Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/davej/cpufreq
[pandora-kernel.git] / drivers / firewire / net.c
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/ethtool.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/highmem.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/jiffies.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/skbuff.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28
29 #include <asm/unaligned.h>
30 #include <net/arp.h>
31
32 /* rx limits */
33 #define FWNET_MAX_FRAGMENTS             30 /* arbitrary, > TX queue depth */
34 #define FWNET_ISO_PAGE_COUNT            (PAGE_SIZE < 16*1024 ? 4 : 2)
35
36 /* tx limits */
37 #define FWNET_MAX_QUEUED_DATAGRAMS      20 /* < 64 = number of tlabels */
38 #define FWNET_MIN_QUEUED_DATAGRAMS      10 /* should keep AT DMA busy enough */
39 #define FWNET_TX_QUEUE_LEN              FWNET_MAX_QUEUED_DATAGRAMS /* ? */
40
41 #define IEEE1394_BROADCAST_CHANNEL      31
42 #define IEEE1394_ALL_NODES              (0xffc0 | 0x003f)
43 #define IEEE1394_MAX_PAYLOAD_S100       512
44 #define FWNET_NO_FIFO_ADDR              (~0ULL)
45
46 #define IANA_SPECIFIER_ID               0x00005eU
47 #define RFC2734_SW_VERSION              0x000001U
48
49 #define IEEE1394_GASP_HDR_SIZE  8
50
51 #define RFC2374_UNFRAG_HDR_SIZE 4
52 #define RFC2374_FRAG_HDR_SIZE   8
53 #define RFC2374_FRAG_OVERHEAD   4
54
55 #define RFC2374_HDR_UNFRAG      0       /* unfragmented         */
56 #define RFC2374_HDR_FIRSTFRAG   1       /* first fragment       */
57 #define RFC2374_HDR_LASTFRAG    2       /* last fragment        */
58 #define RFC2374_HDR_INTFRAG     3       /* interior fragment    */
59
60 #define RFC2734_HW_ADDR_LEN     16
61
62 struct rfc2734_arp {
63         __be16 hw_type;         /* 0x0018       */
64         __be16 proto_type;      /* 0x0806       */
65         u8 hw_addr_len;         /* 16           */
66         u8 ip_addr_len;         /* 4            */
67         __be16 opcode;          /* ARP Opcode   */
68         /* Above is exactly the same format as struct arphdr */
69
70         __be64 s_uniq_id;       /* Sender's 64bit EUI                   */
71         u8 max_rec;             /* Sender's max packet size             */
72         u8 sspd;                /* Sender's max speed                   */
73         __be16 fifo_hi;         /* hi 16bits of sender's FIFO addr      */
74         __be32 fifo_lo;         /* lo 32bits of sender's FIFO addr      */
75         __be32 sip;             /* Sender's IP Address                  */
76         __be32 tip;             /* IP Address of requested hw addr      */
77 } __packed;
78
79 /* This header format is specific to this driver implementation. */
80 #define FWNET_ALEN      8
81 #define FWNET_HLEN      10
82 struct fwnet_header {
83         u8 h_dest[FWNET_ALEN];  /* destination address */
84         __be16 h_proto;         /* packet type ID field */
85 } __packed;
86
87 /* IPv4 and IPv6 encapsulation header */
88 struct rfc2734_header {
89         u32 w0;
90         u32 w1;
91 };
92
93 #define fwnet_get_hdr_lf(h)             (((h)->w0 & 0xc0000000) >> 30)
94 #define fwnet_get_hdr_ether_type(h)     (((h)->w0 & 0x0000ffff))
95 #define fwnet_get_hdr_dg_size(h)        (((h)->w0 & 0x0fff0000) >> 16)
96 #define fwnet_get_hdr_fg_off(h)         (((h)->w0 & 0x00000fff))
97 #define fwnet_get_hdr_dgl(h)            (((h)->w1 & 0xffff0000) >> 16)
98
99 #define fwnet_set_hdr_lf(lf)            ((lf)  << 30)
100 #define fwnet_set_hdr_ether_type(et)    (et)
101 #define fwnet_set_hdr_dg_size(dgs)      ((dgs) << 16)
102 #define fwnet_set_hdr_fg_off(fgo)       (fgo)
103
104 #define fwnet_set_hdr_dgl(dgl)          ((dgl) << 16)
105
106 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
107                 unsigned ether_type)
108 {
109         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
110                   | fwnet_set_hdr_ether_type(ether_type);
111 }
112
113 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
114                 unsigned ether_type, unsigned dg_size, unsigned dgl)
115 {
116         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
117                   | fwnet_set_hdr_dg_size(dg_size)
118                   | fwnet_set_hdr_ether_type(ether_type);
119         hdr->w1 = fwnet_set_hdr_dgl(dgl);
120 }
121
122 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
123                 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
124 {
125         hdr->w0 = fwnet_set_hdr_lf(lf)
126                   | fwnet_set_hdr_dg_size(dg_size)
127                   | fwnet_set_hdr_fg_off(fg_off);
128         hdr->w1 = fwnet_set_hdr_dgl(dgl);
129 }
130
131 /* This list keeps track of what parts of the datagram have been filled in */
132 struct fwnet_fragment_info {
133         struct list_head fi_link;
134         u16 offset;
135         u16 len;
136 };
137
138 struct fwnet_partial_datagram {
139         struct list_head pd_link;
140         struct list_head fi_list;
141         struct sk_buff *skb;
142         /* FIXME Why not use skb->data? */
143         char *pbuf;
144         u16 datagram_label;
145         u16 ether_type;
146         u16 datagram_size;
147 };
148
149 static DEFINE_MUTEX(fwnet_device_mutex);
150 static LIST_HEAD(fwnet_device_list);
151
152 struct fwnet_device {
153         struct list_head dev_link;
154         spinlock_t lock;
155         enum {
156                 FWNET_BROADCAST_ERROR,
157                 FWNET_BROADCAST_RUNNING,
158                 FWNET_BROADCAST_STOPPED,
159         } broadcast_state;
160         struct fw_iso_context *broadcast_rcv_context;
161         struct fw_iso_buffer broadcast_rcv_buffer;
162         void **broadcast_rcv_buffer_ptrs;
163         unsigned broadcast_rcv_next_ptr;
164         unsigned num_broadcast_rcv_ptrs;
165         unsigned rcv_buffer_size;
166         /*
167          * This value is the maximum unfragmented datagram size that can be
168          * sent by the hardware.  It already has the GASP overhead and the
169          * unfragmented datagram header overhead calculated into it.
170          */
171         unsigned broadcast_xmt_max_payload;
172         u16 broadcast_xmt_datagramlabel;
173
174         /*
175          * The CSR address that remote nodes must send datagrams to for us to
176          * receive them.
177          */
178         struct fw_address_handler handler;
179         u64 local_fifo;
180
181         /* Number of tx datagrams that have been queued but not yet acked */
182         int queued_datagrams;
183
184         int peer_count;
185         struct list_head peer_list;
186         struct fw_card *card;
187         struct net_device *netdev;
188 };
189
190 struct fwnet_peer {
191         struct list_head peer_link;
192         struct fwnet_device *dev;
193         u64 guid;
194         u64 fifo;
195         __be32 ip;
196
197         /* guarded by dev->lock */
198         struct list_head pd_list; /* received partial datagrams */
199         unsigned pdg_size;        /* pd_list size */
200
201         u16 datagram_label;       /* outgoing datagram label */
202         u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
203         int node_id;
204         int generation;
205         unsigned speed;
206 };
207
208 /* This is our task struct. It's used for the packet complete callback.  */
209 struct fwnet_packet_task {
210         struct fw_transaction transaction;
211         struct rfc2734_header hdr;
212         struct sk_buff *skb;
213         struct fwnet_device *dev;
214
215         int outstanding_pkts;
216         u64 fifo_addr;
217         u16 dest_node;
218         u16 max_payload;
219         u8 generation;
220         u8 speed;
221         u8 enqueued;
222 };
223
224 /*
225  * saddr == NULL means use device source address.
226  * daddr == NULL means leave destination address (eg unresolved arp).
227  */
228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
229                         unsigned short type, const void *daddr,
230                         const void *saddr, unsigned len)
231 {
232         struct fwnet_header *h;
233
234         h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
235         put_unaligned_be16(type, &h->h_proto);
236
237         if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
238                 memset(h->h_dest, 0, net->addr_len);
239
240                 return net->hard_header_len;
241         }
242
243         if (daddr) {
244                 memcpy(h->h_dest, daddr, net->addr_len);
245
246                 return net->hard_header_len;
247         }
248
249         return -net->hard_header_len;
250 }
251
252 static int fwnet_header_rebuild(struct sk_buff *skb)
253 {
254         struct fwnet_header *h = (struct fwnet_header *)skb->data;
255
256         if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
257                 return arp_find((unsigned char *)&h->h_dest, skb);
258
259         fw_notify("%s: unable to resolve type %04x addresses\n",
260                   skb->dev->name, be16_to_cpu(h->h_proto));
261         return 0;
262 }
263
264 static int fwnet_header_cache(const struct neighbour *neigh,
265                               struct hh_cache *hh, __be16 type)
266 {
267         struct net_device *net;
268         struct fwnet_header *h;
269
270         if (type == cpu_to_be16(ETH_P_802_3))
271                 return -1;
272         net = neigh->dev;
273         h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
274         h->h_proto = type;
275         memcpy(h->h_dest, neigh->ha, net->addr_len);
276         hh->hh_len = FWNET_HLEN;
277
278         return 0;
279 }
280
281 /* Called by Address Resolution module to notify changes in address. */
282 static void fwnet_header_cache_update(struct hh_cache *hh,
283                 const struct net_device *net, const unsigned char *haddr)
284 {
285         memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
286 }
287
288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
289 {
290         memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
291
292         return FWNET_ALEN;
293 }
294
295 static const struct header_ops fwnet_header_ops = {
296         .create         = fwnet_header_create,
297         .rebuild        = fwnet_header_rebuild,
298         .cache          = fwnet_header_cache,
299         .cache_update   = fwnet_header_cache_update,
300         .parse          = fwnet_header_parse,
301 };
302
303 /* FIXME: is this correct for all cases? */
304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
305                                unsigned offset, unsigned len)
306 {
307         struct fwnet_fragment_info *fi;
308         unsigned end = offset + len;
309
310         list_for_each_entry(fi, &pd->fi_list, fi_link)
311                 if (offset < fi->offset + fi->len && end > fi->offset)
312                         return true;
313
314         return false;
315 }
316
317 /* Assumes that new fragment does not overlap any existing fragments */
318 static struct fwnet_fragment_info *fwnet_frag_new(
319         struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
320 {
321         struct fwnet_fragment_info *fi, *fi2, *new;
322         struct list_head *list;
323
324         list = &pd->fi_list;
325         list_for_each_entry(fi, &pd->fi_list, fi_link) {
326                 if (fi->offset + fi->len == offset) {
327                         /* The new fragment can be tacked on to the end */
328                         /* Did the new fragment plug a hole? */
329                         fi2 = list_entry(fi->fi_link.next,
330                                          struct fwnet_fragment_info, fi_link);
331                         if (fi->offset + fi->len == fi2->offset) {
332                                 /* glue fragments together */
333                                 fi->len += len + fi2->len;
334                                 list_del(&fi2->fi_link);
335                                 kfree(fi2);
336                         } else {
337                                 fi->len += len;
338                         }
339
340                         return fi;
341                 }
342                 if (offset + len == fi->offset) {
343                         /* The new fragment can be tacked on to the beginning */
344                         /* Did the new fragment plug a hole? */
345                         fi2 = list_entry(fi->fi_link.prev,
346                                          struct fwnet_fragment_info, fi_link);
347                         if (fi2->offset + fi2->len == fi->offset) {
348                                 /* glue fragments together */
349                                 fi2->len += fi->len + len;
350                                 list_del(&fi->fi_link);
351                                 kfree(fi);
352
353                                 return fi2;
354                         }
355                         fi->offset = offset;
356                         fi->len += len;
357
358                         return fi;
359                 }
360                 if (offset > fi->offset + fi->len) {
361                         list = &fi->fi_link;
362                         break;
363                 }
364                 if (offset + len < fi->offset) {
365                         list = fi->fi_link.prev;
366                         break;
367                 }
368         }
369
370         new = kmalloc(sizeof(*new), GFP_ATOMIC);
371         if (!new) {
372                 fw_error("out of memory\n");
373                 return NULL;
374         }
375
376         new->offset = offset;
377         new->len = len;
378         list_add(&new->fi_link, list);
379
380         return new;
381 }
382
383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
384                 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
385                 void *frag_buf, unsigned frag_off, unsigned frag_len)
386 {
387         struct fwnet_partial_datagram *new;
388         struct fwnet_fragment_info *fi;
389
390         new = kmalloc(sizeof(*new), GFP_ATOMIC);
391         if (!new)
392                 goto fail;
393
394         INIT_LIST_HEAD(&new->fi_list);
395         fi = fwnet_frag_new(new, frag_off, frag_len);
396         if (fi == NULL)
397                 goto fail_w_new;
398
399         new->datagram_label = datagram_label;
400         new->datagram_size = dg_size;
401         new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
402         if (new->skb == NULL)
403                 goto fail_w_fi;
404
405         skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
406         new->pbuf = skb_put(new->skb, dg_size);
407         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
408         list_add_tail(&new->pd_link, &peer->pd_list);
409
410         return new;
411
412 fail_w_fi:
413         kfree(fi);
414 fail_w_new:
415         kfree(new);
416 fail:
417         fw_error("out of memory\n");
418
419         return NULL;
420 }
421
422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
423                                                     u16 datagram_label)
424 {
425         struct fwnet_partial_datagram *pd;
426
427         list_for_each_entry(pd, &peer->pd_list, pd_link)
428                 if (pd->datagram_label == datagram_label)
429                         return pd;
430
431         return NULL;
432 }
433
434
435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
436 {
437         struct fwnet_fragment_info *fi, *n;
438
439         list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
440                 kfree(fi);
441
442         list_del(&old->pd_link);
443         dev_kfree_skb_any(old->skb);
444         kfree(old);
445 }
446
447 static bool fwnet_pd_update(struct fwnet_peer *peer,
448                 struct fwnet_partial_datagram *pd, void *frag_buf,
449                 unsigned frag_off, unsigned frag_len)
450 {
451         if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
452                 return false;
453
454         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
455
456         /*
457          * Move list entry to beginning of list so that oldest partial
458          * datagrams percolate to the end of the list
459          */
460         list_move_tail(&pd->pd_link, &peer->pd_list);
461
462         return true;
463 }
464
465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
466 {
467         struct fwnet_fragment_info *fi;
468
469         fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
470
471         return fi->len == pd->datagram_size;
472 }
473
474 /* caller must hold dev->lock */
475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
476                                                   u64 guid)
477 {
478         struct fwnet_peer *peer;
479
480         list_for_each_entry(peer, &dev->peer_list, peer_link)
481                 if (peer->guid == guid)
482                         return peer;
483
484         return NULL;
485 }
486
487 /* caller must hold dev->lock */
488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
489                                                 int node_id, int generation)
490 {
491         struct fwnet_peer *peer;
492
493         list_for_each_entry(peer, &dev->peer_list, peer_link)
494                 if (peer->node_id    == node_id &&
495                     peer->generation == generation)
496                         return peer;
497
498         return NULL;
499 }
500
501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
503 {
504         max_rec = min(max_rec, speed + 8);
505         max_rec = min(max_rec, 0xbU); /* <= 4096 */
506         if (max_rec < 8) {
507                 fw_notify("max_rec %x out of range\n", max_rec);
508                 max_rec = 8;
509         }
510
511         return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
512 }
513
514
515 static int fwnet_finish_incoming_packet(struct net_device *net,
516                                         struct sk_buff *skb, u16 source_node_id,
517                                         bool is_broadcast, u16 ether_type)
518 {
519         struct fwnet_device *dev;
520         static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
521         int status;
522         __be64 guid;
523
524         dev = netdev_priv(net);
525         /* Write metadata, and then pass to the receive level */
526         skb->dev = net;
527         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
528
529         /*
530          * Parse the encapsulation header. This actually does the job of
531          * converting to an ethernet frame header, as well as arp
532          * conversion if needed. ARP conversion is easier in this
533          * direction, since we are using ethernet as our backend.
534          */
535         /*
536          * If this is an ARP packet, convert it. First, we want to make
537          * use of some of the fields, since they tell us a little bit
538          * about the sending machine.
539          */
540         if (ether_type == ETH_P_ARP) {
541                 struct rfc2734_arp *arp1394;
542                 struct arphdr *arp;
543                 unsigned char *arp_ptr;
544                 u64 fifo_addr;
545                 u64 peer_guid;
546                 unsigned sspd;
547                 u16 max_payload;
548                 struct fwnet_peer *peer;
549                 unsigned long flags;
550
551                 arp1394   = (struct rfc2734_arp *)skb->data;
552                 arp       = (struct arphdr *)skb->data;
553                 arp_ptr   = (unsigned char *)(arp + 1);
554                 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
555                 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
556                                 | get_unaligned_be32(&arp1394->fifo_lo);
557
558                 sspd = arp1394->sspd;
559                 /* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
560                 if (sspd > SCODE_3200) {
561                         fw_notify("sspd %x out of range\n", sspd);
562                         sspd = SCODE_3200;
563                 }
564                 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
565
566                 spin_lock_irqsave(&dev->lock, flags);
567                 peer = fwnet_peer_find_by_guid(dev, peer_guid);
568                 if (peer) {
569                         peer->fifo = fifo_addr;
570
571                         if (peer->speed > sspd)
572                                 peer->speed = sspd;
573                         if (peer->max_payload > max_payload)
574                                 peer->max_payload = max_payload;
575
576                         peer->ip = arp1394->sip;
577                 }
578                 spin_unlock_irqrestore(&dev->lock, flags);
579
580                 if (!peer) {
581                         fw_notify("No peer for ARP packet from %016llx\n",
582                                   (unsigned long long)peer_guid);
583                         goto no_peer;
584                 }
585
586                 /*
587                  * Now that we're done with the 1394 specific stuff, we'll
588                  * need to alter some of the data.  Believe it or not, all
589                  * that needs to be done is sender_IP_address needs to be
590                  * moved, the destination hardware address get stuffed
591                  * in and the hardware address length set to 8.
592                  *
593                  * IMPORTANT: The code below overwrites 1394 specific data
594                  * needed above so keep the munging of the data for the
595                  * higher level IP stack last.
596                  */
597
598                 arp->ar_hln = 8;
599                 /* skip over sender unique id */
600                 arp_ptr += arp->ar_hln;
601                 /* move sender IP addr */
602                 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
603                 /* skip over sender IP addr */
604                 arp_ptr += arp->ar_pln;
605
606                 if (arp->ar_op == htons(ARPOP_REQUEST))
607                         memset(arp_ptr, 0, sizeof(u64));
608                 else
609                         memcpy(arp_ptr, net->dev_addr, sizeof(u64));
610         }
611
612         /* Now add the ethernet header. */
613         guid = cpu_to_be64(dev->card->guid);
614         if (dev_hard_header(skb, net, ether_type,
615                            is_broadcast ? &broadcast_hw : &guid,
616                            NULL, skb->len) >= 0) {
617                 struct fwnet_header *eth;
618                 u16 *rawp;
619                 __be16 protocol;
620
621                 skb_reset_mac_header(skb);
622                 skb_pull(skb, sizeof(*eth));
623                 eth = (struct fwnet_header *)skb_mac_header(skb);
624                 if (*eth->h_dest & 1) {
625                         if (memcmp(eth->h_dest, net->broadcast,
626                                    net->addr_len) == 0)
627                                 skb->pkt_type = PACKET_BROADCAST;
628 #if 0
629                         else
630                                 skb->pkt_type = PACKET_MULTICAST;
631 #endif
632                 } else {
633                         if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
634                                 skb->pkt_type = PACKET_OTHERHOST;
635                 }
636                 if (ntohs(eth->h_proto) >= 1536) {
637                         protocol = eth->h_proto;
638                 } else {
639                         rawp = (u16 *)skb->data;
640                         if (*rawp == 0xffff)
641                                 protocol = htons(ETH_P_802_3);
642                         else
643                                 protocol = htons(ETH_P_802_2);
644                 }
645                 skb->protocol = protocol;
646         }
647         status = netif_rx(skb);
648         if (status == NET_RX_DROP) {
649                 net->stats.rx_errors++;
650                 net->stats.rx_dropped++;
651         } else {
652                 net->stats.rx_packets++;
653                 net->stats.rx_bytes += skb->len;
654         }
655
656         return 0;
657
658  no_peer:
659         net->stats.rx_errors++;
660         net->stats.rx_dropped++;
661
662         dev_kfree_skb_any(skb);
663
664         return -ENOENT;
665 }
666
667 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
668                                  int source_node_id, int generation,
669                                  bool is_broadcast)
670 {
671         struct sk_buff *skb;
672         struct net_device *net = dev->netdev;
673         struct rfc2734_header hdr;
674         unsigned lf;
675         unsigned long flags;
676         struct fwnet_peer *peer;
677         struct fwnet_partial_datagram *pd;
678         int fg_off;
679         int dg_size;
680         u16 datagram_label;
681         int retval;
682         u16 ether_type;
683
684         hdr.w0 = be32_to_cpu(buf[0]);
685         lf = fwnet_get_hdr_lf(&hdr);
686         if (lf == RFC2374_HDR_UNFRAG) {
687                 /*
688                  * An unfragmented datagram has been received by the ieee1394
689                  * bus. Build an skbuff around it so we can pass it to the
690                  * high level network layer.
691                  */
692                 ether_type = fwnet_get_hdr_ether_type(&hdr);
693                 buf++;
694                 len -= RFC2374_UNFRAG_HDR_SIZE;
695
696                 skb = dev_alloc_skb(len + net->hard_header_len + 15);
697                 if (unlikely(!skb)) {
698                         fw_error("out of memory\n");
699                         net->stats.rx_dropped++;
700
701                         return -ENOMEM;
702                 }
703                 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
704                 memcpy(skb_put(skb, len), buf, len);
705
706                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
707                                                     is_broadcast, ether_type);
708         }
709         /* A datagram fragment has been received, now the fun begins. */
710         hdr.w1 = ntohl(buf[1]);
711         buf += 2;
712         len -= RFC2374_FRAG_HDR_SIZE;
713         if (lf == RFC2374_HDR_FIRSTFRAG) {
714                 ether_type = fwnet_get_hdr_ether_type(&hdr);
715                 fg_off = 0;
716         } else {
717                 ether_type = 0;
718                 fg_off = fwnet_get_hdr_fg_off(&hdr);
719         }
720         datagram_label = fwnet_get_hdr_dgl(&hdr);
721         dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
722
723         spin_lock_irqsave(&dev->lock, flags);
724
725         peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
726         if (!peer) {
727                 retval = -ENOENT;
728                 goto fail;
729         }
730
731         pd = fwnet_pd_find(peer, datagram_label);
732         if (pd == NULL) {
733                 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
734                         /* remove the oldest */
735                         fwnet_pd_delete(list_first_entry(&peer->pd_list,
736                                 struct fwnet_partial_datagram, pd_link));
737                         peer->pdg_size--;
738                 }
739                 pd = fwnet_pd_new(net, peer, datagram_label,
740                                   dg_size, buf, fg_off, len);
741                 if (pd == NULL) {
742                         retval = -ENOMEM;
743                         goto fail;
744                 }
745                 peer->pdg_size++;
746         } else {
747                 if (fwnet_frag_overlap(pd, fg_off, len) ||
748                     pd->datagram_size != dg_size) {
749                         /*
750                          * Differing datagram sizes or overlapping fragments,
751                          * discard old datagram and start a new one.
752                          */
753                         fwnet_pd_delete(pd);
754                         pd = fwnet_pd_new(net, peer, datagram_label,
755                                           dg_size, buf, fg_off, len);
756                         if (pd == NULL) {
757                                 peer->pdg_size--;
758                                 retval = -ENOMEM;
759                                 goto fail;
760                         }
761                 } else {
762                         if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
763                                 /*
764                                  * Couldn't save off fragment anyway
765                                  * so might as well obliterate the
766                                  * datagram now.
767                                  */
768                                 fwnet_pd_delete(pd);
769                                 peer->pdg_size--;
770                                 retval = -ENOMEM;
771                                 goto fail;
772                         }
773                 }
774         } /* new datagram or add to existing one */
775
776         if (lf == RFC2374_HDR_FIRSTFRAG)
777                 pd->ether_type = ether_type;
778
779         if (fwnet_pd_is_complete(pd)) {
780                 ether_type = pd->ether_type;
781                 peer->pdg_size--;
782                 skb = skb_get(pd->skb);
783                 fwnet_pd_delete(pd);
784
785                 spin_unlock_irqrestore(&dev->lock, flags);
786
787                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
788                                                     false, ether_type);
789         }
790         /*
791          * Datagram is not complete, we're done for the
792          * moment.
793          */
794         retval = 0;
795  fail:
796         spin_unlock_irqrestore(&dev->lock, flags);
797
798         return retval;
799 }
800
801 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
802                 int tcode, int destination, int source, int generation,
803                 unsigned long long offset, void *payload, size_t length,
804                 void *callback_data)
805 {
806         struct fwnet_device *dev = callback_data;
807         int rcode;
808
809         if (destination == IEEE1394_ALL_NODES) {
810                 kfree(r);
811
812                 return;
813         }
814
815         if (offset != dev->handler.offset)
816                 rcode = RCODE_ADDRESS_ERROR;
817         else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
818                 rcode = RCODE_TYPE_ERROR;
819         else if (fwnet_incoming_packet(dev, payload, length,
820                                        source, generation, false) != 0) {
821                 fw_error("Incoming packet failure\n");
822                 rcode = RCODE_CONFLICT_ERROR;
823         } else
824                 rcode = RCODE_COMPLETE;
825
826         fw_send_response(card, r, rcode);
827 }
828
829 static void fwnet_receive_broadcast(struct fw_iso_context *context,
830                 u32 cycle, size_t header_length, void *header, void *data)
831 {
832         struct fwnet_device *dev;
833         struct fw_iso_packet packet;
834         struct fw_card *card;
835         __be16 *hdr_ptr;
836         __be32 *buf_ptr;
837         int retval;
838         u32 length;
839         u16 source_node_id;
840         u32 specifier_id;
841         u32 ver;
842         unsigned long offset;
843         unsigned long flags;
844
845         dev = data;
846         card = dev->card;
847         hdr_ptr = header;
848         length = be16_to_cpup(hdr_ptr);
849
850         spin_lock_irqsave(&dev->lock, flags);
851
852         offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
853         buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
854         if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
855                 dev->broadcast_rcv_next_ptr = 0;
856
857         spin_unlock_irqrestore(&dev->lock, flags);
858
859         specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
860                         | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
861         ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
862         source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
863
864         if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
865                 buf_ptr += 2;
866                 length -= IEEE1394_GASP_HDR_SIZE;
867                 fwnet_incoming_packet(dev, buf_ptr, length,
868                                       source_node_id, -1, true);
869         }
870
871         packet.payload_length = dev->rcv_buffer_size;
872         packet.interrupt = 1;
873         packet.skip = 0;
874         packet.tag = 3;
875         packet.sy = 0;
876         packet.header_length = IEEE1394_GASP_HDR_SIZE;
877
878         spin_lock_irqsave(&dev->lock, flags);
879
880         retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
881                                       &dev->broadcast_rcv_buffer, offset);
882
883         spin_unlock_irqrestore(&dev->lock, flags);
884
885         if (retval >= 0)
886                 fw_iso_context_queue_flush(dev->broadcast_rcv_context);
887         else
888                 fw_error("requeue failed\n");
889 }
890
891 static struct kmem_cache *fwnet_packet_task_cache;
892
893 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
894 {
895         dev_kfree_skb_any(ptask->skb);
896         kmem_cache_free(fwnet_packet_task_cache, ptask);
897 }
898
899 /* Caller must hold dev->lock. */
900 static void dec_queued_datagrams(struct fwnet_device *dev)
901 {
902         if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
903                 netif_wake_queue(dev->netdev);
904 }
905
906 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
907
908 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
909 {
910         struct fwnet_device *dev = ptask->dev;
911         struct sk_buff *skb = ptask->skb;
912         unsigned long flags;
913         bool free;
914
915         spin_lock_irqsave(&dev->lock, flags);
916
917         ptask->outstanding_pkts--;
918
919         /* Check whether we or the networking TX soft-IRQ is last user. */
920         free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
921         if (free)
922                 dec_queued_datagrams(dev);
923
924         if (ptask->outstanding_pkts == 0) {
925                 dev->netdev->stats.tx_packets++;
926                 dev->netdev->stats.tx_bytes += skb->len;
927         }
928
929         spin_unlock_irqrestore(&dev->lock, flags);
930
931         if (ptask->outstanding_pkts > 0) {
932                 u16 dg_size;
933                 u16 fg_off;
934                 u16 datagram_label;
935                 u16 lf;
936
937                 /* Update the ptask to point to the next fragment and send it */
938                 lf = fwnet_get_hdr_lf(&ptask->hdr);
939                 switch (lf) {
940                 case RFC2374_HDR_LASTFRAG:
941                 case RFC2374_HDR_UNFRAG:
942                 default:
943                         fw_error("Outstanding packet %x lf %x, header %x,%x\n",
944                                  ptask->outstanding_pkts, lf, ptask->hdr.w0,
945                                  ptask->hdr.w1);
946                         BUG();
947
948                 case RFC2374_HDR_FIRSTFRAG:
949                         /* Set frag type here for future interior fragments */
950                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
951                         fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
952                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
953                         break;
954
955                 case RFC2374_HDR_INTFRAG:
956                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
957                         fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
958                                   + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
959                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
960                         break;
961                 }
962
963                 skb_pull(skb, ptask->max_payload);
964                 if (ptask->outstanding_pkts > 1) {
965                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
966                                           dg_size, fg_off, datagram_label);
967                 } else {
968                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
969                                           dg_size, fg_off, datagram_label);
970                         ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
971                 }
972                 fwnet_send_packet(ptask);
973         }
974
975         if (free)
976                 fwnet_free_ptask(ptask);
977 }
978
979 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
980 {
981         struct fwnet_device *dev = ptask->dev;
982         unsigned long flags;
983         bool free;
984
985         spin_lock_irqsave(&dev->lock, flags);
986
987         /* One fragment failed; don't try to send remaining fragments. */
988         ptask->outstanding_pkts = 0;
989
990         /* Check whether we or the networking TX soft-IRQ is last user. */
991         free = ptask->enqueued;
992         if (free)
993                 dec_queued_datagrams(dev);
994
995         dev->netdev->stats.tx_dropped++;
996         dev->netdev->stats.tx_errors++;
997
998         spin_unlock_irqrestore(&dev->lock, flags);
999
1000         if (free)
1001                 fwnet_free_ptask(ptask);
1002 }
1003
1004 static void fwnet_write_complete(struct fw_card *card, int rcode,
1005                                  void *payload, size_t length, void *data)
1006 {
1007         struct fwnet_packet_task *ptask = data;
1008         static unsigned long j;
1009         static int last_rcode, errors_skipped;
1010
1011         if (rcode == RCODE_COMPLETE) {
1012                 fwnet_transmit_packet_done(ptask);
1013         } else {
1014                 fwnet_transmit_packet_failed(ptask);
1015
1016                 if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
1017                         fw_error("fwnet_write_complete: "
1018                                 "failed: %x (skipped %d)\n", rcode, errors_skipped);
1019
1020                         errors_skipped = 0;
1021                         last_rcode = rcode;
1022                 } else
1023                         errors_skipped++;
1024         }
1025 }
1026
1027 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1028 {
1029         struct fwnet_device *dev;
1030         unsigned tx_len;
1031         struct rfc2734_header *bufhdr;
1032         unsigned long flags;
1033         bool free;
1034
1035         dev = ptask->dev;
1036         tx_len = ptask->max_payload;
1037         switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1038         case RFC2374_HDR_UNFRAG:
1039                 bufhdr = (struct rfc2734_header *)
1040                                 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1041                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1042                 break;
1043
1044         case RFC2374_HDR_FIRSTFRAG:
1045         case RFC2374_HDR_INTFRAG:
1046         case RFC2374_HDR_LASTFRAG:
1047                 bufhdr = (struct rfc2734_header *)
1048                                 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1049                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1050                 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1051                 break;
1052
1053         default:
1054                 BUG();
1055         }
1056         if (ptask->dest_node == IEEE1394_ALL_NODES) {
1057                 u8 *p;
1058                 int generation;
1059                 int node_id;
1060
1061                 /* ptask->generation may not have been set yet */
1062                 generation = dev->card->generation;
1063                 smp_rmb();
1064                 node_id = dev->card->node_id;
1065
1066                 p = skb_push(ptask->skb, 8);
1067                 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1068                 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1069                                                 | RFC2734_SW_VERSION, &p[4]);
1070
1071                 /* We should not transmit if broadcast_channel.valid == 0. */
1072                 fw_send_request(dev->card, &ptask->transaction,
1073                                 TCODE_STREAM_DATA,
1074                                 fw_stream_packet_destination_id(3,
1075                                                 IEEE1394_BROADCAST_CHANNEL, 0),
1076                                 generation, SCODE_100, 0ULL, ptask->skb->data,
1077                                 tx_len + 8, fwnet_write_complete, ptask);
1078
1079                 spin_lock_irqsave(&dev->lock, flags);
1080
1081                 /* If the AT tasklet already ran, we may be last user. */
1082                 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1083                 if (!free)
1084                         ptask->enqueued = true;
1085                 else
1086                         dec_queued_datagrams(dev);
1087
1088                 spin_unlock_irqrestore(&dev->lock, flags);
1089
1090                 goto out;
1091         }
1092
1093         fw_send_request(dev->card, &ptask->transaction,
1094                         TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1095                         ptask->generation, ptask->speed, ptask->fifo_addr,
1096                         ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1097
1098         spin_lock_irqsave(&dev->lock, flags);
1099
1100         /* If the AT tasklet already ran, we may be last user. */
1101         free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1102         if (!free)
1103                 ptask->enqueued = true;
1104         else
1105                 dec_queued_datagrams(dev);
1106
1107         spin_unlock_irqrestore(&dev->lock, flags);
1108
1109         dev->netdev->trans_start = jiffies;
1110  out:
1111         if (free)
1112                 fwnet_free_ptask(ptask);
1113
1114         return 0;
1115 }
1116
1117 static int fwnet_broadcast_start(struct fwnet_device *dev)
1118 {
1119         struct fw_iso_context *context;
1120         int retval;
1121         unsigned num_packets;
1122         unsigned max_receive;
1123         struct fw_iso_packet packet;
1124         unsigned long offset;
1125         unsigned u;
1126
1127         if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1128                 /* outside OHCI posted write area? */
1129                 static const struct fw_address_region region = {
1130                         .start = 0xffff00000000ULL,
1131                         .end   = CSR_REGISTER_BASE,
1132                 };
1133
1134                 dev->handler.length = 4096;
1135                 dev->handler.address_callback = fwnet_receive_packet;
1136                 dev->handler.callback_data = dev;
1137
1138                 retval = fw_core_add_address_handler(&dev->handler, &region);
1139                 if (retval < 0)
1140                         goto failed_initial;
1141
1142                 dev->local_fifo = dev->handler.offset;
1143         }
1144
1145         max_receive = 1U << (dev->card->max_receive + 1);
1146         num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1147
1148         if (!dev->broadcast_rcv_context) {
1149                 void **ptrptr;
1150
1151                 context = fw_iso_context_create(dev->card,
1152                     FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1153                     dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1154                 if (IS_ERR(context)) {
1155                         retval = PTR_ERR(context);
1156                         goto failed_context_create;
1157                 }
1158
1159                 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1160                     dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1161                 if (retval < 0)
1162                         goto failed_buffer_init;
1163
1164                 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1165                 if (!ptrptr) {
1166                         retval = -ENOMEM;
1167                         goto failed_ptrs_alloc;
1168                 }
1169
1170                 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1171                 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1172                         void *ptr;
1173                         unsigned v;
1174
1175                         ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1176                         for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1177                                 *ptrptr++ = (void *)
1178                                                 ((char *)ptr + v * max_receive);
1179                 }
1180                 dev->broadcast_rcv_context = context;
1181         } else {
1182                 context = dev->broadcast_rcv_context;
1183         }
1184
1185         packet.payload_length = max_receive;
1186         packet.interrupt = 1;
1187         packet.skip = 0;
1188         packet.tag = 3;
1189         packet.sy = 0;
1190         packet.header_length = IEEE1394_GASP_HDR_SIZE;
1191         offset = 0;
1192
1193         for (u = 0; u < num_packets; u++) {
1194                 retval = fw_iso_context_queue(context, &packet,
1195                                 &dev->broadcast_rcv_buffer, offset);
1196                 if (retval < 0)
1197                         goto failed_rcv_queue;
1198
1199                 offset += max_receive;
1200         }
1201         dev->num_broadcast_rcv_ptrs = num_packets;
1202         dev->rcv_buffer_size = max_receive;
1203         dev->broadcast_rcv_next_ptr = 0U;
1204         retval = fw_iso_context_start(context, -1, 0,
1205                         FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1206         if (retval < 0)
1207                 goto failed_rcv_queue;
1208
1209         /* FIXME: adjust it according to the min. speed of all known peers? */
1210         dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1211                         - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1212         dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1213
1214         return 0;
1215
1216  failed_rcv_queue:
1217         kfree(dev->broadcast_rcv_buffer_ptrs);
1218         dev->broadcast_rcv_buffer_ptrs = NULL;
1219  failed_ptrs_alloc:
1220         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1221  failed_buffer_init:
1222         fw_iso_context_destroy(context);
1223         dev->broadcast_rcv_context = NULL;
1224  failed_context_create:
1225         fw_core_remove_address_handler(&dev->handler);
1226  failed_initial:
1227         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1228
1229         return retval;
1230 }
1231
1232 static void set_carrier_state(struct fwnet_device *dev)
1233 {
1234         if (dev->peer_count > 1)
1235                 netif_carrier_on(dev->netdev);
1236         else
1237                 netif_carrier_off(dev->netdev);
1238 }
1239
1240 /* ifup */
1241 static int fwnet_open(struct net_device *net)
1242 {
1243         struct fwnet_device *dev = netdev_priv(net);
1244         int ret;
1245
1246         if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1247                 ret = fwnet_broadcast_start(dev);
1248                 if (ret)
1249                         return ret;
1250         }
1251         netif_start_queue(net);
1252
1253         spin_lock_irq(&dev->lock);
1254         set_carrier_state(dev);
1255         spin_unlock_irq(&dev->lock);
1256
1257         return 0;
1258 }
1259
1260 /* ifdown */
1261 static int fwnet_stop(struct net_device *net)
1262 {
1263         netif_stop_queue(net);
1264
1265         /* Deallocate iso context for use by other applications? */
1266
1267         return 0;
1268 }
1269
1270 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1271 {
1272         struct fwnet_header hdr_buf;
1273         struct fwnet_device *dev = netdev_priv(net);
1274         __be16 proto;
1275         u16 dest_node;
1276         unsigned max_payload;
1277         u16 dg_size;
1278         u16 *datagram_label_ptr;
1279         struct fwnet_packet_task *ptask;
1280         struct fwnet_peer *peer;
1281         unsigned long flags;
1282
1283         spin_lock_irqsave(&dev->lock, flags);
1284
1285         /* Can this happen? */
1286         if (netif_queue_stopped(dev->netdev)) {
1287                 spin_unlock_irqrestore(&dev->lock, flags);
1288
1289                 return NETDEV_TX_BUSY;
1290         }
1291
1292         ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1293         if (ptask == NULL)
1294                 goto fail;
1295
1296         skb = skb_share_check(skb, GFP_ATOMIC);
1297         if (!skb)
1298                 goto fail;
1299
1300         /*
1301          * Make a copy of the driver-specific header.
1302          * We might need to rebuild the header on tx failure.
1303          */
1304         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1305         skb_pull(skb, sizeof(hdr_buf));
1306
1307         proto = hdr_buf.h_proto;
1308         dg_size = skb->len;
1309
1310         /*
1311          * Set the transmission type for the packet.  ARP packets and IP
1312          * broadcast packets are sent via GASP.
1313          */
1314         if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1315             || proto == htons(ETH_P_ARP)
1316             || (proto == htons(ETH_P_IP)
1317                 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1318                 max_payload        = dev->broadcast_xmt_max_payload;
1319                 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1320
1321                 ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1322                 ptask->generation  = 0;
1323                 ptask->dest_node   = IEEE1394_ALL_NODES;
1324                 ptask->speed       = SCODE_100;
1325         } else {
1326                 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1327                 u8 generation;
1328
1329                 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1330                 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1331                         goto fail;
1332
1333                 generation         = peer->generation;
1334                 dest_node          = peer->node_id;
1335                 max_payload        = peer->max_payload;
1336                 datagram_label_ptr = &peer->datagram_label;
1337
1338                 ptask->fifo_addr   = peer->fifo;
1339                 ptask->generation  = generation;
1340                 ptask->dest_node   = dest_node;
1341                 ptask->speed       = peer->speed;
1342         }
1343
1344         /* If this is an ARP packet, convert it */
1345         if (proto == htons(ETH_P_ARP)) {
1346                 struct arphdr *arp = (struct arphdr *)skb->data;
1347                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1348                 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1349                 __be32 ipaddr;
1350
1351                 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1352
1353                 arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1354                 arp1394->max_rec        = dev->card->max_receive;
1355                 arp1394->sspd           = dev->card->link_speed;
1356
1357                 put_unaligned_be16(dev->local_fifo >> 32,
1358                                    &arp1394->fifo_hi);
1359                 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1360                                    &arp1394->fifo_lo);
1361                 put_unaligned(ipaddr, &arp1394->sip);
1362         }
1363
1364         ptask->hdr.w0 = 0;
1365         ptask->hdr.w1 = 0;
1366         ptask->skb = skb;
1367         ptask->dev = dev;
1368
1369         /* Does it all fit in one packet? */
1370         if (dg_size <= max_payload) {
1371                 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1372                 ptask->outstanding_pkts = 1;
1373                 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1374         } else {
1375                 u16 datagram_label;
1376
1377                 max_payload -= RFC2374_FRAG_OVERHEAD;
1378                 datagram_label = (*datagram_label_ptr)++;
1379                 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1380                                   datagram_label);
1381                 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1382                 max_payload += RFC2374_FRAG_HDR_SIZE;
1383         }
1384
1385         if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1386                 netif_stop_queue(dev->netdev);
1387
1388         spin_unlock_irqrestore(&dev->lock, flags);
1389
1390         ptask->max_payload = max_payload;
1391         ptask->enqueued    = 0;
1392
1393         fwnet_send_packet(ptask);
1394
1395         return NETDEV_TX_OK;
1396
1397  fail:
1398         spin_unlock_irqrestore(&dev->lock, flags);
1399
1400         if (ptask)
1401                 kmem_cache_free(fwnet_packet_task_cache, ptask);
1402
1403         if (skb != NULL)
1404                 dev_kfree_skb(skb);
1405
1406         net->stats.tx_dropped++;
1407         net->stats.tx_errors++;
1408
1409         /*
1410          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1411          * causes serious problems" here, allegedly.  Before that patch,
1412          * -ERRNO was returned which is not appropriate under Linux 2.6.
1413          * Perhaps more needs to be done?  Stop the queue in serious
1414          * conditions and restart it elsewhere?
1415          */
1416         return NETDEV_TX_OK;
1417 }
1418
1419 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1420 {
1421         if (new_mtu < 68)
1422                 return -EINVAL;
1423
1424         net->mtu = new_mtu;
1425         return 0;
1426 }
1427
1428 static const struct ethtool_ops fwnet_ethtool_ops = {
1429         .get_link       = ethtool_op_get_link,
1430 };
1431
1432 static const struct net_device_ops fwnet_netdev_ops = {
1433         .ndo_open       = fwnet_open,
1434         .ndo_stop       = fwnet_stop,
1435         .ndo_start_xmit = fwnet_tx,
1436         .ndo_change_mtu = fwnet_change_mtu,
1437 };
1438
1439 static void fwnet_init_dev(struct net_device *net)
1440 {
1441         net->header_ops         = &fwnet_header_ops;
1442         net->netdev_ops         = &fwnet_netdev_ops;
1443         net->watchdog_timeo     = 2 * HZ;
1444         net->flags              = IFF_BROADCAST | IFF_MULTICAST;
1445         net->features           = NETIF_F_HIGHDMA;
1446         net->addr_len           = FWNET_ALEN;
1447         net->hard_header_len    = FWNET_HLEN;
1448         net->type               = ARPHRD_IEEE1394;
1449         net->tx_queue_len       = FWNET_TX_QUEUE_LEN;
1450         net->ethtool_ops        = &fwnet_ethtool_ops;
1451 }
1452
1453 /* caller must hold fwnet_device_mutex */
1454 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1455 {
1456         struct fwnet_device *dev;
1457
1458         list_for_each_entry(dev, &fwnet_device_list, dev_link)
1459                 if (dev->card == card)
1460                         return dev;
1461
1462         return NULL;
1463 }
1464
1465 static int fwnet_add_peer(struct fwnet_device *dev,
1466                           struct fw_unit *unit, struct fw_device *device)
1467 {
1468         struct fwnet_peer *peer;
1469
1470         peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1471         if (!peer)
1472                 return -ENOMEM;
1473
1474         dev_set_drvdata(&unit->device, peer);
1475
1476         peer->dev = dev;
1477         peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1478         peer->fifo = FWNET_NO_FIFO_ADDR;
1479         peer->ip = 0;
1480         INIT_LIST_HEAD(&peer->pd_list);
1481         peer->pdg_size = 0;
1482         peer->datagram_label = 0;
1483         peer->speed = device->max_speed;
1484         peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1485
1486         peer->generation = device->generation;
1487         smp_rmb();
1488         peer->node_id = device->node_id;
1489
1490         spin_lock_irq(&dev->lock);
1491         list_add_tail(&peer->peer_link, &dev->peer_list);
1492         dev->peer_count++;
1493         set_carrier_state(dev);
1494         spin_unlock_irq(&dev->lock);
1495
1496         return 0;
1497 }
1498
1499 static int fwnet_probe(struct device *_dev)
1500 {
1501         struct fw_unit *unit = fw_unit(_dev);
1502         struct fw_device *device = fw_parent_device(unit);
1503         struct fw_card *card = device->card;
1504         struct net_device *net;
1505         bool allocated_netdev = false;
1506         struct fwnet_device *dev;
1507         unsigned max_mtu;
1508         int ret;
1509
1510         mutex_lock(&fwnet_device_mutex);
1511
1512         dev = fwnet_dev_find(card);
1513         if (dev) {
1514                 net = dev->netdev;
1515                 goto have_dev;
1516         }
1517
1518         net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1519         if (net == NULL) {
1520                 ret = -ENOMEM;
1521                 goto out;
1522         }
1523
1524         allocated_netdev = true;
1525         SET_NETDEV_DEV(net, card->device);
1526         dev = netdev_priv(net);
1527
1528         spin_lock_init(&dev->lock);
1529         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1530         dev->broadcast_rcv_context = NULL;
1531         dev->broadcast_xmt_max_payload = 0;
1532         dev->broadcast_xmt_datagramlabel = 0;
1533         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1534         dev->queued_datagrams = 0;
1535         INIT_LIST_HEAD(&dev->peer_list);
1536         dev->card = card;
1537         dev->netdev = net;
1538
1539         /*
1540          * Use the RFC 2734 default 1500 octets or the maximum payload
1541          * as initial MTU
1542          */
1543         max_mtu = (1 << (card->max_receive + 1))
1544                   - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1545         net->mtu = min(1500U, max_mtu);
1546
1547         /* Set our hardware address while we're at it */
1548         put_unaligned_be64(card->guid, net->dev_addr);
1549         put_unaligned_be64(~0ULL, net->broadcast);
1550         ret = register_netdev(net);
1551         if (ret) {
1552                 fw_error("Cannot register the driver\n");
1553                 goto out;
1554         }
1555
1556         list_add_tail(&dev->dev_link, &fwnet_device_list);
1557         fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1558                   net->name, (unsigned long long)card->guid);
1559  have_dev:
1560         ret = fwnet_add_peer(dev, unit, device);
1561         if (ret && allocated_netdev) {
1562                 unregister_netdev(net);
1563                 list_del(&dev->dev_link);
1564         }
1565  out:
1566         if (ret && allocated_netdev)
1567                 free_netdev(net);
1568
1569         mutex_unlock(&fwnet_device_mutex);
1570
1571         return ret;
1572 }
1573
1574 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1575 {
1576         struct fwnet_partial_datagram *pd, *pd_next;
1577
1578         spin_lock_irq(&dev->lock);
1579         list_del(&peer->peer_link);
1580         dev->peer_count--;
1581         set_carrier_state(dev);
1582         spin_unlock_irq(&dev->lock);
1583
1584         list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1585                 fwnet_pd_delete(pd);
1586
1587         kfree(peer);
1588 }
1589
1590 static int fwnet_remove(struct device *_dev)
1591 {
1592         struct fwnet_peer *peer = dev_get_drvdata(_dev);
1593         struct fwnet_device *dev = peer->dev;
1594         struct net_device *net;
1595         int i;
1596
1597         mutex_lock(&fwnet_device_mutex);
1598
1599         net = dev->netdev;
1600         if (net && peer->ip)
1601                 arp_invalidate(net, peer->ip);
1602
1603         fwnet_remove_peer(peer, dev);
1604
1605         if (list_empty(&dev->peer_list)) {
1606                 unregister_netdev(net);
1607
1608                 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1609                         fw_core_remove_address_handler(&dev->handler);
1610                 if (dev->broadcast_rcv_context) {
1611                         fw_iso_context_stop(dev->broadcast_rcv_context);
1612                         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1613                                               dev->card);
1614                         fw_iso_context_destroy(dev->broadcast_rcv_context);
1615                 }
1616                 for (i = 0; dev->queued_datagrams && i < 5; i++)
1617                         ssleep(1);
1618                 WARN_ON(dev->queued_datagrams);
1619                 list_del(&dev->dev_link);
1620
1621                 free_netdev(net);
1622         }
1623
1624         mutex_unlock(&fwnet_device_mutex);
1625
1626         return 0;
1627 }
1628
1629 /*
1630  * FIXME abort partially sent fragmented datagrams,
1631  * discard partially received fragmented datagrams
1632  */
1633 static void fwnet_update(struct fw_unit *unit)
1634 {
1635         struct fw_device *device = fw_parent_device(unit);
1636         struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1637         int generation;
1638
1639         generation = device->generation;
1640
1641         spin_lock_irq(&peer->dev->lock);
1642         peer->node_id    = device->node_id;
1643         peer->generation = generation;
1644         spin_unlock_irq(&peer->dev->lock);
1645 }
1646
1647 static const struct ieee1394_device_id fwnet_id_table[] = {
1648         {
1649                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1650                                 IEEE1394_MATCH_VERSION,
1651                 .specifier_id = IANA_SPECIFIER_ID,
1652                 .version      = RFC2734_SW_VERSION,
1653         },
1654         { }
1655 };
1656
1657 static struct fw_driver fwnet_driver = {
1658         .driver = {
1659                 .owner  = THIS_MODULE,
1660                 .name   = "net",
1661                 .bus    = &fw_bus_type,
1662                 .probe  = fwnet_probe,
1663                 .remove = fwnet_remove,
1664         },
1665         .update   = fwnet_update,
1666         .id_table = fwnet_id_table,
1667 };
1668
1669 static const u32 rfc2374_unit_directory_data[] = {
1670         0x00040000,     /* directory_length             */
1671         0x1200005e,     /* unit_specifier_id: IANA      */
1672         0x81000003,     /* textual descriptor offset    */
1673         0x13000001,     /* unit_sw_version: RFC 2734    */
1674         0x81000005,     /* textual descriptor offset    */
1675         0x00030000,     /* descriptor_length            */
1676         0x00000000,     /* text                         */
1677         0x00000000,     /* minimal ASCII, en            */
1678         0x49414e41,     /* I A N A                      */
1679         0x00030000,     /* descriptor_length            */
1680         0x00000000,     /* text                         */
1681         0x00000000,     /* minimal ASCII, en            */
1682         0x49507634,     /* I P v 4                      */
1683 };
1684
1685 static struct fw_descriptor rfc2374_unit_directory = {
1686         .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1687         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1688         .data   = rfc2374_unit_directory_data
1689 };
1690
1691 static int __init fwnet_init(void)
1692 {
1693         int err;
1694
1695         err = fw_core_add_descriptor(&rfc2374_unit_directory);
1696         if (err)
1697                 return err;
1698
1699         fwnet_packet_task_cache = kmem_cache_create("packet_task",
1700                         sizeof(struct fwnet_packet_task), 0, 0, NULL);
1701         if (!fwnet_packet_task_cache) {
1702                 err = -ENOMEM;
1703                 goto out;
1704         }
1705
1706         err = driver_register(&fwnet_driver.driver);
1707         if (!err)
1708                 return 0;
1709
1710         kmem_cache_destroy(fwnet_packet_task_cache);
1711 out:
1712         fw_core_remove_descriptor(&rfc2374_unit_directory);
1713
1714         return err;
1715 }
1716 module_init(fwnet_init);
1717
1718 static void __exit fwnet_cleanup(void)
1719 {
1720         driver_unregister(&fwnet_driver.driver);
1721         kmem_cache_destroy(fwnet_packet_task_cache);
1722         fw_core_remove_descriptor(&rfc2374_unit_directory);
1723 }
1724 module_exit(fwnet_cleanup);
1725
1726 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1727 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1728 MODULE_LICENSE("GPL");
1729 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);