dmaengine/ste_dma40: add missing kernel doc for pending_queue
[pandora-kernel.git] / drivers / dma / ste_dma40.c
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/dmaengine.h>
13 #include <linux/platform_device.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/amba/bus.h>
18
19 #include <plat/ste_dma40.h>
20
21 #include "ste_dma40_ll.h"
22
23 #define D40_NAME "dma40"
24
25 #define D40_PHY_CHAN -1
26
27 /* For masking out/in 2 bit channel positions */
28 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
29 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
30
31 /* Maximum iterations taken before giving up suspending a channel */
32 #define D40_SUSPEND_MAX_IT 500
33
34 /* Hardware requirement on LCLA alignment */
35 #define LCLA_ALIGNMENT 0x40000
36
37 /* Max number of links per event group */
38 #define D40_LCLA_LINK_PER_EVENT_GRP 128
39 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
40
41 /* Attempts before giving up to trying to get pages that are aligned */
42 #define MAX_LCLA_ALLOC_ATTEMPTS 256
43
44 /* Bit markings for allocation map */
45 #define D40_ALLOC_FREE          (1 << 31)
46 #define D40_ALLOC_PHY           (1 << 30)
47 #define D40_ALLOC_LOG_FREE      0
48
49 /**
50  * enum 40_command - The different commands and/or statuses.
51  *
52  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
53  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
54  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
55  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
56  */
57 enum d40_command {
58         D40_DMA_STOP            = 0,
59         D40_DMA_RUN             = 1,
60         D40_DMA_SUSPEND_REQ     = 2,
61         D40_DMA_SUSPENDED       = 3
62 };
63
64 /**
65  * struct d40_lli_pool - Structure for keeping LLIs in memory
66  *
67  * @base: Pointer to memory area when the pre_alloc_lli's are not large
68  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
69  * pre_alloc_lli is used.
70  * @dma_addr: DMA address, if mapped
71  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
72  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
73  * one buffer to one buffer.
74  */
75 struct d40_lli_pool {
76         void    *base;
77         int      size;
78         dma_addr_t      dma_addr;
79         /* Space for dst and src, plus an extra for padding */
80         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
81 };
82
83 /**
84  * struct d40_desc - A descriptor is one DMA job.
85  *
86  * @lli_phy: LLI settings for physical channel. Both src and dst=
87  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
88  * lli_len equals one.
89  * @lli_log: Same as above but for logical channels.
90  * @lli_pool: The pool with two entries pre-allocated.
91  * @lli_len: Number of llis of current descriptor.
92  * @lli_current: Number of transferred llis.
93  * @lcla_alloc: Number of LCLA entries allocated.
94  * @txd: DMA engine struct. Used for among other things for communication
95  * during a transfer.
96  * @node: List entry.
97  * @is_in_client_list: true if the client owns this descriptor.
98  * the previous one.
99  *
100  * This descriptor is used for both logical and physical transfers.
101  */
102 struct d40_desc {
103         /* LLI physical */
104         struct d40_phy_lli_bidir         lli_phy;
105         /* LLI logical */
106         struct d40_log_lli_bidir         lli_log;
107
108         struct d40_lli_pool              lli_pool;
109         int                              lli_len;
110         int                              lli_current;
111         int                              lcla_alloc;
112
113         struct dma_async_tx_descriptor   txd;
114         struct list_head                 node;
115
116         bool                             is_in_client_list;
117         bool                             cyclic;
118 };
119
120 /**
121  * struct d40_lcla_pool - LCLA pool settings and data.
122  *
123  * @base: The virtual address of LCLA. 18 bit aligned.
124  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
125  * This pointer is only there for clean-up on error.
126  * @pages: The number of pages needed for all physical channels.
127  * Only used later for clean-up on error
128  * @lock: Lock to protect the content in this struct.
129  * @alloc_map: big map over which LCLA entry is own by which job.
130  */
131 struct d40_lcla_pool {
132         void            *base;
133         dma_addr_t      dma_addr;
134         void            *base_unaligned;
135         int              pages;
136         spinlock_t       lock;
137         struct d40_desc **alloc_map;
138 };
139
140 /**
141  * struct d40_phy_res - struct for handling eventlines mapped to physical
142  * channels.
143  *
144  * @lock: A lock protection this entity.
145  * @num: The physical channel number of this entity.
146  * @allocated_src: Bit mapped to show which src event line's are mapped to
147  * this physical channel. Can also be free or physically allocated.
148  * @allocated_dst: Same as for src but is dst.
149  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
150  * event line number.
151  */
152 struct d40_phy_res {
153         spinlock_t lock;
154         int        num;
155         u32        allocated_src;
156         u32        allocated_dst;
157 };
158
159 struct d40_base;
160
161 /**
162  * struct d40_chan - Struct that describes a channel.
163  *
164  * @lock: A spinlock to protect this struct.
165  * @log_num: The logical number, if any of this channel.
166  * @completed: Starts with 1, after first interrupt it is set to dma engine's
167  * current cookie.
168  * @pending_tx: The number of pending transfers. Used between interrupt handler
169  * and tasklet.
170  * @busy: Set to true when transfer is ongoing on this channel.
171  * @phy_chan: Pointer to physical channel which this instance runs on. If this
172  * point is NULL, then the channel is not allocated.
173  * @chan: DMA engine handle.
174  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
175  * transfer and call client callback.
176  * @client: Cliented owned descriptor list.
177  * @pending_queue: Submitted jobs, to be issued by issue_pending()
178  * @active: Active descriptor.
179  * @queue: Queued jobs.
180  * @dma_cfg: The client configuration of this dma channel.
181  * @configured: whether the dma_cfg configuration is valid
182  * @base: Pointer to the device instance struct.
183  * @src_def_cfg: Default cfg register setting for src.
184  * @dst_def_cfg: Default cfg register setting for dst.
185  * @log_def: Default logical channel settings.
186  * @lcla: Space for one dst src pair for logical channel transfers.
187  * @lcpa: Pointer to dst and src lcpa settings.
188  * @runtime_addr: runtime configured address.
189  * @runtime_direction: runtime configured direction.
190  *
191  * This struct can either "be" a logical or a physical channel.
192  */
193 struct d40_chan {
194         spinlock_t                       lock;
195         int                              log_num;
196         /* ID of the most recent completed transfer */
197         int                              completed;
198         int                              pending_tx;
199         bool                             busy;
200         struct d40_phy_res              *phy_chan;
201         struct dma_chan                  chan;
202         struct tasklet_struct            tasklet;
203         struct list_head                 client;
204         struct list_head                 pending_queue;
205         struct list_head                 active;
206         struct list_head                 queue;
207         struct stedma40_chan_cfg         dma_cfg;
208         bool                             configured;
209         struct d40_base                 *base;
210         /* Default register configurations */
211         u32                              src_def_cfg;
212         u32                              dst_def_cfg;
213         struct d40_def_lcsp              log_def;
214         struct d40_log_lli_full         *lcpa;
215         /* Runtime reconfiguration */
216         dma_addr_t                      runtime_addr;
217         enum dma_data_direction         runtime_direction;
218 };
219
220 /**
221  * struct d40_base - The big global struct, one for each probe'd instance.
222  *
223  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
224  * @execmd_lock: Lock for execute command usage since several channels share
225  * the same physical register.
226  * @dev: The device structure.
227  * @virtbase: The virtual base address of the DMA's register.
228  * @rev: silicon revision detected.
229  * @clk: Pointer to the DMA clock structure.
230  * @phy_start: Physical memory start of the DMA registers.
231  * @phy_size: Size of the DMA register map.
232  * @irq: The IRQ number.
233  * @num_phy_chans: The number of physical channels. Read from HW. This
234  * is the number of available channels for this driver, not counting "Secure
235  * mode" allocated physical channels.
236  * @num_log_chans: The number of logical channels. Calculated from
237  * num_phy_chans.
238  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
239  * @dma_slave: dma_device channels that can do only do slave transfers.
240  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
241  * @log_chans: Room for all possible logical channels in system.
242  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
243  * to log_chans entries.
244  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
245  * to phy_chans entries.
246  * @plat_data: Pointer to provided platform_data which is the driver
247  * configuration.
248  * @phy_res: Vector containing all physical channels.
249  * @lcla_pool: lcla pool settings and data.
250  * @lcpa_base: The virtual mapped address of LCPA.
251  * @phy_lcpa: The physical address of the LCPA.
252  * @lcpa_size: The size of the LCPA area.
253  * @desc_slab: cache for descriptors.
254  */
255 struct d40_base {
256         spinlock_t                       interrupt_lock;
257         spinlock_t                       execmd_lock;
258         struct device                    *dev;
259         void __iomem                     *virtbase;
260         u8                                rev:4;
261         struct clk                       *clk;
262         phys_addr_t                       phy_start;
263         resource_size_t                   phy_size;
264         int                               irq;
265         int                               num_phy_chans;
266         int                               num_log_chans;
267         struct dma_device                 dma_both;
268         struct dma_device                 dma_slave;
269         struct dma_device                 dma_memcpy;
270         struct d40_chan                  *phy_chans;
271         struct d40_chan                  *log_chans;
272         struct d40_chan                 **lookup_log_chans;
273         struct d40_chan                 **lookup_phy_chans;
274         struct stedma40_platform_data    *plat_data;
275         /* Physical half channels */
276         struct d40_phy_res               *phy_res;
277         struct d40_lcla_pool              lcla_pool;
278         void                             *lcpa_base;
279         dma_addr_t                        phy_lcpa;
280         resource_size_t                   lcpa_size;
281         struct kmem_cache                *desc_slab;
282 };
283
284 /**
285  * struct d40_interrupt_lookup - lookup table for interrupt handler
286  *
287  * @src: Interrupt mask register.
288  * @clr: Interrupt clear register.
289  * @is_error: true if this is an error interrupt.
290  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
291  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
292  */
293 struct d40_interrupt_lookup {
294         u32 src;
295         u32 clr;
296         bool is_error;
297         int offset;
298 };
299
300 /**
301  * struct d40_reg_val - simple lookup struct
302  *
303  * @reg: The register.
304  * @val: The value that belongs to the register in reg.
305  */
306 struct d40_reg_val {
307         unsigned int reg;
308         unsigned int val;
309 };
310
311 static struct device *chan2dev(struct d40_chan *d40c)
312 {
313         return &d40c->chan.dev->device;
314 }
315
316 static bool chan_is_physical(struct d40_chan *chan)
317 {
318         return chan->log_num == D40_PHY_CHAN;
319 }
320
321 static bool chan_is_logical(struct d40_chan *chan)
322 {
323         return !chan_is_physical(chan);
324 }
325
326 static void __iomem *chan_base(struct d40_chan *chan)
327 {
328         return chan->base->virtbase + D40_DREG_PCBASE +
329                chan->phy_chan->num * D40_DREG_PCDELTA;
330 }
331
332 #define d40_err(dev, format, arg...)            \
333         dev_err(dev, "[%s] " format, __func__, ## arg)
334
335 #define chan_err(d40c, format, arg...)          \
336         d40_err(chan2dev(d40c), format, ## arg)
337
338 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
339                               int lli_len)
340 {
341         bool is_log = chan_is_logical(d40c);
342         u32 align;
343         void *base;
344
345         if (is_log)
346                 align = sizeof(struct d40_log_lli);
347         else
348                 align = sizeof(struct d40_phy_lli);
349
350         if (lli_len == 1) {
351                 base = d40d->lli_pool.pre_alloc_lli;
352                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
353                 d40d->lli_pool.base = NULL;
354         } else {
355                 d40d->lli_pool.size = lli_len * 2 * align;
356
357                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
358                 d40d->lli_pool.base = base;
359
360                 if (d40d->lli_pool.base == NULL)
361                         return -ENOMEM;
362         }
363
364         if (is_log) {
365                 d40d->lli_log.src = PTR_ALIGN(base, align);
366                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
367
368                 d40d->lli_pool.dma_addr = 0;
369         } else {
370                 d40d->lli_phy.src = PTR_ALIGN(base, align);
371                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
372
373                 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
374                                                          d40d->lli_phy.src,
375                                                          d40d->lli_pool.size,
376                                                          DMA_TO_DEVICE);
377
378                 if (dma_mapping_error(d40c->base->dev,
379                                       d40d->lli_pool.dma_addr)) {
380                         kfree(d40d->lli_pool.base);
381                         d40d->lli_pool.base = NULL;
382                         d40d->lli_pool.dma_addr = 0;
383                         return -ENOMEM;
384                 }
385         }
386
387         return 0;
388 }
389
390 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
391 {
392         if (d40d->lli_pool.dma_addr)
393                 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
394                                  d40d->lli_pool.size, DMA_TO_DEVICE);
395
396         kfree(d40d->lli_pool.base);
397         d40d->lli_pool.base = NULL;
398         d40d->lli_pool.size = 0;
399         d40d->lli_log.src = NULL;
400         d40d->lli_log.dst = NULL;
401         d40d->lli_phy.src = NULL;
402         d40d->lli_phy.dst = NULL;
403 }
404
405 static int d40_lcla_alloc_one(struct d40_chan *d40c,
406                               struct d40_desc *d40d)
407 {
408         unsigned long flags;
409         int i;
410         int ret = -EINVAL;
411         int p;
412
413         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
414
415         p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
416
417         /*
418          * Allocate both src and dst at the same time, therefore the half
419          * start on 1 since 0 can't be used since zero is used as end marker.
420          */
421         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
422                 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
423                         d40c->base->lcla_pool.alloc_map[p + i] = d40d;
424                         d40d->lcla_alloc++;
425                         ret = i;
426                         break;
427                 }
428         }
429
430         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
431
432         return ret;
433 }
434
435 static int d40_lcla_free_all(struct d40_chan *d40c,
436                              struct d40_desc *d40d)
437 {
438         unsigned long flags;
439         int i;
440         int ret = -EINVAL;
441
442         if (chan_is_physical(d40c))
443                 return 0;
444
445         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
446
447         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
448                 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
449                                                     D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
450                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
451                                                         D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
452                         d40d->lcla_alloc--;
453                         if (d40d->lcla_alloc == 0) {
454                                 ret = 0;
455                                 break;
456                         }
457                 }
458         }
459
460         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
461
462         return ret;
463
464 }
465
466 static void d40_desc_remove(struct d40_desc *d40d)
467 {
468         list_del(&d40d->node);
469 }
470
471 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
472 {
473         struct d40_desc *desc = NULL;
474
475         if (!list_empty(&d40c->client)) {
476                 struct d40_desc *d;
477                 struct d40_desc *_d;
478
479                 list_for_each_entry_safe(d, _d, &d40c->client, node)
480                         if (async_tx_test_ack(&d->txd)) {
481                                 d40_pool_lli_free(d40c, d);
482                                 d40_desc_remove(d);
483                                 desc = d;
484                                 memset(desc, 0, sizeof(*desc));
485                                 break;
486                         }
487         }
488
489         if (!desc)
490                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
491
492         if (desc)
493                 INIT_LIST_HEAD(&desc->node);
494
495         return desc;
496 }
497
498 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
499 {
500
501         d40_pool_lli_free(d40c, d40d);
502         d40_lcla_free_all(d40c, d40d);
503         kmem_cache_free(d40c->base->desc_slab, d40d);
504 }
505
506 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
507 {
508         list_add_tail(&desc->node, &d40c->active);
509 }
510
511 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
512 {
513         struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
514         struct d40_phy_lli *lli_src = desc->lli_phy.src;
515         void __iomem *base = chan_base(chan);
516
517         writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
518         writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
519         writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
520         writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
521
522         writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
523         writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
524         writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
525         writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
526 }
527
528 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
529 {
530         struct d40_lcla_pool *pool = &chan->base->lcla_pool;
531         struct d40_log_lli_bidir *lli = &desc->lli_log;
532         int lli_current = desc->lli_current;
533         int lli_len = desc->lli_len;
534         bool cyclic = desc->cyclic;
535         int curr_lcla = -EINVAL;
536         int first_lcla = 0;
537         bool linkback;
538
539         /*
540          * We may have partially running cyclic transfers, in case we did't get
541          * enough LCLA entries.
542          */
543         linkback = cyclic && lli_current == 0;
544
545         /*
546          * For linkback, we need one LCLA even with only one link, because we
547          * can't link back to the one in LCPA space
548          */
549         if (linkback || (lli_len - lli_current > 1)) {
550                 curr_lcla = d40_lcla_alloc_one(chan, desc);
551                 first_lcla = curr_lcla;
552         }
553
554         /*
555          * For linkback, we normally load the LCPA in the loop since we need to
556          * link it to the second LCLA and not the first.  However, if we
557          * couldn't even get a first LCLA, then we have to run in LCPA and
558          * reload manually.
559          */
560         if (!linkback || curr_lcla == -EINVAL) {
561                 unsigned int flags = 0;
562
563                 if (curr_lcla == -EINVAL)
564                         flags |= LLI_TERM_INT;
565
566                 d40_log_lli_lcpa_write(chan->lcpa,
567                                        &lli->dst[lli_current],
568                                        &lli->src[lli_current],
569                                        curr_lcla,
570                                        flags);
571                 lli_current++;
572         }
573
574         if (curr_lcla < 0)
575                 goto out;
576
577         for (; lli_current < lli_len; lli_current++) {
578                 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
579                                            8 * curr_lcla * 2;
580                 struct d40_log_lli *lcla = pool->base + lcla_offset;
581                 unsigned int flags = 0;
582                 int next_lcla;
583
584                 if (lli_current + 1 < lli_len)
585                         next_lcla = d40_lcla_alloc_one(chan, desc);
586                 else
587                         next_lcla = linkback ? first_lcla : -EINVAL;
588
589                 if (cyclic || next_lcla == -EINVAL)
590                         flags |= LLI_TERM_INT;
591
592                 if (linkback && curr_lcla == first_lcla) {
593                         /* First link goes in both LCPA and LCLA */
594                         d40_log_lli_lcpa_write(chan->lcpa,
595                                                &lli->dst[lli_current],
596                                                &lli->src[lli_current],
597                                                next_lcla, flags);
598                 }
599
600                 /*
601                  * One unused LCLA in the cyclic case if the very first
602                  * next_lcla fails...
603                  */
604                 d40_log_lli_lcla_write(lcla,
605                                        &lli->dst[lli_current],
606                                        &lli->src[lli_current],
607                                        next_lcla, flags);
608
609                 dma_sync_single_range_for_device(chan->base->dev,
610                                         pool->dma_addr, lcla_offset,
611                                         2 * sizeof(struct d40_log_lli),
612                                         DMA_TO_DEVICE);
613
614                 curr_lcla = next_lcla;
615
616                 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
617                         lli_current++;
618                         break;
619                 }
620         }
621
622 out:
623         desc->lli_current = lli_current;
624 }
625
626 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
627 {
628         if (chan_is_physical(d40c)) {
629                 d40_phy_lli_load(d40c, d40d);
630                 d40d->lli_current = d40d->lli_len;
631         } else
632                 d40_log_lli_to_lcxa(d40c, d40d);
633 }
634
635 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
636 {
637         struct d40_desc *d;
638
639         if (list_empty(&d40c->active))
640                 return NULL;
641
642         d = list_first_entry(&d40c->active,
643                              struct d40_desc,
644                              node);
645         return d;
646 }
647
648 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
649 {
650         list_add_tail(&desc->node, &d40c->pending_queue);
651 }
652
653 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
654 {
655         struct d40_desc *d;
656
657         if (list_empty(&d40c->pending_queue))
658                 return NULL;
659
660         d = list_first_entry(&d40c->pending_queue,
661                              struct d40_desc,
662                              node);
663         return d;
664 }
665
666 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
667 {
668         struct d40_desc *d;
669
670         if (list_empty(&d40c->queue))
671                 return NULL;
672
673         d = list_first_entry(&d40c->queue,
674                              struct d40_desc,
675                              node);
676         return d;
677 }
678
679 static int d40_psize_2_burst_size(bool is_log, int psize)
680 {
681         if (is_log) {
682                 if (psize == STEDMA40_PSIZE_LOG_1)
683                         return 1;
684         } else {
685                 if (psize == STEDMA40_PSIZE_PHY_1)
686                         return 1;
687         }
688
689         return 2 << psize;
690 }
691
692 /*
693  * The dma only supports transmitting packages up to
694  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
695  * dma elements required to send the entire sg list
696  */
697 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
698 {
699         int dmalen;
700         u32 max_w = max(data_width1, data_width2);
701         u32 min_w = min(data_width1, data_width2);
702         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
703
704         if (seg_max > STEDMA40_MAX_SEG_SIZE)
705                 seg_max -= (1 << max_w);
706
707         if (!IS_ALIGNED(size, 1 << max_w))
708                 return -EINVAL;
709
710         if (size <= seg_max)
711                 dmalen = 1;
712         else {
713                 dmalen = size / seg_max;
714                 if (dmalen * seg_max < size)
715                         dmalen++;
716         }
717         return dmalen;
718 }
719
720 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
721                            u32 data_width1, u32 data_width2)
722 {
723         struct scatterlist *sg;
724         int i;
725         int len = 0;
726         int ret;
727
728         for_each_sg(sgl, sg, sg_len, i) {
729                 ret = d40_size_2_dmalen(sg_dma_len(sg),
730                                         data_width1, data_width2);
731                 if (ret < 0)
732                         return ret;
733                 len += ret;
734         }
735         return len;
736 }
737
738 /* Support functions for logical channels */
739
740 static int d40_channel_execute_command(struct d40_chan *d40c,
741                                        enum d40_command command)
742 {
743         u32 status;
744         int i;
745         void __iomem *active_reg;
746         int ret = 0;
747         unsigned long flags;
748         u32 wmask;
749
750         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
751
752         if (d40c->phy_chan->num % 2 == 0)
753                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
754         else
755                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
756
757         if (command == D40_DMA_SUSPEND_REQ) {
758                 status = (readl(active_reg) &
759                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
760                         D40_CHAN_POS(d40c->phy_chan->num);
761
762                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
763                         goto done;
764         }
765
766         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
767         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
768                active_reg);
769
770         if (command == D40_DMA_SUSPEND_REQ) {
771
772                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
773                         status = (readl(active_reg) &
774                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
775                                 D40_CHAN_POS(d40c->phy_chan->num);
776
777                         cpu_relax();
778                         /*
779                          * Reduce the number of bus accesses while
780                          * waiting for the DMA to suspend.
781                          */
782                         udelay(3);
783
784                         if (status == D40_DMA_STOP ||
785                             status == D40_DMA_SUSPENDED)
786                                 break;
787                 }
788
789                 if (i == D40_SUSPEND_MAX_IT) {
790                         chan_err(d40c,
791                                 "unable to suspend the chl %d (log: %d) status %x\n",
792                                 d40c->phy_chan->num, d40c->log_num,
793                                 status);
794                         dump_stack();
795                         ret = -EBUSY;
796                 }
797
798         }
799 done:
800         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
801         return ret;
802 }
803
804 static void d40_term_all(struct d40_chan *d40c)
805 {
806         struct d40_desc *d40d;
807
808         /* Release active descriptors */
809         while ((d40d = d40_first_active_get(d40c))) {
810                 d40_desc_remove(d40d);
811                 d40_desc_free(d40c, d40d);
812         }
813
814         /* Release queued descriptors waiting for transfer */
815         while ((d40d = d40_first_queued(d40c))) {
816                 d40_desc_remove(d40d);
817                 d40_desc_free(d40c, d40d);
818         }
819
820         /* Release pending descriptors */
821         while ((d40d = d40_first_pending(d40c))) {
822                 d40_desc_remove(d40d);
823                 d40_desc_free(d40c, d40d);
824         }
825
826         d40c->pending_tx = 0;
827         d40c->busy = false;
828 }
829
830 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
831                                    u32 event, int reg)
832 {
833         void __iomem *addr = chan_base(d40c) + reg;
834         int tries;
835
836         if (!enable) {
837                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
838                        | ~D40_EVENTLINE_MASK(event), addr);
839                 return;
840         }
841
842         /*
843          * The hardware sometimes doesn't register the enable when src and dst
844          * event lines are active on the same logical channel.  Retry to ensure
845          * it does.  Usually only one retry is sufficient.
846          */
847         tries = 100;
848         while (--tries) {
849                 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
850                        | ~D40_EVENTLINE_MASK(event), addr);
851
852                 if (readl(addr) & D40_EVENTLINE_MASK(event))
853                         break;
854         }
855
856         if (tries != 99)
857                 dev_dbg(chan2dev(d40c),
858                         "[%s] workaround enable S%cLNK (%d tries)\n",
859                         __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
860                         100 - tries);
861
862         WARN_ON(!tries);
863 }
864
865 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
866 {
867         unsigned long flags;
868
869         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
870
871         /* Enable event line connected to device (or memcpy) */
872         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
873             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
874                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
875
876                 __d40_config_set_event(d40c, do_enable, event,
877                                        D40_CHAN_REG_SSLNK);
878         }
879
880         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
881                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
882
883                 __d40_config_set_event(d40c, do_enable, event,
884                                        D40_CHAN_REG_SDLNK);
885         }
886
887         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
888 }
889
890 static u32 d40_chan_has_events(struct d40_chan *d40c)
891 {
892         void __iomem *chanbase = chan_base(d40c);
893         u32 val;
894
895         val = readl(chanbase + D40_CHAN_REG_SSLNK);
896         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
897
898         return val;
899 }
900
901 static u32 d40_get_prmo(struct d40_chan *d40c)
902 {
903         static const unsigned int phy_map[] = {
904                 [STEDMA40_PCHAN_BASIC_MODE]
905                         = D40_DREG_PRMO_PCHAN_BASIC,
906                 [STEDMA40_PCHAN_MODULO_MODE]
907                         = D40_DREG_PRMO_PCHAN_MODULO,
908                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
909                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
910         };
911         static const unsigned int log_map[] = {
912                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
913                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
914                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
915                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
916                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
917                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
918         };
919
920         if (chan_is_physical(d40c))
921                 return phy_map[d40c->dma_cfg.mode_opt];
922         else
923                 return log_map[d40c->dma_cfg.mode_opt];
924 }
925
926 static void d40_config_write(struct d40_chan *d40c)
927 {
928         u32 addr_base;
929         u32 var;
930
931         /* Odd addresses are even addresses + 4 */
932         addr_base = (d40c->phy_chan->num % 2) * 4;
933         /* Setup channel mode to logical or physical */
934         var = ((u32)(chan_is_logical(d40c)) + 1) <<
935                 D40_CHAN_POS(d40c->phy_chan->num);
936         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
937
938         /* Setup operational mode option register */
939         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
940
941         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
942
943         if (chan_is_logical(d40c)) {
944                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
945                            & D40_SREG_ELEM_LOG_LIDX_MASK;
946                 void __iomem *chanbase = chan_base(d40c);
947
948                 /* Set default config for CFG reg */
949                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
950                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
951
952                 /* Set LIDX for lcla */
953                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
954                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
955         }
956 }
957
958 static u32 d40_residue(struct d40_chan *d40c)
959 {
960         u32 num_elt;
961
962         if (chan_is_logical(d40c))
963                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
964                         >> D40_MEM_LCSP2_ECNT_POS;
965         else {
966                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
967                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
968                           >> D40_SREG_ELEM_PHY_ECNT_POS;
969         }
970
971         return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
972 }
973
974 static bool d40_tx_is_linked(struct d40_chan *d40c)
975 {
976         bool is_link;
977
978         if (chan_is_logical(d40c))
979                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
980         else
981                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
982                           & D40_SREG_LNK_PHYS_LNK_MASK;
983
984         return is_link;
985 }
986
987 static int d40_pause(struct d40_chan *d40c)
988 {
989         int res = 0;
990         unsigned long flags;
991
992         if (!d40c->busy)
993                 return 0;
994
995         spin_lock_irqsave(&d40c->lock, flags);
996
997         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
998         if (res == 0) {
999                 if (chan_is_logical(d40c)) {
1000                         d40_config_set_event(d40c, false);
1001                         /* Resume the other logical channels if any */
1002                         if (d40_chan_has_events(d40c))
1003                                 res = d40_channel_execute_command(d40c,
1004                                                                   D40_DMA_RUN);
1005                 }
1006         }
1007
1008         spin_unlock_irqrestore(&d40c->lock, flags);
1009         return res;
1010 }
1011
1012 static int d40_resume(struct d40_chan *d40c)
1013 {
1014         int res = 0;
1015         unsigned long flags;
1016
1017         if (!d40c->busy)
1018                 return 0;
1019
1020         spin_lock_irqsave(&d40c->lock, flags);
1021
1022         if (d40c->base->rev == 0)
1023                 if (chan_is_logical(d40c)) {
1024                         res = d40_channel_execute_command(d40c,
1025                                                           D40_DMA_SUSPEND_REQ);
1026                         goto no_suspend;
1027                 }
1028
1029         /* If bytes left to transfer or linked tx resume job */
1030         if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1031
1032                 if (chan_is_logical(d40c))
1033                         d40_config_set_event(d40c, true);
1034
1035                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1036         }
1037
1038 no_suspend:
1039         spin_unlock_irqrestore(&d40c->lock, flags);
1040         return res;
1041 }
1042
1043 static int d40_terminate_all(struct d40_chan *chan)
1044 {
1045         unsigned long flags;
1046         int ret = 0;
1047
1048         ret = d40_pause(chan);
1049         if (!ret && chan_is_physical(chan))
1050                 ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1051
1052         spin_lock_irqsave(&chan->lock, flags);
1053         d40_term_all(chan);
1054         spin_unlock_irqrestore(&chan->lock, flags);
1055
1056         return ret;
1057 }
1058
1059 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1060 {
1061         struct d40_chan *d40c = container_of(tx->chan,
1062                                              struct d40_chan,
1063                                              chan);
1064         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1065         unsigned long flags;
1066
1067         spin_lock_irqsave(&d40c->lock, flags);
1068
1069         d40c->chan.cookie++;
1070
1071         if (d40c->chan.cookie < 0)
1072                 d40c->chan.cookie = 1;
1073
1074         d40d->txd.cookie = d40c->chan.cookie;
1075
1076         d40_desc_queue(d40c, d40d);
1077
1078         spin_unlock_irqrestore(&d40c->lock, flags);
1079
1080         return tx->cookie;
1081 }
1082
1083 static int d40_start(struct d40_chan *d40c)
1084 {
1085         if (d40c->base->rev == 0) {
1086                 int err;
1087
1088                 if (chan_is_logical(d40c)) {
1089                         err = d40_channel_execute_command(d40c,
1090                                                           D40_DMA_SUSPEND_REQ);
1091                         if (err)
1092                                 return err;
1093                 }
1094         }
1095
1096         if (chan_is_logical(d40c))
1097                 d40_config_set_event(d40c, true);
1098
1099         return d40_channel_execute_command(d40c, D40_DMA_RUN);
1100 }
1101
1102 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1103 {
1104         struct d40_desc *d40d;
1105         int err;
1106
1107         /* Start queued jobs, if any */
1108         d40d = d40_first_queued(d40c);
1109
1110         if (d40d != NULL) {
1111                 d40c->busy = true;
1112
1113                 /* Remove from queue */
1114                 d40_desc_remove(d40d);
1115
1116                 /* Add to active queue */
1117                 d40_desc_submit(d40c, d40d);
1118
1119                 /* Initiate DMA job */
1120                 d40_desc_load(d40c, d40d);
1121
1122                 /* Start dma job */
1123                 err = d40_start(d40c);
1124
1125                 if (err)
1126                         return NULL;
1127         }
1128
1129         return d40d;
1130 }
1131
1132 /* called from interrupt context */
1133 static void dma_tc_handle(struct d40_chan *d40c)
1134 {
1135         struct d40_desc *d40d;
1136
1137         /* Get first active entry from list */
1138         d40d = d40_first_active_get(d40c);
1139
1140         if (d40d == NULL)
1141                 return;
1142
1143         if (d40d->cyclic) {
1144                 /*
1145                  * If this was a paritially loaded list, we need to reloaded
1146                  * it, and only when the list is completed.  We need to check
1147                  * for done because the interrupt will hit for every link, and
1148                  * not just the last one.
1149                  */
1150                 if (d40d->lli_current < d40d->lli_len
1151                     && !d40_tx_is_linked(d40c)
1152                     && !d40_residue(d40c)) {
1153                         d40_lcla_free_all(d40c, d40d);
1154                         d40_desc_load(d40c, d40d);
1155                         (void) d40_start(d40c);
1156
1157                         if (d40d->lli_current == d40d->lli_len)
1158                                 d40d->lli_current = 0;
1159                 }
1160         } else {
1161                 d40_lcla_free_all(d40c, d40d);
1162
1163                 if (d40d->lli_current < d40d->lli_len) {
1164                         d40_desc_load(d40c, d40d);
1165                         /* Start dma job */
1166                         (void) d40_start(d40c);
1167                         return;
1168                 }
1169
1170                 if (d40_queue_start(d40c) == NULL)
1171                         d40c->busy = false;
1172         }
1173
1174         d40c->pending_tx++;
1175         tasklet_schedule(&d40c->tasklet);
1176
1177 }
1178
1179 static void dma_tasklet(unsigned long data)
1180 {
1181         struct d40_chan *d40c = (struct d40_chan *) data;
1182         struct d40_desc *d40d;
1183         unsigned long flags;
1184         dma_async_tx_callback callback;
1185         void *callback_param;
1186
1187         spin_lock_irqsave(&d40c->lock, flags);
1188
1189         /* Get first active entry from list */
1190         d40d = d40_first_active_get(d40c);
1191         if (d40d == NULL)
1192                 goto err;
1193
1194         if (!d40d->cyclic)
1195                 d40c->completed = d40d->txd.cookie;
1196
1197         /*
1198          * If terminating a channel pending_tx is set to zero.
1199          * This prevents any finished active jobs to return to the client.
1200          */
1201         if (d40c->pending_tx == 0) {
1202                 spin_unlock_irqrestore(&d40c->lock, flags);
1203                 return;
1204         }
1205
1206         /* Callback to client */
1207         callback = d40d->txd.callback;
1208         callback_param = d40d->txd.callback_param;
1209
1210         if (!d40d->cyclic) {
1211                 if (async_tx_test_ack(&d40d->txd)) {
1212                         d40_pool_lli_free(d40c, d40d);
1213                         d40_desc_remove(d40d);
1214                         d40_desc_free(d40c, d40d);
1215                 } else {
1216                         if (!d40d->is_in_client_list) {
1217                                 d40_desc_remove(d40d);
1218                                 d40_lcla_free_all(d40c, d40d);
1219                                 list_add_tail(&d40d->node, &d40c->client);
1220                                 d40d->is_in_client_list = true;
1221                         }
1222                 }
1223         }
1224
1225         d40c->pending_tx--;
1226
1227         if (d40c->pending_tx)
1228                 tasklet_schedule(&d40c->tasklet);
1229
1230         spin_unlock_irqrestore(&d40c->lock, flags);
1231
1232         if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1233                 callback(callback_param);
1234
1235         return;
1236
1237  err:
1238         /* Rescue manoeuvre if receiving double interrupts */
1239         if (d40c->pending_tx > 0)
1240                 d40c->pending_tx--;
1241         spin_unlock_irqrestore(&d40c->lock, flags);
1242 }
1243
1244 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1245 {
1246         static const struct d40_interrupt_lookup il[] = {
1247                 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1248                 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1249                 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1250                 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1251                 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1252                 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1253                 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1254                 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1255                 {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1256                 {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1257         };
1258
1259         int i;
1260         u32 regs[ARRAY_SIZE(il)];
1261         u32 idx;
1262         u32 row;
1263         long chan = -1;
1264         struct d40_chan *d40c;
1265         unsigned long flags;
1266         struct d40_base *base = data;
1267
1268         spin_lock_irqsave(&base->interrupt_lock, flags);
1269
1270         /* Read interrupt status of both logical and physical channels */
1271         for (i = 0; i < ARRAY_SIZE(il); i++)
1272                 regs[i] = readl(base->virtbase + il[i].src);
1273
1274         for (;;) {
1275
1276                 chan = find_next_bit((unsigned long *)regs,
1277                                      BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1278
1279                 /* No more set bits found? */
1280                 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1281                         break;
1282
1283                 row = chan / BITS_PER_LONG;
1284                 idx = chan & (BITS_PER_LONG - 1);
1285
1286                 /* ACK interrupt */
1287                 writel(1 << idx, base->virtbase + il[row].clr);
1288
1289                 if (il[row].offset == D40_PHY_CHAN)
1290                         d40c = base->lookup_phy_chans[idx];
1291                 else
1292                         d40c = base->lookup_log_chans[il[row].offset + idx];
1293                 spin_lock(&d40c->lock);
1294
1295                 if (!il[row].is_error)
1296                         dma_tc_handle(d40c);
1297                 else
1298                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1299                                 chan, il[row].offset, idx);
1300
1301                 spin_unlock(&d40c->lock);
1302         }
1303
1304         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1305
1306         return IRQ_HANDLED;
1307 }
1308
1309 static int d40_validate_conf(struct d40_chan *d40c,
1310                              struct stedma40_chan_cfg *conf)
1311 {
1312         int res = 0;
1313         u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1314         u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1315         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1316
1317         if (!conf->dir) {
1318                 chan_err(d40c, "Invalid direction.\n");
1319                 res = -EINVAL;
1320         }
1321
1322         if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1323             d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1324             d40c->runtime_addr == 0) {
1325
1326                 chan_err(d40c, "Invalid TX channel address (%d)\n",
1327                          conf->dst_dev_type);
1328                 res = -EINVAL;
1329         }
1330
1331         if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1332             d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1333             d40c->runtime_addr == 0) {
1334                 chan_err(d40c, "Invalid RX channel address (%d)\n",
1335                         conf->src_dev_type);
1336                 res = -EINVAL;
1337         }
1338
1339         if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1340             dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1341                 chan_err(d40c, "Invalid dst\n");
1342                 res = -EINVAL;
1343         }
1344
1345         if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1346             src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1347                 chan_err(d40c, "Invalid src\n");
1348                 res = -EINVAL;
1349         }
1350
1351         if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1352             dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1353                 chan_err(d40c, "No event line\n");
1354                 res = -EINVAL;
1355         }
1356
1357         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1358             (src_event_group != dst_event_group)) {
1359                 chan_err(d40c, "Invalid event group\n");
1360                 res = -EINVAL;
1361         }
1362
1363         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1364                 /*
1365                  * DMAC HW supports it. Will be added to this driver,
1366                  * in case any dma client requires it.
1367                  */
1368                 chan_err(d40c, "periph to periph not supported\n");
1369                 res = -EINVAL;
1370         }
1371
1372         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1373             (1 << conf->src_info.data_width) !=
1374             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1375             (1 << conf->dst_info.data_width)) {
1376                 /*
1377                  * The DMAC hardware only supports
1378                  * src (burst x width) == dst (burst x width)
1379                  */
1380
1381                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1382                 res = -EINVAL;
1383         }
1384
1385         return res;
1386 }
1387
1388 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1389                                int log_event_line, bool is_log)
1390 {
1391         unsigned long flags;
1392         spin_lock_irqsave(&phy->lock, flags);
1393         if (!is_log) {
1394                 /* Physical interrupts are masked per physical full channel */
1395                 if (phy->allocated_src == D40_ALLOC_FREE &&
1396                     phy->allocated_dst == D40_ALLOC_FREE) {
1397                         phy->allocated_dst = D40_ALLOC_PHY;
1398                         phy->allocated_src = D40_ALLOC_PHY;
1399                         goto found;
1400                 } else
1401                         goto not_found;
1402         }
1403
1404         /* Logical channel */
1405         if (is_src) {
1406                 if (phy->allocated_src == D40_ALLOC_PHY)
1407                         goto not_found;
1408
1409                 if (phy->allocated_src == D40_ALLOC_FREE)
1410                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1411
1412                 if (!(phy->allocated_src & (1 << log_event_line))) {
1413                         phy->allocated_src |= 1 << log_event_line;
1414                         goto found;
1415                 } else
1416                         goto not_found;
1417         } else {
1418                 if (phy->allocated_dst == D40_ALLOC_PHY)
1419                         goto not_found;
1420
1421                 if (phy->allocated_dst == D40_ALLOC_FREE)
1422                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1423
1424                 if (!(phy->allocated_dst & (1 << log_event_line))) {
1425                         phy->allocated_dst |= 1 << log_event_line;
1426                         goto found;
1427                 } else
1428                         goto not_found;
1429         }
1430
1431 not_found:
1432         spin_unlock_irqrestore(&phy->lock, flags);
1433         return false;
1434 found:
1435         spin_unlock_irqrestore(&phy->lock, flags);
1436         return true;
1437 }
1438
1439 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1440                                int log_event_line)
1441 {
1442         unsigned long flags;
1443         bool is_free = false;
1444
1445         spin_lock_irqsave(&phy->lock, flags);
1446         if (!log_event_line) {
1447                 phy->allocated_dst = D40_ALLOC_FREE;
1448                 phy->allocated_src = D40_ALLOC_FREE;
1449                 is_free = true;
1450                 goto out;
1451         }
1452
1453         /* Logical channel */
1454         if (is_src) {
1455                 phy->allocated_src &= ~(1 << log_event_line);
1456                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1457                         phy->allocated_src = D40_ALLOC_FREE;
1458         } else {
1459                 phy->allocated_dst &= ~(1 << log_event_line);
1460                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1461                         phy->allocated_dst = D40_ALLOC_FREE;
1462         }
1463
1464         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1465                    D40_ALLOC_FREE);
1466
1467 out:
1468         spin_unlock_irqrestore(&phy->lock, flags);
1469
1470         return is_free;
1471 }
1472
1473 static int d40_allocate_channel(struct d40_chan *d40c)
1474 {
1475         int dev_type;
1476         int event_group;
1477         int event_line;
1478         struct d40_phy_res *phys;
1479         int i;
1480         int j;
1481         int log_num;
1482         bool is_src;
1483         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1484
1485         phys = d40c->base->phy_res;
1486
1487         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1488                 dev_type = d40c->dma_cfg.src_dev_type;
1489                 log_num = 2 * dev_type;
1490                 is_src = true;
1491         } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1492                    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1493                 /* dst event lines are used for logical memcpy */
1494                 dev_type = d40c->dma_cfg.dst_dev_type;
1495                 log_num = 2 * dev_type + 1;
1496                 is_src = false;
1497         } else
1498                 return -EINVAL;
1499
1500         event_group = D40_TYPE_TO_GROUP(dev_type);
1501         event_line = D40_TYPE_TO_EVENT(dev_type);
1502
1503         if (!is_log) {
1504                 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1505                         /* Find physical half channel */
1506                         for (i = 0; i < d40c->base->num_phy_chans; i++) {
1507
1508                                 if (d40_alloc_mask_set(&phys[i], is_src,
1509                                                        0, is_log))
1510                                         goto found_phy;
1511                         }
1512                 } else
1513                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1514                                 int phy_num = j  + event_group * 2;
1515                                 for (i = phy_num; i < phy_num + 2; i++) {
1516                                         if (d40_alloc_mask_set(&phys[i],
1517                                                                is_src,
1518                                                                0,
1519                                                                is_log))
1520                                                 goto found_phy;
1521                                 }
1522                         }
1523                 return -EINVAL;
1524 found_phy:
1525                 d40c->phy_chan = &phys[i];
1526                 d40c->log_num = D40_PHY_CHAN;
1527                 goto out;
1528         }
1529         if (dev_type == -1)
1530                 return -EINVAL;
1531
1532         /* Find logical channel */
1533         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1534                 int phy_num = j + event_group * 2;
1535                 /*
1536                  * Spread logical channels across all available physical rather
1537                  * than pack every logical channel at the first available phy
1538                  * channels.
1539                  */
1540                 if (is_src) {
1541                         for (i = phy_num; i < phy_num + 2; i++) {
1542                                 if (d40_alloc_mask_set(&phys[i], is_src,
1543                                                        event_line, is_log))
1544                                         goto found_log;
1545                         }
1546                 } else {
1547                         for (i = phy_num + 1; i >= phy_num; i--) {
1548                                 if (d40_alloc_mask_set(&phys[i], is_src,
1549                                                        event_line, is_log))
1550                                         goto found_log;
1551                         }
1552                 }
1553         }
1554         return -EINVAL;
1555
1556 found_log:
1557         d40c->phy_chan = &phys[i];
1558         d40c->log_num = log_num;
1559 out:
1560
1561         if (is_log)
1562                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1563         else
1564                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1565
1566         return 0;
1567
1568 }
1569
1570 static int d40_config_memcpy(struct d40_chan *d40c)
1571 {
1572         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1573
1574         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1575                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1576                 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1577                 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1578                         memcpy[d40c->chan.chan_id];
1579
1580         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1581                    dma_has_cap(DMA_SLAVE, cap)) {
1582                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1583         } else {
1584                 chan_err(d40c, "No memcpy\n");
1585                 return -EINVAL;
1586         }
1587
1588         return 0;
1589 }
1590
1591
1592 static int d40_free_dma(struct d40_chan *d40c)
1593 {
1594
1595         int res = 0;
1596         u32 event;
1597         struct d40_phy_res *phy = d40c->phy_chan;
1598         bool is_src;
1599         struct d40_desc *d;
1600         struct d40_desc *_d;
1601
1602
1603         /* Terminate all queued and active transfers */
1604         d40_term_all(d40c);
1605
1606         /* Release client owned descriptors */
1607         if (!list_empty(&d40c->client))
1608                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1609                         d40_pool_lli_free(d40c, d);
1610                         d40_desc_remove(d);
1611                         d40_desc_free(d40c, d);
1612                 }
1613
1614         if (phy == NULL) {
1615                 chan_err(d40c, "phy == null\n");
1616                 return -EINVAL;
1617         }
1618
1619         if (phy->allocated_src == D40_ALLOC_FREE &&
1620             phy->allocated_dst == D40_ALLOC_FREE) {
1621                 chan_err(d40c, "channel already free\n");
1622                 return -EINVAL;
1623         }
1624
1625         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1626             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1627                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1628                 is_src = false;
1629         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1630                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1631                 is_src = true;
1632         } else {
1633                 chan_err(d40c, "Unknown direction\n");
1634                 return -EINVAL;
1635         }
1636
1637         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1638         if (res) {
1639                 chan_err(d40c, "suspend failed\n");
1640                 return res;
1641         }
1642
1643         if (chan_is_logical(d40c)) {
1644                 /* Release logical channel, deactivate the event line */
1645
1646                 d40_config_set_event(d40c, false);
1647                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1648
1649                 /*
1650                  * Check if there are more logical allocation
1651                  * on this phy channel.
1652                  */
1653                 if (!d40_alloc_mask_free(phy, is_src, event)) {
1654                         /* Resume the other logical channels if any */
1655                         if (d40_chan_has_events(d40c)) {
1656                                 res = d40_channel_execute_command(d40c,
1657                                                                   D40_DMA_RUN);
1658                                 if (res) {
1659                                         chan_err(d40c,
1660                                                 "Executing RUN command\n");
1661                                         return res;
1662                                 }
1663                         }
1664                         return 0;
1665                 }
1666         } else {
1667                 (void) d40_alloc_mask_free(phy, is_src, 0);
1668         }
1669
1670         /* Release physical channel */
1671         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1672         if (res) {
1673                 chan_err(d40c, "Failed to stop channel\n");
1674                 return res;
1675         }
1676         d40c->phy_chan = NULL;
1677         d40c->configured = false;
1678         d40c->base->lookup_phy_chans[phy->num] = NULL;
1679
1680         return 0;
1681 }
1682
1683 static bool d40_is_paused(struct d40_chan *d40c)
1684 {
1685         void __iomem *chanbase = chan_base(d40c);
1686         bool is_paused = false;
1687         unsigned long flags;
1688         void __iomem *active_reg;
1689         u32 status;
1690         u32 event;
1691
1692         spin_lock_irqsave(&d40c->lock, flags);
1693
1694         if (chan_is_physical(d40c)) {
1695                 if (d40c->phy_chan->num % 2 == 0)
1696                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1697                 else
1698                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1699
1700                 status = (readl(active_reg) &
1701                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1702                         D40_CHAN_POS(d40c->phy_chan->num);
1703                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1704                         is_paused = true;
1705
1706                 goto _exit;
1707         }
1708
1709         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1710             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1711                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1712                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1713         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1714                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1715                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1716         } else {
1717                 chan_err(d40c, "Unknown direction\n");
1718                 goto _exit;
1719         }
1720
1721         status = (status & D40_EVENTLINE_MASK(event)) >>
1722                 D40_EVENTLINE_POS(event);
1723
1724         if (status != D40_DMA_RUN)
1725                 is_paused = true;
1726 _exit:
1727         spin_unlock_irqrestore(&d40c->lock, flags);
1728         return is_paused;
1729
1730 }
1731
1732
1733 static u32 stedma40_residue(struct dma_chan *chan)
1734 {
1735         struct d40_chan *d40c =
1736                 container_of(chan, struct d40_chan, chan);
1737         u32 bytes_left;
1738         unsigned long flags;
1739
1740         spin_lock_irqsave(&d40c->lock, flags);
1741         bytes_left = d40_residue(d40c);
1742         spin_unlock_irqrestore(&d40c->lock, flags);
1743
1744         return bytes_left;
1745 }
1746
1747 static int
1748 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1749                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1750                 unsigned int sg_len, dma_addr_t src_dev_addr,
1751                 dma_addr_t dst_dev_addr)
1752 {
1753         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1754         struct stedma40_half_channel_info *src_info = &cfg->src_info;
1755         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1756         int ret;
1757
1758         ret = d40_log_sg_to_lli(sg_src, sg_len,
1759                                 src_dev_addr,
1760                                 desc->lli_log.src,
1761                                 chan->log_def.lcsp1,
1762                                 src_info->data_width,
1763                                 dst_info->data_width);
1764
1765         ret = d40_log_sg_to_lli(sg_dst, sg_len,
1766                                 dst_dev_addr,
1767                                 desc->lli_log.dst,
1768                                 chan->log_def.lcsp3,
1769                                 dst_info->data_width,
1770                                 src_info->data_width);
1771
1772         return ret < 0 ? ret : 0;
1773 }
1774
1775 static int
1776 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1777                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1778                 unsigned int sg_len, dma_addr_t src_dev_addr,
1779                 dma_addr_t dst_dev_addr)
1780 {
1781         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1782         struct stedma40_half_channel_info *src_info = &cfg->src_info;
1783         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1784         unsigned long flags = 0;
1785         int ret;
1786
1787         if (desc->cyclic)
1788                 flags |= LLI_CYCLIC | LLI_TERM_INT;
1789
1790         ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1791                                 desc->lli_phy.src,
1792                                 virt_to_phys(desc->lli_phy.src),
1793                                 chan->src_def_cfg,
1794                                 src_info, dst_info, flags);
1795
1796         ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1797                                 desc->lli_phy.dst,
1798                                 virt_to_phys(desc->lli_phy.dst),
1799                                 chan->dst_def_cfg,
1800                                 dst_info, src_info, flags);
1801
1802         dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1803                                    desc->lli_pool.size, DMA_TO_DEVICE);
1804
1805         return ret < 0 ? ret : 0;
1806 }
1807
1808
1809 static struct d40_desc *
1810 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1811               unsigned int sg_len, unsigned long dma_flags)
1812 {
1813         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1814         struct d40_desc *desc;
1815         int ret;
1816
1817         desc = d40_desc_get(chan);
1818         if (!desc)
1819                 return NULL;
1820
1821         desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
1822                                         cfg->dst_info.data_width);
1823         if (desc->lli_len < 0) {
1824                 chan_err(chan, "Unaligned size\n");
1825                 goto err;
1826         }
1827
1828         ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
1829         if (ret < 0) {
1830                 chan_err(chan, "Could not allocate lli\n");
1831                 goto err;
1832         }
1833
1834
1835         desc->lli_current = 0;
1836         desc->txd.flags = dma_flags;
1837         desc->txd.tx_submit = d40_tx_submit;
1838
1839         dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
1840
1841         return desc;
1842
1843 err:
1844         d40_desc_free(chan, desc);
1845         return NULL;
1846 }
1847
1848 static dma_addr_t
1849 d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1850 {
1851         struct stedma40_platform_data *plat = chan->base->plat_data;
1852         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1853         dma_addr_t addr = 0;
1854
1855         if (chan->runtime_addr)
1856                 return chan->runtime_addr;
1857
1858         if (direction == DMA_FROM_DEVICE)
1859                 addr = plat->dev_rx[cfg->src_dev_type];
1860         else if (direction == DMA_TO_DEVICE)
1861                 addr = plat->dev_tx[cfg->dst_dev_type];
1862
1863         return addr;
1864 }
1865
1866 static struct dma_async_tx_descriptor *
1867 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
1868             struct scatterlist *sg_dst, unsigned int sg_len,
1869             enum dma_data_direction direction, unsigned long dma_flags)
1870 {
1871         struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
1872         dma_addr_t src_dev_addr = 0;
1873         dma_addr_t dst_dev_addr = 0;
1874         struct d40_desc *desc;
1875         unsigned long flags;
1876         int ret;
1877
1878         if (!chan->phy_chan) {
1879                 chan_err(chan, "Cannot prepare unallocated channel\n");
1880                 return NULL;
1881         }
1882
1883
1884         spin_lock_irqsave(&chan->lock, flags);
1885
1886         desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
1887         if (desc == NULL)
1888                 goto err;
1889
1890         if (sg_next(&sg_src[sg_len - 1]) == sg_src)
1891                 desc->cyclic = true;
1892
1893         if (direction != DMA_NONE) {
1894                 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
1895
1896                 if (direction == DMA_FROM_DEVICE)
1897                         src_dev_addr = dev_addr;
1898                 else if (direction == DMA_TO_DEVICE)
1899                         dst_dev_addr = dev_addr;
1900         }
1901
1902         if (chan_is_logical(chan))
1903                 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
1904                                       sg_len, src_dev_addr, dst_dev_addr);
1905         else
1906                 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
1907                                       sg_len, src_dev_addr, dst_dev_addr);
1908
1909         if (ret) {
1910                 chan_err(chan, "Failed to prepare %s sg job: %d\n",
1911                          chan_is_logical(chan) ? "log" : "phy", ret);
1912                 goto err;
1913         }
1914
1915         spin_unlock_irqrestore(&chan->lock, flags);
1916
1917         return &desc->txd;
1918
1919 err:
1920         if (desc)
1921                 d40_desc_free(chan, desc);
1922         spin_unlock_irqrestore(&chan->lock, flags);
1923         return NULL;
1924 }
1925
1926 bool stedma40_filter(struct dma_chan *chan, void *data)
1927 {
1928         struct stedma40_chan_cfg *info = data;
1929         struct d40_chan *d40c =
1930                 container_of(chan, struct d40_chan, chan);
1931         int err;
1932
1933         if (data) {
1934                 err = d40_validate_conf(d40c, info);
1935                 if (!err)
1936                         d40c->dma_cfg = *info;
1937         } else
1938                 err = d40_config_memcpy(d40c);
1939
1940         if (!err)
1941                 d40c->configured = true;
1942
1943         return err == 0;
1944 }
1945 EXPORT_SYMBOL(stedma40_filter);
1946
1947 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1948 {
1949         bool realtime = d40c->dma_cfg.realtime;
1950         bool highprio = d40c->dma_cfg.high_priority;
1951         u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1952         u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1953         u32 event = D40_TYPE_TO_EVENT(dev_type);
1954         u32 group = D40_TYPE_TO_GROUP(dev_type);
1955         u32 bit = 1 << event;
1956
1957         /* Destination event lines are stored in the upper halfword */
1958         if (!src)
1959                 bit <<= 16;
1960
1961         writel(bit, d40c->base->virtbase + prioreg + group * 4);
1962         writel(bit, d40c->base->virtbase + rtreg + group * 4);
1963 }
1964
1965 static void d40_set_prio_realtime(struct d40_chan *d40c)
1966 {
1967         if (d40c->base->rev < 3)
1968                 return;
1969
1970         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1971             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1972                 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1973
1974         if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
1975             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1976                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1977 }
1978
1979 /* DMA ENGINE functions */
1980 static int d40_alloc_chan_resources(struct dma_chan *chan)
1981 {
1982         int err;
1983         unsigned long flags;
1984         struct d40_chan *d40c =
1985                 container_of(chan, struct d40_chan, chan);
1986         bool is_free_phy;
1987         spin_lock_irqsave(&d40c->lock, flags);
1988
1989         d40c->completed = chan->cookie = 1;
1990
1991         /* If no dma configuration is set use default configuration (memcpy) */
1992         if (!d40c->configured) {
1993                 err = d40_config_memcpy(d40c);
1994                 if (err) {
1995                         chan_err(d40c, "Failed to configure memcpy channel\n");
1996                         goto fail;
1997                 }
1998         }
1999         is_free_phy = (d40c->phy_chan == NULL);
2000
2001         err = d40_allocate_channel(d40c);
2002         if (err) {
2003                 chan_err(d40c, "Failed to allocate channel\n");
2004                 goto fail;
2005         }
2006
2007         /* Fill in basic CFG register values */
2008         d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2009                     &d40c->dst_def_cfg, chan_is_logical(d40c));
2010
2011         d40_set_prio_realtime(d40c);
2012
2013         if (chan_is_logical(d40c)) {
2014                 d40_log_cfg(&d40c->dma_cfg,
2015                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2016
2017                 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2018                         d40c->lcpa = d40c->base->lcpa_base +
2019                           d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2020                 else
2021                         d40c->lcpa = d40c->base->lcpa_base +
2022                           d40c->dma_cfg.dst_dev_type *
2023                           D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2024         }
2025
2026         /*
2027          * Only write channel configuration to the DMA if the physical
2028          * resource is free. In case of multiple logical channels
2029          * on the same physical resource, only the first write is necessary.
2030          */
2031         if (is_free_phy)
2032                 d40_config_write(d40c);
2033 fail:
2034         spin_unlock_irqrestore(&d40c->lock, flags);
2035         return err;
2036 }
2037
2038 static void d40_free_chan_resources(struct dma_chan *chan)
2039 {
2040         struct d40_chan *d40c =
2041                 container_of(chan, struct d40_chan, chan);
2042         int err;
2043         unsigned long flags;
2044
2045         if (d40c->phy_chan == NULL) {
2046                 chan_err(d40c, "Cannot free unallocated channel\n");
2047                 return;
2048         }
2049
2050
2051         spin_lock_irqsave(&d40c->lock, flags);
2052
2053         err = d40_free_dma(d40c);
2054
2055         if (err)
2056                 chan_err(d40c, "Failed to free channel\n");
2057         spin_unlock_irqrestore(&d40c->lock, flags);
2058 }
2059
2060 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2061                                                        dma_addr_t dst,
2062                                                        dma_addr_t src,
2063                                                        size_t size,
2064                                                        unsigned long dma_flags)
2065 {
2066         struct scatterlist dst_sg;
2067         struct scatterlist src_sg;
2068
2069         sg_init_table(&dst_sg, 1);
2070         sg_init_table(&src_sg, 1);
2071
2072         sg_dma_address(&dst_sg) = dst;
2073         sg_dma_address(&src_sg) = src;
2074
2075         sg_dma_len(&dst_sg) = size;
2076         sg_dma_len(&src_sg) = size;
2077
2078         return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2079 }
2080
2081 static struct dma_async_tx_descriptor *
2082 d40_prep_memcpy_sg(struct dma_chan *chan,
2083                    struct scatterlist *dst_sg, unsigned int dst_nents,
2084                    struct scatterlist *src_sg, unsigned int src_nents,
2085                    unsigned long dma_flags)
2086 {
2087         if (dst_nents != src_nents)
2088                 return NULL;
2089
2090         return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2091 }
2092
2093 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2094                                                          struct scatterlist *sgl,
2095                                                          unsigned int sg_len,
2096                                                          enum dma_data_direction direction,
2097                                                          unsigned long dma_flags)
2098 {
2099         if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
2100                 return NULL;
2101
2102         return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2103 }
2104
2105 static struct dma_async_tx_descriptor *
2106 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2107                      size_t buf_len, size_t period_len,
2108                      enum dma_data_direction direction)
2109 {
2110         unsigned int periods = buf_len / period_len;
2111         struct dma_async_tx_descriptor *txd;
2112         struct scatterlist *sg;
2113         int i;
2114
2115         sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2116         for (i = 0; i < periods; i++) {
2117                 sg_dma_address(&sg[i]) = dma_addr;
2118                 sg_dma_len(&sg[i]) = period_len;
2119                 dma_addr += period_len;
2120         }
2121
2122         sg[periods].offset = 0;
2123         sg[periods].length = 0;
2124         sg[periods].page_link =
2125                 ((unsigned long)sg | 0x01) & ~0x02;
2126
2127         txd = d40_prep_sg(chan, sg, sg, periods, direction,
2128                           DMA_PREP_INTERRUPT);
2129
2130         kfree(sg);
2131
2132         return txd;
2133 }
2134
2135 static enum dma_status d40_tx_status(struct dma_chan *chan,
2136                                      dma_cookie_t cookie,
2137                                      struct dma_tx_state *txstate)
2138 {
2139         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2140         dma_cookie_t last_used;
2141         dma_cookie_t last_complete;
2142         int ret;
2143
2144         if (d40c->phy_chan == NULL) {
2145                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2146                 return -EINVAL;
2147         }
2148
2149         last_complete = d40c->completed;
2150         last_used = chan->cookie;
2151
2152         if (d40_is_paused(d40c))
2153                 ret = DMA_PAUSED;
2154         else
2155                 ret = dma_async_is_complete(cookie, last_complete, last_used);
2156
2157         dma_set_tx_state(txstate, last_complete, last_used,
2158                          stedma40_residue(chan));
2159
2160         return ret;
2161 }
2162
2163 static void d40_issue_pending(struct dma_chan *chan)
2164 {
2165         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2166         unsigned long flags;
2167
2168         if (d40c->phy_chan == NULL) {
2169                 chan_err(d40c, "Channel is not allocated!\n");
2170                 return;
2171         }
2172
2173         spin_lock_irqsave(&d40c->lock, flags);
2174
2175         list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2176
2177         /* Busy means that queued jobs are already being processed */
2178         if (!d40c->busy)
2179                 (void) d40_queue_start(d40c);
2180
2181         spin_unlock_irqrestore(&d40c->lock, flags);
2182 }
2183
2184 static int
2185 dma40_config_to_halfchannel(struct d40_chan *d40c,
2186                             struct stedma40_half_channel_info *info,
2187                             enum dma_slave_buswidth width,
2188                             u32 maxburst)
2189 {
2190         enum stedma40_periph_data_width addr_width;
2191         int psize;
2192
2193         switch (width) {
2194         case DMA_SLAVE_BUSWIDTH_1_BYTE:
2195                 addr_width = STEDMA40_BYTE_WIDTH;
2196                 break;
2197         case DMA_SLAVE_BUSWIDTH_2_BYTES:
2198                 addr_width = STEDMA40_HALFWORD_WIDTH;
2199                 break;
2200         case DMA_SLAVE_BUSWIDTH_4_BYTES:
2201                 addr_width = STEDMA40_WORD_WIDTH;
2202                 break;
2203         case DMA_SLAVE_BUSWIDTH_8_BYTES:
2204                 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2205                 break;
2206         default:
2207                 dev_err(d40c->base->dev,
2208                         "illegal peripheral address width "
2209                         "requested (%d)\n",
2210                         width);
2211                 return -EINVAL;
2212         }
2213
2214         if (chan_is_logical(d40c)) {
2215                 if (maxburst >= 16)
2216                         psize = STEDMA40_PSIZE_LOG_16;
2217                 else if (maxburst >= 8)
2218                         psize = STEDMA40_PSIZE_LOG_8;
2219                 else if (maxburst >= 4)
2220                         psize = STEDMA40_PSIZE_LOG_4;
2221                 else
2222                         psize = STEDMA40_PSIZE_LOG_1;
2223         } else {
2224                 if (maxburst >= 16)
2225                         psize = STEDMA40_PSIZE_PHY_16;
2226                 else if (maxburst >= 8)
2227                         psize = STEDMA40_PSIZE_PHY_8;
2228                 else if (maxburst >= 4)
2229                         psize = STEDMA40_PSIZE_PHY_4;
2230                 else
2231                         psize = STEDMA40_PSIZE_PHY_1;
2232         }
2233
2234         info->data_width = addr_width;
2235         info->psize = psize;
2236         info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2237
2238         return 0;
2239 }
2240
2241 /* Runtime reconfiguration extension */
2242 static int d40_set_runtime_config(struct dma_chan *chan,
2243                                   struct dma_slave_config *config)
2244 {
2245         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2246         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2247         enum dma_slave_buswidth src_addr_width, dst_addr_width;
2248         dma_addr_t config_addr;
2249         u32 src_maxburst, dst_maxburst;
2250         int ret;
2251
2252         src_addr_width = config->src_addr_width;
2253         src_maxburst = config->src_maxburst;
2254         dst_addr_width = config->dst_addr_width;
2255         dst_maxburst = config->dst_maxburst;
2256
2257         if (config->direction == DMA_FROM_DEVICE) {
2258                 dma_addr_t dev_addr_rx =
2259                         d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2260
2261                 config_addr = config->src_addr;
2262                 if (dev_addr_rx)
2263                         dev_dbg(d40c->base->dev,
2264                                 "channel has a pre-wired RX address %08x "
2265                                 "overriding with %08x\n",
2266                                 dev_addr_rx, config_addr);
2267                 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2268                         dev_dbg(d40c->base->dev,
2269                                 "channel was not configured for peripheral "
2270                                 "to memory transfer (%d) overriding\n",
2271                                 cfg->dir);
2272                 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2273
2274                 /* Configure the memory side */
2275                 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2276                         dst_addr_width = src_addr_width;
2277                 if (dst_maxburst == 0)
2278                         dst_maxburst = src_maxburst;
2279
2280         } else if (config->direction == DMA_TO_DEVICE) {
2281                 dma_addr_t dev_addr_tx =
2282                         d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2283
2284                 config_addr = config->dst_addr;
2285                 if (dev_addr_tx)
2286                         dev_dbg(d40c->base->dev,
2287                                 "channel has a pre-wired TX address %08x "
2288                                 "overriding with %08x\n",
2289                                 dev_addr_tx, config_addr);
2290                 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2291                         dev_dbg(d40c->base->dev,
2292                                 "channel was not configured for memory "
2293                                 "to peripheral transfer (%d) overriding\n",
2294                                 cfg->dir);
2295                 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2296
2297                 /* Configure the memory side */
2298                 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2299                         src_addr_width = dst_addr_width;
2300                 if (src_maxburst == 0)
2301                         src_maxburst = dst_maxburst;
2302         } else {
2303                 dev_err(d40c->base->dev,
2304                         "unrecognized channel direction %d\n",
2305                         config->direction);
2306                 return -EINVAL;
2307         }
2308
2309         if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2310                 dev_err(d40c->base->dev,
2311                         "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2312                         src_maxburst,
2313                         src_addr_width,
2314                         dst_maxburst,
2315                         dst_addr_width);
2316                 return -EINVAL;
2317         }
2318
2319         ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2320                                           src_addr_width,
2321                                           src_maxburst);
2322         if (ret)
2323                 return ret;
2324
2325         ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2326                                           dst_addr_width,
2327                                           dst_maxburst);
2328         if (ret)
2329                 return ret;
2330
2331         /* Fill in register values */
2332         if (chan_is_logical(d40c))
2333                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2334         else
2335                 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2336                             &d40c->dst_def_cfg, false);
2337
2338         /* These settings will take precedence later */
2339         d40c->runtime_addr = config_addr;
2340         d40c->runtime_direction = config->direction;
2341         dev_dbg(d40c->base->dev,
2342                 "configured channel %s for %s, data width %d/%d, "
2343                 "maxburst %d/%d elements, LE, no flow control\n",
2344                 dma_chan_name(chan),
2345                 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2346                 src_addr_width, dst_addr_width,
2347                 src_maxburst, dst_maxburst);
2348
2349         return 0;
2350 }
2351
2352 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2353                        unsigned long arg)
2354 {
2355         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2356
2357         if (d40c->phy_chan == NULL) {
2358                 chan_err(d40c, "Channel is not allocated!\n");
2359                 return -EINVAL;
2360         }
2361
2362         switch (cmd) {
2363         case DMA_TERMINATE_ALL:
2364                 return d40_terminate_all(d40c);
2365         case DMA_PAUSE:
2366                 return d40_pause(d40c);
2367         case DMA_RESUME:
2368                 return d40_resume(d40c);
2369         case DMA_SLAVE_CONFIG:
2370                 return d40_set_runtime_config(chan,
2371                         (struct dma_slave_config *) arg);
2372         default:
2373                 break;
2374         }
2375
2376         /* Other commands are unimplemented */
2377         return -ENXIO;
2378 }
2379
2380 /* Initialization functions */
2381
2382 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2383                                  struct d40_chan *chans, int offset,
2384                                  int num_chans)
2385 {
2386         int i = 0;
2387         struct d40_chan *d40c;
2388
2389         INIT_LIST_HEAD(&dma->channels);
2390
2391         for (i = offset; i < offset + num_chans; i++) {
2392                 d40c = &chans[i];
2393                 d40c->base = base;
2394                 d40c->chan.device = dma;
2395
2396                 spin_lock_init(&d40c->lock);
2397
2398                 d40c->log_num = D40_PHY_CHAN;
2399
2400                 INIT_LIST_HEAD(&d40c->active);
2401                 INIT_LIST_HEAD(&d40c->queue);
2402                 INIT_LIST_HEAD(&d40c->pending_queue);
2403                 INIT_LIST_HEAD(&d40c->client);
2404
2405                 tasklet_init(&d40c->tasklet, dma_tasklet,
2406                              (unsigned long) d40c);
2407
2408                 list_add_tail(&d40c->chan.device_node,
2409                               &dma->channels);
2410         }
2411 }
2412
2413 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2414 {
2415         if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2416                 dev->device_prep_slave_sg = d40_prep_slave_sg;
2417
2418         if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2419                 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2420
2421                 /*
2422                  * This controller can only access address at even
2423                  * 32bit boundaries, i.e. 2^2
2424                  */
2425                 dev->copy_align = 2;
2426         }
2427
2428         if (dma_has_cap(DMA_SG, dev->cap_mask))
2429                 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2430
2431         if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2432                 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2433
2434         dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2435         dev->device_free_chan_resources = d40_free_chan_resources;
2436         dev->device_issue_pending = d40_issue_pending;
2437         dev->device_tx_status = d40_tx_status;
2438         dev->device_control = d40_control;
2439         dev->dev = base->dev;
2440 }
2441
2442 static int __init d40_dmaengine_init(struct d40_base *base,
2443                                      int num_reserved_chans)
2444 {
2445         int err ;
2446
2447         d40_chan_init(base, &base->dma_slave, base->log_chans,
2448                       0, base->num_log_chans);
2449
2450         dma_cap_zero(base->dma_slave.cap_mask);
2451         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2452         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2453
2454         d40_ops_init(base, &base->dma_slave);
2455
2456         err = dma_async_device_register(&base->dma_slave);
2457
2458         if (err) {
2459                 d40_err(base->dev, "Failed to register slave channels\n");
2460                 goto failure1;
2461         }
2462
2463         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2464                       base->num_log_chans, base->plat_data->memcpy_len);
2465
2466         dma_cap_zero(base->dma_memcpy.cap_mask);
2467         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2468         dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2469
2470         d40_ops_init(base, &base->dma_memcpy);
2471
2472         err = dma_async_device_register(&base->dma_memcpy);
2473
2474         if (err) {
2475                 d40_err(base->dev,
2476                         "Failed to regsiter memcpy only channels\n");
2477                 goto failure2;
2478         }
2479
2480         d40_chan_init(base, &base->dma_both, base->phy_chans,
2481                       0, num_reserved_chans);
2482
2483         dma_cap_zero(base->dma_both.cap_mask);
2484         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2485         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2486         dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2487         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2488
2489         d40_ops_init(base, &base->dma_both);
2490         err = dma_async_device_register(&base->dma_both);
2491
2492         if (err) {
2493                 d40_err(base->dev,
2494                         "Failed to register logical and physical capable channels\n");
2495                 goto failure3;
2496         }
2497         return 0;
2498 failure3:
2499         dma_async_device_unregister(&base->dma_memcpy);
2500 failure2:
2501         dma_async_device_unregister(&base->dma_slave);
2502 failure1:
2503         return err;
2504 }
2505
2506 /* Initialization functions. */
2507
2508 static int __init d40_phy_res_init(struct d40_base *base)
2509 {
2510         int i;
2511         int num_phy_chans_avail = 0;
2512         u32 val[2];
2513         int odd_even_bit = -2;
2514
2515         val[0] = readl(base->virtbase + D40_DREG_PRSME);
2516         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2517
2518         for (i = 0; i < base->num_phy_chans; i++) {
2519                 base->phy_res[i].num = i;
2520                 odd_even_bit += 2 * ((i % 2) == 0);
2521                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2522                         /* Mark security only channels as occupied */
2523                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2524                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2525                 } else {
2526                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2527                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2528                         num_phy_chans_avail++;
2529                 }
2530                 spin_lock_init(&base->phy_res[i].lock);
2531         }
2532
2533         /* Mark disabled channels as occupied */
2534         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2535                 int chan = base->plat_data->disabled_channels[i];
2536
2537                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2538                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2539                 num_phy_chans_avail--;
2540         }
2541
2542         dev_info(base->dev, "%d of %d physical DMA channels available\n",
2543                  num_phy_chans_avail, base->num_phy_chans);
2544
2545         /* Verify settings extended vs standard */
2546         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2547
2548         for (i = 0; i < base->num_phy_chans; i++) {
2549
2550                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2551                     (val[0] & 0x3) != 1)
2552                         dev_info(base->dev,
2553                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
2554                                  __func__, i, val[0] & 0x3);
2555
2556                 val[0] = val[0] >> 2;
2557         }
2558
2559         return num_phy_chans_avail;
2560 }
2561
2562 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2563 {
2564         struct stedma40_platform_data *plat_data;
2565         struct clk *clk = NULL;
2566         void __iomem *virtbase = NULL;
2567         struct resource *res = NULL;
2568         struct d40_base *base = NULL;
2569         int num_log_chans = 0;
2570         int num_phy_chans;
2571         int i;
2572         u32 pid;
2573         u32 cid;
2574         u8 rev;
2575
2576         clk = clk_get(&pdev->dev, NULL);
2577
2578         if (IS_ERR(clk)) {
2579                 d40_err(&pdev->dev, "No matching clock found\n");
2580                 goto failure;
2581         }
2582
2583         clk_enable(clk);
2584
2585         /* Get IO for DMAC base address */
2586         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2587         if (!res)
2588                 goto failure;
2589
2590         if (request_mem_region(res->start, resource_size(res),
2591                                D40_NAME " I/O base") == NULL)
2592                 goto failure;
2593
2594         virtbase = ioremap(res->start, resource_size(res));
2595         if (!virtbase)
2596                 goto failure;
2597
2598         /* This is just a regular AMBA PrimeCell ID actually */
2599         for (pid = 0, i = 0; i < 4; i++)
2600                 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2601                         & 255) << (i * 8);
2602         for (cid = 0, i = 0; i < 4; i++)
2603                 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2604                         & 255) << (i * 8);
2605
2606         if (cid != AMBA_CID) {
2607                 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2608                 goto failure;
2609         }
2610         if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2611                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2612                         AMBA_MANF_BITS(pid),
2613                         AMBA_VENDOR_ST);
2614                 goto failure;
2615         }
2616         /*
2617          * HW revision:
2618          * DB8500ed has revision 0
2619          * ? has revision 1
2620          * DB8500v1 has revision 2
2621          * DB8500v2 has revision 3
2622          */
2623         rev = AMBA_REV_BITS(pid);
2624
2625         /* The number of physical channels on this HW */
2626         num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2627
2628         dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2629                  rev, res->start);
2630
2631         plat_data = pdev->dev.platform_data;
2632
2633         /* Count the number of logical channels in use */
2634         for (i = 0; i < plat_data->dev_len; i++)
2635                 if (plat_data->dev_rx[i] != 0)
2636                         num_log_chans++;
2637
2638         for (i = 0; i < plat_data->dev_len; i++)
2639                 if (plat_data->dev_tx[i] != 0)
2640                         num_log_chans++;
2641
2642         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2643                        (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2644                        sizeof(struct d40_chan), GFP_KERNEL);
2645
2646         if (base == NULL) {
2647                 d40_err(&pdev->dev, "Out of memory\n");
2648                 goto failure;
2649         }
2650
2651         base->rev = rev;
2652         base->clk = clk;
2653         base->num_phy_chans = num_phy_chans;
2654         base->num_log_chans = num_log_chans;
2655         base->phy_start = res->start;
2656         base->phy_size = resource_size(res);
2657         base->virtbase = virtbase;
2658         base->plat_data = plat_data;
2659         base->dev = &pdev->dev;
2660         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2661         base->log_chans = &base->phy_chans[num_phy_chans];
2662
2663         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2664                                 GFP_KERNEL);
2665         if (!base->phy_res)
2666                 goto failure;
2667
2668         base->lookup_phy_chans = kzalloc(num_phy_chans *
2669                                          sizeof(struct d40_chan *),
2670                                          GFP_KERNEL);
2671         if (!base->lookup_phy_chans)
2672                 goto failure;
2673
2674         if (num_log_chans + plat_data->memcpy_len) {
2675                 /*
2676                  * The max number of logical channels are event lines for all
2677                  * src devices and dst devices
2678                  */
2679                 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2680                                                  sizeof(struct d40_chan *),
2681                                                  GFP_KERNEL);
2682                 if (!base->lookup_log_chans)
2683                         goto failure;
2684         }
2685
2686         base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2687                                             sizeof(struct d40_desc *) *
2688                                             D40_LCLA_LINK_PER_EVENT_GRP,
2689                                             GFP_KERNEL);
2690         if (!base->lcla_pool.alloc_map)
2691                 goto failure;
2692
2693         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2694                                             0, SLAB_HWCACHE_ALIGN,
2695                                             NULL);
2696         if (base->desc_slab == NULL)
2697                 goto failure;
2698
2699         return base;
2700
2701 failure:
2702         if (!IS_ERR(clk)) {
2703                 clk_disable(clk);
2704                 clk_put(clk);
2705         }
2706         if (virtbase)
2707                 iounmap(virtbase);
2708         if (res)
2709                 release_mem_region(res->start,
2710                                    resource_size(res));
2711         if (virtbase)
2712                 iounmap(virtbase);
2713
2714         if (base) {
2715                 kfree(base->lcla_pool.alloc_map);
2716                 kfree(base->lookup_log_chans);
2717                 kfree(base->lookup_phy_chans);
2718                 kfree(base->phy_res);
2719                 kfree(base);
2720         }
2721
2722         return NULL;
2723 }
2724
2725 static void __init d40_hw_init(struct d40_base *base)
2726 {
2727
2728         static const struct d40_reg_val dma_init_reg[] = {
2729                 /* Clock every part of the DMA block from start */
2730                 { .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2731
2732                 /* Interrupts on all logical channels */
2733                 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2734                 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2735                 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2736                 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2737                 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2738                 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2739                 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2740                 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2741                 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2742                 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2743                 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2744                 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2745         };
2746         int i;
2747         u32 prmseo[2] = {0, 0};
2748         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2749         u32 pcmis = 0;
2750         u32 pcicr = 0;
2751
2752         for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2753                 writel(dma_init_reg[i].val,
2754                        base->virtbase + dma_init_reg[i].reg);
2755
2756         /* Configure all our dma channels to default settings */
2757         for (i = 0; i < base->num_phy_chans; i++) {
2758
2759                 activeo[i % 2] = activeo[i % 2] << 2;
2760
2761                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2762                     == D40_ALLOC_PHY) {
2763                         activeo[i % 2] |= 3;
2764                         continue;
2765                 }
2766
2767                 /* Enable interrupt # */
2768                 pcmis = (pcmis << 1) | 1;
2769
2770                 /* Clear interrupt # */
2771                 pcicr = (pcicr << 1) | 1;
2772
2773                 /* Set channel to physical mode */
2774                 prmseo[i % 2] = prmseo[i % 2] << 2;
2775                 prmseo[i % 2] |= 1;
2776
2777         }
2778
2779         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2780         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2781         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2782         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2783
2784         /* Write which interrupt to enable */
2785         writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2786
2787         /* Write which interrupt to clear */
2788         writel(pcicr, base->virtbase + D40_DREG_PCICR);
2789
2790 }
2791
2792 static int __init d40_lcla_allocate(struct d40_base *base)
2793 {
2794         struct d40_lcla_pool *pool = &base->lcla_pool;
2795         unsigned long *page_list;
2796         int i, j;
2797         int ret = 0;
2798
2799         /*
2800          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2801          * To full fill this hardware requirement without wasting 256 kb
2802          * we allocate pages until we get an aligned one.
2803          */
2804         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2805                             GFP_KERNEL);
2806
2807         if (!page_list) {
2808                 ret = -ENOMEM;
2809                 goto failure;
2810         }
2811
2812         /* Calculating how many pages that are required */
2813         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2814
2815         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2816                 page_list[i] = __get_free_pages(GFP_KERNEL,
2817                                                 base->lcla_pool.pages);
2818                 if (!page_list[i]) {
2819
2820                         d40_err(base->dev, "Failed to allocate %d pages.\n",
2821                                 base->lcla_pool.pages);
2822
2823                         for (j = 0; j < i; j++)
2824                                 free_pages(page_list[j], base->lcla_pool.pages);
2825                         goto failure;
2826                 }
2827
2828                 if ((virt_to_phys((void *)page_list[i]) &
2829                      (LCLA_ALIGNMENT - 1)) == 0)
2830                         break;
2831         }
2832
2833         for (j = 0; j < i; j++)
2834                 free_pages(page_list[j], base->lcla_pool.pages);
2835
2836         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2837                 base->lcla_pool.base = (void *)page_list[i];
2838         } else {
2839                 /*
2840                  * After many attempts and no succees with finding the correct
2841                  * alignment, try with allocating a big buffer.
2842                  */
2843                 dev_warn(base->dev,
2844                          "[%s] Failed to get %d pages @ 18 bit align.\n",
2845                          __func__, base->lcla_pool.pages);
2846                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2847                                                          base->num_phy_chans +
2848                                                          LCLA_ALIGNMENT,
2849                                                          GFP_KERNEL);
2850                 if (!base->lcla_pool.base_unaligned) {
2851                         ret = -ENOMEM;
2852                         goto failure;
2853                 }
2854
2855                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2856                                                  LCLA_ALIGNMENT);
2857         }
2858
2859         pool->dma_addr = dma_map_single(base->dev, pool->base,
2860                                         SZ_1K * base->num_phy_chans,
2861                                         DMA_TO_DEVICE);
2862         if (dma_mapping_error(base->dev, pool->dma_addr)) {
2863                 pool->dma_addr = 0;
2864                 ret = -ENOMEM;
2865                 goto failure;
2866         }
2867
2868         writel(virt_to_phys(base->lcla_pool.base),
2869                base->virtbase + D40_DREG_LCLA);
2870 failure:
2871         kfree(page_list);
2872         return ret;
2873 }
2874
2875 static int __init d40_probe(struct platform_device *pdev)
2876 {
2877         int err;
2878         int ret = -ENOENT;
2879         struct d40_base *base;
2880         struct resource *res = NULL;
2881         int num_reserved_chans;
2882         u32 val;
2883
2884         base = d40_hw_detect_init(pdev);
2885
2886         if (!base)
2887                 goto failure;
2888
2889         num_reserved_chans = d40_phy_res_init(base);
2890
2891         platform_set_drvdata(pdev, base);
2892
2893         spin_lock_init(&base->interrupt_lock);
2894         spin_lock_init(&base->execmd_lock);
2895
2896         /* Get IO for logical channel parameter address */
2897         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2898         if (!res) {
2899                 ret = -ENOENT;
2900                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2901                 goto failure;
2902         }
2903         base->lcpa_size = resource_size(res);
2904         base->phy_lcpa = res->start;
2905
2906         if (request_mem_region(res->start, resource_size(res),
2907                                D40_NAME " I/O lcpa") == NULL) {
2908                 ret = -EBUSY;
2909                 d40_err(&pdev->dev,
2910                         "Failed to request LCPA region 0x%x-0x%x\n",
2911                         res->start, res->end);
2912                 goto failure;
2913         }
2914
2915         /* We make use of ESRAM memory for this. */
2916         val = readl(base->virtbase + D40_DREG_LCPA);
2917         if (res->start != val && val != 0) {
2918                 dev_warn(&pdev->dev,
2919                          "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2920                          __func__, val, res->start);
2921         } else
2922                 writel(res->start, base->virtbase + D40_DREG_LCPA);
2923
2924         base->lcpa_base = ioremap(res->start, resource_size(res));
2925         if (!base->lcpa_base) {
2926                 ret = -ENOMEM;
2927                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2928                 goto failure;
2929         }
2930
2931         ret = d40_lcla_allocate(base);
2932         if (ret) {
2933                 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2934                 goto failure;
2935         }
2936
2937         spin_lock_init(&base->lcla_pool.lock);
2938
2939         base->irq = platform_get_irq(pdev, 0);
2940
2941         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2942         if (ret) {
2943                 d40_err(&pdev->dev, "No IRQ defined\n");
2944                 goto failure;
2945         }
2946
2947         err = d40_dmaengine_init(base, num_reserved_chans);
2948         if (err)
2949                 goto failure;
2950
2951         d40_hw_init(base);
2952
2953         dev_info(base->dev, "initialized\n");
2954         return 0;
2955
2956 failure:
2957         if (base) {
2958                 if (base->desc_slab)
2959                         kmem_cache_destroy(base->desc_slab);
2960                 if (base->virtbase)
2961                         iounmap(base->virtbase);
2962
2963                 if (base->lcla_pool.dma_addr)
2964                         dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2965                                          SZ_1K * base->num_phy_chans,
2966                                          DMA_TO_DEVICE);
2967
2968                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2969                         free_pages((unsigned long)base->lcla_pool.base,
2970                                    base->lcla_pool.pages);
2971
2972                 kfree(base->lcla_pool.base_unaligned);
2973
2974                 if (base->phy_lcpa)
2975                         release_mem_region(base->phy_lcpa,
2976                                            base->lcpa_size);
2977                 if (base->phy_start)
2978                         release_mem_region(base->phy_start,
2979                                            base->phy_size);
2980                 if (base->clk) {
2981                         clk_disable(base->clk);
2982                         clk_put(base->clk);
2983                 }
2984
2985                 kfree(base->lcla_pool.alloc_map);
2986                 kfree(base->lookup_log_chans);
2987                 kfree(base->lookup_phy_chans);
2988                 kfree(base->phy_res);
2989                 kfree(base);
2990         }
2991
2992         d40_err(&pdev->dev, "probe failed\n");
2993         return ret;
2994 }
2995
2996 static struct platform_driver d40_driver = {
2997         .driver = {
2998                 .owner = THIS_MODULE,
2999                 .name  = D40_NAME,
3000         },
3001 };
3002
3003 static int __init stedma40_init(void)
3004 {
3005         return platform_driver_probe(&d40_driver, d40_probe);
3006 }
3007 subsys_initcall(stedma40_init);