 #define COMMAND_PTR(regs)       ((regs) + 12)
84 #define CONTEXT_MATCH(regs)     ((regs) + 16)
85
86 #define AR_BUFFER_SIZE  (32*1024)
87 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88 /* we need at least two pages for proper list management */
89 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90
91 #define MAX_ASYNC_PAYLOAD       4096
92 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
93 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94
95 struct ar_context {
96         struct fw_ohci *ohci;
97         struct page *pages[AR_BUFFERS];
98         void *buffer;
99         struct descriptor *descriptors;
100         dma_addr_t descriptors_bus;
101         void *pointer;
102         unsigned int last_buffer_index;
103         u32 regs;
104         struct tasklet_struct tasklet;
105 };
106
107 struct context;
108
109 typedef int (*descriptor_callback_t)(struct context *ctx,
110                                      struct descriptor *d,
111                                      struct descriptor *last);
112
113 /*
114  * A buffer that contains a block of DMA-able coherent memory used for
115  * storing a portion of a DMA descriptor program.
116  */
117 struct descriptor_buffer {
118         struct list_head list;
119         dma_addr_t buffer_bus;
120         size_t buffer_size;
121         size_t used;
122         struct descriptor buffer[0];
123 };
124
125 struct context {
126         struct fw_ohci *ohci;
127         u32 regs;
128         int total_allocation;
129         bool running;
130         bool flushing;
131
132         /*
133          * List of page-sized buffers for storing DMA descriptors.
134          * Head of list contains buffers in use and tail of list contains
135          * free buffers.
136          */
137         struct list_head buffer_list;
138
139         /*
140          * Pointer to a buffer inside buffer_list that contains the tail
141          * end of the current DMA program.
142          */
143         struct descriptor_buffer *buffer_tail;
144
145         /*
146          * The descriptor containing the branch address of the first
147          * descriptor that has not yet been filled by the device.
148          */
149         struct descriptor *last;
150
151         /*
152          * The last descriptor in the DMA program.  It contains the branch
153          * address that must be updated upon appending a new descriptor.
154          */
155         struct descriptor *prev;
156
157         descriptor_callback_t callback;
158
159         struct tasklet_struct tasklet;
160 };
161
162 #define IT_HEADER_SY(v)          ((v) <<  0)
163 #define IT_HEADER_TCODE(v)       ((v) <<  4)
164 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
165 #define IT_HEADER_TAG(v)         ((v) << 14)
166 #define IT_HEADER_SPEED(v)       ((v) << 16)
167 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
168
169 struct iso_context {
170         struct fw_iso_context base;
171         struct context context;
172         int excess_bytes;
173         void *header;
174         size_t header_length;
175
176         u8 sync;
177         u8 tags;
178 };
179
180 #define CONFIG_ROM_SIZE 1024
181
182 struct fw_ohci {
183         struct fw_card card;
184
185         __iomem char *registers;
186         int node_id;
187         int generation;
188         int request_generation; /* for timestamping incoming requests */
189         unsigned quirks;
190         unsigned int pri_req_max;
191         u32 bus_time;
192         bool is_root;
193         bool csr_state_setclear_abdicate;
194         int n_ir;
195         int n_it;
196         /*
197          * Spinlock for accessing fw_ohci data.  Never call out of
198          * this driver with this lock held.
199          */
200         spinlock_t lock;
201
202         struct mutex phy_reg_mutex;
203
204         void *misc_buffer;
205         dma_addr_t misc_buffer_bus;
206
207         struct ar_context ar_request_ctx;
208         struct ar_context ar_response_ctx;
209         struct context at_request_ctx;
210         struct context at_response_ctx;
211
212         u32 it_context_support;
213         u32 it_context_mask;     /* unoccupied IT contexts */
214         struct iso_context *it_context_list;
215         u64 ir_context_channels; /* unoccupied channels */
216         u32 ir_context_support;
217         u32 ir_context_mask;     /* unoccupied IR contexts */
218         struct iso_context *ir_context_list;
219         u64 mc_channels; /* channels in use by the multichannel IR context */
220         bool mc_allocated;
221
222         __be32    *config_rom;
223         dma_addr_t config_rom_bus;
224         __be32    *next_config_rom;
225         dma_addr_t next_config_rom_bus;
226         __be32     next_header;
227
228         __le32    *self_id_cpu;
229         dma_addr_t self_id_bus;
230         struct work_struct bus_reset_work;
231
232         u32 self_id_buffer[512];
233 };
234
235 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
236 {
237         return container_of(card, struct fw_ohci, card);
238 }
239
240 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
241 #define IR_CONTEXT_BUFFER_FILL          0x80000000
242 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
243 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
244 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
245 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
246
247 #define CONTEXT_RUN     0x8000
248 #define CONTEXT_WAKE    0x1000
249 #define CONTEXT_DEAD    0x0800
250 #define CONTEXT_ACTIVE  0x0400
251
252 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
253 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
254 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
255
256 #define OHCI1394_REGISTER_SIZE          0x800
257 #define OHCI1394_PCI_HCI_Control        0x40
258 #define SELF_ID_BUF_SIZE                0x800
259 #define OHCI_TCODE_PHY_PACKET           0x0e
260 #define OHCI_VERSION_1_1                0x010010
261
262 static char ohci_driver_name[] = KBUILD_MODNAME;
263
264 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
265 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
266 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
267 #define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
268 #define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
269 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
270
271 #define QUIRK_CYCLE_TIMER               1
272 #define QUIRK_RESET_PACKET              2
273 #define QUIRK_BE_HEADERS                4
274 #define QUIRK_NO_1394A                  8
275 #define QUIRK_NO_MSI                    16
276 #define QUIRK_TI_SLLZ059                32
277
278 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
279 static const struct {
280         unsigned short vendor, device, revision, flags;
281 } ohci_quirks[] = {
282         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
283                 QUIRK_CYCLE_TIMER},
284
285         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
286                 QUIRK_BE_HEADERS},
287
288         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
289                 QUIRK_NO_MSI},
290
291         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
292                 QUIRK_NO_MSI},
293
294         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
295                 QUIRK_CYCLE_TIMER},
296
297         {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
298                 QUIRK_NO_MSI},
299
300         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
301                 QUIRK_CYCLE_TIMER},
302
303         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
304                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
305
306         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
307                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
308
309         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
310                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
311
312         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
313                 QUIRK_RESET_PACKET},
314
315         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
316                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
317 };
318
319 /* This overrides anything that was found in ohci_quirks[]. */
320 static int param_quirks;
321 module_param_named(quirks, param_quirks, int, 0644);
322 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
323         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
324         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
325         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
326         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
327         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
328         ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
329         ")");
330
331 #define OHCI_PARAM_DEBUG_AT_AR          1
332 #define OHCI_PARAM_DEBUG_SELFIDS        2
333 #define OHCI_PARAM_DEBUG_IRQS           4
334 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
335
336 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
337
338 static int param_debug;
339 module_param_named(debug, param_debug, int, 0644);
340 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
341         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
342         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
343         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
344         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
345         ", or a combination, or all = -1)");
346
347 static void log_irqs(u32 evt)
348 {
349         if (likely(!(param_debug &
350                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
351                 return;
352
353         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
354             !(evt & OHCI1394_busReset))
355                 return;
356
357         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
358             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
359             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
360             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
361             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
362             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
363             evt & OHCI1394_isochRx              ? " IR"                 : "",
364             evt & OHCI1394_isochTx              ? " IT"                 : "",
365             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
366             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
367             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
368             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
369             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
370             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
371             evt & OHCI1394_busReset             ? " busReset"           : "",
372             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
373                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
374                     OHCI1394_respTxComplete | OHCI1394_isochRx |
375                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
376                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
377                     OHCI1394_cycleInconsistent |
378                     OHCI1394_regAccessFail | OHCI1394_busReset)
379                                                 ? " ?"                  : "");
380 }
381
382 static const char *speed[] = {
383         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
384 };
385 static const char *power[] = {
386         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
387         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
388 };
389 static const char port[] = { '.', '-', 'p', 'c', };
390
391 static char _p(u32 *s, int shift)
392 {
393         return port[*s >> shift & 3];
394 }
395
396 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
397 {
398         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
399                 return;
400
401         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
402                   self_id_count, generation, node_id);
403
404         for (; self_id_count--; ++s)
405                 if ((*s & 1 << 23) == 0)
406                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
407                             "%s gc=%d %s %s%s%s\n",
408                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
409                             speed[*s >> 14 & 3], *s >> 16 & 63,
410                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
411                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
412                 else
413                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
414                             *s, *s >> 24 & 63,
415                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
416                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
417 }
418
419 static const char *evts[] = {
420         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
421         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
422         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
423         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
424         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
425         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
426         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
427         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
428         [0x10] = "-reserved-",          [0x11] = "ack_complete",
429         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
430         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
431         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
432         [0x18] = "-reserved-",          [0x19] = "-reserved-",
433         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
434         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
435         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
436         [0x20] = "pending/cancelled",
437 };
438 static const char *tcodes[] = {
439         [0x0] = "QW req",               [0x1] = "BW req",
440         [0x2] = "W resp",               [0x3] = "-reserved-",
441         [0x4] = "QR req",               [0x5] = "BR req",
442         [0x6] = "QR resp",              [0x7] = "BR resp",
443         [0x8] = "cycle start",          [0x9] = "Lk req",
444         [0xa] = "async stream packet",  [0xb] = "Lk resp",
445         [0xc] = "-reserved-",           [0xd] = "-reserved-",
446         [0xe] = "link internal",        [0xf] = "-reserved-",
447 };
448
449 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
450 {
451         int tcode = header[0] >> 4 & 0xf;
452         char specific[12];
453
454         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
455                 return;
456
457         if (unlikely(evt >= ARRAY_SIZE(evts)))
458                         evt = 0x1f;
459
460         if (evt == OHCI1394_evt_bus_reset) {
461                 fw_notify("A%c evt_bus_reset, generation %d\n",
462                     dir, (header[2] >> 16) & 0xff);
463                 return;
464         }
465
466         switch (tcode) {
467         case 0x0: case 0x6: case 0x8:
468                 snprintf(specific, sizeof(specific), " = %08x",
469                          be32_to_cpu((__force __be32)header[3]));
470                 break;
471         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
472                 snprintf(specific, sizeof(specific), " %x,%x",
473                          header[3] >> 16, header[3] & 0xffff);
474                 break;
475         default:
476                 specific[0] = '\0';
477         }
478
479         switch (tcode) {
480         case 0xa:
481                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
482                 break;
483         case 0xe:
484                 fw_notify("A%c %s, PHY %08x %08x\n",
485                           dir, evts[evt], header[1], header[2]);
486                 break;
487         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
488                 fw_notify("A%c spd %x tl %02x, "
489                     "%04x -> %04x, %s, "
490                     "%s, %04x%08x%s\n",
491                     dir, speed, header[0] >> 10 & 0x3f,
492                     header[1] >> 16, header[0] >> 16, evts[evt],
493                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
494                 break;
495         default:
496                 fw_notify("A%c spd %x tl %02x, "
497                     "%04x -> %04x, %s, "
498                     "%s%s\n",
499                     dir, speed, header[0] >> 10 & 0x3f,
500                     header[1] >> 16, header[0] >> 16, evts[evt],
501                     tcodes[tcode], specific);
502         }
503 }
504
505 #else
506
507 #define param_debug 0
508 static inline void log_irqs(u32 evt) {}
509 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
510 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
511
512 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
513
514 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
515 {
516         writel(data, ohci->registers + offset);
517 }
518
519 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
520 {
521         return readl(ohci->registers + offset);
522 }
523
524 static inline void flush_writes(const struct fw_ohci *ohci)
525 {
526         /* Do a dummy read to flush writes. */
527         reg_read(ohci, OHCI1394_Version);
528 }
529
530 /*
531  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
532  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
533  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
534  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
535  */
536 static int read_phy_reg(struct fw_ohci *ohci, int addr)
537 {
538         u32 val;
539         int i;
540
541         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
542         for (i = 0; i < 3 + 100; i++) {
543                 val = reg_read(ohci, OHCI1394_PhyControl);
544                 if (!~val)
545                         return -ENODEV; /* Card was ejected. */
546
547                 if (val & OHCI1394_PhyControl_ReadDone)
548                         return OHCI1394_PhyControl_ReadData(val);
549
550                 /*
551                  * Try a few times without waiting.  Sleeping is necessary
552                  * only when the link/PHY interface is busy.
553                  */
554                 if (i >= 3)
555                         msleep(1);
556         }
557         fw_error("failed to read phy reg\n");
558
559         return -EBUSY;
560 }
561
562 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
563 {
564         int i;
565
566         reg_write(ohci, OHCI1394_PhyControl,
567                   OHCI1394_PhyControl_Write(addr, val));
568         for (i = 0; i < 3 + 100; i++) {
569                 val = reg_read(ohci, OHCI1394_PhyControl);
570                 if (!~val)
571                         return -ENODEV; /* Card was ejected. */
572
573                 if (!(val & OHCI1394_PhyControl_WritePending))
574                         return 0;
575
576                 if (i >= 3)
577                         msleep(1);
578         }
579         fw_error("failed to write phy reg\n");
580
581         return -EBUSY;
582 }
583
584 static int update_phy_reg(struct fw_ohci *ohci, int addr,
585                           int clear_bits, int set_bits)
586 {
587         int ret = read_phy_reg(ohci, addr);
588         if (ret < 0)
589                 return ret;
590
591         /*
592          * The interrupt status bits are cleared by writing a one bit.
593          * Avoid clearing them unless explicitly requested in set_bits.
594          */
595         if (addr == 5)
596                 clear_bits |= PHY_INT_STATUS_BITS;
597
598         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
599 }
600
601 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
602 {
603         int ret;
604
605         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
606         if (ret < 0)
607                 return ret;
608
609         return read_phy_reg(ohci, addr);
610 }
611
612 static int ohci_read_phy_reg(struct fw_card *card, int addr)
613 {
614         struct fw_ohci *ohci = fw_ohci(card);
615         int ret;
616
617         mutex_lock(&ohci->phy_reg_mutex);
618         ret = read_phy_reg(ohci, addr);
619         mutex_unlock(&ohci->phy_reg_mutex);
620
621         return ret;
622 }
623
624 static int ohci_update_phy_reg(struct fw_card *card, int addr,
625                                int clear_bits, int set_bits)
626 {
627         struct fw_ohci *ohci = fw_ohci(card);
628         int ret;
629
630         mutex_lock(&ohci->phy_reg_mutex);
631         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
632         mutex_unlock(&ohci->phy_reg_mutex);
633
634         return ret;
635 }
636
637 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
638 {
639         return page_private(ctx->pages[i]);
640 }
641
642 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
643 {
644         struct descriptor *d;
645
646         d = &ctx->descriptors[index];
647         d->branch_address  &= cpu_to_le32(~0xf);
648         d->res_count       =  cpu_to_le16(PAGE_SIZE);
649         d->transfer_status =  0;
650
651         wmb(); /* finish init of new descriptors before branch_address update */
652         d = &ctx->descriptors[ctx->last_buffer_index];
653         d->branch_address  |= cpu_to_le32(1);
654
655         ctx->last_buffer_index = index;
656
657         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
658 }
659
660 static void ar_context_release(struct ar_context *ctx)
661 {
662         unsigned int i;
663
664         if (ctx->buffer)
665                 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
666
667         for (i = 0; i < AR_BUFFERS; i++)
668                 if (ctx->pages[i]) {
669                         dma_unmap_page(ctx->ohci->card.device,
670                                        ar_buffer_bus(ctx, i),
671                                        PAGE_SIZE, DMA_FROM_DEVICE);
672                         __free_page(ctx->pages[i]);
673                 }
674 }
675
676 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
677 {
678         if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
679                 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
680                 flush_writes(ctx->ohci);
681
682                 fw_error("AR error: %s; DMA stopped\n", error_msg);
683         }
684         /* FIXME: restart? */
685 }
686
687 static inline unsigned int ar_next_buffer_index(unsigned int index)
688 {
689         return (index + 1) % AR_BUFFERS;
690 }
691
692 static inline unsigned int ar_prev_buffer_index(unsigned int index)
693 {
694         return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
695 }
696
697 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
698 {
699         return ar_next_buffer_index(ctx->last_buffer_index);
700 }
701
702 /*
703  * We search for the buffer that contains the last AR packet DMA data written
704  * by the controller.
705  */
706 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
707                                                  unsigned int *buffer_offset)
708 {
709         unsigned int i, next_i, last = ctx->last_buffer_index;
710         __le16 res_count, next_res_count;
711
712         i = ar_first_buffer_index(ctx);
713         res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
714
715         /* A buffer that is not yet completely filled must be the last one. */
716         while (i != last && res_count == 0) {
717
718                 /* Peek at the next descriptor. */
719                 next_i = ar_next_buffer_index(i);
720                 rmb(); /* read descriptors in order */
721                 next_res_count = ACCESS_ONCE(
722                                 ctx->descriptors[next_i].res_count);
723                 /*
724                  * If the next descriptor is still empty, we must stop at this
725                  * descriptor.
726                  */
727                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
728                         /*
729                          * The exception is when the DMA data for one packet is
730                          * split over three buffers; in this case, the middle
731                          * buffer's descriptor might be never updated by the
732                          * controller and look still empty, and we have to peek
733                          * at the third one.
734                          */
735                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
736                                 next_i = ar_next_buffer_index(next_i);
737                                 rmb();
738                                 next_res_count = ACCESS_ONCE(
739                                         ctx->descriptors[next_i].res_count);
740                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
741                                         goto next_buffer_is_active;
742                         }
743
744                         break;
745                 }
746
747 next_buffer_is_active:
748                 i = next_i;
749                 res_count = next_res_count;
750         }
751
752         rmb(); /* read res_count before the DMA data */
753
754         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
755         if (*buffer_offset > PAGE_SIZE) {
756                 *buffer_offset = 0;
757                 ar_context_abort(ctx, "corrupted descriptor");
758         }
759
760         return i;
761 }
762
763 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
764                                     unsigned int end_buffer_index,
765                                     unsigned int end_buffer_offset)
766 {
767         unsigned int i;
768
769         i = ar_first_buffer_index(ctx);
770         while (i != end_buffer_index) {
771                 dma_sync_single_for_cpu(ctx->ohci->card.device,
772                                         ar_buffer_bus(ctx, i),
773                                         PAGE_SIZE, DMA_FROM_DEVICE);
774                 i = ar_next_buffer_index(i);
775         }
776         if (end_buffer_offset > 0)
777                 dma_sync_single_for_cpu(ctx->ohci->card.device,
778                                         ar_buffer_bus(ctx, i),
779                                         end_buffer_offset, DMA_FROM_DEVICE);
780 }
781
782 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
783 #define cond_le32_to_cpu(v) \
784         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
785 #else
786 #define cond_le32_to_cpu(v) le32_to_cpu(v)
787 #endif
788
789 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
790 {
791         struct fw_ohci *ohci = ctx->ohci;
792         struct fw_packet p;
793         u32 status, length, tcode;
794         int evt;
795
796         p.header[0] = cond_le32_to_cpu(buffer[0]);
797         p.header[1] = cond_le32_to_cpu(buffer[1]);
798         p.header[2] = cond_le32_to_cpu(buffer[2]);
799
800         tcode = (p.header[0] >> 4) & 0x0f;
801         switch (tcode) {
802         case TCODE_WRITE_QUADLET_REQUEST:
803         case TCODE_READ_QUADLET_RESPONSE:
804                 p.header[3] = (__force __u32) buffer[3];
805                 p.header_length = 16;
806                 p.payload_length = 0;
807                 break;
808
809         case TCODE_READ_BLOCK_REQUEST :
810                 p.header[3] = cond_le32_to_cpu(buffer[3]);
811                 p.header_length = 16;
812                 p.payload_length = 0;
813                 break;
814
815         case TCODE_WRITE_BLOCK_REQUEST:
816         case TCODE_READ_BLOCK_RESPONSE:
817         case TCODE_LOCK_REQUEST:
818         case TCODE_LOCK_RESPONSE:
819                 p.header[3] = cond_le32_to_cpu(buffer[3]);
820                 p.header_length = 16;
821                 p.payload_length = p.header[3] >> 16;
822                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
823                         ar_context_abort(ctx, "invalid packet length");
824                         return NULL;
825                 }
826                 break;
827
828         case TCODE_WRITE_RESPONSE:
829         case TCODE_READ_QUADLET_REQUEST:
830         case OHCI_TCODE_PHY_PACKET:
831                 p.header_length = 12;
832                 p.payload_length = 0;
833                 break;
834
835         default:
836                 ar_context_abort(ctx, "invalid tcode");
837                 return NULL;
838         }
839
840         p.payload = (void *) buffer + p.header_length;
841
842         /* FIXME: What to do about evt_* errors? */
843         length = (p.header_length + p.payload_length + 3) / 4;
844         status = cond_le32_to_cpu(buffer[length]);
845         evt    = (status >> 16) & 0x1f;
846
847         p.ack        = evt - 16;
848         p.speed      = (status >> 21) & 0x7;
849         p.timestamp  = status & 0xffff;
850         p.generation = ohci->request_generation;
851
852         log_ar_at_event('R', p.speed, p.header, evt);
853
854         /*
855          * Several controllers, notably from NEC and VIA, forget to
856          * write ack_complete status at PHY packet reception.
857          */
858         if (evt == OHCI1394_evt_no_status &&
859             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
860                 p.ack = ACK_COMPLETE;
861
862         /*
863          * The OHCI bus reset handler synthesizes a PHY packet with
864          * the new generation number when a bus reset happens (see
865          * section 8.4.2.3).  This helps us determine when a request
866          * was received and make sure we send the response in the same
867          * generation.  We only need this for requests; for responses
868          * we use the unique tlabel for finding the matching
869          * request.
870          *
871          * Alas some chips sometimes emit bus reset packets with a
872          * wrong generation.  We set the correct generation for these
873          * at a slightly incorrect time (in bus_reset_work).
874          */
875         if (evt == OHCI1394_evt_bus_reset) {
876                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
877                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
878         } else if (ctx == &ohci->ar_request_ctx) {
879                 fw_core_handle_request(&ohci->card, &p);
880         } else {
881                 fw_core_handle_response(&ohci->card, &p);
882         }
883
884         return buffer + length + 1;
885 }
886
887 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
888 {
889         void *next;
890
891         while (p < end) {
892                 next = handle_ar_packet(ctx, p);
893                 if (!next)
894                         return p;
895                 p = next;
896         }
897
898         return p;
899 }
900
901 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
902 {
903         unsigned int i;
904
905         i = ar_first_buffer_index(ctx);
906         while (i != end_buffer) {
907                 dma_sync_single_for_device(ctx->ohci->card.device,
908                                            ar_buffer_bus(ctx, i),
909                                            PAGE_SIZE, DMA_FROM_DEVICE);
910                 ar_context_link_page(ctx, i);
911                 i = ar_next_buffer_index(i);
912         }
913 }
914
915 static void ar_context_tasklet(unsigned long data)
916 {
917         struct ar_context *ctx = (struct ar_context *)data;
918         unsigned int end_buffer_index, end_buffer_offset;
919         void *p, *end;
920
921         p = ctx->pointer;
922         if (!p)
923                 return;
924
925         end_buffer_index = ar_search_last_active_buffer(ctx,
926                                                         &end_buffer_offset);
927         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
928         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
929
930         if (end_buffer_index < ar_first_buffer_index(ctx)) {
931                 /*
932                  * The filled part of the overall buffer wraps around; handle
933                  * all packets up to the buffer end here.  If the last packet
934                  * wraps around, its tail will be visible after the buffer end
935                  * because the buffer start pages are mapped there again.
936                  */
937                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
938                 p = handle_ar_packets(ctx, p, buffer_end);
939                 if (p < buffer_end)
940                         goto error;
941                 /* adjust p to point back into the actual buffer */
942                 p -= AR_BUFFERS * PAGE_SIZE;
943         }
944
945         p = handle_ar_packets(ctx, p, end);
946         if (p != end) {
947                 if (p > end)
948                         ar_context_abort(ctx, "inconsistent descriptor");
949                 goto error;
950         }
951
952         ctx->pointer = p;
953         ar_recycle_buffers(ctx, end_buffer_index);
954
955         return;
956
957 error:
958         ctx->pointer = NULL;
959 }
960
961 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
962                            unsigned int descriptors_offset, u32 regs)
963 {
964         unsigned int i;
965         dma_addr_t dma_addr;
966         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
967         struct descriptor *d;
968
969         ctx->regs        = regs;
970         ctx->ohci        = ohci;
971         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
972
973         for (i = 0; i < AR_BUFFERS; i++) {
974                 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
975                 if (!ctx->pages[i])
976                         goto out_of_memory;
977                 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
978                                         0, PAGE_SIZE, DMA_FROM_DEVICE);
979                 if (dma_mapping_error(ohci->card.device, dma_addr)) {
980                         __free_page(ctx->pages[i]);
981                         ctx->pages[i] = NULL;
982                         goto out_of_memory;
983                 }
984                 set_page_private(ctx->pages[i], dma_addr);
985         }
986
987         for (i = 0; i < AR_BUFFERS; i++)
988                 pages[i]              = ctx->pages[i];
989         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
990                 pages[AR_BUFFERS + i] = ctx->pages[i];
991         ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
992                                  -1, PAGE_KERNEL);
993         if (!ctx->buffer)
994                 goto out_of_memory;
995
996         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
997         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
998
999         for (i = 0; i < AR_BUFFERS; i++) {
1000                 d = &ctx->descriptors[i];
1001                 d->req_count      = cpu_to_le16(PAGE_SIZE);
1002                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1003                                                 DESCRIPTOR_STATUS |
1004                                                 DESCRIPTOR_BRANCH_ALWAYS);
1005                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1006                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1007                         ar_next_buffer_index(i) * sizeof(struct descriptor));
1008         }
1009
1010         return 0;
1011
1012 out_of_memory:
1013         ar_context_release(ctx);
1014
1015         return -ENOMEM;
1016 }
1017
1018 static void ar_context_run(struct ar_context *ctx)
1019 {
1020         unsigned int i;
1021
1022         for (i = 0; i < AR_BUFFERS; i++)
1023                 ar_context_link_page(ctx, i);
1024
1025         ctx->pointer = ctx->buffer;
1026
1027         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1028         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1029 }
1030
1031 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1032 {
1033         __le16 branch;
1034
1035         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1036
1037         /* figure out which descriptor the branch address goes in */
1038         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1039                 return d;
1040         else
1041                 return d + z - 1;
1042 }
1043
1044 static void context_tasklet(unsigned long data)
1045 {
1046         struct context *ctx = (struct context *) data;
1047         struct descriptor *d, *last;
1048         u32 address;
1049         int z;
1050         struct descriptor_buffer *desc;
1051
1052         desc = list_entry(ctx->buffer_list.next,
1053                         struct descriptor_buffer, list);
1054         last = ctx->last;
1055         while (last->branch_address != 0) {
1056                 struct descriptor_buffer *old_desc = desc;
1057                 address = le32_to_cpu(last->branch_address);
1058                 z = address & 0xf;
1059                 address &= ~0xf;
1060
1061                 /* If the branch address points to a buffer outside of the
1062                  * current buffer, advance to the next buffer. */
1063                 if (address < desc->buffer_bus ||
1064                                 address >= desc->buffer_bus + desc->used)
1065                         desc = list_entry(desc->list.next,
1066                                         struct descriptor_buffer, list);
1067                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1068                 last = find_branch_descriptor(d, z);
1069
1070                 if (!ctx->callback(ctx, d, last))
1071                         break;
1072
1073                 if (old_desc != desc) {
1074                         /* If we've advanced to the next buffer, move the
1075                          * previous buffer to the free list. */
1076                         unsigned long flags;
1077                         old_desc->used = 0;
1078                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1079                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1080                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1081                 }
1082                 ctx->last = last;
1083         }
1084 }
1085
1086 /*
1087  * Allocate a new buffer and add it to the list of free buffers for this
1088  * context.  Must be called with ohci->lock held.
1089  */
1090 static int context_add_buffer(struct context *ctx)
1091 {
1092         struct descriptor_buffer *desc;
1093         dma_addr_t uninitialized_var(bus_addr);
1094         int offset;
1095
1096         /*
1097          * 16MB of descriptors should be far more than enough for any DMA
1098          * program.  This will catch run-away userspace or DoS attacks.
1099          */
1100         if (ctx->total_allocation >= 16*1024*1024)
1101                 return -ENOMEM;
1102
1103         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1104                         &bus_addr, GFP_ATOMIC);
1105         if (!desc)
1106                 return -ENOMEM;
1107
1108         offset = (void *)&desc->buffer - (void *)desc;
1109         desc->buffer_size = PAGE_SIZE - offset;
1110         desc->buffer_bus = bus_addr + offset;
1111         desc->used = 0;
1112
1113         list_add_tail(&desc->list, &ctx->buffer_list);
1114         ctx->total_allocation += PAGE_SIZE;
1115
1116         return 0;
1117 }
1118
1119 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1120                         u32 regs, descriptor_callback_t callback)
1121 {
1122         ctx->ohci = ohci;
1123         ctx->regs = regs;
1124         ctx->total_allocation = 0;
1125
1126         INIT_LIST_HEAD(&ctx->buffer_list);
1127         if (context_add_buffer(ctx) < 0)
1128                 return -ENOMEM;
1129
1130         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1131                         struct descriptor_buffer, list);
1132
1133         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1134         ctx->callback = callback;
1135
1136         /*
1137          * We put a dummy descriptor in the buffer that has a NULL
1138          * branch address and looks like it's been sent.  That way we
1139          * have a descriptor to append DMA programs to.
1140          */
1141         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1142         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1143         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1144         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1145         ctx->last = ctx->buffer_tail->buffer;
1146         ctx->prev = ctx->buffer_tail->buffer;
1147
1148         return 0;
1149 }
1150
1151 static void context_release(struct context *ctx)
1152 {
1153         struct fw_card *card = &ctx->ohci->card;
1154         struct descriptor_buffer *desc, *tmp;
1155
1156         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1157                 dma_free_coherent(card->device, PAGE_SIZE, desc,
1158                         desc->buffer_bus -
1159                         ((void *)&desc->buffer - (void *)desc));
1160 }
1161
1162 /* Must be called with ohci->lock held */
1163 static struct descriptor *context_get_descriptors(struct context *ctx,
1164                                                   int z, dma_addr_t *d_bus)
1165 {
1166         struct descriptor *d = NULL;
1167         struct descriptor_buffer *desc = ctx->buffer_tail;
1168
1169         if (z * sizeof(*d) > desc->buffer_size)
1170                 return NULL;
1171
1172         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1173                 /* No room for the descriptor in this buffer, so advance to the
1174                  * next one. */
1175
1176                 if (desc->list.next == &ctx->buffer_list) {
1177                         /* If there is no free buffer next in the list,
1178                          * allocate one. */
1179                         if (context_add_buffer(ctx) < 0)
1180                                 return NULL;
1181                 }
1182                 desc = list_entry(desc->list.next,
1183                                 struct descriptor_buffer, list);
1184                 ctx->buffer_tail = desc;
1185         }
1186
1187         d = desc->buffer + desc->used / sizeof(*d);
1188         memset(d, 0, z * sizeof(*d));
1189         *d_bus = desc->buffer_bus + desc->used;
1190
1191         return d;
1192 }
1193
1194 static void context_run(struct context *ctx, u32 extra)
1195 {
1196         struct fw_ohci *ohci = ctx->ohci;
1197
1198         reg_write(ohci, COMMAND_PTR(ctx->regs),
1199                   le32_to_cpu(ctx->last->branch_address));
1200         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1201         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1202         ctx->running = true;
1203         flush_writes(ohci);
1204 }
1205
1206 static void context_append(struct context *ctx,
1207                            struct descriptor *d, int z, int extra)
1208 {
1209         dma_addr_t d_bus;
1210         struct descriptor_buffer *desc = ctx->buffer_tail;
1211
1212         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1213
1214         desc->used += (z + extra) * sizeof(*d);
1215
1216         wmb(); /* finish init of new descriptors before branch_address update */
1217         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1218         ctx->prev = find_branch_descriptor(d, z);
1219 }
1220
1221 static void context_stop(struct context *ctx)
1222 {
1223         u32 reg;
1224         int i;
1225
1226         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1227         ctx->running = false;
1228
1229         for (i = 0; i < 1000; i++) {
1230                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1231                 if ((reg & CONTEXT_ACTIVE) == 0)
1232                         return;
1233
1234                 if (i)
1235                         udelay(10);
1236         }
1237         fw_error("Error: DMA context still active (0x%08x)\n", reg);
1238 }
1239
1240 struct driver_data {
1241         u8 inline_data[8];
1242         struct fw_packet *packet;
1243 };
1244
1245 /*
1246  * This function apppends a packet to the DMA queue for transmission.
1247  * Must always be called with the ochi->lock held to ensure proper
1248  * generation handling and locking around packet queue manipulation.
1249  */
1250 static int at_context_queue_packet(struct context *ctx,
1251                                    struct fw_packet *packet)
1252 {
1253         struct fw_ohci *ohci = ctx->ohci;
1254         dma_addr_t d_bus, uninitialized_var(payload_bus);
1255         struct driver_data *driver_data;
1256         struct descriptor *d, *last;
1257         __le32 *header;
1258         int z, tcode;
1259
1260         d = context_get_descriptors(ctx, 4, &d_bus);
1261         if (d == NULL) {
1262                 packet->ack = RCODE_SEND_ERROR;
1263                 return -1;
1264         }
1265
1266         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1267         d[0].res_count = cpu_to_le16(packet->timestamp);
1268
1269         /*
1270          * The DMA format for asyncronous link packets is different
1271          * from the IEEE1394 layout, so shift the fields around
1272          * accordingly.
1273          */
1274
1275         tcode = (packet->header[0] >> 4) & 0x0f;
1276         header = (__le32 *) &d[1];
1277         switch (tcode) {
1278         case TCODE_WRITE_QUADLET_REQUEST:
1279         case TCODE_WRITE_BLOCK_REQUEST:
1280         case TCODE_WRITE_RESPONSE:
1281         case TCODE_READ_QUADLET_REQUEST:
1282         case TCODE_READ_BLOCK_REQUEST:
1283         case TCODE_READ_QUADLET_RESPONSE:
1284         case TCODE_READ_BLOCK_RESPONSE:
1285         case TCODE_LOCK_REQUEST:
1286         case TCODE_LOCK_RESPONSE:
1287                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1288                                         (packet->speed << 16));
1289                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1290                                         (packet->header[0] & 0xffff0000));
1291                 header[2] = cpu_to_le32(packet->header[2]);
1292
1293                 if (TCODE_IS_BLOCK_PACKET(tcode))
1294                         header[3] = cpu_to_le32(packet->header[3]);
1295                 else
1296                         header[3] = (__force __le32) packet->header[3];
1297
1298                 d[0].req_count = cpu_to_le16(packet->header_length);
1299                 break;
1300
1301         case TCODE_LINK_INTERNAL:
1302                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1303                                         (packet->speed << 16));
1304                 header[1] = cpu_to_le32(packet->header[1]);
1305                 header[2] = cpu_to_le32(packet->header[2]);
1306                 d[0].req_count = cpu_to_le16(12);
1307
1308                 if (is_ping_packet(&packet->header[1]))
1309                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1310                 break;
1311
1312         case TCODE_STREAM_DATA:
1313                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1314                                         (packet->speed << 16));
1315                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1316                 d[0].req_count = cpu_to_le16(8);
1317                 break;
1318
1319         default:
1320                 /* BUG(); */
1321                 packet->ack = RCODE_SEND_ERROR;
1322                 return -1;
1323         }
1324
1325         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1326         driver_data = (struct driver_data *) &d[3];
1327         driver_data->packet = packet;
1328         packet->driver_data = driver_data;
1329
1330         if (packet->payload_length > 0) {
1331                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1332                         payload_bus = dma_map_single(ohci->card.device,
1333                                                      packet->payload,
1334                                                      packet->payload_length,
1335                                                      DMA_TO_DEVICE);
1336                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1337                                 packet->ack = RCODE_SEND_ERROR;
1338                                 return -1;
1339                         }
1340                         packet->payload_bus     = payload_bus;
1341                         packet->payload_mapped  = true;
1342                 } else {
1343                         memcpy(driver_data->inline_data, packet->payload,
1344                                packet->payload_length);
1345                         payload_bus = d_bus + 3 * sizeof(*d);
1346                 }
1347
1348                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1349                 d[2].data_address = cpu_to_le32(payload_bus);
1350                 last = &d[2];
1351                 z = 3;
1352         } else {
1353                 last = &d[0];
1354                 z = 2;
1355         }
1356
1357         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1358                                      DESCRIPTOR_IRQ_ALWAYS |
1359                                      DESCRIPTOR_BRANCH_ALWAYS);
1360
1361         /* FIXME: Document how the locking works. */
1362         if (ohci->generation != packet->generation) {
1363                 if (packet->payload_mapped)
1364                         dma_unmap_single(ohci->card.device, payload_bus,
1365                                          packet->payload_length, DMA_TO_DEVICE);
1366                 packet->ack = RCODE_GENERATION;
1367                 return -1;
1368         }
1369
1370         context_append(ctx, d, z, 4 - z);
1371
1372         if (ctx->running)
1373                 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1374         else
1375                 context_run(ctx, 0);
1376
1377         return 0;
1378 }
1379
1380 static void at_context_flush(struct context *ctx)
1381 {
1382         tasklet_disable(&ctx->tasklet);
1383
1384         ctx->flushing = true;
1385         context_tasklet((unsigned long)ctx);
1386         ctx->flushing = false;
1387
1388         tasklet_enable(&ctx->tasklet);
1389 }
1390
1391 static int handle_at_packet(struct context *context,
1392                             struct descriptor *d,
1393                             struct descriptor *last)
1394 {
1395         struct driver_data *driver_data;
1396         struct fw_packet *packet;
1397         struct fw_ohci *ohci = context->ohci;
1398         int evt;
1399
1400         if (last->transfer_status == 0 && !context->flushing)
1401                 /* This descriptor isn't done yet, stop iteration. */
1402                 return 0;
1403
1404         driver_data = (struct driver_data *) &d[3];
1405         packet = driver_data->packet;
1406         if (packet == NULL)
1407                 /* This packet was cancelled, just continue. */
1408                 return 1;
1409
1410         if (packet->payload_mapped)
1411                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1412                                  packet->payload_length, DMA_TO_DEVICE);
1413
1414         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1415         packet->timestamp = le16_to_cpu(last->res_count);
1416
1417         log_ar_at_event('T', packet->speed, packet->header, evt);
1418
1419         switch (evt) {
1420         case OHCI1394_evt_timeout:
1421                 /* Async response transmit timed out. */
1422                 packet->ack = RCODE_CANCELLED;
1423                 break;
1424
1425         case OHCI1394_evt_flushed:
1426                 /*
1427                  * The packet was flushed should give same error as
1428                  * when we try to use a stale generation count.
1429                  */
1430                 packet->ack = RCODE_GENERATION;
1431                 break;
1432
1433         case OHCI1394_evt_missing_ack:
1434                 if (context->flushing)
1435                         packet->ack = RCODE_GENERATION;
1436                 else {
1437                         /*
1438                          * Using a valid (current) generation count, but the
1439                          * node is not on the bus or not sending acks.
1440                          */
1441                         packet->ack = RCODE_NO_ACK;
1442                 }
1443                 break;
1444
1445         case ACK_COMPLETE + 0x10:
1446         case ACK_PENDING + 0x10:
1447         case ACK_BUSY_X + 0x10:
1448         case ACK_BUSY_A + 0x10:
1449         case ACK_BUSY_B + 0x10:
1450         case ACK_DATA_ERROR + 0x10:
1451         case ACK_TYPE_ERROR + 0x10:
1452                 packet->ack = evt - 0x10;
1453                 break;
1454
1455         case OHCI1394_evt_no_status:
1456                 if (context->flushing) {
1457                         packet->ack = RCODE_GENERATION;
1458                         break;
1459                 }
1460                 /* fall through */
1461
1462         default:
1463                 packet->ack = RCODE_SEND_ERROR;
1464                 break;
1465         }
1466
1467         packet->callback(packet, &ohci->card, packet->ack);
1468
1469         return 1;
1470 }
1471
1472 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1473 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1474 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1475 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1476 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1477
1478 static void handle_local_rom(struct fw_ohci *ohci,
1479                              struct fw_packet *packet, u32 csr)
1480 {
1481         struct fw_packet response;
1482         int tcode, length, i;
1483
1484         tcode = HEADER_GET_TCODE(packet->header[0]);
1485         if (TCODE_IS_BLOCK_PACKET(tcode))
1486                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1487         else
1488                 length = 4;
1489
1490         i = csr - CSR_CONFIG_ROM;
1491         if (i + length > CONFIG_ROM_SIZE) {
1492                 fw_fill_response(&response, packet->header,
1493                                  RCODE_ADDRESS_ERROR, NULL, 0);
1494         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1495                 fw_fill_response(&response, packet->header,
1496                                  RCODE_TYPE_ERROR, NULL, 0);
1497         } else {
1498                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1499                                  (void *) ohci->config_rom + i, length);
1500         }
1501
1502         fw_core_handle_response(&ohci->card, &response);
1503 }
1504
1505 static void handle_local_lock(struct fw_ohci *ohci,
1506                               struct fw_packet *packet, u32 csr)
1507 {
1508         struct fw_packet response;
1509         int tcode, length, ext_tcode, sel, try;
1510         __be32 *payload, lock_old;
1511         u32 lock_arg, lock_data;
1512
1513         tcode = HEADER_GET_TCODE(packet->header[0]);
1514         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1515         payload = packet->payload;
1516         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1517
1518         if (tcode == TCODE_LOCK_REQUEST &&
1519             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1520                 lock_arg = be32_to_cpu(payload[0]);
1521                 lock_data = be32_to_cpu(payload[1]);
1522         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1523                 lock_arg = 0;
1524                 lock_data = 0;
1525         } else {
1526                 fw_fill_response(&response, packet->header,
1527                                  RCODE_TYPE_ERROR, NULL, 0);
1528                 goto out;
1529         }
1530
1531         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1532         reg_write(ohci, OHCI1394_CSRData, lock_data);
1533         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1534         reg_write(ohci, OHCI1394_CSRControl, sel);
1535
1536         for (try = 0; try < 20; try++)
1537                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1538                         lock_old = cpu_to_be32(reg_read(ohci,
1539                                                         OHCI1394_CSRData));
1540                         fw_fill_response(&response, packet->header,
1541                                          RCODE_COMPLETE,
1542                                          &lock_old, sizeof(lock_old));
1543                         goto out;
1544                 }
1545
1546         fw_error("swap not done (CSR lock timeout)\n");
1547         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1548
1549  out:
1550         fw_core_handle_response(&ohci->card, &response);
1551 }
1552
1553 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1554 {
1555         u64 offset, csr;
1556
1557         if (ctx == &ctx->ohci->at_request_ctx) {
1558                 packet->ack = ACK_PENDING;
1559                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1560         }
1561
1562         offset =
1563                 ((unsigned long long)
1564                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1565                 packet->header[2];
1566         csr = offset - CSR_REGISTER_BASE;
1567
1568         /* Handle config rom reads. */
1569         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1570                 handle_local_rom(ctx->ohci, packet, csr);
1571         else switch (csr) {
1572         case CSR_BUS_MANAGER_ID:
1573         case CSR_BANDWIDTH_AVAILABLE:
1574         case CSR_CHANNELS_AVAILABLE_HI:
1575         case CSR_CHANNELS_AVAILABLE_LO:
1576                 handle_local_lock(ctx->ohci, packet, csr);
1577                 break;
1578         default:
1579                 if (ctx == &ctx->ohci->at_request_ctx)
1580                         fw_core_handle_request(&ctx->ohci->card, packet);
1581                 else
1582                         fw_core_handle_response(&ctx->ohci->card, packet);
1583                 break;
1584         }
1585
1586         if (ctx == &ctx->ohci->at_response_ctx) {
1587                 packet->ack = ACK_COMPLETE;
1588                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1589         }
1590 }
1591
1592 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1593 {
1594         unsigned long flags;
1595         int ret;
1596
1597         spin_lock_irqsave(&ctx->ohci->lock, flags);
1598
1599         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1600             ctx->ohci->generation == packet->generation) {
1601                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1602                 handle_local_request(ctx, packet);
1603                 return;
1604         }
1605
1606         ret = at_context_queue_packet(ctx, packet);
1607         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1608
1609         if (ret < 0)
1610                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1611
1612 }
1613
1614 static void detect_dead_context(struct fw_ohci *ohci,
1615                                 const char *name, unsigned int regs)
1616 {
1617         u32 ctl;
1618
1619         ctl = reg_read(ohci, CONTROL_SET(regs));
1620         if (ctl & CONTEXT_DEAD) {
1621 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1622                 fw_error("DMA context %s has stopped, error code: %s\n",
1623                          name, evts[ctl & 0x1f]);
1624 #else
1625                 fw_error("DMA context %s has stopped, error code: %#x\n",
1626                          name, ctl & 0x1f);
1627 #endif
1628         }
1629 }
1630
1631 static void handle_dead_contexts(struct fw_ohci *ohci)
1632 {
1633         unsigned int i;
1634         char name[8];
1635
1636         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1637         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1638         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1639         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1640         for (i = 0; i < 32; ++i) {
1641                 if (!(ohci->it_context_support & (1 << i)))
1642                         continue;
1643                 sprintf(name, "IT%u", i);
1644                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1645         }
1646         for (i = 0; i < 32; ++i) {
1647                 if (!(ohci->ir_context_support & (1 << i)))
1648                         continue;
1649                 sprintf(name, "IR%u", i);
1650                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1651         }
1652         /* TODO: maybe try to flush and restart the dead contexts */
1653 }
1654
1655 static u32 cycle_timer_ticks(u32 cycle_timer)
1656 {
1657         u32 ticks;
1658
1659         ticks = cycle_timer & 0xfff;
1660         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1661         ticks += (3072 * 8000) * (cycle_timer >> 25);
1662
1663         return ticks;
1664 }
1665
1666 /*
1667  * Some controllers exhibit one or more of the following bugs when updating the
1668  * iso cycle timer register:
1669  *  - When the lowest six bits are wrapping around to zero, a read that happens
1670  *    at the same time will return garbage in the lowest ten bits.
1671  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1672  *    not incremented for about 60 ns.
1673  *  - Occasionally, the entire register reads zero.
1674  *
1675  * To catch these, we read the register three times and ensure that the
1676  * difference between each two consecutive reads is approximately the same, i.e.
1677  * less than twice the other.  Furthermore, any negative difference indicates an
1678  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1679  * execute, so we have enough precision to compute the ratio of the differences.)
1680  */
1681 static u32 get_cycle_time(struct fw_ohci *ohci)
1682 {
1683         u32 c0, c1, c2;
1684         u32 t0, t1, t2;
1685         s32 diff01, diff12;
1686         int i;
1687
1688         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1689
1690         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1691                 i = 0;
1692                 c1 = c2;
1693                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1694                 do {
1695                         c0 = c1;
1696                         c1 = c2;
1697                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1698                         t0 = cycle_timer_ticks(c0);
1699                         t1 = cycle_timer_ticks(c1);
1700                         t2 = cycle_timer_ticks(c2);
1701                         diff01 = t1 - t0;
1702                         diff12 = t2 - t1;
1703                 } while ((diff01 <= 0 || diff12 <= 0 ||
1704                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1705                          && i++ < 20);
1706         }
1707
1708         return c2;
1709 }
1710
1711 /*
1712  * This function has to be called at least every 64 seconds.  The bus_time
1713  * field stores not only the upper 25 bits of the BUS_TIME register but also
1714  * the most significant bit of the cycle timer in bit 6 so that we can detect
1715  * changes in this bit.
1716  */
1717 static u32 update_bus_time(struct fw_ohci *ohci)
1718 {
1719         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1720
1721         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1722                 ohci->bus_time += 0x40;
1723
1724         return ohci->bus_time | cycle_time_seconds;
1725 }
1726
1727 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1728 {
1729         int reg;
1730
1731         mutex_lock(&ohci->phy_reg_mutex);
1732         reg = write_phy_reg(ohci, 7, port_index);
1733         if (reg >= 0)
1734                 reg = read_phy_reg(ohci, 8);
1735         mutex_unlock(&ohci->phy_reg_mutex);
1736         if (reg < 0)
1737                 return reg;
1738
1739         switch (reg & 0x0f) {
1740         case 0x06:
1741                 return 2;       /* is child node (connected to parent node) */
1742         case 0x0e:
1743                 return 3;       /* is parent node (connected to child node) */
1744         }
1745         return 1;               /* not connected */
1746 }
1747
1748 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1749         int self_id_count)
1750 {
1751         int i;
1752         u32 entry;
1753
1754         for (i = 0; i < self_id_count; i++) {
1755                 entry = ohci->self_id_buffer[i];
1756                 if ((self_id & 0xff000000) == (entry & 0xff000000))
1757                         return -1;
1758                 if ((self_id & 0xff000000) < (entry & 0xff000000))
1759                         return i;
1760         }
1761         return i;
1762 }
1763
1764 /*
1765  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1766  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1767  * Construct the selfID from phy register contents.
1768  * FIXME:  How to determine the selfID.i flag?
1769  */
1770 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1771 {
1772         int reg, i, pos, status;
1773         /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1774         u32 self_id = 0x8040c800;
1775
1776         reg = reg_read(ohci, OHCI1394_NodeID);
1777         if (!(reg & OHCI1394_NodeID_idValid)) {
1778                 fw_notify("node ID not valid, new bus reset in progress\n");
1779                 return -EBUSY;
1780         }
1781         self_id |= ((reg & 0x3f) << 24); /* phy ID */
1782
1783         reg = ohci_read_phy_reg(&ohci->card, 4);
1784         if (reg < 0)
1785                 return reg;
1786         self_id |= ((reg & 0x07) << 8); /* power class */
1787
1788         reg = ohci_read_phy_reg(&ohci->card, 1);
1789         if (reg < 0)
1790                 return reg;
1791         self_id |= ((reg & 0x3f) << 16); /* gap count */
1792
1793         for (i = 0; i < 3; i++) {
1794                 status = get_status_for_port(ohci, i);
1795                 if (status < 0)
1796                         return status;
1797                 self_id |= ((status & 0x3) << (6 - (i * 2)));
1798         }
1799
1800         pos = get_self_id_pos(ohci, self_id, self_id_count);
1801         if (pos >= 0) {
1802                 memmove(&(ohci->self_id_buffer[pos+1]),
1803                         &(ohci->self_id_buffer[pos]),
1804                         (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1805                 ohci->self_id_buffer[pos] = self_id;
1806                 self_id_count++;
1807         }
1808         return self_id_count;
1809 }
1810
1811 static void bus_reset_work(struct work_struct *work)
1812 {
1813         struct fw_ohci *ohci =
1814                 container_of(work, struct fw_ohci, bus_reset_work);
1815         int self_id_count, i, j, reg;
1816         int generation, new_generation;
1817         unsigned long flags;
1818         void *free_rom = NULL;
1819         dma_addr_t free_rom_bus = 0;
1820         bool is_new_root;
1821
1822         reg = reg_read(ohci, OHCI1394_NodeID);
1823         if (!(reg & OHCI1394_NodeID_idValid)) {
1824                 fw_notify("node ID not valid, new bus reset in progress\n");
1825                 return;
1826         }
1827         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1828                 fw_notify("malconfigured bus\n");
1829                 return;
1830         }
1831         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1832                                OHCI1394_NodeID_nodeNumber);
1833
1834         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1835         if (!(ohci->is_root && is_new_root))
1836                 reg_write(ohci, OHCI1394_LinkControlSet,
1837                           OHCI1394_LinkControl_cycleMaster);
1838         ohci->is_root = is_new_root;
1839
1840         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1841         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1842                 fw_notify("inconsistent self IDs\n");
1843                 return;
1844         }
1845         /*
1846          * The count in the SelfIDCount register is the number of
1847          * bytes in the self ID receive buffer.  Since we also receive
1848          * the inverted quadlets and a header quadlet, we shift one
1849          * bit extra to get the actual number of self IDs.
1850          */
1851         self_id_count = (reg >> 3) & 0xff;
1852
1853         if (self_id_count > 252) {
1854                 fw_notify("inconsistent self IDs\n");
1855                 return;
1856         }
1857
1858         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1859         rmb();
1860
1861         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1862                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1863                         fw_notify("inconsistent self IDs\n");
1864                         return;
1865                 }
1866                 ohci->self_id_buffer[j] =
1867                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1868         }
1869
1870         if (ohci->quirks & QUIRK_TI_SLLZ059) {
1871                 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1872                 if (self_id_count < 0) {
1873                         fw_notify("could not construct local self ID\n");
1874                         return;
1875                 }
1876         }
1877
1878         if (self_id_count == 0) {
1879                 fw_notify("inconsistent self IDs\n");
1880                 return;
1881         }
1882         rmb();
1883
1884         /*
1885          * Check the consistency of the self IDs we just read.  The
1886          * problem we face is that a new bus reset can start while we
1887          * read out the self IDs from the DMA buffer. If this happens,
1888          * the DMA buffer will be overwritten with new self IDs and we
1889          * will read out inconsistent data.  The OHCI specification
1890          * (section 11.2) recommends a technique similar to
1891          * linux/seqlock.h, where we remember the generation of the
1892          * self IDs in the buffer before reading them out and compare
1893          * it to the current generation after reading them out.  If
1894          * the two generations match we know we have a consistent set
1895          * of self IDs.
1896          */
1897
1898         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1899         if (new_generation != generation) {
1900                 fw_notify("recursive bus reset detected, "
1901                           "discarding self ids\n");
1902                 return;
1903         }
1904
1905         /* FIXME: Document how the locking works. */
1906         spin_lock_irqsave(&ohci->lock, flags);
1907
1908         ohci->generation = -1; /* prevent AT packet queueing */
1909         context_stop(&ohci->at_request_ctx);
1910         context_stop(&ohci->at_response_ctx);
1911
1912         spin_unlock_irqrestore(&ohci->lock, flags);
1913
1914         /*
1915          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1916          * packets in the AT queues and software needs to drain them.
1917          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1918          */
1919         at_context_flush(&ohci->at_request_ctx);
1920         at_context_flush(&ohci->at_response_ctx);
1921
1922         spin_lock_irqsave(&ohci->lock, flags);
1923
1924         ohci->generation = generation;
1925         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1926
1927         if (ohci->quirks & QUIRK_RESET_PACKET)
1928                 ohci->request_generation = generation;
1929
1930         /*
1931          * This next bit is unrelated to the AT context stuff but we
1932          * have to do it under the spinlock also.  If a new config rom
1933          * was set up before this reset, the old one is now no longer
1934          * in use and we can free it. Update the config rom pointers
1935          * to point to the current config rom and clear the
1936          * next_config_rom pointer so a new update can take place.
1937          */
1938
1939         if (ohci->next_config_rom != NULL) {
1940                 if (ohci->next_config_rom != ohci->config_rom) {
1941                         free_rom      = ohci->config_rom;
1942                         free_rom_bus  = ohci->config_rom_bus;
1943                 }
1944                 ohci->config_rom      = ohci->next_config_rom;
1945                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1946                 ohci->next_config_rom = NULL;
1947
1948                 /*
1949                  * Restore config_rom image and manually update
1950                  * config_rom registers.  Writing the header quadlet
1951                  * will indicate that the config rom is ready, so we
1952                  * do that last.
1953                  */
1954                 reg_write(ohci, OHCI1394_BusOptions,
1955                           be32_to_cpu(ohci->config_rom[2]));
1956                 ohci->config_rom[0] = ohci->next_header;
1957                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1958                           be32_to_cpu(ohci->next_header));
1959         }
1960
1961 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1962         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1963         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1964 #endif
1965
1966         spin_unlock_irqrestore(&ohci->lock, flags);
1967
1968         if (free_rom)
1969                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1970                                   free_rom, free_rom_bus);
1971
1972         log_selfids(ohci->node_id, generation,
1973                     self_id_count, ohci->self_id_buffer);
1974
1975         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1976                                  self_id_count, ohci->self_id_buffer,
1977                                  ohci->csr_state_setclear_abdicate);
1978         ohci->csr_state_setclear_abdicate = false;
1979 }
1980
1981 static irqreturn_t irq_handler(int irq, void *data)
1982 {
1983         struct fw_ohci *ohci = data;
1984         u32 event, iso_event;
1985         int i;
1986
1987         event = reg_read(ohci, OHCI1394_IntEventClear);
1988
1989         if (!event || !~event)
1990                 return IRQ_NONE;
1991
1992         /*
1993          * busReset and postedWriteErr must not be cleared yet
1994          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1995          */
1996         reg_write(ohci, OHCI1394_IntEventClear,
1997                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1998         log_irqs(event);
1999
2000         if (event & OHCI1394_selfIDComplete)
2001                 queue_work(fw_workqueue, &ohci->bus_reset_work);
2002
2003         if (event & OHCI1394_RQPkt)
2004                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2005
2006         if (event & OHCI1394_RSPkt)
2007                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2008
2009         if (event & OHCI1394_reqTxComplete)
2010                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2011
2012         if (event & OHCI1394_respTxComplete)
2013                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2014
2015         if (event & OHCI1394_isochRx) {
2016                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2017                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2018
2019                 while (iso_event) {
2020                         i = ffs(iso_event) - 1;
2021                         tasklet_schedule(
2022                                 &ohci->ir_context_list[i].context.tasklet);
2023                         iso_event &= ~(1 << i);
2024                 }
2025         }
2026
2027         if (event & OHCI1394_isochTx) {
2028                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2029                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2030
2031                 while (iso_event) {
2032                         i = ffs(iso_event) - 1;
2033                         tasklet_schedule(
2034                                 &ohci->it_context_list[i].context.tasklet);
2035                         iso_event &= ~(1 << i);
2036                 }
2037         }
2038
2039         if (unlikely(event & OHCI1394_regAccessFail))
2040                 fw_error("Register access failure - "
2041                          "please notify linux1394-devel@lists.sf.net\n");
2042
2043         if (unlikely(event & OHCI1394_postedWriteErr)) {
2044                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2045                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2046                 reg_write(ohci, OHCI1394_IntEventClear,
2047                           OHCI1394_postedWriteErr);
2048                 if (printk_ratelimit())
2049                         fw_error("PCI posted write error\n");
2050         }
2051
2052         if (unlikely(event & OHCI1394_cycleTooLong)) {
2053                 if (printk_ratelimit())
2054                         fw_notify("isochronous cycle too long\n");
2055                 reg_write(ohci, OHCI1394_LinkControlSet,
2056                           OHCI1394_LinkControl_cycleMaster);
2057         }
2058
2059         if (unlikely(event & OHCI1394_cycleInconsistent)) {
2060                 /*
2061                  * We need to clear this event bit in order to make
2062                  * cycleMatch isochronous I/O work.  In theory we should
2063                  * stop active cycleMatch iso contexts now and restart
2064                  * them at least two cycles later.  (FIXME?)
2065                  */
2066                 if (printk_ratelimit())
2067                         fw_notify("isochronous cycle inconsistent\n");
2068         }
2069
2070         if (unlikely(event & OHCI1394_unrecoverableError))
2071                 handle_dead_contexts(ohci);
2072
2073         if (event & OHCI1394_cycle64Seconds) {
2074                 spin_lock(&ohci->lock);
2075                 update_bus_time(ohci);
2076                 spin_unlock(&ohci->lock);
2077         } else
2078                 flush_writes(ohci);
2079
2080         return IRQ_HANDLED;
2081 }
2082
2083 static int software_reset(struct fw_ohci *ohci)
2084 {
2085         u32 val;
2086         int i;
2087
2088         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2089         for (i = 0; i < 500; i++) {
2090                 val = reg_read(ohci, OHCI1394_HCControlSet);
2091                 if (!~val)
2092                         return -ENODEV; /* Card was ejected. */
2093
2094                 if (!(val & OHCI1394_HCControl_softReset))
2095                         return 0;
2096
2097                 msleep(1);
2098         }
2099
2100         return -EBUSY;
2101 }
2102
2103 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2104 {
2105         size_t size = length * 4;
2106
2107         memcpy(dest, src, size);
2108         if (size < CONFIG_ROM_SIZE)
2109                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2110 }
2111
2112 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2113 {
2114         bool enable_1394a;
2115         int ret, clear, set, offset;
2116
2117         /* Check if the driver should configure link and PHY. */
2118         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2119               OHCI1394_HCControl_programPhyEnable))
2120                 return 0;
2121
2122         /* Paranoia: check whether the PHY supports 1394a, too. */
2123         enable_1394a = false;
2124         ret = read_phy_reg(ohci, 2);
2125         if (ret < 0)
2126                 return ret;
2127         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2128                 ret = read_paged_phy_reg(ohci, 1, 8);
2129                 if (ret < 0)
2130                         return ret;
2131                 if (ret >= 1)
2132                         enable_1394a = true;
2133         }
2134
2135         if (ohci->quirks & QUIRK_NO_1394A)
2136                 enable_1394a = false;
2137
2138         /* Configure PHY and link consistently. */
2139         if (enable_1394a) {
2140                 clear = 0;
2141                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2142         } else {
2143                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2144                 set = 0;
2145         }
2146         ret = update_phy_reg(ohci, 5, clear, set);
2147         if (ret < 0)
2148                 return ret;
2149
2150         if (enable_1394a)
2151                 offset = OHCI1394_HCControlSet;
2152         else
2153                 offset = OHCI1394_HCControlClear;
2154         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2155
2156         /* Clean up: configuration has been taken care of. */
2157         reg_write(ohci, OHCI1394_HCControlClear,
2158                   OHCI1394_HCControl_programPhyEnable);
2159
2160         return 0;
2161 }
2162
2163 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2164 {
2165         /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2166         static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2167         int reg, i;
2168
2169         reg = read_phy_reg(ohci, 2);
2170         if (reg < 0)
2171                 return reg;
2172         if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2173                 return 0;
2174
2175         for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2176                 reg = read_paged_phy_reg(ohci, 1, i + 10);
2177                 if (reg < 0)
2178                         return reg;
2179                 if (reg != id[i])
2180                         return 0;
2181         }
2182         return 1;
2183 }
2184
2185 static int ohci_enable(struct fw_card *card,
2186                        const __be32 *config_rom, size_t length)
2187 {
2188         struct fw_ohci *ohci = fw_ohci(card);
2189         struct pci_dev *dev = to_pci_dev(card->device);
2190         u32 lps, seconds, version, irqs;
2191         int i, ret;
2192
2193         if (software_reset(ohci)) {
2194                 fw_error("Failed to reset ohci card.\n");
2195                 return -EBUSY;
2196         }
2197
2198         /*
2199          * Now enable LPS, which we need in order to start accessing
2200          * most of the registers.  In fact, on some cards (ALI M5251),
2201          * accessing registers in the SClk domain without LPS enabled
2202          * will lock up the machine.  Wait 50msec to make sure we have
2203          * full link enabled.  However, with some cards (well, at least
2204          * a JMicron PCIe card), we have to try again sometimes.
2205          */
2206         reg_write(ohci, OHCI1394_HCControlSet,
2207                   OHCI1394_HCControl_LPS |
2208                   OHCI1394_HCControl_postedWriteEnable);
2209         flush_writes(ohci);
2210
2211         for (lps = 0, i = 0; !lps && i < 3; i++) {
2212                 msleep(50);
2213                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2214                       OHCI1394_HCControl_LPS;
2215         }
2216
2217         if (!lps) {
2218                 fw_error("Failed to set Link Power Status\n");
2219                 return -EIO;
2220         }
2221
2222         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2223                 ret = probe_tsb41ba3d(ohci);
2224                 if (ret < 0)
2225                         return ret;
2226                 if (ret)
2227                         fw_notify("local TSB41BA3D phy\n");
2228                 else
2229                         ohci->quirks &= ~QUIRK_TI_SLLZ059;
2230         }
2231
2232         reg_write(ohci, OHCI1394_HCControlClear,
2233                   OHCI1394_HCControl_noByteSwapData);
2234
2235         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2236         reg_write(ohci, OHCI1394_LinkControlSet,
2237                   OHCI1394_LinkControl_cycleTimerEnable |
2238                   OHCI1394_LinkControl_cycleMaster);
2239
2240         reg_write(ohci, OHCI1394_ATRetries,
2241                   OHCI1394_MAX_AT_REQ_RETRIES |
2242                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2243                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2244                   (200 << 16));
2245
2246         seconds = lower_32_bits(get_seconds());
2247         reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2248         ohci->bus_time = seconds & ~0x3f;
2249
2250         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2251         if (version >= OHCI_VERSION_1_1) {
2252                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2253                           0xfffffffe);
2254                 card->broadcast_channel_auto_allocated = true;
2255         }
2256
2257         /* Get implemented bits of the priority arbitration request counter. */
2258         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2259         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2260         reg_write(ohci, OHCI1394_FairnessControl, 0);
2261         card->priority_budget_implemented = ohci->pri_req_max != 0;
2262
2263         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2264         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2265         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2266
2267         ret = configure_1394a_enhancements(ohci);
2268         if (ret < 0)
2269                 return ret;
2270
2271         /* Activate link_on bit and contender bit in our self ID packets.*/
2272         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2273         if (ret < 0)
2274                 return ret;
2275
2276         /*
2277          * When the link is not yet enabled, the atomic config rom
2278          * update mechanism described below in ohci_set_config_rom()
2279          * is not active.  We have to update ConfigRomHeader and
2280          * BusOptions manually, and the write to ConfigROMmap takes
2281          * effect immediately.  We tie this to the enabling of the
2282          * link, so we have a valid config rom before enabling - the
2283          * OHCI requires that ConfigROMhdr and BusOptions have valid
2284          * values before enabling.
2285          *
2286          * However, when the ConfigROMmap is written, some controllers
2287          * always read back quadlets 0 and 2 from the config rom to
2288          * the ConfigRomHeader and BusOptions registers on bus reset.
2289          * They shouldn't do that in this initial case where the link
2290          * isn't enabled.  This means we have to use the same
2291          * workaround here, setting the bus header to 0 and then write
2292          * the right values in the bus reset tasklet.
2293          */
2294
2295         if (config_rom) {
2296                 ohci->next_config_rom =
2297                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2298                                            &ohci->next_config_rom_bus,
2299                                            GFP_KERNEL);
2300                 if (ohci->next_config_rom == NULL)
2301                         return -ENOMEM;
2302
2303                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2304         } else {
2305                 /*
2306                  * In the suspend case, config_rom is NULL, which
2307                  * means that we just reuse the old config rom.
2308                  */
2309                 ohci->next_config_rom = ohci->config_rom;
2310                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2311         }
2312
2313         ohci->next_header = ohci->next_config_rom[0];
2314         ohci->next_config_rom[0] = 0;
2315         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2316         reg_write(ohci, OHCI1394_BusOptions,
2317                   be32_to_cpu(ohci->next_config_rom[2]));
2318         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2319
2320         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2321
2322         if (!(ohci->quirks & QUIRK_NO_MSI))
2323                 pci_enable_msi(dev);
2324         if (request_irq(dev->irq, irq_handler,
2325                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2326                         ohci_driver_name, ohci)) {
2327                 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2328                 pci_disable_msi(dev);
2329
2330                 if (config_rom) {
2331                         dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2332                                           ohci->next_config_rom,
2333                                           ohci->next_config_rom_bus);
2334                         ohci->next_config_rom = NULL;
2335                 }
2336                 return -EIO;
2337         }
2338
2339         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2340                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2341                 OHCI1394_isochTx | OHCI1394_isochRx |
2342                 OHCI1394_postedWriteErr |
2343                 OHCI1394_selfIDComplete |
2344                 OHCI1394_regAccessFail |
2345                 OHCI1394_cycle64Seconds |
2346                 OHCI1394_cycleInconsistent |
2347                 OHCI1394_unrecoverableError |
2348                 OHCI1394_cycleTooLong |
2349                 OHCI1394_masterIntEnable;
2350         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2351                 irqs |= OHCI1394_busReset;
2352         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2353
2354         reg_write(ohci, OHCI1394_HCControlSet,
2355                   OHCI1394_HCControl_linkEnable |
2356                   OHCI1394_HCControl_BIBimageValid);
2357
2358         reg_write(ohci, OHCI1394_LinkControlSet,
2359                   OHCI1394_LinkControl_rcvSelfID |
2360                   OHCI1394_LinkControl_rcvPhyPkt);
2361
2362         ar_context_run(&ohci->ar_request_ctx);
2363         ar_context_run(&ohci->ar_response_ctx);
2364
2365         flush_writes(ohci);
2366
2367         /* We are ready to go, reset bus to finish initialization. */
2368         fw_schedule_bus_reset(&ohci->card, false, true);
2369
2370         return 0;
2371 }
2372
2373 static int ohci_set_config_rom(struct fw_card *card,
2374                                const __be32 *config_rom, size_t length)
2375 {
2376         struct fw_ohci *ohci;
2377         unsigned long flags;
2378         __be32 *next_config_rom;
2379         dma_addr_t uninitialized_var(next_config_rom_bus);
2380
2381         ohci = fw_ohci(card);
2382
2383         /*
2384          * When the OHCI controller is enabled, the config rom update
2385          * mechanism is a bit tricky, but easy enough to use.  See
2386          * section 5.5.6 in the OHCI specification.
2387          *
2388          * The OHCI controller caches the new config rom address in a
2389          * shadow register (ConfigROMmapNext) and needs a bus reset
2390          * for the changes to take place.  When the bus reset is
2391          * detected, the controller loads the new values for the
2392          * ConfigRomHeader and BusOptions registers from the specified
2393          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2394          * shadow register. All automatically and atomically.
2395          *
2396          * Now, there's a twist to this story.  The automatic load of
2397          * ConfigRomHeader and BusOptions doesn't honor the
2398          * noByteSwapData bit, so with a be32 config rom, the
2399          * controller will load be32 values in to these registers
2400          * during the atomic update, even on litte endian
2401          * architectures.  The workaround we use is to put a 0 in the
2402          * header quadlet; 0 is endian agnostic and means that the
2403          * config rom isn't ready yet.  In the bus reset tasklet we
2404          * then set up the real values for the two registers.
2405          *
2406          * We use ohci->lock to avoid racing with the code that sets
2407          * ohci->next_config_rom to NULL (see bus_reset_work).
2408          */
2409
2410         next_config_rom =
2411                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2412                                    &next_config_rom_bus, GFP_KERNEL);
2413         if (next_config_rom == NULL)
2414                 return -ENOMEM;
2415
2416         spin_lock_irqsave(&ohci->lock, flags);
2417
2418         /*
2419          * If there is not an already pending config_rom update,
2420          * push our new allocation into the ohci->next_config_rom
2421          * and then mark the local variable as null so that we
2422          * won't deallocate the new buffer.
2423          *
2424          * OTOH, if there is a pending config_rom update, just
2425          * use that buffer with the new config_rom data, and
2426          * let this routine free the unused DMA allocation.
2427          */
2428
2429         if (ohci->next_config_rom == NULL) {
2430                 ohci->next_config_rom = next_config_rom;
2431                 ohci->next_config_rom_bus = next_config_rom_bus;
2432                 next_config_rom = NULL;
2433         }
2434
2435         copy_config_rom(ohci->next_config_rom, config_rom, length);
2436
2437         ohci->next_header = config_rom[0];
2438         ohci->next_config_rom[0] = 0;
2439
2440         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2441
2442         spin_unlock_irqrestore(&ohci->lock, flags);
2443
2444         /* If we didn't use the DMA allocation, delete it. */
2445         if (next_config_rom != NULL)
2446                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2447                                   next_config_rom, next_config_rom_bus);
2448
2449         /*
2450          * Now initiate a bus reset to have the changes take
2451          * effect. We clean up the old config rom memory and DMA
2452          * mappings in the bus reset tasklet, since the OHCI
2453          * controller could need to access it before the bus reset
2454          * takes effect.
2455          */
2456
2457         fw_schedule_bus_reset(&ohci->card, true, true);
2458
2459         return 0;
2460 }
2461
2462 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2463 {
2464         struct fw_ohci *ohci = fw_ohci(card);
2465
2466         at_context_transmit(&ohci->at_request_ctx, packet);
2467 }
2468
2469 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2470 {
2471         struct fw_ohci *ohci = fw_ohci(card);
2472
2473         at_context_transmit(&ohci->at_response_ctx, packet);
2474 }
2475
2476 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2477 {
2478         struct fw_ohci *ohci = fw_ohci(card);
2479         struct context *ctx = &ohci->at_request_ctx;
2480         struct driver_data *driver_data = packet->driver_data;
2481         int ret = -ENOENT;
2482
2483         tasklet_disable(&ctx->tasklet);
2484
2485         if (packet->ack != 0)
2486                 goto out;
2487
2488         if (packet->payload_mapped)
2489                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2490                                  packet->payload_length, DMA_TO_DEVICE);
2491
2492         log_ar_at_event('T', packet->speed, packet->header, 0x20);
2493         driver_data->packet = NULL;
2494         packet->ack = RCODE_CANCELLED;
2495         packet->callback(packet, &ohci->card, packet->ack);
2496         ret = 0;
2497  out:
2498         tasklet_enable(&ctx->tasklet);
2499
2500         return ret;
2501 }
2502
2503 static int ohci_enable_phys_dma(struct fw_card *card,
2504                                 int node_id, int generation)
2505 {
2506 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2507         return 0;
2508 #else
2509         struct fw_ohci *ohci = fw_ohci(card);
2510         unsigned long flags;
2511         int n, ret = 0;
2512
2513         /*
2514          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2515          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2516          */
2517
2518         spin_lock_irqsave(&ohci->lock, flags);
2519
2520         if (ohci->generation != generation) {
2521                 ret = -ESTALE;
2522                 goto out;
2523         }
2524
2525         /*
2526          * Note, if the node ID contains a non-local bus ID, physical DMA is
2527          * enabled for _all_ nodes on remote buses.
2528          */
2529
2530         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2531         if (n < 32)
2532                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2533         else
2534                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2535
2536         flush_writes(ohci);
2537  out:
2538         spin_unlock_irqrestore(&ohci->lock, flags);
2539
2540         return ret;
2541 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2542 }
2543
2544 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2545 {
2546         struct fw_ohci *ohci = fw_ohci(card);
2547         unsigned long flags;
2548         u32 value;
2549
2550         switch (csr_offset) {
2551         case CSR_STATE_CLEAR:
2552         case CSR_STATE_SET:
2553                 if (ohci->is_root &&
2554                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2555                      OHCI1394_LinkControl_cycleMaster))
2556                         value = CSR_STATE_BIT_CMSTR;
2557                 else
2558                         value = 0;
2559                 if (ohci->csr_state_setclear_abdicate)
2560                         value |= CSR_STATE_BIT_ABDICATE;
2561
2562                 return value;
2563
2564         case CSR_NODE_IDS:
2565                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2566
2567         case CSR_CYCLE_TIME:
2568                 return get_cycle_time(ohci);
2569
2570         case CSR_BUS_TIME:
2571                 /*
2572                  * We might be called just after the cycle timer has wrapped
2573                  * around but just before the cycle64Seconds handler, so we
2574                  * better check here, too, if the bus time needs to be updated.
2575                  */
2576                 spin_lock_irqsave(&ohci->lock, flags);
2577                 value = update_bus_time(ohci);
2578                 spin_unlock_irqrestore(&ohci->lock, flags);
2579                 return value;
2580
2581         case CSR_BUSY_TIMEOUT:
2582                 value = reg_read(ohci, OHCI1394_ATRetries);
2583                 return (value >> 4) & 0x0ffff00f;
2584
2585         case CSR_PRIORITY_BUDGET:
2586                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2587                         (ohci->pri_req_max << 8);
2588
2589         default:
2590                 WARN_ON(1);
2591                 return 0;
2592         }
2593 }
2594
2595 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2596 {
2597         struct fw_ohci *ohci = fw_ohci(card);
2598         unsigned long flags;
2599
2600         switch (csr_offset) {
2601         case CSR_STATE_CLEAR:
2602                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2603                         reg_write(ohci, OHCI1394_LinkControlClear,
2604                                   OHCI1394_LinkControl_cycleMaster);
2605                         flush_writes(ohci);
2606                 }
2607                 if (value & CSR_STATE_BIT_ABDICATE)
2608                         ohci->csr_state_setclear_abdicate = false;
2609                 break;
2610
2611         case CSR_STATE_SET:
2612                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2613                         reg_write(ohci, OHCI1394_LinkControlSet,
2614                                   OHCI1394_LinkControl_cycleMaster);
2615                         flush_writes(ohci);
2616                 }
2617                 if (value & CSR_STATE_BIT_ABDICATE)
2618                         ohci->csr_state_setclear_abdicate = true;
2619                 break;
2620
2621         case CSR_NODE_IDS:
2622                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2623                 flush_writes(ohci);
2624                 break;
2625
2626         case CSR_CYCLE_TIME:
2627                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2628                 reg_write(ohci, OHCI1394_IntEventSet,
2629                           OHCI1394_cycleInconsistent);
2630                 flush_writes(ohci);
2631                 break;
2632
2633         case CSR_BUS_TIME:
2634                 spin_lock_irqsave(&ohci->lock, flags);
2635                 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2636                 spin_unlock_irqrestore(&ohci->lock, flags);
2637                 break;
2638
2639         case CSR_BUSY_TIMEOUT:
2640                 value = (value & 0xf) | ((value & 0xf) << 4) |
2641                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2642                 reg_write(ohci, OHCI1394_ATRetries, value);
2643                 flush_writes(ohci);
2644                 break;
2645
2646         case CSR_PRIORITY_BUDGET:
2647                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2648                 flush_writes(ohci);
2649                 break;
2650
2651         default:
2652                 WARN_ON(1);
2653                 break;
2654         }
2655 }
2656
2657 static void copy_iso_headers(struct iso_context *ctx, void *p)
2658 {
2659         int i = ctx->header_length;
2660
2661         if (i + ctx->base.header_size > PAGE_SIZE)
2662                 return;
2663
2664         /*
2665          * The iso header is byteswapped to little endian by
2666          * the controller, but the remaining header quadlets
2667          * are big endian.  We want to present all the headers
2668          * as big endian, so we have to swap the first quadlet.
2669          */
2670         if (ctx->base.header_size > 0)
2671                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2672         if (ctx->base.header_size > 4)
2673                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2674         if (ctx->base.header_size > 8)
2675                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2676         ctx->header_length += ctx->base.header_size;
2677 }
2678
2679 static int handle_ir_packet_per_buffer(struct context *context,
2680                                        struct descriptor *d,
2681                                        struct descriptor *last)
2682 {
2683         struct iso_context *ctx =
2684                 container_of(context, struct iso_context, context);
2685         struct descriptor *pd;
2686         __le32 *ir_header;
2687         void *p;
2688
2689         for (pd = d; pd <= last; pd++)
2690                 if (pd->transfer_status)
2691                         break;
2692         if (pd > last)
2693                 /* Descriptor(s) not done yet, stop iteration */
2694                 return 0;
2695
2696         p = last + 1;
2697         copy_iso_headers(ctx, p);
2698
2699         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2700                 ir_header = (__le32 *) p;
2701                 ctx->base.callback.sc(&ctx->base,
2702                                       le32_to_cpu(ir_header[0]) & 0xffff,
2703                                       ctx->header_length, ctx->header,
2704                                       ctx->base.callback_data);
2705                 ctx->header_length = 0;
2706         }
2707
2708         return 1;
2709 }
2710
2711 /* d == last because each descriptor block is only a single descriptor. */
2712 static int handle_ir_buffer_fill(struct context *context,
2713                                  struct descriptor *d,
2714                                  struct descriptor *last)
2715 {
2716         struct iso_context *ctx =
2717                 container_of(context, struct iso_context, context);
2718
2719         if (!last->transfer_status)
2720                 /* Descriptor(s) not done yet, stop iteration */
2721                 return 0;
2722
2723         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2724                 ctx->base.callback.mc(&ctx->base,
2725                                       le32_to_cpu(last->data_address) +
2726                                       le16_to_cpu(last->req_count) -
2727                                       le16_to_cpu(last->res_count),
2728                                       ctx->base.callback_data);
2729
2730         return 1;
2731 }
2732
2733 static int handle_it_packet(struct context *context,
2734                             struct descriptor *d,
2735                             struct descriptor *last)
2736 {
2737         struct iso_context *ctx =
2738                 container_of(context, struct iso_context, context);
2739         int i;
2740         struct descriptor *pd;
2741
2742         for (pd = d; pd <= last; pd++)
2743                 if (pd->transfer_status)
2744                         break;
2745         if (pd > last)
2746                 /* Descriptor(s) not done yet, stop iteration */
2747                 return 0;
2748
2749         i = ctx->header_length;
2750         if (i + 4 < PAGE_SIZE) {
2751                 /* Present this value as big-endian to match the receive code */
2752                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2753                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2754                                 le16_to_cpu(pd->res_count));
2755                 ctx->header_length += 4;
2756         }
2757         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2758                 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2759                                       ctx->header_length, ctx->header,
2760                                       ctx->base.callback_data);
2761                 ctx->header_length = 0;
2762         }
2763         return 1;
2764 }
2765
2766 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2767 {
2768         u32 hi = channels >> 32, lo = channels;
2769
2770         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2771         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2772         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2773         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2774         mmiowb();
2775         ohci->mc_channels = channels;
2776 }
2777
2778 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2779                                 int type, int channel, size_t header_size)
2780 {
2781         struct fw_ohci *ohci = fw_ohci(card);
2782         struct iso_context *uninitialized_var(ctx);
2783         descriptor_callback_t uninitialized_var(callback);
2784         u64 *uninitialized_var(channels);
2785         u32 *uninitialized_var(mask), uninitialized_var(regs);
2786         unsigned long flags;
2787         int index, ret = -EBUSY;
2788
2789         spin_lock_irqsave(&ohci->lock, flags);
2790
2791         switch (type) {
2792         case FW_ISO_CONTEXT_TRANSMIT:
2793                 mask     = &ohci->it_context_mask;
2794                 callback = handle_it_packet;
2795                 index    = ffs(*mask) - 1;
2796                 if (index >= 0) {
2797                         *mask &= ~(1 << index);
2798                         regs = OHCI1394_IsoXmitContextBase(index);
2799                         ctx  = &ohci->it_context_list[index];
2800                 }
2801                 break;
2802
2803         case FW_ISO_CONTEXT_RECEIVE:
2804                 channels = &ohci->ir_context_channels;
2805                 mask     = &ohci->ir_context_mask;
2806                 callback = handle_ir_packet_per_buffer;
2807                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2808                 if (index >= 0) {
2809                         *channels &= ~(1ULL << channel);
2810                         *mask     &= ~(1 << index);
2811                         regs = OHCI1394_IsoRcvContextBase(index);
2812                         ctx  = &ohci->ir_context_list[index];
2813                 }
2814                 break;
2815
2816         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2817                 mask     = &ohci->ir_context_mask;
2818                 callback = handle_ir_buffer_fill;
2819                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2820                 if (index >= 0) {
2821                         ohci->mc_allocated = true;
2822                         *mask &= ~(1 << index);
2823                         regs = OHCI1394_IsoRcvContextBase(index);
2824                         ctx  = &ohci->ir_context_list[index];
2825                 }
2826                 break;
2827
2828         default:
2829                 index = -1;
2830                 ret = -ENOSYS;
2831         }
2832
2833         spin_unlock_irqrestore(&ohci->lock, flags);
2834
2835         if (index < 0)
2836                 return ERR_PTR(ret);
2837
2838         memset(ctx, 0, sizeof(*ctx));
2839         ctx->header_length = 0;
2840         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2841         if (ctx->header == NULL) {
2842                 ret = -ENOMEM;
2843                 goto out;
2844         }
2845         ret = context_init(&ctx->context, ohci, regs, callback);
2846         if (ret < 0)
2847                 goto out_with_header;
2848
2849         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2850                 set_multichannel_mask(ohci, 0);
2851
2852         return &ctx->base;
2853
2854  out_with_header:
2855         free_page((unsigned long)ctx->header);
2856  out:
2857         spin_lock_irqsave(&ohci->lock, flags);
2858
2859         switch (type) {
2860         case FW_ISO_CONTEXT_RECEIVE:
2861                 *channels |= 1ULL << channel;
2862                 break;
2863
2864         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2865                 ohci->mc_allocated = false;
2866                 break;
2867         }
2868         *mask |= 1 << index;
2869
2870         spin_unlock_irqrestore(&ohci->lock, flags);
2871
2872         return ERR_PTR(ret);
2873 }
2874
2875 static int ohci_start_iso(struct fw_iso_context *base,
2876                           s32 cycle, u32 sync, u32 tags)
2877 {
2878         struct iso_context *ctx = container_of(base, struct iso_context, base);
2879         struct fw_ohci *ohci = ctx->context.ohci;
2880         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2881         int index;
2882
2883         /* the controller cannot start without any queued packets */
2884         if (ctx->context.last->branch_address == 0)
2885                 return -ENODATA;
2886
2887         switch (ctx->base.type) {
2888         case FW_ISO_CONTEXT_TRANSMIT:
2889                 index = ctx - ohci->it_context_list;
2890                 match = 0;
2891                 if (cycle >= 0)
2892                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2893                                 (cycle & 0x7fff) << 16;
2894
2895                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2896                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2897                 context_run(&ctx->context, match);
2898                 break;
2899
2900         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2901                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2902                 /* fall through */
2903         case FW_ISO_CONTEXT_RECEIVE:
2904                 index = ctx - ohci->ir_context_list;
2905                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2906                 if (cycle >= 0) {
2907                         match |= (cycle & 0x07fff) << 12;
2908                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2909                 }
2910
2911                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2912                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2913                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2914                 context_run(&ctx->context, control);
2915
2916                 ctx->sync = sync;
2917                 ctx->tags = tags;
2918
2919                 break;
2920         }
2921
2922         return 0;
2923 }
2924
2925 static int ohci_stop_iso(struct fw_iso_context *base)
2926 {
2927         struct fw_ohci *ohci = fw_ohci(base->card);
2928         struct iso_context *ctx = container_of(base, struct iso_context, base);
2929         int index;
2930
2931         switch (ctx->base.type) {
2932         case FW_ISO_CONTEXT_TRANSMIT:
2933                 index = ctx - ohci->it_context_list;
2934                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2935                 break;
2936
2937         case FW_ISO_CONTEXT_RECEIVE:
2938         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2939                 index = ctx - ohci->ir_context_list;
2940                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2941                 break;
2942         }
2943         flush_writes(ohci);
2944         context_stop(&ctx->context);
2945         tasklet_kill(&ctx->context.tasklet);
2946
2947         return 0;
2948 }
2949
2950 static void ohci_free_iso_context(struct fw_iso_context *base)
2951 {
2952         struct fw_ohci *ohci = fw_ohci(base->card);
2953         struct iso_context *ctx = container_of(base, struct iso_context, base);
2954         unsigned long flags;
2955         int index;
2956
2957         ohci_stop_iso(base);
2958         context_release(&ctx->context);
2959         free_page((unsigned long)ctx->header);
2960
2961         spin_lock_irqsave(&ohci->lock, flags);
2962
2963         switch (base->type) {
2964         case FW_ISO_CONTEXT_TRANSMIT:
2965                 index = ctx - ohci->it_context_list;
2966                 ohci->it_context_mask |= 1 << index;
2967                 break;
2968
2969         case FW_ISO_CONTEXT_RECEIVE:
2970                 index = ctx - ohci->ir_context_list;
2971                 ohci->ir_context_mask |= 1 << index;
2972                 ohci->ir_context_channels |= 1ULL << base->channel;
2973                 break;
2974
2975         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2976                 index = ctx - ohci->ir_context_list;
2977                 ohci->ir_context_mask |= 1 << index;
2978                 ohci->ir_context_channels |= ohci->mc_channels;
2979                 ohci->mc_channels = 0;
2980                 ohci->mc_allocated = false;
2981                 break;
2982         }
2983
2984         spin_unlock_irqrestore(&ohci->lock, flags);
2985 }
2986
2987 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2988 {
2989         struct fw_ohci *ohci = fw_ohci(base->card);
2990         unsigned long flags;
2991         int ret;
2992
2993         switch (base->type) {
2994         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2995
2996                 spin_lock_irqsave(&ohci->lock, flags);
2997
2998                 /* Don't allow multichannel to grab other contexts' channels. */
2999                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3000                         *channels = ohci->ir_context_channels;
3001                         ret = -EBUSY;
3002                 } else {
3003                         set_multichannel_mask(ohci, *channels);
3004                         ret = 0;
3005                 }
3006
3007                 spin_unlock_irqrestore(&ohci->lock, flags);
3008
3009                 break;
3010         default:
3011                 ret = -EINVAL;
3012         }
3013
3014         return ret;
3015 }
3016
3017 #ifdef CONFIG_PM
3018 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3019 {
3020         int i;
3021         struct iso_context *ctx;
3022
3023         for (i = 0 ; i < ohci->n_ir ; i++) {
3024                 ctx = &ohci->ir_context_list[i];
3025                 if (ctx->context.running)
3026                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3027         }
3028
3029         for (i = 0 ; i < ohci->n_it ; i++) {
3030                 ctx = &ohci->it_context_list[i];
3031                 if (ctx->context.running)
3032                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3033         }
3034 }
3035 #endif
3036
3037 static int queue_iso_transmit(struct iso_context *ctx,
3038                               struct fw_iso_packet *packet,
3039                               struct fw_iso_buffer *buffer,
3040                               unsigned long payload)
3041 {
3042         struct descriptor *d, *last, *pd;
3043         struct fw_iso_packet *p;
3044         __le32 *header;
3045         dma_addr_t d_bus, page_bus;
3046         u32 z, header_z, payload_z, irq;
3047         u32 payload_index, payload_end_index, next_page_index;
3048         int page, end_page, i, length, offset;
3049
3050         p = packet;
3051         payload_index = payload;
3052
3053         if (p->skip)
3054                 z = 1;
3055         else
3056                 z = 2;
3057         if (p->header_length > 0)
3058                 z++;
3059
3060         /* Determine the first page the payload isn't contained in. */
3061         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3062         if (p->payload_length > 0)
3063                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3064         else
3065                 payload_z = 0;
3066
3067         z += payload_z;
3068
3069         /* Get header size in number of descriptors. */
3070         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3071
3072         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3073         if (d == NULL)
3074                 return -ENOMEM;
3075
3076         if (!p->skip) {
3077                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3078                 d[0].req_count = cpu_to_le16(8);
3079                 /*
3080                  * Link the skip address to this descriptor itself.  This causes
3081                  * a context to skip a cycle whenever lost cycles or FIFO
3082                  * overruns occur, without dropping the data.  The application
3083                  * should then decide whether this is an error condition or not.
3084                  * FIXME:  Make the context's cycle-lost behaviour configurable?
3085                  */
3086                 d[0].branch_address = cpu_to_le32(d_bus | z);
3087
3088                 header = (__le32 *) &d[1];
3089                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3090                                         IT_HEADER_TAG(p->tag) |
3091                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3092                                         IT_HEADER_CHANNEL(ctx->base.channel) |
3093                                         IT_HEADER_SPEED(ctx->base.speed));
3094                 header[1] =
3095                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3096                                                           p->payload_length));
3097         }
3098
3099         if (p->header_length > 0) {
3100                 d[2].req_count    = cpu_to_le16(p->header_length);
3101                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3102                 memcpy(&d[z], p->header, p->header_length);
3103         }
3104
3105         pd = d + z - payload_z;
3106         payload_end_index = payload_index + p->payload_length;
3107         for (i = 0; i < payload_z; i++) {
3108                 page               = payload_index >> PAGE_SHIFT;
3109                 offset             = payload_index & ~PAGE_MASK;
3110                 next_page_index    = (page + 1) << PAGE_SHIFT;
3111                 length             =
3112                         min(next_page_index, payload_end_index) - payload_index;
3113                 pd[i].req_count    = cpu_to_le16(length);
3114
3115                 page_bus = page_private(buffer->pages[page]);
3116                 pd[i].data_address = cpu_to_le32(page_bus + offset);
3117
3118                 payload_index += length;
3119         }
3120
3121         if (p->interrupt)
3122                 irq = DESCRIPTOR_IRQ_ALWAYS;
3123         else
3124                 irq = DESCRIPTOR_NO_IRQ;
3125
3126         last = z == 2 ? d : d + z - 1;
3127         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3128                                      DESCRIPTOR_STATUS |
3129                                      DESCRIPTOR_BRANCH_ALWAYS |
3130                                      irq);
3131
3132         context_append(&ctx->context, d, z, header_z);
3133
3134         return 0;
3135 }
3136
3137 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3138                                        struct fw_iso_packet *packet,
3139                                        struct fw_iso_buffer *buffer,
3140                                        unsigned long payload)
3141 {
3142         struct descriptor *d, *pd;
3143         dma_addr_t d_bus, page_bus;
3144         u32 z, header_z, rest;
3145         int i, j, length;
3146         int page, offset, packet_count, header_size, payload_per_buffer;
3147
3148         /*
3149          * The OHCI controller puts the isochronous header and trailer in the
3150          * buffer, so we need at least 8 bytes.
3151          */
3152         packet_count = packet->header_length / ctx->base.header_size;
3153         header_size  = max(ctx->base.header_size, (size_t)8);
3154
3155         /* Get header size in number of descriptors. */
3156         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3157         page     = payload >> PAGE_SHIFT;
3158         offset   = payload & ~PAGE_MASK;
3159         payload_per_buffer = packet->payload_length / packet_count;
3160
3161         for (i = 0; i < packet_count; i++) {
3162                 /* d points to the header descriptor */
3163                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3164                 d = context_get_descriptors(&ctx->context,
3165                                 z + header_z, &d_bus);
3166                 if (d == NULL)
3167                         return -ENOMEM;
3168
3169                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3170                                               DESCRIPTOR_INPUT_MORE);
3171                 if (packet->skip && i == 0)
3172                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3173                 d->req_count    = cpu_to_le16(header_size);
3174                 d->res_count    = d->req_count;
3175                 d->transfer_status = 0;
3176                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3177
3178                 rest = payload_per_buffer;
3179                 pd = d;
3180                 for (j = 1; j < z; j++) {
3181                         pd++;
3182                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3183                                                   DESCRIPTOR_INPUT_MORE);
3184
3185                         if (offset + rest < PAGE_SIZE)
3186                                 length = rest;
3187                         else
3188                                 length = PAGE_SIZE - offset;
3189                         pd->req_count = cpu_to_le16(length);
3190                         pd->res_count = pd->req_count;
3191                         pd->transfer_status = 0;
3192
3193                         page_bus = page_private(buffer->pages[page]);
3194                         pd->data_address = cpu_to_le32(page_bus + offset);
3195
3196                         offset = (offset + length) & ~PAGE_MASK;
3197                         rest -= length;
3198                         if (offset == 0)
3199                                 page++;
3200                 }
3201                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3202                                           DESCRIPTOR_INPUT_LAST |
3203                                           DESCRIPTOR_BRANCH_ALWAYS);
3204                 if (packet->interrupt && i == packet_count - 1)
3205                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3206
3207                 context_append(&ctx->context, d, z, header_z);
3208         }
3209
3210         return 0;
3211 }
3212
3213 static int queue_iso_buffer_fill(struct iso_context *ctx,
3214                                  struct fw_iso_packet *packet,
3215                                  struct fw_iso_buffer *buffer,
3216                                  unsigned long payload)
3217 {
3218         struct descriptor *d;
3219         dma_addr_t d_bus, page_bus;
3220         int page, offset, rest, z, i, length;
3221
3222         page   = payload >> PAGE_SHIFT;
3223         offset = payload & ~PAGE_MASK;
3224         rest   = packet->payload_length;
3225
3226         /* We need one descriptor for each page in the buffer. */
3227         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3228
3229         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3230                 return -EFAULT;
3231
3232         for (i = 0; i < z; i++) {
3233                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3234                 if (d == NULL)
3235                         return -ENOMEM;
3236
3237                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3238                                          DESCRIPTOR_BRANCH_ALWAYS);
3239                 if (packet->skip && i == 0)
3240                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3241                 if (packet->interrupt && i == z - 1)
3242                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3243
3244                 if (offset + rest < PAGE_SIZE)
3245                         length = rest;
3246                 else
3247                         length = PAGE_SIZE - offset;
3248                 d->req_count = cpu_to_le16(length);
3249                 d->res_count = d->req_count;
3250                 d->transfer_status = 0;
3251
3252                 page_bus = page_private(buffer->pages[page]);
3253                 d->data_address = cpu_to_le32(page_bus + offset);
3254
3255                 rest -= length;
3256                 offset = 0;
3257                 page++;
3258
3259                 context_append(&ctx->context, d, 1, 0);
3260         }
3261
3262         return 0;
3263 }
3264
3265 static int ohci_queue_iso(struct fw_iso_context *base,
3266                           struct fw_iso_packet *packet,
3267                           struct fw_iso_buffer *buffer,
3268                           unsigned long payload)
3269 {
3270         struct iso_context *ctx = container_of(base, struct iso_context, base);
3271         unsigned long flags;
3272         int ret = -ENOSYS;
3273
3274         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3275         switch (base->type) {
3276         case FW_ISO_CONTEXT_TRANSMIT:
3277                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3278                 break;
3279         case FW_ISO_CONTEXT_RECEIVE:
3280                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3281                 break;
3282         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3283                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3284                 break;
3285         }
3286         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3287
3288         return ret;
3289 }
3290
3291 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3292 {
3293         struct context *ctx =
3294                         &container_of(base, struct iso_context, base)->context;
3295
3296         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3297 }
3298
3299 static const struct fw_card_driver ohci_driver = {
3300         .enable                 = ohci_enable,
3301         .read_phy_reg           = ohci_read_phy_reg,
3302         .update_phy_reg         = ohci_update_phy_reg,
3303         .set_config_rom         = ohci_set_config_rom,
3304         .send_request           = ohci_send_request,
3305         .send_response          = ohci_send_response,
3306         .cancel_packet          = ohci_cancel_packet,
3307         .enable_phys_dma        = ohci_enable_phys_dma,
3308         .read_csr               = ohci_read_csr,
3309         .write_csr              = ohci_write_csr,
3310
3311         .allocate_iso_context   = ohci_allocate_iso_context,
3312         .free_iso_context       = ohci_free_iso_context,
3313         .set_iso_channels       = ohci_set_iso_channels,
3314         .queue_iso              = ohci_queue_iso,
3315         .flush_queue_iso        = ohci_flush_queue_iso,
3316         .start_iso              = ohci_start_iso,
3317         .stop_iso               = ohci_stop_iso,
3318 };
3319
3320 #ifdef CONFIG_PPC_PMAC
3321 static void pmac_ohci_on(struct pci_dev *dev)
3322 {
3323         if (machine_is(powermac)) {
3324                 struct device_node *ofn = pci_device_to_OF_node(dev);
3325
3326                 if (ofn) {
3327                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3328                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3329                 }
3330         }
3331 }
3332
3333 static void pmac_ohci_off(struct pci_dev *dev)
3334 {
3335         if (machine_is(powermac)) {
3336                 struct device_node *ofn = pci_device_to_OF_node(dev);
3337
3338                 if (ofn) {
3339                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3340                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3341                 }
3342         }
3343 }
3344 #else
3345 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3346 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3347 #endif /* CONFIG_PPC_PMAC */
3348
3349 static int __devinit pci_probe(struct pci_dev *dev,
3350                                const struct pci_device_id *ent)
3351 {
3352         struct fw_ohci *ohci;
3353         u32 bus_options, max_receive, link_speed, version;
3354         u64 guid;
3355         int i, err;
3356         size_t size;
3357
3358         if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3359                 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3360                 return -ENOSYS;
3361         }
3362
3363         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3364         if (ohci == NULL) {
3365                 err = -ENOMEM;
3366                 goto fail;
3367         }
3368
3369         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3370
3371         pmac_ohci_on(dev);
3372
3373         err = pci_enable_device(dev);
3374         if (err) {
3375                 fw_error("Failed to enable OHCI hardware\n");
3376                 goto fail_free;
3377         }
3378
3379         pci_set_master(dev);
3380         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3381         pci_set_drvdata(dev, ohci);
3382
3383         spin_lock_init(&ohci->lock);
3384         mutex_init(&ohci->phy_reg_mutex);
3385
3386         INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3387
3388         err = pci_request_region(dev, 0, ohci_driver_name);
3389         if (err) {
3390                 fw_error("MMIO resource unavailable\n");
3391                 goto fail_disable;
3392         }
3393
3394         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3395         if (ohci->registers == NULL) {
3396                 fw_error("Failed to remap registers\n");
3397                 err = -ENXIO;
3398                 goto fail_iomem;
3399         }
3400
3401         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3402                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3403                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3404                      ohci_quirks[i].device == dev->device) &&
3405                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3406                      ohci_quirks[i].revision >= dev->revision)) {
3407                         ohci->quirks = ohci_quirks[i].flags;
3408                         break;
3409                 }
3410         if (param_quirks)
3411                 ohci->quirks = param_quirks;
3412
3413         /*
3414          * Because dma_alloc_coherent() allocates at least one page,
3415          * we save space by using a common buffer for the AR request/
3416          * response descriptors and the self IDs buffer.
3417          */
3418         BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3419         BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3420         ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3421                                                PAGE_SIZE,
3422                                                &ohci->misc_buffer_bus,
3423                                                GFP_KERNEL);
3424         if (!ohci->misc_buffer) {
3425                 err = -ENOMEM;
3426                 goto fail_iounmap;
3427         }
3428
3429         err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3430                               OHCI1394_AsReqRcvContextControlSet);
3431         if (err < 0)
3432                 goto fail_misc_buf;
3433
3434         err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3435                               OHCI1394_AsRspRcvContextControlSet);
3436         if (err < 0)
3437                 goto fail_arreq_ctx;
3438
3439         err = context_init(&ohci->at_request_ctx, ohci,
3440                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3441         if (err < 0)
3442                 goto fail_arrsp_ctx;
3443
3444         err = context_init(&ohci->at_response_ctx, ohci,
3445                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3446         if (err < 0)
3447                 goto fail_atreq_ctx;
3448
3449         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3450         ohci->ir_context_channels = ~0ULL;
3451         ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3452         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3453         ohci->ir_context_mask = ohci->ir_context_support;
3454         ohci->n_ir = hweight32(ohci->ir_context_mask);
3455         size = sizeof(struct iso_context) * ohci->n_ir;
3456         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3457
3458         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3459         ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3460         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3461         ohci->it_context_mask = ohci->it_context_support;
3462         ohci->n_it = hweight32(ohci->it_context_mask);
3463         size = sizeof(struct iso_context) * ohci->n_it;
3464         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3465
3466         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3467                 err = -ENOMEM;
3468                 goto fail_contexts;
3469         }
3470
3471         ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
3472         ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3473
3474         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3475         max_receive = (bus_options >> 12) & 0xf;
3476         link_speed = bus_options & 0x7;
3477         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3478                 reg_read(ohci, OHCI1394_GUIDLo);
3479
3480         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3481         if (err)
3482                 goto fail_contexts;
3483
3484         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3485         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3486                   "%d IR + %d IT contexts, quirks 0x%x\n",
3487                   dev_name(&dev->dev), version >> 16, version & 0xff,
3488                   ohci->n_ir, ohci->n_it, ohci->quirks);
3489
3490         return 0;
3491
3492  fail_contexts:
3493         kfree(ohci->ir_context_list);
3494         kfree(ohci->it_context_list);
3495         context_release(&ohci->at_response_ctx);
3496  fail_atreq_ctx:
3497         context_release(&ohci->at_request_ctx);
3498  fail_arrsp_ctx:
3499         ar_context_release(&ohci->ar_response_ctx);
3500  fail_arreq_ctx:
3501         ar_context_release(&ohci->ar_request_ctx);
3502  fail_misc_buf:
3503         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3504                           ohci->misc_buffer, ohci->misc_buffer_bus);
3505  fail_iounmap:
3506         pci_iounmap(dev, ohci->registers);
3507  fail_iomem:
3508         pci_release_region(dev, 0);
3509  fail_disable:
3510         pci_disable_device(dev);
3511  fail_free:
3512         kfree(ohci);
3513         pmac_ohci_off(dev);
3514  fail:
3515         if (err == -ENOMEM)
3516                 fw_error("Out of memory\n");
3517
3518         return err;
3519 }
3520
3521 static void pci_remove(struct pci_dev *dev)
3522 {
3523         struct fw_ohci *ohci;
3524
3525         ohci = pci_get_drvdata(dev);
3526         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3527         flush_writes(ohci);
3528         cancel_work_sync(&ohci->bus_reset_work);
3529         fw_core_remove_card(&ohci->card);
3530
3531         /*
3532          * FIXME: Fail all pending packets here, now that the upper
3533          * layers can't queue any more.
3534          */
3535
3536         software_reset(ohci);
3537         free_irq(dev->irq, ohci);
3538
3539         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3540                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3541                                   ohci->next_config_rom, ohci->next_config_rom_bus);
3542         if (ohci->config_rom)
3543                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3544                                   ohci->config_rom, ohci->config_rom_bus);
3545         ar_context_release(&ohci->ar_request_ctx);
3546         ar_context_release(&ohci->ar_response_ctx);
3547         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3548                           ohci->misc_buffer, ohci->misc_buffer_bus);
3549         context_release(&ohci->at_request_ctx);
3550         context_release(&ohci->at_response_ctx);
3551         kfree(ohci->it_context_list);
3552         kfree(ohci->ir_context_list);
3553         pci_disable_msi(dev);
3554         pci_iounmap(dev, ohci->registers);
3555         pci_release_region(dev, 0);
3556         pci_disable_device(dev);
3557         kfree(ohci);
3558         pmac_ohci_off(dev);
3559
3560         fw_notify("Removed fw-ohci device.\n");
3561 }
3562
3563 #ifdef CONFIG_PM
3564 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3565 {
3566         struct fw_ohci *ohci = pci_get_drvdata(dev);
3567         int err;
3568
3569         software_reset(ohci);
3570         free_irq(dev->irq, ohci);
3571         pci_disable_msi(dev);
3572         err = pci_save_state(dev);
3573         if (err) {
3574                 fw_error("pci_save_state failed\n");
3575                 return err;
3576         }
3577         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3578         if (err)
3579                 fw_error("pci_set_power_state failed with %d\n", err);
3580         pmac_ohci_off(dev);
3581
3582         return 0;
3583 }
3584
3585 static int pci_resume(struct pci_dev *dev)
3586 {
3587         struct fw_ohci *ohci = pci_get_drvdata(dev);
3588         int err;
3589
3590         pmac_ohci_on(dev);
3591         pci_set_power_state(dev, PCI_D0);
3592         pci_restore_state(dev);
3593         err = pci_enable_device(dev);
3594         if (err) {
3595                 fw_error("pci_enable_device failed\n");
3596                 return err;
3597         }
3598
3599         /* Some systems don't setup GUID register on resume from ram  */
3600         if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3601                                         !reg_read(ohci, OHCI1394_GUIDHi)) {
3602                 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3603                 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3604         }
3605
3606         err = ohci_enable(&ohci->card, NULL, 0);
3607         if (err)
3608                 return err;
3609
3610         ohci_resume_iso_dma(ohci);
3611
3612         return 0;
3613 }
3614 #endif
3615
3616 static const struct pci_device_id pci_table[] = {
3617         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3618         { }
3619 };
3620
3621 MODULE_DEVICE_TABLE(pci, pci_table);
3622
3623 static struct pci_driver fw_ohci_pci_driver = {
3624         .name           = ohci_driver_name,
3625         .id_table       = pci_table,
3626         .probe          = pci_probe,
3627         .remove         = pci_remove,
3628 #ifdef CONFIG_PM
3629         .resume         = pci_resume,
3630         .suspend        = pci_suspend,
3631 #endif
3632 };
3633
3634 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3635 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3636 MODULE_LICENSE("GPL");
3637
3638 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3639 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3640 MODULE_ALIAS("ohci1394");
3641 #endif
3642
3643 static int __init fw_ohci_init(void)
3644 {
3645         return pci_register_driver(&fw_ohci_pci_driver);
3646 }
3647
3648 static void __exit fw_ohci_cleanup(void)
3649 {
3650         pci_unregister_driver(&fw_ohci_pci_driver);
3651 }
3652
3653 module_init(fw_ohci_init);
3654 module_exit(fw_ohci_cleanup);