Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/hch/hfsplus
[pandora-kernel.git] / drivers / dma / ste_dma40.c
1 /*
2  * Copyright (C) ST-Ericsson SA 2007-2010
3  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
4  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
5  * License terms: GNU General Public License (GPL) version 2
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/dmaengine.h>
11 #include <linux/platform_device.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/err.h>
15
16 #include <plat/ste_dma40.h>
17
18 #include "ste_dma40_ll.h"
19
20 #define D40_NAME "dma40"
21
22 #define D40_PHY_CHAN -1
23
24 /* For masking out/in 2 bit channel positions */
25 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
26 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
27
28 /* Maximum iterations taken before giving up suspending a channel */
29 #define D40_SUSPEND_MAX_IT 500
30
31 /* Hardware requirement on LCLA alignment */
32 #define LCLA_ALIGNMENT 0x40000
33
34 /* Max number of links per event group */
35 #define D40_LCLA_LINK_PER_EVENT_GRP 128
36 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
37
38 /* Attempts before giving up to trying to get pages that are aligned */
39 #define MAX_LCLA_ALLOC_ATTEMPTS 256
40
41 /* Bit markings for allocation map */
42 #define D40_ALLOC_FREE          (1 << 31)
43 #define D40_ALLOC_PHY           (1 << 30)
44 #define D40_ALLOC_LOG_FREE      0
45
46 /* Hardware designer of the block */
47 #define D40_HW_DESIGNER 0x8
48
49 /**
50  * enum 40_command - The different commands and/or statuses.
51  *
52  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
53  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
54  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
55  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
56  */
57 enum d40_command {
58         D40_DMA_STOP            = 0,
59         D40_DMA_RUN             = 1,
60         D40_DMA_SUSPEND_REQ     = 2,
61         D40_DMA_SUSPENDED       = 3
62 };
63
64 /**
65  * struct d40_lli_pool - Structure for keeping LLIs in memory
66  *
67  * @base: Pointer to memory area when the pre_alloc_lli's are not large
68  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
69  * pre_alloc_lli is used.
70  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
71  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
72  * one buffer to one buffer.
73  */
74 struct d40_lli_pool {
75         void    *base;
76         int      size;
77         /* Space for dst and src, plus an extra for padding */
78         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
79 };
80
81 /**
82  * struct d40_desc - A descriptor is one DMA job.
83  *
84  * @lli_phy: LLI settings for physical channel. Both src and dst=
85  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
86  * lli_len equals one.
87  * @lli_log: Same as above but for logical channels.
88  * @lli_pool: The pool with two entries pre-allocated.
89  * @lli_len: Number of llis of current descriptor.
90  * @lli_current: Number of transfered llis.
91  * @lcla_alloc: Number of LCLA entries allocated.
92  * @txd: DMA engine struct. Used for among other things for communication
93  * during a transfer.
94  * @node: List entry.
95  * @is_in_client_list: true if the client owns this descriptor.
96  * @is_hw_linked: true if this job will automatically be continued for
97  * the previous one.
98  *
99  * This descriptor is used for both logical and physical transfers.
100  */
101 struct d40_desc {
102         /* LLI physical */
103         struct d40_phy_lli_bidir         lli_phy;
104         /* LLI logical */
105         struct d40_log_lli_bidir         lli_log;
106
107         struct d40_lli_pool              lli_pool;
108         int                              lli_len;
109         int                              lli_current;
110         int                              lcla_alloc;
111
112         struct dma_async_tx_descriptor   txd;
113         struct list_head                 node;
114
115         bool                             is_in_client_list;
116         bool                             is_hw_linked;
117 };
118
119 /**
120  * struct d40_lcla_pool - LCLA pool settings and data.
121  *
122  * @base: The virtual address of LCLA. 18 bit aligned.
123  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
124  * This pointer is only there for clean-up on error.
125  * @pages: The number of pages needed for all physical channels.
126  * Only used later for clean-up on error
127  * @lock: Lock to protect the content in this struct.
128  * @alloc_map: big map over which LCLA entry is own by which job.
129  */
130 struct d40_lcla_pool {
131         void            *base;
132         void            *base_unaligned;
133         int              pages;
134         spinlock_t       lock;
135         struct d40_desc **alloc_map;
136 };
137
138 /**
139  * struct d40_phy_res - struct for handling eventlines mapped to physical
140  * channels.
141  *
142  * @lock: A lock protection this entity.
143  * @num: The physical channel number of this entity.
144  * @allocated_src: Bit mapped to show which src event line's are mapped to
145  * this physical channel. Can also be free or physically allocated.
146  * @allocated_dst: Same as for src but is dst.
147  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
148  * event line number.
149  */
150 struct d40_phy_res {
151         spinlock_t lock;
152         int        num;
153         u32        allocated_src;
154         u32        allocated_dst;
155 };
156
157 struct d40_base;
158
159 /**
160  * struct d40_chan - Struct that describes a channel.
161  *
162  * @lock: A spinlock to protect this struct.
163  * @log_num: The logical number, if any of this channel.
164  * @completed: Starts with 1, after first interrupt it is set to dma engine's
165  * current cookie.
166  * @pending_tx: The number of pending transfers. Used between interrupt handler
167  * and tasklet.
168  * @busy: Set to true when transfer is ongoing on this channel.
169  * @phy_chan: Pointer to physical channel which this instance runs on. If this
170  * point is NULL, then the channel is not allocated.
171  * @chan: DMA engine handle.
172  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
173  * transfer and call client callback.
174  * @client: Cliented owned descriptor list.
175  * @active: Active descriptor.
176  * @queue: Queued jobs.
177  * @dma_cfg: The client configuration of this dma channel.
178  * @configured: whether the dma_cfg configuration is valid
179  * @base: Pointer to the device instance struct.
180  * @src_def_cfg: Default cfg register setting for src.
181  * @dst_def_cfg: Default cfg register setting for dst.
182  * @log_def: Default logical channel settings.
183  * @lcla: Space for one dst src pair for logical channel transfers.
184  * @lcpa: Pointer to dst and src lcpa settings.
185  *
186  * This struct can either "be" a logical or a physical channel.
187  */
188 struct d40_chan {
189         spinlock_t                       lock;
190         int                              log_num;
191         /* ID of the most recent completed transfer */
192         int                              completed;
193         int                              pending_tx;
194         bool                             busy;
195         struct d40_phy_res              *phy_chan;
196         struct dma_chan                  chan;
197         struct tasklet_struct            tasklet;
198         struct list_head                 client;
199         struct list_head                 active;
200         struct list_head                 queue;
201         struct stedma40_chan_cfg         dma_cfg;
202         bool                             configured;
203         struct d40_base                 *base;
204         /* Default register configurations */
205         u32                              src_def_cfg;
206         u32                              dst_def_cfg;
207         struct d40_def_lcsp              log_def;
208         struct d40_log_lli_full         *lcpa;
209         /* Runtime reconfiguration */
210         dma_addr_t                      runtime_addr;
211         enum dma_data_direction         runtime_direction;
212 };
213
214 /**
215  * struct d40_base - The big global struct, one for each probe'd instance.
216  *
217  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
218  * @execmd_lock: Lock for execute command usage since several channels share
219  * the same physical register.
220  * @dev: The device structure.
221  * @virtbase: The virtual base address of the DMA's register.
222  * @rev: silicon revision detected.
223  * @clk: Pointer to the DMA clock structure.
224  * @phy_start: Physical memory start of the DMA registers.
225  * @phy_size: Size of the DMA register map.
226  * @irq: The IRQ number.
227  * @num_phy_chans: The number of physical channels. Read from HW. This
228  * is the number of available channels for this driver, not counting "Secure
229  * mode" allocated physical channels.
230  * @num_log_chans: The number of logical channels. Calculated from
231  * num_phy_chans.
232  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
233  * @dma_slave: dma_device channels that can do only do slave transfers.
234  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
235  * @log_chans: Room for all possible logical channels in system.
236  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
237  * to log_chans entries.
238  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
239  * to phy_chans entries.
240  * @plat_data: Pointer to provided platform_data which is the driver
241  * configuration.
242  * @phy_res: Vector containing all physical channels.
243  * @lcla_pool: lcla pool settings and data.
244  * @lcpa_base: The virtual mapped address of LCPA.
245  * @phy_lcpa: The physical address of the LCPA.
246  * @lcpa_size: The size of the LCPA area.
247  * @desc_slab: cache for descriptors.
248  */
249 struct d40_base {
250         spinlock_t                       interrupt_lock;
251         spinlock_t                       execmd_lock;
252         struct device                    *dev;
253         void __iomem                     *virtbase;
254         u8                                rev:4;
255         struct clk                       *clk;
256         phys_addr_t                       phy_start;
257         resource_size_t                   phy_size;
258         int                               irq;
259         int                               num_phy_chans;
260         int                               num_log_chans;
261         struct dma_device                 dma_both;
262         struct dma_device                 dma_slave;
263         struct dma_device                 dma_memcpy;
264         struct d40_chan                  *phy_chans;
265         struct d40_chan                  *log_chans;
266         struct d40_chan                 **lookup_log_chans;
267         struct d40_chan                 **lookup_phy_chans;
268         struct stedma40_platform_data    *plat_data;
269         /* Physical half channels */
270         struct d40_phy_res               *phy_res;
271         struct d40_lcla_pool              lcla_pool;
272         void                             *lcpa_base;
273         dma_addr_t                        phy_lcpa;
274         resource_size_t                   lcpa_size;
275         struct kmem_cache                *desc_slab;
276 };
277
278 /**
279  * struct d40_interrupt_lookup - lookup table for interrupt handler
280  *
281  * @src: Interrupt mask register.
282  * @clr: Interrupt clear register.
283  * @is_error: true if this is an error interrupt.
284  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
285  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
286  */
287 struct d40_interrupt_lookup {
288         u32 src;
289         u32 clr;
290         bool is_error;
291         int offset;
292 };
293
294 /**
295  * struct d40_reg_val - simple lookup struct
296  *
297  * @reg: The register.
298  * @val: The value that belongs to the register in reg.
299  */
300 struct d40_reg_val {
301         unsigned int reg;
302         unsigned int val;
303 };
304
305 static int d40_pool_lli_alloc(struct d40_desc *d40d,
306                               int lli_len, bool is_log)
307 {
308         u32 align;
309         void *base;
310
311         if (is_log)
312                 align = sizeof(struct d40_log_lli);
313         else
314                 align = sizeof(struct d40_phy_lli);
315
316         if (lli_len == 1) {
317                 base = d40d->lli_pool.pre_alloc_lli;
318                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
319                 d40d->lli_pool.base = NULL;
320         } else {
321                 d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
322
323                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
324                 d40d->lli_pool.base = base;
325
326                 if (d40d->lli_pool.base == NULL)
327                         return -ENOMEM;
328         }
329
330         if (is_log) {
331                 d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
332                                               align);
333                 d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
334                                               align);
335         } else {
336                 d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
337                                               align);
338                 d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
339                                               align);
340         }
341
342         return 0;
343 }
344
345 static void d40_pool_lli_free(struct d40_desc *d40d)
346 {
347         kfree(d40d->lli_pool.base);
348         d40d->lli_pool.base = NULL;
349         d40d->lli_pool.size = 0;
350         d40d->lli_log.src = NULL;
351         d40d->lli_log.dst = NULL;
352         d40d->lli_phy.src = NULL;
353         d40d->lli_phy.dst = NULL;
354 }
355
356 static int d40_lcla_alloc_one(struct d40_chan *d40c,
357                               struct d40_desc *d40d)
358 {
359         unsigned long flags;
360         int i;
361         int ret = -EINVAL;
362         int p;
363
364         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
365
366         p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
367
368         /*
369          * Allocate both src and dst at the same time, therefore the half
370          * start on 1 since 0 can't be used since zero is used as end marker.
371          */
372         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
373                 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
374                         d40c->base->lcla_pool.alloc_map[p + i] = d40d;
375                         d40d->lcla_alloc++;
376                         ret = i;
377                         break;
378                 }
379         }
380
381         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
382
383         return ret;
384 }
385
386 static int d40_lcla_free_all(struct d40_chan *d40c,
387                              struct d40_desc *d40d)
388 {
389         unsigned long flags;
390         int i;
391         int ret = -EINVAL;
392
393         if (d40c->log_num == D40_PHY_CHAN)
394                 return 0;
395
396         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
397
398         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
399                 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
400                                                     D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
401                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
402                                                         D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
403                         d40d->lcla_alloc--;
404                         if (d40d->lcla_alloc == 0) {
405                                 ret = 0;
406                                 break;
407                         }
408                 }
409         }
410
411         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
412
413         return ret;
414
415 }
416
417 static void d40_desc_remove(struct d40_desc *d40d)
418 {
419         list_del(&d40d->node);
420 }
421
422 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
423 {
424         struct d40_desc *desc = NULL;
425
426         if (!list_empty(&d40c->client)) {
427                 struct d40_desc *d;
428                 struct d40_desc *_d;
429
430                 list_for_each_entry_safe(d, _d, &d40c->client, node)
431                         if (async_tx_test_ack(&d->txd)) {
432                                 d40_pool_lli_free(d);
433                                 d40_desc_remove(d);
434                                 desc = d;
435                                 memset(desc, 0, sizeof(*desc));
436                                 break;
437                         }
438         }
439
440         if (!desc)
441                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
442
443         if (desc)
444                 INIT_LIST_HEAD(&desc->node);
445
446         return desc;
447 }
448
449 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
450 {
451
452         d40_lcla_free_all(d40c, d40d);
453         kmem_cache_free(d40c->base->desc_slab, d40d);
454 }
455
456 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
457 {
458         list_add_tail(&desc->node, &d40c->active);
459 }
460
461 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
462 {
463         int curr_lcla = -EINVAL, next_lcla;
464
465         if (d40c->log_num == D40_PHY_CHAN) {
466                 d40_phy_lli_write(d40c->base->virtbase,
467                                   d40c->phy_chan->num,
468                                   d40d->lli_phy.dst,
469                                   d40d->lli_phy.src);
470                 d40d->lli_current = d40d->lli_len;
471         } else {
472
473                 if ((d40d->lli_len - d40d->lli_current) > 1)
474                         curr_lcla = d40_lcla_alloc_one(d40c, d40d);
475
476                 d40_log_lli_lcpa_write(d40c->lcpa,
477                                        &d40d->lli_log.dst[d40d->lli_current],
478                                        &d40d->lli_log.src[d40d->lli_current],
479                                        curr_lcla);
480
481                 d40d->lli_current++;
482                 for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
483                         struct d40_log_lli *lcla;
484
485                         if (d40d->lli_current + 1 < d40d->lli_len)
486                                 next_lcla = d40_lcla_alloc_one(d40c, d40d);
487                         else
488                                 next_lcla = -EINVAL;
489
490                         lcla = d40c->base->lcla_pool.base +
491                                 d40c->phy_chan->num * 1024 +
492                                 8 * curr_lcla * 2;
493
494                         d40_log_lli_lcla_write(lcla,
495                                                &d40d->lli_log.dst[d40d->lli_current],
496                                                &d40d->lli_log.src[d40d->lli_current],
497                                                next_lcla);
498
499                         (void) dma_map_single(d40c->base->dev, lcla,
500                                               2 * sizeof(struct d40_log_lli),
501                                               DMA_TO_DEVICE);
502
503                         curr_lcla = next_lcla;
504
505                         if (curr_lcla == -EINVAL) {
506                                 d40d->lli_current++;
507                                 break;
508                         }
509
510                 }
511         }
512 }
513
514 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
515 {
516         struct d40_desc *d;
517
518         if (list_empty(&d40c->active))
519                 return NULL;
520
521         d = list_first_entry(&d40c->active,
522                              struct d40_desc,
523                              node);
524         return d;
525 }
526
527 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
528 {
529         list_add_tail(&desc->node, &d40c->queue);
530 }
531
532 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
533 {
534         struct d40_desc *d;
535
536         if (list_empty(&d40c->queue))
537                 return NULL;
538
539         d = list_first_entry(&d40c->queue,
540                              struct d40_desc,
541                              node);
542         return d;
543 }
544
545 static struct d40_desc *d40_last_queued(struct d40_chan *d40c)
546 {
547         struct d40_desc *d;
548
549         if (list_empty(&d40c->queue))
550                 return NULL;
551         list_for_each_entry(d, &d40c->queue, node)
552                 if (list_is_last(&d->node, &d40c->queue))
553                         break;
554         return d;
555 }
556
557 /* Support functions for logical channels */
558
559
560 static int d40_channel_execute_command(struct d40_chan *d40c,
561                                        enum d40_command command)
562 {
563         u32 status;
564         int i;
565         void __iomem *active_reg;
566         int ret = 0;
567         unsigned long flags;
568         u32 wmask;
569
570         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
571
572         if (d40c->phy_chan->num % 2 == 0)
573                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
574         else
575                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
576
577         if (command == D40_DMA_SUSPEND_REQ) {
578                 status = (readl(active_reg) &
579                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
580                         D40_CHAN_POS(d40c->phy_chan->num);
581
582                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
583                         goto done;
584         }
585
586         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
587         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
588                active_reg);
589
590         if (command == D40_DMA_SUSPEND_REQ) {
591
592                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
593                         status = (readl(active_reg) &
594                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
595                                 D40_CHAN_POS(d40c->phy_chan->num);
596
597                         cpu_relax();
598                         /*
599                          * Reduce the number of bus accesses while
600                          * waiting for the DMA to suspend.
601                          */
602                         udelay(3);
603
604                         if (status == D40_DMA_STOP ||
605                             status == D40_DMA_SUSPENDED)
606                                 break;
607                 }
608
609                 if (i == D40_SUSPEND_MAX_IT) {
610                         dev_err(&d40c->chan.dev->device,
611                                 "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
612                                 __func__, d40c->phy_chan->num, d40c->log_num,
613                                 status);
614                         dump_stack();
615                         ret = -EBUSY;
616                 }
617
618         }
619 done:
620         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
621         return ret;
622 }
623
624 static void d40_term_all(struct d40_chan *d40c)
625 {
626         struct d40_desc *d40d;
627
628         /* Release active descriptors */
629         while ((d40d = d40_first_active_get(d40c))) {
630                 d40_desc_remove(d40d);
631                 d40_desc_free(d40c, d40d);
632         }
633
634         /* Release queued descriptors waiting for transfer */
635         while ((d40d = d40_first_queued(d40c))) {
636                 d40_desc_remove(d40d);
637                 d40_desc_free(d40c, d40d);
638         }
639
640
641         d40c->pending_tx = 0;
642         d40c->busy = false;
643 }
644
645 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
646 {
647         u32 val;
648         unsigned long flags;
649
650         /* Notice, that disable requires the physical channel to be stopped */
651         if (do_enable)
652                 val = D40_ACTIVATE_EVENTLINE;
653         else
654                 val = D40_DEACTIVATE_EVENTLINE;
655
656         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
657
658         /* Enable event line connected to device (or memcpy) */
659         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
660             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
661                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
662
663                 writel((val << D40_EVENTLINE_POS(event)) |
664                        ~D40_EVENTLINE_MASK(event),
665                        d40c->base->virtbase + D40_DREG_PCBASE +
666                        d40c->phy_chan->num * D40_DREG_PCDELTA +
667                        D40_CHAN_REG_SSLNK);
668         }
669         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
670                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
671
672                 writel((val << D40_EVENTLINE_POS(event)) |
673                        ~D40_EVENTLINE_MASK(event),
674                        d40c->base->virtbase + D40_DREG_PCBASE +
675                        d40c->phy_chan->num * D40_DREG_PCDELTA +
676                        D40_CHAN_REG_SDLNK);
677         }
678
679         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
680 }
681
682 static u32 d40_chan_has_events(struct d40_chan *d40c)
683 {
684         u32 val;
685
686         val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
687                     d40c->phy_chan->num * D40_DREG_PCDELTA +
688                     D40_CHAN_REG_SSLNK);
689
690         val |= readl(d40c->base->virtbase + D40_DREG_PCBASE +
691                      d40c->phy_chan->num * D40_DREG_PCDELTA +
692                      D40_CHAN_REG_SDLNK);
693         return val;
694 }
695
696 static u32 d40_get_prmo(struct d40_chan *d40c)
697 {
698         static const unsigned int phy_map[] = {
699                 [STEDMA40_PCHAN_BASIC_MODE]
700                         = D40_DREG_PRMO_PCHAN_BASIC,
701                 [STEDMA40_PCHAN_MODULO_MODE]
702                         = D40_DREG_PRMO_PCHAN_MODULO,
703                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
704                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
705         };
706         static const unsigned int log_map[] = {
707                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
708                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
709                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
710                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
711                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
712                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
713         };
714
715         if (d40c->log_num == D40_PHY_CHAN)
716                 return phy_map[d40c->dma_cfg.mode_opt];
717         else
718                 return log_map[d40c->dma_cfg.mode_opt];
719 }
720
721 static void d40_config_write(struct d40_chan *d40c)
722 {
723         u32 addr_base;
724         u32 var;
725
726         /* Odd addresses are even addresses + 4 */
727         addr_base = (d40c->phy_chan->num % 2) * 4;
728         /* Setup channel mode to logical or physical */
729         var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
730                 D40_CHAN_POS(d40c->phy_chan->num);
731         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
732
733         /* Setup operational mode option register */
734         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
735
736         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
737
738         if (d40c->log_num != D40_PHY_CHAN) {
739                 /* Set default config for CFG reg */
740                 writel(d40c->src_def_cfg,
741                        d40c->base->virtbase + D40_DREG_PCBASE +
742                        d40c->phy_chan->num * D40_DREG_PCDELTA +
743                        D40_CHAN_REG_SSCFG);
744                 writel(d40c->dst_def_cfg,
745                        d40c->base->virtbase + D40_DREG_PCBASE +
746                        d40c->phy_chan->num * D40_DREG_PCDELTA +
747                        D40_CHAN_REG_SDCFG);
748
749                 /* Set LIDX for lcla */
750                 writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
751                        D40_SREG_ELEM_LOG_LIDX_MASK,
752                        d40c->base->virtbase + D40_DREG_PCBASE +
753                        d40c->phy_chan->num * D40_DREG_PCDELTA +
754                        D40_CHAN_REG_SDELT);
755
756                 writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
757                        D40_SREG_ELEM_LOG_LIDX_MASK,
758                        d40c->base->virtbase + D40_DREG_PCBASE +
759                        d40c->phy_chan->num * D40_DREG_PCDELTA +
760                        D40_CHAN_REG_SSELT);
761
762         }
763 }
764
765 static u32 d40_residue(struct d40_chan *d40c)
766 {
767         u32 num_elt;
768
769         if (d40c->log_num != D40_PHY_CHAN)
770                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
771                         >> D40_MEM_LCSP2_ECNT_POS;
772         else
773                 num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
774                                  d40c->phy_chan->num * D40_DREG_PCDELTA +
775                                  D40_CHAN_REG_SDELT) &
776                            D40_SREG_ELEM_PHY_ECNT_MASK) >>
777                         D40_SREG_ELEM_PHY_ECNT_POS;
778         return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
779 }
780
781 static bool d40_tx_is_linked(struct d40_chan *d40c)
782 {
783         bool is_link;
784
785         if (d40c->log_num != D40_PHY_CHAN)
786                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
787         else
788                 is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
789                                 d40c->phy_chan->num * D40_DREG_PCDELTA +
790                                 D40_CHAN_REG_SDLNK) &
791                         D40_SREG_LNK_PHYS_LNK_MASK;
792         return is_link;
793 }
794
795 static int d40_pause(struct dma_chan *chan)
796 {
797         struct d40_chan *d40c =
798                 container_of(chan, struct d40_chan, chan);
799         int res = 0;
800         unsigned long flags;
801
802         if (!d40c->busy)
803                 return 0;
804
805         spin_lock_irqsave(&d40c->lock, flags);
806
807         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
808         if (res == 0) {
809                 if (d40c->log_num != D40_PHY_CHAN) {
810                         d40_config_set_event(d40c, false);
811                         /* Resume the other logical channels if any */
812                         if (d40_chan_has_events(d40c))
813                                 res = d40_channel_execute_command(d40c,
814                                                                   D40_DMA_RUN);
815                 }
816         }
817
818         spin_unlock_irqrestore(&d40c->lock, flags);
819         return res;
820 }
821
822 static int d40_resume(struct dma_chan *chan)
823 {
824         struct d40_chan *d40c =
825                 container_of(chan, struct d40_chan, chan);
826         int res = 0;
827         unsigned long flags;
828
829         if (!d40c->busy)
830                 return 0;
831
832         spin_lock_irqsave(&d40c->lock, flags);
833
834         if (d40c->base->rev == 0)
835                 if (d40c->log_num != D40_PHY_CHAN) {
836                         res = d40_channel_execute_command(d40c,
837                                                           D40_DMA_SUSPEND_REQ);
838                         goto no_suspend;
839                 }
840
841         /* If bytes left to transfer or linked tx resume job */
842         if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
843
844                 if (d40c->log_num != D40_PHY_CHAN)
845                         d40_config_set_event(d40c, true);
846
847                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
848         }
849
850 no_suspend:
851         spin_unlock_irqrestore(&d40c->lock, flags);
852         return res;
853 }
854
855 static void d40_tx_submit_log(struct d40_chan *d40c, struct d40_desc *d40d)
856 {
857         /* TODO: Write */
858 }
859
860 static void d40_tx_submit_phy(struct d40_chan *d40c, struct d40_desc *d40d)
861 {
862         struct d40_desc *d40d_prev = NULL;
863         int i;
864         u32 val;
865
866         if (!list_empty(&d40c->queue))
867                 d40d_prev = d40_last_queued(d40c);
868         else if (!list_empty(&d40c->active))
869                 d40d_prev = d40_first_active_get(d40c);
870
871         if (!d40d_prev)
872                 return;
873
874         /* Here we try to join this job with previous jobs */
875         val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
876                     d40c->phy_chan->num * D40_DREG_PCDELTA +
877                     D40_CHAN_REG_SSLNK);
878
879         /* Figure out which link we're currently transmitting */
880         for (i = 0; i < d40d_prev->lli_len; i++)
881                 if (val == d40d_prev->lli_phy.src[i].reg_lnk)
882                         break;
883
884         val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
885                     d40c->phy_chan->num * D40_DREG_PCDELTA +
886                     D40_CHAN_REG_SSELT) >> D40_SREG_ELEM_LOG_ECNT_POS;
887
888         if (i == (d40d_prev->lli_len - 1) && val > 0) {
889                 /* Change the current one */
890                 writel(virt_to_phys(d40d->lli_phy.src),
891                        d40c->base->virtbase + D40_DREG_PCBASE +
892                        d40c->phy_chan->num * D40_DREG_PCDELTA +
893                        D40_CHAN_REG_SSLNK);
894                 writel(virt_to_phys(d40d->lli_phy.dst),
895                        d40c->base->virtbase + D40_DREG_PCBASE +
896                        d40c->phy_chan->num * D40_DREG_PCDELTA +
897                        D40_CHAN_REG_SDLNK);
898
899                 d40d->is_hw_linked = true;
900
901         } else if (i < d40d_prev->lli_len) {
902                 (void) dma_unmap_single(d40c->base->dev,
903                                         virt_to_phys(d40d_prev->lli_phy.src),
904                                         d40d_prev->lli_pool.size,
905                                         DMA_TO_DEVICE);
906
907                 /* Keep the settings */
908                 val = d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk &
909                         ~D40_SREG_LNK_PHYS_LNK_MASK;
910                 d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk =
911                         val | virt_to_phys(d40d->lli_phy.src);
912
913                 val = d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk &
914                         ~D40_SREG_LNK_PHYS_LNK_MASK;
915                 d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk =
916                         val | virt_to_phys(d40d->lli_phy.dst);
917
918                 (void) dma_map_single(d40c->base->dev,
919                                       d40d_prev->lli_phy.src,
920                                       d40d_prev->lli_pool.size,
921                                       DMA_TO_DEVICE);
922                 d40d->is_hw_linked = true;
923         }
924 }
925
926 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
927 {
928         struct d40_chan *d40c = container_of(tx->chan,
929                                              struct d40_chan,
930                                              chan);
931         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
932         unsigned long flags;
933
934         (void) d40_pause(&d40c->chan);
935
936         spin_lock_irqsave(&d40c->lock, flags);
937
938         d40c->chan.cookie++;
939
940         if (d40c->chan.cookie < 0)
941                 d40c->chan.cookie = 1;
942
943         d40d->txd.cookie = d40c->chan.cookie;
944
945         if (d40c->log_num == D40_PHY_CHAN)
946                 d40_tx_submit_phy(d40c, d40d);
947         else
948                 d40_tx_submit_log(d40c, d40d);
949
950         d40_desc_queue(d40c, d40d);
951
952         spin_unlock_irqrestore(&d40c->lock, flags);
953
954         (void) d40_resume(&d40c->chan);
955
956         return tx->cookie;
957 }
958
959 static int d40_start(struct d40_chan *d40c)
960 {
961         if (d40c->base->rev == 0) {
962                 int err;
963
964                 if (d40c->log_num != D40_PHY_CHAN) {
965                         err = d40_channel_execute_command(d40c,
966                                                           D40_DMA_SUSPEND_REQ);
967                         if (err)
968                                 return err;
969                 }
970         }
971
972         if (d40c->log_num != D40_PHY_CHAN)
973                 d40_config_set_event(d40c, true);
974
975         return d40_channel_execute_command(d40c, D40_DMA_RUN);
976 }
977
978 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
979 {
980         struct d40_desc *d40d;
981         int err;
982
983         /* Start queued jobs, if any */
984         d40d = d40_first_queued(d40c);
985
986         if (d40d != NULL) {
987                 d40c->busy = true;
988
989                 /* Remove from queue */
990                 d40_desc_remove(d40d);
991
992                 /* Add to active queue */
993                 d40_desc_submit(d40c, d40d);
994
995                 /*
996                  * If this job is already linked in hw,
997                  * do not submit it.
998                  */
999
1000                 if (!d40d->is_hw_linked) {
1001                         /* Initiate DMA job */
1002                         d40_desc_load(d40c, d40d);
1003
1004                         /* Start dma job */
1005                         err = d40_start(d40c);
1006
1007                         if (err)
1008                                 return NULL;
1009                 }
1010         }
1011
1012         return d40d;
1013 }
1014
1015 /* called from interrupt context */
1016 static void dma_tc_handle(struct d40_chan *d40c)
1017 {
1018         struct d40_desc *d40d;
1019
1020         /* Get first active entry from list */
1021         d40d = d40_first_active_get(d40c);
1022
1023         if (d40d == NULL)
1024                 return;
1025
1026         d40_lcla_free_all(d40c, d40d);
1027
1028         if (d40d->lli_current < d40d->lli_len) {
1029                 d40_desc_load(d40c, d40d);
1030                 /* Start dma job */
1031                 (void) d40_start(d40c);
1032                 return;
1033         }
1034
1035         if (d40_queue_start(d40c) == NULL)
1036                 d40c->busy = false;
1037
1038         d40c->pending_tx++;
1039         tasklet_schedule(&d40c->tasklet);
1040
1041 }
1042
1043 static void dma_tasklet(unsigned long data)
1044 {
1045         struct d40_chan *d40c = (struct d40_chan *) data;
1046         struct d40_desc *d40d;
1047         unsigned long flags;
1048         dma_async_tx_callback callback;
1049         void *callback_param;
1050
1051         spin_lock_irqsave(&d40c->lock, flags);
1052
1053         /* Get first active entry from list */
1054         d40d = d40_first_active_get(d40c);
1055
1056         if (d40d == NULL)
1057                 goto err;
1058
1059         d40c->completed = d40d->txd.cookie;
1060
1061         /*
1062          * If terminating a channel pending_tx is set to zero.
1063          * This prevents any finished active jobs to return to the client.
1064          */
1065         if (d40c->pending_tx == 0) {
1066                 spin_unlock_irqrestore(&d40c->lock, flags);
1067                 return;
1068         }
1069
1070         /* Callback to client */
1071         callback = d40d->txd.callback;
1072         callback_param = d40d->txd.callback_param;
1073
1074         if (async_tx_test_ack(&d40d->txd)) {
1075                 d40_pool_lli_free(d40d);
1076                 d40_desc_remove(d40d);
1077                 d40_desc_free(d40c, d40d);
1078         } else {
1079                 if (!d40d->is_in_client_list) {
1080                         d40_desc_remove(d40d);
1081                         d40_lcla_free_all(d40c, d40d);
1082                         list_add_tail(&d40d->node, &d40c->client);
1083                         d40d->is_in_client_list = true;
1084                 }
1085         }
1086
1087         d40c->pending_tx--;
1088
1089         if (d40c->pending_tx)
1090                 tasklet_schedule(&d40c->tasklet);
1091
1092         spin_unlock_irqrestore(&d40c->lock, flags);
1093
1094         if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1095                 callback(callback_param);
1096
1097         return;
1098
1099  err:
1100         /* Rescue manouver if receiving double interrupts */
1101         if (d40c->pending_tx > 0)
1102                 d40c->pending_tx--;
1103         spin_unlock_irqrestore(&d40c->lock, flags);
1104 }
1105
1106 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1107 {
1108         static const struct d40_interrupt_lookup il[] = {
1109                 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1110                 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1111                 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1112                 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1113                 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1114                 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1115                 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1116                 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1117                 {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1118                 {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1119         };
1120
1121         int i;
1122         u32 regs[ARRAY_SIZE(il)];
1123         u32 idx;
1124         u32 row;
1125         long chan = -1;
1126         struct d40_chan *d40c;
1127         unsigned long flags;
1128         struct d40_base *base = data;
1129
1130         spin_lock_irqsave(&base->interrupt_lock, flags);
1131
1132         /* Read interrupt status of both logical and physical channels */
1133         for (i = 0; i < ARRAY_SIZE(il); i++)
1134                 regs[i] = readl(base->virtbase + il[i].src);
1135
1136         for (;;) {
1137
1138                 chan = find_next_bit((unsigned long *)regs,
1139                                      BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1140
1141                 /* No more set bits found? */
1142                 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1143                         break;
1144
1145                 row = chan / BITS_PER_LONG;
1146                 idx = chan & (BITS_PER_LONG - 1);
1147
1148                 /* ACK interrupt */
1149                 writel(1 << idx, base->virtbase + il[row].clr);
1150
1151                 if (il[row].offset == D40_PHY_CHAN)
1152                         d40c = base->lookup_phy_chans[idx];
1153                 else
1154                         d40c = base->lookup_log_chans[il[row].offset + idx];
1155                 spin_lock(&d40c->lock);
1156
1157                 if (!il[row].is_error)
1158                         dma_tc_handle(d40c);
1159                 else
1160                         dev_err(base->dev,
1161                                 "[%s] IRQ chan: %ld offset %d idx %d\n",
1162                                 __func__, chan, il[row].offset, idx);
1163
1164                 spin_unlock(&d40c->lock);
1165         }
1166
1167         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1168
1169         return IRQ_HANDLED;
1170 }
1171
1172 static int d40_validate_conf(struct d40_chan *d40c,
1173                              struct stedma40_chan_cfg *conf)
1174 {
1175         int res = 0;
1176         u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1177         u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1178         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1179
1180         if (!conf->dir) {
1181                 dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
1182                         __func__);
1183                 res = -EINVAL;
1184         }
1185
1186         if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1187             d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1188             d40c->runtime_addr == 0) {
1189
1190                 dev_err(&d40c->chan.dev->device,
1191                         "[%s] Invalid TX channel address (%d)\n",
1192                         __func__, conf->dst_dev_type);
1193                 res = -EINVAL;
1194         }
1195
1196         if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1197             d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1198             d40c->runtime_addr == 0) {
1199                 dev_err(&d40c->chan.dev->device,
1200                         "[%s] Invalid RX channel address (%d)\n",
1201                         __func__, conf->src_dev_type);
1202                 res = -EINVAL;
1203         }
1204
1205         if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1206             dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1207                 dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
1208                         __func__);
1209                 res = -EINVAL;
1210         }
1211
1212         if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1213             src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1214                 dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
1215                         __func__);
1216                 res = -EINVAL;
1217         }
1218
1219         if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1220             dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1221                 dev_err(&d40c->chan.dev->device,
1222                         "[%s] No event line\n", __func__);
1223                 res = -EINVAL;
1224         }
1225
1226         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1227             (src_event_group != dst_event_group)) {
1228                 dev_err(&d40c->chan.dev->device,
1229                         "[%s] Invalid event group\n", __func__);
1230                 res = -EINVAL;
1231         }
1232
1233         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1234                 /*
1235                  * DMAC HW supports it. Will be added to this driver,
1236                  * in case any dma client requires it.
1237                  */
1238                 dev_err(&d40c->chan.dev->device,
1239                         "[%s] periph to periph not supported\n",
1240                         __func__);
1241                 res = -EINVAL;
1242         }
1243
1244         return res;
1245 }
1246
1247 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1248                                int log_event_line, bool is_log)
1249 {
1250         unsigned long flags;
1251         spin_lock_irqsave(&phy->lock, flags);
1252         if (!is_log) {
1253                 /* Physical interrupts are masked per physical full channel */
1254                 if (phy->allocated_src == D40_ALLOC_FREE &&
1255                     phy->allocated_dst == D40_ALLOC_FREE) {
1256                         phy->allocated_dst = D40_ALLOC_PHY;
1257                         phy->allocated_src = D40_ALLOC_PHY;
1258                         goto found;
1259                 } else
1260                         goto not_found;
1261         }
1262
1263         /* Logical channel */
1264         if (is_src) {
1265                 if (phy->allocated_src == D40_ALLOC_PHY)
1266                         goto not_found;
1267
1268                 if (phy->allocated_src == D40_ALLOC_FREE)
1269                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1270
1271                 if (!(phy->allocated_src & (1 << log_event_line))) {
1272                         phy->allocated_src |= 1 << log_event_line;
1273                         goto found;
1274                 } else
1275                         goto not_found;
1276         } else {
1277                 if (phy->allocated_dst == D40_ALLOC_PHY)
1278                         goto not_found;
1279
1280                 if (phy->allocated_dst == D40_ALLOC_FREE)
1281                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1282
1283                 if (!(phy->allocated_dst & (1 << log_event_line))) {
1284                         phy->allocated_dst |= 1 << log_event_line;
1285                         goto found;
1286                 } else
1287                         goto not_found;
1288         }
1289
1290 not_found:
1291         spin_unlock_irqrestore(&phy->lock, flags);
1292         return false;
1293 found:
1294         spin_unlock_irqrestore(&phy->lock, flags);
1295         return true;
1296 }
1297
1298 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1299                                int log_event_line)
1300 {
1301         unsigned long flags;
1302         bool is_free = false;
1303
1304         spin_lock_irqsave(&phy->lock, flags);
1305         if (!log_event_line) {
1306                 phy->allocated_dst = D40_ALLOC_FREE;
1307                 phy->allocated_src = D40_ALLOC_FREE;
1308                 is_free = true;
1309                 goto out;
1310         }
1311
1312         /* Logical channel */
1313         if (is_src) {
1314                 phy->allocated_src &= ~(1 << log_event_line);
1315                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1316                         phy->allocated_src = D40_ALLOC_FREE;
1317         } else {
1318                 phy->allocated_dst &= ~(1 << log_event_line);
1319                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1320                         phy->allocated_dst = D40_ALLOC_FREE;
1321         }
1322
1323         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1324                    D40_ALLOC_FREE);
1325
1326 out:
1327         spin_unlock_irqrestore(&phy->lock, flags);
1328
1329         return is_free;
1330 }
1331
1332 static int d40_allocate_channel(struct d40_chan *d40c)
1333 {
1334         int dev_type;
1335         int event_group;
1336         int event_line;
1337         struct d40_phy_res *phys;
1338         int i;
1339         int j;
1340         int log_num;
1341         bool is_src;
1342         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1343
1344         phys = d40c->base->phy_res;
1345
1346         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1347                 dev_type = d40c->dma_cfg.src_dev_type;
1348                 log_num = 2 * dev_type;
1349                 is_src = true;
1350         } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1351                    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1352                 /* dst event lines are used for logical memcpy */
1353                 dev_type = d40c->dma_cfg.dst_dev_type;
1354                 log_num = 2 * dev_type + 1;
1355                 is_src = false;
1356         } else
1357                 return -EINVAL;
1358
1359         event_group = D40_TYPE_TO_GROUP(dev_type);
1360         event_line = D40_TYPE_TO_EVENT(dev_type);
1361
1362         if (!is_log) {
1363                 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1364                         /* Find physical half channel */
1365                         for (i = 0; i < d40c->base->num_phy_chans; i++) {
1366
1367                                 if (d40_alloc_mask_set(&phys[i], is_src,
1368                                                        0, is_log))
1369                                         goto found_phy;
1370                         }
1371                 } else
1372                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1373                                 int phy_num = j  + event_group * 2;
1374                                 for (i = phy_num; i < phy_num + 2; i++) {
1375                                         if (d40_alloc_mask_set(&phys[i],
1376                                                                is_src,
1377                                                                0,
1378                                                                is_log))
1379                                                 goto found_phy;
1380                                 }
1381                         }
1382                 return -EINVAL;
1383 found_phy:
1384                 d40c->phy_chan = &phys[i];
1385                 d40c->log_num = D40_PHY_CHAN;
1386                 goto out;
1387         }
1388         if (dev_type == -1)
1389                 return -EINVAL;
1390
1391         /* Find logical channel */
1392         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1393                 int phy_num = j + event_group * 2;
1394                 /*
1395                  * Spread logical channels across all available physical rather
1396                  * than pack every logical channel at the first available phy
1397                  * channels.
1398                  */
1399                 if (is_src) {
1400                         for (i = phy_num; i < phy_num + 2; i++) {
1401                                 if (d40_alloc_mask_set(&phys[i], is_src,
1402                                                        event_line, is_log))
1403                                         goto found_log;
1404                         }
1405                 } else {
1406                         for (i = phy_num + 1; i >= phy_num; i--) {
1407                                 if (d40_alloc_mask_set(&phys[i], is_src,
1408                                                        event_line, is_log))
1409                                         goto found_log;
1410                         }
1411                 }
1412         }
1413         return -EINVAL;
1414
1415 found_log:
1416         d40c->phy_chan = &phys[i];
1417         d40c->log_num = log_num;
1418 out:
1419
1420         if (is_log)
1421                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1422         else
1423                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1424
1425         return 0;
1426
1427 }
1428
1429 static int d40_config_memcpy(struct d40_chan *d40c)
1430 {
1431         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1432
1433         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1434                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1435                 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1436                 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1437                         memcpy[d40c->chan.chan_id];
1438
1439         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1440                    dma_has_cap(DMA_SLAVE, cap)) {
1441                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1442         } else {
1443                 dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
1444                         __func__);
1445                 return -EINVAL;
1446         }
1447
1448         return 0;
1449 }
1450
1451
1452 static int d40_free_dma(struct d40_chan *d40c)
1453 {
1454
1455         int res = 0;
1456         u32 event;
1457         struct d40_phy_res *phy = d40c->phy_chan;
1458         bool is_src;
1459         struct d40_desc *d;
1460         struct d40_desc *_d;
1461
1462
1463         /* Terminate all queued and active transfers */
1464         d40_term_all(d40c);
1465
1466         /* Release client owned descriptors */
1467         if (!list_empty(&d40c->client))
1468                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1469                         d40_pool_lli_free(d);
1470                         d40_desc_remove(d);
1471                         d40_desc_free(d40c, d);
1472                 }
1473
1474         if (phy == NULL) {
1475                 dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
1476                         __func__);
1477                 return -EINVAL;
1478         }
1479
1480         if (phy->allocated_src == D40_ALLOC_FREE &&
1481             phy->allocated_dst == D40_ALLOC_FREE) {
1482                 dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
1483                         __func__);
1484                 return -EINVAL;
1485         }
1486
1487         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1488             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1489                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1490                 is_src = false;
1491         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1492                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1493                 is_src = true;
1494         } else {
1495                 dev_err(&d40c->chan.dev->device,
1496                         "[%s] Unknown direction\n", __func__);
1497                 return -EINVAL;
1498         }
1499
1500         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1501         if (res) {
1502                 dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
1503                         __func__);
1504                 return res;
1505         }
1506
1507         if (d40c->log_num != D40_PHY_CHAN) {
1508                 /* Release logical channel, deactivate the event line */
1509
1510                 d40_config_set_event(d40c, false);
1511                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1512
1513                 /*
1514                  * Check if there are more logical allocation
1515                  * on this phy channel.
1516                  */
1517                 if (!d40_alloc_mask_free(phy, is_src, event)) {
1518                         /* Resume the other logical channels if any */
1519                         if (d40_chan_has_events(d40c)) {
1520                                 res = d40_channel_execute_command(d40c,
1521                                                                   D40_DMA_RUN);
1522                                 if (res) {
1523                                         dev_err(&d40c->chan.dev->device,
1524                                                 "[%s] Executing RUN command\n",
1525                                                 __func__);
1526                                         return res;
1527                                 }
1528                         }
1529                         return 0;
1530                 }
1531         } else {
1532                 (void) d40_alloc_mask_free(phy, is_src, 0);
1533         }
1534
1535         /* Release physical channel */
1536         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1537         if (res) {
1538                 dev_err(&d40c->chan.dev->device,
1539                         "[%s] Failed to stop channel\n", __func__);
1540                 return res;
1541         }
1542         d40c->phy_chan = NULL;
1543         d40c->configured = false;
1544         d40c->base->lookup_phy_chans[phy->num] = NULL;
1545
1546         return 0;
1547 }
1548
1549 static bool d40_is_paused(struct d40_chan *d40c)
1550 {
1551         bool is_paused = false;
1552         unsigned long flags;
1553         void __iomem *active_reg;
1554         u32 status;
1555         u32 event;
1556
1557         spin_lock_irqsave(&d40c->lock, flags);
1558
1559         if (d40c->log_num == D40_PHY_CHAN) {
1560                 if (d40c->phy_chan->num % 2 == 0)
1561                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1562                 else
1563                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1564
1565                 status = (readl(active_reg) &
1566                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1567                         D40_CHAN_POS(d40c->phy_chan->num);
1568                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1569                         is_paused = true;
1570
1571                 goto _exit;
1572         }
1573
1574         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1575             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1576                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1577                 status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
1578                                d40c->phy_chan->num * D40_DREG_PCDELTA +
1579                                D40_CHAN_REG_SDLNK);
1580         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1581                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1582                 status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
1583                                d40c->phy_chan->num * D40_DREG_PCDELTA +
1584                                D40_CHAN_REG_SSLNK);
1585         } else {
1586                 dev_err(&d40c->chan.dev->device,
1587                         "[%s] Unknown direction\n", __func__);
1588                 goto _exit;
1589         }
1590
1591         status = (status & D40_EVENTLINE_MASK(event)) >>
1592                 D40_EVENTLINE_POS(event);
1593
1594         if (status != D40_DMA_RUN)
1595                 is_paused = true;
1596 _exit:
1597         spin_unlock_irqrestore(&d40c->lock, flags);
1598         return is_paused;
1599
1600 }
1601
1602
1603 static u32 stedma40_residue(struct dma_chan *chan)
1604 {
1605         struct d40_chan *d40c =
1606                 container_of(chan, struct d40_chan, chan);
1607         u32 bytes_left;
1608         unsigned long flags;
1609
1610         spin_lock_irqsave(&d40c->lock, flags);
1611         bytes_left = d40_residue(d40c);
1612         spin_unlock_irqrestore(&d40c->lock, flags);
1613
1614         return bytes_left;
1615 }
1616
1617 struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
1618                                                    struct scatterlist *sgl_dst,
1619                                                    struct scatterlist *sgl_src,
1620                                                    unsigned int sgl_len,
1621                                                    unsigned long dma_flags)
1622 {
1623         int res;
1624         struct d40_desc *d40d;
1625         struct d40_chan *d40c = container_of(chan, struct d40_chan,
1626                                              chan);
1627         unsigned long flags;
1628
1629         if (d40c->phy_chan == NULL) {
1630                 dev_err(&d40c->chan.dev->device,
1631                         "[%s] Unallocated channel.\n", __func__);
1632                 return ERR_PTR(-EINVAL);
1633         }
1634
1635         spin_lock_irqsave(&d40c->lock, flags);
1636         d40d = d40_desc_get(d40c);
1637
1638         if (d40d == NULL)
1639                 goto err;
1640
1641         d40d->lli_len = sgl_len;
1642         d40d->lli_current = 0;
1643         d40d->txd.flags = dma_flags;
1644
1645         if (d40c->log_num != D40_PHY_CHAN) {
1646
1647                 if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
1648                         dev_err(&d40c->chan.dev->device,
1649                                 "[%s] Out of memory\n", __func__);
1650                         goto err;
1651                 }
1652
1653                 (void) d40_log_sg_to_lli(sgl_src,
1654                                          sgl_len,
1655                                          d40d->lli_log.src,
1656                                          d40c->log_def.lcsp1,
1657                                          d40c->dma_cfg.src_info.data_width);
1658
1659                 (void) d40_log_sg_to_lli(sgl_dst,
1660                                          sgl_len,
1661                                          d40d->lli_log.dst,
1662                                          d40c->log_def.lcsp3,
1663                                          d40c->dma_cfg.dst_info.data_width);
1664         } else {
1665                 if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1666                         dev_err(&d40c->chan.dev->device,
1667                                 "[%s] Out of memory\n", __func__);
1668                         goto err;
1669                 }
1670
1671                 res = d40_phy_sg_to_lli(sgl_src,
1672                                         sgl_len,
1673                                         0,
1674                                         d40d->lli_phy.src,
1675                                         virt_to_phys(d40d->lli_phy.src),
1676                                         d40c->src_def_cfg,
1677                                         d40c->dma_cfg.src_info.data_width,
1678                                         d40c->dma_cfg.src_info.psize);
1679
1680                 if (res < 0)
1681                         goto err;
1682
1683                 res = d40_phy_sg_to_lli(sgl_dst,
1684                                         sgl_len,
1685                                         0,
1686                                         d40d->lli_phy.dst,
1687                                         virt_to_phys(d40d->lli_phy.dst),
1688                                         d40c->dst_def_cfg,
1689                                         d40c->dma_cfg.dst_info.data_width,
1690                                         d40c->dma_cfg.dst_info.psize);
1691
1692                 if (res < 0)
1693                         goto err;
1694
1695                 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1696                                       d40d->lli_pool.size, DMA_TO_DEVICE);
1697         }
1698
1699         dma_async_tx_descriptor_init(&d40d->txd, chan);
1700
1701         d40d->txd.tx_submit = d40_tx_submit;
1702
1703         spin_unlock_irqrestore(&d40c->lock, flags);
1704
1705         return &d40d->txd;
1706 err:
1707         if (d40d)
1708                 d40_desc_free(d40c, d40d);
1709         spin_unlock_irqrestore(&d40c->lock, flags);
1710         return NULL;
1711 }
1712 EXPORT_SYMBOL(stedma40_memcpy_sg);
1713
1714 bool stedma40_filter(struct dma_chan *chan, void *data)
1715 {
1716         struct stedma40_chan_cfg *info = data;
1717         struct d40_chan *d40c =
1718                 container_of(chan, struct d40_chan, chan);
1719         int err;
1720
1721         if (data) {
1722                 err = d40_validate_conf(d40c, info);
1723                 if (!err)
1724                         d40c->dma_cfg = *info;
1725         } else
1726                 err = d40_config_memcpy(d40c);
1727
1728         if (!err)
1729                 d40c->configured = true;
1730
1731         return err == 0;
1732 }
1733 EXPORT_SYMBOL(stedma40_filter);
1734
1735 /* DMA ENGINE functions */
1736 static int d40_alloc_chan_resources(struct dma_chan *chan)
1737 {
1738         int err;
1739         unsigned long flags;
1740         struct d40_chan *d40c =
1741                 container_of(chan, struct d40_chan, chan);
1742         bool is_free_phy;
1743         spin_lock_irqsave(&d40c->lock, flags);
1744
1745         d40c->completed = chan->cookie = 1;
1746
1747         /* If no dma configuration is set use default configuration (memcpy) */
1748         if (!d40c->configured) {
1749                 err = d40_config_memcpy(d40c);
1750                 if (err) {
1751                         dev_err(&d40c->chan.dev->device,
1752                                 "[%s] Failed to configure memcpy channel\n",
1753                                 __func__);
1754                         goto fail;
1755                 }
1756         }
1757         is_free_phy = (d40c->phy_chan == NULL);
1758
1759         err = d40_allocate_channel(d40c);
1760         if (err) {
1761                 dev_err(&d40c->chan.dev->device,
1762                         "[%s] Failed to allocate channel\n", __func__);
1763                 goto fail;
1764         }
1765
1766         /* Fill in basic CFG register values */
1767         d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1768                     &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
1769
1770         if (d40c->log_num != D40_PHY_CHAN) {
1771                 d40_log_cfg(&d40c->dma_cfg,
1772                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1773
1774                 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1775                         d40c->lcpa = d40c->base->lcpa_base +
1776                           d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1777                 else
1778                         d40c->lcpa = d40c->base->lcpa_base +
1779                           d40c->dma_cfg.dst_dev_type *
1780                           D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
1781         }
1782
1783         /*
1784          * Only write channel configuration to the DMA if the physical
1785          * resource is free. In case of multiple logical channels
1786          * on the same physical resource, only the first write is necessary.
1787          */
1788         if (is_free_phy)
1789                 d40_config_write(d40c);
1790 fail:
1791         spin_unlock_irqrestore(&d40c->lock, flags);
1792         return err;
1793 }
1794
1795 static void d40_free_chan_resources(struct dma_chan *chan)
1796 {
1797         struct d40_chan *d40c =
1798                 container_of(chan, struct d40_chan, chan);
1799         int err;
1800         unsigned long flags;
1801
1802         if (d40c->phy_chan == NULL) {
1803                 dev_err(&d40c->chan.dev->device,
1804                         "[%s] Cannot free unallocated channel\n", __func__);
1805                 return;
1806         }
1807
1808
1809         spin_lock_irqsave(&d40c->lock, flags);
1810
1811         err = d40_free_dma(d40c);
1812
1813         if (err)
1814                 dev_err(&d40c->chan.dev->device,
1815                         "[%s] Failed to free channel\n", __func__);
1816         spin_unlock_irqrestore(&d40c->lock, flags);
1817 }
1818
1819 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1820                                                        dma_addr_t dst,
1821                                                        dma_addr_t src,
1822                                                        size_t size,
1823                                                        unsigned long dma_flags)
1824 {
1825         struct d40_desc *d40d;
1826         struct d40_chan *d40c = container_of(chan, struct d40_chan,
1827                                              chan);
1828         unsigned long flags;
1829         int err = 0;
1830
1831         if (d40c->phy_chan == NULL) {
1832                 dev_err(&d40c->chan.dev->device,
1833                         "[%s] Channel is not allocated.\n", __func__);
1834                 return ERR_PTR(-EINVAL);
1835         }
1836
1837         spin_lock_irqsave(&d40c->lock, flags);
1838         d40d = d40_desc_get(d40c);
1839
1840         if (d40d == NULL) {
1841                 dev_err(&d40c->chan.dev->device,
1842                         "[%s] Descriptor is NULL\n", __func__);
1843                 goto err;
1844         }
1845
1846         d40d->txd.flags = dma_flags;
1847
1848         dma_async_tx_descriptor_init(&d40d->txd, chan);
1849
1850         d40d->txd.tx_submit = d40_tx_submit;
1851
1852         if (d40c->log_num != D40_PHY_CHAN) {
1853
1854                 if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
1855                         dev_err(&d40c->chan.dev->device,
1856                                 "[%s] Out of memory\n", __func__);
1857                         goto err;
1858                 }
1859                 d40d->lli_len = 1;
1860                 d40d->lli_current = 0;
1861
1862                 d40_log_fill_lli(d40d->lli_log.src,
1863                                  src,
1864                                  size,
1865                                  d40c->log_def.lcsp1,
1866                                  d40c->dma_cfg.src_info.data_width,
1867                                  true);
1868
1869                 d40_log_fill_lli(d40d->lli_log.dst,
1870                                  dst,
1871                                  size,
1872                                  d40c->log_def.lcsp3,
1873                                  d40c->dma_cfg.dst_info.data_width,
1874                                  true);
1875
1876         } else {
1877
1878                 if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
1879                         dev_err(&d40c->chan.dev->device,
1880                                 "[%s] Out of memory\n", __func__);
1881                         goto err;
1882                 }
1883
1884                 err = d40_phy_fill_lli(d40d->lli_phy.src,
1885                                        src,
1886                                        size,
1887                                        d40c->dma_cfg.src_info.psize,
1888                                        0,
1889                                        d40c->src_def_cfg,
1890                                        true,
1891                                        d40c->dma_cfg.src_info.data_width,
1892                                        false);
1893                 if (err)
1894                         goto err_fill_lli;
1895
1896                 err = d40_phy_fill_lli(d40d->lli_phy.dst,
1897                                        dst,
1898                                        size,
1899                                        d40c->dma_cfg.dst_info.psize,
1900                                        0,
1901                                        d40c->dst_def_cfg,
1902                                        true,
1903                                        d40c->dma_cfg.dst_info.data_width,
1904                                        false);
1905
1906                 if (err)
1907                         goto err_fill_lli;
1908
1909                 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1910                                       d40d->lli_pool.size, DMA_TO_DEVICE);
1911         }
1912
1913         spin_unlock_irqrestore(&d40c->lock, flags);
1914         return &d40d->txd;
1915
1916 err_fill_lli:
1917         dev_err(&d40c->chan.dev->device,
1918                 "[%s] Failed filling in PHY LLI\n", __func__);
1919 err:
1920         if (d40d)
1921                 d40_desc_free(d40c, d40d);
1922         spin_unlock_irqrestore(&d40c->lock, flags);
1923         return NULL;
1924 }
1925
1926 static struct dma_async_tx_descriptor *
1927 d40_prep_sg(struct dma_chan *chan,
1928             struct scatterlist *dst_sg, unsigned int dst_nents,
1929             struct scatterlist *src_sg, unsigned int src_nents,
1930             unsigned long dma_flags)
1931 {
1932         if (dst_nents != src_nents)
1933                 return NULL;
1934
1935         return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
1936 }
1937
1938 static int d40_prep_slave_sg_log(struct d40_desc *d40d,
1939                                  struct d40_chan *d40c,
1940                                  struct scatterlist *sgl,
1941                                  unsigned int sg_len,
1942                                  enum dma_data_direction direction,
1943                                  unsigned long dma_flags)
1944 {
1945         dma_addr_t dev_addr = 0;
1946         int total_size;
1947
1948         if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
1949                 dev_err(&d40c->chan.dev->device,
1950                         "[%s] Out of memory\n", __func__);
1951                 return -ENOMEM;
1952         }
1953
1954         d40d->lli_len = sg_len;
1955         d40d->lli_current = 0;
1956
1957         if (direction == DMA_FROM_DEVICE)
1958                 if (d40c->runtime_addr)
1959                         dev_addr = d40c->runtime_addr;
1960                 else
1961                         dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1962         else if (direction == DMA_TO_DEVICE)
1963                 if (d40c->runtime_addr)
1964                         dev_addr = d40c->runtime_addr;
1965                 else
1966                         dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1967
1968         else
1969                 return -EINVAL;
1970
1971         total_size = d40_log_sg_to_dev(sgl, sg_len,
1972                                        &d40d->lli_log,
1973                                        &d40c->log_def,
1974                                        d40c->dma_cfg.src_info.data_width,
1975                                        d40c->dma_cfg.dst_info.data_width,
1976                                        direction,
1977                                        dev_addr);
1978
1979         if (total_size < 0)
1980                 return -EINVAL;
1981
1982         return 0;
1983 }
1984
1985 static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
1986                                  struct d40_chan *d40c,
1987                                  struct scatterlist *sgl,
1988                                  unsigned int sgl_len,
1989                                  enum dma_data_direction direction,
1990                                  unsigned long dma_flags)
1991 {
1992         dma_addr_t src_dev_addr;
1993         dma_addr_t dst_dev_addr;
1994         int res;
1995
1996         if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1997                 dev_err(&d40c->chan.dev->device,
1998                         "[%s] Out of memory\n", __func__);
1999                 return -ENOMEM;
2000         }
2001
2002         d40d->lli_len = sgl_len;
2003         d40d->lli_current = 0;
2004
2005         if (direction == DMA_FROM_DEVICE) {
2006                 dst_dev_addr = 0;
2007                 if (d40c->runtime_addr)
2008                         src_dev_addr = d40c->runtime_addr;
2009                 else
2010                         src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2011         } else if (direction == DMA_TO_DEVICE) {
2012                 if (d40c->runtime_addr)
2013                         dst_dev_addr = d40c->runtime_addr;
2014                 else
2015                         dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
2016                 src_dev_addr = 0;
2017         } else
2018                 return -EINVAL;
2019
2020         res = d40_phy_sg_to_lli(sgl,
2021                                 sgl_len,
2022                                 src_dev_addr,
2023                                 d40d->lli_phy.src,
2024                                 virt_to_phys(d40d->lli_phy.src),
2025                                 d40c->src_def_cfg,
2026                                 d40c->dma_cfg.src_info.data_width,
2027                                 d40c->dma_cfg.src_info.psize);
2028         if (res < 0)
2029                 return res;
2030
2031         res = d40_phy_sg_to_lli(sgl,
2032                                 sgl_len,
2033                                 dst_dev_addr,
2034                                 d40d->lli_phy.dst,
2035                                 virt_to_phys(d40d->lli_phy.dst),
2036                                 d40c->dst_def_cfg,
2037                                 d40c->dma_cfg.dst_info.data_width,
2038                                 d40c->dma_cfg.dst_info.psize);
2039         if (res < 0)
2040                 return res;
2041
2042         (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
2043                               d40d->lli_pool.size, DMA_TO_DEVICE);
2044         return 0;
2045 }
2046
2047 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2048                                                          struct scatterlist *sgl,
2049                                                          unsigned int sg_len,
2050                                                          enum dma_data_direction direction,
2051                                                          unsigned long dma_flags)
2052 {
2053         struct d40_desc *d40d;
2054         struct d40_chan *d40c = container_of(chan, struct d40_chan,
2055                                              chan);
2056         unsigned long flags;
2057         int err;
2058
2059         if (d40c->phy_chan == NULL) {
2060                 dev_err(&d40c->chan.dev->device,
2061                         "[%s] Cannot prepare unallocated channel\n", __func__);
2062                 return ERR_PTR(-EINVAL);
2063         }
2064
2065         spin_lock_irqsave(&d40c->lock, flags);
2066         d40d = d40_desc_get(d40c);
2067
2068         if (d40d == NULL)
2069                 goto err;
2070
2071         if (d40c->log_num != D40_PHY_CHAN)
2072                 err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2073                                             direction, dma_flags);
2074         else
2075                 err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2076                                             direction, dma_flags);
2077         if (err) {
2078                 dev_err(&d40c->chan.dev->device,
2079                         "[%s] Failed to prepare %s slave sg job: %d\n",
2080                         __func__,
2081                         d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
2082                 goto err;
2083         }
2084
2085         d40d->txd.flags = dma_flags;
2086
2087         dma_async_tx_descriptor_init(&d40d->txd, chan);
2088
2089         d40d->txd.tx_submit = d40_tx_submit;
2090
2091         spin_unlock_irqrestore(&d40c->lock, flags);
2092         return &d40d->txd;
2093
2094 err:
2095         if (d40d)
2096                 d40_desc_free(d40c, d40d);
2097         spin_unlock_irqrestore(&d40c->lock, flags);
2098         return NULL;
2099 }
2100
2101 static enum dma_status d40_tx_status(struct dma_chan *chan,
2102                                      dma_cookie_t cookie,
2103                                      struct dma_tx_state *txstate)
2104 {
2105         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2106         dma_cookie_t last_used;
2107         dma_cookie_t last_complete;
2108         int ret;
2109
2110         if (d40c->phy_chan == NULL) {
2111                 dev_err(&d40c->chan.dev->device,
2112                         "[%s] Cannot read status of unallocated channel\n",
2113                         __func__);
2114                 return -EINVAL;
2115         }
2116
2117         last_complete = d40c->completed;
2118         last_used = chan->cookie;
2119
2120         if (d40_is_paused(d40c))
2121                 ret = DMA_PAUSED;
2122         else
2123                 ret = dma_async_is_complete(cookie, last_complete, last_used);
2124
2125         dma_set_tx_state(txstate, last_complete, last_used,
2126                          stedma40_residue(chan));
2127
2128         return ret;
2129 }
2130
2131 static void d40_issue_pending(struct dma_chan *chan)
2132 {
2133         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2134         unsigned long flags;
2135
2136         if (d40c->phy_chan == NULL) {
2137                 dev_err(&d40c->chan.dev->device,
2138                         "[%s] Channel is not allocated!\n", __func__);
2139                 return;
2140         }
2141
2142         spin_lock_irqsave(&d40c->lock, flags);
2143
2144         /* Busy means that pending jobs are already being processed */
2145         if (!d40c->busy)
2146                 (void) d40_queue_start(d40c);
2147
2148         spin_unlock_irqrestore(&d40c->lock, flags);
2149 }
2150
2151 /* Runtime reconfiguration extension */
2152 static void d40_set_runtime_config(struct dma_chan *chan,
2153                                struct dma_slave_config *config)
2154 {
2155         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2156         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2157         enum dma_slave_buswidth config_addr_width;
2158         dma_addr_t config_addr;
2159         u32 config_maxburst;
2160         enum stedma40_periph_data_width addr_width;
2161         int psize;
2162
2163         if (config->direction == DMA_FROM_DEVICE) {
2164                 dma_addr_t dev_addr_rx =
2165                         d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2166
2167                 config_addr = config->src_addr;
2168                 if (dev_addr_rx)
2169                         dev_dbg(d40c->base->dev,
2170                                 "channel has a pre-wired RX address %08x "
2171                                 "overriding with %08x\n",
2172                                 dev_addr_rx, config_addr);
2173                 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2174                         dev_dbg(d40c->base->dev,
2175                                 "channel was not configured for peripheral "
2176                                 "to memory transfer (%d) overriding\n",
2177                                 cfg->dir);
2178                 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2179
2180                 config_addr_width = config->src_addr_width;
2181                 config_maxburst = config->src_maxburst;
2182
2183         } else if (config->direction == DMA_TO_DEVICE) {
2184                 dma_addr_t dev_addr_tx =
2185                         d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2186
2187                 config_addr = config->dst_addr;
2188                 if (dev_addr_tx)
2189                         dev_dbg(d40c->base->dev,
2190                                 "channel has a pre-wired TX address %08x "
2191                                 "overriding with %08x\n",
2192                                 dev_addr_tx, config_addr);
2193                 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2194                         dev_dbg(d40c->base->dev,
2195                                 "channel was not configured for memory "
2196                                 "to peripheral transfer (%d) overriding\n",
2197                                 cfg->dir);
2198                 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2199
2200                 config_addr_width = config->dst_addr_width;
2201                 config_maxburst = config->dst_maxburst;
2202
2203         } else {
2204                 dev_err(d40c->base->dev,
2205                         "unrecognized channel direction %d\n",
2206                         config->direction);
2207                 return;
2208         }
2209
2210         switch (config_addr_width) {
2211         case DMA_SLAVE_BUSWIDTH_1_BYTE:
2212                 addr_width = STEDMA40_BYTE_WIDTH;
2213                 break;
2214         case DMA_SLAVE_BUSWIDTH_2_BYTES:
2215                 addr_width = STEDMA40_HALFWORD_WIDTH;
2216                 break;
2217         case DMA_SLAVE_BUSWIDTH_4_BYTES:
2218                 addr_width = STEDMA40_WORD_WIDTH;
2219                 break;
2220         case DMA_SLAVE_BUSWIDTH_8_BYTES:
2221                 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2222                 break;
2223         default:
2224                 dev_err(d40c->base->dev,
2225                         "illegal peripheral address width "
2226                         "requested (%d)\n",
2227                         config->src_addr_width);
2228                 return;
2229         }
2230
2231         if (d40c->log_num != D40_PHY_CHAN) {
2232                 if (config_maxburst >= 16)
2233                         psize = STEDMA40_PSIZE_LOG_16;
2234                 else if (config_maxburst >= 8)
2235                         psize = STEDMA40_PSIZE_LOG_8;
2236                 else if (config_maxburst >= 4)
2237                         psize = STEDMA40_PSIZE_LOG_4;
2238                 else
2239                         psize = STEDMA40_PSIZE_LOG_1;
2240         } else {
2241                 if (config_maxburst >= 16)
2242                         psize = STEDMA40_PSIZE_PHY_16;
2243                 else if (config_maxburst >= 8)
2244                         psize = STEDMA40_PSIZE_PHY_8;
2245                 else if (config_maxburst >= 4)
2246                         psize = STEDMA40_PSIZE_PHY_4;
2247                 else
2248                         psize = STEDMA40_PSIZE_PHY_1;
2249         }
2250
2251         /* Set up all the endpoint configs */
2252         cfg->src_info.data_width = addr_width;
2253         cfg->src_info.psize = psize;
2254         cfg->src_info.big_endian = false;
2255         cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2256         cfg->dst_info.data_width = addr_width;
2257         cfg->dst_info.psize = psize;
2258         cfg->dst_info.big_endian = false;
2259         cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2260
2261         /* Fill in register values */
2262         if (d40c->log_num != D40_PHY_CHAN)
2263                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2264         else
2265                 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2266                             &d40c->dst_def_cfg, false);
2267
2268         /* These settings will take precedence later */
2269         d40c->runtime_addr = config_addr;
2270         d40c->runtime_direction = config->direction;
2271         dev_dbg(d40c->base->dev,
2272                 "configured channel %s for %s, data width %d, "
2273                 "maxburst %d bytes, LE, no flow control\n",
2274                 dma_chan_name(chan),
2275                 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2276                 config_addr_width,
2277                 config_maxburst);
2278 }
2279
2280 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2281                        unsigned long arg)
2282 {
2283         unsigned long flags;
2284         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2285
2286         if (d40c->phy_chan == NULL) {
2287                 dev_err(&d40c->chan.dev->device,
2288                         "[%s] Channel is not allocated!\n", __func__);
2289                 return -EINVAL;
2290         }
2291
2292         switch (cmd) {
2293         case DMA_TERMINATE_ALL:
2294                 spin_lock_irqsave(&d40c->lock, flags);
2295                 d40_term_all(d40c);
2296                 spin_unlock_irqrestore(&d40c->lock, flags);
2297                 return 0;
2298         case DMA_PAUSE:
2299                 return d40_pause(chan);
2300         case DMA_RESUME:
2301                 return d40_resume(chan);
2302         case DMA_SLAVE_CONFIG:
2303                 d40_set_runtime_config(chan,
2304                         (struct dma_slave_config *) arg);
2305                 return 0;
2306         default:
2307                 break;
2308         }
2309
2310         /* Other commands are unimplemented */
2311         return -ENXIO;
2312 }
2313
2314 /* Initialization functions */
2315
2316 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2317                                  struct d40_chan *chans, int offset,
2318                                  int num_chans)
2319 {
2320         int i = 0;
2321         struct d40_chan *d40c;
2322
2323         INIT_LIST_HEAD(&dma->channels);
2324
2325         for (i = offset; i < offset + num_chans; i++) {
2326                 d40c = &chans[i];
2327                 d40c->base = base;
2328                 d40c->chan.device = dma;
2329
2330                 spin_lock_init(&d40c->lock);
2331
2332                 d40c->log_num = D40_PHY_CHAN;
2333
2334                 INIT_LIST_HEAD(&d40c->active);
2335                 INIT_LIST_HEAD(&d40c->queue);
2336                 INIT_LIST_HEAD(&d40c->client);
2337
2338                 tasklet_init(&d40c->tasklet, dma_tasklet,
2339                              (unsigned long) d40c);
2340
2341                 list_add_tail(&d40c->chan.device_node,
2342                               &dma->channels);
2343         }
2344 }
2345
2346 static int __init d40_dmaengine_init(struct d40_base *base,
2347                                      int num_reserved_chans)
2348 {
2349         int err ;
2350
2351         d40_chan_init(base, &base->dma_slave, base->log_chans,
2352                       0, base->num_log_chans);
2353
2354         dma_cap_zero(base->dma_slave.cap_mask);
2355         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2356
2357         base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2358         base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2359         base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2360         base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2361         base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2362         base->dma_slave.device_tx_status = d40_tx_status;
2363         base->dma_slave.device_issue_pending = d40_issue_pending;
2364         base->dma_slave.device_control = d40_control;
2365         base->dma_slave.dev = base->dev;
2366
2367         err = dma_async_device_register(&base->dma_slave);
2368
2369         if (err) {
2370                 dev_err(base->dev,
2371                         "[%s] Failed to register slave channels\n",
2372                         __func__);
2373                 goto failure1;
2374         }
2375
2376         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2377                       base->num_log_chans, base->plat_data->memcpy_len);
2378
2379         dma_cap_zero(base->dma_memcpy.cap_mask);
2380         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2381         dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2382
2383         base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2384         base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2385         base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2386         base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2387         base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2388         base->dma_memcpy.device_tx_status = d40_tx_status;
2389         base->dma_memcpy.device_issue_pending = d40_issue_pending;
2390         base->dma_memcpy.device_control = d40_control;
2391         base->dma_memcpy.dev = base->dev;
2392         /*
2393          * This controller can only access address at even
2394          * 32bit boundaries, i.e. 2^2
2395          */
2396         base->dma_memcpy.copy_align = 2;
2397
2398         err = dma_async_device_register(&base->dma_memcpy);
2399
2400         if (err) {
2401                 dev_err(base->dev,
2402                         "[%s] Failed to regsiter memcpy only channels\n",
2403                         __func__);
2404                 goto failure2;
2405         }
2406
2407         d40_chan_init(base, &base->dma_both, base->phy_chans,
2408                       0, num_reserved_chans);
2409
2410         dma_cap_zero(base->dma_both.cap_mask);
2411         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2412         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2413         dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2414
2415         base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2416         base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2417         base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2418         base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2419         base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2420         base->dma_both.device_tx_status = d40_tx_status;
2421         base->dma_both.device_issue_pending = d40_issue_pending;
2422         base->dma_both.device_control = d40_control;
2423         base->dma_both.dev = base->dev;
2424         base->dma_both.copy_align = 2;
2425         err = dma_async_device_register(&base->dma_both);
2426
2427         if (err) {
2428                 dev_err(base->dev,
2429                         "[%s] Failed to register logical and physical capable channels\n",
2430                         __func__);
2431                 goto failure3;
2432         }
2433         return 0;
2434 failure3:
2435         dma_async_device_unregister(&base->dma_memcpy);
2436 failure2:
2437         dma_async_device_unregister(&base->dma_slave);
2438 failure1:
2439         return err;
2440 }
2441
2442 /* Initialization functions. */
2443
2444 static int __init d40_phy_res_init(struct d40_base *base)
2445 {
2446         int i;
2447         int num_phy_chans_avail = 0;
2448         u32 val[2];
2449         int odd_even_bit = -2;
2450
2451         val[0] = readl(base->virtbase + D40_DREG_PRSME);
2452         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2453
2454         for (i = 0; i < base->num_phy_chans; i++) {
2455                 base->phy_res[i].num = i;
2456                 odd_even_bit += 2 * ((i % 2) == 0);
2457                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2458                         /* Mark security only channels as occupied */
2459                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2460                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2461                 } else {
2462                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2463                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2464                         num_phy_chans_avail++;
2465                 }
2466                 spin_lock_init(&base->phy_res[i].lock);
2467         }
2468
2469         /* Mark disabled channels as occupied */
2470         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2471                 int chan = base->plat_data->disabled_channels[i];
2472
2473                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2474                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2475                 num_phy_chans_avail--;
2476         }
2477
2478         dev_info(base->dev, "%d of %d physical DMA channels available\n",
2479                  num_phy_chans_avail, base->num_phy_chans);
2480
2481         /* Verify settings extended vs standard */
2482         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2483
2484         for (i = 0; i < base->num_phy_chans; i++) {
2485
2486                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2487                     (val[0] & 0x3) != 1)
2488                         dev_info(base->dev,
2489                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
2490                                  __func__, i, val[0] & 0x3);
2491
2492                 val[0] = val[0] >> 2;
2493         }
2494
2495         return num_phy_chans_avail;
2496 }
2497
2498 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2499 {
2500         static const struct d40_reg_val dma_id_regs[] = {
2501                 /* Peripheral Id */
2502                 { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2503                 { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2504                 /*
2505                  * D40_DREG_PERIPHID2 Depends on HW revision:
2506                  *  MOP500/HREF ED has 0x0008,
2507                  *  ? has 0x0018,
2508                  *  HREF V1 has 0x0028
2509                  */
2510                 { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2511
2512                 /* PCell Id */
2513                 { .reg = D40_DREG_CELLID0, .val = 0x000d},
2514                 { .reg = D40_DREG_CELLID1, .val = 0x00f0},
2515                 { .reg = D40_DREG_CELLID2, .val = 0x0005},
2516                 { .reg = D40_DREG_CELLID3, .val = 0x00b1}
2517         };
2518         struct stedma40_platform_data *plat_data;
2519         struct clk *clk = NULL;
2520         void __iomem *virtbase = NULL;
2521         struct resource *res = NULL;
2522         struct d40_base *base = NULL;
2523         int num_log_chans = 0;
2524         int num_phy_chans;
2525         int i;
2526         u32 val;
2527         u32 rev;
2528
2529         clk = clk_get(&pdev->dev, NULL);
2530
2531         if (IS_ERR(clk)) {
2532                 dev_err(&pdev->dev, "[%s] No matching clock found\n",
2533                         __func__);
2534                 goto failure;
2535         }
2536
2537         clk_enable(clk);
2538
2539         /* Get IO for DMAC base address */
2540         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2541         if (!res)
2542                 goto failure;
2543
2544         if (request_mem_region(res->start, resource_size(res),
2545                                D40_NAME " I/O base") == NULL)
2546                 goto failure;
2547
2548         virtbase = ioremap(res->start, resource_size(res));
2549         if (!virtbase)
2550                 goto failure;
2551
2552         /* HW version check */
2553         for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2554                 if (dma_id_regs[i].val !=
2555                     readl(virtbase + dma_id_regs[i].reg)) {
2556                         dev_err(&pdev->dev,
2557                                 "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2558                                 __func__,
2559                                 dma_id_regs[i].val,
2560                                 dma_id_regs[i].reg,
2561                                 readl(virtbase + dma_id_regs[i].reg));
2562                         goto failure;
2563                 }
2564         }
2565
2566         /* Get silicon revision and designer */
2567         val = readl(virtbase + D40_DREG_PERIPHID2);
2568
2569         if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
2570             D40_HW_DESIGNER) {
2571                 dev_err(&pdev->dev,
2572                         "[%s] Unknown designer! Got %x wanted %x\n",
2573                         __func__, val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2574                         D40_HW_DESIGNER);
2575                 goto failure;
2576         }
2577
2578         rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
2579                 D40_DREG_PERIPHID2_REV_POS;
2580
2581         /* The number of physical channels on this HW */
2582         num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2583
2584         dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2585                  rev, res->start);
2586
2587         plat_data = pdev->dev.platform_data;
2588
2589         /* Count the number of logical channels in use */
2590         for (i = 0; i < plat_data->dev_len; i++)
2591                 if (plat_data->dev_rx[i] != 0)
2592                         num_log_chans++;
2593
2594         for (i = 0; i < plat_data->dev_len; i++)
2595                 if (plat_data->dev_tx[i] != 0)
2596                         num_log_chans++;
2597
2598         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2599                        (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2600                        sizeof(struct d40_chan), GFP_KERNEL);
2601
2602         if (base == NULL) {
2603                 dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
2604                 goto failure;
2605         }
2606
2607         base->rev = rev;
2608         base->clk = clk;
2609         base->num_phy_chans = num_phy_chans;
2610         base->num_log_chans = num_log_chans;
2611         base->phy_start = res->start;
2612         base->phy_size = resource_size(res);
2613         base->virtbase = virtbase;
2614         base->plat_data = plat_data;
2615         base->dev = &pdev->dev;
2616         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2617         base->log_chans = &base->phy_chans[num_phy_chans];
2618
2619         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2620                                 GFP_KERNEL);
2621         if (!base->phy_res)
2622                 goto failure;
2623
2624         base->lookup_phy_chans = kzalloc(num_phy_chans *
2625                                          sizeof(struct d40_chan *),
2626                                          GFP_KERNEL);
2627         if (!base->lookup_phy_chans)
2628                 goto failure;
2629
2630         if (num_log_chans + plat_data->memcpy_len) {
2631                 /*
2632                  * The max number of logical channels are event lines for all
2633                  * src devices and dst devices
2634                  */
2635                 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2636                                                  sizeof(struct d40_chan *),
2637                                                  GFP_KERNEL);
2638                 if (!base->lookup_log_chans)
2639                         goto failure;
2640         }
2641
2642         base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2643                                             sizeof(struct d40_desc *) *
2644                                             D40_LCLA_LINK_PER_EVENT_GRP,
2645                                             GFP_KERNEL);
2646         if (!base->lcla_pool.alloc_map)
2647                 goto failure;
2648
2649         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2650                                             0, SLAB_HWCACHE_ALIGN,
2651                                             NULL);
2652         if (base->desc_slab == NULL)
2653                 goto failure;
2654
2655         return base;
2656
2657 failure:
2658         if (!IS_ERR(clk)) {
2659                 clk_disable(clk);
2660                 clk_put(clk);
2661         }
2662         if (virtbase)
2663                 iounmap(virtbase);
2664         if (res)
2665                 release_mem_region(res->start,
2666                                    resource_size(res));
2667         if (virtbase)
2668                 iounmap(virtbase);
2669
2670         if (base) {
2671                 kfree(base->lcla_pool.alloc_map);
2672                 kfree(base->lookup_log_chans);
2673                 kfree(base->lookup_phy_chans);
2674                 kfree(base->phy_res);
2675                 kfree(base);
2676         }
2677
2678         return NULL;
2679 }
2680
2681 static void __init d40_hw_init(struct d40_base *base)
2682 {
2683
2684         static const struct d40_reg_val dma_init_reg[] = {
2685                 /* Clock every part of the DMA block from start */
2686                 { .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2687
2688                 /* Interrupts on all logical channels */
2689                 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2690                 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2691                 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2692                 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2693                 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2694                 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2695                 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2696                 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2697                 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2698                 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2699                 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2700                 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2701         };
2702         int i;
2703         u32 prmseo[2] = {0, 0};
2704         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2705         u32 pcmis = 0;
2706         u32 pcicr = 0;
2707
2708         for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2709                 writel(dma_init_reg[i].val,
2710                        base->virtbase + dma_init_reg[i].reg);
2711
2712         /* Configure all our dma channels to default settings */
2713         for (i = 0; i < base->num_phy_chans; i++) {
2714
2715                 activeo[i % 2] = activeo[i % 2] << 2;
2716
2717                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2718                     == D40_ALLOC_PHY) {
2719                         activeo[i % 2] |= 3;
2720                         continue;
2721                 }
2722
2723                 /* Enable interrupt # */
2724                 pcmis = (pcmis << 1) | 1;
2725
2726                 /* Clear interrupt # */
2727                 pcicr = (pcicr << 1) | 1;
2728
2729                 /* Set channel to physical mode */
2730                 prmseo[i % 2] = prmseo[i % 2] << 2;
2731                 prmseo[i % 2] |= 1;
2732
2733         }
2734
2735         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2736         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2737         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2738         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2739
2740         /* Write which interrupt to enable */
2741         writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2742
2743         /* Write which interrupt to clear */
2744         writel(pcicr, base->virtbase + D40_DREG_PCICR);
2745
2746 }
2747
2748 static int __init d40_lcla_allocate(struct d40_base *base)
2749 {
2750         unsigned long *page_list;
2751         int i, j;
2752         int ret = 0;
2753
2754         /*
2755          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2756          * To full fill this hardware requirement without wasting 256 kb
2757          * we allocate pages until we get an aligned one.
2758          */
2759         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2760                             GFP_KERNEL);
2761
2762         if (!page_list) {
2763                 ret = -ENOMEM;
2764                 goto failure;
2765         }
2766
2767         /* Calculating how many pages that are required */
2768         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2769
2770         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2771                 page_list[i] = __get_free_pages(GFP_KERNEL,
2772                                                 base->lcla_pool.pages);
2773                 if (!page_list[i]) {
2774
2775                         dev_err(base->dev,
2776                                 "[%s] Failed to allocate %d pages.\n",
2777                                 __func__, base->lcla_pool.pages);
2778
2779                         for (j = 0; j < i; j++)
2780                                 free_pages(page_list[j], base->lcla_pool.pages);
2781                         goto failure;
2782                 }
2783
2784                 if ((virt_to_phys((void *)page_list[i]) &
2785                      (LCLA_ALIGNMENT - 1)) == 0)
2786                         break;
2787         }
2788
2789         for (j = 0; j < i; j++)
2790                 free_pages(page_list[j], base->lcla_pool.pages);
2791
2792         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2793                 base->lcla_pool.base = (void *)page_list[i];
2794         } else {
2795                 /*
2796                  * After many attempts and no succees with finding the correct
2797                  * alignment, try with allocating a big buffer.
2798                  */
2799                 dev_warn(base->dev,
2800                          "[%s] Failed to get %d pages @ 18 bit align.\n",
2801                          __func__, base->lcla_pool.pages);
2802                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2803                                                          base->num_phy_chans +
2804                                                          LCLA_ALIGNMENT,
2805                                                          GFP_KERNEL);
2806                 if (!base->lcla_pool.base_unaligned) {
2807                         ret = -ENOMEM;
2808                         goto failure;
2809                 }
2810
2811                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2812                                                  LCLA_ALIGNMENT);
2813         }
2814
2815         writel(virt_to_phys(base->lcla_pool.base),
2816                base->virtbase + D40_DREG_LCLA);
2817 failure:
2818         kfree(page_list);
2819         return ret;
2820 }
2821
2822 static int __init d40_probe(struct platform_device *pdev)
2823 {
2824         int err;
2825         int ret = -ENOENT;
2826         struct d40_base *base;
2827         struct resource *res = NULL;
2828         int num_reserved_chans;
2829         u32 val;
2830
2831         base = d40_hw_detect_init(pdev);
2832
2833         if (!base)
2834                 goto failure;
2835
2836         num_reserved_chans = d40_phy_res_init(base);
2837
2838         platform_set_drvdata(pdev, base);
2839
2840         spin_lock_init(&base->interrupt_lock);
2841         spin_lock_init(&base->execmd_lock);
2842
2843         /* Get IO for logical channel parameter address */
2844         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2845         if (!res) {
2846                 ret = -ENOENT;
2847                 dev_err(&pdev->dev,
2848                         "[%s] No \"lcpa\" memory resource\n",
2849                         __func__);
2850                 goto failure;
2851         }
2852         base->lcpa_size = resource_size(res);
2853         base->phy_lcpa = res->start;
2854
2855         if (request_mem_region(res->start, resource_size(res),
2856                                D40_NAME " I/O lcpa") == NULL) {
2857                 ret = -EBUSY;
2858                 dev_err(&pdev->dev,
2859                         "[%s] Failed to request LCPA region 0x%x-0x%x\n",
2860                         __func__, res->start, res->end);
2861                 goto failure;
2862         }
2863
2864         /* We make use of ESRAM memory for this. */
2865         val = readl(base->virtbase + D40_DREG_LCPA);
2866         if (res->start != val && val != 0) {
2867                 dev_warn(&pdev->dev,
2868                          "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2869                          __func__, val, res->start);
2870         } else
2871                 writel(res->start, base->virtbase + D40_DREG_LCPA);
2872
2873         base->lcpa_base = ioremap(res->start, resource_size(res));
2874         if (!base->lcpa_base) {
2875                 ret = -ENOMEM;
2876                 dev_err(&pdev->dev,
2877                         "[%s] Failed to ioremap LCPA region\n",
2878                         __func__);
2879                 goto failure;
2880         }
2881
2882         ret = d40_lcla_allocate(base);
2883         if (ret) {
2884                 dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
2885                         __func__);
2886                 goto failure;
2887         }
2888
2889         spin_lock_init(&base->lcla_pool.lock);
2890
2891         base->irq = platform_get_irq(pdev, 0);
2892
2893         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2894
2895         if (ret) {
2896                 dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
2897                 goto failure;
2898         }
2899
2900         err = d40_dmaengine_init(base, num_reserved_chans);
2901         if (err)
2902                 goto failure;
2903
2904         d40_hw_init(base);
2905
2906         dev_info(base->dev, "initialized\n");
2907         return 0;
2908
2909 failure:
2910         if (base) {
2911                 if (base->desc_slab)
2912                         kmem_cache_destroy(base->desc_slab);
2913                 if (base->virtbase)
2914                         iounmap(base->virtbase);
2915                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2916                         free_pages((unsigned long)base->lcla_pool.base,
2917                                    base->lcla_pool.pages);
2918
2919                 kfree(base->lcla_pool.base_unaligned);
2920
2921                 if (base->phy_lcpa)
2922                         release_mem_region(base->phy_lcpa,
2923                                            base->lcpa_size);
2924                 if (base->phy_start)
2925                         release_mem_region(base->phy_start,
2926                                            base->phy_size);
2927                 if (base->clk) {
2928                         clk_disable(base->clk);
2929                         clk_put(base->clk);
2930                 }
2931
2932                 kfree(base->lcla_pool.alloc_map);
2933                 kfree(base->lookup_log_chans);
2934                 kfree(base->lookup_phy_chans);
2935                 kfree(base->phy_res);
2936                 kfree(base);
2937         }
2938
2939         dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
2940         return ret;
2941 }
2942
2943 static struct platform_driver d40_driver = {
2944         .driver = {
2945                 .owner = THIS_MODULE,
2946                 .name  = D40_NAME,
2947         },
2948 };
2949
2950 int __init stedma40_init(void)
2951 {
2952         return platform_driver_probe(&d40_driver, d40_probe);
2953 }
2954 arch_initcall(stedma40_init);