7f03540cabe8b3932021545a6db05aebb3f729b1
[pandora-kernel.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/compiler.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/pci_ids.h>
39 #include <linux/slab.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/time.h>
43
44 #include <asm/byteorder.h>
45 #include <asm/page.h>
46 #include <asm/system.h>
47
48 #ifdef CONFIG_PPC_PMAC
49 #include <asm/pmac_feature.h>
50 #endif
51
52 #include "core.h"
53 #include "ohci.h"
54
55 #define DESCRIPTOR_OUTPUT_MORE          0
56 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
57 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
58 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
59 #define DESCRIPTOR_STATUS               (1 << 11)
60 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
61 #define DESCRIPTOR_PING                 (1 << 7)
62 #define DESCRIPTOR_YY                   (1 << 6)
63 #define DESCRIPTOR_NO_IRQ               (0 << 4)
64 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
65 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
66 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
67 #define DESCRIPTOR_WAIT                 (3 << 0)
68
69 struct descriptor {
70         __le16 req_count;
71         __le16 control;
72         __le32 data_address;
73         __le32 branch_address;
74         __le16 res_count;
75         __le16 transfer_status;
76 } __attribute__((aligned(16)));
77
78 #define CONTROL_SET(regs)       (regs)
79 #define CONTROL_CLEAR(regs)     ((regs) + 4)
80 #define COMMAND_PTR(regs)       ((regs) + 12)
81 #define CONTEXT_MATCH(regs)     ((regs) + 16)
82
83 struct ar_buffer {
84         struct descriptor descriptor;
85         struct ar_buffer *next;
86         __le32 data[0];
87 };
88
89 struct ar_context {
90         struct fw_ohci *ohci;
91         struct ar_buffer *current_buffer;
92         struct ar_buffer *last_buffer;
93         void *pointer;
94         u32 regs;
95         struct tasklet_struct tasklet;
96 };
97
98 struct context;
99
100 typedef int (*descriptor_callback_t)(struct context *ctx,
101                                      struct descriptor *d,
102                                      struct descriptor *last);
103
104 /*
105  * A buffer that contains a block of DMA-able coherent memory used for
106  * storing a portion of a DMA descriptor program.
107  */
108 struct descriptor_buffer {
109         struct list_head list;
110         dma_addr_t buffer_bus;
111         size_t buffer_size;
112         size_t used;
113         struct descriptor buffer[0];
114 };
115
116 struct context {
117         struct fw_ohci *ohci;
118         u32 regs;
119         int total_allocation;
120
121         /*
122          * List of page-sized buffers for storing DMA descriptors.
123          * Head of list contains buffers in use and tail of list contains
124          * free buffers.
125          */
126         struct list_head buffer_list;
127
128         /*
129          * Pointer to a buffer inside buffer_list that contains the tail
130          * end of the current DMA program.
131          */
132         struct descriptor_buffer *buffer_tail;
133
134         /*
135          * The descriptor containing the branch address of the first
136          * descriptor that has not yet been filled by the device.
137          */
138         struct descriptor *last;
139
140         /*
141          * The last descriptor in the DMA program.  It contains the branch
142          * address that must be updated upon appending a new descriptor.
143          */
144         struct descriptor *prev;
145
146         descriptor_callback_t callback;
147
148         struct tasklet_struct tasklet;
149 };
150
151 #define IT_HEADER_SY(v)          ((v) <<  0)
152 #define IT_HEADER_TCODE(v)       ((v) <<  4)
153 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
154 #define IT_HEADER_TAG(v)         ((v) << 14)
155 #define IT_HEADER_SPEED(v)       ((v) << 16)
156 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
157
158 struct iso_context {
159         struct fw_iso_context base;
160         struct context context;
161         int excess_bytes;
162         void *header;
163         size_t header_length;
164 };
165
166 #define CONFIG_ROM_SIZE 1024
167
168 struct fw_ohci {
169         struct fw_card card;
170
171         __iomem char *registers;
172         int node_id;
173         int generation;
174         int request_generation; /* for timestamping incoming requests */
175         unsigned quirks;
176         unsigned int pri_req_max;
177         u32 bus_time;
178         bool is_root;
179         bool csr_state_setclear_abdicate;
180
181         /*
182          * Spinlock for accessing fw_ohci data.  Never call out of
183          * this driver with this lock held.
184          */
185         spinlock_t lock;
186
187         struct mutex phy_reg_mutex;
188
189         struct ar_context ar_request_ctx;
190         struct ar_context ar_response_ctx;
191         struct context at_request_ctx;
192         struct context at_response_ctx;
193
194         u32 it_context_mask;     /* unoccupied IT contexts */
195         struct iso_context *it_context_list;
196         u64 ir_context_channels; /* unoccupied channels */
197         u32 ir_context_mask;     /* unoccupied IR contexts */
198         struct iso_context *ir_context_list;
199         u64 mc_channels; /* channels in use by the multichannel IR context */
200         bool mc_allocated;
201
202         __be32    *config_rom;
203         dma_addr_t config_rom_bus;
204         __be32    *next_config_rom;
205         dma_addr_t next_config_rom_bus;
206         __be32     next_header;
207
208         __le32    *self_id_cpu;
209         dma_addr_t self_id_bus;
210         struct tasklet_struct bus_reset_tasklet;
211
212         u32 self_id_buffer[512];
213 };
214
215 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
216 {
217         return container_of(card, struct fw_ohci, card);
218 }
219
220 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
221 #define IR_CONTEXT_BUFFER_FILL          0x80000000
222 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
223 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
224 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
225 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
226
227 #define CONTEXT_RUN     0x8000
228 #define CONTEXT_WAKE    0x1000
229 #define CONTEXT_DEAD    0x0800
230 #define CONTEXT_ACTIVE  0x0400
231
232 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
233 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
234 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
235
236 #define OHCI1394_REGISTER_SIZE          0x800
237 #define OHCI_LOOP_COUNT                 500
238 #define OHCI1394_PCI_HCI_Control        0x40
239 #define SELF_ID_BUF_SIZE                0x800
240 #define OHCI_TCODE_PHY_PACKET           0x0e
241 #define OHCI_VERSION_1_1                0x010010
242
243 static char ohci_driver_name[] = KBUILD_MODNAME;
244
245 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
246 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
247
248 #define QUIRK_CYCLE_TIMER               1
249 #define QUIRK_RESET_PACKET              2
250 #define QUIRK_BE_HEADERS                4
251 #define QUIRK_NO_1394A                  8
252 #define QUIRK_NO_MSI                    16
253
254 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
255 static const struct {
256         unsigned short vendor, device, flags;
257 } ohci_quirks[] = {
258         {PCI_VENDOR_ID_TI,      PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
259                                                             QUIRK_RESET_PACKET |
260                                                             QUIRK_NO_1394A},
261         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
262         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
263         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
264         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
265         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
266         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
267 };
268
269 /* This overrides anything that was found in ohci_quirks[]. */
270 static int param_quirks;
271 module_param_named(quirks, param_quirks, int, 0644);
272 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
273         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
274         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
275         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
276         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
277         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
278         ")");
279
280 #define OHCI_PARAM_DEBUG_AT_AR          1
281 #define OHCI_PARAM_DEBUG_SELFIDS        2
282 #define OHCI_PARAM_DEBUG_IRQS           4
283 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
284
285 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
286
287 static int param_debug;
288 module_param_named(debug, param_debug, int, 0644);
289 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
290         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
291         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
292         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
293         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
294         ", or a combination, or all = -1)");
295
296 static void log_irqs(u32 evt)
297 {
298         if (likely(!(param_debug &
299                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
300                 return;
301
302         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
303             !(evt & OHCI1394_busReset))
304                 return;
305
306         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
307             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
308             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
309             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
310             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
311             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
312             evt & OHCI1394_isochRx              ? " IR"                 : "",
313             evt & OHCI1394_isochTx              ? " IT"                 : "",
314             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
315             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
316             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
317             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
318             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
319             evt & OHCI1394_busReset             ? " busReset"           : "",
320             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
321                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
322                     OHCI1394_respTxComplete | OHCI1394_isochRx |
323                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
324                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
325                     OHCI1394_cycleInconsistent |
326                     OHCI1394_regAccessFail | OHCI1394_busReset)
327                                                 ? " ?"                  : "");
328 }
329
330 static const char *speed[] = {
331         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
332 };
333 static const char *power[] = {
334         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
335         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
336 };
337 static const char port[] = { '.', '-', 'p', 'c', };
338
339 static char _p(u32 *s, int shift)
340 {
341         return port[*s >> shift & 3];
342 }
343
344 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
345 {
346         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
347                 return;
348
349         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
350                   self_id_count, generation, node_id);
351
352         for (; self_id_count--; ++s)
353                 if ((*s & 1 << 23) == 0)
354                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
355                             "%s gc=%d %s %s%s%s\n",
356                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
357                             speed[*s >> 14 & 3], *s >> 16 & 63,
358                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
359                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
360                 else
361                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
362                             *s, *s >> 24 & 63,
363                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
364                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
365 }
366
367 static const char *evts[] = {
368         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
369         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
370         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
371         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
372         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
373         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
374         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
375         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
376         [0x10] = "-reserved-",          [0x11] = "ack_complete",
377         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
378         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
379         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
380         [0x18] = "-reserved-",          [0x19] = "-reserved-",
381         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
382         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
383         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
384         [0x20] = "pending/cancelled",
385 };
386 static const char *tcodes[] = {
387         [0x0] = "QW req",               [0x1] = "BW req",
388         [0x2] = "W resp",               [0x3] = "-reserved-",
389         [0x4] = "QR req",               [0x5] = "BR req",
390         [0x6] = "QR resp",              [0x7] = "BR resp",
391         [0x8] = "cycle start",          [0x9] = "Lk req",
392         [0xa] = "async stream packet",  [0xb] = "Lk resp",
393         [0xc] = "-reserved-",           [0xd] = "-reserved-",
394         [0xe] = "link internal",        [0xf] = "-reserved-",
395 };
396 static const char *phys[] = {
397         [0x0] = "phy config packet",    [0x1] = "link-on packet",
398         [0x2] = "self-id packet",       [0x3] = "-reserved-",
399 };
400
401 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
402 {
403         int tcode = header[0] >> 4 & 0xf;
404         char specific[12];
405
406         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
407                 return;
408
409         if (unlikely(evt >= ARRAY_SIZE(evts)))
410                         evt = 0x1f;
411
412         if (evt == OHCI1394_evt_bus_reset) {
413                 fw_notify("A%c evt_bus_reset, generation %d\n",
414                     dir, (header[2] >> 16) & 0xff);
415                 return;
416         }
417
418         if (header[0] == ~header[1]) {
419                 fw_notify("A%c %s, %s, %08x\n",
420                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
421                 return;
422         }
423
424         switch (tcode) {
425         case 0x0: case 0x6: case 0x8:
426                 snprintf(specific, sizeof(specific), " = %08x",
427                          be32_to_cpu((__force __be32)header[3]));
428                 break;
429         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
430                 snprintf(specific, sizeof(specific), " %x,%x",
431                          header[3] >> 16, header[3] & 0xffff);
432                 break;
433         default:
434                 specific[0] = '\0';
435         }
436
437         switch (tcode) {
438         case 0xe: case 0xa:
439                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
440                 break;
441         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
442                 fw_notify("A%c spd %x tl %02x, "
443                     "%04x -> %04x, %s, "
444                     "%s, %04x%08x%s\n",
445                     dir, speed, header[0] >> 10 & 0x3f,
446                     header[1] >> 16, header[0] >> 16, evts[evt],
447                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
448                 break;
449         default:
450                 fw_notify("A%c spd %x tl %02x, "
451                     "%04x -> %04x, %s, "
452                     "%s%s\n",
453                     dir, speed, header[0] >> 10 & 0x3f,
454                     header[1] >> 16, header[0] >> 16, evts[evt],
455                     tcodes[tcode], specific);
456         }
457 }
458
459 #else
460
461 #define param_debug 0
462 static inline void log_irqs(u32 evt) {}
463 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
464 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
465
466 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
467
468 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
469 {
470         writel(data, ohci->registers + offset);
471 }
472
473 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
474 {
475         return readl(ohci->registers + offset);
476 }
477
478 static inline void flush_writes(const struct fw_ohci *ohci)
479 {
480         /* Do a dummy read to flush writes. */
481         reg_read(ohci, OHCI1394_Version);
482 }
483
484 static int read_phy_reg(struct fw_ohci *ohci, int addr)
485 {
486         u32 val;
487         int i;
488
489         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
490         for (i = 0; i < 3 + 100; i++) {
491                 val = reg_read(ohci, OHCI1394_PhyControl);
492                 if (val & OHCI1394_PhyControl_ReadDone)
493                         return OHCI1394_PhyControl_ReadData(val);
494
495                 /*
496                  * Try a few times without waiting.  Sleeping is necessary
497                  * only when the link/PHY interface is busy.
498                  */
499                 if (i >= 3)
500                         msleep(1);
501         }
502         fw_error("failed to read phy reg\n");
503
504         return -EBUSY;
505 }
506
507 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
508 {
509         int i;
510
511         reg_write(ohci, OHCI1394_PhyControl,
512                   OHCI1394_PhyControl_Write(addr, val));
513         for (i = 0; i < 3 + 100; i++) {
514                 val = reg_read(ohci, OHCI1394_PhyControl);
515                 if (!(val & OHCI1394_PhyControl_WritePending))
516                         return 0;
517
518                 if (i >= 3)
519                         msleep(1);
520         }
521         fw_error("failed to write phy reg\n");
522
523         return -EBUSY;
524 }
525
526 static int update_phy_reg(struct fw_ohci *ohci, int addr,
527                           int clear_bits, int set_bits)
528 {
529         int ret = read_phy_reg(ohci, addr);
530         if (ret < 0)
531                 return ret;
532
533         /*
534          * The interrupt status bits are cleared by writing a one bit.
535          * Avoid clearing them unless explicitly requested in set_bits.
536          */
537         if (addr == 5)
538                 clear_bits |= PHY_INT_STATUS_BITS;
539
540         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
541 }
542
543 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
544 {
545         int ret;
546
547         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
548         if (ret < 0)
549                 return ret;
550
551         return read_phy_reg(ohci, addr);
552 }
553
554 static int ohci_read_phy_reg(struct fw_card *card, int addr)
555 {
556         struct fw_ohci *ohci = fw_ohci(card);
557         int ret;
558
559         mutex_lock(&ohci->phy_reg_mutex);
560         ret = read_phy_reg(ohci, addr);
561         mutex_unlock(&ohci->phy_reg_mutex);
562
563         return ret;
564 }
565
566 static int ohci_update_phy_reg(struct fw_card *card, int addr,
567                                int clear_bits, int set_bits)
568 {
569         struct fw_ohci *ohci = fw_ohci(card);
570         int ret;
571
572         mutex_lock(&ohci->phy_reg_mutex);
573         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
574         mutex_unlock(&ohci->phy_reg_mutex);
575
576         return ret;
577 }
578
579 static int ar_context_add_page(struct ar_context *ctx)
580 {
581         struct device *dev = ctx->ohci->card.device;
582         struct ar_buffer *ab;
583         dma_addr_t uninitialized_var(ab_bus);
584         size_t offset;
585
586         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
587         if (ab == NULL)
588                 return -ENOMEM;
589
590         ab->next = NULL;
591         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
592         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
593                                                     DESCRIPTOR_STATUS |
594                                                     DESCRIPTOR_BRANCH_ALWAYS);
595         offset = offsetof(struct ar_buffer, data);
596         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
597         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
598         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
599         ab->descriptor.branch_address = 0;
600
601         wmb(); /* finish init of new descriptors before branch_address update */
602         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
603         ctx->last_buffer->next = ab;
604         ctx->last_buffer = ab;
605
606         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
607         flush_writes(ctx->ohci);
608
609         return 0;
610 }
611
612 static void ar_context_release(struct ar_context *ctx)
613 {
614         struct ar_buffer *ab, *ab_next;
615         size_t offset;
616         dma_addr_t ab_bus;
617
618         for (ab = ctx->current_buffer; ab; ab = ab_next) {
619                 ab_next = ab->next;
620                 offset = offsetof(struct ar_buffer, data);
621                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
622                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
623                                   ab, ab_bus);
624         }
625 }
626
627 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
628 #define cond_le32_to_cpu(v) \
629         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
630 #else
631 #define cond_le32_to_cpu(v) le32_to_cpu(v)
632 #endif
633
634 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
635 {
636         struct fw_ohci *ohci = ctx->ohci;
637         struct fw_packet p;
638         u32 status, length, tcode;
639         int evt;
640
641         p.header[0] = cond_le32_to_cpu(buffer[0]);
642         p.header[1] = cond_le32_to_cpu(buffer[1]);
643         p.header[2] = cond_le32_to_cpu(buffer[2]);
644
645         tcode = (p.header[0] >> 4) & 0x0f;
646         switch (tcode) {
647         case TCODE_WRITE_QUADLET_REQUEST:
648         case TCODE_READ_QUADLET_RESPONSE:
649                 p.header[3] = (__force __u32) buffer[3];
650                 p.header_length = 16;
651                 p.payload_length = 0;
652                 break;
653
654         case TCODE_READ_BLOCK_REQUEST :
655                 p.header[3] = cond_le32_to_cpu(buffer[3]);
656                 p.header_length = 16;
657                 p.payload_length = 0;
658                 break;
659
660         case TCODE_WRITE_BLOCK_REQUEST:
661         case TCODE_READ_BLOCK_RESPONSE:
662         case TCODE_LOCK_REQUEST:
663         case TCODE_LOCK_RESPONSE:
664                 p.header[3] = cond_le32_to_cpu(buffer[3]);
665                 p.header_length = 16;
666                 p.payload_length = p.header[3] >> 16;
667                 break;
668
669         case TCODE_WRITE_RESPONSE:
670         case TCODE_READ_QUADLET_REQUEST:
671         case OHCI_TCODE_PHY_PACKET:
672                 p.header_length = 12;
673                 p.payload_length = 0;
674                 break;
675
676         default:
677                 /* FIXME: Stop context, discard everything, and restart? */
678                 p.header_length = 0;
679                 p.payload_length = 0;
680         }
681
682         p.payload = (void *) buffer + p.header_length;
683
684         /* FIXME: What to do about evt_* errors? */
685         length = (p.header_length + p.payload_length + 3) / 4;
686         status = cond_le32_to_cpu(buffer[length]);
687         evt    = (status >> 16) & 0x1f;
688
689         p.ack        = evt - 16;
690         p.speed      = (status >> 21) & 0x7;
691         p.timestamp  = status & 0xffff;
692         p.generation = ohci->request_generation;
693
694         log_ar_at_event('R', p.speed, p.header, evt);
695
696         /*
697          * The OHCI bus reset handler synthesizes a phy packet with
698          * the new generation number when a bus reset happens (see
699          * section 8.4.2.3).  This helps us determine when a request
700          * was received and make sure we send the response in the same
701          * generation.  We only need this for requests; for responses
702          * we use the unique tlabel for finding the matching
703          * request.
704          *
705          * Alas some chips sometimes emit bus reset packets with a
706          * wrong generation.  We set the correct generation for these
707          * at a slightly incorrect time (in bus_reset_tasklet).
708          */
709         if (evt == OHCI1394_evt_bus_reset) {
710                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
711                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
712         } else if (ctx == &ohci->ar_request_ctx) {
713                 fw_core_handle_request(&ohci->card, &p);
714         } else {
715                 fw_core_handle_response(&ohci->card, &p);
716         }
717
718         return buffer + length + 1;
719 }
720
721 static void ar_context_tasklet(unsigned long data)
722 {
723         struct ar_context *ctx = (struct ar_context *)data;
724         struct fw_ohci *ohci = ctx->ohci;
725         struct ar_buffer *ab;
726         struct descriptor *d;
727         void *buffer, *end;
728
729         ab = ctx->current_buffer;
730         d = &ab->descriptor;
731
732         if (d->res_count == 0) {
733                 size_t size, rest, offset;
734                 dma_addr_t start_bus;
735                 void *start;
736
737                 /*
738                  * This descriptor is finished and we may have a
739                  * packet split across this and the next buffer. We
740                  * reuse the page for reassembling the split packet.
741                  */
742
743                 offset = offsetof(struct ar_buffer, data);
744                 start = buffer = ab;
745                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
746
747                 ab = ab->next;
748                 d = &ab->descriptor;
749                 size = buffer + PAGE_SIZE - ctx->pointer;
750                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
751                 memmove(buffer, ctx->pointer, size);
752                 memcpy(buffer + size, ab->data, rest);
753                 ctx->current_buffer = ab;
754                 ctx->pointer = (void *) ab->data + rest;
755                 end = buffer + size + rest;
756
757                 while (buffer < end)
758                         buffer = handle_ar_packet(ctx, buffer);
759
760                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
761                                   start, start_bus);
762                 ar_context_add_page(ctx);
763         } else {
764                 buffer = ctx->pointer;
765                 ctx->pointer = end =
766                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
767
768                 while (buffer < end)
769                         buffer = handle_ar_packet(ctx, buffer);
770         }
771 }
772
773 static int ar_context_init(struct ar_context *ctx,
774                            struct fw_ohci *ohci, u32 regs)
775 {
776         struct ar_buffer ab;
777
778         ctx->regs        = regs;
779         ctx->ohci        = ohci;
780         ctx->last_buffer = &ab;
781         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
782
783         ar_context_add_page(ctx);
784         ar_context_add_page(ctx);
785         ctx->current_buffer = ab.next;
786         ctx->pointer = ctx->current_buffer->data;
787
788         return 0;
789 }
790
791 static void ar_context_run(struct ar_context *ctx)
792 {
793         struct ar_buffer *ab = ctx->current_buffer;
794         dma_addr_t ab_bus;
795         size_t offset;
796
797         offset = offsetof(struct ar_buffer, data);
798         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
799
800         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
801         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
802         flush_writes(ctx->ohci);
803 }
804
805 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
806 {
807         int b, key;
808
809         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
810         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
811
812         /* figure out which descriptor the branch address goes in */
813         if (z == 2 && (b == 3 || key == 2))
814                 return d;
815         else
816                 return d + z - 1;
817 }
818
819 static void context_tasklet(unsigned long data)
820 {
821         struct context *ctx = (struct context *) data;
822         struct descriptor *d, *last;
823         u32 address;
824         int z;
825         struct descriptor_buffer *desc;
826
827         desc = list_entry(ctx->buffer_list.next,
828                         struct descriptor_buffer, list);
829         last = ctx->last;
830         while (last->branch_address != 0) {
831                 struct descriptor_buffer *old_desc = desc;
832                 address = le32_to_cpu(last->branch_address);
833                 z = address & 0xf;
834                 address &= ~0xf;
835
836                 /* If the branch address points to a buffer outside of the
837                  * current buffer, advance to the next buffer. */
838                 if (address < desc->buffer_bus ||
839                                 address >= desc->buffer_bus + desc->used)
840                         desc = list_entry(desc->list.next,
841                                         struct descriptor_buffer, list);
842                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
843                 last = find_branch_descriptor(d, z);
844
845                 if (!ctx->callback(ctx, d, last))
846                         break;
847
848                 if (old_desc != desc) {
849                         /* If we've advanced to the next buffer, move the
850                          * previous buffer to the free list. */
851                         unsigned long flags;
852                         old_desc->used = 0;
853                         spin_lock_irqsave(&ctx->ohci->lock, flags);
854                         list_move_tail(&old_desc->list, &ctx->buffer_list);
855                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
856                 }
857                 ctx->last = last;
858         }
859 }
860
861 /*
862  * Allocate a new buffer and add it to the list of free buffers for this
863  * context.  Must be called with ohci->lock held.
864  */
865 static int context_add_buffer(struct context *ctx)
866 {
867         struct descriptor_buffer *desc;
868         dma_addr_t uninitialized_var(bus_addr);
869         int offset;
870
871         /*
872          * 16MB of descriptors should be far more than enough for any DMA
873          * program.  This will catch run-away userspace or DoS attacks.
874          */
875         if (ctx->total_allocation >= 16*1024*1024)
876                 return -ENOMEM;
877
878         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
879                         &bus_addr, GFP_ATOMIC);
880         if (!desc)
881                 return -ENOMEM;
882
883         offset = (void *)&desc->buffer - (void *)desc;
884         desc->buffer_size = PAGE_SIZE - offset;
885         desc->buffer_bus = bus_addr + offset;
886         desc->used = 0;
887
888         list_add_tail(&desc->list, &ctx->buffer_list);
889         ctx->total_allocation += PAGE_SIZE;
890
891         return 0;
892 }
893
894 static int context_init(struct context *ctx, struct fw_ohci *ohci,
895                         u32 regs, descriptor_callback_t callback)
896 {
897         ctx->ohci = ohci;
898         ctx->regs = regs;
899         ctx->total_allocation = 0;
900
901         INIT_LIST_HEAD(&ctx->buffer_list);
902         if (context_add_buffer(ctx) < 0)
903                 return -ENOMEM;
904
905         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
906                         struct descriptor_buffer, list);
907
908         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
909         ctx->callback = callback;
910
911         /*
912          * We put a dummy descriptor in the buffer that has a NULL
913          * branch address and looks like it's been sent.  That way we
914          * have a descriptor to append DMA programs to.
915          */
916         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
917         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
918         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
919         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
920         ctx->last = ctx->buffer_tail->buffer;
921         ctx->prev = ctx->buffer_tail->buffer;
922
923         return 0;
924 }
925
926 static void context_release(struct context *ctx)
927 {
928         struct fw_card *card = &ctx->ohci->card;
929         struct descriptor_buffer *desc, *tmp;
930
931         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
932                 dma_free_coherent(card->device, PAGE_SIZE, desc,
933                         desc->buffer_bus -
934                         ((void *)&desc->buffer - (void *)desc));
935 }
936
937 /* Must be called with ohci->lock held */
938 static struct descriptor *context_get_descriptors(struct context *ctx,
939                                                   int z, dma_addr_t *d_bus)
940 {
941         struct descriptor *d = NULL;
942         struct descriptor_buffer *desc = ctx->buffer_tail;
943
944         if (z * sizeof(*d) > desc->buffer_size)
945                 return NULL;
946
947         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
948                 /* No room for the descriptor in this buffer, so advance to the
949                  * next one. */
950
951                 if (desc->list.next == &ctx->buffer_list) {
952                         /* If there is no free buffer next in the list,
953                          * allocate one. */
954                         if (context_add_buffer(ctx) < 0)
955                                 return NULL;
956                 }
957                 desc = list_entry(desc->list.next,
958                                 struct descriptor_buffer, list);
959                 ctx->buffer_tail = desc;
960         }
961
962         d = desc->buffer + desc->used / sizeof(*d);
963         memset(d, 0, z * sizeof(*d));
964         *d_bus = desc->buffer_bus + desc->used;
965
966         return d;
967 }
968
969 static void context_run(struct context *ctx, u32 extra)
970 {
971         struct fw_ohci *ohci = ctx->ohci;
972
973         reg_write(ohci, COMMAND_PTR(ctx->regs),
974                   le32_to_cpu(ctx->last->branch_address));
975         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
976         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
977         flush_writes(ohci);
978 }
979
980 static void context_append(struct context *ctx,
981                            struct descriptor *d, int z, int extra)
982 {
983         dma_addr_t d_bus;
984         struct descriptor_buffer *desc = ctx->buffer_tail;
985
986         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
987
988         desc->used += (z + extra) * sizeof(*d);
989
990         wmb(); /* finish init of new descriptors before branch_address update */
991         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
992         ctx->prev = find_branch_descriptor(d, z);
993
994         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
995         flush_writes(ctx->ohci);
996 }
997
998 static void context_stop(struct context *ctx)
999 {
1000         u32 reg;
1001         int i;
1002
1003         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1004         flush_writes(ctx->ohci);
1005
1006         for (i = 0; i < 10; i++) {
1007                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1008                 if ((reg & CONTEXT_ACTIVE) == 0)
1009                         return;
1010
1011                 mdelay(1);
1012         }
1013         fw_error("Error: DMA context still active (0x%08x)\n", reg);
1014 }
1015
1016 struct driver_data {
1017         struct fw_packet *packet;
1018 };
1019
1020 /*
1021  * This function apppends a packet to the DMA queue for transmission.
1022  * Must always be called with the ochi->lock held to ensure proper
1023  * generation handling and locking around packet queue manipulation.
1024  */
1025 static int at_context_queue_packet(struct context *ctx,
1026                                    struct fw_packet *packet)
1027 {
1028         struct fw_ohci *ohci = ctx->ohci;
1029         dma_addr_t d_bus, uninitialized_var(payload_bus);
1030         struct driver_data *driver_data;
1031         struct descriptor *d, *last;
1032         __le32 *header;
1033         int z, tcode;
1034         u32 reg;
1035
1036         d = context_get_descriptors(ctx, 4, &d_bus);
1037         if (d == NULL) {
1038                 packet->ack = RCODE_SEND_ERROR;
1039                 return -1;
1040         }
1041
1042         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1043         d[0].res_count = cpu_to_le16(packet->timestamp);
1044
1045         /*
1046          * The DMA format for asyncronous link packets is different
1047          * from the IEEE1394 layout, so shift the fields around
1048          * accordingly.  If header_length is 8, it's a PHY packet, to
1049          * which we need to prepend an extra quadlet.
1050          */
1051
1052         header = (__le32 *) &d[1];
1053         switch (packet->header_length) {
1054         case 16:
1055         case 12:
1056                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1057                                         (packet->speed << 16));
1058                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1059                                         (packet->header[0] & 0xffff0000));
1060                 header[2] = cpu_to_le32(packet->header[2]);
1061
1062                 tcode = (packet->header[0] >> 4) & 0x0f;
1063                 if (TCODE_IS_BLOCK_PACKET(tcode))
1064                         header[3] = cpu_to_le32(packet->header[3]);
1065                 else
1066                         header[3] = (__force __le32) packet->header[3];
1067
1068                 d[0].req_count = cpu_to_le16(packet->header_length);
1069                 break;
1070
1071         case 8:
1072                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1073                                         (packet->speed << 16));
1074                 header[1] = cpu_to_le32(packet->header[0]);
1075                 header[2] = cpu_to_le32(packet->header[1]);
1076                 d[0].req_count = cpu_to_le16(12);
1077
1078                 if (is_ping_packet(packet->header))
1079                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1080                 break;
1081
1082         case 4:
1083                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1084                                         (packet->speed << 16));
1085                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1086                 d[0].req_count = cpu_to_le16(8);
1087                 break;
1088
1089         default:
1090                 /* BUG(); */
1091                 packet->ack = RCODE_SEND_ERROR;
1092                 return -1;
1093         }
1094
1095         driver_data = (struct driver_data *) &d[3];
1096         driver_data->packet = packet;
1097         packet->driver_data = driver_data;
1098
1099         if (packet->payload_length > 0) {
1100                 payload_bus =
1101                         dma_map_single(ohci->card.device, packet->payload,
1102                                        packet->payload_length, DMA_TO_DEVICE);
1103                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1104                         packet->ack = RCODE_SEND_ERROR;
1105                         return -1;
1106                 }
1107                 packet->payload_bus     = payload_bus;
1108                 packet->payload_mapped  = true;
1109
1110                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1111                 d[2].data_address = cpu_to_le32(payload_bus);
1112                 last = &d[2];
1113                 z = 3;
1114         } else {
1115                 last = &d[0];
1116                 z = 2;
1117         }
1118
1119         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1120                                      DESCRIPTOR_IRQ_ALWAYS |
1121                                      DESCRIPTOR_BRANCH_ALWAYS);
1122
1123         /*
1124          * If the controller and packet generations don't match, we need to
1125          * bail out and try again.  If IntEvent.busReset is set, the AT context
1126          * is halted, so appending to the context and trying to run it is
1127          * futile.  Most controllers do the right thing and just flush the AT
1128          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1129          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1130          * up stalling out.  So we just bail out in software and try again
1131          * later, and everyone is happy.
1132          * FIXME: Document how the locking works.
1133          */
1134         if (ohci->generation != packet->generation ||
1135             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1136                 if (packet->payload_mapped)
1137                         dma_unmap_single(ohci->card.device, payload_bus,
1138                                          packet->payload_length, DMA_TO_DEVICE);
1139                 packet->ack = RCODE_GENERATION;
1140                 return -1;
1141         }
1142
1143         context_append(ctx, d, z, 4 - z);
1144
1145         /* If the context isn't already running, start it up. */
1146         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1147         if ((reg & CONTEXT_RUN) == 0)
1148                 context_run(ctx, 0);
1149
1150         return 0;
1151 }
1152
1153 static int handle_at_packet(struct context *context,
1154                             struct descriptor *d,
1155                             struct descriptor *last)
1156 {
1157         struct driver_data *driver_data;
1158         struct fw_packet *packet;
1159         struct fw_ohci *ohci = context->ohci;
1160         int evt;
1161
1162         if (last->transfer_status == 0)
1163                 /* This descriptor isn't done yet, stop iteration. */
1164                 return 0;
1165
1166         driver_data = (struct driver_data *) &d[3];
1167         packet = driver_data->packet;
1168         if (packet == NULL)
1169                 /* This packet was cancelled, just continue. */
1170                 return 1;
1171
1172         if (packet->payload_mapped)
1173                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1174                                  packet->payload_length, DMA_TO_DEVICE);
1175
1176         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1177         packet->timestamp = le16_to_cpu(last->res_count);
1178
1179         log_ar_at_event('T', packet->speed, packet->header, evt);
1180
1181         switch (evt) {
1182         case OHCI1394_evt_timeout:
1183                 /* Async response transmit timed out. */
1184                 packet->ack = RCODE_CANCELLED;
1185                 break;
1186
1187         case OHCI1394_evt_flushed:
1188                 /*
1189                  * The packet was flushed should give same error as
1190                  * when we try to use a stale generation count.
1191                  */
1192                 packet->ack = RCODE_GENERATION;
1193                 break;
1194
1195         case OHCI1394_evt_missing_ack:
1196                 /*
1197                  * Using a valid (current) generation count, but the
1198                  * node is not on the bus or not sending acks.
1199                  */
1200                 packet->ack = RCODE_NO_ACK;
1201                 break;
1202
1203         case ACK_COMPLETE + 0x10:
1204         case ACK_PENDING + 0x10:
1205         case ACK_BUSY_X + 0x10:
1206         case ACK_BUSY_A + 0x10:
1207         case ACK_BUSY_B + 0x10:
1208         case ACK_DATA_ERROR + 0x10:
1209         case ACK_TYPE_ERROR + 0x10:
1210                 packet->ack = evt - 0x10;
1211                 break;
1212
1213         default:
1214                 packet->ack = RCODE_SEND_ERROR;
1215                 break;
1216         }
1217
1218         packet->callback(packet, &ohci->card, packet->ack);
1219
1220         return 1;
1221 }
1222
1223 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1224 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1225 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1226 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1227 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1228
1229 static void handle_local_rom(struct fw_ohci *ohci,
1230                              struct fw_packet *packet, u32 csr)
1231 {
1232         struct fw_packet response;
1233         int tcode, length, i;
1234
1235         tcode = HEADER_GET_TCODE(packet->header[0]);
1236         if (TCODE_IS_BLOCK_PACKET(tcode))
1237                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1238         else
1239                 length = 4;
1240
1241         i = csr - CSR_CONFIG_ROM;
1242         if (i + length > CONFIG_ROM_SIZE) {
1243                 fw_fill_response(&response, packet->header,
1244                                  RCODE_ADDRESS_ERROR, NULL, 0);
1245         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1246                 fw_fill_response(&response, packet->header,
1247                                  RCODE_TYPE_ERROR, NULL, 0);
1248         } else {
1249                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1250                                  (void *) ohci->config_rom + i, length);
1251         }
1252
1253         fw_core_handle_response(&ohci->card, &response);
1254 }
1255
1256 static void handle_local_lock(struct fw_ohci *ohci,
1257                               struct fw_packet *packet, u32 csr)
1258 {
1259         struct fw_packet response;
1260         int tcode, length, ext_tcode, sel, try;
1261         __be32 *payload, lock_old;
1262         u32 lock_arg, lock_data;
1263
1264         tcode = HEADER_GET_TCODE(packet->header[0]);
1265         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1266         payload = packet->payload;
1267         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1268
1269         if (tcode == TCODE_LOCK_REQUEST &&
1270             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1271                 lock_arg = be32_to_cpu(payload[0]);
1272                 lock_data = be32_to_cpu(payload[1]);
1273         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1274                 lock_arg = 0;
1275                 lock_data = 0;
1276         } else {
1277                 fw_fill_response(&response, packet->header,
1278                                  RCODE_TYPE_ERROR, NULL, 0);
1279                 goto out;
1280         }
1281
1282         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1283         reg_write(ohci, OHCI1394_CSRData, lock_data);
1284         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1285         reg_write(ohci, OHCI1394_CSRControl, sel);
1286
1287         for (try = 0; try < 20; try++)
1288                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1289                         lock_old = cpu_to_be32(reg_read(ohci,
1290                                                         OHCI1394_CSRData));
1291                         fw_fill_response(&response, packet->header,
1292                                          RCODE_COMPLETE,
1293                                          &lock_old, sizeof(lock_old));
1294                         goto out;
1295                 }
1296
1297         fw_error("swap not done (CSR lock timeout)\n");
1298         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1299
1300  out:
1301         fw_core_handle_response(&ohci->card, &response);
1302 }
1303
1304 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1305 {
1306         u64 offset, csr;
1307
1308         if (ctx == &ctx->ohci->at_request_ctx) {
1309                 packet->ack = ACK_PENDING;
1310                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1311         }
1312
1313         offset =
1314                 ((unsigned long long)
1315                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1316                 packet->header[2];
1317         csr = offset - CSR_REGISTER_BASE;
1318
1319         /* Handle config rom reads. */
1320         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1321                 handle_local_rom(ctx->ohci, packet, csr);
1322         else switch (csr) {
1323         case CSR_BUS_MANAGER_ID:
1324         case CSR_BANDWIDTH_AVAILABLE:
1325         case CSR_CHANNELS_AVAILABLE_HI:
1326         case CSR_CHANNELS_AVAILABLE_LO:
1327                 handle_local_lock(ctx->ohci, packet, csr);
1328                 break;
1329         default:
1330                 if (ctx == &ctx->ohci->at_request_ctx)
1331                         fw_core_handle_request(&ctx->ohci->card, packet);
1332                 else
1333                         fw_core_handle_response(&ctx->ohci->card, packet);
1334                 break;
1335         }
1336
1337         if (ctx == &ctx->ohci->at_response_ctx) {
1338                 packet->ack = ACK_COMPLETE;
1339                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1340         }
1341 }
1342
1343 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1344 {
1345         unsigned long flags;
1346         int ret;
1347
1348         spin_lock_irqsave(&ctx->ohci->lock, flags);
1349
1350         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1351             ctx->ohci->generation == packet->generation) {
1352                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1353                 handle_local_request(ctx, packet);
1354                 return;
1355         }
1356
1357         ret = at_context_queue_packet(ctx, packet);
1358         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1359
1360         if (ret < 0)
1361                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1362
1363 }
1364
1365 static u32 cycle_timer_ticks(u32 cycle_timer)
1366 {
1367         u32 ticks;
1368
1369         ticks = cycle_timer & 0xfff;
1370         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1371         ticks += (3072 * 8000) * (cycle_timer >> 25);
1372
1373         return ticks;
1374 }
1375
1376 /*
1377  * Some controllers exhibit one or more of the following bugs when updating the
1378  * iso cycle timer register:
1379  *  - When the lowest six bits are wrapping around to zero, a read that happens
1380  *    at the same time will return garbage in the lowest ten bits.
1381  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1382  *    not incremented for about 60 ns.
1383  *  - Occasionally, the entire register reads zero.
1384  *
1385  * To catch these, we read the register three times and ensure that the
1386  * difference between each two consecutive reads is approximately the same, i.e.
1387  * less than twice the other.  Furthermore, any negative difference indicates an
1388  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1389  * execute, so we have enough precision to compute the ratio of the differences.)
1390  */
1391 static u32 get_cycle_time(struct fw_ohci *ohci)
1392 {
1393         u32 c0, c1, c2;
1394         u32 t0, t1, t2;
1395         s32 diff01, diff12;
1396         int i;
1397
1398         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1399
1400         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1401                 i = 0;
1402                 c1 = c2;
1403                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1404                 do {
1405                         c0 = c1;
1406                         c1 = c2;
1407                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1408                         t0 = cycle_timer_ticks(c0);
1409                         t1 = cycle_timer_ticks(c1);
1410                         t2 = cycle_timer_ticks(c2);
1411                         diff01 = t1 - t0;
1412                         diff12 = t2 - t1;
1413                 } while ((diff01 <= 0 || diff12 <= 0 ||
1414                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1415                          && i++ < 20);
1416         }
1417
1418         return c2;
1419 }
1420
1421 /*
1422  * This function has to be called at least every 64 seconds.  The bus_time
1423  * field stores not only the upper 25 bits of the BUS_TIME register but also
1424  * the most significant bit of the cycle timer in bit 6 so that we can detect
1425  * changes in this bit.
1426  */
1427 static u32 update_bus_time(struct fw_ohci *ohci)
1428 {
1429         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1430
1431         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1432                 ohci->bus_time += 0x40;
1433
1434         return ohci->bus_time | cycle_time_seconds;
1435 }
1436
1437 static void bus_reset_tasklet(unsigned long data)
1438 {
1439         struct fw_ohci *ohci = (struct fw_ohci *)data;
1440         int self_id_count, i, j, reg;
1441         int generation, new_generation;
1442         unsigned long flags;
1443         void *free_rom = NULL;
1444         dma_addr_t free_rom_bus = 0;
1445         bool is_new_root;
1446
1447         reg = reg_read(ohci, OHCI1394_NodeID);
1448         if (!(reg & OHCI1394_NodeID_idValid)) {
1449                 fw_notify("node ID not valid, new bus reset in progress\n");
1450                 return;
1451         }
1452         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1453                 fw_notify("malconfigured bus\n");
1454                 return;
1455         }
1456         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1457                                OHCI1394_NodeID_nodeNumber);
1458
1459         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1460         if (!(ohci->is_root && is_new_root))
1461                 reg_write(ohci, OHCI1394_LinkControlSet,
1462                           OHCI1394_LinkControl_cycleMaster);
1463         ohci->is_root = is_new_root;
1464
1465         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1466         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1467                 fw_notify("inconsistent self IDs\n");
1468                 return;
1469         }
1470         /*
1471          * The count in the SelfIDCount register is the number of
1472          * bytes in the self ID receive buffer.  Since we also receive
1473          * the inverted quadlets and a header quadlet, we shift one
1474          * bit extra to get the actual number of self IDs.
1475          */
1476         self_id_count = (reg >> 3) & 0xff;
1477         if (self_id_count == 0 || self_id_count > 252) {
1478                 fw_notify("inconsistent self IDs\n");
1479                 return;
1480         }
1481         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1482         rmb();
1483
1484         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1485                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1486                         fw_notify("inconsistent self IDs\n");
1487                         return;
1488                 }
1489                 ohci->self_id_buffer[j] =
1490                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1491         }
1492         rmb();
1493
1494         /*
1495          * Check the consistency of the self IDs we just read.  The
1496          * problem we face is that a new bus reset can start while we
1497          * read out the self IDs from the DMA buffer. If this happens,
1498          * the DMA buffer will be overwritten with new self IDs and we
1499          * will read out inconsistent data.  The OHCI specification
1500          * (section 11.2) recommends a technique similar to
1501          * linux/seqlock.h, where we remember the generation of the
1502          * self IDs in the buffer before reading them out and compare
1503          * it to the current generation after reading them out.  If
1504          * the two generations match we know we have a consistent set
1505          * of self IDs.
1506          */
1507
1508         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1509         if (new_generation != generation) {
1510                 fw_notify("recursive bus reset detected, "
1511                           "discarding self ids\n");
1512                 return;
1513         }
1514
1515         /* FIXME: Document how the locking works. */
1516         spin_lock_irqsave(&ohci->lock, flags);
1517
1518         ohci->generation = generation;
1519         context_stop(&ohci->at_request_ctx);
1520         context_stop(&ohci->at_response_ctx);
1521         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1522
1523         if (ohci->quirks & QUIRK_RESET_PACKET)
1524                 ohci->request_generation = generation;
1525
1526         /*
1527          * This next bit is unrelated to the AT context stuff but we
1528          * have to do it under the spinlock also.  If a new config rom
1529          * was set up before this reset, the old one is now no longer
1530          * in use and we can free it. Update the config rom pointers
1531          * to point to the current config rom and clear the
1532          * next_config_rom pointer so a new update can take place.
1533          */
1534
1535         if (ohci->next_config_rom != NULL) {
1536                 if (ohci->next_config_rom != ohci->config_rom) {
1537                         free_rom      = ohci->config_rom;
1538                         free_rom_bus  = ohci->config_rom_bus;
1539                 }
1540                 ohci->config_rom      = ohci->next_config_rom;
1541                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1542                 ohci->next_config_rom = NULL;
1543
1544                 /*
1545                  * Restore config_rom image and manually update
1546                  * config_rom registers.  Writing the header quadlet
1547                  * will indicate that the config rom is ready, so we
1548                  * do that last.
1549                  */
1550                 reg_write(ohci, OHCI1394_BusOptions,
1551                           be32_to_cpu(ohci->config_rom[2]));
1552                 ohci->config_rom[0] = ohci->next_header;
1553                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1554                           be32_to_cpu(ohci->next_header));
1555         }
1556
1557 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1558         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1559         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1560 #endif
1561
1562         spin_unlock_irqrestore(&ohci->lock, flags);
1563
1564         if (free_rom)
1565                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1566                                   free_rom, free_rom_bus);
1567
1568         log_selfids(ohci->node_id, generation,
1569                     self_id_count, ohci->self_id_buffer);
1570
1571         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1572                                  self_id_count, ohci->self_id_buffer,
1573                                  ohci->csr_state_setclear_abdicate);
1574         ohci->csr_state_setclear_abdicate = false;
1575 }
1576
1577 static irqreturn_t irq_handler(int irq, void *data)
1578 {
1579         struct fw_ohci *ohci = data;
1580         u32 event, iso_event;
1581         int i;
1582
1583         event = reg_read(ohci, OHCI1394_IntEventClear);
1584
1585         if (!event || !~event)
1586                 return IRQ_NONE;
1587
1588         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1589         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1590         log_irqs(event);
1591
1592         if (event & OHCI1394_selfIDComplete)
1593                 tasklet_schedule(&ohci->bus_reset_tasklet);
1594
1595         if (event & OHCI1394_RQPkt)
1596                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1597
1598         if (event & OHCI1394_RSPkt)
1599                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1600
1601         if (event & OHCI1394_reqTxComplete)
1602                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1603
1604         if (event & OHCI1394_respTxComplete)
1605                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1606
1607         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1608         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1609
1610         while (iso_event) {
1611                 i = ffs(iso_event) - 1;
1612                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1613                 iso_event &= ~(1 << i);
1614         }
1615
1616         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1617         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1618
1619         while (iso_event) {
1620                 i = ffs(iso_event) - 1;
1621                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1622                 iso_event &= ~(1 << i);
1623         }
1624
1625         if (unlikely(event & OHCI1394_regAccessFail))
1626                 fw_error("Register access failure - "
1627                          "please notify linux1394-devel@lists.sf.net\n");
1628
1629         if (unlikely(event & OHCI1394_postedWriteErr))
1630                 fw_error("PCI posted write error\n");
1631
1632         if (unlikely(event & OHCI1394_cycleTooLong)) {
1633                 if (printk_ratelimit())
1634                         fw_notify("isochronous cycle too long\n");
1635                 reg_write(ohci, OHCI1394_LinkControlSet,
1636                           OHCI1394_LinkControl_cycleMaster);
1637         }
1638
1639         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1640                 /*
1641                  * We need to clear this event bit in order to make
1642                  * cycleMatch isochronous I/O work.  In theory we should
1643                  * stop active cycleMatch iso contexts now and restart
1644                  * them at least two cycles later.  (FIXME?)
1645                  */
1646                 if (printk_ratelimit())
1647                         fw_notify("isochronous cycle inconsistent\n");
1648         }
1649
1650         if (event & OHCI1394_cycle64Seconds) {
1651                 spin_lock(&ohci->lock);
1652                 update_bus_time(ohci);
1653                 spin_unlock(&ohci->lock);
1654         }
1655
1656         return IRQ_HANDLED;
1657 }
1658
1659 static int software_reset(struct fw_ohci *ohci)
1660 {
1661         int i;
1662
1663         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1664
1665         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1666                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1667                      OHCI1394_HCControl_softReset) == 0)
1668                         return 0;
1669                 msleep(1);
1670         }
1671
1672         return -EBUSY;
1673 }
1674
1675 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1676 {
1677         size_t size = length * 4;
1678
1679         memcpy(dest, src, size);
1680         if (size < CONFIG_ROM_SIZE)
1681                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1682 }
1683
1684 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1685 {
1686         bool enable_1394a;
1687         int ret, clear, set, offset;
1688
1689         /* Check if the driver should configure link and PHY. */
1690         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1691               OHCI1394_HCControl_programPhyEnable))
1692                 return 0;
1693
1694         /* Paranoia: check whether the PHY supports 1394a, too. */
1695         enable_1394a = false;
1696         ret = read_phy_reg(ohci, 2);
1697         if (ret < 0)
1698                 return ret;
1699         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1700                 ret = read_paged_phy_reg(ohci, 1, 8);
1701                 if (ret < 0)
1702                         return ret;
1703                 if (ret >= 1)
1704                         enable_1394a = true;
1705         }
1706
1707         if (ohci->quirks & QUIRK_NO_1394A)
1708                 enable_1394a = false;
1709
1710         /* Configure PHY and link consistently. */
1711         if (enable_1394a) {
1712                 clear = 0;
1713                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1714         } else {
1715                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1716                 set = 0;
1717         }
1718         ret = update_phy_reg(ohci, 5, clear, set);
1719         if (ret < 0)
1720                 return ret;
1721
1722         if (enable_1394a)
1723                 offset = OHCI1394_HCControlSet;
1724         else
1725                 offset = OHCI1394_HCControlClear;
1726         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1727
1728         /* Clean up: configuration has been taken care of. */
1729         reg_write(ohci, OHCI1394_HCControlClear,
1730                   OHCI1394_HCControl_programPhyEnable);
1731
1732         return 0;
1733 }
1734
1735 static int ohci_enable(struct fw_card *card,
1736                        const __be32 *config_rom, size_t length)
1737 {
1738         struct fw_ohci *ohci = fw_ohci(card);
1739         struct pci_dev *dev = to_pci_dev(card->device);
1740         u32 lps, seconds, version, irqs;
1741         int i, ret;
1742
1743         if (software_reset(ohci)) {
1744                 fw_error("Failed to reset ohci card.\n");
1745                 return -EBUSY;
1746         }
1747
1748         /*
1749          * Now enable LPS, which we need in order to start accessing
1750          * most of the registers.  In fact, on some cards (ALI M5251),
1751          * accessing registers in the SClk domain without LPS enabled
1752          * will lock up the machine.  Wait 50msec to make sure we have
1753          * full link enabled.  However, with some cards (well, at least
1754          * a JMicron PCIe card), we have to try again sometimes.
1755          */
1756         reg_write(ohci, OHCI1394_HCControlSet,
1757                   OHCI1394_HCControl_LPS |
1758                   OHCI1394_HCControl_postedWriteEnable);
1759         flush_writes(ohci);
1760
1761         for (lps = 0, i = 0; !lps && i < 3; i++) {
1762                 msleep(50);
1763                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1764                       OHCI1394_HCControl_LPS;
1765         }
1766
1767         if (!lps) {
1768                 fw_error("Failed to set Link Power Status\n");
1769                 return -EIO;
1770         }
1771
1772         reg_write(ohci, OHCI1394_HCControlClear,
1773                   OHCI1394_HCControl_noByteSwapData);
1774
1775         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1776         reg_write(ohci, OHCI1394_LinkControlSet,
1777                   OHCI1394_LinkControl_rcvSelfID |
1778                   OHCI1394_LinkControl_rcvPhyPkt |
1779                   OHCI1394_LinkControl_cycleTimerEnable |
1780                   OHCI1394_LinkControl_cycleMaster);
1781
1782         reg_write(ohci, OHCI1394_ATRetries,
1783                   OHCI1394_MAX_AT_REQ_RETRIES |
1784                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1785                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1786                   (200 << 16));
1787
1788         seconds = lower_32_bits(get_seconds());
1789         reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1790         ohci->bus_time = seconds & ~0x3f;
1791
1792         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1793         if (version >= OHCI_VERSION_1_1) {
1794                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
1795                           0xfffffffe);
1796                 card->broadcast_channel_auto_allocated = true;
1797         }
1798
1799         /* Get implemented bits of the priority arbitration request counter. */
1800         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
1801         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
1802         reg_write(ohci, OHCI1394_FairnessControl, 0);
1803         card->priority_budget_implemented = ohci->pri_req_max != 0;
1804
1805         ar_context_run(&ohci->ar_request_ctx);
1806         ar_context_run(&ohci->ar_response_ctx);
1807
1808         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1809         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1810         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1811
1812         ret = configure_1394a_enhancements(ohci);
1813         if (ret < 0)
1814                 return ret;
1815
1816         /* Activate link_on bit and contender bit in our self ID packets.*/
1817         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1818         if (ret < 0)
1819                 return ret;
1820
1821         /*
1822          * When the link is not yet enabled, the atomic config rom
1823          * update mechanism described below in ohci_set_config_rom()
1824          * is not active.  We have to update ConfigRomHeader and
1825          * BusOptions manually, and the write to ConfigROMmap takes
1826          * effect immediately.  We tie this to the enabling of the
1827          * link, so we have a valid config rom before enabling - the
1828          * OHCI requires that ConfigROMhdr and BusOptions have valid
1829          * values before enabling.
1830          *
1831          * However, when the ConfigROMmap is written, some controllers
1832          * always read back quadlets 0 and 2 from the config rom to
1833          * the ConfigRomHeader and BusOptions registers on bus reset.
1834          * They shouldn't do that in this initial case where the link
1835          * isn't enabled.  This means we have to use the same
1836          * workaround here, setting the bus header to 0 and then write
1837          * the right values in the bus reset tasklet.
1838          */
1839
1840         if (config_rom) {
1841                 ohci->next_config_rom =
1842                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1843                                            &ohci->next_config_rom_bus,
1844                                            GFP_KERNEL);
1845                 if (ohci->next_config_rom == NULL)
1846                         return -ENOMEM;
1847
1848                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1849         } else {
1850                 /*
1851                  * In the suspend case, config_rom is NULL, which
1852                  * means that we just reuse the old config rom.
1853                  */
1854                 ohci->next_config_rom = ohci->config_rom;
1855                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1856         }
1857
1858         ohci->next_header = ohci->next_config_rom[0];
1859         ohci->next_config_rom[0] = 0;
1860         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1861         reg_write(ohci, OHCI1394_BusOptions,
1862                   be32_to_cpu(ohci->next_config_rom[2]));
1863         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1864
1865         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1866
1867         if (!(ohci->quirks & QUIRK_NO_MSI))
1868                 pci_enable_msi(dev);
1869         if (request_irq(dev->irq, irq_handler,
1870                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1871                         ohci_driver_name, ohci)) {
1872                 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1873                 pci_disable_msi(dev);
1874                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1875                                   ohci->config_rom, ohci->config_rom_bus);
1876                 return -EIO;
1877         }
1878
1879         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1880                 OHCI1394_RQPkt | OHCI1394_RSPkt |
1881                 OHCI1394_isochTx | OHCI1394_isochRx |
1882                 OHCI1394_postedWriteErr |
1883                 OHCI1394_selfIDComplete |
1884                 OHCI1394_regAccessFail |
1885                 OHCI1394_cycle64Seconds |
1886                 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1887                 OHCI1394_masterIntEnable;
1888         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1889                 irqs |= OHCI1394_busReset;
1890         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1891
1892         reg_write(ohci, OHCI1394_HCControlSet,
1893                   OHCI1394_HCControl_linkEnable |
1894                   OHCI1394_HCControl_BIBimageValid);
1895         flush_writes(ohci);
1896
1897         /* We are ready to go, reset bus to finish initialization. */
1898         fw_schedule_bus_reset(&ohci->card, false, true);
1899
1900         return 0;
1901 }
1902
1903 static int ohci_set_config_rom(struct fw_card *card,
1904                                const __be32 *config_rom, size_t length)
1905 {
1906         struct fw_ohci *ohci;
1907         unsigned long flags;
1908         int ret = -EBUSY;
1909         __be32 *next_config_rom;
1910         dma_addr_t uninitialized_var(next_config_rom_bus);
1911
1912         ohci = fw_ohci(card);
1913
1914         /*
1915          * When the OHCI controller is enabled, the config rom update
1916          * mechanism is a bit tricky, but easy enough to use.  See
1917          * section 5.5.6 in the OHCI specification.
1918          *
1919          * The OHCI controller caches the new config rom address in a
1920          * shadow register (ConfigROMmapNext) and needs a bus reset
1921          * for the changes to take place.  When the bus reset is
1922          * detected, the controller loads the new values for the
1923          * ConfigRomHeader and BusOptions registers from the specified
1924          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1925          * shadow register. All automatically and atomically.
1926          *
1927          * Now, there's a twist to this story.  The automatic load of
1928          * ConfigRomHeader and BusOptions doesn't honor the
1929          * noByteSwapData bit, so with a be32 config rom, the
1930          * controller will load be32 values in to these registers
1931          * during the atomic update, even on litte endian
1932          * architectures.  The workaround we use is to put a 0 in the
1933          * header quadlet; 0 is endian agnostic and means that the
1934          * config rom isn't ready yet.  In the bus reset tasklet we
1935          * then set up the real values for the two registers.
1936          *
1937          * We use ohci->lock to avoid racing with the code that sets
1938          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1939          */
1940
1941         next_config_rom =
1942                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1943                                    &next_config_rom_bus, GFP_KERNEL);
1944         if (next_config_rom == NULL)
1945                 return -ENOMEM;
1946
1947         spin_lock_irqsave(&ohci->lock, flags);
1948
1949         if (ohci->next_config_rom == NULL) {
1950                 ohci->next_config_rom = next_config_rom;
1951                 ohci->next_config_rom_bus = next_config_rom_bus;
1952
1953                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1954
1955                 ohci->next_header = config_rom[0];
1956                 ohci->next_config_rom[0] = 0;
1957
1958                 reg_write(ohci, OHCI1394_ConfigROMmap,
1959                           ohci->next_config_rom_bus);
1960                 ret = 0;
1961         }
1962
1963         spin_unlock_irqrestore(&ohci->lock, flags);
1964
1965         /*
1966          * Now initiate a bus reset to have the changes take
1967          * effect. We clean up the old config rom memory and DMA
1968          * mappings in the bus reset tasklet, since the OHCI
1969          * controller could need to access it before the bus reset
1970          * takes effect.
1971          */
1972         if (ret == 0)
1973                 fw_schedule_bus_reset(&ohci->card, true, true);
1974         else
1975                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1976                                   next_config_rom, next_config_rom_bus);
1977
1978         return ret;
1979 }
1980
1981 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1982 {
1983         struct fw_ohci *ohci = fw_ohci(card);
1984
1985         at_context_transmit(&ohci->at_request_ctx, packet);
1986 }
1987
1988 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1989 {
1990         struct fw_ohci *ohci = fw_ohci(card);
1991
1992         at_context_transmit(&ohci->at_response_ctx, packet);
1993 }
1994
1995 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1996 {
1997         struct fw_ohci *ohci = fw_ohci(card);
1998         struct context *ctx = &ohci->at_request_ctx;
1999         struct driver_data *driver_data = packet->driver_data;
2000         int ret = -ENOENT;
2001
2002         tasklet_disable(&ctx->tasklet);
2003
2004         if (packet->ack != 0)
2005                 goto out;
2006
2007         if (packet->payload_mapped)
2008                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2009                                  packet->payload_length, DMA_TO_DEVICE);
2010
2011         log_ar_at_event('T', packet->speed, packet->header, 0x20);
2012         driver_data->packet = NULL;
2013         packet->ack = RCODE_CANCELLED;
2014         packet->callback(packet, &ohci->card, packet->ack);
2015         ret = 0;
2016  out:
2017         tasklet_enable(&ctx->tasklet);
2018
2019         return ret;
2020 }
2021
2022 static int ohci_enable_phys_dma(struct fw_card *card,
2023                                 int node_id, int generation)
2024 {
2025 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2026         return 0;
2027 #else
2028         struct fw_ohci *ohci = fw_ohci(card);
2029         unsigned long flags;
2030         int n, ret = 0;
2031
2032         /*
2033          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2034          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2035          */
2036
2037         spin_lock_irqsave(&ohci->lock, flags);
2038
2039         if (ohci->generation != generation) {
2040                 ret = -ESTALE;
2041                 goto out;
2042         }
2043
2044         /*
2045          * Note, if the node ID contains a non-local bus ID, physical DMA is
2046          * enabled for _all_ nodes on remote buses.
2047          */
2048
2049         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2050         if (n < 32)
2051                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2052         else
2053                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2054
2055         flush_writes(ohci);
2056  out:
2057         spin_unlock_irqrestore(&ohci->lock, flags);
2058
2059         return ret;
2060 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2061 }
2062
2063 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2064 {
2065         struct fw_ohci *ohci = fw_ohci(card);
2066         unsigned long flags;
2067         u32 value;
2068
2069         switch (csr_offset) {
2070         case CSR_STATE_CLEAR:
2071         case CSR_STATE_SET:
2072                 if (ohci->is_root &&
2073                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2074                      OHCI1394_LinkControl_cycleMaster))
2075                         value = CSR_STATE_BIT_CMSTR;
2076                 else
2077                         value = 0;
2078                 if (ohci->csr_state_setclear_abdicate)
2079                         value |= CSR_STATE_BIT_ABDICATE;
2080
2081                 return value;
2082
2083         case CSR_NODE_IDS:
2084                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2085
2086         case CSR_CYCLE_TIME:
2087                 return get_cycle_time(ohci);
2088
2089         case CSR_BUS_TIME:
2090                 /*
2091                  * We might be called just after the cycle timer has wrapped
2092                  * around but just before the cycle64Seconds handler, so we
2093                  * better check here, too, if the bus time needs to be updated.
2094                  */
2095                 spin_lock_irqsave(&ohci->lock, flags);
2096                 value = update_bus_time(ohci);
2097                 spin_unlock_irqrestore(&ohci->lock, flags);
2098                 return value;
2099
2100         case CSR_BUSY_TIMEOUT:
2101                 value = reg_read(ohci, OHCI1394_ATRetries);
2102                 return (value >> 4) & 0x0ffff00f;
2103
2104         case CSR_PRIORITY_BUDGET:
2105                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2106                         (ohci->pri_req_max << 8);
2107
2108         default:
2109                 WARN_ON(1);
2110                 return 0;
2111         }
2112 }
2113
2114 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2115 {
2116         struct fw_ohci *ohci = fw_ohci(card);
2117         unsigned long flags;
2118
2119         switch (csr_offset) {
2120         case CSR_STATE_CLEAR:
2121                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2122                         reg_write(ohci, OHCI1394_LinkControlClear,
2123                                   OHCI1394_LinkControl_cycleMaster);
2124                         flush_writes(ohci);
2125                 }
2126                 if (value & CSR_STATE_BIT_ABDICATE)
2127                         ohci->csr_state_setclear_abdicate = false;
2128                 break;
2129
2130         case CSR_STATE_SET:
2131                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2132                         reg_write(ohci, OHCI1394_LinkControlSet,
2133                                   OHCI1394_LinkControl_cycleMaster);
2134                         flush_writes(ohci);
2135                 }
2136                 if (value & CSR_STATE_BIT_ABDICATE)
2137                         ohci->csr_state_setclear_abdicate = true;
2138                 break;
2139
2140         case CSR_NODE_IDS:
2141                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2142                 flush_writes(ohci);
2143                 break;
2144
2145         case CSR_CYCLE_TIME:
2146                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2147                 reg_write(ohci, OHCI1394_IntEventSet,
2148                           OHCI1394_cycleInconsistent);
2149                 flush_writes(ohci);
2150                 break;
2151
2152         case CSR_BUS_TIME:
2153                 spin_lock_irqsave(&ohci->lock, flags);
2154                 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2155                 spin_unlock_irqrestore(&ohci->lock, flags);
2156                 break;
2157
2158         case CSR_BUSY_TIMEOUT:
2159                 value = (value & 0xf) | ((value & 0xf) << 4) |
2160                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2161                 reg_write(ohci, OHCI1394_ATRetries, value);
2162                 flush_writes(ohci);
2163                 break;
2164
2165         case CSR_PRIORITY_BUDGET:
2166                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2167                 flush_writes(ohci);
2168                 break;
2169
2170         default:
2171                 WARN_ON(1);
2172                 break;
2173         }
2174 }
2175
2176 static void copy_iso_headers(struct iso_context *ctx, void *p)
2177 {
2178         int i = ctx->header_length;
2179
2180         if (i + ctx->base.header_size > PAGE_SIZE)
2181                 return;
2182
2183         /*
2184          * The iso header is byteswapped to little endian by
2185          * the controller, but the remaining header quadlets
2186          * are big endian.  We want to present all the headers
2187          * as big endian, so we have to swap the first quadlet.
2188          */
2189         if (ctx->base.header_size > 0)
2190                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2191         if (ctx->base.header_size > 4)
2192                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2193         if (ctx->base.header_size > 8)
2194                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2195         ctx->header_length += ctx->base.header_size;
2196 }
2197
2198 static int handle_ir_packet_per_buffer(struct context *context,
2199                                        struct descriptor *d,
2200                                        struct descriptor *last)
2201 {
2202         struct iso_context *ctx =
2203                 container_of(context, struct iso_context, context);
2204         struct descriptor *pd;
2205         __le32 *ir_header;
2206         void *p;
2207
2208         for (pd = d; pd <= last; pd++)
2209                 if (pd->transfer_status)
2210                         break;
2211         if (pd > last)
2212                 /* Descriptor(s) not done yet, stop iteration */
2213                 return 0;
2214
2215         p = last + 1;
2216         copy_iso_headers(ctx, p);
2217
2218         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2219                 ir_header = (__le32 *) p;
2220                 ctx->base.callback.sc(&ctx->base,
2221                                       le32_to_cpu(ir_header[0]) & 0xffff,
2222                                       ctx->header_length, ctx->header,
2223                                       ctx->base.callback_data);
2224                 ctx->header_length = 0;
2225         }
2226
2227         return 1;
2228 }
2229
2230 /* d == last because each descriptor block is only a single descriptor. */
2231 static int handle_ir_buffer_fill(struct context *context,
2232                                  struct descriptor *d,
2233                                  struct descriptor *last)
2234 {
2235         struct iso_context *ctx =
2236                 container_of(context, struct iso_context, context);
2237
2238         if (!last->transfer_status)
2239                 /* Descriptor(s) not done yet, stop iteration */
2240                 return 0;
2241
2242         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2243                 ctx->base.callback.mc(&ctx->base,
2244                                       le32_to_cpu(last->data_address) +
2245                                       le16_to_cpu(last->req_count) -
2246                                       le16_to_cpu(last->res_count),
2247                                       ctx->base.callback_data);
2248
2249         return 1;
2250 }
2251
2252 static int handle_it_packet(struct context *context,
2253                             struct descriptor *d,
2254                             struct descriptor *last)
2255 {
2256         struct iso_context *ctx =
2257                 container_of(context, struct iso_context, context);
2258         int i;
2259         struct descriptor *pd;
2260
2261         for (pd = d; pd <= last; pd++)
2262                 if (pd->transfer_status)
2263                         break;
2264         if (pd > last)
2265                 /* Descriptor(s) not done yet, stop iteration */
2266                 return 0;
2267
2268         i = ctx->header_length;
2269         if (i + 4 < PAGE_SIZE) {
2270                 /* Present this value as big-endian to match the receive code */
2271                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2272                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2273                                 le16_to_cpu(pd->res_count));
2274                 ctx->header_length += 4;
2275         }
2276         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2277                 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2278                                       ctx->header_length, ctx->header,
2279                                       ctx->base.callback_data);
2280                 ctx->header_length = 0;
2281         }
2282         return 1;
2283 }
2284
2285 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2286 {
2287         u32 hi = channels >> 32, lo = channels;
2288
2289         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2290         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2291         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2292         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2293         mmiowb();
2294         ohci->mc_channels = channels;
2295 }
2296
2297 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2298                                 int type, int channel, size_t header_size)
2299 {
2300         struct fw_ohci *ohci = fw_ohci(card);
2301         struct iso_context *uninitialized_var(ctx);
2302         descriptor_callback_t uninitialized_var(callback);
2303         u64 *uninitialized_var(channels);
2304         u32 *uninitialized_var(mask), uninitialized_var(regs);
2305         unsigned long flags;
2306         int index, ret = -EBUSY;
2307
2308         spin_lock_irqsave(&ohci->lock, flags);
2309
2310         switch (type) {
2311         case FW_ISO_CONTEXT_TRANSMIT:
2312                 mask     = &ohci->it_context_mask;
2313                 callback = handle_it_packet;
2314                 index    = ffs(*mask) - 1;
2315                 if (index >= 0) {
2316                         *mask &= ~(1 << index);
2317                         regs = OHCI1394_IsoXmitContextBase(index);
2318                         ctx  = &ohci->it_context_list[index];
2319                 }
2320                 break;
2321
2322         case FW_ISO_CONTEXT_RECEIVE:
2323                 channels = &ohci->ir_context_channels;
2324                 mask     = &ohci->ir_context_mask;
2325                 callback = handle_ir_packet_per_buffer;
2326                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2327                 if (index >= 0) {
2328                         *channels &= ~(1ULL << channel);
2329                         *mask     &= ~(1 << index);
2330                         regs = OHCI1394_IsoRcvContextBase(index);
2331                         ctx  = &ohci->ir_context_list[index];
2332                 }
2333                 break;
2334
2335         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2336                 mask     = &ohci->ir_context_mask;
2337                 callback = handle_ir_buffer_fill;
2338                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2339                 if (index >= 0) {
2340                         ohci->mc_allocated = true;
2341                         *mask &= ~(1 << index);
2342                         regs = OHCI1394_IsoRcvContextBase(index);
2343                         ctx  = &ohci->ir_context_list[index];
2344                 }
2345                 break;
2346
2347         default:
2348                 index = -1;
2349                 ret = -ENOSYS;
2350         }
2351
2352         spin_unlock_irqrestore(&ohci->lock, flags);
2353
2354         if (index < 0)
2355                 return ERR_PTR(ret);
2356
2357         memset(ctx, 0, sizeof(*ctx));
2358         ctx->header_length = 0;
2359         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2360         if (ctx->header == NULL) {
2361                 ret = -ENOMEM;
2362                 goto out;
2363         }
2364         ret = context_init(&ctx->context, ohci, regs, callback);
2365         if (ret < 0)
2366                 goto out_with_header;
2367
2368         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2369                 set_multichannel_mask(ohci, 0);
2370
2371         return &ctx->base;
2372
2373  out_with_header:
2374         free_page((unsigned long)ctx->header);
2375  out:
2376         spin_lock_irqsave(&ohci->lock, flags);
2377
2378         switch (type) {
2379         case FW_ISO_CONTEXT_RECEIVE:
2380                 *channels |= 1ULL << channel;
2381                 break;
2382
2383         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2384                 ohci->mc_allocated = false;
2385                 break;
2386         }
2387         *mask |= 1 << index;
2388
2389         spin_unlock_irqrestore(&ohci->lock, flags);
2390
2391         return ERR_PTR(ret);
2392 }
2393
2394 static int ohci_start_iso(struct fw_iso_context *base,
2395                           s32 cycle, u32 sync, u32 tags)
2396 {
2397         struct iso_context *ctx = container_of(base, struct iso_context, base);
2398         struct fw_ohci *ohci = ctx->context.ohci;
2399         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2400         int index;
2401
2402         switch (ctx->base.type) {
2403         case FW_ISO_CONTEXT_TRANSMIT:
2404                 index = ctx - ohci->it_context_list;
2405                 match = 0;
2406                 if (cycle >= 0)
2407                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2408                                 (cycle & 0x7fff) << 16;
2409
2410                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2411                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2412                 context_run(&ctx->context, match);
2413                 break;
2414
2415         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2416                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2417                 /* fall through */
2418         case FW_ISO_CONTEXT_RECEIVE:
2419                 index = ctx - ohci->ir_context_list;
2420                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2421                 if (cycle >= 0) {
2422                         match |= (cycle & 0x07fff) << 12;
2423                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2424                 }
2425
2426                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2427                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2428                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2429                 context_run(&ctx->context, control);
2430                 break;
2431         }
2432
2433         return 0;
2434 }
2435
2436 static int ohci_stop_iso(struct fw_iso_context *base)
2437 {
2438         struct fw_ohci *ohci = fw_ohci(base->card);
2439         struct iso_context *ctx = container_of(base, struct iso_context, base);
2440         int index;
2441
2442         switch (ctx->base.type) {
2443         case FW_ISO_CONTEXT_TRANSMIT:
2444                 index = ctx - ohci->it_context_list;
2445                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2446                 break;
2447
2448         case FW_ISO_CONTEXT_RECEIVE:
2449         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2450                 index = ctx - ohci->ir_context_list;
2451                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2452                 break;
2453         }
2454         flush_writes(ohci);
2455         context_stop(&ctx->context);
2456
2457         return 0;
2458 }
2459
2460 static void ohci_free_iso_context(struct fw_iso_context *base)
2461 {
2462         struct fw_ohci *ohci = fw_ohci(base->card);
2463         struct iso_context *ctx = container_of(base, struct iso_context, base);
2464         unsigned long flags;
2465         int index;
2466
2467         ohci_stop_iso(base);
2468         context_release(&ctx->context);
2469         free_page((unsigned long)ctx->header);
2470
2471         spin_lock_irqsave(&ohci->lock, flags);
2472
2473         switch (base->type) {
2474         case FW_ISO_CONTEXT_TRANSMIT:
2475                 index = ctx - ohci->it_context_list;
2476                 ohci->it_context_mask |= 1 << index;
2477                 break;
2478
2479         case FW_ISO_CONTEXT_RECEIVE:
2480                 index = ctx - ohci->ir_context_list;
2481                 ohci->ir_context_mask |= 1 << index;
2482                 ohci->ir_context_channels |= 1ULL << base->channel;
2483                 break;
2484
2485         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2486                 index = ctx - ohci->ir_context_list;
2487                 ohci->ir_context_mask |= 1 << index;
2488                 ohci->ir_context_channels |= ohci->mc_channels;
2489                 ohci->mc_channels = 0;
2490                 ohci->mc_allocated = false;
2491                 break;
2492         }
2493
2494         spin_unlock_irqrestore(&ohci->lock, flags);
2495 }
2496
2497 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2498 {
2499         struct fw_ohci *ohci = fw_ohci(base->card);
2500         unsigned long flags;
2501         int ret;
2502
2503         switch (base->type) {
2504         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2505
2506                 spin_lock_irqsave(&ohci->lock, flags);
2507
2508                 /* Don't allow multichannel to grab other contexts' channels. */
2509                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2510                         *channels = ohci->ir_context_channels;
2511                         ret = -EBUSY;
2512                 } else {
2513                         set_multichannel_mask(ohci, *channels);
2514                         ret = 0;
2515                 }
2516
2517                 spin_unlock_irqrestore(&ohci->lock, flags);
2518
2519                 break;
2520         default:
2521                 ret = -EINVAL;
2522         }
2523
2524         return ret;
2525 }
2526
2527 static int queue_iso_transmit(struct iso_context *ctx,
2528                               struct fw_iso_packet *packet,
2529                               struct fw_iso_buffer *buffer,
2530                               unsigned long payload)
2531 {
2532         struct descriptor *d, *last, *pd;
2533         struct fw_iso_packet *p;
2534         __le32 *header;
2535         dma_addr_t d_bus, page_bus;
2536         u32 z, header_z, payload_z, irq;
2537         u32 payload_index, payload_end_index, next_page_index;
2538         int page, end_page, i, length, offset;
2539
2540         p = packet;
2541         payload_index = payload;
2542
2543         if (p->skip)
2544                 z = 1;
2545         else
2546                 z = 2;
2547         if (p->header_length > 0)
2548                 z++;
2549
2550         /* Determine the first page the payload isn't contained in. */
2551         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2552         if (p->payload_length > 0)
2553                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2554         else
2555                 payload_z = 0;
2556
2557         z += payload_z;
2558
2559         /* Get header size in number of descriptors. */
2560         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2561
2562         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2563         if (d == NULL)
2564                 return -ENOMEM;
2565
2566         if (!p->skip) {
2567                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2568                 d[0].req_count = cpu_to_le16(8);
2569                 /*
2570                  * Link the skip address to this descriptor itself.  This causes
2571                  * a context to skip a cycle whenever lost cycles or FIFO
2572                  * overruns occur, without dropping the data.  The application
2573                  * should then decide whether this is an error condition or not.
2574                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2575                  */
2576                 d[0].branch_address = cpu_to_le32(d_bus | z);
2577
2578                 header = (__le32 *) &d[1];
2579                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2580                                         IT_HEADER_TAG(p->tag) |
2581                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2582                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2583                                         IT_HEADER_SPEED(ctx->base.speed));
2584                 header[1] =
2585                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2586                                                           p->payload_length));
2587         }
2588
2589         if (p->header_length > 0) {
2590                 d[2].req_count    = cpu_to_le16(p->header_length);
2591                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2592                 memcpy(&d[z], p->header, p->header_length);
2593         }
2594
2595         pd = d + z - payload_z;
2596         payload_end_index = payload_index + p->payload_length;
2597         for (i = 0; i < payload_z; i++) {
2598                 page               = payload_index >> PAGE_SHIFT;
2599                 offset             = payload_index & ~PAGE_MASK;
2600                 next_page_index    = (page + 1) << PAGE_SHIFT;
2601                 length             =
2602                         min(next_page_index, payload_end_index) - payload_index;
2603                 pd[i].req_count    = cpu_to_le16(length);
2604
2605                 page_bus = page_private(buffer->pages[page]);
2606                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2607
2608                 payload_index += length;
2609         }
2610
2611         if (p->interrupt)
2612                 irq = DESCRIPTOR_IRQ_ALWAYS;
2613         else
2614                 irq = DESCRIPTOR_NO_IRQ;
2615
2616         last = z == 2 ? d : d + z - 1;
2617         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2618                                      DESCRIPTOR_STATUS |
2619                                      DESCRIPTOR_BRANCH_ALWAYS |
2620                                      irq);
2621
2622         context_append(&ctx->context, d, z, header_z);
2623
2624         return 0;
2625 }
2626
2627 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2628                                        struct fw_iso_packet *packet,
2629                                        struct fw_iso_buffer *buffer,
2630                                        unsigned long payload)
2631 {
2632         struct descriptor *d, *pd;
2633         dma_addr_t d_bus, page_bus;
2634         u32 z, header_z, rest;
2635         int i, j, length;
2636         int page, offset, packet_count, header_size, payload_per_buffer;
2637
2638         /*
2639          * The OHCI controller puts the isochronous header and trailer in the
2640          * buffer, so we need at least 8 bytes.
2641          */
2642         packet_count = packet->header_length / ctx->base.header_size;
2643         header_size  = max(ctx->base.header_size, (size_t)8);
2644
2645         /* Get header size in number of descriptors. */
2646         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2647         page     = payload >> PAGE_SHIFT;
2648         offset   = payload & ~PAGE_MASK;
2649         payload_per_buffer = packet->payload_length / packet_count;
2650
2651         for (i = 0; i < packet_count; i++) {
2652                 /* d points to the header descriptor */
2653                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2654                 d = context_get_descriptors(&ctx->context,
2655                                 z + header_z, &d_bus);
2656                 if (d == NULL)
2657                         return -ENOMEM;
2658
2659                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2660                                               DESCRIPTOR_INPUT_MORE);
2661                 if (packet->skip && i == 0)
2662                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2663                 d->req_count    = cpu_to_le16(header_size);
2664                 d->res_count    = d->req_count;
2665                 d->transfer_status = 0;
2666                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2667
2668                 rest = payload_per_buffer;
2669                 pd = d;
2670                 for (j = 1; j < z; j++) {
2671                         pd++;
2672                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2673                                                   DESCRIPTOR_INPUT_MORE);
2674
2675                         if (offset + rest < PAGE_SIZE)
2676                                 length = rest;
2677                         else
2678                                 length = PAGE_SIZE - offset;
2679                         pd->req_count = cpu_to_le16(length);
2680                         pd->res_count = pd->req_count;
2681                         pd->transfer_status = 0;
2682
2683                         page_bus = page_private(buffer->pages[page]);
2684                         pd->data_address = cpu_to_le32(page_bus + offset);
2685
2686                         offset = (offset + length) & ~PAGE_MASK;
2687                         rest -= length;
2688                         if (offset == 0)
2689                                 page++;
2690                 }
2691                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2692                                           DESCRIPTOR_INPUT_LAST |
2693                                           DESCRIPTOR_BRANCH_ALWAYS);
2694                 if (packet->interrupt && i == packet_count - 1)
2695                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2696
2697                 context_append(&ctx->context, d, z, header_z);
2698         }
2699
2700         return 0;
2701 }
2702
2703 static int queue_iso_buffer_fill(struct iso_context *ctx,
2704                                  struct fw_iso_packet *packet,
2705                                  struct fw_iso_buffer *buffer,
2706                                  unsigned long payload)
2707 {
2708         struct descriptor *d;
2709         dma_addr_t d_bus, page_bus;
2710         int page, offset, rest, z, i, length;
2711
2712         page   = payload >> PAGE_SHIFT;
2713         offset = payload & ~PAGE_MASK;
2714         rest   = packet->payload_length;
2715
2716         /* We need one descriptor for each page in the buffer. */
2717         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
2718
2719         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
2720                 return -EFAULT;
2721
2722         for (i = 0; i < z; i++) {
2723                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
2724                 if (d == NULL)
2725                         return -ENOMEM;
2726
2727                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
2728                                          DESCRIPTOR_BRANCH_ALWAYS);
2729                 if (packet->skip && i == 0)
2730                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2731                 if (packet->interrupt && i == z - 1)
2732                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2733
2734                 if (offset + rest < PAGE_SIZE)
2735                         length = rest;
2736                 else
2737                         length = PAGE_SIZE - offset;
2738                 d->req_count = cpu_to_le16(length);
2739                 d->res_count = d->req_count;
2740                 d->transfer_status = 0;
2741
2742                 page_bus = page_private(buffer->pages[page]);
2743                 d->data_address = cpu_to_le32(page_bus + offset);
2744
2745                 rest -= length;
2746                 offset = 0;
2747                 page++;
2748
2749                 context_append(&ctx->context, d, 1, 0);
2750         }
2751
2752         return 0;
2753 }
2754
2755 static int ohci_queue_iso(struct fw_iso_context *base,
2756                           struct fw_iso_packet *packet,
2757                           struct fw_iso_buffer *buffer,
2758                           unsigned long payload)
2759 {
2760         struct iso_context *ctx = container_of(base, struct iso_context, base);
2761         unsigned long flags;
2762         int ret = -ENOSYS;
2763
2764         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2765         switch (base->type) {
2766         case FW_ISO_CONTEXT_TRANSMIT:
2767                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
2768                 break;
2769         case FW_ISO_CONTEXT_RECEIVE:
2770                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
2771                 break;
2772         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2773                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
2774                 break;
2775         }
2776         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2777
2778         return ret;
2779 }
2780
2781 static const struct fw_card_driver ohci_driver = {
2782         .enable                 = ohci_enable,
2783         .read_phy_reg           = ohci_read_phy_reg,
2784         .update_phy_reg         = ohci_update_phy_reg,
2785         .set_config_rom         = ohci_set_config_rom,
2786         .send_request           = ohci_send_request,
2787         .send_response          = ohci_send_response,
2788         .cancel_packet          = ohci_cancel_packet,
2789         .enable_phys_dma        = ohci_enable_phys_dma,
2790         .read_csr               = ohci_read_csr,
2791         .write_csr              = ohci_write_csr,
2792
2793         .allocate_iso_context   = ohci_allocate_iso_context,
2794         .free_iso_context       = ohci_free_iso_context,
2795         .set_iso_channels       = ohci_set_iso_channels,
2796         .queue_iso              = ohci_queue_iso,
2797         .start_iso              = ohci_start_iso,
2798         .stop_iso               = ohci_stop_iso,
2799 };
2800
2801 #ifdef CONFIG_PPC_PMAC
2802 static void pmac_ohci_on(struct pci_dev *dev)
2803 {
2804         if (machine_is(powermac)) {
2805                 struct device_node *ofn = pci_device_to_OF_node(dev);
2806
2807                 if (ofn) {
2808                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2809                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2810                 }
2811         }
2812 }
2813
2814 static void pmac_ohci_off(struct pci_dev *dev)
2815 {
2816         if (machine_is(powermac)) {
2817                 struct device_node *ofn = pci_device_to_OF_node(dev);
2818
2819                 if (ofn) {
2820                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2821                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2822                 }
2823         }
2824 }
2825 #else
2826 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2827 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2828 #endif /* CONFIG_PPC_PMAC */
2829
2830 static int __devinit pci_probe(struct pci_dev *dev,
2831                                const struct pci_device_id *ent)
2832 {
2833         struct fw_ohci *ohci;
2834         u32 bus_options, max_receive, link_speed, version, link_enh;
2835         u64 guid;
2836         int i, err, n_ir, n_it;
2837         size_t size;
2838
2839         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2840         if (ohci == NULL) {
2841                 err = -ENOMEM;
2842                 goto fail;
2843         }
2844
2845         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2846
2847         pmac_ohci_on(dev);
2848
2849         err = pci_enable_device(dev);
2850         if (err) {
2851                 fw_error("Failed to enable OHCI hardware\n");
2852                 goto fail_free;
2853         }
2854
2855         pci_set_master(dev);
2856         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2857         pci_set_drvdata(dev, ohci);
2858
2859         spin_lock_init(&ohci->lock);
2860         mutex_init(&ohci->phy_reg_mutex);
2861
2862         tasklet_init(&ohci->bus_reset_tasklet,
2863                      bus_reset_tasklet, (unsigned long)ohci);
2864
2865         err = pci_request_region(dev, 0, ohci_driver_name);
2866         if (err) {
2867                 fw_error("MMIO resource unavailable\n");
2868                 goto fail_disable;
2869         }
2870
2871         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2872         if (ohci->registers == NULL) {
2873                 fw_error("Failed to remap registers\n");
2874                 err = -ENXIO;
2875                 goto fail_iomem;
2876         }
2877
2878         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2879                 if (ohci_quirks[i].vendor == dev->vendor &&
2880                     (ohci_quirks[i].device == dev->device ||
2881                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2882                         ohci->quirks = ohci_quirks[i].flags;
2883                         break;
2884                 }
2885         if (param_quirks)
2886                 ohci->quirks = param_quirks;
2887
2888         /* TI OHCI-Lynx and compatible: set recommended configuration bits. */
2889         if (dev->vendor == PCI_VENDOR_ID_TI) {
2890                 pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);
2891
2892                 /* adjust latency of ATx FIFO: use 1.7 KB threshold */
2893                 link_enh &= ~TI_LinkEnh_atx_thresh_mask;
2894                 link_enh |= TI_LinkEnh_atx_thresh_1_7K;
2895
2896                 /* use priority arbitration for asynchronous responses */
2897                 link_enh |= TI_LinkEnh_enab_unfair;
2898
2899                 /* required for aPhyEnhanceEnable to work */
2900                 link_enh |= TI_LinkEnh_enab_accel;
2901
2902                 pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
2903         }
2904
2905         ar_context_init(&ohci->ar_request_ctx, ohci,
2906                         OHCI1394_AsReqRcvContextControlSet);
2907
2908         ar_context_init(&ohci->ar_response_ctx, ohci,
2909                         OHCI1394_AsRspRcvContextControlSet);
2910
2911         context_init(&ohci->at_request_ctx, ohci,
2912                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2913
2914         context_init(&ohci->at_response_ctx, ohci,
2915                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2916
2917         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2918         ohci->ir_context_channels = ~0ULL;
2919         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2920         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2921         n_ir = hweight32(ohci->ir_context_mask);
2922         size = sizeof(struct iso_context) * n_ir;
2923         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2924
2925         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2926         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2927         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2928         n_it = hweight32(ohci->it_context_mask);
2929         size = sizeof(struct iso_context) * n_it;
2930         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2931
2932         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2933                 err = -ENOMEM;
2934                 goto fail_contexts;
2935         }
2936
2937         /* self-id dma buffer allocation */
2938         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2939                                                SELF_ID_BUF_SIZE,
2940                                                &ohci->self_id_bus,
2941                                                GFP_KERNEL);
2942         if (ohci->self_id_cpu == NULL) {
2943                 err = -ENOMEM;
2944                 goto fail_contexts;
2945         }
2946
2947         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2948         max_receive = (bus_options >> 12) & 0xf;
2949         link_speed = bus_options & 0x7;
2950         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2951                 reg_read(ohci, OHCI1394_GUIDLo);
2952
2953         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2954         if (err)
2955                 goto fail_self_id;
2956
2957         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2958         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2959                   "%d IR + %d IT contexts, quirks 0x%x\n",
2960                   dev_name(&dev->dev), version >> 16, version & 0xff,
2961                   n_ir, n_it, ohci->quirks);
2962
2963         return 0;
2964
2965  fail_self_id:
2966         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2967                           ohci->self_id_cpu, ohci->self_id_bus);
2968  fail_contexts:
2969         kfree(ohci->ir_context_list);
2970         kfree(ohci->it_context_list);
2971         context_release(&ohci->at_response_ctx);
2972         context_release(&ohci->at_request_ctx);
2973         ar_context_release(&ohci->ar_response_ctx);
2974         ar_context_release(&ohci->ar_request_ctx);
2975         pci_iounmap(dev, ohci->registers);
2976  fail_iomem:
2977         pci_release_region(dev, 0);
2978  fail_disable:
2979         pci_disable_device(dev);
2980  fail_free:
2981         kfree(&ohci->card);
2982         pmac_ohci_off(dev);
2983  fail:
2984         if (err == -ENOMEM)
2985                 fw_error("Out of memory\n");
2986
2987         return err;
2988 }
2989
2990 static void pci_remove(struct pci_dev *dev)
2991 {
2992         struct fw_ohci *ohci;
2993
2994         ohci = pci_get_drvdata(dev);
2995         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2996         flush_writes(ohci);
2997         fw_core_remove_card(&ohci->card);
2998
2999         /*
3000          * FIXME: Fail all pending packets here, now that the upper
3001          * layers can't queue any more.
3002          */
3003
3004         software_reset(ohci);
3005         free_irq(dev->irq, ohci);
3006
3007         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3008                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3009                                   ohci->next_config_rom, ohci->next_config_rom_bus);
3010         if (ohci->config_rom)
3011                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3012                                   ohci->config_rom, ohci->config_rom_bus);
3013         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
3014                           ohci->self_id_cpu, ohci->self_id_bus);
3015         ar_context_release(&ohci->ar_request_ctx);
3016         ar_context_release(&ohci->ar_response_ctx);
3017         context_release(&ohci->at_request_ctx);
3018         context_release(&ohci->at_response_ctx);
3019         kfree(ohci->it_context_list);
3020         kfree(ohci->ir_context_list);
3021         pci_disable_msi(dev);
3022         pci_iounmap(dev, ohci->registers);
3023         pci_release_region(dev, 0);
3024         pci_disable_device(dev);
3025         kfree(&ohci->card);
3026         pmac_ohci_off(dev);
3027
3028         fw_notify("Removed fw-ohci device.\n");
3029 }
3030
3031 #ifdef CONFIG_PM
3032 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3033 {
3034         struct fw_ohci *ohci = pci_get_drvdata(dev);
3035         int err;
3036
3037         software_reset(ohci);
3038         free_irq(dev->irq, ohci);
3039         pci_disable_msi(dev);
3040         err = pci_save_state(dev);
3041         if (err) {
3042                 fw_error("pci_save_state failed\n");
3043                 return err;
3044         }
3045         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3046         if (err)
3047                 fw_error("pci_set_power_state failed with %d\n", err);
3048         pmac_ohci_off(dev);
3049
3050         return 0;
3051 }
3052
3053 static int pci_resume(struct pci_dev *dev)
3054 {
3055         struct fw_ohci *ohci = pci_get_drvdata(dev);
3056         int err;
3057
3058         pmac_ohci_on(dev);
3059         pci_set_power_state(dev, PCI_D0);
3060         pci_restore_state(dev);
3061         err = pci_enable_device(dev);
3062         if (err) {
3063                 fw_error("pci_enable_device failed\n");
3064                 return err;
3065         }
3066
3067         return ohci_enable(&ohci->card, NULL, 0);
3068 }
3069 #endif
3070
3071 static const struct pci_device_id pci_table[] = {
3072         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3073         { }
3074 };
3075
3076 MODULE_DEVICE_TABLE(pci, pci_table);
3077
3078 static struct pci_driver fw_ohci_pci_driver = {
3079         .name           = ohci_driver_name,
3080         .id_table       = pci_table,
3081         .probe          = pci_probe,
3082         .remove         = pci_remove,
3083 #ifdef CONFIG_PM
3084         .resume         = pci_resume,
3085         .suspend        = pci_suspend,
3086 #endif
3087 };
3088
3089 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3090 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3091 MODULE_LICENSE("GPL");
3092
3093 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3094 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3095 MODULE_ALIAS("ohci1394");
3096 #endif
3097
3098 static int __init fw_ohci_init(void)
3099 {
3100         return pci_register_driver(&fw_ohci_pci_driver);
3101 }
3102
3103 static void __exit fw_ohci_cleanup(void)
3104 {
3105         pci_unregister_driver(&fw_ohci_pci_driver);
3106 }
3107
3108 module_init(fw_ohci_init);
3109 module_exit(fw_ohci_cleanup);