firewire: ohci: properly clear posted write errors
[pandora-kernel.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/compiler.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/pci_ids.h>
39 #include <linux/slab.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/time.h>
43 #include <linux/vmalloc.h>
44
45 #include <asm/byteorder.h>
46 #include <asm/page.h>
47 #include <asm/system.h>
48
49 #ifdef CONFIG_PPC_PMAC
50 #include <asm/pmac_feature.h>
51 #endif
52
53 #include "core.h"
54 #include "ohci.h"
55
56 #define DESCRIPTOR_OUTPUT_MORE          0
57 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
58 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
59 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
60 #define DESCRIPTOR_STATUS               (1 << 11)
61 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
62 #define DESCRIPTOR_PING                 (1 << 7)
63 #define DESCRIPTOR_YY                   (1 << 6)
64 #define DESCRIPTOR_NO_IRQ               (0 << 4)
65 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
66 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
67 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
68 #define DESCRIPTOR_WAIT                 (3 << 0)
69
70 struct descriptor {
71         __le16 req_count;
72         __le16 control;
73         __le32 data_address;
74         __le32 branch_address;
75         __le16 res_count;
76         __le16 transfer_status;
77 } __attribute__((aligned(16)));
78
79 #define CONTROL_SET(regs)       (regs)
80 #define CONTROL_CLEAR(regs)     ((regs) + 4)
81 #define COMMAND_PTR(regs)       ((regs) + 12)
82 #define CONTEXT_MATCH(regs)     ((regs) + 16)
83
84 #define AR_BUFFER_SIZE  (32*1024)
85 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
86 /* we need at least two pages for proper list management */
87 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
88
89 #define MAX_ASYNC_PAYLOAD       4096
90 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
91 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
92
93 struct ar_context {
94         struct fw_ohci *ohci;
95         struct page *pages[AR_BUFFERS];
96         void *buffer;
97         struct descriptor *descriptors;
98         dma_addr_t descriptors_bus;
99         void *pointer;
100         unsigned int last_buffer_index;
101         u32 regs;
102         struct tasklet_struct tasklet;
103 };
104
105 struct context;
106
107 typedef int (*descriptor_callback_t)(struct context *ctx,
108                                      struct descriptor *d,
109                                      struct descriptor *last);
110
111 /*
112  * A buffer that contains a block of DMA-able coherent memory used for
113  * storing a portion of a DMA descriptor program.
114  */
115 struct descriptor_buffer {
116         struct list_head list;
117         dma_addr_t buffer_bus;
118         size_t buffer_size;
119         size_t used;
120         struct descriptor buffer[0];
121 };
122
123 struct context {
124         struct fw_ohci *ohci;
125         u32 regs;
126         int total_allocation;
127
128         /*
129          * List of page-sized buffers for storing DMA descriptors.
130          * Head of list contains buffers in use and tail of list contains
131          * free buffers.
132          */
133         struct list_head buffer_list;
134
135         /*
136          * Pointer to a buffer inside buffer_list that contains the tail
137          * end of the current DMA program.
138          */
139         struct descriptor_buffer *buffer_tail;
140
141         /*
142          * The descriptor containing the branch address of the first
143          * descriptor that has not yet been filled by the device.
144          */
145         struct descriptor *last;
146
147         /*
148          * The last descriptor in the DMA program.  It contains the branch
149          * address that must be updated upon appending a new descriptor.
150          */
151         struct descriptor *prev;
152
153         descriptor_callback_t callback;
154
155         struct tasklet_struct tasklet;
156 };
157
158 #define IT_HEADER_SY(v)          ((v) <<  0)
159 #define IT_HEADER_TCODE(v)       ((v) <<  4)
160 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
161 #define IT_HEADER_TAG(v)         ((v) << 14)
162 #define IT_HEADER_SPEED(v)       ((v) << 16)
163 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
164
165 struct iso_context {
166         struct fw_iso_context base;
167         struct context context;
168         int excess_bytes;
169         void *header;
170         size_t header_length;
171 };
172
173 #define CONFIG_ROM_SIZE 1024
174
175 struct fw_ohci {
176         struct fw_card card;
177
178         __iomem char *registers;
179         int node_id;
180         int generation;
181         int request_generation; /* for timestamping incoming requests */
182         unsigned quirks;
183         unsigned int pri_req_max;
184         u32 bus_time;
185         bool is_root;
186         bool csr_state_setclear_abdicate;
187
188         /*
189          * Spinlock for accessing fw_ohci data.  Never call out of
190          * this driver with this lock held.
191          */
192         spinlock_t lock;
193
194         struct mutex phy_reg_mutex;
195
196         struct ar_context ar_request_ctx;
197         struct ar_context ar_response_ctx;
198         struct context at_request_ctx;
199         struct context at_response_ctx;
200
201         u32 it_context_mask;     /* unoccupied IT contexts */
202         struct iso_context *it_context_list;
203         u64 ir_context_channels; /* unoccupied channels */
204         u32 ir_context_mask;     /* unoccupied IR contexts */
205         struct iso_context *ir_context_list;
206         u64 mc_channels; /* channels in use by the multichannel IR context */
207         bool mc_allocated;
208
209         __be32    *config_rom;
210         dma_addr_t config_rom_bus;
211         __be32    *next_config_rom;
212         dma_addr_t next_config_rom_bus;
213         __be32     next_header;
214
215         __le32    *self_id_cpu;
216         dma_addr_t self_id_bus;
217         struct tasklet_struct bus_reset_tasklet;
218
219         u32 self_id_buffer[512];
220 };
221
222 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
223 {
224         return container_of(card, struct fw_ohci, card);
225 }
226
227 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
228 #define IR_CONTEXT_BUFFER_FILL          0x80000000
229 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
230 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
231 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
232 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
233
234 #define CONTEXT_RUN     0x8000
235 #define CONTEXT_WAKE    0x1000
236 #define CONTEXT_DEAD    0x0800
237 #define CONTEXT_ACTIVE  0x0400
238
239 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
240 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
241 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
242
243 #define OHCI1394_REGISTER_SIZE          0x800
244 #define OHCI_LOOP_COUNT                 500
245 #define OHCI1394_PCI_HCI_Control        0x40
246 #define SELF_ID_BUF_SIZE                0x800
247 #define OHCI_TCODE_PHY_PACKET           0x0e
248 #define OHCI_VERSION_1_1                0x010010
249
250 static char ohci_driver_name[] = KBUILD_MODNAME;
251
252 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
253 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
254 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
255
256 #define QUIRK_CYCLE_TIMER               1
257 #define QUIRK_RESET_PACKET              2
258 #define QUIRK_BE_HEADERS                4
259 #define QUIRK_NO_1394A                  8
260 #define QUIRK_NO_MSI                    16
261
262 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
263 static const struct {
264         unsigned short vendor, device, revision, flags;
265 } ohci_quirks[] = {
266         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
267                 QUIRK_CYCLE_TIMER},
268
269         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
270                 QUIRK_BE_HEADERS},
271
272         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
273                 QUIRK_NO_MSI},
274
275         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
276                 QUIRK_NO_MSI},
277
278         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
279                 QUIRK_CYCLE_TIMER},
280
281         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
282                 QUIRK_CYCLE_TIMER},
283
284         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
285                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
286
287         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
288                 QUIRK_RESET_PACKET},
289
290         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
291                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
292 };
293
294 /* This overrides anything that was found in ohci_quirks[]. */
295 static int param_quirks;
296 module_param_named(quirks, param_quirks, int, 0644);
297 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
298         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
299         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
300         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
301         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
302         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
303         ")");
304
305 #define OHCI_PARAM_DEBUG_AT_AR          1
306 #define OHCI_PARAM_DEBUG_SELFIDS        2
307 #define OHCI_PARAM_DEBUG_IRQS           4
308 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
309
310 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
311
312 static int param_debug;
313 module_param_named(debug, param_debug, int, 0644);
314 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
315         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
316         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
317         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
318         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
319         ", or a combination, or all = -1)");
320
321 static void log_irqs(u32 evt)
322 {
323         if (likely(!(param_debug &
324                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
325                 return;
326
327         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
328             !(evt & OHCI1394_busReset))
329                 return;
330
331         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
332             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
333             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
334             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
335             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
336             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
337             evt & OHCI1394_isochRx              ? " IR"                 : "",
338             evt & OHCI1394_isochTx              ? " IT"                 : "",
339             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
340             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
341             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
342             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
343             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
344             evt & OHCI1394_busReset             ? " busReset"           : "",
345             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
346                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
347                     OHCI1394_respTxComplete | OHCI1394_isochRx |
348                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
349                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
350                     OHCI1394_cycleInconsistent |
351                     OHCI1394_regAccessFail | OHCI1394_busReset)
352                                                 ? " ?"                  : "");
353 }
354
355 static const char *speed[] = {
356         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
357 };
358 static const char *power[] = {
359         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
360         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
361 };
362 static const char port[] = { '.', '-', 'p', 'c', };
363
364 static char _p(u32 *s, int shift)
365 {
366         return port[*s >> shift & 3];
367 }
368
369 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
370 {
371         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
372                 return;
373
374         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
375                   self_id_count, generation, node_id);
376
377         for (; self_id_count--; ++s)
378                 if ((*s & 1 << 23) == 0)
379                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
380                             "%s gc=%d %s %s%s%s\n",
381                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
382                             speed[*s >> 14 & 3], *s >> 16 & 63,
383                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
384                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
385                 else
386                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
387                             *s, *s >> 24 & 63,
388                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
389                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
390 }
391
392 static const char *evts[] = {
393         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
394         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
395         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
396         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
397         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
398         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
399         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
400         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
401         [0x10] = "-reserved-",          [0x11] = "ack_complete",
402         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
403         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
404         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
405         [0x18] = "-reserved-",          [0x19] = "-reserved-",
406         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
407         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
408         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
409         [0x20] = "pending/cancelled",
410 };
411 static const char *tcodes[] = {
412         [0x0] = "QW req",               [0x1] = "BW req",
413         [0x2] = "W resp",               [0x3] = "-reserved-",
414         [0x4] = "QR req",               [0x5] = "BR req",
415         [0x6] = "QR resp",              [0x7] = "BR resp",
416         [0x8] = "cycle start",          [0x9] = "Lk req",
417         [0xa] = "async stream packet",  [0xb] = "Lk resp",
418         [0xc] = "-reserved-",           [0xd] = "-reserved-",
419         [0xe] = "link internal",        [0xf] = "-reserved-",
420 };
421 static const char *phys[] = {
422         [0x0] = "phy config packet",    [0x1] = "link-on packet",
423         [0x2] = "self-id packet",       [0x3] = "-reserved-",
424 };
425
426 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
427 {
428         int tcode = header[0] >> 4 & 0xf;
429         char specific[12];
430
431         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
432                 return;
433
434         if (unlikely(evt >= ARRAY_SIZE(evts)))
435                         evt = 0x1f;
436
437         if (evt == OHCI1394_evt_bus_reset) {
438                 fw_notify("A%c evt_bus_reset, generation %d\n",
439                     dir, (header[2] >> 16) & 0xff);
440                 return;
441         }
442
443         if (header[0] == ~header[1]) {
444                 fw_notify("A%c %s, %s, %08x\n",
445                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
446                 return;
447         }
448
449         switch (tcode) {
450         case 0x0: case 0x6: case 0x8:
451                 snprintf(specific, sizeof(specific), " = %08x",
452                          be32_to_cpu((__force __be32)header[3]));
453                 break;
454         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
455                 snprintf(specific, sizeof(specific), " %x,%x",
456                          header[3] >> 16, header[3] & 0xffff);
457                 break;
458         default:
459                 specific[0] = '\0';
460         }
461
462         switch (tcode) {
463         case 0xe: case 0xa:
464                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
465                 break;
466         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
467                 fw_notify("A%c spd %x tl %02x, "
468                     "%04x -> %04x, %s, "
469                     "%s, %04x%08x%s\n",
470                     dir, speed, header[0] >> 10 & 0x3f,
471                     header[1] >> 16, header[0] >> 16, evts[evt],
472                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
473                 break;
474         default:
475                 fw_notify("A%c spd %x tl %02x, "
476                     "%04x -> %04x, %s, "
477                     "%s%s\n",
478                     dir, speed, header[0] >> 10 & 0x3f,
479                     header[1] >> 16, header[0] >> 16, evts[evt],
480                     tcodes[tcode], specific);
481         }
482 }
483
484 #else
485
486 #define param_debug 0
487 static inline void log_irqs(u32 evt) {}
488 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
489 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
490
491 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
492
493 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
494 {
495         writel(data, ohci->registers + offset);
496 }
497
498 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
499 {
500         return readl(ohci->registers + offset);
501 }
502
503 static inline void flush_writes(const struct fw_ohci *ohci)
504 {
505         /* Do a dummy read to flush writes. */
506         reg_read(ohci, OHCI1394_Version);
507 }
508
509 static int read_phy_reg(struct fw_ohci *ohci, int addr)
510 {
511         u32 val;
512         int i;
513
514         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
515         for (i = 0; i < 3 + 100; i++) {
516                 val = reg_read(ohci, OHCI1394_PhyControl);
517                 if (val & OHCI1394_PhyControl_ReadDone)
518                         return OHCI1394_PhyControl_ReadData(val);
519
520                 /*
521                  * Try a few times without waiting.  Sleeping is necessary
522                  * only when the link/PHY interface is busy.
523                  */
524                 if (i >= 3)
525                         msleep(1);
526         }
527         fw_error("failed to read phy reg\n");
528
529         return -EBUSY;
530 }
531
532 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
533 {
534         int i;
535
536         reg_write(ohci, OHCI1394_PhyControl,
537                   OHCI1394_PhyControl_Write(addr, val));
538         for (i = 0; i < 3 + 100; i++) {
539                 val = reg_read(ohci, OHCI1394_PhyControl);
540                 if (!(val & OHCI1394_PhyControl_WritePending))
541                         return 0;
542
543                 if (i >= 3)
544                         msleep(1);
545         }
546         fw_error("failed to write phy reg\n");
547
548         return -EBUSY;
549 }
550
551 static int update_phy_reg(struct fw_ohci *ohci, int addr,
552                           int clear_bits, int set_bits)
553 {
554         int ret = read_phy_reg(ohci, addr);
555         if (ret < 0)
556                 return ret;
557
558         /*
559          * The interrupt status bits are cleared by writing a one bit.
560          * Avoid clearing them unless explicitly requested in set_bits.
561          */
562         if (addr == 5)
563                 clear_bits |= PHY_INT_STATUS_BITS;
564
565         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
566 }
567
568 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
569 {
570         int ret;
571
572         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
573         if (ret < 0)
574                 return ret;
575
576         return read_phy_reg(ohci, addr);
577 }
578
579 static int ohci_read_phy_reg(struct fw_card *card, int addr)
580 {
581         struct fw_ohci *ohci = fw_ohci(card);
582         int ret;
583
584         mutex_lock(&ohci->phy_reg_mutex);
585         ret = read_phy_reg(ohci, addr);
586         mutex_unlock(&ohci->phy_reg_mutex);
587
588         return ret;
589 }
590
591 static int ohci_update_phy_reg(struct fw_card *card, int addr,
592                                int clear_bits, int set_bits)
593 {
594         struct fw_ohci *ohci = fw_ohci(card);
595         int ret;
596
597         mutex_lock(&ohci->phy_reg_mutex);
598         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
599         mutex_unlock(&ohci->phy_reg_mutex);
600
601         return ret;
602 }
603
604 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
605 {
606         return page_private(ctx->pages[i]);
607 }
608
609 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
610 {
611         struct descriptor *d;
612
613         d = &ctx->descriptors[index];
614         d->branch_address  &= cpu_to_le32(~0xf);
615         d->res_count       =  cpu_to_le16(PAGE_SIZE);
616         d->transfer_status =  0;
617
618         wmb(); /* finish init of new descriptors before branch_address update */
619         d = &ctx->descriptors[ctx->last_buffer_index];
620         d->branch_address  |= cpu_to_le32(1);
621
622         ctx->last_buffer_index = index;
623
624         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
625         flush_writes(ctx->ohci);
626 }
627
628 static void ar_context_release(struct ar_context *ctx)
629 {
630         unsigned int i;
631
632         if (ctx->descriptors)
633                 dma_free_coherent(ctx->ohci->card.device,
634                                   AR_BUFFERS * sizeof(struct descriptor),
635                                   ctx->descriptors, ctx->descriptors_bus);
636
637         if (ctx->buffer)
638                 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
639
640         for (i = 0; i < AR_BUFFERS; i++)
641                 if (ctx->pages[i]) {
642                         dma_unmap_page(ctx->ohci->card.device,
643                                        ar_buffer_bus(ctx, i),
644                                        PAGE_SIZE, DMA_FROM_DEVICE);
645                         __free_page(ctx->pages[i]);
646                 }
647 }
648
649 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
650 {
651         if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
652                 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
653                 flush_writes(ctx->ohci);
654
655                 fw_error("AR error: %s; DMA stopped\n", error_msg);
656         }
657         /* FIXME: restart? */
658 }
659
660 static inline unsigned int ar_next_buffer_index(unsigned int index)
661 {
662         return (index + 1) % AR_BUFFERS;
663 }
664
665 static inline unsigned int ar_prev_buffer_index(unsigned int index)
666 {
667         return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
668 }
669
670 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
671 {
672         return ar_next_buffer_index(ctx->last_buffer_index);
673 }
674
675 /*
676  * We search for the buffer that contains the last AR packet DMA data written
677  * by the controller.
678  */
679 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
680                                                  unsigned int *buffer_offset)
681 {
682         unsigned int i, next_i, last = ctx->last_buffer_index;
683         __le16 res_count, next_res_count;
684
685         i = ar_first_buffer_index(ctx);
686         res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
687
688         /* A buffer that is not yet completely filled must be the last one. */
689         while (i != last && res_count == 0) {
690
691                 /* Peek at the next descriptor. */
692                 next_i = ar_next_buffer_index(i);
693                 rmb(); /* read descriptors in order */
694                 next_res_count = ACCESS_ONCE(
695                                 ctx->descriptors[next_i].res_count);
696                 /*
697                  * If the next descriptor is still empty, we must stop at this
698                  * descriptor.
699                  */
700                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
701                         /*
702                          * The exception is when the DMA data for one packet is
703                          * split over three buffers; in this case, the middle
704                          * buffer's descriptor might be never updated by the
705                          * controller and look still empty, and we have to peek
706                          * at the third one.
707                          */
708                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
709                                 next_i = ar_next_buffer_index(next_i);
710                                 rmb();
711                                 next_res_count = ACCESS_ONCE(
712                                         ctx->descriptors[next_i].res_count);
713                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
714                                         goto next_buffer_is_active;
715                         }
716
717                         break;
718                 }
719
720 next_buffer_is_active:
721                 i = next_i;
722                 res_count = next_res_count;
723         }
724
725         rmb(); /* read res_count before the DMA data */
726
727         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
728         if (*buffer_offset > PAGE_SIZE) {
729                 *buffer_offset = 0;
730                 ar_context_abort(ctx, "corrupted descriptor");
731         }
732
733         return i;
734 }
735
736 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
737                                     unsigned int end_buffer_index,
738                                     unsigned int end_buffer_offset)
739 {
740         unsigned int i;
741
742         i = ar_first_buffer_index(ctx);
743         while (i != end_buffer_index) {
744                 dma_sync_single_for_cpu(ctx->ohci->card.device,
745                                         ar_buffer_bus(ctx, i),
746                                         PAGE_SIZE, DMA_FROM_DEVICE);
747                 i = ar_next_buffer_index(i);
748         }
749         if (end_buffer_offset > 0)
750                 dma_sync_single_for_cpu(ctx->ohci->card.device,
751                                         ar_buffer_bus(ctx, i),
752                                         end_buffer_offset, DMA_FROM_DEVICE);
753 }
754
755 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
756 #define cond_le32_to_cpu(v) \
757         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
758 #else
759 #define cond_le32_to_cpu(v) le32_to_cpu(v)
760 #endif
761
762 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
763 {
764         struct fw_ohci *ohci = ctx->ohci;
765         struct fw_packet p;
766         u32 status, length, tcode;
767         int evt;
768
769         p.header[0] = cond_le32_to_cpu(buffer[0]);
770         p.header[1] = cond_le32_to_cpu(buffer[1]);
771         p.header[2] = cond_le32_to_cpu(buffer[2]);
772
773         tcode = (p.header[0] >> 4) & 0x0f;
774         switch (tcode) {
775         case TCODE_WRITE_QUADLET_REQUEST:
776         case TCODE_READ_QUADLET_RESPONSE:
777                 p.header[3] = (__force __u32) buffer[3];
778                 p.header_length = 16;
779                 p.payload_length = 0;
780                 break;
781
782         case TCODE_READ_BLOCK_REQUEST :
783                 p.header[3] = cond_le32_to_cpu(buffer[3]);
784                 p.header_length = 16;
785                 p.payload_length = 0;
786                 break;
787
788         case TCODE_WRITE_BLOCK_REQUEST:
789         case TCODE_READ_BLOCK_RESPONSE:
790         case TCODE_LOCK_REQUEST:
791         case TCODE_LOCK_RESPONSE:
792                 p.header[3] = cond_le32_to_cpu(buffer[3]);
793                 p.header_length = 16;
794                 p.payload_length = p.header[3] >> 16;
795                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
796                         ar_context_abort(ctx, "invalid packet length");
797                         return NULL;
798                 }
799                 break;
800
801         case TCODE_WRITE_RESPONSE:
802         case TCODE_READ_QUADLET_REQUEST:
803         case OHCI_TCODE_PHY_PACKET:
804                 p.header_length = 12;
805                 p.payload_length = 0;
806                 break;
807
808         default:
809                 ar_context_abort(ctx, "invalid tcode");
810                 return NULL;
811         }
812
813         p.payload = (void *) buffer + p.header_length;
814
815         /* FIXME: What to do about evt_* errors? */
816         length = (p.header_length + p.payload_length + 3) / 4;
817         status = cond_le32_to_cpu(buffer[length]);
818         evt    = (status >> 16) & 0x1f;
819
820         p.ack        = evt - 16;
821         p.speed      = (status >> 21) & 0x7;
822         p.timestamp  = status & 0xffff;
823         p.generation = ohci->request_generation;
824
825         log_ar_at_event('R', p.speed, p.header, evt);
826
827         /*
828          * Several controllers, notably from NEC and VIA, forget to
829          * write ack_complete status at PHY packet reception.
830          */
831         if (evt == OHCI1394_evt_no_status &&
832             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
833                 p.ack = ACK_COMPLETE;
834
835         /*
836          * The OHCI bus reset handler synthesizes a PHY packet with
837          * the new generation number when a bus reset happens (see
838          * section 8.4.2.3).  This helps us determine when a request
839          * was received and make sure we send the response in the same
840          * generation.  We only need this for requests; for responses
841          * we use the unique tlabel for finding the matching
842          * request.
843          *
844          * Alas some chips sometimes emit bus reset packets with a
845          * wrong generation.  We set the correct generation for these
846          * at a slightly incorrect time (in bus_reset_tasklet).
847          */
848         if (evt == OHCI1394_evt_bus_reset) {
849                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
850                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
851         } else if (ctx == &ohci->ar_request_ctx) {
852                 fw_core_handle_request(&ohci->card, &p);
853         } else {
854                 fw_core_handle_response(&ohci->card, &p);
855         }
856
857         return buffer + length + 1;
858 }
859
860 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
861 {
862         void *next;
863
864         while (p < end) {
865                 next = handle_ar_packet(ctx, p);
866                 if (!next)
867                         return p;
868                 p = next;
869         }
870
871         return p;
872 }
873
874 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
875 {
876         unsigned int i;
877
878         i = ar_first_buffer_index(ctx);
879         while (i != end_buffer) {
880                 dma_sync_single_for_device(ctx->ohci->card.device,
881                                            ar_buffer_bus(ctx, i),
882                                            PAGE_SIZE, DMA_FROM_DEVICE);
883                 ar_context_link_page(ctx, i);
884                 i = ar_next_buffer_index(i);
885         }
886 }
887
888 static void ar_context_tasklet(unsigned long data)
889 {
890         struct ar_context *ctx = (struct ar_context *)data;
891         unsigned int end_buffer_index, end_buffer_offset;
892         void *p, *end;
893
894         p = ctx->pointer;
895         if (!p)
896                 return;
897
898         end_buffer_index = ar_search_last_active_buffer(ctx,
899                                                         &end_buffer_offset);
900         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
901         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
902
903         if (end_buffer_index < ar_first_buffer_index(ctx)) {
904                 /*
905                  * The filled part of the overall buffer wraps around; handle
906                  * all packets up to the buffer end here.  If the last packet
907                  * wraps around, its tail will be visible after the buffer end
908                  * because the buffer start pages are mapped there again.
909                  */
910                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
911                 p = handle_ar_packets(ctx, p, buffer_end);
912                 if (p < buffer_end)
913                         goto error;
914                 /* adjust p to point back into the actual buffer */
915                 p -= AR_BUFFERS * PAGE_SIZE;
916         }
917
918         p = handle_ar_packets(ctx, p, end);
919         if (p != end) {
920                 if (p > end)
921                         ar_context_abort(ctx, "inconsistent descriptor");
922                 goto error;
923         }
924
925         ctx->pointer = p;
926         ar_recycle_buffers(ctx, end_buffer_index);
927
928         return;
929
930 error:
931         ctx->pointer = NULL;
932 }
933
934 static int ar_context_init(struct ar_context *ctx,
935                            struct fw_ohci *ohci, u32 regs)
936 {
937         unsigned int i;
938         dma_addr_t dma_addr;
939         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
940         struct descriptor *d;
941
942         ctx->regs        = regs;
943         ctx->ohci        = ohci;
944         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
945
946         for (i = 0; i < AR_BUFFERS; i++) {
947                 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
948                 if (!ctx->pages[i])
949                         goto out_of_memory;
950                 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
951                                         0, PAGE_SIZE, DMA_FROM_DEVICE);
952                 if (dma_mapping_error(ohci->card.device, dma_addr)) {
953                         __free_page(ctx->pages[i]);
954                         ctx->pages[i] = NULL;
955                         goto out_of_memory;
956                 }
957                 set_page_private(ctx->pages[i], dma_addr);
958         }
959
960         for (i = 0; i < AR_BUFFERS; i++)
961                 pages[i]              = ctx->pages[i];
962         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
963                 pages[AR_BUFFERS + i] = ctx->pages[i];
964         ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
965                                  -1, PAGE_KERNEL_RO);
966         if (!ctx->buffer)
967                 goto out_of_memory;
968
969         ctx->descriptors =
970                 dma_alloc_coherent(ohci->card.device,
971                                    AR_BUFFERS * sizeof(struct descriptor),
972                                    &ctx->descriptors_bus,
973                                    GFP_KERNEL);
974         if (!ctx->descriptors)
975                 goto out_of_memory;
976
977         for (i = 0; i < AR_BUFFERS; i++) {
978                 d = &ctx->descriptors[i];
979                 d->req_count      = cpu_to_le16(PAGE_SIZE);
980                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
981                                                 DESCRIPTOR_STATUS |
982                                                 DESCRIPTOR_BRANCH_ALWAYS);
983                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
984                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
985                         ar_next_buffer_index(i) * sizeof(struct descriptor));
986         }
987
988         return 0;
989
990 out_of_memory:
991         ar_context_release(ctx);
992
993         return -ENOMEM;
994 }
995
996 static void ar_context_run(struct ar_context *ctx)
997 {
998         unsigned int i;
999
1000         for (i = 0; i < AR_BUFFERS; i++)
1001                 ar_context_link_page(ctx, i);
1002
1003         ctx->pointer = ctx->buffer;
1004
1005         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1006         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1007         flush_writes(ctx->ohci);
1008 }
1009
1010 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1011 {
1012         int b, key;
1013
1014         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
1015         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
1016
1017         /* figure out which descriptor the branch address goes in */
1018         if (z == 2 && (b == 3 || key == 2))
1019                 return d;
1020         else
1021                 return d + z - 1;
1022 }
1023
1024 static void context_tasklet(unsigned long data)
1025 {
1026         struct context *ctx = (struct context *) data;
1027         struct descriptor *d, *last;
1028         u32 address;
1029         int z;
1030         struct descriptor_buffer *desc;
1031
1032         desc = list_entry(ctx->buffer_list.next,
1033                         struct descriptor_buffer, list);
1034         last = ctx->last;
1035         while (last->branch_address != 0) {
1036                 struct descriptor_buffer *old_desc = desc;
1037                 address = le32_to_cpu(last->branch_address);
1038                 z = address & 0xf;
1039                 address &= ~0xf;
1040
1041                 /* If the branch address points to a buffer outside of the
1042                  * current buffer, advance to the next buffer. */
1043                 if (address < desc->buffer_bus ||
1044                                 address >= desc->buffer_bus + desc->used)
1045                         desc = list_entry(desc->list.next,
1046                                         struct descriptor_buffer, list);
1047                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1048                 last = find_branch_descriptor(d, z);
1049
1050                 if (!ctx->callback(ctx, d, last))
1051                         break;
1052
1053                 if (old_desc != desc) {
1054                         /* If we've advanced to the next buffer, move the
1055                          * previous buffer to the free list. */
1056                         unsigned long flags;
1057                         old_desc->used = 0;
1058                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1059                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1060                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1061                 }
1062                 ctx->last = last;
1063         }
1064 }
1065
1066 /*
1067  * Allocate a new buffer and add it to the list of free buffers for this
1068  * context.  Must be called with ohci->lock held.
1069  */
1070 static int context_add_buffer(struct context *ctx)
1071 {
1072         struct descriptor_buffer *desc;
1073         dma_addr_t uninitialized_var(bus_addr);
1074         int offset;
1075
1076         /*
1077          * 16MB of descriptors should be far more than enough for any DMA
1078          * program.  This will catch run-away userspace or DoS attacks.
1079          */
1080         if (ctx->total_allocation >= 16*1024*1024)
1081                 return -ENOMEM;
1082
1083         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1084                         &bus_addr, GFP_ATOMIC);
1085         if (!desc)
1086                 return -ENOMEM;
1087
1088         offset = (void *)&desc->buffer - (void *)desc;
1089         desc->buffer_size = PAGE_SIZE - offset;
1090         desc->buffer_bus = bus_addr + offset;
1091         desc->used = 0;
1092
1093         list_add_tail(&desc->list, &ctx->buffer_list);
1094         ctx->total_allocation += PAGE_SIZE;
1095
1096         return 0;
1097 }
1098
1099 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1100                         u32 regs, descriptor_callback_t callback)
1101 {
1102         ctx->ohci = ohci;
1103         ctx->regs = regs;
1104         ctx->total_allocation = 0;
1105
1106         INIT_LIST_HEAD(&ctx->buffer_list);
1107         if (context_add_buffer(ctx) < 0)
1108                 return -ENOMEM;
1109
1110         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1111                         struct descriptor_buffer, list);
1112
1113         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1114         ctx->callback = callback;
1115
1116         /*
1117          * We put a dummy descriptor in the buffer that has a NULL
1118          * branch address and looks like it's been sent.  That way we
1119          * have a descriptor to append DMA programs to.
1120          */
1121         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1122         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1123         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1124         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1125         ctx->last = ctx->buffer_tail->buffer;
1126         ctx->prev = ctx->buffer_tail->buffer;
1127
1128         return 0;
1129 }
1130
1131 static void context_release(struct context *ctx)
1132 {
1133         struct fw_card *card = &ctx->ohci->card;
1134         struct descriptor_buffer *desc, *tmp;
1135
1136         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1137                 dma_free_coherent(card->device, PAGE_SIZE, desc,
1138                         desc->buffer_bus -
1139                         ((void *)&desc->buffer - (void *)desc));
1140 }
1141
1142 /* Must be called with ohci->lock held */
1143 static struct descriptor *context_get_descriptors(struct context *ctx,
1144                                                   int z, dma_addr_t *d_bus)
1145 {
1146         struct descriptor *d = NULL;
1147         struct descriptor_buffer *desc = ctx->buffer_tail;
1148
1149         if (z * sizeof(*d) > desc->buffer_size)
1150                 return NULL;
1151
1152         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1153                 /* No room for the descriptor in this buffer, so advance to the
1154                  * next one. */
1155
1156                 if (desc->list.next == &ctx->buffer_list) {
1157                         /* If there is no free buffer next in the list,
1158                          * allocate one. */
1159                         if (context_add_buffer(ctx) < 0)
1160                                 return NULL;
1161                 }
1162                 desc = list_entry(desc->list.next,
1163                                 struct descriptor_buffer, list);
1164                 ctx->buffer_tail = desc;
1165         }
1166
1167         d = desc->buffer + desc->used / sizeof(*d);
1168         memset(d, 0, z * sizeof(*d));
1169         *d_bus = desc->buffer_bus + desc->used;
1170
1171         return d;
1172 }
1173
1174 static void context_run(struct context *ctx, u32 extra)
1175 {
1176         struct fw_ohci *ohci = ctx->ohci;
1177
1178         reg_write(ohci, COMMAND_PTR(ctx->regs),
1179                   le32_to_cpu(ctx->last->branch_address));
1180         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1181         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1182         flush_writes(ohci);
1183 }
1184
1185 static void context_append(struct context *ctx,
1186                            struct descriptor *d, int z, int extra)
1187 {
1188         dma_addr_t d_bus;
1189         struct descriptor_buffer *desc = ctx->buffer_tail;
1190
1191         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1192
1193         desc->used += (z + extra) * sizeof(*d);
1194
1195         wmb(); /* finish init of new descriptors before branch_address update */
1196         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1197         ctx->prev = find_branch_descriptor(d, z);
1198
1199         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1200         flush_writes(ctx->ohci);
1201 }
1202
1203 static void context_stop(struct context *ctx)
1204 {
1205         u32 reg;
1206         int i;
1207
1208         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1209         flush_writes(ctx->ohci);
1210
1211         for (i = 0; i < 10; i++) {
1212                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1213                 if ((reg & CONTEXT_ACTIVE) == 0)
1214                         return;
1215
1216                 mdelay(1);
1217         }
1218         fw_error("Error: DMA context still active (0x%08x)\n", reg);
1219 }
1220
1221 struct driver_data {
1222         struct fw_packet *packet;
1223 };
1224
1225 /*
1226  * This function apppends a packet to the DMA queue for transmission.
1227  * Must always be called with the ochi->lock held to ensure proper
1228  * generation handling and locking around packet queue manipulation.
1229  */
1230 static int at_context_queue_packet(struct context *ctx,
1231                                    struct fw_packet *packet)
1232 {
1233         struct fw_ohci *ohci = ctx->ohci;
1234         dma_addr_t d_bus, uninitialized_var(payload_bus);
1235         struct driver_data *driver_data;
1236         struct descriptor *d, *last;
1237         __le32 *header;
1238         int z, tcode;
1239         u32 reg;
1240
1241         d = context_get_descriptors(ctx, 4, &d_bus);
1242         if (d == NULL) {
1243                 packet->ack = RCODE_SEND_ERROR;
1244                 return -1;
1245         }
1246
1247         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1248         d[0].res_count = cpu_to_le16(packet->timestamp);
1249
1250         /*
1251          * The DMA format for asyncronous link packets is different
1252          * from the IEEE1394 layout, so shift the fields around
1253          * accordingly.  If header_length is 8, it's a PHY packet, to
1254          * which we need to prepend an extra quadlet.
1255          */
1256
1257         header = (__le32 *) &d[1];
1258         switch (packet->header_length) {
1259         case 16:
1260         case 12:
1261                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1262                                         (packet->speed << 16));
1263                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1264                                         (packet->header[0] & 0xffff0000));
1265                 header[2] = cpu_to_le32(packet->header[2]);
1266
1267                 tcode = (packet->header[0] >> 4) & 0x0f;
1268                 if (TCODE_IS_BLOCK_PACKET(tcode))
1269                         header[3] = cpu_to_le32(packet->header[3]);
1270                 else
1271                         header[3] = (__force __le32) packet->header[3];
1272
1273                 d[0].req_count = cpu_to_le16(packet->header_length);
1274                 break;
1275
1276         case 8:
1277                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1278                                         (packet->speed << 16));
1279                 header[1] = cpu_to_le32(packet->header[0]);
1280                 header[2] = cpu_to_le32(packet->header[1]);
1281                 d[0].req_count = cpu_to_le16(12);
1282
1283                 if (is_ping_packet(packet->header))
1284                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1285                 break;
1286
1287         case 4:
1288                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1289                                         (packet->speed << 16));
1290                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1291                 d[0].req_count = cpu_to_le16(8);
1292                 break;
1293
1294         default:
1295                 /* BUG(); */
1296                 packet->ack = RCODE_SEND_ERROR;
1297                 return -1;
1298         }
1299
1300         driver_data = (struct driver_data *) &d[3];
1301         driver_data->packet = packet;
1302         packet->driver_data = driver_data;
1303
1304         if (packet->payload_length > 0) {
1305                 payload_bus =
1306                         dma_map_single(ohci->card.device, packet->payload,
1307                                        packet->payload_length, DMA_TO_DEVICE);
1308                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1309                         packet->ack = RCODE_SEND_ERROR;
1310                         return -1;
1311                 }
1312                 packet->payload_bus     = payload_bus;
1313                 packet->payload_mapped  = true;
1314
1315                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1316                 d[2].data_address = cpu_to_le32(payload_bus);
1317                 last = &d[2];
1318                 z = 3;
1319         } else {
1320                 last = &d[0];
1321                 z = 2;
1322         }
1323
1324         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1325                                      DESCRIPTOR_IRQ_ALWAYS |
1326                                      DESCRIPTOR_BRANCH_ALWAYS);
1327
1328         /*
1329          * If the controller and packet generations don't match, we need to
1330          * bail out and try again.  If IntEvent.busReset is set, the AT context
1331          * is halted, so appending to the context and trying to run it is
1332          * futile.  Most controllers do the right thing and just flush the AT
1333          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1334          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1335          * up stalling out.  So we just bail out in software and try again
1336          * later, and everyone is happy.
1337          * FIXME: Document how the locking works.
1338          */
1339         if (ohci->generation != packet->generation ||
1340             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1341                 if (packet->payload_mapped)
1342                         dma_unmap_single(ohci->card.device, payload_bus,
1343                                          packet->payload_length, DMA_TO_DEVICE);
1344                 packet->ack = RCODE_GENERATION;
1345                 return -1;
1346         }
1347
1348         context_append(ctx, d, z, 4 - z);
1349
1350         /* If the context isn't already running, start it up. */
1351         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1352         if ((reg & CONTEXT_RUN) == 0)
1353                 context_run(ctx, 0);
1354
1355         return 0;
1356 }
1357
1358 static int handle_at_packet(struct context *context,
1359                             struct descriptor *d,
1360                             struct descriptor *last)
1361 {
1362         struct driver_data *driver_data;
1363         struct fw_packet *packet;
1364         struct fw_ohci *ohci = context->ohci;
1365         int evt;
1366
1367         if (last->transfer_status == 0)
1368                 /* This descriptor isn't done yet, stop iteration. */
1369                 return 0;
1370
1371         driver_data = (struct driver_data *) &d[3];
1372         packet = driver_data->packet;
1373         if (packet == NULL)
1374                 /* This packet was cancelled, just continue. */
1375                 return 1;
1376
1377         if (packet->payload_mapped)
1378                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1379                                  packet->payload_length, DMA_TO_DEVICE);
1380
1381         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1382         packet->timestamp = le16_to_cpu(last->res_count);
1383
1384         log_ar_at_event('T', packet->speed, packet->header, evt);
1385
1386         switch (evt) {
1387         case OHCI1394_evt_timeout:
1388                 /* Async response transmit timed out. */
1389                 packet->ack = RCODE_CANCELLED;
1390                 break;
1391
1392         case OHCI1394_evt_flushed:
1393                 /*
1394                  * The packet was flushed should give same error as
1395                  * when we try to use a stale generation count.
1396                  */
1397                 packet->ack = RCODE_GENERATION;
1398                 break;
1399
1400         case OHCI1394_evt_missing_ack:
1401                 /*
1402                  * Using a valid (current) generation count, but the
1403                  * node is not on the bus or not sending acks.
1404                  */
1405                 packet->ack = RCODE_NO_ACK;
1406                 break;
1407
1408         case ACK_COMPLETE + 0x10:
1409         case ACK_PENDING + 0x10:
1410         case ACK_BUSY_X + 0x10:
1411         case ACK_BUSY_A + 0x10:
1412         case ACK_BUSY_B + 0x10:
1413         case ACK_DATA_ERROR + 0x10:
1414         case ACK_TYPE_ERROR + 0x10:
1415                 packet->ack = evt - 0x10;
1416                 break;
1417
1418         default:
1419                 packet->ack = RCODE_SEND_ERROR;
1420                 break;
1421         }
1422
1423         packet->callback(packet, &ohci->card, packet->ack);
1424
1425         return 1;
1426 }
1427
1428 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1429 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1430 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1431 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1432 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1433
1434 static void handle_local_rom(struct fw_ohci *ohci,
1435                              struct fw_packet *packet, u32 csr)
1436 {
1437         struct fw_packet response;
1438         int tcode, length, i;
1439
1440         tcode = HEADER_GET_TCODE(packet->header[0]);
1441         if (TCODE_IS_BLOCK_PACKET(tcode))
1442                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1443         else
1444                 length = 4;
1445
1446         i = csr - CSR_CONFIG_ROM;
1447         if (i + length > CONFIG_ROM_SIZE) {
1448                 fw_fill_response(&response, packet->header,
1449                                  RCODE_ADDRESS_ERROR, NULL, 0);
1450         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1451                 fw_fill_response(&response, packet->header,
1452                                  RCODE_TYPE_ERROR, NULL, 0);
1453         } else {
1454                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1455                                  (void *) ohci->config_rom + i, length);
1456         }
1457
1458         fw_core_handle_response(&ohci->card, &response);
1459 }
1460
1461 static void handle_local_lock(struct fw_ohci *ohci,
1462                               struct fw_packet *packet, u32 csr)
1463 {
1464         struct fw_packet response;
1465         int tcode, length, ext_tcode, sel, try;
1466         __be32 *payload, lock_old;
1467         u32 lock_arg, lock_data;
1468
1469         tcode = HEADER_GET_TCODE(packet->header[0]);
1470         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1471         payload = packet->payload;
1472         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1473
1474         if (tcode == TCODE_LOCK_REQUEST &&
1475             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1476                 lock_arg = be32_to_cpu(payload[0]);
1477                 lock_data = be32_to_cpu(payload[1]);
1478         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1479                 lock_arg = 0;
1480                 lock_data = 0;
1481         } else {
1482                 fw_fill_response(&response, packet->header,
1483                                  RCODE_TYPE_ERROR, NULL, 0);
1484                 goto out;
1485         }
1486
1487         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1488         reg_write(ohci, OHCI1394_CSRData, lock_data);
1489         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1490         reg_write(ohci, OHCI1394_CSRControl, sel);
1491
1492         for (try = 0; try < 20; try++)
1493                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1494                         lock_old = cpu_to_be32(reg_read(ohci,
1495                                                         OHCI1394_CSRData));
1496                         fw_fill_response(&response, packet->header,
1497                                          RCODE_COMPLETE,
1498                                          &lock_old, sizeof(lock_old));
1499                         goto out;
1500                 }
1501
1502         fw_error("swap not done (CSR lock timeout)\n");
1503         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1504
1505  out:
1506         fw_core_handle_response(&ohci->card, &response);
1507 }
1508
1509 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1510 {
1511         u64 offset, csr;
1512
1513         if (ctx == &ctx->ohci->at_request_ctx) {
1514                 packet->ack = ACK_PENDING;
1515                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1516         }
1517
1518         offset =
1519                 ((unsigned long long)
1520                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1521                 packet->header[2];
1522         csr = offset - CSR_REGISTER_BASE;
1523
1524         /* Handle config rom reads. */
1525         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1526                 handle_local_rom(ctx->ohci, packet, csr);
1527         else switch (csr) {
1528         case CSR_BUS_MANAGER_ID:
1529         case CSR_BANDWIDTH_AVAILABLE:
1530         case CSR_CHANNELS_AVAILABLE_HI:
1531         case CSR_CHANNELS_AVAILABLE_LO:
1532                 handle_local_lock(ctx->ohci, packet, csr);
1533                 break;
1534         default:
1535                 if (ctx == &ctx->ohci->at_request_ctx)
1536                         fw_core_handle_request(&ctx->ohci->card, packet);
1537                 else
1538                         fw_core_handle_response(&ctx->ohci->card, packet);
1539                 break;
1540         }
1541
1542         if (ctx == &ctx->ohci->at_response_ctx) {
1543                 packet->ack = ACK_COMPLETE;
1544                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1545         }
1546 }
1547
1548 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1549 {
1550         unsigned long flags;
1551         int ret;
1552
1553         spin_lock_irqsave(&ctx->ohci->lock, flags);
1554
1555         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1556             ctx->ohci->generation == packet->generation) {
1557                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1558                 handle_local_request(ctx, packet);
1559                 return;
1560         }
1561
1562         ret = at_context_queue_packet(ctx, packet);
1563         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1564
1565         if (ret < 0)
1566                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1567
1568 }
1569
1570 static u32 cycle_timer_ticks(u32 cycle_timer)
1571 {
1572         u32 ticks;
1573
1574         ticks = cycle_timer & 0xfff;
1575         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1576         ticks += (3072 * 8000) * (cycle_timer >> 25);
1577
1578         return ticks;
1579 }
1580
1581 /*
1582  * Some controllers exhibit one or more of the following bugs when updating the
1583  * iso cycle timer register:
1584  *  - When the lowest six bits are wrapping around to zero, a read that happens
1585  *    at the same time will return garbage in the lowest ten bits.
1586  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1587  *    not incremented for about 60 ns.
1588  *  - Occasionally, the entire register reads zero.
1589  *
1590  * To catch these, we read the register three times and ensure that the
1591  * difference between each two consecutive reads is approximately the same, i.e.
1592  * less than twice the other.  Furthermore, any negative difference indicates an
1593  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1594  * execute, so we have enough precision to compute the ratio of the differences.)
1595  */
1596 static u32 get_cycle_time(struct fw_ohci *ohci)
1597 {
1598         u32 c0, c1, c2;
1599         u32 t0, t1, t2;
1600         s32 diff01, diff12;
1601         int i;
1602
1603         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1604
1605         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1606                 i = 0;
1607                 c1 = c2;
1608                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1609                 do {
1610                         c0 = c1;
1611                         c1 = c2;
1612                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1613                         t0 = cycle_timer_ticks(c0);
1614                         t1 = cycle_timer_ticks(c1);
1615                         t2 = cycle_timer_ticks(c2);
1616                         diff01 = t1 - t0;
1617                         diff12 = t2 - t1;
1618                 } while ((diff01 <= 0 || diff12 <= 0 ||
1619                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1620                          && i++ < 20);
1621         }
1622
1623         return c2;
1624 }
1625
1626 /*
1627  * This function has to be called at least every 64 seconds.  The bus_time
1628  * field stores not only the upper 25 bits of the BUS_TIME register but also
1629  * the most significant bit of the cycle timer in bit 6 so that we can detect
1630  * changes in this bit.
1631  */
1632 static u32 update_bus_time(struct fw_ohci *ohci)
1633 {
1634         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1635
1636         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1637                 ohci->bus_time += 0x40;
1638
1639         return ohci->bus_time | cycle_time_seconds;
1640 }
1641
1642 static void bus_reset_tasklet(unsigned long data)
1643 {
1644         struct fw_ohci *ohci = (struct fw_ohci *)data;
1645         int self_id_count, i, j, reg;
1646         int generation, new_generation;
1647         unsigned long flags;
1648         void *free_rom = NULL;
1649         dma_addr_t free_rom_bus = 0;
1650         bool is_new_root;
1651
1652         reg = reg_read(ohci, OHCI1394_NodeID);
1653         if (!(reg & OHCI1394_NodeID_idValid)) {
1654                 fw_notify("node ID not valid, new bus reset in progress\n");
1655                 return;
1656         }
1657         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1658                 fw_notify("malconfigured bus\n");
1659                 return;
1660         }
1661         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1662                                OHCI1394_NodeID_nodeNumber);
1663
1664         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1665         if (!(ohci->is_root && is_new_root))
1666                 reg_write(ohci, OHCI1394_LinkControlSet,
1667                           OHCI1394_LinkControl_cycleMaster);
1668         ohci->is_root = is_new_root;
1669
1670         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1671         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1672                 fw_notify("inconsistent self IDs\n");
1673                 return;
1674         }
1675         /*
1676          * The count in the SelfIDCount register is the number of
1677          * bytes in the self ID receive buffer.  Since we also receive
1678          * the inverted quadlets and a header quadlet, we shift one
1679          * bit extra to get the actual number of self IDs.
1680          */
1681         self_id_count = (reg >> 3) & 0xff;
1682         if (self_id_count == 0 || self_id_count > 252) {
1683                 fw_notify("inconsistent self IDs\n");
1684                 return;
1685         }
1686         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1687         rmb();
1688
1689         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1690                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1691                         fw_notify("inconsistent self IDs\n");
1692                         return;
1693                 }
1694                 ohci->self_id_buffer[j] =
1695                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1696         }
1697         rmb();
1698
1699         /*
1700          * Check the consistency of the self IDs we just read.  The
1701          * problem we face is that a new bus reset can start while we
1702          * read out the self IDs from the DMA buffer. If this happens,
1703          * the DMA buffer will be overwritten with new self IDs and we
1704          * will read out inconsistent data.  The OHCI specification
1705          * (section 11.2) recommends a technique similar to
1706          * linux/seqlock.h, where we remember the generation of the
1707          * self IDs in the buffer before reading them out and compare
1708          * it to the current generation after reading them out.  If
1709          * the two generations match we know we have a consistent set
1710          * of self IDs.
1711          */
1712
1713         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1714         if (new_generation != generation) {
1715                 fw_notify("recursive bus reset detected, "
1716                           "discarding self ids\n");
1717                 return;
1718         }
1719
1720         /* FIXME: Document how the locking works. */
1721         spin_lock_irqsave(&ohci->lock, flags);
1722
1723         ohci->generation = generation;
1724         context_stop(&ohci->at_request_ctx);
1725         context_stop(&ohci->at_response_ctx);
1726         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1727
1728         if (ohci->quirks & QUIRK_RESET_PACKET)
1729                 ohci->request_generation = generation;
1730
1731         /*
1732          * This next bit is unrelated to the AT context stuff but we
1733          * have to do it under the spinlock also.  If a new config rom
1734          * was set up before this reset, the old one is now no longer
1735          * in use and we can free it. Update the config rom pointers
1736          * to point to the current config rom and clear the
1737          * next_config_rom pointer so a new update can take place.
1738          */
1739
1740         if (ohci->next_config_rom != NULL) {
1741                 if (ohci->next_config_rom != ohci->config_rom) {
1742                         free_rom      = ohci->config_rom;
1743                         free_rom_bus  = ohci->config_rom_bus;
1744                 }
1745                 ohci->config_rom      = ohci->next_config_rom;
1746                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1747                 ohci->next_config_rom = NULL;
1748
1749                 /*
1750                  * Restore config_rom image and manually update
1751                  * config_rom registers.  Writing the header quadlet
1752                  * will indicate that the config rom is ready, so we
1753                  * do that last.
1754                  */
1755                 reg_write(ohci, OHCI1394_BusOptions,
1756                           be32_to_cpu(ohci->config_rom[2]));
1757                 ohci->config_rom[0] = ohci->next_header;
1758                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1759                           be32_to_cpu(ohci->next_header));
1760         }
1761
1762 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1763         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1764         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1765 #endif
1766
1767         spin_unlock_irqrestore(&ohci->lock, flags);
1768
1769         if (free_rom)
1770                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1771                                   free_rom, free_rom_bus);
1772
1773         log_selfids(ohci->node_id, generation,
1774                     self_id_count, ohci->self_id_buffer);
1775
1776         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1777                                  self_id_count, ohci->self_id_buffer,
1778                                  ohci->csr_state_setclear_abdicate);
1779         ohci->csr_state_setclear_abdicate = false;
1780 }
1781
1782 static irqreturn_t irq_handler(int irq, void *data)
1783 {
1784         struct fw_ohci *ohci = data;
1785         u32 event, iso_event;
1786         int i;
1787
1788         event = reg_read(ohci, OHCI1394_IntEventClear);
1789
1790         if (!event || !~event)
1791                 return IRQ_NONE;
1792
1793         /*
1794          * busReset and postedWriteErr must not be cleared yet
1795          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1796          */
1797         reg_write(ohci, OHCI1394_IntEventClear,
1798                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1799         log_irqs(event);
1800
1801         if (event & OHCI1394_selfIDComplete)
1802                 tasklet_schedule(&ohci->bus_reset_tasklet);
1803
1804         if (event & OHCI1394_RQPkt)
1805                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1806
1807         if (event & OHCI1394_RSPkt)
1808                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1809
1810         if (event & OHCI1394_reqTxComplete)
1811                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1812
1813         if (event & OHCI1394_respTxComplete)
1814                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1815
1816         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1817         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1818
1819         while (iso_event) {
1820                 i = ffs(iso_event) - 1;
1821                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1822                 iso_event &= ~(1 << i);
1823         }
1824
1825         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1826         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1827
1828         while (iso_event) {
1829                 i = ffs(iso_event) - 1;
1830                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1831                 iso_event &= ~(1 << i);
1832         }
1833
1834         if (unlikely(event & OHCI1394_regAccessFail))
1835                 fw_error("Register access failure - "
1836                          "please notify linux1394-devel@lists.sf.net\n");
1837
1838         if (unlikely(event & OHCI1394_postedWriteErr)) {
1839                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1840                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1841                 reg_write(ohci, OHCI1394_IntEventClear,
1842                           OHCI1394_postedWriteErr);
1843                 fw_error("PCI posted write error\n");
1844         }
1845
1846         if (unlikely(event & OHCI1394_cycleTooLong)) {
1847                 if (printk_ratelimit())
1848                         fw_notify("isochronous cycle too long\n");
1849                 reg_write(ohci, OHCI1394_LinkControlSet,
1850                           OHCI1394_LinkControl_cycleMaster);
1851         }
1852
1853         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1854                 /*
1855                  * We need to clear this event bit in order to make
1856                  * cycleMatch isochronous I/O work.  In theory we should
1857                  * stop active cycleMatch iso contexts now and restart
1858                  * them at least two cycles later.  (FIXME?)
1859                  */
1860                 if (printk_ratelimit())
1861                         fw_notify("isochronous cycle inconsistent\n");
1862         }
1863
1864         if (event & OHCI1394_cycle64Seconds) {
1865                 spin_lock(&ohci->lock);
1866                 update_bus_time(ohci);
1867                 spin_unlock(&ohci->lock);
1868         } else
1869                 flush_writes(ohci);
1870
1871         return IRQ_HANDLED;
1872 }
1873
1874 static int software_reset(struct fw_ohci *ohci)
1875 {
1876         int i;
1877
1878         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1879
1880         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1881                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1882                      OHCI1394_HCControl_softReset) == 0)
1883                         return 0;
1884                 msleep(1);
1885         }
1886
1887         return -EBUSY;
1888 }
1889
1890 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1891 {
1892         size_t size = length * 4;
1893
1894         memcpy(dest, src, size);
1895         if (size < CONFIG_ROM_SIZE)
1896                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1897 }
1898
1899 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1900 {
1901         bool enable_1394a;
1902         int ret, clear, set, offset;
1903
1904         /* Check if the driver should configure link and PHY. */
1905         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1906               OHCI1394_HCControl_programPhyEnable))
1907                 return 0;
1908
1909         /* Paranoia: check whether the PHY supports 1394a, too. */
1910         enable_1394a = false;
1911         ret = read_phy_reg(ohci, 2);
1912         if (ret < 0)
1913                 return ret;
1914         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1915                 ret = read_paged_phy_reg(ohci, 1, 8);
1916                 if (ret < 0)
1917                         return ret;
1918                 if (ret >= 1)
1919                         enable_1394a = true;
1920         }
1921
1922         if (ohci->quirks & QUIRK_NO_1394A)
1923                 enable_1394a = false;
1924
1925         /* Configure PHY and link consistently. */
1926         if (enable_1394a) {
1927                 clear = 0;
1928                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1929         } else {
1930                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1931                 set = 0;
1932         }
1933         ret = update_phy_reg(ohci, 5, clear, set);
1934         if (ret < 0)
1935                 return ret;
1936
1937         if (enable_1394a)
1938                 offset = OHCI1394_HCControlSet;
1939         else
1940                 offset = OHCI1394_HCControlClear;
1941         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1942
1943         /* Clean up: configuration has been taken care of. */
1944         reg_write(ohci, OHCI1394_HCControlClear,
1945                   OHCI1394_HCControl_programPhyEnable);
1946
1947         return 0;
1948 }
1949
1950 static int ohci_enable(struct fw_card *card,
1951                        const __be32 *config_rom, size_t length)
1952 {
1953         struct fw_ohci *ohci = fw_ohci(card);
1954         struct pci_dev *dev = to_pci_dev(card->device);
1955         u32 lps, seconds, version, irqs;
1956         int i, ret;
1957
1958         if (software_reset(ohci)) {
1959                 fw_error("Failed to reset ohci card.\n");
1960                 return -EBUSY;
1961         }
1962
1963         /*
1964          * Now enable LPS, which we need in order to start accessing
1965          * most of the registers.  In fact, on some cards (ALI M5251),
1966          * accessing registers in the SClk domain without LPS enabled
1967          * will lock up the machine.  Wait 50msec to make sure we have
1968          * full link enabled.  However, with some cards (well, at least
1969          * a JMicron PCIe card), we have to try again sometimes.
1970          */
1971         reg_write(ohci, OHCI1394_HCControlSet,
1972                   OHCI1394_HCControl_LPS |
1973                   OHCI1394_HCControl_postedWriteEnable);
1974         flush_writes(ohci);
1975
1976         for (lps = 0, i = 0; !lps && i < 3; i++) {
1977                 msleep(50);
1978                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1979                       OHCI1394_HCControl_LPS;
1980         }
1981
1982         if (!lps) {
1983                 fw_error("Failed to set Link Power Status\n");
1984                 return -EIO;
1985         }
1986
1987         reg_write(ohci, OHCI1394_HCControlClear,
1988                   OHCI1394_HCControl_noByteSwapData);
1989
1990         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1991         reg_write(ohci, OHCI1394_LinkControlSet,
1992                   OHCI1394_LinkControl_rcvSelfID |
1993                   OHCI1394_LinkControl_rcvPhyPkt |
1994                   OHCI1394_LinkControl_cycleTimerEnable |
1995                   OHCI1394_LinkControl_cycleMaster);
1996
1997         reg_write(ohci, OHCI1394_ATRetries,
1998                   OHCI1394_MAX_AT_REQ_RETRIES |
1999                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2000                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2001                   (200 << 16));
2002
2003         seconds = lower_32_bits(get_seconds());
2004         reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2005         ohci->bus_time = seconds & ~0x3f;
2006
2007         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2008         if (version >= OHCI_VERSION_1_1) {
2009                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2010                           0xfffffffe);
2011                 card->broadcast_channel_auto_allocated = true;
2012         }
2013
2014         /* Get implemented bits of the priority arbitration request counter. */
2015         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2016         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2017         reg_write(ohci, OHCI1394_FairnessControl, 0);
2018         card->priority_budget_implemented = ohci->pri_req_max != 0;
2019
2020         ar_context_run(&ohci->ar_request_ctx);
2021         ar_context_run(&ohci->ar_response_ctx);
2022
2023         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2024         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2025         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2026
2027         ret = configure_1394a_enhancements(ohci);
2028         if (ret < 0)
2029                 return ret;
2030
2031         /* Activate link_on bit and contender bit in our self ID packets.*/
2032         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2033         if (ret < 0)
2034                 return ret;
2035
2036         /*
2037          * When the link is not yet enabled, the atomic config rom
2038          * update mechanism described below in ohci_set_config_rom()
2039          * is not active.  We have to update ConfigRomHeader and
2040          * BusOptions manually, and the write to ConfigROMmap takes
2041          * effect immediately.  We tie this to the enabling of the
2042          * link, so we have a valid config rom before enabling - the
2043          * OHCI requires that ConfigROMhdr and BusOptions have valid
2044          * values before enabling.
2045          *
2046          * However, when the ConfigROMmap is written, some controllers
2047          * always read back quadlets 0 and 2 from the config rom to
2048          * the ConfigRomHeader and BusOptions registers on bus reset.
2049          * They shouldn't do that in this initial case where the link
2050          * isn't enabled.  This means we have to use the same
2051          * workaround here, setting the bus header to 0 and then write
2052          * the right values in the bus reset tasklet.
2053          */
2054
2055         if (config_rom) {
2056                 ohci->next_config_rom =
2057                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2058                                            &ohci->next_config_rom_bus,
2059                                            GFP_KERNEL);
2060                 if (ohci->next_config_rom == NULL)
2061                         return -ENOMEM;
2062
2063                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2064         } else {
2065                 /*
2066                  * In the suspend case, config_rom is NULL, which
2067                  * means that we just reuse the old config rom.
2068                  */
2069                 ohci->next_config_rom = ohci->config_rom;
2070                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2071         }
2072
2073         ohci->next_header = ohci->next_config_rom[0];
2074         ohci->next_config_rom[0] = 0;
2075         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2076         reg_write(ohci, OHCI1394_BusOptions,
2077                   be32_to_cpu(ohci->next_config_rom[2]));
2078         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2079
2080         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2081
2082         if (!(ohci->quirks & QUIRK_NO_MSI))
2083                 pci_enable_msi(dev);
2084         if (request_irq(dev->irq, irq_handler,
2085                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2086                         ohci_driver_name, ohci)) {
2087                 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2088                 pci_disable_msi(dev);
2089                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2090                                   ohci->config_rom, ohci->config_rom_bus);
2091                 return -EIO;
2092         }
2093
2094         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2095                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2096                 OHCI1394_isochTx | OHCI1394_isochRx |
2097                 OHCI1394_postedWriteErr |
2098                 OHCI1394_selfIDComplete |
2099                 OHCI1394_regAccessFail |
2100                 OHCI1394_cycle64Seconds |
2101                 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
2102                 OHCI1394_masterIntEnable;
2103         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2104                 irqs |= OHCI1394_busReset;
2105         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2106
2107         reg_write(ohci, OHCI1394_HCControlSet,
2108                   OHCI1394_HCControl_linkEnable |
2109                   OHCI1394_HCControl_BIBimageValid);
2110         flush_writes(ohci);
2111
2112         /* We are ready to go, reset bus to finish initialization. */
2113         fw_schedule_bus_reset(&ohci->card, false, true);
2114
2115         return 0;
2116 }
2117
2118 static int ohci_set_config_rom(struct fw_card *card,
2119                                const __be32 *config_rom, size_t length)
2120 {
2121         struct fw_ohci *ohci;
2122         unsigned long flags;
2123         int ret = -EBUSY;
2124         __be32 *next_config_rom;
2125         dma_addr_t uninitialized_var(next_config_rom_bus);
2126
2127         ohci = fw_ohci(card);
2128
2129         /*
2130          * When the OHCI controller is enabled, the config rom update
2131          * mechanism is a bit tricky, but easy enough to use.  See
2132          * section 5.5.6 in the OHCI specification.
2133          *
2134          * The OHCI controller caches the new config rom address in a
2135          * shadow register (ConfigROMmapNext) and needs a bus reset
2136          * for the changes to take place.  When the bus reset is
2137          * detected, the controller loads the new values for the
2138          * ConfigRomHeader and BusOptions registers from the specified
2139          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2140          * shadow register. All automatically and atomically.
2141          *
2142          * Now, there's a twist to this story.  The automatic load of
2143          * ConfigRomHeader and BusOptions doesn't honor the
2144          * noByteSwapData bit, so with a be32 config rom, the
2145          * controller will load be32 values in to these registers
2146          * during the atomic update, even on litte endian
2147          * architectures.  The workaround we use is to put a 0 in the
2148          * header quadlet; 0 is endian agnostic and means that the
2149          * config rom isn't ready yet.  In the bus reset tasklet we
2150          * then set up the real values for the two registers.
2151          *
2152          * We use ohci->lock to avoid racing with the code that sets
2153          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2154          */
2155
2156         next_config_rom =
2157                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2158                                    &next_config_rom_bus, GFP_KERNEL);
2159         if (next_config_rom == NULL)
2160                 return -ENOMEM;
2161
2162         spin_lock_irqsave(&ohci->lock, flags);
2163
2164         if (ohci->next_config_rom == NULL) {
2165                 ohci->next_config_rom = next_config_rom;
2166                 ohci->next_config_rom_bus = next_config_rom_bus;
2167
2168                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2169
2170                 ohci->next_header = config_rom[0];
2171                 ohci->next_config_rom[0] = 0;
2172
2173                 reg_write(ohci, OHCI1394_ConfigROMmap,
2174                           ohci->next_config_rom_bus);
2175                 ret = 0;
2176         }
2177
2178         spin_unlock_irqrestore(&ohci->lock, flags);
2179
2180         /*
2181          * Now initiate a bus reset to have the changes take
2182          * effect. We clean up the old config rom memory and DMA
2183          * mappings in the bus reset tasklet, since the OHCI
2184          * controller could need to access it before the bus reset
2185          * takes effect.
2186          */
2187         if (ret == 0)
2188                 fw_schedule_bus_reset(&ohci->card, true, true);
2189         else
2190                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2191                                   next_config_rom, next_config_rom_bus);
2192
2193         return ret;
2194 }
2195
2196 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2197 {
2198         struct fw_ohci *ohci = fw_ohci(card);
2199
2200         at_context_transmit(&ohci->at_request_ctx, packet);
2201 }
2202
2203 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2204 {
2205         struct fw_ohci *ohci = fw_ohci(card);
2206
2207         at_context_transmit(&ohci->at_response_ctx, packet);
2208 }
2209
2210 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2211 {
2212         struct fw_ohci *ohci = fw_ohci(card);
2213         struct context *ctx = &ohci->at_request_ctx;
2214         struct driver_data *driver_data = packet->driver_data;
2215         int ret = -ENOENT;
2216
2217         tasklet_disable(&ctx->tasklet);
2218
2219         if (packet->ack != 0)
2220                 goto out;
2221
2222         if (packet->payload_mapped)
2223                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2224                                  packet->payload_length, DMA_TO_DEVICE);
2225
2226         log_ar_at_event('T', packet->speed, packet->header, 0x20);
2227         driver_data->packet = NULL;
2228         packet->ack = RCODE_CANCELLED;
2229         packet->callback(packet, &ohci->card, packet->ack);
2230         ret = 0;
2231  out:
2232         tasklet_enable(&ctx->tasklet);
2233
2234         return ret;
2235 }
2236
2237 static int ohci_enable_phys_dma(struct fw_card *card,
2238                                 int node_id, int generation)
2239 {
2240 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2241         return 0;
2242 #else
2243         struct fw_ohci *ohci = fw_ohci(card);
2244         unsigned long flags;
2245         int n, ret = 0;
2246
2247         /*
2248          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2249          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2250          */
2251
2252         spin_lock_irqsave(&ohci->lock, flags);
2253
2254         if (ohci->generation != generation) {
2255                 ret = -ESTALE;
2256                 goto out;
2257         }
2258
2259         /*
2260          * Note, if the node ID contains a non-local bus ID, physical DMA is
2261          * enabled for _all_ nodes on remote buses.
2262          */
2263
2264         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2265         if (n < 32)
2266                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2267         else
2268                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2269
2270         flush_writes(ohci);
2271  out:
2272         spin_unlock_irqrestore(&ohci->lock, flags);
2273
2274         return ret;
2275 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2276 }
2277
2278 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2279 {
2280         struct fw_ohci *ohci = fw_ohci(card);
2281         unsigned long flags;
2282         u32 value;
2283
2284         switch (csr_offset) {
2285         case CSR_STATE_CLEAR:
2286         case CSR_STATE_SET:
2287                 if (ohci->is_root &&
2288                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2289                      OHCI1394_LinkControl_cycleMaster))
2290                         value = CSR_STATE_BIT_CMSTR;
2291                 else
2292                         value = 0;
2293                 if (ohci->csr_state_setclear_abdicate)
2294                         value |= CSR_STATE_BIT_ABDICATE;
2295
2296                 return value;
2297
2298         case CSR_NODE_IDS:
2299                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2300
2301         case CSR_CYCLE_TIME:
2302                 return get_cycle_time(ohci);
2303
2304         case CSR_BUS_TIME:
2305                 /*
2306                  * We might be called just after the cycle timer has wrapped
2307                  * around but just before the cycle64Seconds handler, so we
2308                  * better check here, too, if the bus time needs to be updated.
2309                  */
2310                 spin_lock_irqsave(&ohci->lock, flags);
2311                 value = update_bus_time(ohci);
2312                 spin_unlock_irqrestore(&ohci->lock, flags);
2313                 return value;
2314
2315         case CSR_BUSY_TIMEOUT:
2316                 value = reg_read(ohci, OHCI1394_ATRetries);
2317                 return (value >> 4) & 0x0ffff00f;
2318
2319         case CSR_PRIORITY_BUDGET:
2320                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2321                         (ohci->pri_req_max << 8);
2322
2323         default:
2324                 WARN_ON(1);
2325                 return 0;
2326         }
2327 }
2328
2329 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2330 {
2331         struct fw_ohci *ohci = fw_ohci(card);
2332         unsigned long flags;
2333
2334         switch (csr_offset) {
2335         case CSR_STATE_CLEAR:
2336                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2337                         reg_write(ohci, OHCI1394_LinkControlClear,
2338                                   OHCI1394_LinkControl_cycleMaster);
2339                         flush_writes(ohci);
2340                 }
2341                 if (value & CSR_STATE_BIT_ABDICATE)
2342                         ohci->csr_state_setclear_abdicate = false;
2343                 break;
2344
2345         case CSR_STATE_SET:
2346                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2347                         reg_write(ohci, OHCI1394_LinkControlSet,
2348                                   OHCI1394_LinkControl_cycleMaster);
2349                         flush_writes(ohci);
2350                 }
2351                 if (value & CSR_STATE_BIT_ABDICATE)
2352                         ohci->csr_state_setclear_abdicate = true;
2353                 break;
2354
2355         case CSR_NODE_IDS:
2356                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2357                 flush_writes(ohci);
2358                 break;
2359
2360         case CSR_CYCLE_TIME:
2361                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2362                 reg_write(ohci, OHCI1394_IntEventSet,
2363                           OHCI1394_cycleInconsistent);
2364                 flush_writes(ohci);
2365                 break;
2366
2367         case CSR_BUS_TIME:
2368                 spin_lock_irqsave(&ohci->lock, flags);
2369                 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2370                 spin_unlock_irqrestore(&ohci->lock, flags);
2371                 break;
2372
2373         case CSR_BUSY_TIMEOUT:
2374                 value = (value & 0xf) | ((value & 0xf) << 4) |
2375                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2376                 reg_write(ohci, OHCI1394_ATRetries, value);
2377                 flush_writes(ohci);
2378                 break;
2379
2380         case CSR_PRIORITY_BUDGET:
2381                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2382                 flush_writes(ohci);
2383                 break;
2384
2385         default:
2386                 WARN_ON(1);
2387                 break;
2388         }
2389 }
2390
2391 static void copy_iso_headers(struct iso_context *ctx, void *p)
2392 {
2393         int i = ctx->header_length;
2394
2395         if (i + ctx->base.header_size > PAGE_SIZE)
2396                 return;
2397
2398         /*
2399          * The iso header is byteswapped to little endian by
2400          * the controller, but the remaining header quadlets
2401          * are big endian.  We want to present all the headers
2402          * as big endian, so we have to swap the first quadlet.
2403          */
2404         if (ctx->base.header_size > 0)
2405                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2406         if (ctx->base.header_size > 4)
2407                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2408         if (ctx->base.header_size > 8)
2409                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2410         ctx->header_length += ctx->base.header_size;
2411 }
2412
2413 static int handle_ir_packet_per_buffer(struct context *context,
2414                                        struct descriptor *d,
2415                                        struct descriptor *last)
2416 {
2417         struct iso_context *ctx =
2418                 container_of(context, struct iso_context, context);
2419         struct descriptor *pd;
2420         __le32 *ir_header;
2421         void *p;
2422
2423         for (pd = d; pd <= last; pd++)
2424                 if (pd->transfer_status)
2425                         break;
2426         if (pd > last)
2427                 /* Descriptor(s) not done yet, stop iteration */
2428                 return 0;
2429
2430         p = last + 1;
2431         copy_iso_headers(ctx, p);
2432
2433         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2434                 ir_header = (__le32 *) p;
2435                 ctx->base.callback.sc(&ctx->base,
2436                                       le32_to_cpu(ir_header[0]) & 0xffff,
2437                                       ctx->header_length, ctx->header,
2438                                       ctx->base.callback_data);
2439                 ctx->header_length = 0;
2440         }
2441
2442         return 1;
2443 }
2444
2445 /* d == last because each descriptor block is only a single descriptor. */
2446 static int handle_ir_buffer_fill(struct context *context,
2447                                  struct descriptor *d,
2448                                  struct descriptor *last)
2449 {
2450         struct iso_context *ctx =
2451                 container_of(context, struct iso_context, context);
2452
2453         if (!last->transfer_status)
2454                 /* Descriptor(s) not done yet, stop iteration */
2455                 return 0;
2456
2457         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2458                 ctx->base.callback.mc(&ctx->base,
2459                                       le32_to_cpu(last->data_address) +
2460                                       le16_to_cpu(last->req_count) -
2461                                       le16_to_cpu(last->res_count),
2462                                       ctx->base.callback_data);
2463
2464         return 1;
2465 }
2466
2467 static int handle_it_packet(struct context *context,
2468                             struct descriptor *d,
2469                             struct descriptor *last)
2470 {
2471         struct iso_context *ctx =
2472                 container_of(context, struct iso_context, context);
2473         int i;
2474         struct descriptor *pd;
2475
2476         for (pd = d; pd <= last; pd++)
2477                 if (pd->transfer_status)
2478                         break;
2479         if (pd > last)
2480                 /* Descriptor(s) not done yet, stop iteration */
2481                 return 0;
2482
2483         i = ctx->header_length;
2484         if (i + 4 < PAGE_SIZE) {
2485                 /* Present this value as big-endian to match the receive code */
2486                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2487                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2488                                 le16_to_cpu(pd->res_count));
2489                 ctx->header_length += 4;
2490         }
2491         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2492                 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2493                                       ctx->header_length, ctx->header,
2494                                       ctx->base.callback_data);
2495                 ctx->header_length = 0;
2496         }
2497         return 1;
2498 }
2499
2500 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2501 {
2502         u32 hi = channels >> 32, lo = channels;
2503
2504         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2505         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2506         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2507         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2508         mmiowb();
2509         ohci->mc_channels = channels;
2510 }
2511
2512 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2513                                 int type, int channel, size_t header_size)
2514 {
2515         struct fw_ohci *ohci = fw_ohci(card);
2516         struct iso_context *uninitialized_var(ctx);
2517         descriptor_callback_t uninitialized_var(callback);
2518         u64 *uninitialized_var(channels);
2519         u32 *uninitialized_var(mask), uninitialized_var(regs);
2520         unsigned long flags;
2521         int index, ret = -EBUSY;
2522
2523         spin_lock_irqsave(&ohci->lock, flags);
2524
2525         switch (type) {
2526         case FW_ISO_CONTEXT_TRANSMIT:
2527                 mask     = &ohci->it_context_mask;
2528                 callback = handle_it_packet;
2529                 index    = ffs(*mask) - 1;
2530                 if (index >= 0) {
2531                         *mask &= ~(1 << index);
2532                         regs = OHCI1394_IsoXmitContextBase(index);
2533                         ctx  = &ohci->it_context_list[index];
2534                 }
2535                 break;
2536
2537         case FW_ISO_CONTEXT_RECEIVE:
2538                 channels = &ohci->ir_context_channels;
2539                 mask     = &ohci->ir_context_mask;
2540                 callback = handle_ir_packet_per_buffer;
2541                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2542                 if (index >= 0) {
2543                         *channels &= ~(1ULL << channel);
2544                         *mask     &= ~(1 << index);
2545                         regs = OHCI1394_IsoRcvContextBase(index);
2546                         ctx  = &ohci->ir_context_list[index];
2547                 }
2548                 break;
2549
2550         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2551                 mask     = &ohci->ir_context_mask;
2552                 callback = handle_ir_buffer_fill;
2553                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2554                 if (index >= 0) {
2555                         ohci->mc_allocated = true;
2556                         *mask &= ~(1 << index);
2557                         regs = OHCI1394_IsoRcvContextBase(index);
2558                         ctx  = &ohci->ir_context_list[index];
2559                 }
2560                 break;
2561
2562         default:
2563                 index = -1;
2564                 ret = -ENOSYS;
2565         }
2566
2567         spin_unlock_irqrestore(&ohci->lock, flags);
2568
2569         if (index < 0)
2570                 return ERR_PTR(ret);
2571
2572         memset(ctx, 0, sizeof(*ctx));
2573         ctx->header_length = 0;
2574         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2575         if (ctx->header == NULL) {
2576                 ret = -ENOMEM;
2577                 goto out;
2578         }
2579         ret = context_init(&ctx->context, ohci, regs, callback);
2580         if (ret < 0)
2581                 goto out_with_header;
2582
2583         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2584                 set_multichannel_mask(ohci, 0);
2585
2586         return &ctx->base;
2587
2588  out_with_header:
2589         free_page((unsigned long)ctx->header);
2590  out:
2591         spin_lock_irqsave(&ohci->lock, flags);
2592
2593         switch (type) {
2594         case FW_ISO_CONTEXT_RECEIVE:
2595                 *channels |= 1ULL << channel;
2596                 break;
2597
2598         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2599                 ohci->mc_allocated = false;
2600                 break;
2601         }
2602         *mask |= 1 << index;
2603
2604         spin_unlock_irqrestore(&ohci->lock, flags);
2605
2606         return ERR_PTR(ret);
2607 }
2608
2609 static int ohci_start_iso(struct fw_iso_context *base,
2610                           s32 cycle, u32 sync, u32 tags)
2611 {
2612         struct iso_context *ctx = container_of(base, struct iso_context, base);
2613         struct fw_ohci *ohci = ctx->context.ohci;
2614         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2615         int index;
2616
2617         switch (ctx->base.type) {
2618         case FW_ISO_CONTEXT_TRANSMIT:
2619                 index = ctx - ohci->it_context_list;
2620                 match = 0;
2621                 if (cycle >= 0)
2622                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2623                                 (cycle & 0x7fff) << 16;
2624
2625                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2626                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2627                 context_run(&ctx->context, match);
2628                 break;
2629
2630         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2631                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2632                 /* fall through */
2633         case FW_ISO_CONTEXT_RECEIVE:
2634                 index = ctx - ohci->ir_context_list;
2635                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2636                 if (cycle >= 0) {
2637                         match |= (cycle & 0x07fff) << 12;
2638                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2639                 }
2640
2641                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2642                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2643                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2644                 context_run(&ctx->context, control);
2645                 break;
2646         }
2647
2648         return 0;
2649 }
2650
2651 static int ohci_stop_iso(struct fw_iso_context *base)
2652 {
2653         struct fw_ohci *ohci = fw_ohci(base->card);
2654         struct iso_context *ctx = container_of(base, struct iso_context, base);
2655         int index;
2656
2657         switch (ctx->base.type) {
2658         case FW_ISO_CONTEXT_TRANSMIT:
2659                 index = ctx - ohci->it_context_list;
2660                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2661                 break;
2662
2663         case FW_ISO_CONTEXT_RECEIVE:
2664         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2665                 index = ctx - ohci->ir_context_list;
2666                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2667                 break;
2668         }
2669         flush_writes(ohci);
2670         context_stop(&ctx->context);
2671
2672         return 0;
2673 }
2674
2675 static void ohci_free_iso_context(struct fw_iso_context *base)
2676 {
2677         struct fw_ohci *ohci = fw_ohci(base->card);
2678         struct iso_context *ctx = container_of(base, struct iso_context, base);
2679         unsigned long flags;
2680         int index;
2681
2682         ohci_stop_iso(base);
2683         context_release(&ctx->context);
2684         free_page((unsigned long)ctx->header);
2685
2686         spin_lock_irqsave(&ohci->lock, flags);
2687
2688         switch (base->type) {
2689         case FW_ISO_CONTEXT_TRANSMIT:
2690                 index = ctx - ohci->it_context_list;
2691                 ohci->it_context_mask |= 1 << index;
2692                 break;
2693
2694         case FW_ISO_CONTEXT_RECEIVE:
2695                 index = ctx - ohci->ir_context_list;
2696                 ohci->ir_context_mask |= 1 << index;
2697                 ohci->ir_context_channels |= 1ULL << base->channel;
2698                 break;
2699
2700         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2701                 index = ctx - ohci->ir_context_list;
2702                 ohci->ir_context_mask |= 1 << index;
2703                 ohci->ir_context_channels |= ohci->mc_channels;
2704                 ohci->mc_channels = 0;
2705                 ohci->mc_allocated = false;
2706                 break;
2707         }
2708
2709         spin_unlock_irqrestore(&ohci->lock, flags);
2710 }
2711
2712 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2713 {
2714         struct fw_ohci *ohci = fw_ohci(base->card);
2715         unsigned long flags;
2716         int ret;
2717
2718         switch (base->type) {
2719         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2720
2721                 spin_lock_irqsave(&ohci->lock, flags);
2722
2723                 /* Don't allow multichannel to grab other contexts' channels. */
2724                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2725                         *channels = ohci->ir_context_channels;
2726                         ret = -EBUSY;
2727                 } else {
2728                         set_multichannel_mask(ohci, *channels);
2729                         ret = 0;
2730                 }
2731
2732                 spin_unlock_irqrestore(&ohci->lock, flags);
2733
2734                 break;
2735         default:
2736                 ret = -EINVAL;
2737         }
2738
2739         return ret;
2740 }
2741
2742 static int queue_iso_transmit(struct iso_context *ctx,
2743                               struct fw_iso_packet *packet,
2744                               struct fw_iso_buffer *buffer,
2745                               unsigned long payload)
2746 {
2747         struct descriptor *d, *last, *pd;
2748         struct fw_iso_packet *p;
2749         __le32 *header;
2750         dma_addr_t d_bus, page_bus;
2751         u32 z, header_z, payload_z, irq;
2752         u32 payload_index, payload_end_index, next_page_index;
2753         int page, end_page, i, length, offset;
2754
2755         p = packet;
2756         payload_index = payload;
2757
2758         if (p->skip)
2759                 z = 1;
2760         else
2761                 z = 2;
2762         if (p->header_length > 0)
2763                 z++;
2764
2765         /* Determine the first page the payload isn't contained in. */
2766         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2767         if (p->payload_length > 0)
2768                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2769         else
2770                 payload_z = 0;
2771
2772         z += payload_z;
2773
2774         /* Get header size in number of descriptors. */
2775         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2776
2777         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2778         if (d == NULL)
2779                 return -ENOMEM;
2780
2781         if (!p->skip) {
2782                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2783                 d[0].req_count = cpu_to_le16(8);
2784                 /*
2785                  * Link the skip address to this descriptor itself.  This causes
2786                  * a context to skip a cycle whenever lost cycles or FIFO
2787                  * overruns occur, without dropping the data.  The application
2788                  * should then decide whether this is an error condition or not.
2789                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2790                  */
2791                 d[0].branch_address = cpu_to_le32(d_bus | z);
2792
2793                 header = (__le32 *) &d[1];
2794                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2795                                         IT_HEADER_TAG(p->tag) |
2796                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2797                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2798                                         IT_HEADER_SPEED(ctx->base.speed));
2799                 header[1] =
2800                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2801                                                           p->payload_length));
2802         }
2803
2804         if (p->header_length > 0) {
2805                 d[2].req_count    = cpu_to_le16(p->header_length);
2806                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2807                 memcpy(&d[z], p->header, p->header_length);
2808         }
2809
2810         pd = d + z - payload_z;
2811         payload_end_index = payload_index + p->payload_length;
2812         for (i = 0; i < payload_z; i++) {
2813                 page               = payload_index >> PAGE_SHIFT;
2814                 offset             = payload_index & ~PAGE_MASK;
2815                 next_page_index    = (page + 1) << PAGE_SHIFT;
2816                 length             =
2817                         min(next_page_index, payload_end_index) - payload_index;
2818                 pd[i].req_count    = cpu_to_le16(length);
2819
2820                 page_bus = page_private(buffer->pages[page]);
2821                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2822
2823                 payload_index += length;
2824         }
2825
2826         if (p->interrupt)
2827                 irq = DESCRIPTOR_IRQ_ALWAYS;
2828         else
2829                 irq = DESCRIPTOR_NO_IRQ;
2830
2831         last = z == 2 ? d : d + z - 1;
2832         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2833                                      DESCRIPTOR_STATUS |
2834                                      DESCRIPTOR_BRANCH_ALWAYS |
2835                                      irq);
2836
2837         context_append(&ctx->context, d, z, header_z);
2838
2839         return 0;
2840 }
2841
2842 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2843                                        struct fw_iso_packet *packet,
2844                                        struct fw_iso_buffer *buffer,
2845                                        unsigned long payload)
2846 {
2847         struct descriptor *d, *pd;
2848         dma_addr_t d_bus, page_bus;
2849         u32 z, header_z, rest;
2850         int i, j, length;
2851         int page, offset, packet_count, header_size, payload_per_buffer;
2852
2853         /*
2854          * The OHCI controller puts the isochronous header and trailer in the
2855          * buffer, so we need at least 8 bytes.
2856          */
2857         packet_count = packet->header_length / ctx->base.header_size;
2858         header_size  = max(ctx->base.header_size, (size_t)8);
2859
2860         /* Get header size in number of descriptors. */
2861         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2862         page     = payload >> PAGE_SHIFT;
2863         offset   = payload & ~PAGE_MASK;
2864         payload_per_buffer = packet->payload_length / packet_count;
2865
2866         for (i = 0; i < packet_count; i++) {
2867                 /* d points to the header descriptor */
2868                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2869                 d = context_get_descriptors(&ctx->context,
2870                                 z + header_z, &d_bus);
2871                 if (d == NULL)
2872                         return -ENOMEM;
2873
2874                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2875                                               DESCRIPTOR_INPUT_MORE);
2876                 if (packet->skip && i == 0)
2877                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2878                 d->req_count    = cpu_to_le16(header_size);
2879                 d->res_count    = d->req_count;
2880                 d->transfer_status = 0;
2881                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2882
2883                 rest = payload_per_buffer;
2884                 pd = d;
2885                 for (j = 1; j < z; j++) {
2886                         pd++;
2887                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2888                                                   DESCRIPTOR_INPUT_MORE);
2889
2890                         if (offset + rest < PAGE_SIZE)
2891                                 length = rest;
2892                         else
2893                                 length = PAGE_SIZE - offset;
2894                         pd->req_count = cpu_to_le16(length);
2895                         pd->res_count = pd->req_count;
2896                         pd->transfer_status = 0;
2897
2898                         page_bus = page_private(buffer->pages[page]);
2899                         pd->data_address = cpu_to_le32(page_bus + offset);
2900
2901                         offset = (offset + length) & ~PAGE_MASK;
2902                         rest -= length;
2903                         if (offset == 0)
2904                                 page++;
2905                 }
2906                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2907                                           DESCRIPTOR_INPUT_LAST |
2908                                           DESCRIPTOR_BRANCH_ALWAYS);
2909                 if (packet->interrupt && i == packet_count - 1)
2910                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2911
2912                 context_append(&ctx->context, d, z, header_z);
2913         }
2914
2915         return 0;
2916 }
2917
2918 static int queue_iso_buffer_fill(struct iso_context *ctx,
2919                                  struct fw_iso_packet *packet,
2920                                  struct fw_iso_buffer *buffer,
2921                                  unsigned long payload)
2922 {
2923         struct descriptor *d;
2924         dma_addr_t d_bus, page_bus;
2925         int page, offset, rest, z, i, length;
2926
2927         page   = payload >> PAGE_SHIFT;
2928         offset = payload & ~PAGE_MASK;
2929         rest   = packet->payload_length;
2930
2931         /* We need one descriptor for each page in the buffer. */
2932         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
2933
2934         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
2935                 return -EFAULT;
2936
2937         for (i = 0; i < z; i++) {
2938                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
2939                 if (d == NULL)
2940                         return -ENOMEM;
2941
2942                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
2943                                          DESCRIPTOR_BRANCH_ALWAYS);
2944                 if (packet->skip && i == 0)
2945                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2946                 if (packet->interrupt && i == z - 1)
2947                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2948
2949                 if (offset + rest < PAGE_SIZE)
2950                         length = rest;
2951                 else
2952                         length = PAGE_SIZE - offset;
2953                 d->req_count = cpu_to_le16(length);
2954                 d->res_count = d->req_count;
2955                 d->transfer_status = 0;
2956
2957                 page_bus = page_private(buffer->pages[page]);
2958                 d->data_address = cpu_to_le32(page_bus + offset);
2959
2960                 rest -= length;
2961                 offset = 0;
2962                 page++;
2963
2964                 context_append(&ctx->context, d, 1, 0);
2965         }
2966
2967         return 0;
2968 }
2969
2970 static int ohci_queue_iso(struct fw_iso_context *base,
2971                           struct fw_iso_packet *packet,
2972                           struct fw_iso_buffer *buffer,
2973                           unsigned long payload)
2974 {
2975         struct iso_context *ctx = container_of(base, struct iso_context, base);
2976         unsigned long flags;
2977         int ret = -ENOSYS;
2978
2979         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2980         switch (base->type) {
2981         case FW_ISO_CONTEXT_TRANSMIT:
2982                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
2983                 break;
2984         case FW_ISO_CONTEXT_RECEIVE:
2985                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
2986                 break;
2987         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2988                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
2989                 break;
2990         }
2991         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2992
2993         return ret;
2994 }
2995
2996 static const struct fw_card_driver ohci_driver = {
2997         .enable                 = ohci_enable,
2998         .read_phy_reg           = ohci_read_phy_reg,
2999         .update_phy_reg         = ohci_update_phy_reg,
3000         .set_config_rom         = ohci_set_config_rom,
3001         .send_request           = ohci_send_request,
3002         .send_response          = ohci_send_response,
3003         .cancel_packet          = ohci_cancel_packet,
3004         .enable_phys_dma        = ohci_enable_phys_dma,
3005         .read_csr               = ohci_read_csr,
3006         .write_csr              = ohci_write_csr,
3007
3008         .allocate_iso_context   = ohci_allocate_iso_context,
3009         .free_iso_context       = ohci_free_iso_context,
3010         .set_iso_channels       = ohci_set_iso_channels,
3011         .queue_iso              = ohci_queue_iso,
3012         .start_iso              = ohci_start_iso,
3013         .stop_iso               = ohci_stop_iso,
3014 };
3015
3016 #ifdef CONFIG_PPC_PMAC
3017 static void pmac_ohci_on(struct pci_dev *dev)
3018 {
3019         if (machine_is(powermac)) {
3020                 struct device_node *ofn = pci_device_to_OF_node(dev);
3021
3022                 if (ofn) {
3023                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3024                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3025                 }
3026         }
3027 }
3028
3029 static void pmac_ohci_off(struct pci_dev *dev)
3030 {
3031         if (machine_is(powermac)) {
3032                 struct device_node *ofn = pci_device_to_OF_node(dev);
3033
3034                 if (ofn) {
3035                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3036                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3037                 }
3038         }
3039 }
3040 #else
3041 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3042 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3043 #endif /* CONFIG_PPC_PMAC */
3044
3045 static int __devinit pci_probe(struct pci_dev *dev,
3046                                const struct pci_device_id *ent)
3047 {
3048         struct fw_ohci *ohci;
3049         u32 bus_options, max_receive, link_speed, version;
3050         u64 guid;
3051         int i, err, n_ir, n_it;
3052         size_t size;
3053
3054         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3055         if (ohci == NULL) {
3056                 err = -ENOMEM;
3057                 goto fail;
3058         }
3059
3060         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3061
3062         pmac_ohci_on(dev);
3063
3064         err = pci_enable_device(dev);
3065         if (err) {
3066                 fw_error("Failed to enable OHCI hardware\n");
3067                 goto fail_free;
3068         }
3069
3070         pci_set_master(dev);
3071         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3072         pci_set_drvdata(dev, ohci);
3073
3074         spin_lock_init(&ohci->lock);
3075         mutex_init(&ohci->phy_reg_mutex);
3076
3077         tasklet_init(&ohci->bus_reset_tasklet,
3078                      bus_reset_tasklet, (unsigned long)ohci);
3079
3080         err = pci_request_region(dev, 0, ohci_driver_name);
3081         if (err) {
3082                 fw_error("MMIO resource unavailable\n");
3083                 goto fail_disable;
3084         }
3085
3086         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3087         if (ohci->registers == NULL) {
3088                 fw_error("Failed to remap registers\n");
3089                 err = -ENXIO;
3090                 goto fail_iomem;
3091         }
3092
3093         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3094                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3095                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3096                      ohci_quirks[i].device == dev->device) &&
3097                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3098                      ohci_quirks[i].revision >= dev->revision)) {
3099                         ohci->quirks = ohci_quirks[i].flags;
3100                         break;
3101                 }
3102         if (param_quirks)
3103                 ohci->quirks = param_quirks;
3104
3105         err = ar_context_init(&ohci->ar_request_ctx, ohci,
3106                               OHCI1394_AsReqRcvContextControlSet);
3107         if (err < 0)
3108                 goto fail_iounmap;
3109
3110         err = ar_context_init(&ohci->ar_response_ctx, ohci,
3111                               OHCI1394_AsRspRcvContextControlSet);
3112         if (err < 0)
3113                 goto fail_arreq_ctx;
3114
3115         err = context_init(&ohci->at_request_ctx, ohci,
3116                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3117         if (err < 0)
3118                 goto fail_arrsp_ctx;
3119
3120         err = context_init(&ohci->at_response_ctx, ohci,
3121                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3122         if (err < 0)
3123                 goto fail_atreq_ctx;
3124
3125         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3126         ohci->ir_context_channels = ~0ULL;
3127         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3128         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3129         n_ir = hweight32(ohci->ir_context_mask);
3130         size = sizeof(struct iso_context) * n_ir;
3131         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3132
3133         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3134         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3135         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3136         n_it = hweight32(ohci->it_context_mask);
3137         size = sizeof(struct iso_context) * n_it;
3138         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3139
3140         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3141                 err = -ENOMEM;
3142                 goto fail_contexts;
3143         }
3144
3145         /* self-id dma buffer allocation */
3146         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
3147                                                SELF_ID_BUF_SIZE,
3148                                                &ohci->self_id_bus,
3149                                                GFP_KERNEL);
3150         if (ohci->self_id_cpu == NULL) {
3151                 err = -ENOMEM;
3152                 goto fail_contexts;
3153         }
3154
3155         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3156         max_receive = (bus_options >> 12) & 0xf;
3157         link_speed = bus_options & 0x7;
3158         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3159                 reg_read(ohci, OHCI1394_GUIDLo);
3160
3161         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3162         if (err)
3163                 goto fail_self_id;
3164
3165         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3166         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3167                   "%d IR + %d IT contexts, quirks 0x%x\n",
3168                   dev_name(&dev->dev), version >> 16, version & 0xff,
3169                   n_ir, n_it, ohci->quirks);
3170
3171         return 0;
3172
3173  fail_self_id:
3174         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
3175                           ohci->self_id_cpu, ohci->self_id_bus);
3176  fail_contexts:
3177         kfree(ohci->ir_context_list);
3178         kfree(ohci->it_context_list);
3179         context_release(&ohci->at_response_ctx);
3180  fail_atreq_ctx:
3181         context_release(&ohci->at_request_ctx);
3182  fail_arrsp_ctx:
3183         ar_context_release(&ohci->ar_response_ctx);
3184  fail_arreq_ctx:
3185         ar_context_release(&ohci->ar_request_ctx);
3186  fail_iounmap:
3187         pci_iounmap(dev, ohci->registers);
3188  fail_iomem:
3189         pci_release_region(dev, 0);
3190  fail_disable:
3191         pci_disable_device(dev);
3192  fail_free:
3193         kfree(&ohci->card);
3194         pmac_ohci_off(dev);
3195  fail:
3196         if (err == -ENOMEM)
3197                 fw_error("Out of memory\n");
3198
3199         return err;
3200 }
3201
3202 static void pci_remove(struct pci_dev *dev)
3203 {
3204         struct fw_ohci *ohci;
3205
3206         ohci = pci_get_drvdata(dev);
3207         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3208         flush_writes(ohci);
3209         fw_core_remove_card(&ohci->card);
3210
3211         /*
3212          * FIXME: Fail all pending packets here, now that the upper
3213          * layers can't queue any more.
3214          */
3215
3216         software_reset(ohci);
3217         free_irq(dev->irq, ohci);
3218
3219         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3220                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3221                                   ohci->next_config_rom, ohci->next_config_rom_bus);
3222         if (ohci->config_rom)
3223                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3224                                   ohci->config_rom, ohci->config_rom_bus);
3225         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
3226                           ohci->self_id_cpu, ohci->self_id_bus);
3227         ar_context_release(&ohci->ar_request_ctx);
3228         ar_context_release(&ohci->ar_response_ctx);
3229         context_release(&ohci->at_request_ctx);
3230         context_release(&ohci->at_response_ctx);
3231         kfree(ohci->it_context_list);
3232         kfree(ohci->ir_context_list);
3233         pci_disable_msi(dev);
3234         pci_iounmap(dev, ohci->registers);
3235         pci_release_region(dev, 0);
3236         pci_disable_device(dev);
3237         kfree(&ohci->card);
3238         pmac_ohci_off(dev);
3239
3240         fw_notify("Removed fw-ohci device.\n");
3241 }
3242
3243 #ifdef CONFIG_PM
3244 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3245 {
3246         struct fw_ohci *ohci = pci_get_drvdata(dev);
3247         int err;
3248
3249         software_reset(ohci);
3250         free_irq(dev->irq, ohci);
3251         pci_disable_msi(dev);
3252         err = pci_save_state(dev);
3253         if (err) {
3254                 fw_error("pci_save_state failed\n");
3255                 return err;
3256         }
3257         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3258         if (err)
3259                 fw_error("pci_set_power_state failed with %d\n", err);
3260         pmac_ohci_off(dev);
3261
3262         return 0;
3263 }
3264
3265 static int pci_resume(struct pci_dev *dev)
3266 {
3267         struct fw_ohci *ohci = pci_get_drvdata(dev);
3268         int err;
3269
3270         pmac_ohci_on(dev);
3271         pci_set_power_state(dev, PCI_D0);
3272         pci_restore_state(dev);
3273         err = pci_enable_device(dev);
3274         if (err) {
3275                 fw_error("pci_enable_device failed\n");
3276                 return err;
3277         }
3278
3279         return ohci_enable(&ohci->card, NULL, 0);
3280 }
3281 #endif
3282
3283 static const struct pci_device_id pci_table[] = {
3284         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3285         { }
3286 };
3287
3288 MODULE_DEVICE_TABLE(pci, pci_table);
3289
3290 static struct pci_driver fw_ohci_pci_driver = {
3291         .name           = ohci_driver_name,
3292         .id_table       = pci_table,
3293         .probe          = pci_probe,
3294         .remove         = pci_remove,
3295 #ifdef CONFIG_PM
3296         .resume         = pci_resume,
3297         .suspend        = pci_suspend,
3298 #endif
3299 };
3300
3301 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3302 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3303 MODULE_LICENSE("GPL");
3304
3305 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3306 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3307 MODULE_ALIAS("ohci1394");
3308 #endif
3309
3310 static int __init fw_ohci_init(void)
3311 {
3312         return pci_register_driver(&fw_ohci_pci_driver);
3313 }
3314
3315 static void __exit fw_ohci_cleanup(void)
3316 {
3317         pci_unregister_driver(&fw_ohci_pci_driver);
3318 }
3319
3320 module_init(fw_ohci_init);
3321 module_exit(fw_ohci_cleanup);