dmaengine/ste_dma40: fix Oops due to double free of client descriptor
[pandora-kernel.git] / drivers / dma / ste_dma40.c
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/dmaengine.h>
13 #include <linux/platform_device.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/amba/bus.h>
18
19 #include <plat/ste_dma40.h>
20
21 #include "ste_dma40_ll.h"
22
23 #define D40_NAME "dma40"
24
25 #define D40_PHY_CHAN -1
26
27 /* For masking out/in 2 bit channel positions */
28 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
29 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
30
31 /* Maximum iterations taken before giving up suspending a channel */
32 #define D40_SUSPEND_MAX_IT 500
33
34 /* Hardware requirement on LCLA alignment */
35 #define LCLA_ALIGNMENT 0x40000
36
37 /* Max number of links per event group */
38 #define D40_LCLA_LINK_PER_EVENT_GRP 128
39 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
40
41 /* Attempts before giving up to trying to get pages that are aligned */
42 #define MAX_LCLA_ALLOC_ATTEMPTS 256
43
44 /* Bit markings for allocation map */
45 #define D40_ALLOC_FREE          (1 << 31)
46 #define D40_ALLOC_PHY           (1 << 30)
47 #define D40_ALLOC_LOG_FREE      0
48
49 /**
50  * enum 40_command - The different commands and/or statuses.
51  *
52  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
53  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
54  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
55  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
56  */
57 enum d40_command {
58         D40_DMA_STOP            = 0,
59         D40_DMA_RUN             = 1,
60         D40_DMA_SUSPEND_REQ     = 2,
61         D40_DMA_SUSPENDED       = 3
62 };
63
64 /**
65  * struct d40_lli_pool - Structure for keeping LLIs in memory
66  *
67  * @base: Pointer to memory area when the pre_alloc_lli's are not large
68  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
69  * pre_alloc_lli is used.
70  * @dma_addr: DMA address, if mapped
71  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
72  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
73  * one buffer to one buffer.
74  */
75 struct d40_lli_pool {
76         void    *base;
77         int      size;
78         dma_addr_t      dma_addr;
79         /* Space for dst and src, plus an extra for padding */
80         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
81 };
82
83 /**
84  * struct d40_desc - A descriptor is one DMA job.
85  *
86  * @lli_phy: LLI settings for physical channel. Both src and dst=
87  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
88  * lli_len equals one.
89  * @lli_log: Same as above but for logical channels.
90  * @lli_pool: The pool with two entries pre-allocated.
91  * @lli_len: Number of llis of current descriptor.
92  * @lli_current: Number of transferred llis.
93  * @lcla_alloc: Number of LCLA entries allocated.
94  * @txd: DMA engine struct. Used for among other things for communication
95  * during a transfer.
96  * @node: List entry.
97  * @is_in_client_list: true if the client owns this descriptor.
98  * the previous one.
99  *
100  * This descriptor is used for both logical and physical transfers.
101  */
102 struct d40_desc {
103         /* LLI physical */
104         struct d40_phy_lli_bidir         lli_phy;
105         /* LLI logical */
106         struct d40_log_lli_bidir         lli_log;
107
108         struct d40_lli_pool              lli_pool;
109         int                              lli_len;
110         int                              lli_current;
111         int                              lcla_alloc;
112
113         struct dma_async_tx_descriptor   txd;
114         struct list_head                 node;
115
116         bool                             is_in_client_list;
117         bool                             cyclic;
118 };
119
120 /**
121  * struct d40_lcla_pool - LCLA pool settings and data.
122  *
123  * @base: The virtual address of LCLA. 18 bit aligned.
124  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
125  * This pointer is only there for clean-up on error.
126  * @pages: The number of pages needed for all physical channels.
127  * Only used later for clean-up on error
128  * @lock: Lock to protect the content in this struct.
129  * @alloc_map: big map over which LCLA entry is own by which job.
130  */
131 struct d40_lcla_pool {
132         void            *base;
133         dma_addr_t      dma_addr;
134         void            *base_unaligned;
135         int              pages;
136         spinlock_t       lock;
137         struct d40_desc **alloc_map;
138 };
139
140 /**
141  * struct d40_phy_res - struct for handling eventlines mapped to physical
142  * channels.
143  *
144  * @lock: A lock protection this entity.
145  * @num: The physical channel number of this entity.
146  * @allocated_src: Bit mapped to show which src event line's are mapped to
147  * this physical channel. Can also be free or physically allocated.
148  * @allocated_dst: Same as for src but is dst.
149  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
150  * event line number.
151  */
152 struct d40_phy_res {
153         spinlock_t lock;
154         int        num;
155         u32        allocated_src;
156         u32        allocated_dst;
157 };
158
159 struct d40_base;
160
161 /**
162  * struct d40_chan - Struct that describes a channel.
163  *
164  * @lock: A spinlock to protect this struct.
165  * @log_num: The logical number, if any of this channel.
166  * @completed: Starts with 1, after first interrupt it is set to dma engine's
167  * current cookie.
168  * @pending_tx: The number of pending transfers. Used between interrupt handler
169  * and tasklet.
170  * @busy: Set to true when transfer is ongoing on this channel.
171  * @phy_chan: Pointer to physical channel which this instance runs on. If this
172  * point is NULL, then the channel is not allocated.
173  * @chan: DMA engine handle.
174  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
175  * transfer and call client callback.
176  * @client: Cliented owned descriptor list.
177  * @pending_queue: Submitted jobs, to be issued by issue_pending()
178  * @active: Active descriptor.
179  * @queue: Queued jobs.
180  * @dma_cfg: The client configuration of this dma channel.
181  * @configured: whether the dma_cfg configuration is valid
182  * @base: Pointer to the device instance struct.
183  * @src_def_cfg: Default cfg register setting for src.
184  * @dst_def_cfg: Default cfg register setting for dst.
185  * @log_def: Default logical channel settings.
186  * @lcla: Space for one dst src pair for logical channel transfers.
187  * @lcpa: Pointer to dst and src lcpa settings.
188  * @runtime_addr: runtime configured address.
189  * @runtime_direction: runtime configured direction.
190  *
191  * This struct can either "be" a logical or a physical channel.
192  */
193 struct d40_chan {
194         spinlock_t                       lock;
195         int                              log_num;
196         /* ID of the most recent completed transfer */
197         int                              completed;
198         int                              pending_tx;
199         bool                             busy;
200         struct d40_phy_res              *phy_chan;
201         struct dma_chan                  chan;
202         struct tasklet_struct            tasklet;
203         struct list_head                 client;
204         struct list_head                 pending_queue;
205         struct list_head                 active;
206         struct list_head                 queue;
207         struct stedma40_chan_cfg         dma_cfg;
208         bool                             configured;
209         struct d40_base                 *base;
210         /* Default register configurations */
211         u32                              src_def_cfg;
212         u32                              dst_def_cfg;
213         struct d40_def_lcsp              log_def;
214         struct d40_log_lli_full         *lcpa;
215         /* Runtime reconfiguration */
216         dma_addr_t                      runtime_addr;
217         enum dma_data_direction         runtime_direction;
218 };
219
220 /**
221  * struct d40_base - The big global struct, one for each probe'd instance.
222  *
223  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
224  * @execmd_lock: Lock for execute command usage since several channels share
225  * the same physical register.
226  * @dev: The device structure.
227  * @virtbase: The virtual base address of the DMA's register.
228  * @rev: silicon revision detected.
229  * @clk: Pointer to the DMA clock structure.
230  * @phy_start: Physical memory start of the DMA registers.
231  * @phy_size: Size of the DMA register map.
232  * @irq: The IRQ number.
233  * @num_phy_chans: The number of physical channels. Read from HW. This
234  * is the number of available channels for this driver, not counting "Secure
235  * mode" allocated physical channels.
236  * @num_log_chans: The number of logical channels. Calculated from
237  * num_phy_chans.
238  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
239  * @dma_slave: dma_device channels that can do only do slave transfers.
240  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
241  * @log_chans: Room for all possible logical channels in system.
242  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
243  * to log_chans entries.
244  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
245  * to phy_chans entries.
246  * @plat_data: Pointer to provided platform_data which is the driver
247  * configuration.
248  * @phy_res: Vector containing all physical channels.
249  * @lcla_pool: lcla pool settings and data.
250  * @lcpa_base: The virtual mapped address of LCPA.
251  * @phy_lcpa: The physical address of the LCPA.
252  * @lcpa_size: The size of the LCPA area.
253  * @desc_slab: cache for descriptors.
254  */
255 struct d40_base {
256         spinlock_t                       interrupt_lock;
257         spinlock_t                       execmd_lock;
258         struct device                    *dev;
259         void __iomem                     *virtbase;
260         u8                                rev:4;
261         struct clk                       *clk;
262         phys_addr_t                       phy_start;
263         resource_size_t                   phy_size;
264         int                               irq;
265         int                               num_phy_chans;
266         int                               num_log_chans;
267         struct dma_device                 dma_both;
268         struct dma_device                 dma_slave;
269         struct dma_device                 dma_memcpy;
270         struct d40_chan                  *phy_chans;
271         struct d40_chan                  *log_chans;
272         struct d40_chan                 **lookup_log_chans;
273         struct d40_chan                 **lookup_phy_chans;
274         struct stedma40_platform_data    *plat_data;
275         /* Physical half channels */
276         struct d40_phy_res               *phy_res;
277         struct d40_lcla_pool              lcla_pool;
278         void                             *lcpa_base;
279         dma_addr_t                        phy_lcpa;
280         resource_size_t                   lcpa_size;
281         struct kmem_cache                *desc_slab;
282 };
283
284 /**
285  * struct d40_interrupt_lookup - lookup table for interrupt handler
286  *
287  * @src: Interrupt mask register.
288  * @clr: Interrupt clear register.
289  * @is_error: true if this is an error interrupt.
290  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
291  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
292  */
293 struct d40_interrupt_lookup {
294         u32 src;
295         u32 clr;
296         bool is_error;
297         int offset;
298 };
299
300 /**
301  * struct d40_reg_val - simple lookup struct
302  *
303  * @reg: The register.
304  * @val: The value that belongs to the register in reg.
305  */
306 struct d40_reg_val {
307         unsigned int reg;
308         unsigned int val;
309 };
310
311 static struct device *chan2dev(struct d40_chan *d40c)
312 {
313         return &d40c->chan.dev->device;
314 }
315
316 static bool chan_is_physical(struct d40_chan *chan)
317 {
318         return chan->log_num == D40_PHY_CHAN;
319 }
320
321 static bool chan_is_logical(struct d40_chan *chan)
322 {
323         return !chan_is_physical(chan);
324 }
325
326 static void __iomem *chan_base(struct d40_chan *chan)
327 {
328         return chan->base->virtbase + D40_DREG_PCBASE +
329                chan->phy_chan->num * D40_DREG_PCDELTA;
330 }
331
332 #define d40_err(dev, format, arg...)            \
333         dev_err(dev, "[%s] " format, __func__, ## arg)
334
335 #define chan_err(d40c, format, arg...)          \
336         d40_err(chan2dev(d40c), format, ## arg)
337
338 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
339                               int lli_len)
340 {
341         bool is_log = chan_is_logical(d40c);
342         u32 align;
343         void *base;
344
345         if (is_log)
346                 align = sizeof(struct d40_log_lli);
347         else
348                 align = sizeof(struct d40_phy_lli);
349
350         if (lli_len == 1) {
351                 base = d40d->lli_pool.pre_alloc_lli;
352                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
353                 d40d->lli_pool.base = NULL;
354         } else {
355                 d40d->lli_pool.size = lli_len * 2 * align;
356
357                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
358                 d40d->lli_pool.base = base;
359
360                 if (d40d->lli_pool.base == NULL)
361                         return -ENOMEM;
362         }
363
364         if (is_log) {
365                 d40d->lli_log.src = PTR_ALIGN(base, align);
366                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
367
368                 d40d->lli_pool.dma_addr = 0;
369         } else {
370                 d40d->lli_phy.src = PTR_ALIGN(base, align);
371                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
372
373                 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
374                                                          d40d->lli_phy.src,
375                                                          d40d->lli_pool.size,
376                                                          DMA_TO_DEVICE);
377
378                 if (dma_mapping_error(d40c->base->dev,
379                                       d40d->lli_pool.dma_addr)) {
380                         kfree(d40d->lli_pool.base);
381                         d40d->lli_pool.base = NULL;
382                         d40d->lli_pool.dma_addr = 0;
383                         return -ENOMEM;
384                 }
385         }
386
387         return 0;
388 }
389
390 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
391 {
392         if (d40d->lli_pool.dma_addr)
393                 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
394                                  d40d->lli_pool.size, DMA_TO_DEVICE);
395
396         kfree(d40d->lli_pool.base);
397         d40d->lli_pool.base = NULL;
398         d40d->lli_pool.size = 0;
399         d40d->lli_log.src = NULL;
400         d40d->lli_log.dst = NULL;
401         d40d->lli_phy.src = NULL;
402         d40d->lli_phy.dst = NULL;
403 }
404
405 static int d40_lcla_alloc_one(struct d40_chan *d40c,
406                               struct d40_desc *d40d)
407 {
408         unsigned long flags;
409         int i;
410         int ret = -EINVAL;
411         int p;
412
413         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
414
415         p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
416
417         /*
418          * Allocate both src and dst at the same time, therefore the half
419          * start on 1 since 0 can't be used since zero is used as end marker.
420          */
421         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
422                 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
423                         d40c->base->lcla_pool.alloc_map[p + i] = d40d;
424                         d40d->lcla_alloc++;
425                         ret = i;
426                         break;
427                 }
428         }
429
430         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
431
432         return ret;
433 }
434
435 static int d40_lcla_free_all(struct d40_chan *d40c,
436                              struct d40_desc *d40d)
437 {
438         unsigned long flags;
439         int i;
440         int ret = -EINVAL;
441
442         if (chan_is_physical(d40c))
443                 return 0;
444
445         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
446
447         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
448                 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
449                                                     D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
450                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
451                                                         D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
452                         d40d->lcla_alloc--;
453                         if (d40d->lcla_alloc == 0) {
454                                 ret = 0;
455                                 break;
456                         }
457                 }
458         }
459
460         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
461
462         return ret;
463
464 }
465
466 static void d40_desc_remove(struct d40_desc *d40d)
467 {
468         list_del(&d40d->node);
469 }
470
471 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
472 {
473         struct d40_desc *desc = NULL;
474
475         if (!list_empty(&d40c->client)) {
476                 struct d40_desc *d;
477                 struct d40_desc *_d;
478
479                 list_for_each_entry_safe(d, _d, &d40c->client, node)
480                         if (async_tx_test_ack(&d->txd)) {
481                                 d40_desc_remove(d);
482                                 desc = d;
483                                 memset(desc, 0, sizeof(*desc));
484                                 break;
485                         }
486         }
487
488         if (!desc)
489                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
490
491         if (desc)
492                 INIT_LIST_HEAD(&desc->node);
493
494         return desc;
495 }
496
497 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
498 {
499
500         d40_pool_lli_free(d40c, d40d);
501         d40_lcla_free_all(d40c, d40d);
502         kmem_cache_free(d40c->base->desc_slab, d40d);
503 }
504
505 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
506 {
507         list_add_tail(&desc->node, &d40c->active);
508 }
509
510 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
511 {
512         struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
513         struct d40_phy_lli *lli_src = desc->lli_phy.src;
514         void __iomem *base = chan_base(chan);
515
516         writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
517         writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
518         writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
519         writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
520
521         writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
522         writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
523         writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
524         writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
525 }
526
527 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
528 {
529         struct d40_lcla_pool *pool = &chan->base->lcla_pool;
530         struct d40_log_lli_bidir *lli = &desc->lli_log;
531         int lli_current = desc->lli_current;
532         int lli_len = desc->lli_len;
533         bool cyclic = desc->cyclic;
534         int curr_lcla = -EINVAL;
535         int first_lcla = 0;
536         bool linkback;
537
538         /*
539          * We may have partially running cyclic transfers, in case we did't get
540          * enough LCLA entries.
541          */
542         linkback = cyclic && lli_current == 0;
543
544         /*
545          * For linkback, we need one LCLA even with only one link, because we
546          * can't link back to the one in LCPA space
547          */
548         if (linkback || (lli_len - lli_current > 1)) {
549                 curr_lcla = d40_lcla_alloc_one(chan, desc);
550                 first_lcla = curr_lcla;
551         }
552
553         /*
554          * For linkback, we normally load the LCPA in the loop since we need to
555          * link it to the second LCLA and not the first.  However, if we
556          * couldn't even get a first LCLA, then we have to run in LCPA and
557          * reload manually.
558          */
559         if (!linkback || curr_lcla == -EINVAL) {
560                 unsigned int flags = 0;
561
562                 if (curr_lcla == -EINVAL)
563                         flags |= LLI_TERM_INT;
564
565                 d40_log_lli_lcpa_write(chan->lcpa,
566                                        &lli->dst[lli_current],
567                                        &lli->src[lli_current],
568                                        curr_lcla,
569                                        flags);
570                 lli_current++;
571         }
572
573         if (curr_lcla < 0)
574                 goto out;
575
576         for (; lli_current < lli_len; lli_current++) {
577                 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
578                                            8 * curr_lcla * 2;
579                 struct d40_log_lli *lcla = pool->base + lcla_offset;
580                 unsigned int flags = 0;
581                 int next_lcla;
582
583                 if (lli_current + 1 < lli_len)
584                         next_lcla = d40_lcla_alloc_one(chan, desc);
585                 else
586                         next_lcla = linkback ? first_lcla : -EINVAL;
587
588                 if (cyclic || next_lcla == -EINVAL)
589                         flags |= LLI_TERM_INT;
590
591                 if (linkback && curr_lcla == first_lcla) {
592                         /* First link goes in both LCPA and LCLA */
593                         d40_log_lli_lcpa_write(chan->lcpa,
594                                                &lli->dst[lli_current],
595                                                &lli->src[lli_current],
596                                                next_lcla, flags);
597                 }
598
599                 /*
600                  * One unused LCLA in the cyclic case if the very first
601                  * next_lcla fails...
602                  */
603                 d40_log_lli_lcla_write(lcla,
604                                        &lli->dst[lli_current],
605                                        &lli->src[lli_current],
606                                        next_lcla, flags);
607
608                 dma_sync_single_range_for_device(chan->base->dev,
609                                         pool->dma_addr, lcla_offset,
610                                         2 * sizeof(struct d40_log_lli),
611                                         DMA_TO_DEVICE);
612
613                 curr_lcla = next_lcla;
614
615                 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
616                         lli_current++;
617                         break;
618                 }
619         }
620
621 out:
622         desc->lli_current = lli_current;
623 }
624
625 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
626 {
627         if (chan_is_physical(d40c)) {
628                 d40_phy_lli_load(d40c, d40d);
629                 d40d->lli_current = d40d->lli_len;
630         } else
631                 d40_log_lli_to_lcxa(d40c, d40d);
632 }
633
634 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
635 {
636         struct d40_desc *d;
637
638         if (list_empty(&d40c->active))
639                 return NULL;
640
641         d = list_first_entry(&d40c->active,
642                              struct d40_desc,
643                              node);
644         return d;
645 }
646
647 /* remove desc from current queue and add it to the pending_queue */
648 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
649 {
650         d40_desc_remove(desc);
651         desc->is_in_client_list = false;
652         list_add_tail(&desc->node, &d40c->pending_queue);
653 }
654
655 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
656 {
657         struct d40_desc *d;
658
659         if (list_empty(&d40c->pending_queue))
660                 return NULL;
661
662         d = list_first_entry(&d40c->pending_queue,
663                              struct d40_desc,
664                              node);
665         return d;
666 }
667
668 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
669 {
670         struct d40_desc *d;
671
672         if (list_empty(&d40c->queue))
673                 return NULL;
674
675         d = list_first_entry(&d40c->queue,
676                              struct d40_desc,
677                              node);
678         return d;
679 }
680
681 static int d40_psize_2_burst_size(bool is_log, int psize)
682 {
683         if (is_log) {
684                 if (psize == STEDMA40_PSIZE_LOG_1)
685                         return 1;
686         } else {
687                 if (psize == STEDMA40_PSIZE_PHY_1)
688                         return 1;
689         }
690
691         return 2 << psize;
692 }
693
694 /*
695  * The dma only supports transmitting packages up to
696  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
697  * dma elements required to send the entire sg list
698  */
699 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
700 {
701         int dmalen;
702         u32 max_w = max(data_width1, data_width2);
703         u32 min_w = min(data_width1, data_width2);
704         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
705
706         if (seg_max > STEDMA40_MAX_SEG_SIZE)
707                 seg_max -= (1 << max_w);
708
709         if (!IS_ALIGNED(size, 1 << max_w))
710                 return -EINVAL;
711
712         if (size <= seg_max)
713                 dmalen = 1;
714         else {
715                 dmalen = size / seg_max;
716                 if (dmalen * seg_max < size)
717                         dmalen++;
718         }
719         return dmalen;
720 }
721
722 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
723                            u32 data_width1, u32 data_width2)
724 {
725         struct scatterlist *sg;
726         int i;
727         int len = 0;
728         int ret;
729
730         for_each_sg(sgl, sg, sg_len, i) {
731                 ret = d40_size_2_dmalen(sg_dma_len(sg),
732                                         data_width1, data_width2);
733                 if (ret < 0)
734                         return ret;
735                 len += ret;
736         }
737         return len;
738 }
739
740 /* Support functions for logical channels */
741
742 static int d40_channel_execute_command(struct d40_chan *d40c,
743                                        enum d40_command command)
744 {
745         u32 status;
746         int i;
747         void __iomem *active_reg;
748         int ret = 0;
749         unsigned long flags;
750         u32 wmask;
751
752         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
753
754         if (d40c->phy_chan->num % 2 == 0)
755                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
756         else
757                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
758
759         if (command == D40_DMA_SUSPEND_REQ) {
760                 status = (readl(active_reg) &
761                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
762                         D40_CHAN_POS(d40c->phy_chan->num);
763
764                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
765                         goto done;
766         }
767
768         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
769         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
770                active_reg);
771
772         if (command == D40_DMA_SUSPEND_REQ) {
773
774                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
775                         status = (readl(active_reg) &
776                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
777                                 D40_CHAN_POS(d40c->phy_chan->num);
778
779                         cpu_relax();
780                         /*
781                          * Reduce the number of bus accesses while
782                          * waiting for the DMA to suspend.
783                          */
784                         udelay(3);
785
786                         if (status == D40_DMA_STOP ||
787                             status == D40_DMA_SUSPENDED)
788                                 break;
789                 }
790
791                 if (i == D40_SUSPEND_MAX_IT) {
792                         chan_err(d40c,
793                                 "unable to suspend the chl %d (log: %d) status %x\n",
794                                 d40c->phy_chan->num, d40c->log_num,
795                                 status);
796                         dump_stack();
797                         ret = -EBUSY;
798                 }
799
800         }
801 done:
802         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
803         return ret;
804 }
805
806 static void d40_term_all(struct d40_chan *d40c)
807 {
808         struct d40_desc *d40d;
809         struct d40_desc *_d;
810
811         /* Release active descriptors */
812         while ((d40d = d40_first_active_get(d40c))) {
813                 d40_desc_remove(d40d);
814                 d40_desc_free(d40c, d40d);
815         }
816
817         /* Release queued descriptors waiting for transfer */
818         while ((d40d = d40_first_queued(d40c))) {
819                 d40_desc_remove(d40d);
820                 d40_desc_free(d40c, d40d);
821         }
822
823         /* Release pending descriptors */
824         while ((d40d = d40_first_pending(d40c))) {
825                 d40_desc_remove(d40d);
826                 d40_desc_free(d40c, d40d);
827         }
828
829         /* Release client owned descriptors */
830         if (!list_empty(&d40c->client))
831                 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
832                         d40_desc_remove(d40d);
833                         d40_desc_free(d40c, d40d);
834                 }
835
836
837         d40c->pending_tx = 0;
838         d40c->busy = false;
839 }
840
841 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
842                                    u32 event, int reg)
843 {
844         void __iomem *addr = chan_base(d40c) + reg;
845         int tries;
846
847         if (!enable) {
848                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
849                        | ~D40_EVENTLINE_MASK(event), addr);
850                 return;
851         }
852
853         /*
854          * The hardware sometimes doesn't register the enable when src and dst
855          * event lines are active on the same logical channel.  Retry to ensure
856          * it does.  Usually only one retry is sufficient.
857          */
858         tries = 100;
859         while (--tries) {
860                 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
861                        | ~D40_EVENTLINE_MASK(event), addr);
862
863                 if (readl(addr) & D40_EVENTLINE_MASK(event))
864                         break;
865         }
866
867         if (tries != 99)
868                 dev_dbg(chan2dev(d40c),
869                         "[%s] workaround enable S%cLNK (%d tries)\n",
870                         __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
871                         100 - tries);
872
873         WARN_ON(!tries);
874 }
875
876 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
877 {
878         unsigned long flags;
879
880         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
881
882         /* Enable event line connected to device (or memcpy) */
883         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
884             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
885                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
886
887                 __d40_config_set_event(d40c, do_enable, event,
888                                        D40_CHAN_REG_SSLNK);
889         }
890
891         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
892                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
893
894                 __d40_config_set_event(d40c, do_enable, event,
895                                        D40_CHAN_REG_SDLNK);
896         }
897
898         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
899 }
900
901 static u32 d40_chan_has_events(struct d40_chan *d40c)
902 {
903         void __iomem *chanbase = chan_base(d40c);
904         u32 val;
905
906         val = readl(chanbase + D40_CHAN_REG_SSLNK);
907         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
908
909         return val;
910 }
911
912 static u32 d40_get_prmo(struct d40_chan *d40c)
913 {
914         static const unsigned int phy_map[] = {
915                 [STEDMA40_PCHAN_BASIC_MODE]
916                         = D40_DREG_PRMO_PCHAN_BASIC,
917                 [STEDMA40_PCHAN_MODULO_MODE]
918                         = D40_DREG_PRMO_PCHAN_MODULO,
919                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
920                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
921         };
922         static const unsigned int log_map[] = {
923                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
924                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
925                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
926                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
927                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
928                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
929         };
930
931         if (chan_is_physical(d40c))
932                 return phy_map[d40c->dma_cfg.mode_opt];
933         else
934                 return log_map[d40c->dma_cfg.mode_opt];
935 }
936
937 static void d40_config_write(struct d40_chan *d40c)
938 {
939         u32 addr_base;
940         u32 var;
941
942         /* Odd addresses are even addresses + 4 */
943         addr_base = (d40c->phy_chan->num % 2) * 4;
944         /* Setup channel mode to logical or physical */
945         var = ((u32)(chan_is_logical(d40c)) + 1) <<
946                 D40_CHAN_POS(d40c->phy_chan->num);
947         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
948
949         /* Setup operational mode option register */
950         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
951
952         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
953
954         if (chan_is_logical(d40c)) {
955                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
956                            & D40_SREG_ELEM_LOG_LIDX_MASK;
957                 void __iomem *chanbase = chan_base(d40c);
958
959                 /* Set default config for CFG reg */
960                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
961                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
962
963                 /* Set LIDX for lcla */
964                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
965                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
966         }
967 }
968
969 static u32 d40_residue(struct d40_chan *d40c)
970 {
971         u32 num_elt;
972
973         if (chan_is_logical(d40c))
974                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
975                         >> D40_MEM_LCSP2_ECNT_POS;
976         else {
977                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
978                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
979                           >> D40_SREG_ELEM_PHY_ECNT_POS;
980         }
981
982         return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
983 }
984
985 static bool d40_tx_is_linked(struct d40_chan *d40c)
986 {
987         bool is_link;
988
989         if (chan_is_logical(d40c))
990                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
991         else
992                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
993                           & D40_SREG_LNK_PHYS_LNK_MASK;
994
995         return is_link;
996 }
997
998 static int d40_pause(struct d40_chan *d40c)
999 {
1000         int res = 0;
1001         unsigned long flags;
1002
1003         if (!d40c->busy)
1004                 return 0;
1005
1006         spin_lock_irqsave(&d40c->lock, flags);
1007
1008         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1009         if (res == 0) {
1010                 if (chan_is_logical(d40c)) {
1011                         d40_config_set_event(d40c, false);
1012                         /* Resume the other logical channels if any */
1013                         if (d40_chan_has_events(d40c))
1014                                 res = d40_channel_execute_command(d40c,
1015                                                                   D40_DMA_RUN);
1016                 }
1017         }
1018
1019         spin_unlock_irqrestore(&d40c->lock, flags);
1020         return res;
1021 }
1022
1023 static int d40_resume(struct d40_chan *d40c)
1024 {
1025         int res = 0;
1026         unsigned long flags;
1027
1028         if (!d40c->busy)
1029                 return 0;
1030
1031         spin_lock_irqsave(&d40c->lock, flags);
1032
1033         if (d40c->base->rev == 0)
1034                 if (chan_is_logical(d40c)) {
1035                         res = d40_channel_execute_command(d40c,
1036                                                           D40_DMA_SUSPEND_REQ);
1037                         goto no_suspend;
1038                 }
1039
1040         /* If bytes left to transfer or linked tx resume job */
1041         if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1042
1043                 if (chan_is_logical(d40c))
1044                         d40_config_set_event(d40c, true);
1045
1046                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1047         }
1048
1049 no_suspend:
1050         spin_unlock_irqrestore(&d40c->lock, flags);
1051         return res;
1052 }
1053
1054 static int d40_terminate_all(struct d40_chan *chan)
1055 {
1056         unsigned long flags;
1057         int ret = 0;
1058
1059         ret = d40_pause(chan);
1060         if (!ret && chan_is_physical(chan))
1061                 ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1062
1063         spin_lock_irqsave(&chan->lock, flags);
1064         d40_term_all(chan);
1065         spin_unlock_irqrestore(&chan->lock, flags);
1066
1067         return ret;
1068 }
1069
1070 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1071 {
1072         struct d40_chan *d40c = container_of(tx->chan,
1073                                              struct d40_chan,
1074                                              chan);
1075         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1076         unsigned long flags;
1077
1078         spin_lock_irqsave(&d40c->lock, flags);
1079
1080         d40c->chan.cookie++;
1081
1082         if (d40c->chan.cookie < 0)
1083                 d40c->chan.cookie = 1;
1084
1085         d40d->txd.cookie = d40c->chan.cookie;
1086
1087         d40_desc_queue(d40c, d40d);
1088
1089         spin_unlock_irqrestore(&d40c->lock, flags);
1090
1091         return tx->cookie;
1092 }
1093
1094 static int d40_start(struct d40_chan *d40c)
1095 {
1096         if (d40c->base->rev == 0) {
1097                 int err;
1098
1099                 if (chan_is_logical(d40c)) {
1100                         err = d40_channel_execute_command(d40c,
1101                                                           D40_DMA_SUSPEND_REQ);
1102                         if (err)
1103                                 return err;
1104                 }
1105         }
1106
1107         if (chan_is_logical(d40c))
1108                 d40_config_set_event(d40c, true);
1109
1110         return d40_channel_execute_command(d40c, D40_DMA_RUN);
1111 }
1112
1113 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1114 {
1115         struct d40_desc *d40d;
1116         int err;
1117
1118         /* Start queued jobs, if any */
1119         d40d = d40_first_queued(d40c);
1120
1121         if (d40d != NULL) {
1122                 d40c->busy = true;
1123
1124                 /* Remove from queue */
1125                 d40_desc_remove(d40d);
1126
1127                 /* Add to active queue */
1128                 d40_desc_submit(d40c, d40d);
1129
1130                 /* Initiate DMA job */
1131                 d40_desc_load(d40c, d40d);
1132
1133                 /* Start dma job */
1134                 err = d40_start(d40c);
1135
1136                 if (err)
1137                         return NULL;
1138         }
1139
1140         return d40d;
1141 }
1142
1143 /* called from interrupt context */
1144 static void dma_tc_handle(struct d40_chan *d40c)
1145 {
1146         struct d40_desc *d40d;
1147
1148         /* Get first active entry from list */
1149         d40d = d40_first_active_get(d40c);
1150
1151         if (d40d == NULL)
1152                 return;
1153
1154         if (d40d->cyclic) {
1155                 /*
1156                  * If this was a paritially loaded list, we need to reloaded
1157                  * it, and only when the list is completed.  We need to check
1158                  * for done because the interrupt will hit for every link, and
1159                  * not just the last one.
1160                  */
1161                 if (d40d->lli_current < d40d->lli_len
1162                     && !d40_tx_is_linked(d40c)
1163                     && !d40_residue(d40c)) {
1164                         d40_lcla_free_all(d40c, d40d);
1165                         d40_desc_load(d40c, d40d);
1166                         (void) d40_start(d40c);
1167
1168                         if (d40d->lli_current == d40d->lli_len)
1169                                 d40d->lli_current = 0;
1170                 }
1171         } else {
1172                 d40_lcla_free_all(d40c, d40d);
1173
1174                 if (d40d->lli_current < d40d->lli_len) {
1175                         d40_desc_load(d40c, d40d);
1176                         /* Start dma job */
1177                         (void) d40_start(d40c);
1178                         return;
1179                 }
1180
1181                 if (d40_queue_start(d40c) == NULL)
1182                         d40c->busy = false;
1183         }
1184
1185         d40c->pending_tx++;
1186         tasklet_schedule(&d40c->tasklet);
1187
1188 }
1189
1190 static void dma_tasklet(unsigned long data)
1191 {
1192         struct d40_chan *d40c = (struct d40_chan *) data;
1193         struct d40_desc *d40d;
1194         unsigned long flags;
1195         dma_async_tx_callback callback;
1196         void *callback_param;
1197
1198         spin_lock_irqsave(&d40c->lock, flags);
1199
1200         /* Get first active entry from list */
1201         d40d = d40_first_active_get(d40c);
1202         if (d40d == NULL)
1203                 goto err;
1204
1205         if (!d40d->cyclic)
1206                 d40c->completed = d40d->txd.cookie;
1207
1208         /*
1209          * If terminating a channel pending_tx is set to zero.
1210          * This prevents any finished active jobs to return to the client.
1211          */
1212         if (d40c->pending_tx == 0) {
1213                 spin_unlock_irqrestore(&d40c->lock, flags);
1214                 return;
1215         }
1216
1217         /* Callback to client */
1218         callback = d40d->txd.callback;
1219         callback_param = d40d->txd.callback_param;
1220
1221         if (!d40d->cyclic) {
1222                 if (async_tx_test_ack(&d40d->txd)) {
1223                         d40_desc_remove(d40d);
1224                         d40_desc_free(d40c, d40d);
1225                 } else {
1226                         if (!d40d->is_in_client_list) {
1227                                 d40_desc_remove(d40d);
1228                                 d40_lcla_free_all(d40c, d40d);
1229                                 list_add_tail(&d40d->node, &d40c->client);
1230                                 d40d->is_in_client_list = true;
1231                         }
1232                 }
1233         }
1234
1235         d40c->pending_tx--;
1236
1237         if (d40c->pending_tx)
1238                 tasklet_schedule(&d40c->tasklet);
1239
1240         spin_unlock_irqrestore(&d40c->lock, flags);
1241
1242         if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1243                 callback(callback_param);
1244
1245         return;
1246
1247  err:
1248         /* Rescue manoeuvre if receiving double interrupts */
1249         if (d40c->pending_tx > 0)
1250                 d40c->pending_tx--;
1251         spin_unlock_irqrestore(&d40c->lock, flags);
1252 }
1253
1254 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1255 {
1256         static const struct d40_interrupt_lookup il[] = {
1257                 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1258                 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1259                 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1260                 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1261                 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1262                 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1263                 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1264                 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1265                 {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1266                 {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1267         };
1268
1269         int i;
1270         u32 regs[ARRAY_SIZE(il)];
1271         u32 idx;
1272         u32 row;
1273         long chan = -1;
1274         struct d40_chan *d40c;
1275         unsigned long flags;
1276         struct d40_base *base = data;
1277
1278         spin_lock_irqsave(&base->interrupt_lock, flags);
1279
1280         /* Read interrupt status of both logical and physical channels */
1281         for (i = 0; i < ARRAY_SIZE(il); i++)
1282                 regs[i] = readl(base->virtbase + il[i].src);
1283
1284         for (;;) {
1285
1286                 chan = find_next_bit((unsigned long *)regs,
1287                                      BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1288
1289                 /* No more set bits found? */
1290                 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1291                         break;
1292
1293                 row = chan / BITS_PER_LONG;
1294                 idx = chan & (BITS_PER_LONG - 1);
1295
1296                 /* ACK interrupt */
1297                 writel(1 << idx, base->virtbase + il[row].clr);
1298
1299                 if (il[row].offset == D40_PHY_CHAN)
1300                         d40c = base->lookup_phy_chans[idx];
1301                 else
1302                         d40c = base->lookup_log_chans[il[row].offset + idx];
1303                 spin_lock(&d40c->lock);
1304
1305                 if (!il[row].is_error)
1306                         dma_tc_handle(d40c);
1307                 else
1308                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1309                                 chan, il[row].offset, idx);
1310
1311                 spin_unlock(&d40c->lock);
1312         }
1313
1314         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1315
1316         return IRQ_HANDLED;
1317 }
1318
1319 static int d40_validate_conf(struct d40_chan *d40c,
1320                              struct stedma40_chan_cfg *conf)
1321 {
1322         int res = 0;
1323         u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1324         u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1325         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1326
1327         if (!conf->dir) {
1328                 chan_err(d40c, "Invalid direction.\n");
1329                 res = -EINVAL;
1330         }
1331
1332         if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1333             d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1334             d40c->runtime_addr == 0) {
1335
1336                 chan_err(d40c, "Invalid TX channel address (%d)\n",
1337                          conf->dst_dev_type);
1338                 res = -EINVAL;
1339         }
1340
1341         if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1342             d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1343             d40c->runtime_addr == 0) {
1344                 chan_err(d40c, "Invalid RX channel address (%d)\n",
1345                         conf->src_dev_type);
1346                 res = -EINVAL;
1347         }
1348
1349         if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1350             dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1351                 chan_err(d40c, "Invalid dst\n");
1352                 res = -EINVAL;
1353         }
1354
1355         if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1356             src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1357                 chan_err(d40c, "Invalid src\n");
1358                 res = -EINVAL;
1359         }
1360
1361         if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1362             dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1363                 chan_err(d40c, "No event line\n");
1364                 res = -EINVAL;
1365         }
1366
1367         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1368             (src_event_group != dst_event_group)) {
1369                 chan_err(d40c, "Invalid event group\n");
1370                 res = -EINVAL;
1371         }
1372
1373         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1374                 /*
1375                  * DMAC HW supports it. Will be added to this driver,
1376                  * in case any dma client requires it.
1377                  */
1378                 chan_err(d40c, "periph to periph not supported\n");
1379                 res = -EINVAL;
1380         }
1381
1382         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1383             (1 << conf->src_info.data_width) !=
1384             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1385             (1 << conf->dst_info.data_width)) {
1386                 /*
1387                  * The DMAC hardware only supports
1388                  * src (burst x width) == dst (burst x width)
1389                  */
1390
1391                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1392                 res = -EINVAL;
1393         }
1394
1395         return res;
1396 }
1397
1398 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1399                                int log_event_line, bool is_log)
1400 {
1401         unsigned long flags;
1402         spin_lock_irqsave(&phy->lock, flags);
1403         if (!is_log) {
1404                 /* Physical interrupts are masked per physical full channel */
1405                 if (phy->allocated_src == D40_ALLOC_FREE &&
1406                     phy->allocated_dst == D40_ALLOC_FREE) {
1407                         phy->allocated_dst = D40_ALLOC_PHY;
1408                         phy->allocated_src = D40_ALLOC_PHY;
1409                         goto found;
1410                 } else
1411                         goto not_found;
1412         }
1413
1414         /* Logical channel */
1415         if (is_src) {
1416                 if (phy->allocated_src == D40_ALLOC_PHY)
1417                         goto not_found;
1418
1419                 if (phy->allocated_src == D40_ALLOC_FREE)
1420                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1421
1422                 if (!(phy->allocated_src & (1 << log_event_line))) {
1423                         phy->allocated_src |= 1 << log_event_line;
1424                         goto found;
1425                 } else
1426                         goto not_found;
1427         } else {
1428                 if (phy->allocated_dst == D40_ALLOC_PHY)
1429                         goto not_found;
1430
1431                 if (phy->allocated_dst == D40_ALLOC_FREE)
1432                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1433
1434                 if (!(phy->allocated_dst & (1 << log_event_line))) {
1435                         phy->allocated_dst |= 1 << log_event_line;
1436                         goto found;
1437                 } else
1438                         goto not_found;
1439         }
1440
1441 not_found:
1442         spin_unlock_irqrestore(&phy->lock, flags);
1443         return false;
1444 found:
1445         spin_unlock_irqrestore(&phy->lock, flags);
1446         return true;
1447 }
1448
1449 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1450                                int log_event_line)
1451 {
1452         unsigned long flags;
1453         bool is_free = false;
1454
1455         spin_lock_irqsave(&phy->lock, flags);
1456         if (!log_event_line) {
1457                 phy->allocated_dst = D40_ALLOC_FREE;
1458                 phy->allocated_src = D40_ALLOC_FREE;
1459                 is_free = true;
1460                 goto out;
1461         }
1462
1463         /* Logical channel */
1464         if (is_src) {
1465                 phy->allocated_src &= ~(1 << log_event_line);
1466                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1467                         phy->allocated_src = D40_ALLOC_FREE;
1468         } else {
1469                 phy->allocated_dst &= ~(1 << log_event_line);
1470                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1471                         phy->allocated_dst = D40_ALLOC_FREE;
1472         }
1473
1474         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1475                    D40_ALLOC_FREE);
1476
1477 out:
1478         spin_unlock_irqrestore(&phy->lock, flags);
1479
1480         return is_free;
1481 }
1482
1483 static int d40_allocate_channel(struct d40_chan *d40c)
1484 {
1485         int dev_type;
1486         int event_group;
1487         int event_line;
1488         struct d40_phy_res *phys;
1489         int i;
1490         int j;
1491         int log_num;
1492         bool is_src;
1493         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1494
1495         phys = d40c->base->phy_res;
1496
1497         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1498                 dev_type = d40c->dma_cfg.src_dev_type;
1499                 log_num = 2 * dev_type;
1500                 is_src = true;
1501         } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1502                    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1503                 /* dst event lines are used for logical memcpy */
1504                 dev_type = d40c->dma_cfg.dst_dev_type;
1505                 log_num = 2 * dev_type + 1;
1506                 is_src = false;
1507         } else
1508                 return -EINVAL;
1509
1510         event_group = D40_TYPE_TO_GROUP(dev_type);
1511         event_line = D40_TYPE_TO_EVENT(dev_type);
1512
1513         if (!is_log) {
1514                 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1515                         /* Find physical half channel */
1516                         for (i = 0; i < d40c->base->num_phy_chans; i++) {
1517
1518                                 if (d40_alloc_mask_set(&phys[i], is_src,
1519                                                        0, is_log))
1520                                         goto found_phy;
1521                         }
1522                 } else
1523                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1524                                 int phy_num = j  + event_group * 2;
1525                                 for (i = phy_num; i < phy_num + 2; i++) {
1526                                         if (d40_alloc_mask_set(&phys[i],
1527                                                                is_src,
1528                                                                0,
1529                                                                is_log))
1530                                                 goto found_phy;
1531                                 }
1532                         }
1533                 return -EINVAL;
1534 found_phy:
1535                 d40c->phy_chan = &phys[i];
1536                 d40c->log_num = D40_PHY_CHAN;
1537                 goto out;
1538         }
1539         if (dev_type == -1)
1540                 return -EINVAL;
1541
1542         /* Find logical channel */
1543         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1544                 int phy_num = j + event_group * 2;
1545                 /*
1546                  * Spread logical channels across all available physical rather
1547                  * than pack every logical channel at the first available phy
1548                  * channels.
1549                  */
1550                 if (is_src) {
1551                         for (i = phy_num; i < phy_num + 2; i++) {
1552                                 if (d40_alloc_mask_set(&phys[i], is_src,
1553                                                        event_line, is_log))
1554                                         goto found_log;
1555                         }
1556                 } else {
1557                         for (i = phy_num + 1; i >= phy_num; i--) {
1558                                 if (d40_alloc_mask_set(&phys[i], is_src,
1559                                                        event_line, is_log))
1560                                         goto found_log;
1561                         }
1562                 }
1563         }
1564         return -EINVAL;
1565
1566 found_log:
1567         d40c->phy_chan = &phys[i];
1568         d40c->log_num = log_num;
1569 out:
1570
1571         if (is_log)
1572                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1573         else
1574                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1575
1576         return 0;
1577
1578 }
1579
1580 static int d40_config_memcpy(struct d40_chan *d40c)
1581 {
1582         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1583
1584         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1585                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1586                 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1587                 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1588                         memcpy[d40c->chan.chan_id];
1589
1590         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1591                    dma_has_cap(DMA_SLAVE, cap)) {
1592                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1593         } else {
1594                 chan_err(d40c, "No memcpy\n");
1595                 return -EINVAL;
1596         }
1597
1598         return 0;
1599 }
1600
1601
1602 static int d40_free_dma(struct d40_chan *d40c)
1603 {
1604
1605         int res = 0;
1606         u32 event;
1607         struct d40_phy_res *phy = d40c->phy_chan;
1608         bool is_src;
1609
1610         /* Terminate all queued and active transfers */
1611         d40_term_all(d40c);
1612
1613         if (phy == NULL) {
1614                 chan_err(d40c, "phy == null\n");
1615                 return -EINVAL;
1616         }
1617
1618         if (phy->allocated_src == D40_ALLOC_FREE &&
1619             phy->allocated_dst == D40_ALLOC_FREE) {
1620                 chan_err(d40c, "channel already free\n");
1621                 return -EINVAL;
1622         }
1623
1624         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1625             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1626                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1627                 is_src = false;
1628         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1629                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1630                 is_src = true;
1631         } else {
1632                 chan_err(d40c, "Unknown direction\n");
1633                 return -EINVAL;
1634         }
1635
1636         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1637         if (res) {
1638                 chan_err(d40c, "suspend failed\n");
1639                 return res;
1640         }
1641
1642         if (chan_is_logical(d40c)) {
1643                 /* Release logical channel, deactivate the event line */
1644
1645                 d40_config_set_event(d40c, false);
1646                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1647
1648                 /*
1649                  * Check if there are more logical allocation
1650                  * on this phy channel.
1651                  */
1652                 if (!d40_alloc_mask_free(phy, is_src, event)) {
1653                         /* Resume the other logical channels if any */
1654                         if (d40_chan_has_events(d40c)) {
1655                                 res = d40_channel_execute_command(d40c,
1656                                                                   D40_DMA_RUN);
1657                                 if (res) {
1658                                         chan_err(d40c,
1659                                                 "Executing RUN command\n");
1660                                         return res;
1661                                 }
1662                         }
1663                         return 0;
1664                 }
1665         } else {
1666                 (void) d40_alloc_mask_free(phy, is_src, 0);
1667         }
1668
1669         /* Release physical channel */
1670         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1671         if (res) {
1672                 chan_err(d40c, "Failed to stop channel\n");
1673                 return res;
1674         }
1675         d40c->phy_chan = NULL;
1676         d40c->configured = false;
1677         d40c->base->lookup_phy_chans[phy->num] = NULL;
1678
1679         return 0;
1680 }
1681
1682 static bool d40_is_paused(struct d40_chan *d40c)
1683 {
1684         void __iomem *chanbase = chan_base(d40c);
1685         bool is_paused = false;
1686         unsigned long flags;
1687         void __iomem *active_reg;
1688         u32 status;
1689         u32 event;
1690
1691         spin_lock_irqsave(&d40c->lock, flags);
1692
1693         if (chan_is_physical(d40c)) {
1694                 if (d40c->phy_chan->num % 2 == 0)
1695                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1696                 else
1697                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1698
1699                 status = (readl(active_reg) &
1700                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1701                         D40_CHAN_POS(d40c->phy_chan->num);
1702                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1703                         is_paused = true;
1704
1705                 goto _exit;
1706         }
1707
1708         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1709             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1710                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1711                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1712         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1713                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1714                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1715         } else {
1716                 chan_err(d40c, "Unknown direction\n");
1717                 goto _exit;
1718         }
1719
1720         status = (status & D40_EVENTLINE_MASK(event)) >>
1721                 D40_EVENTLINE_POS(event);
1722
1723         if (status != D40_DMA_RUN)
1724                 is_paused = true;
1725 _exit:
1726         spin_unlock_irqrestore(&d40c->lock, flags);
1727         return is_paused;
1728
1729 }
1730
1731
1732 static u32 stedma40_residue(struct dma_chan *chan)
1733 {
1734         struct d40_chan *d40c =
1735                 container_of(chan, struct d40_chan, chan);
1736         u32 bytes_left;
1737         unsigned long flags;
1738
1739         spin_lock_irqsave(&d40c->lock, flags);
1740         bytes_left = d40_residue(d40c);
1741         spin_unlock_irqrestore(&d40c->lock, flags);
1742
1743         return bytes_left;
1744 }
1745
1746 static int
1747 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1748                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1749                 unsigned int sg_len, dma_addr_t src_dev_addr,
1750                 dma_addr_t dst_dev_addr)
1751 {
1752         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1753         struct stedma40_half_channel_info *src_info = &cfg->src_info;
1754         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1755         int ret;
1756
1757         ret = d40_log_sg_to_lli(sg_src, sg_len,
1758                                 src_dev_addr,
1759                                 desc->lli_log.src,
1760                                 chan->log_def.lcsp1,
1761                                 src_info->data_width,
1762                                 dst_info->data_width);
1763
1764         ret = d40_log_sg_to_lli(sg_dst, sg_len,
1765                                 dst_dev_addr,
1766                                 desc->lli_log.dst,
1767                                 chan->log_def.lcsp3,
1768                                 dst_info->data_width,
1769                                 src_info->data_width);
1770
1771         return ret < 0 ? ret : 0;
1772 }
1773
1774 static int
1775 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1776                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1777                 unsigned int sg_len, dma_addr_t src_dev_addr,
1778                 dma_addr_t dst_dev_addr)
1779 {
1780         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1781         struct stedma40_half_channel_info *src_info = &cfg->src_info;
1782         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1783         unsigned long flags = 0;
1784         int ret;
1785
1786         if (desc->cyclic)
1787                 flags |= LLI_CYCLIC | LLI_TERM_INT;
1788
1789         ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1790                                 desc->lli_phy.src,
1791                                 virt_to_phys(desc->lli_phy.src),
1792                                 chan->src_def_cfg,
1793                                 src_info, dst_info, flags);
1794
1795         ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1796                                 desc->lli_phy.dst,
1797                                 virt_to_phys(desc->lli_phy.dst),
1798                                 chan->dst_def_cfg,
1799                                 dst_info, src_info, flags);
1800
1801         dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1802                                    desc->lli_pool.size, DMA_TO_DEVICE);
1803
1804         return ret < 0 ? ret : 0;
1805 }
1806
1807
1808 static struct d40_desc *
1809 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1810               unsigned int sg_len, unsigned long dma_flags)
1811 {
1812         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1813         struct d40_desc *desc;
1814         int ret;
1815
1816         desc = d40_desc_get(chan);
1817         if (!desc)
1818                 return NULL;
1819
1820         desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
1821                                         cfg->dst_info.data_width);
1822         if (desc->lli_len < 0) {
1823                 chan_err(chan, "Unaligned size\n");
1824                 goto err;
1825         }
1826
1827         ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
1828         if (ret < 0) {
1829                 chan_err(chan, "Could not allocate lli\n");
1830                 goto err;
1831         }
1832
1833
1834         desc->lli_current = 0;
1835         desc->txd.flags = dma_flags;
1836         desc->txd.tx_submit = d40_tx_submit;
1837
1838         dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
1839
1840         return desc;
1841
1842 err:
1843         d40_desc_free(chan, desc);
1844         return NULL;
1845 }
1846
1847 static dma_addr_t
1848 d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1849 {
1850         struct stedma40_platform_data *plat = chan->base->plat_data;
1851         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1852         dma_addr_t addr = 0;
1853
1854         if (chan->runtime_addr)
1855                 return chan->runtime_addr;
1856
1857         if (direction == DMA_FROM_DEVICE)
1858                 addr = plat->dev_rx[cfg->src_dev_type];
1859         else if (direction == DMA_TO_DEVICE)
1860                 addr = plat->dev_tx[cfg->dst_dev_type];
1861
1862         return addr;
1863 }
1864
1865 static struct dma_async_tx_descriptor *
1866 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
1867             struct scatterlist *sg_dst, unsigned int sg_len,
1868             enum dma_data_direction direction, unsigned long dma_flags)
1869 {
1870         struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
1871         dma_addr_t src_dev_addr = 0;
1872         dma_addr_t dst_dev_addr = 0;
1873         struct d40_desc *desc;
1874         unsigned long flags;
1875         int ret;
1876
1877         if (!chan->phy_chan) {
1878                 chan_err(chan, "Cannot prepare unallocated channel\n");
1879                 return NULL;
1880         }
1881
1882
1883         spin_lock_irqsave(&chan->lock, flags);
1884
1885         desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
1886         if (desc == NULL)
1887                 goto err;
1888
1889         if (sg_next(&sg_src[sg_len - 1]) == sg_src)
1890                 desc->cyclic = true;
1891
1892         if (direction != DMA_NONE) {
1893                 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
1894
1895                 if (direction == DMA_FROM_DEVICE)
1896                         src_dev_addr = dev_addr;
1897                 else if (direction == DMA_TO_DEVICE)
1898                         dst_dev_addr = dev_addr;
1899         }
1900
1901         if (chan_is_logical(chan))
1902                 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
1903                                       sg_len, src_dev_addr, dst_dev_addr);
1904         else
1905                 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
1906                                       sg_len, src_dev_addr, dst_dev_addr);
1907
1908         if (ret) {
1909                 chan_err(chan, "Failed to prepare %s sg job: %d\n",
1910                          chan_is_logical(chan) ? "log" : "phy", ret);
1911                 goto err;
1912         }
1913
1914         spin_unlock_irqrestore(&chan->lock, flags);
1915
1916         return &desc->txd;
1917
1918 err:
1919         if (desc)
1920                 d40_desc_free(chan, desc);
1921         spin_unlock_irqrestore(&chan->lock, flags);
1922         return NULL;
1923 }
1924
1925 bool stedma40_filter(struct dma_chan *chan, void *data)
1926 {
1927         struct stedma40_chan_cfg *info = data;
1928         struct d40_chan *d40c =
1929                 container_of(chan, struct d40_chan, chan);
1930         int err;
1931
1932         if (data) {
1933                 err = d40_validate_conf(d40c, info);
1934                 if (!err)
1935                         d40c->dma_cfg = *info;
1936         } else
1937                 err = d40_config_memcpy(d40c);
1938
1939         if (!err)
1940                 d40c->configured = true;
1941
1942         return err == 0;
1943 }
1944 EXPORT_SYMBOL(stedma40_filter);
1945
1946 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1947 {
1948         bool realtime = d40c->dma_cfg.realtime;
1949         bool highprio = d40c->dma_cfg.high_priority;
1950         u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1951         u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1952         u32 event = D40_TYPE_TO_EVENT(dev_type);
1953         u32 group = D40_TYPE_TO_GROUP(dev_type);
1954         u32 bit = 1 << event;
1955
1956         /* Destination event lines are stored in the upper halfword */
1957         if (!src)
1958                 bit <<= 16;
1959
1960         writel(bit, d40c->base->virtbase + prioreg + group * 4);
1961         writel(bit, d40c->base->virtbase + rtreg + group * 4);
1962 }
1963
1964 static void d40_set_prio_realtime(struct d40_chan *d40c)
1965 {
1966         if (d40c->base->rev < 3)
1967                 return;
1968
1969         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1970             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1971                 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1972
1973         if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
1974             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1975                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1976 }
1977
1978 /* DMA ENGINE functions */
1979 static int d40_alloc_chan_resources(struct dma_chan *chan)
1980 {
1981         int err;
1982         unsigned long flags;
1983         struct d40_chan *d40c =
1984                 container_of(chan, struct d40_chan, chan);
1985         bool is_free_phy;
1986         spin_lock_irqsave(&d40c->lock, flags);
1987
1988         d40c->completed = chan->cookie = 1;
1989
1990         /* If no dma configuration is set use default configuration (memcpy) */
1991         if (!d40c->configured) {
1992                 err = d40_config_memcpy(d40c);
1993                 if (err) {
1994                         chan_err(d40c, "Failed to configure memcpy channel\n");
1995                         goto fail;
1996                 }
1997         }
1998         is_free_phy = (d40c->phy_chan == NULL);
1999
2000         err = d40_allocate_channel(d40c);
2001         if (err) {
2002                 chan_err(d40c, "Failed to allocate channel\n");
2003                 goto fail;
2004         }
2005
2006         /* Fill in basic CFG register values */
2007         d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2008                     &d40c->dst_def_cfg, chan_is_logical(d40c));
2009
2010         d40_set_prio_realtime(d40c);
2011
2012         if (chan_is_logical(d40c)) {
2013                 d40_log_cfg(&d40c->dma_cfg,
2014                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2015
2016                 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2017                         d40c->lcpa = d40c->base->lcpa_base +
2018                           d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2019                 else
2020                         d40c->lcpa = d40c->base->lcpa_base +
2021                           d40c->dma_cfg.dst_dev_type *
2022                           D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2023         }
2024
2025         /*
2026          * Only write channel configuration to the DMA if the physical
2027          * resource is free. In case of multiple logical channels
2028          * on the same physical resource, only the first write is necessary.
2029          */
2030         if (is_free_phy)
2031                 d40_config_write(d40c);
2032 fail:
2033         spin_unlock_irqrestore(&d40c->lock, flags);
2034         return err;
2035 }
2036
2037 static void d40_free_chan_resources(struct dma_chan *chan)
2038 {
2039         struct d40_chan *d40c =
2040                 container_of(chan, struct d40_chan, chan);
2041         int err;
2042         unsigned long flags;
2043
2044         if (d40c->phy_chan == NULL) {
2045                 chan_err(d40c, "Cannot free unallocated channel\n");
2046                 return;
2047         }
2048
2049
2050         spin_lock_irqsave(&d40c->lock, flags);
2051
2052         err = d40_free_dma(d40c);
2053
2054         if (err)
2055                 chan_err(d40c, "Failed to free channel\n");
2056         spin_unlock_irqrestore(&d40c->lock, flags);
2057 }
2058
2059 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2060                                                        dma_addr_t dst,
2061                                                        dma_addr_t src,
2062                                                        size_t size,
2063                                                        unsigned long dma_flags)
2064 {
2065         struct scatterlist dst_sg;
2066         struct scatterlist src_sg;
2067
2068         sg_init_table(&dst_sg, 1);
2069         sg_init_table(&src_sg, 1);
2070
2071         sg_dma_address(&dst_sg) = dst;
2072         sg_dma_address(&src_sg) = src;
2073
2074         sg_dma_len(&dst_sg) = size;
2075         sg_dma_len(&src_sg) = size;
2076
2077         return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2078 }
2079
2080 static struct dma_async_tx_descriptor *
2081 d40_prep_memcpy_sg(struct dma_chan *chan,
2082                    struct scatterlist *dst_sg, unsigned int dst_nents,
2083                    struct scatterlist *src_sg, unsigned int src_nents,
2084                    unsigned long dma_flags)
2085 {
2086         if (dst_nents != src_nents)
2087                 return NULL;
2088
2089         return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2090 }
2091
2092 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2093                                                          struct scatterlist *sgl,
2094                                                          unsigned int sg_len,
2095                                                          enum dma_data_direction direction,
2096                                                          unsigned long dma_flags)
2097 {
2098         if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
2099                 return NULL;
2100
2101         return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2102 }
2103
2104 static struct dma_async_tx_descriptor *
2105 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2106                      size_t buf_len, size_t period_len,
2107                      enum dma_data_direction direction)
2108 {
2109         unsigned int periods = buf_len / period_len;
2110         struct dma_async_tx_descriptor *txd;
2111         struct scatterlist *sg;
2112         int i;
2113
2114         sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2115         for (i = 0; i < periods; i++) {
2116                 sg_dma_address(&sg[i]) = dma_addr;
2117                 sg_dma_len(&sg[i]) = period_len;
2118                 dma_addr += period_len;
2119         }
2120
2121         sg[periods].offset = 0;
2122         sg[periods].length = 0;
2123         sg[periods].page_link =
2124                 ((unsigned long)sg | 0x01) & ~0x02;
2125
2126         txd = d40_prep_sg(chan, sg, sg, periods, direction,
2127                           DMA_PREP_INTERRUPT);
2128
2129         kfree(sg);
2130
2131         return txd;
2132 }
2133
2134 static enum dma_status d40_tx_status(struct dma_chan *chan,
2135                                      dma_cookie_t cookie,
2136                                      struct dma_tx_state *txstate)
2137 {
2138         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2139         dma_cookie_t last_used;
2140         dma_cookie_t last_complete;
2141         int ret;
2142
2143         if (d40c->phy_chan == NULL) {
2144                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2145                 return -EINVAL;
2146         }
2147
2148         last_complete = d40c->completed;
2149         last_used = chan->cookie;
2150
2151         if (d40_is_paused(d40c))
2152                 ret = DMA_PAUSED;
2153         else
2154                 ret = dma_async_is_complete(cookie, last_complete, last_used);
2155
2156         dma_set_tx_state(txstate, last_complete, last_used,
2157                          stedma40_residue(chan));
2158
2159         return ret;
2160 }
2161
2162 static void d40_issue_pending(struct dma_chan *chan)
2163 {
2164         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2165         unsigned long flags;
2166
2167         if (d40c->phy_chan == NULL) {
2168                 chan_err(d40c, "Channel is not allocated!\n");
2169                 return;
2170         }
2171
2172         spin_lock_irqsave(&d40c->lock, flags);
2173
2174         list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2175
2176         /* Busy means that queued jobs are already being processed */
2177         if (!d40c->busy)
2178                 (void) d40_queue_start(d40c);
2179
2180         spin_unlock_irqrestore(&d40c->lock, flags);
2181 }
2182
2183 static int
2184 dma40_config_to_halfchannel(struct d40_chan *d40c,
2185                             struct stedma40_half_channel_info *info,
2186                             enum dma_slave_buswidth width,
2187                             u32 maxburst)
2188 {
2189         enum stedma40_periph_data_width addr_width;
2190         int psize;
2191
2192         switch (width) {
2193         case DMA_SLAVE_BUSWIDTH_1_BYTE:
2194                 addr_width = STEDMA40_BYTE_WIDTH;
2195                 break;
2196         case DMA_SLAVE_BUSWIDTH_2_BYTES:
2197                 addr_width = STEDMA40_HALFWORD_WIDTH;
2198                 break;
2199         case DMA_SLAVE_BUSWIDTH_4_BYTES:
2200                 addr_width = STEDMA40_WORD_WIDTH;
2201                 break;
2202         case DMA_SLAVE_BUSWIDTH_8_BYTES:
2203                 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2204                 break;
2205         default:
2206                 dev_err(d40c->base->dev,
2207                         "illegal peripheral address width "
2208                         "requested (%d)\n",
2209                         width);
2210                 return -EINVAL;
2211         }
2212
2213         if (chan_is_logical(d40c)) {
2214                 if (maxburst >= 16)
2215                         psize = STEDMA40_PSIZE_LOG_16;
2216                 else if (maxburst >= 8)
2217                         psize = STEDMA40_PSIZE_LOG_8;
2218                 else if (maxburst >= 4)
2219                         psize = STEDMA40_PSIZE_LOG_4;
2220                 else
2221                         psize = STEDMA40_PSIZE_LOG_1;
2222         } else {
2223                 if (maxburst >= 16)
2224                         psize = STEDMA40_PSIZE_PHY_16;
2225                 else if (maxburst >= 8)
2226                         psize = STEDMA40_PSIZE_PHY_8;
2227                 else if (maxburst >= 4)
2228                         psize = STEDMA40_PSIZE_PHY_4;
2229                 else
2230                         psize = STEDMA40_PSIZE_PHY_1;
2231         }
2232
2233         info->data_width = addr_width;
2234         info->psize = psize;
2235         info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2236
2237         return 0;
2238 }
2239
2240 /* Runtime reconfiguration extension */
2241 static int d40_set_runtime_config(struct dma_chan *chan,
2242                                   struct dma_slave_config *config)
2243 {
2244         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2245         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2246         enum dma_slave_buswidth src_addr_width, dst_addr_width;
2247         dma_addr_t config_addr;
2248         u32 src_maxburst, dst_maxburst;
2249         int ret;
2250
2251         src_addr_width = config->src_addr_width;
2252         src_maxburst = config->src_maxburst;
2253         dst_addr_width = config->dst_addr_width;
2254         dst_maxburst = config->dst_maxburst;
2255
2256         if (config->direction == DMA_FROM_DEVICE) {
2257                 dma_addr_t dev_addr_rx =
2258                         d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2259
2260                 config_addr = config->src_addr;
2261                 if (dev_addr_rx)
2262                         dev_dbg(d40c->base->dev,
2263                                 "channel has a pre-wired RX address %08x "
2264                                 "overriding with %08x\n",
2265                                 dev_addr_rx, config_addr);
2266                 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2267                         dev_dbg(d40c->base->dev,
2268                                 "channel was not configured for peripheral "
2269                                 "to memory transfer (%d) overriding\n",
2270                                 cfg->dir);
2271                 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2272
2273                 /* Configure the memory side */
2274                 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2275                         dst_addr_width = src_addr_width;
2276                 if (dst_maxburst == 0)
2277                         dst_maxburst = src_maxburst;
2278
2279         } else if (config->direction == DMA_TO_DEVICE) {
2280                 dma_addr_t dev_addr_tx =
2281                         d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2282
2283                 config_addr = config->dst_addr;
2284                 if (dev_addr_tx)
2285                         dev_dbg(d40c->base->dev,
2286                                 "channel has a pre-wired TX address %08x "
2287                                 "overriding with %08x\n",
2288                                 dev_addr_tx, config_addr);
2289                 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2290                         dev_dbg(d40c->base->dev,
2291                                 "channel was not configured for memory "
2292                                 "to peripheral transfer (%d) overriding\n",
2293                                 cfg->dir);
2294                 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2295
2296                 /* Configure the memory side */
2297                 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2298                         src_addr_width = dst_addr_width;
2299                 if (src_maxburst == 0)
2300                         src_maxburst = dst_maxburst;
2301         } else {
2302                 dev_err(d40c->base->dev,
2303                         "unrecognized channel direction %d\n",
2304                         config->direction);
2305                 return -EINVAL;
2306         }
2307
2308         if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2309                 dev_err(d40c->base->dev,
2310                         "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2311                         src_maxburst,
2312                         src_addr_width,
2313                         dst_maxburst,
2314                         dst_addr_width);
2315                 return -EINVAL;
2316         }
2317
2318         ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2319                                           src_addr_width,
2320                                           src_maxburst);
2321         if (ret)
2322                 return ret;
2323
2324         ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2325                                           dst_addr_width,
2326                                           dst_maxburst);
2327         if (ret)
2328                 return ret;
2329
2330         /* Fill in register values */
2331         if (chan_is_logical(d40c))
2332                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2333         else
2334                 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2335                             &d40c->dst_def_cfg, false);
2336
2337         /* These settings will take precedence later */
2338         d40c->runtime_addr = config_addr;
2339         d40c->runtime_direction = config->direction;
2340         dev_dbg(d40c->base->dev,
2341                 "configured channel %s for %s, data width %d/%d, "
2342                 "maxburst %d/%d elements, LE, no flow control\n",
2343                 dma_chan_name(chan),
2344                 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2345                 src_addr_width, dst_addr_width,
2346                 src_maxburst, dst_maxburst);
2347
2348         return 0;
2349 }
2350
2351 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2352                        unsigned long arg)
2353 {
2354         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2355
2356         if (d40c->phy_chan == NULL) {
2357                 chan_err(d40c, "Channel is not allocated!\n");
2358                 return -EINVAL;
2359         }
2360
2361         switch (cmd) {
2362         case DMA_TERMINATE_ALL:
2363                 return d40_terminate_all(d40c);
2364         case DMA_PAUSE:
2365                 return d40_pause(d40c);
2366         case DMA_RESUME:
2367                 return d40_resume(d40c);
2368         case DMA_SLAVE_CONFIG:
2369                 return d40_set_runtime_config(chan,
2370                         (struct dma_slave_config *) arg);
2371         default:
2372                 break;
2373         }
2374
2375         /* Other commands are unimplemented */
2376         return -ENXIO;
2377 }
2378
2379 /* Initialization functions */
2380
2381 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2382                                  struct d40_chan *chans, int offset,
2383                                  int num_chans)
2384 {
2385         int i = 0;
2386         struct d40_chan *d40c;
2387
2388         INIT_LIST_HEAD(&dma->channels);
2389
2390         for (i = offset; i < offset + num_chans; i++) {
2391                 d40c = &chans[i];
2392                 d40c->base = base;
2393                 d40c->chan.device = dma;
2394
2395                 spin_lock_init(&d40c->lock);
2396
2397                 d40c->log_num = D40_PHY_CHAN;
2398
2399                 INIT_LIST_HEAD(&d40c->active);
2400                 INIT_LIST_HEAD(&d40c->queue);
2401                 INIT_LIST_HEAD(&d40c->pending_queue);
2402                 INIT_LIST_HEAD(&d40c->client);
2403
2404                 tasklet_init(&d40c->tasklet, dma_tasklet,
2405                              (unsigned long) d40c);
2406
2407                 list_add_tail(&d40c->chan.device_node,
2408                               &dma->channels);
2409         }
2410 }
2411
2412 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2413 {
2414         if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2415                 dev->device_prep_slave_sg = d40_prep_slave_sg;
2416
2417         if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2418                 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2419
2420                 /*
2421                  * This controller can only access address at even
2422                  * 32bit boundaries, i.e. 2^2
2423                  */
2424                 dev->copy_align = 2;
2425         }
2426
2427         if (dma_has_cap(DMA_SG, dev->cap_mask))
2428                 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2429
2430         if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2431                 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2432
2433         dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2434         dev->device_free_chan_resources = d40_free_chan_resources;
2435         dev->device_issue_pending = d40_issue_pending;
2436         dev->device_tx_status = d40_tx_status;
2437         dev->device_control = d40_control;
2438         dev->dev = base->dev;
2439 }
2440
2441 static int __init d40_dmaengine_init(struct d40_base *base,
2442                                      int num_reserved_chans)
2443 {
2444         int err ;
2445
2446         d40_chan_init(base, &base->dma_slave, base->log_chans,
2447                       0, base->num_log_chans);
2448
2449         dma_cap_zero(base->dma_slave.cap_mask);
2450         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2451         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2452
2453         d40_ops_init(base, &base->dma_slave);
2454
2455         err = dma_async_device_register(&base->dma_slave);
2456
2457         if (err) {
2458                 d40_err(base->dev, "Failed to register slave channels\n");
2459                 goto failure1;
2460         }
2461
2462         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2463                       base->num_log_chans, base->plat_data->memcpy_len);
2464
2465         dma_cap_zero(base->dma_memcpy.cap_mask);
2466         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2467         dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2468
2469         d40_ops_init(base, &base->dma_memcpy);
2470
2471         err = dma_async_device_register(&base->dma_memcpy);
2472
2473         if (err) {
2474                 d40_err(base->dev,
2475                         "Failed to regsiter memcpy only channels\n");
2476                 goto failure2;
2477         }
2478
2479         d40_chan_init(base, &base->dma_both, base->phy_chans,
2480                       0, num_reserved_chans);
2481
2482         dma_cap_zero(base->dma_both.cap_mask);
2483         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2484         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2485         dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2486         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2487
2488         d40_ops_init(base, &base->dma_both);
2489         err = dma_async_device_register(&base->dma_both);
2490
2491         if (err) {
2492                 d40_err(base->dev,
2493                         "Failed to register logical and physical capable channels\n");
2494                 goto failure3;
2495         }
2496         return 0;
2497 failure3:
2498         dma_async_device_unregister(&base->dma_memcpy);
2499 failure2:
2500         dma_async_device_unregister(&base->dma_slave);
2501 failure1:
2502         return err;
2503 }
2504
2505 /* Initialization functions. */
2506
2507 static int __init d40_phy_res_init(struct d40_base *base)
2508 {
2509         int i;
2510         int num_phy_chans_avail = 0;
2511         u32 val[2];
2512         int odd_even_bit = -2;
2513
2514         val[0] = readl(base->virtbase + D40_DREG_PRSME);
2515         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2516
2517         for (i = 0; i < base->num_phy_chans; i++) {
2518                 base->phy_res[i].num = i;
2519                 odd_even_bit += 2 * ((i % 2) == 0);
2520                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2521                         /* Mark security only channels as occupied */
2522                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2523                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2524                 } else {
2525                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2526                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2527                         num_phy_chans_avail++;
2528                 }
2529                 spin_lock_init(&base->phy_res[i].lock);
2530         }
2531
2532         /* Mark disabled channels as occupied */
2533         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2534                 int chan = base->plat_data->disabled_channels[i];
2535
2536                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2537                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2538                 num_phy_chans_avail--;
2539         }
2540
2541         dev_info(base->dev, "%d of %d physical DMA channels available\n",
2542                  num_phy_chans_avail, base->num_phy_chans);
2543
2544         /* Verify settings extended vs standard */
2545         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2546
2547         for (i = 0; i < base->num_phy_chans; i++) {
2548
2549                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2550                     (val[0] & 0x3) != 1)
2551                         dev_info(base->dev,
2552                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
2553                                  __func__, i, val[0] & 0x3);
2554
2555                 val[0] = val[0] >> 2;
2556         }
2557
2558         return num_phy_chans_avail;
2559 }
2560
2561 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2562 {
2563         struct stedma40_platform_data *plat_data;
2564         struct clk *clk = NULL;
2565         void __iomem *virtbase = NULL;
2566         struct resource *res = NULL;
2567         struct d40_base *base = NULL;
2568         int num_log_chans = 0;
2569         int num_phy_chans;
2570         int i;
2571         u32 pid;
2572         u32 cid;
2573         u8 rev;
2574
2575         clk = clk_get(&pdev->dev, NULL);
2576
2577         if (IS_ERR(clk)) {
2578                 d40_err(&pdev->dev, "No matching clock found\n");
2579                 goto failure;
2580         }
2581
2582         clk_enable(clk);
2583
2584         /* Get IO for DMAC base address */
2585         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2586         if (!res)
2587                 goto failure;
2588
2589         if (request_mem_region(res->start, resource_size(res),
2590                                D40_NAME " I/O base") == NULL)
2591                 goto failure;
2592
2593         virtbase = ioremap(res->start, resource_size(res));
2594         if (!virtbase)
2595                 goto failure;
2596
2597         /* This is just a regular AMBA PrimeCell ID actually */
2598         for (pid = 0, i = 0; i < 4; i++)
2599                 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2600                         & 255) << (i * 8);
2601         for (cid = 0, i = 0; i < 4; i++)
2602                 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2603                         & 255) << (i * 8);
2604
2605         if (cid != AMBA_CID) {
2606                 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2607                 goto failure;
2608         }
2609         if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2610                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2611                         AMBA_MANF_BITS(pid),
2612                         AMBA_VENDOR_ST);
2613                 goto failure;
2614         }
2615         /*
2616          * HW revision:
2617          * DB8500ed has revision 0
2618          * ? has revision 1
2619          * DB8500v1 has revision 2
2620          * DB8500v2 has revision 3
2621          */
2622         rev = AMBA_REV_BITS(pid);
2623
2624         /* The number of physical channels on this HW */
2625         num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2626
2627         dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2628                  rev, res->start);
2629
2630         plat_data = pdev->dev.platform_data;
2631
2632         /* Count the number of logical channels in use */
2633         for (i = 0; i < plat_data->dev_len; i++)
2634                 if (plat_data->dev_rx[i] != 0)
2635                         num_log_chans++;
2636
2637         for (i = 0; i < plat_data->dev_len; i++)
2638                 if (plat_data->dev_tx[i] != 0)
2639                         num_log_chans++;
2640
2641         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2642                        (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2643                        sizeof(struct d40_chan), GFP_KERNEL);
2644
2645         if (base == NULL) {
2646                 d40_err(&pdev->dev, "Out of memory\n");
2647                 goto failure;
2648         }
2649
2650         base->rev = rev;
2651         base->clk = clk;
2652         base->num_phy_chans = num_phy_chans;
2653         base->num_log_chans = num_log_chans;
2654         base->phy_start = res->start;
2655         base->phy_size = resource_size(res);
2656         base->virtbase = virtbase;
2657         base->plat_data = plat_data;
2658         base->dev = &pdev->dev;
2659         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2660         base->log_chans = &base->phy_chans[num_phy_chans];
2661
2662         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2663                                 GFP_KERNEL);
2664         if (!base->phy_res)
2665                 goto failure;
2666
2667         base->lookup_phy_chans = kzalloc(num_phy_chans *
2668                                          sizeof(struct d40_chan *),
2669                                          GFP_KERNEL);
2670         if (!base->lookup_phy_chans)
2671                 goto failure;
2672
2673         if (num_log_chans + plat_data->memcpy_len) {
2674                 /*
2675                  * The max number of logical channels are event lines for all
2676                  * src devices and dst devices
2677                  */
2678                 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2679                                                  sizeof(struct d40_chan *),
2680                                                  GFP_KERNEL);
2681                 if (!base->lookup_log_chans)
2682                         goto failure;
2683         }
2684
2685         base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2686                                             sizeof(struct d40_desc *) *
2687                                             D40_LCLA_LINK_PER_EVENT_GRP,
2688                                             GFP_KERNEL);
2689         if (!base->lcla_pool.alloc_map)
2690                 goto failure;
2691
2692         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2693                                             0, SLAB_HWCACHE_ALIGN,
2694                                             NULL);
2695         if (base->desc_slab == NULL)
2696                 goto failure;
2697
2698         return base;
2699
2700 failure:
2701         if (!IS_ERR(clk)) {
2702                 clk_disable(clk);
2703                 clk_put(clk);
2704         }
2705         if (virtbase)
2706                 iounmap(virtbase);
2707         if (res)
2708                 release_mem_region(res->start,
2709                                    resource_size(res));
2710         if (virtbase)
2711                 iounmap(virtbase);
2712
2713         if (base) {
2714                 kfree(base->lcla_pool.alloc_map);
2715                 kfree(base->lookup_log_chans);
2716                 kfree(base->lookup_phy_chans);
2717                 kfree(base->phy_res);
2718                 kfree(base);
2719         }
2720
2721         return NULL;
2722 }
2723
2724 static void __init d40_hw_init(struct d40_base *base)
2725 {
2726
2727         static const struct d40_reg_val dma_init_reg[] = {
2728                 /* Clock every part of the DMA block from start */
2729                 { .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2730
2731                 /* Interrupts on all logical channels */
2732                 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2733                 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2734                 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2735                 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2736                 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2737                 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2738                 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2739                 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2740                 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2741                 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2742                 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2743                 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2744         };
2745         int i;
2746         u32 prmseo[2] = {0, 0};
2747         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2748         u32 pcmis = 0;
2749         u32 pcicr = 0;
2750
2751         for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2752                 writel(dma_init_reg[i].val,
2753                        base->virtbase + dma_init_reg[i].reg);
2754
2755         /* Configure all our dma channels to default settings */
2756         for (i = 0; i < base->num_phy_chans; i++) {
2757
2758                 activeo[i % 2] = activeo[i % 2] << 2;
2759
2760                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2761                     == D40_ALLOC_PHY) {
2762                         activeo[i % 2] |= 3;
2763                         continue;
2764                 }
2765
2766                 /* Enable interrupt # */
2767                 pcmis = (pcmis << 1) | 1;
2768
2769                 /* Clear interrupt # */
2770                 pcicr = (pcicr << 1) | 1;
2771
2772                 /* Set channel to physical mode */
2773                 prmseo[i % 2] = prmseo[i % 2] << 2;
2774                 prmseo[i % 2] |= 1;
2775
2776         }
2777
2778         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2779         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2780         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2781         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2782
2783         /* Write which interrupt to enable */
2784         writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2785
2786         /* Write which interrupt to clear */
2787         writel(pcicr, base->virtbase + D40_DREG_PCICR);
2788
2789 }
2790
2791 static int __init d40_lcla_allocate(struct d40_base *base)
2792 {
2793         struct d40_lcla_pool *pool = &base->lcla_pool;
2794         unsigned long *page_list;
2795         int i, j;
2796         int ret = 0;
2797
2798         /*
2799          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2800          * To full fill this hardware requirement without wasting 256 kb
2801          * we allocate pages until we get an aligned one.
2802          */
2803         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2804                             GFP_KERNEL);
2805
2806         if (!page_list) {
2807                 ret = -ENOMEM;
2808                 goto failure;
2809         }
2810
2811         /* Calculating how many pages that are required */
2812         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2813
2814         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2815                 page_list[i] = __get_free_pages(GFP_KERNEL,
2816                                                 base->lcla_pool.pages);
2817                 if (!page_list[i]) {
2818
2819                         d40_err(base->dev, "Failed to allocate %d pages.\n",
2820                                 base->lcla_pool.pages);
2821
2822                         for (j = 0; j < i; j++)
2823                                 free_pages(page_list[j], base->lcla_pool.pages);
2824                         goto failure;
2825                 }
2826
2827                 if ((virt_to_phys((void *)page_list[i]) &
2828                      (LCLA_ALIGNMENT - 1)) == 0)
2829                         break;
2830         }
2831
2832         for (j = 0; j < i; j++)
2833                 free_pages(page_list[j], base->lcla_pool.pages);
2834
2835         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2836                 base->lcla_pool.base = (void *)page_list[i];
2837         } else {
2838                 /*
2839                  * After many attempts and no succees with finding the correct
2840                  * alignment, try with allocating a big buffer.
2841                  */
2842                 dev_warn(base->dev,
2843                          "[%s] Failed to get %d pages @ 18 bit align.\n",
2844                          __func__, base->lcla_pool.pages);
2845                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2846                                                          base->num_phy_chans +
2847                                                          LCLA_ALIGNMENT,
2848                                                          GFP_KERNEL);
2849                 if (!base->lcla_pool.base_unaligned) {
2850                         ret = -ENOMEM;
2851                         goto failure;
2852                 }
2853
2854                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2855                                                  LCLA_ALIGNMENT);
2856         }
2857
2858         pool->dma_addr = dma_map_single(base->dev, pool->base,
2859                                         SZ_1K * base->num_phy_chans,
2860                                         DMA_TO_DEVICE);
2861         if (dma_mapping_error(base->dev, pool->dma_addr)) {
2862                 pool->dma_addr = 0;
2863                 ret = -ENOMEM;
2864                 goto failure;
2865         }
2866
2867         writel(virt_to_phys(base->lcla_pool.base),
2868                base->virtbase + D40_DREG_LCLA);
2869 failure:
2870         kfree(page_list);
2871         return ret;
2872 }
2873
2874 static int __init d40_probe(struct platform_device *pdev)
2875 {
2876         int err;
2877         int ret = -ENOENT;
2878         struct d40_base *base;
2879         struct resource *res = NULL;
2880         int num_reserved_chans;
2881         u32 val;
2882
2883         base = d40_hw_detect_init(pdev);
2884
2885         if (!base)
2886                 goto failure;
2887
2888         num_reserved_chans = d40_phy_res_init(base);
2889
2890         platform_set_drvdata(pdev, base);
2891
2892         spin_lock_init(&base->interrupt_lock);
2893         spin_lock_init(&base->execmd_lock);
2894
2895         /* Get IO for logical channel parameter address */
2896         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2897         if (!res) {
2898                 ret = -ENOENT;
2899                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2900                 goto failure;
2901         }
2902         base->lcpa_size = resource_size(res);
2903         base->phy_lcpa = res->start;
2904
2905         if (request_mem_region(res->start, resource_size(res),
2906                                D40_NAME " I/O lcpa") == NULL) {
2907                 ret = -EBUSY;
2908                 d40_err(&pdev->dev,
2909                         "Failed to request LCPA region 0x%x-0x%x\n",
2910                         res->start, res->end);
2911                 goto failure;
2912         }
2913
2914         /* We make use of ESRAM memory for this. */
2915         val = readl(base->virtbase + D40_DREG_LCPA);
2916         if (res->start != val && val != 0) {
2917                 dev_warn(&pdev->dev,
2918                          "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2919                          __func__, val, res->start);
2920         } else
2921                 writel(res->start, base->virtbase + D40_DREG_LCPA);
2922
2923         base->lcpa_base = ioremap(res->start, resource_size(res));
2924         if (!base->lcpa_base) {
2925                 ret = -ENOMEM;
2926                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2927                 goto failure;
2928         }
2929
2930         ret = d40_lcla_allocate(base);
2931         if (ret) {
2932                 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2933                 goto failure;
2934         }
2935
2936         spin_lock_init(&base->lcla_pool.lock);
2937
2938         base->irq = platform_get_irq(pdev, 0);
2939
2940         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2941         if (ret) {
2942                 d40_err(&pdev->dev, "No IRQ defined\n");
2943                 goto failure;
2944         }
2945
2946         err = d40_dmaengine_init(base, num_reserved_chans);
2947         if (err)
2948                 goto failure;
2949
2950         d40_hw_init(base);
2951
2952         dev_info(base->dev, "initialized\n");
2953         return 0;
2954
2955 failure:
2956         if (base) {
2957                 if (base->desc_slab)
2958                         kmem_cache_destroy(base->desc_slab);
2959                 if (base->virtbase)
2960                         iounmap(base->virtbase);
2961
2962                 if (base->lcla_pool.dma_addr)
2963                         dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2964                                          SZ_1K * base->num_phy_chans,
2965                                          DMA_TO_DEVICE);
2966
2967                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2968                         free_pages((unsigned long)base->lcla_pool.base,
2969                                    base->lcla_pool.pages);
2970
2971                 kfree(base->lcla_pool.base_unaligned);
2972
2973                 if (base->phy_lcpa)
2974                         release_mem_region(base->phy_lcpa,
2975                                            base->lcpa_size);
2976                 if (base->phy_start)
2977                         release_mem_region(base->phy_start,
2978                                            base->phy_size);
2979                 if (base->clk) {
2980                         clk_disable(base->clk);
2981                         clk_put(base->clk);
2982                 }
2983
2984                 kfree(base->lcla_pool.alloc_map);
2985                 kfree(base->lookup_log_chans);
2986                 kfree(base->lookup_phy_chans);
2987                 kfree(base->phy_res);
2988                 kfree(base);
2989         }
2990
2991         d40_err(&pdev->dev, "probe failed\n");
2992         return ret;
2993 }
2994
2995 static struct platform_driver d40_driver = {
2996         .driver = {
2997                 .owner = THIS_MODULE,
2998                 .name  = D40_NAME,
2999         },
3000 };
3001
3002 static int __init stedma40_init(void)
3003 {
3004         return platform_driver_probe(&d40_driver, d40_probe);
3005 }
3006 subsys_initcall(stedma40_init);