firewire: ohci: fix regression with Agere FW643 rev 06, disable MSI
[pandora-kernel.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/compiler.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/pci_ids.h>
39 #include <linux/slab.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/time.h>
43
44 #include <asm/byteorder.h>
45 #include <asm/page.h>
46 #include <asm/system.h>
47
48 #ifdef CONFIG_PPC_PMAC
49 #include <asm/pmac_feature.h>
50 #endif
51
52 #include "core.h"
53 #include "ohci.h"
54
55 #define DESCRIPTOR_OUTPUT_MORE          0
56 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
57 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
58 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
59 #define DESCRIPTOR_STATUS               (1 << 11)
60 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
61 #define DESCRIPTOR_PING                 (1 << 7)
62 #define DESCRIPTOR_YY                   (1 << 6)
63 #define DESCRIPTOR_NO_IRQ               (0 << 4)
64 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
65 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
66 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
67 #define DESCRIPTOR_WAIT                 (3 << 0)
68
69 struct descriptor {
70         __le16 req_count;
71         __le16 control;
72         __le32 data_address;
73         __le32 branch_address;
74         __le16 res_count;
75         __le16 transfer_status;
76 } __attribute__((aligned(16)));
77
78 #define CONTROL_SET(regs)       (regs)
79 #define CONTROL_CLEAR(regs)     ((regs) + 4)
80 #define COMMAND_PTR(regs)       ((regs) + 12)
81 #define CONTEXT_MATCH(regs)     ((regs) + 16)
82
83 struct ar_buffer {
84         struct descriptor descriptor;
85         struct ar_buffer *next;
86         __le32 data[0];
87 };
88
89 struct ar_context {
90         struct fw_ohci *ohci;
91         struct ar_buffer *current_buffer;
92         struct ar_buffer *last_buffer;
93         void *pointer;
94         u32 regs;
95         struct tasklet_struct tasklet;
96 };
97
98 struct context;
99
100 typedef int (*descriptor_callback_t)(struct context *ctx,
101                                      struct descriptor *d,
102                                      struct descriptor *last);
103
104 /*
105  * A buffer that contains a block of DMA-able coherent memory used for
106  * storing a portion of a DMA descriptor program.
107  */
108 struct descriptor_buffer {
109         struct list_head list;
110         dma_addr_t buffer_bus;
111         size_t buffer_size;
112         size_t used;
113         struct descriptor buffer[0];
114 };
115
116 struct context {
117         struct fw_ohci *ohci;
118         u32 regs;
119         int total_allocation;
120
121         /*
122          * List of page-sized buffers for storing DMA descriptors.
123          * Head of list contains buffers in use and tail of list contains
124          * free buffers.
125          */
126         struct list_head buffer_list;
127
128         /*
129          * Pointer to a buffer inside buffer_list that contains the tail
130          * end of the current DMA program.
131          */
132         struct descriptor_buffer *buffer_tail;
133
134         /*
135          * The descriptor containing the branch address of the first
136          * descriptor that has not yet been filled by the device.
137          */
138         struct descriptor *last;
139
140         /*
141          * The last descriptor in the DMA program.  It contains the branch
142          * address that must be updated upon appending a new descriptor.
143          */
144         struct descriptor *prev;
145
146         descriptor_callback_t callback;
147
148         struct tasklet_struct tasklet;
149 };
150
151 #define IT_HEADER_SY(v)          ((v) <<  0)
152 #define IT_HEADER_TCODE(v)       ((v) <<  4)
153 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
154 #define IT_HEADER_TAG(v)         ((v) << 14)
155 #define IT_HEADER_SPEED(v)       ((v) << 16)
156 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
157
158 struct iso_context {
159         struct fw_iso_context base;
160         struct context context;
161         int excess_bytes;
162         void *header;
163         size_t header_length;
164 };
165
166 #define CONFIG_ROM_SIZE 1024
167
168 struct fw_ohci {
169         struct fw_card card;
170
171         __iomem char *registers;
172         int node_id;
173         int generation;
174         int request_generation; /* for timestamping incoming requests */
175         unsigned quirks;
176         unsigned int pri_req_max;
177         u32 bus_time;
178         bool is_root;
179         bool csr_state_setclear_abdicate;
180
181         /*
182          * Spinlock for accessing fw_ohci data.  Never call out of
183          * this driver with this lock held.
184          */
185         spinlock_t lock;
186
187         struct mutex phy_reg_mutex;
188
189         struct ar_context ar_request_ctx;
190         struct ar_context ar_response_ctx;
191         struct context at_request_ctx;
192         struct context at_response_ctx;
193
194         u32 it_context_mask;     /* unoccupied IT contexts */
195         struct iso_context *it_context_list;
196         u64 ir_context_channels; /* unoccupied channels */
197         u32 ir_context_mask;     /* unoccupied IR contexts */
198         struct iso_context *ir_context_list;
199         u64 mc_channels; /* channels in use by the multichannel IR context */
200         bool mc_allocated;
201
202         __be32    *config_rom;
203         dma_addr_t config_rom_bus;
204         __be32    *next_config_rom;
205         dma_addr_t next_config_rom_bus;
206         __be32     next_header;
207
208         __le32    *self_id_cpu;
209         dma_addr_t self_id_bus;
210         struct tasklet_struct bus_reset_tasklet;
211
212         u32 self_id_buffer[512];
213 };
214
215 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
216 {
217         return container_of(card, struct fw_ohci, card);
218 }
219
220 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
221 #define IR_CONTEXT_BUFFER_FILL          0x80000000
222 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
223 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
224 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
225 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
226
227 #define CONTEXT_RUN     0x8000
228 #define CONTEXT_WAKE    0x1000
229 #define CONTEXT_DEAD    0x0800
230 #define CONTEXT_ACTIVE  0x0400
231
232 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
233 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
234 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
235
236 #define OHCI1394_REGISTER_SIZE          0x800
237 #define OHCI_LOOP_COUNT                 500
238 #define OHCI1394_PCI_HCI_Control        0x40
239 #define SELF_ID_BUF_SIZE                0x800
240 #define OHCI_TCODE_PHY_PACKET           0x0e
241 #define OHCI_VERSION_1_1                0x010010
242
243 static char ohci_driver_name[] = KBUILD_MODNAME;
244
245 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
246 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
247 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
248
249 #define QUIRK_CYCLE_TIMER               1
250 #define QUIRK_RESET_PACKET              2
251 #define QUIRK_BE_HEADERS                4
252 #define QUIRK_NO_1394A                  8
253 #define QUIRK_NO_MSI                    16
254
255 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
256 static const struct {
257         unsigned short vendor, device, revision, flags;
258 } ohci_quirks[] = {
259         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
260                 QUIRK_CYCLE_TIMER},
261
262         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
263                 QUIRK_BE_HEADERS},
264
265         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
266                 QUIRK_NO_MSI},
267
268         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
269                 QUIRK_NO_MSI},
270
271         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
272                 QUIRK_CYCLE_TIMER},
273
274         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
275                 QUIRK_CYCLE_TIMER},
276
277         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
278                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
279
280         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
281                 QUIRK_RESET_PACKET},
282
283         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
284                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
285 };
286
287 /* This overrides anything that was found in ohci_quirks[]. */
288 static int param_quirks;
289 module_param_named(quirks, param_quirks, int, 0644);
290 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
291         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
292         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
293         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
294         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
295         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
296         ")");
297
298 #define OHCI_PARAM_DEBUG_AT_AR          1
299 #define OHCI_PARAM_DEBUG_SELFIDS        2
300 #define OHCI_PARAM_DEBUG_IRQS           4
301 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
302
303 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
304
305 static int param_debug;
306 module_param_named(debug, param_debug, int, 0644);
307 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
308         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
309         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
310         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
311         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
312         ", or a combination, or all = -1)");
313
314 static void log_irqs(u32 evt)
315 {
316         if (likely(!(param_debug &
317                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
318                 return;
319
320         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
321             !(evt & OHCI1394_busReset))
322                 return;
323
324         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
325             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
326             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
327             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
328             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
329             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
330             evt & OHCI1394_isochRx              ? " IR"                 : "",
331             evt & OHCI1394_isochTx              ? " IT"                 : "",
332             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
333             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
334             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
335             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
336             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
337             evt & OHCI1394_busReset             ? " busReset"           : "",
338             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
339                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
340                     OHCI1394_respTxComplete | OHCI1394_isochRx |
341                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
342                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
343                     OHCI1394_cycleInconsistent |
344                     OHCI1394_regAccessFail | OHCI1394_busReset)
345                                                 ? " ?"                  : "");
346 }
347
348 static const char *speed[] = {
349         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
350 };
351 static const char *power[] = {
352         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
353         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
354 };
355 static const char port[] = { '.', '-', 'p', 'c', };
356
357 static char _p(u32 *s, int shift)
358 {
359         return port[*s >> shift & 3];
360 }
361
362 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
363 {
364         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
365                 return;
366
367         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
368                   self_id_count, generation, node_id);
369
370         for (; self_id_count--; ++s)
371                 if ((*s & 1 << 23) == 0)
372                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
373                             "%s gc=%d %s %s%s%s\n",
374                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
375                             speed[*s >> 14 & 3], *s >> 16 & 63,
376                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
377                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
378                 else
379                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
380                             *s, *s >> 24 & 63,
381                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
382                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
383 }
384
385 static const char *evts[] = {
386         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
387         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
388         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
389         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
390         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
391         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
392         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
393         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
394         [0x10] = "-reserved-",          [0x11] = "ack_complete",
395         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
396         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
397         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
398         [0x18] = "-reserved-",          [0x19] = "-reserved-",
399         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
400         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
401         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
402         [0x20] = "pending/cancelled",
403 };
404 static const char *tcodes[] = {
405         [0x0] = "QW req",               [0x1] = "BW req",
406         [0x2] = "W resp",               [0x3] = "-reserved-",
407         [0x4] = "QR req",               [0x5] = "BR req",
408         [0x6] = "QR resp",              [0x7] = "BR resp",
409         [0x8] = "cycle start",          [0x9] = "Lk req",
410         [0xa] = "async stream packet",  [0xb] = "Lk resp",
411         [0xc] = "-reserved-",           [0xd] = "-reserved-",
412         [0xe] = "link internal",        [0xf] = "-reserved-",
413 };
414 static const char *phys[] = {
415         [0x0] = "phy config packet",    [0x1] = "link-on packet",
416         [0x2] = "self-id packet",       [0x3] = "-reserved-",
417 };
418
419 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
420 {
421         int tcode = header[0] >> 4 & 0xf;
422         char specific[12];
423
424         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
425                 return;
426
427         if (unlikely(evt >= ARRAY_SIZE(evts)))
428                         evt = 0x1f;
429
430         if (evt == OHCI1394_evt_bus_reset) {
431                 fw_notify("A%c evt_bus_reset, generation %d\n",
432                     dir, (header[2] >> 16) & 0xff);
433                 return;
434         }
435
436         if (header[0] == ~header[1]) {
437                 fw_notify("A%c %s, %s, %08x\n",
438                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
439                 return;
440         }
441
442         switch (tcode) {
443         case 0x0: case 0x6: case 0x8:
444                 snprintf(specific, sizeof(specific), " = %08x",
445                          be32_to_cpu((__force __be32)header[3]));
446                 break;
447         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
448                 snprintf(specific, sizeof(specific), " %x,%x",
449                          header[3] >> 16, header[3] & 0xffff);
450                 break;
451         default:
452                 specific[0] = '\0';
453         }
454
455         switch (tcode) {
456         case 0xe: case 0xa:
457                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
458                 break;
459         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
460                 fw_notify("A%c spd %x tl %02x, "
461                     "%04x -> %04x, %s, "
462                     "%s, %04x%08x%s\n",
463                     dir, speed, header[0] >> 10 & 0x3f,
464                     header[1] >> 16, header[0] >> 16, evts[evt],
465                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
466                 break;
467         default:
468                 fw_notify("A%c spd %x tl %02x, "
469                     "%04x -> %04x, %s, "
470                     "%s%s\n",
471                     dir, speed, header[0] >> 10 & 0x3f,
472                     header[1] >> 16, header[0] >> 16, evts[evt],
473                     tcodes[tcode], specific);
474         }
475 }
476
477 #else
478
479 #define param_debug 0
480 static inline void log_irqs(u32 evt) {}
481 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
482 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
483
484 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
485
486 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
487 {
488         writel(data, ohci->registers + offset);
489 }
490
491 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
492 {
493         return readl(ohci->registers + offset);
494 }
495
496 static inline void flush_writes(const struct fw_ohci *ohci)
497 {
498         /* Do a dummy read to flush writes. */
499         reg_read(ohci, OHCI1394_Version);
500 }
501
502 static int read_phy_reg(struct fw_ohci *ohci, int addr)
503 {
504         u32 val;
505         int i;
506
507         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
508         for (i = 0; i < 3 + 100; i++) {
509                 val = reg_read(ohci, OHCI1394_PhyControl);
510                 if (val & OHCI1394_PhyControl_ReadDone)
511                         return OHCI1394_PhyControl_ReadData(val);
512
513                 /*
514                  * Try a few times without waiting.  Sleeping is necessary
515                  * only when the link/PHY interface is busy.
516                  */
517                 if (i >= 3)
518                         msleep(1);
519         }
520         fw_error("failed to read phy reg\n");
521
522         return -EBUSY;
523 }
524
525 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
526 {
527         int i;
528
529         reg_write(ohci, OHCI1394_PhyControl,
530                   OHCI1394_PhyControl_Write(addr, val));
531         for (i = 0; i < 3 + 100; i++) {
532                 val = reg_read(ohci, OHCI1394_PhyControl);
533                 if (!(val & OHCI1394_PhyControl_WritePending))
534                         return 0;
535
536                 if (i >= 3)
537                         msleep(1);
538         }
539         fw_error("failed to write phy reg\n");
540
541         return -EBUSY;
542 }
543
544 static int update_phy_reg(struct fw_ohci *ohci, int addr,
545                           int clear_bits, int set_bits)
546 {
547         int ret = read_phy_reg(ohci, addr);
548         if (ret < 0)
549                 return ret;
550
551         /*
552          * The interrupt status bits are cleared by writing a one bit.
553          * Avoid clearing them unless explicitly requested in set_bits.
554          */
555         if (addr == 5)
556                 clear_bits |= PHY_INT_STATUS_BITS;
557
558         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
559 }
560
561 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
562 {
563         int ret;
564
565         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
566         if (ret < 0)
567                 return ret;
568
569         return read_phy_reg(ohci, addr);
570 }
571
572 static int ohci_read_phy_reg(struct fw_card *card, int addr)
573 {
574         struct fw_ohci *ohci = fw_ohci(card);
575         int ret;
576
577         mutex_lock(&ohci->phy_reg_mutex);
578         ret = read_phy_reg(ohci, addr);
579         mutex_unlock(&ohci->phy_reg_mutex);
580
581         return ret;
582 }
583
584 static int ohci_update_phy_reg(struct fw_card *card, int addr,
585                                int clear_bits, int set_bits)
586 {
587         struct fw_ohci *ohci = fw_ohci(card);
588         int ret;
589
590         mutex_lock(&ohci->phy_reg_mutex);
591         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
592         mutex_unlock(&ohci->phy_reg_mutex);
593
594         return ret;
595 }
596
597 static void ar_context_link_page(struct ar_context *ctx,
598                                  struct ar_buffer *ab, dma_addr_t ab_bus)
599 {
600         size_t offset;
601
602         ab->next = NULL;
603         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
604         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
605                                                     DESCRIPTOR_STATUS |
606                                                     DESCRIPTOR_BRANCH_ALWAYS);
607         offset = offsetof(struct ar_buffer, data);
608         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
609         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
610         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
611         ab->descriptor.branch_address = 0;
612
613         wmb(); /* finish init of new descriptors before branch_address update */
614         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
615         ctx->last_buffer->next = ab;
616         ctx->last_buffer = ab;
617
618         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
619         flush_writes(ctx->ohci);
620 }
621
622 static int ar_context_add_page(struct ar_context *ctx)
623 {
624         struct device *dev = ctx->ohci->card.device;
625         struct ar_buffer *ab;
626         dma_addr_t uninitialized_var(ab_bus);
627
628         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
629         if (ab == NULL)
630                 return -ENOMEM;
631
632         ar_context_link_page(ctx, ab, ab_bus);
633
634         return 0;
635 }
636
637 static void ar_context_release(struct ar_context *ctx)
638 {
639         struct ar_buffer *ab, *ab_next;
640         size_t offset;
641         dma_addr_t ab_bus;
642
643         for (ab = ctx->current_buffer; ab; ab = ab_next) {
644                 ab_next = ab->next;
645                 offset = offsetof(struct ar_buffer, data);
646                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
647                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
648                                   ab, ab_bus);
649         }
650 }
651
652 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
653 #define cond_le32_to_cpu(v) \
654         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
655 #else
656 #define cond_le32_to_cpu(v) le32_to_cpu(v)
657 #endif
658
659 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
660 {
661         struct fw_ohci *ohci = ctx->ohci;
662         struct fw_packet p;
663         u32 status, length, tcode;
664         int evt;
665
666         p.header[0] = cond_le32_to_cpu(buffer[0]);
667         p.header[1] = cond_le32_to_cpu(buffer[1]);
668         p.header[2] = cond_le32_to_cpu(buffer[2]);
669
670         tcode = (p.header[0] >> 4) & 0x0f;
671         switch (tcode) {
672         case TCODE_WRITE_QUADLET_REQUEST:
673         case TCODE_READ_QUADLET_RESPONSE:
674                 p.header[3] = (__force __u32) buffer[3];
675                 p.header_length = 16;
676                 p.payload_length = 0;
677                 break;
678
679         case TCODE_READ_BLOCK_REQUEST :
680                 p.header[3] = cond_le32_to_cpu(buffer[3]);
681                 p.header_length = 16;
682                 p.payload_length = 0;
683                 break;
684
685         case TCODE_WRITE_BLOCK_REQUEST:
686         case TCODE_READ_BLOCK_RESPONSE:
687         case TCODE_LOCK_REQUEST:
688         case TCODE_LOCK_RESPONSE:
689                 p.header[3] = cond_le32_to_cpu(buffer[3]);
690                 p.header_length = 16;
691                 p.payload_length = p.header[3] >> 16;
692                 break;
693
694         case TCODE_WRITE_RESPONSE:
695         case TCODE_READ_QUADLET_REQUEST:
696         case OHCI_TCODE_PHY_PACKET:
697                 p.header_length = 12;
698                 p.payload_length = 0;
699                 break;
700
701         default:
702                 /* FIXME: Stop context, discard everything, and restart? */
703                 p.header_length = 0;
704                 p.payload_length = 0;
705         }
706
707         p.payload = (void *) buffer + p.header_length;
708
709         /* FIXME: What to do about evt_* errors? */
710         length = (p.header_length + p.payload_length + 3) / 4;
711         status = cond_le32_to_cpu(buffer[length]);
712         evt    = (status >> 16) & 0x1f;
713
714         p.ack        = evt - 16;
715         p.speed      = (status >> 21) & 0x7;
716         p.timestamp  = status & 0xffff;
717         p.generation = ohci->request_generation;
718
719         log_ar_at_event('R', p.speed, p.header, evt);
720
721         /*
722          * Several controllers, notably from NEC and VIA, forget to
723          * write ack_complete status at PHY packet reception.
724          */
725         if (evt == OHCI1394_evt_no_status &&
726             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
727                 p.ack = ACK_COMPLETE;
728
729         /*
730          * The OHCI bus reset handler synthesizes a PHY packet with
731          * the new generation number when a bus reset happens (see
732          * section 8.4.2.3).  This helps us determine when a request
733          * was received and make sure we send the response in the same
734          * generation.  We only need this for requests; for responses
735          * we use the unique tlabel for finding the matching
736          * request.
737          *
738          * Alas some chips sometimes emit bus reset packets with a
739          * wrong generation.  We set the correct generation for these
740          * at a slightly incorrect time (in bus_reset_tasklet).
741          */
742         if (evt == OHCI1394_evt_bus_reset) {
743                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
744                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
745         } else if (ctx == &ohci->ar_request_ctx) {
746                 fw_core_handle_request(&ohci->card, &p);
747         } else {
748                 fw_core_handle_response(&ohci->card, &p);
749         }
750
751         return buffer + length + 1;
752 }
753
754 static void ar_context_tasklet(unsigned long data)
755 {
756         struct ar_context *ctx = (struct ar_context *)data;
757         struct ar_buffer *ab;
758         struct descriptor *d;
759         void *buffer, *end;
760         __le16 res_count;
761
762         ab = ctx->current_buffer;
763         d = &ab->descriptor;
764
765         res_count = ACCESS_ONCE(d->res_count);
766         if (res_count == 0) {
767                 size_t size, size2, rest, pktsize, size3, offset;
768                 dma_addr_t start_bus;
769                 void *start;
770
771                 /*
772                  * This descriptor is finished and we may have a
773                  * packet split across this and the next buffer. We
774                  * reuse the page for reassembling the split packet.
775                  */
776
777                 offset = offsetof(struct ar_buffer, data);
778                 start = ab;
779                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
780                 buffer = ab->data;
781
782                 ab = ab->next;
783                 d = &ab->descriptor;
784                 size = start + PAGE_SIZE - ctx->pointer;
785                 /* valid buffer data in the next page */
786                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
787                 /* what actually fits in this page */
788                 size2 = min(rest, (size_t)PAGE_SIZE - offset - size);
789                 memmove(buffer, ctx->pointer, size);
790                 memcpy(buffer + size, ab->data, size2);
791
792                 while (size > 0) {
793                         void *next = handle_ar_packet(ctx, buffer);
794                         pktsize = next - buffer;
795                         if (pktsize >= size) {
796                                 /*
797                                  * We have handled all the data that was
798                                  * originally in this page, so we can now
799                                  * continue in the next page.
800                                  */
801                                 buffer = next;
802                                 break;
803                         }
804                         /* move the next packet to the start of the buffer */
805                         memmove(buffer, next, size + size2 - pktsize);
806                         size -= pktsize;
807                         /* fill up this page again */
808                         size3 = min(rest - size2,
809                                     (size_t)PAGE_SIZE - offset - size - size2);
810                         memcpy(buffer + size + size2,
811                                (void *) ab->data + size2, size3);
812                         size2 += size3;
813                 }
814
815                 if (rest > 0) {
816                         /* handle the packets that are fully in the next page */
817                         buffer = (void *) ab->data +
818                                         (buffer - (start + offset + size));
819                         end = (void *) ab->data + rest;
820
821                         while (buffer < end)
822                                 buffer = handle_ar_packet(ctx, buffer);
823
824                         ctx->current_buffer = ab;
825                         ctx->pointer = end;
826
827                         ar_context_link_page(ctx, start, start_bus);
828                 } else {
829                         ctx->pointer = start + PAGE_SIZE;
830                 }
831         } else {
832                 buffer = ctx->pointer;
833                 ctx->pointer = end =
834                         (void *) ab + PAGE_SIZE - le16_to_cpu(res_count);
835
836                 while (buffer < end)
837                         buffer = handle_ar_packet(ctx, buffer);
838         }
839 }
840
841 static int ar_context_init(struct ar_context *ctx,
842                            struct fw_ohci *ohci, u32 regs)
843 {
844         struct ar_buffer ab;
845
846         ctx->regs        = regs;
847         ctx->ohci        = ohci;
848         ctx->last_buffer = &ab;
849         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
850
851         ar_context_add_page(ctx);
852         ar_context_add_page(ctx);
853         ctx->current_buffer = ab.next;
854         ctx->pointer = ctx->current_buffer->data;
855
856         return 0;
857 }
858
859 static void ar_context_run(struct ar_context *ctx)
860 {
861         struct ar_buffer *ab = ctx->current_buffer;
862         dma_addr_t ab_bus;
863         size_t offset;
864
865         offset = offsetof(struct ar_buffer, data);
866         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
867
868         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
869         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
870         flush_writes(ctx->ohci);
871 }
872
873 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
874 {
875         int b, key;
876
877         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
878         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
879
880         /* figure out which descriptor the branch address goes in */
881         if (z == 2 && (b == 3 || key == 2))
882                 return d;
883         else
884                 return d + z - 1;
885 }
886
887 static void context_tasklet(unsigned long data)
888 {
889         struct context *ctx = (struct context *) data;
890         struct descriptor *d, *last;
891         u32 address;
892         int z;
893         struct descriptor_buffer *desc;
894
895         desc = list_entry(ctx->buffer_list.next,
896                         struct descriptor_buffer, list);
897         last = ctx->last;
898         while (last->branch_address != 0) {
899                 struct descriptor_buffer *old_desc = desc;
900                 address = le32_to_cpu(last->branch_address);
901                 z = address & 0xf;
902                 address &= ~0xf;
903
904                 /* If the branch address points to a buffer outside of the
905                  * current buffer, advance to the next buffer. */
906                 if (address < desc->buffer_bus ||
907                                 address >= desc->buffer_bus + desc->used)
908                         desc = list_entry(desc->list.next,
909                                         struct descriptor_buffer, list);
910                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
911                 last = find_branch_descriptor(d, z);
912
913                 if (!ctx->callback(ctx, d, last))
914                         break;
915
916                 if (old_desc != desc) {
917                         /* If we've advanced to the next buffer, move the
918                          * previous buffer to the free list. */
919                         unsigned long flags;
920                         old_desc->used = 0;
921                         spin_lock_irqsave(&ctx->ohci->lock, flags);
922                         list_move_tail(&old_desc->list, &ctx->buffer_list);
923                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
924                 }
925                 ctx->last = last;
926         }
927 }
928
929 /*
930  * Allocate a new buffer and add it to the list of free buffers for this
931  * context.  Must be called with ohci->lock held.
932  */
933 static int context_add_buffer(struct context *ctx)
934 {
935         struct descriptor_buffer *desc;
936         dma_addr_t uninitialized_var(bus_addr);
937         int offset;
938
939         /*
940          * 16MB of descriptors should be far more than enough for any DMA
941          * program.  This will catch run-away userspace or DoS attacks.
942          */
943         if (ctx->total_allocation >= 16*1024*1024)
944                 return -ENOMEM;
945
946         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
947                         &bus_addr, GFP_ATOMIC);
948         if (!desc)
949                 return -ENOMEM;
950
951         offset = (void *)&desc->buffer - (void *)desc;
952         desc->buffer_size = PAGE_SIZE - offset;
953         desc->buffer_bus = bus_addr + offset;
954         desc->used = 0;
955
956         list_add_tail(&desc->list, &ctx->buffer_list);
957         ctx->total_allocation += PAGE_SIZE;
958
959         return 0;
960 }
961
962 static int context_init(struct context *ctx, struct fw_ohci *ohci,
963                         u32 regs, descriptor_callback_t callback)
964 {
965         ctx->ohci = ohci;
966         ctx->regs = regs;
967         ctx->total_allocation = 0;
968
969         INIT_LIST_HEAD(&ctx->buffer_list);
970         if (context_add_buffer(ctx) < 0)
971                 return -ENOMEM;
972
973         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
974                         struct descriptor_buffer, list);
975
976         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
977         ctx->callback = callback;
978
979         /*
980          * We put a dummy descriptor in the buffer that has a NULL
981          * branch address and looks like it's been sent.  That way we
982          * have a descriptor to append DMA programs to.
983          */
984         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
985         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
986         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
987         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
988         ctx->last = ctx->buffer_tail->buffer;
989         ctx->prev = ctx->buffer_tail->buffer;
990
991         return 0;
992 }
993
994 static void context_release(struct context *ctx)
995 {
996         struct fw_card *card = &ctx->ohci->card;
997         struct descriptor_buffer *desc, *tmp;
998
999         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1000                 dma_free_coherent(card->device, PAGE_SIZE, desc,
1001                         desc->buffer_bus -
1002                         ((void *)&desc->buffer - (void *)desc));
1003 }
1004
1005 /* Must be called with ohci->lock held */
1006 static struct descriptor *context_get_descriptors(struct context *ctx,
1007                                                   int z, dma_addr_t *d_bus)
1008 {
1009         struct descriptor *d = NULL;
1010         struct descriptor_buffer *desc = ctx->buffer_tail;
1011
1012         if (z * sizeof(*d) > desc->buffer_size)
1013                 return NULL;
1014
1015         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1016                 /* No room for the descriptor in this buffer, so advance to the
1017                  * next one. */
1018
1019                 if (desc->list.next == &ctx->buffer_list) {
1020                         /* If there is no free buffer next in the list,
1021                          * allocate one. */
1022                         if (context_add_buffer(ctx) < 0)
1023                                 return NULL;
1024                 }
1025                 desc = list_entry(desc->list.next,
1026                                 struct descriptor_buffer, list);
1027                 ctx->buffer_tail = desc;
1028         }
1029
1030         d = desc->buffer + desc->used / sizeof(*d);
1031         memset(d, 0, z * sizeof(*d));
1032         *d_bus = desc->buffer_bus + desc->used;
1033
1034         return d;
1035 }
1036
1037 static void context_run(struct context *ctx, u32 extra)
1038 {
1039         struct fw_ohci *ohci = ctx->ohci;
1040
1041         reg_write(ohci, COMMAND_PTR(ctx->regs),
1042                   le32_to_cpu(ctx->last->branch_address));
1043         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1044         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1045         flush_writes(ohci);
1046 }
1047
1048 static void context_append(struct context *ctx,
1049                            struct descriptor *d, int z, int extra)
1050 {
1051         dma_addr_t d_bus;
1052         struct descriptor_buffer *desc = ctx->buffer_tail;
1053
1054         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1055
1056         desc->used += (z + extra) * sizeof(*d);
1057
1058         wmb(); /* finish init of new descriptors before branch_address update */
1059         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1060         ctx->prev = find_branch_descriptor(d, z);
1061
1062         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1063         flush_writes(ctx->ohci);
1064 }
1065
1066 static void context_stop(struct context *ctx)
1067 {
1068         u32 reg;
1069         int i;
1070
1071         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1072         flush_writes(ctx->ohci);
1073
1074         for (i = 0; i < 10; i++) {
1075                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1076                 if ((reg & CONTEXT_ACTIVE) == 0)
1077                         return;
1078
1079                 mdelay(1);
1080         }
1081         fw_error("Error: DMA context still active (0x%08x)\n", reg);
1082 }
1083
1084 struct driver_data {
1085         struct fw_packet *packet;
1086 };
1087
1088 /*
1089  * This function apppends a packet to the DMA queue for transmission.
1090  * Must always be called with the ochi->lock held to ensure proper
1091  * generation handling and locking around packet queue manipulation.
1092  */
1093 static int at_context_queue_packet(struct context *ctx,
1094                                    struct fw_packet *packet)
1095 {
1096         struct fw_ohci *ohci = ctx->ohci;
1097         dma_addr_t d_bus, uninitialized_var(payload_bus);
1098         struct driver_data *driver_data;
1099         struct descriptor *d, *last;
1100         __le32 *header;
1101         int z, tcode;
1102         u32 reg;
1103
1104         d = context_get_descriptors(ctx, 4, &d_bus);
1105         if (d == NULL) {
1106                 packet->ack = RCODE_SEND_ERROR;
1107                 return -1;
1108         }
1109
1110         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1111         d[0].res_count = cpu_to_le16(packet->timestamp);
1112
1113         /*
1114          * The DMA format for asyncronous link packets is different
1115          * from the IEEE1394 layout, so shift the fields around
1116          * accordingly.  If header_length is 8, it's a PHY packet, to
1117          * which we need to prepend an extra quadlet.
1118          */
1119
1120         header = (__le32 *) &d[1];
1121         switch (packet->header_length) {
1122         case 16:
1123         case 12:
1124                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1125                                         (packet->speed << 16));
1126                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1127                                         (packet->header[0] & 0xffff0000));
1128                 header[2] = cpu_to_le32(packet->header[2]);
1129
1130                 tcode = (packet->header[0] >> 4) & 0x0f;
1131                 if (TCODE_IS_BLOCK_PACKET(tcode))
1132                         header[3] = cpu_to_le32(packet->header[3]);
1133                 else
1134                         header[3] = (__force __le32) packet->header[3];
1135
1136                 d[0].req_count = cpu_to_le16(packet->header_length);
1137                 break;
1138
1139         case 8:
1140                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1141                                         (packet->speed << 16));
1142                 header[1] = cpu_to_le32(packet->header[0]);
1143                 header[2] = cpu_to_le32(packet->header[1]);
1144                 d[0].req_count = cpu_to_le16(12);
1145
1146                 if (is_ping_packet(packet->header))
1147                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1148                 break;
1149
1150         case 4:
1151                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1152                                         (packet->speed << 16));
1153                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1154                 d[0].req_count = cpu_to_le16(8);
1155                 break;
1156
1157         default:
1158                 /* BUG(); */
1159                 packet->ack = RCODE_SEND_ERROR;
1160                 return -1;
1161         }
1162
1163         driver_data = (struct driver_data *) &d[3];
1164         driver_data->packet = packet;
1165         packet->driver_data = driver_data;
1166
1167         if (packet->payload_length > 0) {
1168                 payload_bus =
1169                         dma_map_single(ohci->card.device, packet->payload,
1170                                        packet->payload_length, DMA_TO_DEVICE);
1171                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1172                         packet->ack = RCODE_SEND_ERROR;
1173                         return -1;
1174                 }
1175                 packet->payload_bus     = payload_bus;
1176                 packet->payload_mapped  = true;
1177
1178                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1179                 d[2].data_address = cpu_to_le32(payload_bus);
1180                 last = &d[2];
1181                 z = 3;
1182         } else {
1183                 last = &d[0];
1184                 z = 2;
1185         }
1186
1187         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1188                                      DESCRIPTOR_IRQ_ALWAYS |
1189                                      DESCRIPTOR_BRANCH_ALWAYS);
1190
1191         /*
1192          * If the controller and packet generations don't match, we need to
1193          * bail out and try again.  If IntEvent.busReset is set, the AT context
1194          * is halted, so appending to the context and trying to run it is
1195          * futile.  Most controllers do the right thing and just flush the AT
1196          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1197          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1198          * up stalling out.  So we just bail out in software and try again
1199          * later, and everyone is happy.
1200          * FIXME: Document how the locking works.
1201          */
1202         if (ohci->generation != packet->generation ||
1203             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1204                 if (packet->payload_mapped)
1205                         dma_unmap_single(ohci->card.device, payload_bus,
1206                                          packet->payload_length, DMA_TO_DEVICE);
1207                 packet->ack = RCODE_GENERATION;
1208                 return -1;
1209         }
1210
1211         context_append(ctx, d, z, 4 - z);
1212
1213         /* If the context isn't already running, start it up. */
1214         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1215         if ((reg & CONTEXT_RUN) == 0)
1216                 context_run(ctx, 0);
1217
1218         return 0;
1219 }
1220
1221 static int handle_at_packet(struct context *context,
1222                             struct descriptor *d,
1223                             struct descriptor *last)
1224 {
1225         struct driver_data *driver_data;
1226         struct fw_packet *packet;
1227         struct fw_ohci *ohci = context->ohci;
1228         int evt;
1229
1230         if (last->transfer_status == 0)
1231                 /* This descriptor isn't done yet, stop iteration. */
1232                 return 0;
1233
1234         driver_data = (struct driver_data *) &d[3];
1235         packet = driver_data->packet;
1236         if (packet == NULL)
1237                 /* This packet was cancelled, just continue. */
1238                 return 1;
1239
1240         if (packet->payload_mapped)
1241                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1242                                  packet->payload_length, DMA_TO_DEVICE);
1243
1244         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1245         packet->timestamp = le16_to_cpu(last->res_count);
1246
1247         log_ar_at_event('T', packet->speed, packet->header, evt);
1248
1249         switch (evt) {
1250         case OHCI1394_evt_timeout:
1251                 /* Async response transmit timed out. */
1252                 packet->ack = RCODE_CANCELLED;
1253                 break;
1254
1255         case OHCI1394_evt_flushed:
1256                 /*
1257                  * The packet was flushed should give same error as
1258                  * when we try to use a stale generation count.
1259                  */
1260                 packet->ack = RCODE_GENERATION;
1261                 break;
1262
1263         case OHCI1394_evt_missing_ack:
1264                 /*
1265                  * Using a valid (current) generation count, but the
1266                  * node is not on the bus or not sending acks.
1267                  */
1268                 packet->ack = RCODE_NO_ACK;
1269                 break;
1270
1271         case ACK_COMPLETE + 0x10:
1272         case ACK_PENDING + 0x10:
1273         case ACK_BUSY_X + 0x10:
1274         case ACK_BUSY_A + 0x10:
1275         case ACK_BUSY_B + 0x10:
1276         case ACK_DATA_ERROR + 0x10:
1277         case ACK_TYPE_ERROR + 0x10:
1278                 packet->ack = evt - 0x10;
1279                 break;
1280
1281         default:
1282                 packet->ack = RCODE_SEND_ERROR;
1283                 break;
1284         }
1285
1286         packet->callback(packet, &ohci->card, packet->ack);
1287
1288         return 1;
1289 }
1290
1291 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1292 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1293 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1294 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1295 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1296
1297 static void handle_local_rom(struct fw_ohci *ohci,
1298                              struct fw_packet *packet, u32 csr)
1299 {
1300         struct fw_packet response;
1301         int tcode, length, i;
1302
1303         tcode = HEADER_GET_TCODE(packet->header[0]);
1304         if (TCODE_IS_BLOCK_PACKET(tcode))
1305                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1306         else
1307                 length = 4;
1308
1309         i = csr - CSR_CONFIG_ROM;
1310         if (i + length > CONFIG_ROM_SIZE) {
1311                 fw_fill_response(&response, packet->header,
1312                                  RCODE_ADDRESS_ERROR, NULL, 0);
1313         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1314                 fw_fill_response(&response, packet->header,
1315                                  RCODE_TYPE_ERROR, NULL, 0);
1316         } else {
1317                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1318                                  (void *) ohci->config_rom + i, length);
1319         }
1320
1321         fw_core_handle_response(&ohci->card, &response);
1322 }
1323
1324 static void handle_local_lock(struct fw_ohci *ohci,
1325                               struct fw_packet *packet, u32 csr)
1326 {
1327         struct fw_packet response;
1328         int tcode, length, ext_tcode, sel, try;
1329         __be32 *payload, lock_old;
1330         u32 lock_arg, lock_data;
1331
1332         tcode = HEADER_GET_TCODE(packet->header[0]);
1333         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1334         payload = packet->payload;
1335         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1336
1337         if (tcode == TCODE_LOCK_REQUEST &&
1338             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1339                 lock_arg = be32_to_cpu(payload[0]);
1340                 lock_data = be32_to_cpu(payload[1]);
1341         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1342                 lock_arg = 0;
1343                 lock_data = 0;
1344         } else {
1345                 fw_fill_response(&response, packet->header,
1346                                  RCODE_TYPE_ERROR, NULL, 0);
1347                 goto out;
1348         }
1349
1350         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1351         reg_write(ohci, OHCI1394_CSRData, lock_data);
1352         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1353         reg_write(ohci, OHCI1394_CSRControl, sel);
1354
1355         for (try = 0; try < 20; try++)
1356                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1357                         lock_old = cpu_to_be32(reg_read(ohci,
1358                                                         OHCI1394_CSRData));
1359                         fw_fill_response(&response, packet->header,
1360                                          RCODE_COMPLETE,
1361                                          &lock_old, sizeof(lock_old));
1362                         goto out;
1363                 }
1364
1365         fw_error("swap not done (CSR lock timeout)\n");
1366         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1367
1368  out:
1369         fw_core_handle_response(&ohci->card, &response);
1370 }
1371
1372 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1373 {
1374         u64 offset, csr;
1375
1376         if (ctx == &ctx->ohci->at_request_ctx) {
1377                 packet->ack = ACK_PENDING;
1378                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1379         }
1380
1381         offset =
1382                 ((unsigned long long)
1383                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1384                 packet->header[2];
1385         csr = offset - CSR_REGISTER_BASE;
1386
1387         /* Handle config rom reads. */
1388         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1389                 handle_local_rom(ctx->ohci, packet, csr);
1390         else switch (csr) {
1391         case CSR_BUS_MANAGER_ID:
1392         case CSR_BANDWIDTH_AVAILABLE:
1393         case CSR_CHANNELS_AVAILABLE_HI:
1394         case CSR_CHANNELS_AVAILABLE_LO:
1395                 handle_local_lock(ctx->ohci, packet, csr);
1396                 break;
1397         default:
1398                 if (ctx == &ctx->ohci->at_request_ctx)
1399                         fw_core_handle_request(&ctx->ohci->card, packet);
1400                 else
1401                         fw_core_handle_response(&ctx->ohci->card, packet);
1402                 break;
1403         }
1404
1405         if (ctx == &ctx->ohci->at_response_ctx) {
1406                 packet->ack = ACK_COMPLETE;
1407                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1408         }
1409 }
1410
1411 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1412 {
1413         unsigned long flags;
1414         int ret;
1415
1416         spin_lock_irqsave(&ctx->ohci->lock, flags);
1417
1418         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1419             ctx->ohci->generation == packet->generation) {
1420                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1421                 handle_local_request(ctx, packet);
1422                 return;
1423         }
1424
1425         ret = at_context_queue_packet(ctx, packet);
1426         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1427
1428         if (ret < 0)
1429                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1430
1431 }
1432
1433 static u32 cycle_timer_ticks(u32 cycle_timer)
1434 {
1435         u32 ticks;
1436
1437         ticks = cycle_timer & 0xfff;
1438         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1439         ticks += (3072 * 8000) * (cycle_timer >> 25);
1440
1441         return ticks;
1442 }
1443
1444 /*
1445  * Some controllers exhibit one or more of the following bugs when updating the
1446  * iso cycle timer register:
1447  *  - When the lowest six bits are wrapping around to zero, a read that happens
1448  *    at the same time will return garbage in the lowest ten bits.
1449  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1450  *    not incremented for about 60 ns.
1451  *  - Occasionally, the entire register reads zero.
1452  *
1453  * To catch these, we read the register three times and ensure that the
1454  * difference between each two consecutive reads is approximately the same, i.e.
1455  * less than twice the other.  Furthermore, any negative difference indicates an
1456  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1457  * execute, so we have enough precision to compute the ratio of the differences.)
1458  */
1459 static u32 get_cycle_time(struct fw_ohci *ohci)
1460 {
1461         u32 c0, c1, c2;
1462         u32 t0, t1, t2;
1463         s32 diff01, diff12;
1464         int i;
1465
1466         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1467
1468         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1469                 i = 0;
1470                 c1 = c2;
1471                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1472                 do {
1473                         c0 = c1;
1474                         c1 = c2;
1475                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1476                         t0 = cycle_timer_ticks(c0);
1477                         t1 = cycle_timer_ticks(c1);
1478                         t2 = cycle_timer_ticks(c2);
1479                         diff01 = t1 - t0;
1480                         diff12 = t2 - t1;
1481                 } while ((diff01 <= 0 || diff12 <= 0 ||
1482                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1483                          && i++ < 20);
1484         }
1485
1486         return c2;
1487 }
1488
1489 /*
1490  * This function has to be called at least every 64 seconds.  The bus_time
1491  * field stores not only the upper 25 bits of the BUS_TIME register but also
1492  * the most significant bit of the cycle timer in bit 6 so that we can detect
1493  * changes in this bit.
1494  */
1495 static u32 update_bus_time(struct fw_ohci *ohci)
1496 {
1497         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1498
1499         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1500                 ohci->bus_time += 0x40;
1501
1502         return ohci->bus_time | cycle_time_seconds;
1503 }
1504
1505 static void bus_reset_tasklet(unsigned long data)
1506 {
1507         struct fw_ohci *ohci = (struct fw_ohci *)data;
1508         int self_id_count, i, j, reg;
1509         int generation, new_generation;
1510         unsigned long flags;
1511         void *free_rom = NULL;
1512         dma_addr_t free_rom_bus = 0;
1513         bool is_new_root;
1514
1515         reg = reg_read(ohci, OHCI1394_NodeID);
1516         if (!(reg & OHCI1394_NodeID_idValid)) {
1517                 fw_notify("node ID not valid, new bus reset in progress\n");
1518                 return;
1519         }
1520         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1521                 fw_notify("malconfigured bus\n");
1522                 return;
1523         }
1524         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1525                                OHCI1394_NodeID_nodeNumber);
1526
1527         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1528         if (!(ohci->is_root && is_new_root))
1529                 reg_write(ohci, OHCI1394_LinkControlSet,
1530                           OHCI1394_LinkControl_cycleMaster);
1531         ohci->is_root = is_new_root;
1532
1533         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1534         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1535                 fw_notify("inconsistent self IDs\n");
1536                 return;
1537         }
1538         /*
1539          * The count in the SelfIDCount register is the number of
1540          * bytes in the self ID receive buffer.  Since we also receive
1541          * the inverted quadlets and a header quadlet, we shift one
1542          * bit extra to get the actual number of self IDs.
1543          */
1544         self_id_count = (reg >> 3) & 0xff;
1545         if (self_id_count == 0 || self_id_count > 252) {
1546                 fw_notify("inconsistent self IDs\n");
1547                 return;
1548         }
1549         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1550         rmb();
1551
1552         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1553                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1554                         fw_notify("inconsistent self IDs\n");
1555                         return;
1556                 }
1557                 ohci->self_id_buffer[j] =
1558                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1559         }
1560         rmb();
1561
1562         /*
1563          * Check the consistency of the self IDs we just read.  The
1564          * problem we face is that a new bus reset can start while we
1565          * read out the self IDs from the DMA buffer. If this happens,
1566          * the DMA buffer will be overwritten with new self IDs and we
1567          * will read out inconsistent data.  The OHCI specification
1568          * (section 11.2) recommends a technique similar to
1569          * linux/seqlock.h, where we remember the generation of the
1570          * self IDs in the buffer before reading them out and compare
1571          * it to the current generation after reading them out.  If
1572          * the two generations match we know we have a consistent set
1573          * of self IDs.
1574          */
1575
1576         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1577         if (new_generation != generation) {
1578                 fw_notify("recursive bus reset detected, "
1579                           "discarding self ids\n");
1580                 return;
1581         }
1582
1583         /* FIXME: Document how the locking works. */
1584         spin_lock_irqsave(&ohci->lock, flags);
1585
1586         ohci->generation = generation;
1587         context_stop(&ohci->at_request_ctx);
1588         context_stop(&ohci->at_response_ctx);
1589         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1590
1591         if (ohci->quirks & QUIRK_RESET_PACKET)
1592                 ohci->request_generation = generation;
1593
1594         /*
1595          * This next bit is unrelated to the AT context stuff but we
1596          * have to do it under the spinlock also.  If a new config rom
1597          * was set up before this reset, the old one is now no longer
1598          * in use and we can free it. Update the config rom pointers
1599          * to point to the current config rom and clear the
1600          * next_config_rom pointer so a new update can take place.
1601          */
1602
1603         if (ohci->next_config_rom != NULL) {
1604                 if (ohci->next_config_rom != ohci->config_rom) {
1605                         free_rom      = ohci->config_rom;
1606                         free_rom_bus  = ohci->config_rom_bus;
1607                 }
1608                 ohci->config_rom      = ohci->next_config_rom;
1609                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1610                 ohci->next_config_rom = NULL;
1611
1612                 /*
1613                  * Restore config_rom image and manually update
1614                  * config_rom registers.  Writing the header quadlet
1615                  * will indicate that the config rom is ready, so we
1616                  * do that last.
1617                  */
1618                 reg_write(ohci, OHCI1394_BusOptions,
1619                           be32_to_cpu(ohci->config_rom[2]));
1620                 ohci->config_rom[0] = ohci->next_header;
1621                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1622                           be32_to_cpu(ohci->next_header));
1623         }
1624
1625 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1626         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1627         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1628 #endif
1629
1630         spin_unlock_irqrestore(&ohci->lock, flags);
1631
1632         if (free_rom)
1633                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1634                                   free_rom, free_rom_bus);
1635
1636         log_selfids(ohci->node_id, generation,
1637                     self_id_count, ohci->self_id_buffer);
1638
1639         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1640                                  self_id_count, ohci->self_id_buffer,
1641                                  ohci->csr_state_setclear_abdicate);
1642         ohci->csr_state_setclear_abdicate = false;
1643 }
1644
1645 static irqreturn_t irq_handler(int irq, void *data)
1646 {
1647         struct fw_ohci *ohci = data;
1648         u32 event, iso_event;
1649         int i;
1650
1651         event = reg_read(ohci, OHCI1394_IntEventClear);
1652
1653         if (!event || !~event)
1654                 return IRQ_NONE;
1655
1656         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1657         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1658         log_irqs(event);
1659
1660         if (event & OHCI1394_selfIDComplete)
1661                 tasklet_schedule(&ohci->bus_reset_tasklet);
1662
1663         if (event & OHCI1394_RQPkt)
1664                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1665
1666         if (event & OHCI1394_RSPkt)
1667                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1668
1669         if (event & OHCI1394_reqTxComplete)
1670                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1671
1672         if (event & OHCI1394_respTxComplete)
1673                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1674
1675         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1676         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1677
1678         while (iso_event) {
1679                 i = ffs(iso_event) - 1;
1680                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1681                 iso_event &= ~(1 << i);
1682         }
1683
1684         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1685         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1686
1687         while (iso_event) {
1688                 i = ffs(iso_event) - 1;
1689                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1690                 iso_event &= ~(1 << i);
1691         }
1692
1693         if (unlikely(event & OHCI1394_regAccessFail))
1694                 fw_error("Register access failure - "
1695                          "please notify linux1394-devel@lists.sf.net\n");
1696
1697         if (unlikely(event & OHCI1394_postedWriteErr))
1698                 fw_error("PCI posted write error\n");
1699
1700         if (unlikely(event & OHCI1394_cycleTooLong)) {
1701                 if (printk_ratelimit())
1702                         fw_notify("isochronous cycle too long\n");
1703                 reg_write(ohci, OHCI1394_LinkControlSet,
1704                           OHCI1394_LinkControl_cycleMaster);
1705         }
1706
1707         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1708                 /*
1709                  * We need to clear this event bit in order to make
1710                  * cycleMatch isochronous I/O work.  In theory we should
1711                  * stop active cycleMatch iso contexts now and restart
1712                  * them at least two cycles later.  (FIXME?)
1713                  */
1714                 if (printk_ratelimit())
1715                         fw_notify("isochronous cycle inconsistent\n");
1716         }
1717
1718         if (event & OHCI1394_cycle64Seconds) {
1719                 spin_lock(&ohci->lock);
1720                 update_bus_time(ohci);
1721                 spin_unlock(&ohci->lock);
1722         }
1723
1724         return IRQ_HANDLED;
1725 }
1726
1727 static int software_reset(struct fw_ohci *ohci)
1728 {
1729         int i;
1730
1731         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1732
1733         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1734                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1735                      OHCI1394_HCControl_softReset) == 0)
1736                         return 0;
1737                 msleep(1);
1738         }
1739
1740         return -EBUSY;
1741 }
1742
1743 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1744 {
1745         size_t size = length * 4;
1746
1747         memcpy(dest, src, size);
1748         if (size < CONFIG_ROM_SIZE)
1749                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1750 }
1751
1752 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1753 {
1754         bool enable_1394a;
1755         int ret, clear, set, offset;
1756
1757         /* Check if the driver should configure link and PHY. */
1758         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1759               OHCI1394_HCControl_programPhyEnable))
1760                 return 0;
1761
1762         /* Paranoia: check whether the PHY supports 1394a, too. */
1763         enable_1394a = false;
1764         ret = read_phy_reg(ohci, 2);
1765         if (ret < 0)
1766                 return ret;
1767         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1768                 ret = read_paged_phy_reg(ohci, 1, 8);
1769                 if (ret < 0)
1770                         return ret;
1771                 if (ret >= 1)
1772                         enable_1394a = true;
1773         }
1774
1775         if (ohci->quirks & QUIRK_NO_1394A)
1776                 enable_1394a = false;
1777
1778         /* Configure PHY and link consistently. */
1779         if (enable_1394a) {
1780                 clear = 0;
1781                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1782         } else {
1783                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1784                 set = 0;
1785         }
1786         ret = update_phy_reg(ohci, 5, clear, set);
1787         if (ret < 0)
1788                 return ret;
1789
1790         if (enable_1394a)
1791                 offset = OHCI1394_HCControlSet;
1792         else
1793                 offset = OHCI1394_HCControlClear;
1794         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1795
1796         /* Clean up: configuration has been taken care of. */
1797         reg_write(ohci, OHCI1394_HCControlClear,
1798                   OHCI1394_HCControl_programPhyEnable);
1799
1800         return 0;
1801 }
1802
1803 static int ohci_enable(struct fw_card *card,
1804                        const __be32 *config_rom, size_t length)
1805 {
1806         struct fw_ohci *ohci = fw_ohci(card);
1807         struct pci_dev *dev = to_pci_dev(card->device);
1808         u32 lps, seconds, version, irqs;
1809         int i, ret;
1810
1811         if (software_reset(ohci)) {
1812                 fw_error("Failed to reset ohci card.\n");
1813                 return -EBUSY;
1814         }
1815
1816         /*
1817          * Now enable LPS, which we need in order to start accessing
1818          * most of the registers.  In fact, on some cards (ALI M5251),
1819          * accessing registers in the SClk domain without LPS enabled
1820          * will lock up the machine.  Wait 50msec to make sure we have
1821          * full link enabled.  However, with some cards (well, at least
1822          * a JMicron PCIe card), we have to try again sometimes.
1823          */
1824         reg_write(ohci, OHCI1394_HCControlSet,
1825                   OHCI1394_HCControl_LPS |
1826                   OHCI1394_HCControl_postedWriteEnable);
1827         flush_writes(ohci);
1828
1829         for (lps = 0, i = 0; !lps && i < 3; i++) {
1830                 msleep(50);
1831                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1832                       OHCI1394_HCControl_LPS;
1833         }
1834
1835         if (!lps) {
1836                 fw_error("Failed to set Link Power Status\n");
1837                 return -EIO;
1838         }
1839
1840         reg_write(ohci, OHCI1394_HCControlClear,
1841                   OHCI1394_HCControl_noByteSwapData);
1842
1843         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1844         reg_write(ohci, OHCI1394_LinkControlSet,
1845                   OHCI1394_LinkControl_rcvSelfID |
1846                   OHCI1394_LinkControl_rcvPhyPkt |
1847                   OHCI1394_LinkControl_cycleTimerEnable |
1848                   OHCI1394_LinkControl_cycleMaster);
1849
1850         reg_write(ohci, OHCI1394_ATRetries,
1851                   OHCI1394_MAX_AT_REQ_RETRIES |
1852                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1853                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1854                   (200 << 16));
1855
1856         seconds = lower_32_bits(get_seconds());
1857         reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1858         ohci->bus_time = seconds & ~0x3f;
1859
1860         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1861         if (version >= OHCI_VERSION_1_1) {
1862                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
1863                           0xfffffffe);
1864                 card->broadcast_channel_auto_allocated = true;
1865         }
1866
1867         /* Get implemented bits of the priority arbitration request counter. */
1868         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
1869         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
1870         reg_write(ohci, OHCI1394_FairnessControl, 0);
1871         card->priority_budget_implemented = ohci->pri_req_max != 0;
1872
1873         ar_context_run(&ohci->ar_request_ctx);
1874         ar_context_run(&ohci->ar_response_ctx);
1875
1876         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1877         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1878         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1879
1880         ret = configure_1394a_enhancements(ohci);
1881         if (ret < 0)
1882                 return ret;
1883
1884         /* Activate link_on bit and contender bit in our self ID packets.*/
1885         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1886         if (ret < 0)
1887                 return ret;
1888
1889         /*
1890          * When the link is not yet enabled, the atomic config rom
1891          * update mechanism described below in ohci_set_config_rom()
1892          * is not active.  We have to update ConfigRomHeader and
1893          * BusOptions manually, and the write to ConfigROMmap takes
1894          * effect immediately.  We tie this to the enabling of the
1895          * link, so we have a valid config rom before enabling - the
1896          * OHCI requires that ConfigROMhdr and BusOptions have valid
1897          * values before enabling.
1898          *
1899          * However, when the ConfigROMmap is written, some controllers
1900          * always read back quadlets 0 and 2 from the config rom to
1901          * the ConfigRomHeader and BusOptions registers on bus reset.
1902          * They shouldn't do that in this initial case where the link
1903          * isn't enabled.  This means we have to use the same
1904          * workaround here, setting the bus header to 0 and then write
1905          * the right values in the bus reset tasklet.
1906          */
1907
1908         if (config_rom) {
1909                 ohci->next_config_rom =
1910                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1911                                            &ohci->next_config_rom_bus,
1912                                            GFP_KERNEL);
1913                 if (ohci->next_config_rom == NULL)
1914                         return -ENOMEM;
1915
1916                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1917         } else {
1918                 /*
1919                  * In the suspend case, config_rom is NULL, which
1920                  * means that we just reuse the old config rom.
1921                  */
1922                 ohci->next_config_rom = ohci->config_rom;
1923                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1924         }
1925
1926         ohci->next_header = ohci->next_config_rom[0];
1927         ohci->next_config_rom[0] = 0;
1928         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1929         reg_write(ohci, OHCI1394_BusOptions,
1930                   be32_to_cpu(ohci->next_config_rom[2]));
1931         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1932
1933         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1934
1935         if (!(ohci->quirks & QUIRK_NO_MSI))
1936                 pci_enable_msi(dev);
1937         if (request_irq(dev->irq, irq_handler,
1938                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1939                         ohci_driver_name, ohci)) {
1940                 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1941                 pci_disable_msi(dev);
1942                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1943                                   ohci->config_rom, ohci->config_rom_bus);
1944                 return -EIO;
1945         }
1946
1947         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1948                 OHCI1394_RQPkt | OHCI1394_RSPkt |
1949                 OHCI1394_isochTx | OHCI1394_isochRx |
1950                 OHCI1394_postedWriteErr |
1951                 OHCI1394_selfIDComplete |
1952                 OHCI1394_regAccessFail |
1953                 OHCI1394_cycle64Seconds |
1954                 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1955                 OHCI1394_masterIntEnable;
1956         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1957                 irqs |= OHCI1394_busReset;
1958         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1959
1960         reg_write(ohci, OHCI1394_HCControlSet,
1961                   OHCI1394_HCControl_linkEnable |
1962                   OHCI1394_HCControl_BIBimageValid);
1963         flush_writes(ohci);
1964
1965         /* We are ready to go, reset bus to finish initialization. */
1966         fw_schedule_bus_reset(&ohci->card, false, true);
1967
1968         return 0;
1969 }
1970
1971 static int ohci_set_config_rom(struct fw_card *card,
1972                                const __be32 *config_rom, size_t length)
1973 {
1974         struct fw_ohci *ohci;
1975         unsigned long flags;
1976         int ret = -EBUSY;
1977         __be32 *next_config_rom;
1978         dma_addr_t uninitialized_var(next_config_rom_bus);
1979
1980         ohci = fw_ohci(card);
1981
1982         /*
1983          * When the OHCI controller is enabled, the config rom update
1984          * mechanism is a bit tricky, but easy enough to use.  See
1985          * section 5.5.6 in the OHCI specification.
1986          *
1987          * The OHCI controller caches the new config rom address in a
1988          * shadow register (ConfigROMmapNext) and needs a bus reset
1989          * for the changes to take place.  When the bus reset is
1990          * detected, the controller loads the new values for the
1991          * ConfigRomHeader and BusOptions registers from the specified
1992          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1993          * shadow register. All automatically and atomically.
1994          *
1995          * Now, there's a twist to this story.  The automatic load of
1996          * ConfigRomHeader and BusOptions doesn't honor the
1997          * noByteSwapData bit, so with a be32 config rom, the
1998          * controller will load be32 values in to these registers
1999          * during the atomic update, even on litte endian
2000          * architectures.  The workaround we use is to put a 0 in the
2001          * header quadlet; 0 is endian agnostic and means that the
2002          * config rom isn't ready yet.  In the bus reset tasklet we
2003          * then set up the real values for the two registers.
2004          *
2005          * We use ohci->lock to avoid racing with the code that sets
2006          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2007          */
2008
2009         next_config_rom =
2010                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2011                                    &next_config_rom_bus, GFP_KERNEL);
2012         if (next_config_rom == NULL)
2013                 return -ENOMEM;
2014
2015         spin_lock_irqsave(&ohci->lock, flags);
2016
2017         if (ohci->next_config_rom == NULL) {
2018                 ohci->next_config_rom = next_config_rom;
2019                 ohci->next_config_rom_bus = next_config_rom_bus;
2020
2021                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2022
2023                 ohci->next_header = config_rom[0];
2024                 ohci->next_config_rom[0] = 0;
2025
2026                 reg_write(ohci, OHCI1394_ConfigROMmap,
2027                           ohci->next_config_rom_bus);
2028                 ret = 0;
2029         }
2030
2031         spin_unlock_irqrestore(&ohci->lock, flags);
2032
2033         /*
2034          * Now initiate a bus reset to have the changes take
2035          * effect. We clean up the old config rom memory and DMA
2036          * mappings in the bus reset tasklet, since the OHCI
2037          * controller could need to access it before the bus reset
2038          * takes effect.
2039          */
2040         if (ret == 0)
2041                 fw_schedule_bus_reset(&ohci->card, true, true);
2042         else
2043                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2044                                   next_config_rom, next_config_rom_bus);
2045
2046         return ret;
2047 }
2048
2049 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2050 {
2051         struct fw_ohci *ohci = fw_ohci(card);
2052
2053         at_context_transmit(&ohci->at_request_ctx, packet);
2054 }
2055
2056 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2057 {
2058         struct fw_ohci *ohci = fw_ohci(card);
2059
2060         at_context_transmit(&ohci->at_response_ctx, packet);
2061 }
2062
2063 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2064 {
2065         struct fw_ohci *ohci = fw_ohci(card);
2066         struct context *ctx = &ohci->at_request_ctx;
2067         struct driver_data *driver_data = packet->driver_data;
2068         int ret = -ENOENT;
2069
2070         tasklet_disable(&ctx->tasklet);
2071
2072         if (packet->ack != 0)
2073                 goto out;
2074
2075         if (packet->payload_mapped)
2076                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2077                                  packet->payload_length, DMA_TO_DEVICE);
2078
2079         log_ar_at_event('T', packet->speed, packet->header, 0x20);
2080         driver_data->packet = NULL;
2081         packet->ack = RCODE_CANCELLED;
2082         packet->callback(packet, &ohci->card, packet->ack);
2083         ret = 0;
2084  out:
2085         tasklet_enable(&ctx->tasklet);
2086
2087         return ret;
2088 }
2089
2090 static int ohci_enable_phys_dma(struct fw_card *card,
2091                                 int node_id, int generation)
2092 {
2093 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2094         return 0;
2095 #else
2096         struct fw_ohci *ohci = fw_ohci(card);
2097         unsigned long flags;
2098         int n, ret = 0;
2099
2100         /*
2101          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2102          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2103          */
2104
2105         spin_lock_irqsave(&ohci->lock, flags);
2106
2107         if (ohci->generation != generation) {
2108                 ret = -ESTALE;
2109                 goto out;
2110         }
2111
2112         /*
2113          * Note, if the node ID contains a non-local bus ID, physical DMA is
2114          * enabled for _all_ nodes on remote buses.
2115          */
2116
2117         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2118         if (n < 32)
2119                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2120         else
2121                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2122
2123         flush_writes(ohci);
2124  out:
2125         spin_unlock_irqrestore(&ohci->lock, flags);
2126
2127         return ret;
2128 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2129 }
2130
2131 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2132 {
2133         struct fw_ohci *ohci = fw_ohci(card);
2134         unsigned long flags;
2135         u32 value;
2136
2137         switch (csr_offset) {
2138         case CSR_STATE_CLEAR:
2139         case CSR_STATE_SET:
2140                 if (ohci->is_root &&
2141                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2142                      OHCI1394_LinkControl_cycleMaster))
2143                         value = CSR_STATE_BIT_CMSTR;
2144                 else
2145                         value = 0;
2146                 if (ohci->csr_state_setclear_abdicate)
2147                         value |= CSR_STATE_BIT_ABDICATE;
2148
2149                 return value;
2150
2151         case CSR_NODE_IDS:
2152                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2153
2154         case CSR_CYCLE_TIME:
2155                 return get_cycle_time(ohci);
2156
2157         case CSR_BUS_TIME:
2158                 /*
2159                  * We might be called just after the cycle timer has wrapped
2160                  * around but just before the cycle64Seconds handler, so we
2161                  * better check here, too, if the bus time needs to be updated.
2162                  */
2163                 spin_lock_irqsave(&ohci->lock, flags);
2164                 value = update_bus_time(ohci);
2165                 spin_unlock_irqrestore(&ohci->lock, flags);
2166                 return value;
2167
2168         case CSR_BUSY_TIMEOUT:
2169                 value = reg_read(ohci, OHCI1394_ATRetries);
2170                 return (value >> 4) & 0x0ffff00f;
2171
2172         case CSR_PRIORITY_BUDGET:
2173                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2174                         (ohci->pri_req_max << 8);
2175
2176         default:
2177                 WARN_ON(1);
2178                 return 0;
2179         }
2180 }
2181
2182 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2183 {
2184         struct fw_ohci *ohci = fw_ohci(card);
2185         unsigned long flags;
2186
2187         switch (csr_offset) {
2188         case CSR_STATE_CLEAR:
2189                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2190                         reg_write(ohci, OHCI1394_LinkControlClear,
2191                                   OHCI1394_LinkControl_cycleMaster);
2192                         flush_writes(ohci);
2193                 }
2194                 if (value & CSR_STATE_BIT_ABDICATE)
2195                         ohci->csr_state_setclear_abdicate = false;
2196                 break;
2197
2198         case CSR_STATE_SET:
2199                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2200                         reg_write(ohci, OHCI1394_LinkControlSet,
2201                                   OHCI1394_LinkControl_cycleMaster);
2202                         flush_writes(ohci);
2203                 }
2204                 if (value & CSR_STATE_BIT_ABDICATE)
2205                         ohci->csr_state_setclear_abdicate = true;
2206                 break;
2207
2208         case CSR_NODE_IDS:
2209                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2210                 flush_writes(ohci);
2211                 break;
2212
2213         case CSR_CYCLE_TIME:
2214                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2215                 reg_write(ohci, OHCI1394_IntEventSet,
2216                           OHCI1394_cycleInconsistent);
2217                 flush_writes(ohci);
2218                 break;
2219
2220         case CSR_BUS_TIME:
2221                 spin_lock_irqsave(&ohci->lock, flags);
2222                 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2223                 spin_unlock_irqrestore(&ohci->lock, flags);
2224                 break;
2225
2226         case CSR_BUSY_TIMEOUT:
2227                 value = (value & 0xf) | ((value & 0xf) << 4) |
2228                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2229                 reg_write(ohci, OHCI1394_ATRetries, value);
2230                 flush_writes(ohci);
2231                 break;
2232
2233         case CSR_PRIORITY_BUDGET:
2234                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2235                 flush_writes(ohci);
2236                 break;
2237
2238         default:
2239                 WARN_ON(1);
2240                 break;
2241         }
2242 }
2243
2244 static void copy_iso_headers(struct iso_context *ctx, void *p)
2245 {
2246         int i = ctx->header_length;
2247
2248         if (i + ctx->base.header_size > PAGE_SIZE)
2249                 return;
2250
2251         /*
2252          * The iso header is byteswapped to little endian by
2253          * the controller, but the remaining header quadlets
2254          * are big endian.  We want to present all the headers
2255          * as big endian, so we have to swap the first quadlet.
2256          */
2257         if (ctx->base.header_size > 0)
2258                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2259         if (ctx->base.header_size > 4)
2260                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2261         if (ctx->base.header_size > 8)
2262                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2263         ctx->header_length += ctx->base.header_size;
2264 }
2265
2266 static int handle_ir_packet_per_buffer(struct context *context,
2267                                        struct descriptor *d,
2268                                        struct descriptor *last)
2269 {
2270         struct iso_context *ctx =
2271                 container_of(context, struct iso_context, context);
2272         struct descriptor *pd;
2273         __le32 *ir_header;
2274         void *p;
2275
2276         for (pd = d; pd <= last; pd++)
2277                 if (pd->transfer_status)
2278                         break;
2279         if (pd > last)
2280                 /* Descriptor(s) not done yet, stop iteration */
2281                 return 0;
2282
2283         p = last + 1;
2284         copy_iso_headers(ctx, p);
2285
2286         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2287                 ir_header = (__le32 *) p;
2288                 ctx->base.callback.sc(&ctx->base,
2289                                       le32_to_cpu(ir_header[0]) & 0xffff,
2290                                       ctx->header_length, ctx->header,
2291                                       ctx->base.callback_data);
2292                 ctx->header_length = 0;
2293         }
2294
2295         return 1;
2296 }
2297
2298 /* d == last because each descriptor block is only a single descriptor. */
2299 static int handle_ir_buffer_fill(struct context *context,
2300                                  struct descriptor *d,
2301                                  struct descriptor *last)
2302 {
2303         struct iso_context *ctx =
2304                 container_of(context, struct iso_context, context);
2305
2306         if (!last->transfer_status)
2307                 /* Descriptor(s) not done yet, stop iteration */
2308                 return 0;
2309
2310         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2311                 ctx->base.callback.mc(&ctx->base,
2312                                       le32_to_cpu(last->data_address) +
2313                                       le16_to_cpu(last->req_count) -
2314                                       le16_to_cpu(last->res_count),
2315                                       ctx->base.callback_data);
2316
2317         return 1;
2318 }
2319
2320 static int handle_it_packet(struct context *context,
2321                             struct descriptor *d,
2322                             struct descriptor *last)
2323 {
2324         struct iso_context *ctx =
2325                 container_of(context, struct iso_context, context);
2326         int i;
2327         struct descriptor *pd;
2328
2329         for (pd = d; pd <= last; pd++)
2330                 if (pd->transfer_status)
2331                         break;
2332         if (pd > last)
2333                 /* Descriptor(s) not done yet, stop iteration */
2334                 return 0;
2335
2336         i = ctx->header_length;
2337         if (i + 4 < PAGE_SIZE) {
2338                 /* Present this value as big-endian to match the receive code */
2339                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2340                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2341                                 le16_to_cpu(pd->res_count));
2342                 ctx->header_length += 4;
2343         }
2344         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2345                 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2346                                       ctx->header_length, ctx->header,
2347                                       ctx->base.callback_data);
2348                 ctx->header_length = 0;
2349         }
2350         return 1;
2351 }
2352
2353 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2354 {
2355         u32 hi = channels >> 32, lo = channels;
2356
2357         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2358         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2359         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2360         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2361         mmiowb();
2362         ohci->mc_channels = channels;
2363 }
2364
2365 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2366                                 int type, int channel, size_t header_size)
2367 {
2368         struct fw_ohci *ohci = fw_ohci(card);
2369         struct iso_context *uninitialized_var(ctx);
2370         descriptor_callback_t uninitialized_var(callback);
2371         u64 *uninitialized_var(channels);
2372         u32 *uninitialized_var(mask), uninitialized_var(regs);
2373         unsigned long flags;
2374         int index, ret = -EBUSY;
2375
2376         spin_lock_irqsave(&ohci->lock, flags);
2377
2378         switch (type) {
2379         case FW_ISO_CONTEXT_TRANSMIT:
2380                 mask     = &ohci->it_context_mask;
2381                 callback = handle_it_packet;
2382                 index    = ffs(*mask) - 1;
2383                 if (index >= 0) {
2384                         *mask &= ~(1 << index);
2385                         regs = OHCI1394_IsoXmitContextBase(index);
2386                         ctx  = &ohci->it_context_list[index];
2387                 }
2388                 break;
2389
2390         case FW_ISO_CONTEXT_RECEIVE:
2391                 channels = &ohci->ir_context_channels;
2392                 mask     = &ohci->ir_context_mask;
2393                 callback = handle_ir_packet_per_buffer;
2394                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2395                 if (index >= 0) {
2396                         *channels &= ~(1ULL << channel);
2397                         *mask     &= ~(1 << index);
2398                         regs = OHCI1394_IsoRcvContextBase(index);
2399                         ctx  = &ohci->ir_context_list[index];
2400                 }
2401                 break;
2402
2403         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2404                 mask     = &ohci->ir_context_mask;
2405                 callback = handle_ir_buffer_fill;
2406                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2407                 if (index >= 0) {
2408                         ohci->mc_allocated = true;
2409                         *mask &= ~(1 << index);
2410                         regs = OHCI1394_IsoRcvContextBase(index);
2411                         ctx  = &ohci->ir_context_list[index];
2412                 }
2413                 break;
2414
2415         default:
2416                 index = -1;
2417                 ret = -ENOSYS;
2418         }
2419
2420         spin_unlock_irqrestore(&ohci->lock, flags);
2421
2422         if (index < 0)
2423                 return ERR_PTR(ret);
2424
2425         memset(ctx, 0, sizeof(*ctx));
2426         ctx->header_length = 0;
2427         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2428         if (ctx->header == NULL) {
2429                 ret = -ENOMEM;
2430                 goto out;
2431         }
2432         ret = context_init(&ctx->context, ohci, regs, callback);
2433         if (ret < 0)
2434                 goto out_with_header;
2435
2436         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2437                 set_multichannel_mask(ohci, 0);
2438
2439         return &ctx->base;
2440
2441  out_with_header:
2442         free_page((unsigned long)ctx->header);
2443  out:
2444         spin_lock_irqsave(&ohci->lock, flags);
2445
2446         switch (type) {
2447         case FW_ISO_CONTEXT_RECEIVE:
2448                 *channels |= 1ULL << channel;
2449                 break;
2450
2451         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2452                 ohci->mc_allocated = false;
2453                 break;
2454         }
2455         *mask |= 1 << index;
2456
2457         spin_unlock_irqrestore(&ohci->lock, flags);
2458
2459         return ERR_PTR(ret);
2460 }
2461
2462 static int ohci_start_iso(struct fw_iso_context *base,
2463                           s32 cycle, u32 sync, u32 tags)
2464 {
2465         struct iso_context *ctx = container_of(base, struct iso_context, base);
2466         struct fw_ohci *ohci = ctx->context.ohci;
2467         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2468         int index;
2469
2470         switch (ctx->base.type) {
2471         case FW_ISO_CONTEXT_TRANSMIT:
2472                 index = ctx - ohci->it_context_list;
2473                 match = 0;
2474                 if (cycle >= 0)
2475                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2476                                 (cycle & 0x7fff) << 16;
2477
2478                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2479                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2480                 context_run(&ctx->context, match);
2481                 break;
2482
2483         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2484                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2485                 /* fall through */
2486         case FW_ISO_CONTEXT_RECEIVE:
2487                 index = ctx - ohci->ir_context_list;
2488                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2489                 if (cycle >= 0) {
2490                         match |= (cycle & 0x07fff) << 12;
2491                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2492                 }
2493
2494                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2495                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2496                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2497                 context_run(&ctx->context, control);
2498                 break;
2499         }
2500
2501         return 0;
2502 }
2503
2504 static int ohci_stop_iso(struct fw_iso_context *base)
2505 {
2506         struct fw_ohci *ohci = fw_ohci(base->card);
2507         struct iso_context *ctx = container_of(base, struct iso_context, base);
2508         int index;
2509
2510         switch (ctx->base.type) {
2511         case FW_ISO_CONTEXT_TRANSMIT:
2512                 index = ctx - ohci->it_context_list;
2513                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2514                 break;
2515
2516         case FW_ISO_CONTEXT_RECEIVE:
2517         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2518                 index = ctx - ohci->ir_context_list;
2519                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2520                 break;
2521         }
2522         flush_writes(ohci);
2523         context_stop(&ctx->context);
2524
2525         return 0;
2526 }
2527
2528 static void ohci_free_iso_context(struct fw_iso_context *base)
2529 {
2530         struct fw_ohci *ohci = fw_ohci(base->card);
2531         struct iso_context *ctx = container_of(base, struct iso_context, base);
2532         unsigned long flags;
2533         int index;
2534
2535         ohci_stop_iso(base);
2536         context_release(&ctx->context);
2537         free_page((unsigned long)ctx->header);
2538
2539         spin_lock_irqsave(&ohci->lock, flags);
2540
2541         switch (base->type) {
2542         case FW_ISO_CONTEXT_TRANSMIT:
2543                 index = ctx - ohci->it_context_list;
2544                 ohci->it_context_mask |= 1 << index;
2545                 break;
2546
2547         case FW_ISO_CONTEXT_RECEIVE:
2548                 index = ctx - ohci->ir_context_list;
2549                 ohci->ir_context_mask |= 1 << index;
2550                 ohci->ir_context_channels |= 1ULL << base->channel;
2551                 break;
2552
2553         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2554                 index = ctx - ohci->ir_context_list;
2555                 ohci->ir_context_mask |= 1 << index;
2556                 ohci->ir_context_channels |= ohci->mc_channels;
2557                 ohci->mc_channels = 0;
2558                 ohci->mc_allocated = false;
2559                 break;
2560         }
2561
2562         spin_unlock_irqrestore(&ohci->lock, flags);
2563 }
2564
2565 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2566 {
2567         struct fw_ohci *ohci = fw_ohci(base->card);
2568         unsigned long flags;
2569         int ret;
2570
2571         switch (base->type) {
2572         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2573
2574                 spin_lock_irqsave(&ohci->lock, flags);
2575
2576                 /* Don't allow multichannel to grab other contexts' channels. */
2577                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2578                         *channels = ohci->ir_context_channels;
2579                         ret = -EBUSY;
2580                 } else {
2581                         set_multichannel_mask(ohci, *channels);
2582                         ret = 0;
2583                 }
2584
2585                 spin_unlock_irqrestore(&ohci->lock, flags);
2586
2587                 break;
2588         default:
2589                 ret = -EINVAL;
2590         }
2591
2592         return ret;
2593 }
2594
2595 static int queue_iso_transmit(struct iso_context *ctx,
2596                               struct fw_iso_packet *packet,
2597                               struct fw_iso_buffer *buffer,
2598                               unsigned long payload)
2599 {
2600         struct descriptor *d, *last, *pd;
2601         struct fw_iso_packet *p;
2602         __le32 *header;
2603         dma_addr_t d_bus, page_bus;
2604         u32 z, header_z, payload_z, irq;
2605         u32 payload_index, payload_end_index, next_page_index;
2606         int page, end_page, i, length, offset;
2607
2608         p = packet;
2609         payload_index = payload;
2610
2611         if (p->skip)
2612                 z = 1;
2613         else
2614                 z = 2;
2615         if (p->header_length > 0)
2616                 z++;
2617
2618         /* Determine the first page the payload isn't contained in. */
2619         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2620         if (p->payload_length > 0)
2621                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2622         else
2623                 payload_z = 0;
2624
2625         z += payload_z;
2626
2627         /* Get header size in number of descriptors. */
2628         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2629
2630         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2631         if (d == NULL)
2632                 return -ENOMEM;
2633
2634         if (!p->skip) {
2635                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2636                 d[0].req_count = cpu_to_le16(8);
2637                 /*
2638                  * Link the skip address to this descriptor itself.  This causes
2639                  * a context to skip a cycle whenever lost cycles or FIFO
2640                  * overruns occur, without dropping the data.  The application
2641                  * should then decide whether this is an error condition or not.
2642                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2643                  */
2644                 d[0].branch_address = cpu_to_le32(d_bus | z);
2645
2646                 header = (__le32 *) &d[1];
2647                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2648                                         IT_HEADER_TAG(p->tag) |
2649                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2650                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2651                                         IT_HEADER_SPEED(ctx->base.speed));
2652                 header[1] =
2653                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2654                                                           p->payload_length));
2655         }
2656
2657         if (p->header_length > 0) {
2658                 d[2].req_count    = cpu_to_le16(p->header_length);
2659                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2660                 memcpy(&d[z], p->header, p->header_length);
2661         }
2662
2663         pd = d + z - payload_z;
2664         payload_end_index = payload_index + p->payload_length;
2665         for (i = 0; i < payload_z; i++) {
2666                 page               = payload_index >> PAGE_SHIFT;
2667                 offset             = payload_index & ~PAGE_MASK;
2668                 next_page_index    = (page + 1) << PAGE_SHIFT;
2669                 length             =
2670                         min(next_page_index, payload_end_index) - payload_index;
2671                 pd[i].req_count    = cpu_to_le16(length);
2672
2673                 page_bus = page_private(buffer->pages[page]);
2674                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2675
2676                 payload_index += length;
2677         }
2678
2679         if (p->interrupt)
2680                 irq = DESCRIPTOR_IRQ_ALWAYS;
2681         else
2682                 irq = DESCRIPTOR_NO_IRQ;
2683
2684         last = z == 2 ? d : d + z - 1;
2685         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2686                                      DESCRIPTOR_STATUS |
2687                                      DESCRIPTOR_BRANCH_ALWAYS |
2688                                      irq);
2689
2690         context_append(&ctx->context, d, z, header_z);
2691
2692         return 0;
2693 }
2694
2695 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2696                                        struct fw_iso_packet *packet,
2697                                        struct fw_iso_buffer *buffer,
2698                                        unsigned long payload)
2699 {
2700         struct descriptor *d, *pd;
2701         dma_addr_t d_bus, page_bus;
2702         u32 z, header_z, rest;
2703         int i, j, length;
2704         int page, offset, packet_count, header_size, payload_per_buffer;
2705
2706         /*
2707          * The OHCI controller puts the isochronous header and trailer in the
2708          * buffer, so we need at least 8 bytes.
2709          */
2710         packet_count = packet->header_length / ctx->base.header_size;
2711         header_size  = max(ctx->base.header_size, (size_t)8);
2712
2713         /* Get header size in number of descriptors. */
2714         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2715         page     = payload >> PAGE_SHIFT;
2716         offset   = payload & ~PAGE_MASK;
2717         payload_per_buffer = packet->payload_length / packet_count;
2718
2719         for (i = 0; i < packet_count; i++) {
2720                 /* d points to the header descriptor */
2721                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2722                 d = context_get_descriptors(&ctx->context,
2723                                 z + header_z, &d_bus);
2724                 if (d == NULL)
2725                         return -ENOMEM;
2726
2727                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2728                                               DESCRIPTOR_INPUT_MORE);
2729                 if (packet->skip && i == 0)
2730                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2731                 d->req_count    = cpu_to_le16(header_size);
2732                 d->res_count    = d->req_count;
2733                 d->transfer_status = 0;
2734                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2735
2736                 rest = payload_per_buffer;
2737                 pd = d;
2738                 for (j = 1; j < z; j++) {
2739                         pd++;
2740                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2741                                                   DESCRIPTOR_INPUT_MORE);
2742
2743                         if (offset + rest < PAGE_SIZE)
2744                                 length = rest;
2745                         else
2746                                 length = PAGE_SIZE - offset;
2747                         pd->req_count = cpu_to_le16(length);
2748                         pd->res_count = pd->req_count;
2749                         pd->transfer_status = 0;
2750
2751                         page_bus = page_private(buffer->pages[page]);
2752                         pd->data_address = cpu_to_le32(page_bus + offset);
2753
2754                         offset = (offset + length) & ~PAGE_MASK;
2755                         rest -= length;
2756                         if (offset == 0)
2757                                 page++;
2758                 }
2759                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2760                                           DESCRIPTOR_INPUT_LAST |
2761                                           DESCRIPTOR_BRANCH_ALWAYS);
2762                 if (packet->interrupt && i == packet_count - 1)
2763                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2764
2765                 context_append(&ctx->context, d, z, header_z);
2766         }
2767
2768         return 0;
2769 }
2770
2771 static int queue_iso_buffer_fill(struct iso_context *ctx,
2772                                  struct fw_iso_packet *packet,
2773                                  struct fw_iso_buffer *buffer,
2774                                  unsigned long payload)
2775 {
2776         struct descriptor *d;
2777         dma_addr_t d_bus, page_bus;
2778         int page, offset, rest, z, i, length;
2779
2780         page   = payload >> PAGE_SHIFT;
2781         offset = payload & ~PAGE_MASK;
2782         rest   = packet->payload_length;
2783
2784         /* We need one descriptor for each page in the buffer. */
2785         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
2786
2787         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
2788                 return -EFAULT;
2789
2790         for (i = 0; i < z; i++) {
2791                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
2792                 if (d == NULL)
2793                         return -ENOMEM;
2794
2795                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
2796                                          DESCRIPTOR_BRANCH_ALWAYS);
2797                 if (packet->skip && i == 0)
2798                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2799                 if (packet->interrupt && i == z - 1)
2800                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2801
2802                 if (offset + rest < PAGE_SIZE)
2803                         length = rest;
2804                 else
2805                         length = PAGE_SIZE - offset;
2806                 d->req_count = cpu_to_le16(length);
2807                 d->res_count = d->req_count;
2808                 d->transfer_status = 0;
2809
2810                 page_bus = page_private(buffer->pages[page]);
2811                 d->data_address = cpu_to_le32(page_bus + offset);
2812
2813                 rest -= length;
2814                 offset = 0;
2815                 page++;
2816
2817                 context_append(&ctx->context, d, 1, 0);
2818         }
2819
2820         return 0;
2821 }
2822
2823 static int ohci_queue_iso(struct fw_iso_context *base,
2824                           struct fw_iso_packet *packet,
2825                           struct fw_iso_buffer *buffer,
2826                           unsigned long payload)
2827 {
2828         struct iso_context *ctx = container_of(base, struct iso_context, base);
2829         unsigned long flags;
2830         int ret = -ENOSYS;
2831
2832         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2833         switch (base->type) {
2834         case FW_ISO_CONTEXT_TRANSMIT:
2835                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
2836                 break;
2837         case FW_ISO_CONTEXT_RECEIVE:
2838                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
2839                 break;
2840         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2841                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
2842                 break;
2843         }
2844         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2845
2846         return ret;
2847 }
2848
2849 static const struct fw_card_driver ohci_driver = {
2850         .enable                 = ohci_enable,
2851         .read_phy_reg           = ohci_read_phy_reg,
2852         .update_phy_reg         = ohci_update_phy_reg,
2853         .set_config_rom         = ohci_set_config_rom,
2854         .send_request           = ohci_send_request,
2855         .send_response          = ohci_send_response,
2856         .cancel_packet          = ohci_cancel_packet,
2857         .enable_phys_dma        = ohci_enable_phys_dma,
2858         .read_csr               = ohci_read_csr,
2859         .write_csr              = ohci_write_csr,
2860
2861         .allocate_iso_context   = ohci_allocate_iso_context,
2862         .free_iso_context       = ohci_free_iso_context,
2863         .set_iso_channels       = ohci_set_iso_channels,
2864         .queue_iso              = ohci_queue_iso,
2865         .start_iso              = ohci_start_iso,
2866         .stop_iso               = ohci_stop_iso,
2867 };
2868
2869 #ifdef CONFIG_PPC_PMAC
2870 static void pmac_ohci_on(struct pci_dev *dev)
2871 {
2872         if (machine_is(powermac)) {
2873                 struct device_node *ofn = pci_device_to_OF_node(dev);
2874
2875                 if (ofn) {
2876                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2877                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2878                 }
2879         }
2880 }
2881
2882 static void pmac_ohci_off(struct pci_dev *dev)
2883 {
2884         if (machine_is(powermac)) {
2885                 struct device_node *ofn = pci_device_to_OF_node(dev);
2886
2887                 if (ofn) {
2888                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2889                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2890                 }
2891         }
2892 }
2893 #else
2894 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2895 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2896 #endif /* CONFIG_PPC_PMAC */
2897
2898 static int __devinit pci_probe(struct pci_dev *dev,
2899                                const struct pci_device_id *ent)
2900 {
2901         struct fw_ohci *ohci;
2902         u32 bus_options, max_receive, link_speed, version;
2903         u64 guid;
2904         int i, err, n_ir, n_it;
2905         size_t size;
2906
2907         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2908         if (ohci == NULL) {
2909                 err = -ENOMEM;
2910                 goto fail;
2911         }
2912
2913         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2914
2915         pmac_ohci_on(dev);
2916
2917         err = pci_enable_device(dev);
2918         if (err) {
2919                 fw_error("Failed to enable OHCI hardware\n");
2920                 goto fail_free;
2921         }
2922
2923         pci_set_master(dev);
2924         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2925         pci_set_drvdata(dev, ohci);
2926
2927         spin_lock_init(&ohci->lock);
2928         mutex_init(&ohci->phy_reg_mutex);
2929
2930         tasklet_init(&ohci->bus_reset_tasklet,
2931                      bus_reset_tasklet, (unsigned long)ohci);
2932
2933         err = pci_request_region(dev, 0, ohci_driver_name);
2934         if (err) {
2935                 fw_error("MMIO resource unavailable\n");
2936                 goto fail_disable;
2937         }
2938
2939         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2940         if (ohci->registers == NULL) {
2941                 fw_error("Failed to remap registers\n");
2942                 err = -ENXIO;
2943                 goto fail_iomem;
2944         }
2945
2946         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2947                 if ((ohci_quirks[i].vendor == dev->vendor) &&
2948                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
2949                      ohci_quirks[i].device == dev->device) &&
2950                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
2951                      ohci_quirks[i].revision >= dev->revision)) {
2952                         ohci->quirks = ohci_quirks[i].flags;
2953                         break;
2954                 }
2955         if (param_quirks)
2956                 ohci->quirks = param_quirks;
2957
2958         ar_context_init(&ohci->ar_request_ctx, ohci,
2959                         OHCI1394_AsReqRcvContextControlSet);
2960
2961         ar_context_init(&ohci->ar_response_ctx, ohci,
2962                         OHCI1394_AsRspRcvContextControlSet);
2963
2964         context_init(&ohci->at_request_ctx, ohci,
2965                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2966
2967         context_init(&ohci->at_response_ctx, ohci,
2968                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2969
2970         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2971         ohci->ir_context_channels = ~0ULL;
2972         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2973         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2974         n_ir = hweight32(ohci->ir_context_mask);
2975         size = sizeof(struct iso_context) * n_ir;
2976         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2977
2978         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2979         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2980         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2981         n_it = hweight32(ohci->it_context_mask);
2982         size = sizeof(struct iso_context) * n_it;
2983         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2984
2985         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2986                 err = -ENOMEM;
2987                 goto fail_contexts;
2988         }
2989
2990         /* self-id dma buffer allocation */
2991         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2992                                                SELF_ID_BUF_SIZE,
2993                                                &ohci->self_id_bus,
2994                                                GFP_KERNEL);
2995         if (ohci->self_id_cpu == NULL) {
2996                 err = -ENOMEM;
2997                 goto fail_contexts;
2998         }
2999
3000         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3001         max_receive = (bus_options >> 12) & 0xf;
3002         link_speed = bus_options & 0x7;
3003         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3004                 reg_read(ohci, OHCI1394_GUIDLo);
3005
3006         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3007         if (err)
3008                 goto fail_self_id;
3009
3010         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3011         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3012                   "%d IR + %d IT contexts, quirks 0x%x\n",
3013                   dev_name(&dev->dev), version >> 16, version & 0xff,
3014                   n_ir, n_it, ohci->quirks);
3015
3016         return 0;
3017
3018  fail_self_id:
3019         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
3020                           ohci->self_id_cpu, ohci->self_id_bus);
3021  fail_contexts:
3022         kfree(ohci->ir_context_list);
3023         kfree(ohci->it_context_list);
3024         context_release(&ohci->at_response_ctx);
3025         context_release(&ohci->at_request_ctx);
3026         ar_context_release(&ohci->ar_response_ctx);
3027         ar_context_release(&ohci->ar_request_ctx);
3028         pci_iounmap(dev, ohci->registers);
3029  fail_iomem:
3030         pci_release_region(dev, 0);
3031  fail_disable:
3032         pci_disable_device(dev);
3033  fail_free:
3034         kfree(&ohci->card);
3035         pmac_ohci_off(dev);
3036  fail:
3037         if (err == -ENOMEM)
3038                 fw_error("Out of memory\n");
3039
3040         return err;
3041 }
3042
3043 static void pci_remove(struct pci_dev *dev)
3044 {
3045         struct fw_ohci *ohci;
3046
3047         ohci = pci_get_drvdata(dev);
3048         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3049         flush_writes(ohci);
3050         fw_core_remove_card(&ohci->card);
3051
3052         /*
3053          * FIXME: Fail all pending packets here, now that the upper
3054          * layers can't queue any more.
3055          */
3056
3057         software_reset(ohci);
3058         free_irq(dev->irq, ohci);
3059
3060         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3061                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3062                                   ohci->next_config_rom, ohci->next_config_rom_bus);
3063         if (ohci->config_rom)
3064                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3065                                   ohci->config_rom, ohci->config_rom_bus);
3066         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
3067                           ohci->self_id_cpu, ohci->self_id_bus);
3068         ar_context_release(&ohci->ar_request_ctx);
3069         ar_context_release(&ohci->ar_response_ctx);
3070         context_release(&ohci->at_request_ctx);
3071         context_release(&ohci->at_response_ctx);
3072         kfree(ohci->it_context_list);
3073         kfree(ohci->ir_context_list);
3074         pci_disable_msi(dev);
3075         pci_iounmap(dev, ohci->registers);
3076         pci_release_region(dev, 0);
3077         pci_disable_device(dev);
3078         kfree(&ohci->card);
3079         pmac_ohci_off(dev);
3080
3081         fw_notify("Removed fw-ohci device.\n");
3082 }
3083
3084 #ifdef CONFIG_PM
3085 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3086 {
3087         struct fw_ohci *ohci = pci_get_drvdata(dev);
3088         int err;
3089
3090         software_reset(ohci);
3091         free_irq(dev->irq, ohci);
3092         pci_disable_msi(dev);
3093         err = pci_save_state(dev);
3094         if (err) {
3095                 fw_error("pci_save_state failed\n");
3096                 return err;
3097         }
3098         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3099         if (err)
3100                 fw_error("pci_set_power_state failed with %d\n", err);
3101         pmac_ohci_off(dev);
3102
3103         return 0;
3104 }
3105
3106 static int pci_resume(struct pci_dev *dev)
3107 {
3108         struct fw_ohci *ohci = pci_get_drvdata(dev);
3109         int err;
3110
3111         pmac_ohci_on(dev);
3112         pci_set_power_state(dev, PCI_D0);
3113         pci_restore_state(dev);
3114         err = pci_enable_device(dev);
3115         if (err) {
3116                 fw_error("pci_enable_device failed\n");
3117                 return err;
3118         }
3119
3120         return ohci_enable(&ohci->card, NULL, 0);
3121 }
3122 #endif
3123
3124 static const struct pci_device_id pci_table[] = {
3125         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3126         { }
3127 };
3128
3129 MODULE_DEVICE_TABLE(pci, pci_table);
3130
3131 static struct pci_driver fw_ohci_pci_driver = {
3132         .name           = ohci_driver_name,
3133         .id_table       = pci_table,
3134         .probe          = pci_probe,
3135         .remove         = pci_remove,
3136 #ifdef CONFIG_PM
3137         .resume         = pci_resume,
3138         .suspend        = pci_suspend,
3139 #endif
3140 };
3141
3142 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3143 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3144 MODULE_LICENSE("GPL");
3145
3146 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3147 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3148 MODULE_ALIAS("ohci1394");
3149 #endif
3150
3151 static int __init fw_ohci_init(void)
3152 {
3153         return pci_register_driver(&fw_ohci_pci_driver);
3154 }
3155
3156 static void __exit fw_ohci_cleanup(void)
3157 {
3158         pci_unregister_driver(&fw_ohci_pci_driver);
3159 }
3160
3161 module_init(fw_ohci_init);
3162 module_exit(fw_ohci_cleanup);