Merge branch 'fortglx/39/tip/timers/rtc' of git://git.linaro.org/people/jstultz/linux...
[pandora-kernel.git] / drivers / dma / ste_dma40.c
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/dmaengine.h>
12 #include <linux/platform_device.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16
17 #include <plat/ste_dma40.h>
18
19 #include "ste_dma40_ll.h"
20
21 #define D40_NAME "dma40"
22
23 #define D40_PHY_CHAN -1
24
25 /* For masking out/in 2 bit channel positions */
26 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
27 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
28
29 /* Maximum iterations taken before giving up suspending a channel */
30 #define D40_SUSPEND_MAX_IT 500
31
32 /* Hardware requirement on LCLA alignment */
33 #define LCLA_ALIGNMENT 0x40000
34
35 /* Max number of links per event group */
36 #define D40_LCLA_LINK_PER_EVENT_GRP 128
37 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
38
39 /* Attempts before giving up to trying to get pages that are aligned */
40 #define MAX_LCLA_ALLOC_ATTEMPTS 256
41
42 /* Bit markings for allocation map */
43 #define D40_ALLOC_FREE          (1 << 31)
44 #define D40_ALLOC_PHY           (1 << 30)
45 #define D40_ALLOC_LOG_FREE      0
46
47 /* Hardware designer of the block */
48 #define D40_HW_DESIGNER 0x8
49
50 /**
51  * enum 40_command - The different commands and/or statuses.
52  *
53  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
54  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
55  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
56  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
57  */
58 enum d40_command {
59         D40_DMA_STOP            = 0,
60         D40_DMA_RUN             = 1,
61         D40_DMA_SUSPEND_REQ     = 2,
62         D40_DMA_SUSPENDED       = 3
63 };
64
65 /**
66  * struct d40_lli_pool - Structure for keeping LLIs in memory
67  *
68  * @base: Pointer to memory area when the pre_alloc_lli's are not large
69  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
70  * pre_alloc_lli is used.
71  * @dma_addr: DMA address, if mapped
72  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
73  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
74  * one buffer to one buffer.
75  */
76 struct d40_lli_pool {
77         void    *base;
78         int      size;
79         dma_addr_t      dma_addr;
80         /* Space for dst and src, plus an extra for padding */
81         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
82 };
83
84 /**
85  * struct d40_desc - A descriptor is one DMA job.
86  *
87  * @lli_phy: LLI settings for physical channel. Both src and dst=
88  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
89  * lli_len equals one.
90  * @lli_log: Same as above but for logical channels.
91  * @lli_pool: The pool with two entries pre-allocated.
92  * @lli_len: Number of llis of current descriptor.
93  * @lli_current: Number of transferred llis.
94  * @lcla_alloc: Number of LCLA entries allocated.
95  * @txd: DMA engine struct. Used for among other things for communication
96  * during a transfer.
97  * @node: List entry.
98  * @is_in_client_list: true if the client owns this descriptor.
99  * the previous one.
100  *
101  * This descriptor is used for both logical and physical transfers.
102  */
103 struct d40_desc {
104         /* LLI physical */
105         struct d40_phy_lli_bidir         lli_phy;
106         /* LLI logical */
107         struct d40_log_lli_bidir         lli_log;
108
109         struct d40_lli_pool              lli_pool;
110         int                              lli_len;
111         int                              lli_current;
112         int                              lcla_alloc;
113
114         struct dma_async_tx_descriptor   txd;
115         struct list_head                 node;
116
117         bool                             is_in_client_list;
118         bool                             cyclic;
119 };
120
121 /**
122  * struct d40_lcla_pool - LCLA pool settings and data.
123  *
124  * @base: The virtual address of LCLA. 18 bit aligned.
125  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
126  * This pointer is only there for clean-up on error.
127  * @pages: The number of pages needed for all physical channels.
128  * Only used later for clean-up on error
129  * @lock: Lock to protect the content in this struct.
130  * @alloc_map: big map over which LCLA entry is own by which job.
131  */
132 struct d40_lcla_pool {
133         void            *base;
134         dma_addr_t      dma_addr;
135         void            *base_unaligned;
136         int              pages;
137         spinlock_t       lock;
138         struct d40_desc **alloc_map;
139 };
140
141 /**
142  * struct d40_phy_res - struct for handling eventlines mapped to physical
143  * channels.
144  *
145  * @lock: A lock protection this entity.
146  * @num: The physical channel number of this entity.
147  * @allocated_src: Bit mapped to show which src event line's are mapped to
148  * this physical channel. Can also be free or physically allocated.
149  * @allocated_dst: Same as for src but is dst.
150  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
151  * event line number.
152  */
153 struct d40_phy_res {
154         spinlock_t lock;
155         int        num;
156         u32        allocated_src;
157         u32        allocated_dst;
158 };
159
160 struct d40_base;
161
162 /**
163  * struct d40_chan - Struct that describes a channel.
164  *
165  * @lock: A spinlock to protect this struct.
166  * @log_num: The logical number, if any of this channel.
167  * @completed: Starts with 1, after first interrupt it is set to dma engine's
168  * current cookie.
169  * @pending_tx: The number of pending transfers. Used between interrupt handler
170  * and tasklet.
171  * @busy: Set to true when transfer is ongoing on this channel.
172  * @phy_chan: Pointer to physical channel which this instance runs on. If this
173  * point is NULL, then the channel is not allocated.
174  * @chan: DMA engine handle.
175  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
176  * transfer and call client callback.
177  * @client: Cliented owned descriptor list.
178  * @active: Active descriptor.
179  * @queue: Queued jobs.
180  * @dma_cfg: The client configuration of this dma channel.
181  * @configured: whether the dma_cfg configuration is valid
182  * @base: Pointer to the device instance struct.
183  * @src_def_cfg: Default cfg register setting for src.
184  * @dst_def_cfg: Default cfg register setting for dst.
185  * @log_def: Default logical channel settings.
186  * @lcla: Space for one dst src pair for logical channel transfers.
187  * @lcpa: Pointer to dst and src lcpa settings.
188  *
189  * This struct can either "be" a logical or a physical channel.
190  */
191 struct d40_chan {
192         spinlock_t                       lock;
193         int                              log_num;
194         /* ID of the most recent completed transfer */
195         int                              completed;
196         int                              pending_tx;
197         bool                             busy;
198         struct d40_phy_res              *phy_chan;
199         struct dma_chan                  chan;
200         struct tasklet_struct            tasklet;
201         struct list_head                 client;
202         struct list_head                 active;
203         struct list_head                 queue;
204         struct stedma40_chan_cfg         dma_cfg;
205         bool                             configured;
206         struct d40_base                 *base;
207         /* Default register configurations */
208         u32                              src_def_cfg;
209         u32                              dst_def_cfg;
210         struct d40_def_lcsp              log_def;
211         struct d40_log_lli_full         *lcpa;
212         /* Runtime reconfiguration */
213         dma_addr_t                      runtime_addr;
214         enum dma_data_direction         runtime_direction;
215 };
216
217 /**
218  * struct d40_base - The big global struct, one for each probe'd instance.
219  *
220  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
221  * @execmd_lock: Lock for execute command usage since several channels share
222  * the same physical register.
223  * @dev: The device structure.
224  * @virtbase: The virtual base address of the DMA's register.
225  * @rev: silicon revision detected.
226  * @clk: Pointer to the DMA clock structure.
227  * @phy_start: Physical memory start of the DMA registers.
228  * @phy_size: Size of the DMA register map.
229  * @irq: The IRQ number.
230  * @num_phy_chans: The number of physical channels. Read from HW. This
231  * is the number of available channels for this driver, not counting "Secure
232  * mode" allocated physical channels.
233  * @num_log_chans: The number of logical channels. Calculated from
234  * num_phy_chans.
235  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
236  * @dma_slave: dma_device channels that can do only do slave transfers.
237  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
238  * @log_chans: Room for all possible logical channels in system.
239  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
240  * to log_chans entries.
241  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
242  * to phy_chans entries.
243  * @plat_data: Pointer to provided platform_data which is the driver
244  * configuration.
245  * @phy_res: Vector containing all physical channels.
246  * @lcla_pool: lcla pool settings and data.
247  * @lcpa_base: The virtual mapped address of LCPA.
248  * @phy_lcpa: The physical address of the LCPA.
249  * @lcpa_size: The size of the LCPA area.
250  * @desc_slab: cache for descriptors.
251  */
252 struct d40_base {
253         spinlock_t                       interrupt_lock;
254         spinlock_t                       execmd_lock;
255         struct device                    *dev;
256         void __iomem                     *virtbase;
257         u8                                rev:4;
258         struct clk                       *clk;
259         phys_addr_t                       phy_start;
260         resource_size_t                   phy_size;
261         int                               irq;
262         int                               num_phy_chans;
263         int                               num_log_chans;
264         struct dma_device                 dma_both;
265         struct dma_device                 dma_slave;
266         struct dma_device                 dma_memcpy;
267         struct d40_chan                  *phy_chans;
268         struct d40_chan                  *log_chans;
269         struct d40_chan                 **lookup_log_chans;
270         struct d40_chan                 **lookup_phy_chans;
271         struct stedma40_platform_data    *plat_data;
272         /* Physical half channels */
273         struct d40_phy_res               *phy_res;
274         struct d40_lcla_pool              lcla_pool;
275         void                             *lcpa_base;
276         dma_addr_t                        phy_lcpa;
277         resource_size_t                   lcpa_size;
278         struct kmem_cache                *desc_slab;
279 };
280
281 /**
282  * struct d40_interrupt_lookup - lookup table for interrupt handler
283  *
284  * @src: Interrupt mask register.
285  * @clr: Interrupt clear register.
286  * @is_error: true if this is an error interrupt.
287  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
288  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
289  */
290 struct d40_interrupt_lookup {
291         u32 src;
292         u32 clr;
293         bool is_error;
294         int offset;
295 };
296
297 /**
298  * struct d40_reg_val - simple lookup struct
299  *
300  * @reg: The register.
301  * @val: The value that belongs to the register in reg.
302  */
303 struct d40_reg_val {
304         unsigned int reg;
305         unsigned int val;
306 };
307
308 static struct device *chan2dev(struct d40_chan *d40c)
309 {
310         return &d40c->chan.dev->device;
311 }
312
313 static bool chan_is_physical(struct d40_chan *chan)
314 {
315         return chan->log_num == D40_PHY_CHAN;
316 }
317
318 static bool chan_is_logical(struct d40_chan *chan)
319 {
320         return !chan_is_physical(chan);
321 }
322
323 static void __iomem *chan_base(struct d40_chan *chan)
324 {
325         return chan->base->virtbase + D40_DREG_PCBASE +
326                chan->phy_chan->num * D40_DREG_PCDELTA;
327 }
328
329 #define d40_err(dev, format, arg...)            \
330         dev_err(dev, "[%s] " format, __func__, ## arg)
331
332 #define chan_err(d40c, format, arg...)          \
333         d40_err(chan2dev(d40c), format, ## arg)
334
335 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
336                               int lli_len)
337 {
338         bool is_log = chan_is_logical(d40c);
339         u32 align;
340         void *base;
341
342         if (is_log)
343                 align = sizeof(struct d40_log_lli);
344         else
345                 align = sizeof(struct d40_phy_lli);
346
347         if (lli_len == 1) {
348                 base = d40d->lli_pool.pre_alloc_lli;
349                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
350                 d40d->lli_pool.base = NULL;
351         } else {
352                 d40d->lli_pool.size = lli_len * 2 * align;
353
354                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
355                 d40d->lli_pool.base = base;
356
357                 if (d40d->lli_pool.base == NULL)
358                         return -ENOMEM;
359         }
360
361         if (is_log) {
362                 d40d->lli_log.src = PTR_ALIGN(base, align);
363                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
364
365                 d40d->lli_pool.dma_addr = 0;
366         } else {
367                 d40d->lli_phy.src = PTR_ALIGN(base, align);
368                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
369
370                 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
371                                                          d40d->lli_phy.src,
372                                                          d40d->lli_pool.size,
373                                                          DMA_TO_DEVICE);
374
375                 if (dma_mapping_error(d40c->base->dev,
376                                       d40d->lli_pool.dma_addr)) {
377                         kfree(d40d->lli_pool.base);
378                         d40d->lli_pool.base = NULL;
379                         d40d->lli_pool.dma_addr = 0;
380                         return -ENOMEM;
381                 }
382         }
383
384         return 0;
385 }
386
387 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
388 {
389         if (d40d->lli_pool.dma_addr)
390                 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
391                                  d40d->lli_pool.size, DMA_TO_DEVICE);
392
393         kfree(d40d->lli_pool.base);
394         d40d->lli_pool.base = NULL;
395         d40d->lli_pool.size = 0;
396         d40d->lli_log.src = NULL;
397         d40d->lli_log.dst = NULL;
398         d40d->lli_phy.src = NULL;
399         d40d->lli_phy.dst = NULL;
400 }
401
402 static int d40_lcla_alloc_one(struct d40_chan *d40c,
403                               struct d40_desc *d40d)
404 {
405         unsigned long flags;
406         int i;
407         int ret = -EINVAL;
408         int p;
409
410         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
411
412         p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
413
414         /*
415          * Allocate both src and dst at the same time, therefore the half
416          * start on 1 since 0 can't be used since zero is used as end marker.
417          */
418         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
419                 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
420                         d40c->base->lcla_pool.alloc_map[p + i] = d40d;
421                         d40d->lcla_alloc++;
422                         ret = i;
423                         break;
424                 }
425         }
426
427         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
428
429         return ret;
430 }
431
432 static int d40_lcla_free_all(struct d40_chan *d40c,
433                              struct d40_desc *d40d)
434 {
435         unsigned long flags;
436         int i;
437         int ret = -EINVAL;
438
439         if (chan_is_physical(d40c))
440                 return 0;
441
442         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
443
444         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
445                 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
446                                                     D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
447                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
448                                                         D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
449                         d40d->lcla_alloc--;
450                         if (d40d->lcla_alloc == 0) {
451                                 ret = 0;
452                                 break;
453                         }
454                 }
455         }
456
457         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
458
459         return ret;
460
461 }
462
463 static void d40_desc_remove(struct d40_desc *d40d)
464 {
465         list_del(&d40d->node);
466 }
467
468 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
469 {
470         struct d40_desc *desc = NULL;
471
472         if (!list_empty(&d40c->client)) {
473                 struct d40_desc *d;
474                 struct d40_desc *_d;
475
476                 list_for_each_entry_safe(d, _d, &d40c->client, node)
477                         if (async_tx_test_ack(&d->txd)) {
478                                 d40_pool_lli_free(d40c, d);
479                                 d40_desc_remove(d);
480                                 desc = d;
481                                 memset(desc, 0, sizeof(*desc));
482                                 break;
483                         }
484         }
485
486         if (!desc)
487                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
488
489         if (desc)
490                 INIT_LIST_HEAD(&desc->node);
491
492         return desc;
493 }
494
495 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
496 {
497
498         d40_pool_lli_free(d40c, d40d);
499         d40_lcla_free_all(d40c, d40d);
500         kmem_cache_free(d40c->base->desc_slab, d40d);
501 }
502
503 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
504 {
505         list_add_tail(&desc->node, &d40c->active);
506 }
507
508 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
509 {
510         struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
511         struct d40_phy_lli *lli_src = desc->lli_phy.src;
512         void __iomem *base = chan_base(chan);
513
514         writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
515         writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
516         writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
517         writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
518
519         writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
520         writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
521         writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
522         writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
523 }
524
525 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
526 {
527         struct d40_lcla_pool *pool = &chan->base->lcla_pool;
528         struct d40_log_lli_bidir *lli = &desc->lli_log;
529         int lli_current = desc->lli_current;
530         int lli_len = desc->lli_len;
531         bool cyclic = desc->cyclic;
532         int curr_lcla = -EINVAL;
533         int first_lcla = 0;
534         bool linkback;
535
536         /*
537          * We may have partially running cyclic transfers, in case we did't get
538          * enough LCLA entries.
539          */
540         linkback = cyclic && lli_current == 0;
541
542         /*
543          * For linkback, we need one LCLA even with only one link, because we
544          * can't link back to the one in LCPA space
545          */
546         if (linkback || (lli_len - lli_current > 1)) {
547                 curr_lcla = d40_lcla_alloc_one(chan, desc);
548                 first_lcla = curr_lcla;
549         }
550
551         /*
552          * For linkback, we normally load the LCPA in the loop since we need to
553          * link it to the second LCLA and not the first.  However, if we
554          * couldn't even get a first LCLA, then we have to run in LCPA and
555          * reload manually.
556          */
557         if (!linkback || curr_lcla == -EINVAL) {
558                 unsigned int flags = 0;
559
560                 if (curr_lcla == -EINVAL)
561                         flags |= LLI_TERM_INT;
562
563                 d40_log_lli_lcpa_write(chan->lcpa,
564                                        &lli->dst[lli_current],
565                                        &lli->src[lli_current],
566                                        curr_lcla,
567                                        flags);
568                 lli_current++;
569         }
570
571         if (curr_lcla < 0)
572                 goto out;
573
574         for (; lli_current < lli_len; lli_current++) {
575                 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
576                                            8 * curr_lcla * 2;
577                 struct d40_log_lli *lcla = pool->base + lcla_offset;
578                 unsigned int flags = 0;
579                 int next_lcla;
580
581                 if (lli_current + 1 < lli_len)
582                         next_lcla = d40_lcla_alloc_one(chan, desc);
583                 else
584                         next_lcla = linkback ? first_lcla : -EINVAL;
585
586                 if (cyclic || next_lcla == -EINVAL)
587                         flags |= LLI_TERM_INT;
588
589                 if (linkback && curr_lcla == first_lcla) {
590                         /* First link goes in both LCPA and LCLA */
591                         d40_log_lli_lcpa_write(chan->lcpa,
592                                                &lli->dst[lli_current],
593                                                &lli->src[lli_current],
594                                                next_lcla, flags);
595                 }
596
597                 /*
598                  * One unused LCLA in the cyclic case if the very first
599                  * next_lcla fails...
600                  */
601                 d40_log_lli_lcla_write(lcla,
602                                        &lli->dst[lli_current],
603                                        &lli->src[lli_current],
604                                        next_lcla, flags);
605
606                 dma_sync_single_range_for_device(chan->base->dev,
607                                         pool->dma_addr, lcla_offset,
608                                         2 * sizeof(struct d40_log_lli),
609                                         DMA_TO_DEVICE);
610
611                 curr_lcla = next_lcla;
612
613                 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
614                         lli_current++;
615                         break;
616                 }
617         }
618
619 out:
620         desc->lli_current = lli_current;
621 }
622
623 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
624 {
625         if (chan_is_physical(d40c)) {
626                 d40_phy_lli_load(d40c, d40d);
627                 d40d->lli_current = d40d->lli_len;
628         } else
629                 d40_log_lli_to_lcxa(d40c, d40d);
630 }
631
632 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
633 {
634         struct d40_desc *d;
635
636         if (list_empty(&d40c->active))
637                 return NULL;
638
639         d = list_first_entry(&d40c->active,
640                              struct d40_desc,
641                              node);
642         return d;
643 }
644
645 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
646 {
647         list_add_tail(&desc->node, &d40c->queue);
648 }
649
650 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
651 {
652         struct d40_desc *d;
653
654         if (list_empty(&d40c->queue))
655                 return NULL;
656
657         d = list_first_entry(&d40c->queue,
658                              struct d40_desc,
659                              node);
660         return d;
661 }
662
663 static int d40_psize_2_burst_size(bool is_log, int psize)
664 {
665         if (is_log) {
666                 if (psize == STEDMA40_PSIZE_LOG_1)
667                         return 1;
668         } else {
669                 if (psize == STEDMA40_PSIZE_PHY_1)
670                         return 1;
671         }
672
673         return 2 << psize;
674 }
675
676 /*
677  * The dma only supports transmitting packages up to
678  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
679  * dma elements required to send the entire sg list
680  */
681 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
682 {
683         int dmalen;
684         u32 max_w = max(data_width1, data_width2);
685         u32 min_w = min(data_width1, data_width2);
686         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
687
688         if (seg_max > STEDMA40_MAX_SEG_SIZE)
689                 seg_max -= (1 << max_w);
690
691         if (!IS_ALIGNED(size, 1 << max_w))
692                 return -EINVAL;
693
694         if (size <= seg_max)
695                 dmalen = 1;
696         else {
697                 dmalen = size / seg_max;
698                 if (dmalen * seg_max < size)
699                         dmalen++;
700         }
701         return dmalen;
702 }
703
704 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
705                            u32 data_width1, u32 data_width2)
706 {
707         struct scatterlist *sg;
708         int i;
709         int len = 0;
710         int ret;
711
712         for_each_sg(sgl, sg, sg_len, i) {
713                 ret = d40_size_2_dmalen(sg_dma_len(sg),
714                                         data_width1, data_width2);
715                 if (ret < 0)
716                         return ret;
717                 len += ret;
718         }
719         return len;
720 }
721
722 /* Support functions for logical channels */
723
724 static int d40_channel_execute_command(struct d40_chan *d40c,
725                                        enum d40_command command)
726 {
727         u32 status;
728         int i;
729         void __iomem *active_reg;
730         int ret = 0;
731         unsigned long flags;
732         u32 wmask;
733
734         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
735
736         if (d40c->phy_chan->num % 2 == 0)
737                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
738         else
739                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
740
741         if (command == D40_DMA_SUSPEND_REQ) {
742                 status = (readl(active_reg) &
743                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
744                         D40_CHAN_POS(d40c->phy_chan->num);
745
746                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
747                         goto done;
748         }
749
750         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
751         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
752                active_reg);
753
754         if (command == D40_DMA_SUSPEND_REQ) {
755
756                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
757                         status = (readl(active_reg) &
758                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
759                                 D40_CHAN_POS(d40c->phy_chan->num);
760
761                         cpu_relax();
762                         /*
763                          * Reduce the number of bus accesses while
764                          * waiting for the DMA to suspend.
765                          */
766                         udelay(3);
767
768                         if (status == D40_DMA_STOP ||
769                             status == D40_DMA_SUSPENDED)
770                                 break;
771                 }
772
773                 if (i == D40_SUSPEND_MAX_IT) {
774                         chan_err(d40c,
775                                 "unable to suspend the chl %d (log: %d) status %x\n",
776                                 d40c->phy_chan->num, d40c->log_num,
777                                 status);
778                         dump_stack();
779                         ret = -EBUSY;
780                 }
781
782         }
783 done:
784         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
785         return ret;
786 }
787
788 static void d40_term_all(struct d40_chan *d40c)
789 {
790         struct d40_desc *d40d;
791
792         /* Release active descriptors */
793         while ((d40d = d40_first_active_get(d40c))) {
794                 d40_desc_remove(d40d);
795                 d40_desc_free(d40c, d40d);
796         }
797
798         /* Release queued descriptors waiting for transfer */
799         while ((d40d = d40_first_queued(d40c))) {
800                 d40_desc_remove(d40d);
801                 d40_desc_free(d40c, d40d);
802         }
803
804
805         d40c->pending_tx = 0;
806         d40c->busy = false;
807 }
808
809 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
810                                    u32 event, int reg)
811 {
812         void __iomem *addr = chan_base(d40c) + reg;
813         int tries;
814
815         if (!enable) {
816                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
817                        | ~D40_EVENTLINE_MASK(event), addr);
818                 return;
819         }
820
821         /*
822          * The hardware sometimes doesn't register the enable when src and dst
823          * event lines are active on the same logical channel.  Retry to ensure
824          * it does.  Usually only one retry is sufficient.
825          */
826         tries = 100;
827         while (--tries) {
828                 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
829                        | ~D40_EVENTLINE_MASK(event), addr);
830
831                 if (readl(addr) & D40_EVENTLINE_MASK(event))
832                         break;
833         }
834
835         if (tries != 99)
836                 dev_dbg(chan2dev(d40c),
837                         "[%s] workaround enable S%cLNK (%d tries)\n",
838                         __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
839                         100 - tries);
840
841         WARN_ON(!tries);
842 }
843
844 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
845 {
846         unsigned long flags;
847
848         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
849
850         /* Enable event line connected to device (or memcpy) */
851         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
852             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
853                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
854
855                 __d40_config_set_event(d40c, do_enable, event,
856                                        D40_CHAN_REG_SSLNK);
857         }
858
859         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
860                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
861
862                 __d40_config_set_event(d40c, do_enable, event,
863                                        D40_CHAN_REG_SDLNK);
864         }
865
866         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
867 }
868
869 static u32 d40_chan_has_events(struct d40_chan *d40c)
870 {
871         void __iomem *chanbase = chan_base(d40c);
872         u32 val;
873
874         val = readl(chanbase + D40_CHAN_REG_SSLNK);
875         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
876
877         return val;
878 }
879
880 static u32 d40_get_prmo(struct d40_chan *d40c)
881 {
882         static const unsigned int phy_map[] = {
883                 [STEDMA40_PCHAN_BASIC_MODE]
884                         = D40_DREG_PRMO_PCHAN_BASIC,
885                 [STEDMA40_PCHAN_MODULO_MODE]
886                         = D40_DREG_PRMO_PCHAN_MODULO,
887                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
888                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
889         };
890         static const unsigned int log_map[] = {
891                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
892                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
893                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
894                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
895                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
896                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
897         };
898
899         if (chan_is_physical(d40c))
900                 return phy_map[d40c->dma_cfg.mode_opt];
901         else
902                 return log_map[d40c->dma_cfg.mode_opt];
903 }
904
905 static void d40_config_write(struct d40_chan *d40c)
906 {
907         u32 addr_base;
908         u32 var;
909
910         /* Odd addresses are even addresses + 4 */
911         addr_base = (d40c->phy_chan->num % 2) * 4;
912         /* Setup channel mode to logical or physical */
913         var = ((u32)(chan_is_logical(d40c)) + 1) <<
914                 D40_CHAN_POS(d40c->phy_chan->num);
915         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
916
917         /* Setup operational mode option register */
918         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
919
920         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
921
922         if (chan_is_logical(d40c)) {
923                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
924                            & D40_SREG_ELEM_LOG_LIDX_MASK;
925                 void __iomem *chanbase = chan_base(d40c);
926
927                 /* Set default config for CFG reg */
928                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
929                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
930
931                 /* Set LIDX for lcla */
932                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
933                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
934         }
935 }
936
937 static u32 d40_residue(struct d40_chan *d40c)
938 {
939         u32 num_elt;
940
941         if (chan_is_logical(d40c))
942                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
943                         >> D40_MEM_LCSP2_ECNT_POS;
944         else {
945                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
946                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
947                           >> D40_SREG_ELEM_PHY_ECNT_POS;
948         }
949
950         return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
951 }
952
953 static bool d40_tx_is_linked(struct d40_chan *d40c)
954 {
955         bool is_link;
956
957         if (chan_is_logical(d40c))
958                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
959         else
960                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
961                           & D40_SREG_LNK_PHYS_LNK_MASK;
962
963         return is_link;
964 }
965
966 static int d40_pause(struct d40_chan *d40c)
967 {
968         int res = 0;
969         unsigned long flags;
970
971         if (!d40c->busy)
972                 return 0;
973
974         spin_lock_irqsave(&d40c->lock, flags);
975
976         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
977         if (res == 0) {
978                 if (chan_is_logical(d40c)) {
979                         d40_config_set_event(d40c, false);
980                         /* Resume the other logical channels if any */
981                         if (d40_chan_has_events(d40c))
982                                 res = d40_channel_execute_command(d40c,
983                                                                   D40_DMA_RUN);
984                 }
985         }
986
987         spin_unlock_irqrestore(&d40c->lock, flags);
988         return res;
989 }
990
991 static int d40_resume(struct d40_chan *d40c)
992 {
993         int res = 0;
994         unsigned long flags;
995
996         if (!d40c->busy)
997                 return 0;
998
999         spin_lock_irqsave(&d40c->lock, flags);
1000
1001         if (d40c->base->rev == 0)
1002                 if (chan_is_logical(d40c)) {
1003                         res = d40_channel_execute_command(d40c,
1004                                                           D40_DMA_SUSPEND_REQ);
1005                         goto no_suspend;
1006                 }
1007
1008         /* If bytes left to transfer or linked tx resume job */
1009         if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1010
1011                 if (chan_is_logical(d40c))
1012                         d40_config_set_event(d40c, true);
1013
1014                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1015         }
1016
1017 no_suspend:
1018         spin_unlock_irqrestore(&d40c->lock, flags);
1019         return res;
1020 }
1021
1022 static int d40_terminate_all(struct d40_chan *chan)
1023 {
1024         unsigned long flags;
1025         int ret = 0;
1026
1027         ret = d40_pause(chan);
1028         if (!ret && chan_is_physical(chan))
1029                 ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1030
1031         spin_lock_irqsave(&chan->lock, flags);
1032         d40_term_all(chan);
1033         spin_unlock_irqrestore(&chan->lock, flags);
1034
1035         return ret;
1036 }
1037
1038 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1039 {
1040         struct d40_chan *d40c = container_of(tx->chan,
1041                                              struct d40_chan,
1042                                              chan);
1043         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1044         unsigned long flags;
1045
1046         spin_lock_irqsave(&d40c->lock, flags);
1047
1048         d40c->chan.cookie++;
1049
1050         if (d40c->chan.cookie < 0)
1051                 d40c->chan.cookie = 1;
1052
1053         d40d->txd.cookie = d40c->chan.cookie;
1054
1055         d40_desc_queue(d40c, d40d);
1056
1057         spin_unlock_irqrestore(&d40c->lock, flags);
1058
1059         return tx->cookie;
1060 }
1061
1062 static int d40_start(struct d40_chan *d40c)
1063 {
1064         if (d40c->base->rev == 0) {
1065                 int err;
1066
1067                 if (chan_is_logical(d40c)) {
1068                         err = d40_channel_execute_command(d40c,
1069                                                           D40_DMA_SUSPEND_REQ);
1070                         if (err)
1071                                 return err;
1072                 }
1073         }
1074
1075         if (chan_is_logical(d40c))
1076                 d40_config_set_event(d40c, true);
1077
1078         return d40_channel_execute_command(d40c, D40_DMA_RUN);
1079 }
1080
1081 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1082 {
1083         struct d40_desc *d40d;
1084         int err;
1085
1086         /* Start queued jobs, if any */
1087         d40d = d40_first_queued(d40c);
1088
1089         if (d40d != NULL) {
1090                 d40c->busy = true;
1091
1092                 /* Remove from queue */
1093                 d40_desc_remove(d40d);
1094
1095                 /* Add to active queue */
1096                 d40_desc_submit(d40c, d40d);
1097
1098                 /* Initiate DMA job */
1099                 d40_desc_load(d40c, d40d);
1100
1101                 /* Start dma job */
1102                 err = d40_start(d40c);
1103
1104                 if (err)
1105                         return NULL;
1106         }
1107
1108         return d40d;
1109 }
1110
1111 /* called from interrupt context */
1112 static void dma_tc_handle(struct d40_chan *d40c)
1113 {
1114         struct d40_desc *d40d;
1115
1116         /* Get first active entry from list */
1117         d40d = d40_first_active_get(d40c);
1118
1119         if (d40d == NULL)
1120                 return;
1121
1122         if (d40d->cyclic) {
1123                 /*
1124                  * If this was a paritially loaded list, we need to reloaded
1125                  * it, and only when the list is completed.  We need to check
1126                  * for done because the interrupt will hit for every link, and
1127                  * not just the last one.
1128                  */
1129                 if (d40d->lli_current < d40d->lli_len
1130                     && !d40_tx_is_linked(d40c)
1131                     && !d40_residue(d40c)) {
1132                         d40_lcla_free_all(d40c, d40d);
1133                         d40_desc_load(d40c, d40d);
1134                         (void) d40_start(d40c);
1135
1136                         if (d40d->lli_current == d40d->lli_len)
1137                                 d40d->lli_current = 0;
1138                 }
1139         } else {
1140                 d40_lcla_free_all(d40c, d40d);
1141
1142                 if (d40d->lli_current < d40d->lli_len) {
1143                         d40_desc_load(d40c, d40d);
1144                         /* Start dma job */
1145                         (void) d40_start(d40c);
1146                         return;
1147                 }
1148
1149                 if (d40_queue_start(d40c) == NULL)
1150                         d40c->busy = false;
1151         }
1152
1153         d40c->pending_tx++;
1154         tasklet_schedule(&d40c->tasklet);
1155
1156 }
1157
1158 static void dma_tasklet(unsigned long data)
1159 {
1160         struct d40_chan *d40c = (struct d40_chan *) data;
1161         struct d40_desc *d40d;
1162         unsigned long flags;
1163         dma_async_tx_callback callback;
1164         void *callback_param;
1165
1166         spin_lock_irqsave(&d40c->lock, flags);
1167
1168         /* Get first active entry from list */
1169         d40d = d40_first_active_get(d40c);
1170         if (d40d == NULL)
1171                 goto err;
1172
1173         if (!d40d->cyclic)
1174                 d40c->completed = d40d->txd.cookie;
1175
1176         /*
1177          * If terminating a channel pending_tx is set to zero.
1178          * This prevents any finished active jobs to return to the client.
1179          */
1180         if (d40c->pending_tx == 0) {
1181                 spin_unlock_irqrestore(&d40c->lock, flags);
1182                 return;
1183         }
1184
1185         /* Callback to client */
1186         callback = d40d->txd.callback;
1187         callback_param = d40d->txd.callback_param;
1188
1189         if (!d40d->cyclic) {
1190                 if (async_tx_test_ack(&d40d->txd)) {
1191                         d40_pool_lli_free(d40c, d40d);
1192                         d40_desc_remove(d40d);
1193                         d40_desc_free(d40c, d40d);
1194                 } else {
1195                         if (!d40d->is_in_client_list) {
1196                                 d40_desc_remove(d40d);
1197                                 d40_lcla_free_all(d40c, d40d);
1198                                 list_add_tail(&d40d->node, &d40c->client);
1199                                 d40d->is_in_client_list = true;
1200                         }
1201                 }
1202         }
1203
1204         d40c->pending_tx--;
1205
1206         if (d40c->pending_tx)
1207                 tasklet_schedule(&d40c->tasklet);
1208
1209         spin_unlock_irqrestore(&d40c->lock, flags);
1210
1211         if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1212                 callback(callback_param);
1213
1214         return;
1215
1216  err:
1217         /* Rescue manoeuvre if receiving double interrupts */
1218         if (d40c->pending_tx > 0)
1219                 d40c->pending_tx--;
1220         spin_unlock_irqrestore(&d40c->lock, flags);
1221 }
1222
1223 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1224 {
1225         static const struct d40_interrupt_lookup il[] = {
1226                 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1227                 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1228                 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1229                 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1230                 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1231                 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1232                 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1233                 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1234                 {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1235                 {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1236         };
1237
1238         int i;
1239         u32 regs[ARRAY_SIZE(il)];
1240         u32 idx;
1241         u32 row;
1242         long chan = -1;
1243         struct d40_chan *d40c;
1244         unsigned long flags;
1245         struct d40_base *base = data;
1246
1247         spin_lock_irqsave(&base->interrupt_lock, flags);
1248
1249         /* Read interrupt status of both logical and physical channels */
1250         for (i = 0; i < ARRAY_SIZE(il); i++)
1251                 regs[i] = readl(base->virtbase + il[i].src);
1252
1253         for (;;) {
1254
1255                 chan = find_next_bit((unsigned long *)regs,
1256                                      BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1257
1258                 /* No more set bits found? */
1259                 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1260                         break;
1261
1262                 row = chan / BITS_PER_LONG;
1263                 idx = chan & (BITS_PER_LONG - 1);
1264
1265                 /* ACK interrupt */
1266                 writel(1 << idx, base->virtbase + il[row].clr);
1267
1268                 if (il[row].offset == D40_PHY_CHAN)
1269                         d40c = base->lookup_phy_chans[idx];
1270                 else
1271                         d40c = base->lookup_log_chans[il[row].offset + idx];
1272                 spin_lock(&d40c->lock);
1273
1274                 if (!il[row].is_error)
1275                         dma_tc_handle(d40c);
1276                 else
1277                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1278                                 chan, il[row].offset, idx);
1279
1280                 spin_unlock(&d40c->lock);
1281         }
1282
1283         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1284
1285         return IRQ_HANDLED;
1286 }
1287
1288 static int d40_validate_conf(struct d40_chan *d40c,
1289                              struct stedma40_chan_cfg *conf)
1290 {
1291         int res = 0;
1292         u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1293         u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1294         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1295
1296         if (!conf->dir) {
1297                 chan_err(d40c, "Invalid direction.\n");
1298                 res = -EINVAL;
1299         }
1300
1301         if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1302             d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1303             d40c->runtime_addr == 0) {
1304
1305                 chan_err(d40c, "Invalid TX channel address (%d)\n",
1306                          conf->dst_dev_type);
1307                 res = -EINVAL;
1308         }
1309
1310         if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1311             d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1312             d40c->runtime_addr == 0) {
1313                 chan_err(d40c, "Invalid RX channel address (%d)\n",
1314                         conf->src_dev_type);
1315                 res = -EINVAL;
1316         }
1317
1318         if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1319             dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1320                 chan_err(d40c, "Invalid dst\n");
1321                 res = -EINVAL;
1322         }
1323
1324         if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1325             src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1326                 chan_err(d40c, "Invalid src\n");
1327                 res = -EINVAL;
1328         }
1329
1330         if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1331             dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1332                 chan_err(d40c, "No event line\n");
1333                 res = -EINVAL;
1334         }
1335
1336         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1337             (src_event_group != dst_event_group)) {
1338                 chan_err(d40c, "Invalid event group\n");
1339                 res = -EINVAL;
1340         }
1341
1342         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1343                 /*
1344                  * DMAC HW supports it. Will be added to this driver,
1345                  * in case any dma client requires it.
1346                  */
1347                 chan_err(d40c, "periph to periph not supported\n");
1348                 res = -EINVAL;
1349         }
1350
1351         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1352             (1 << conf->src_info.data_width) !=
1353             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1354             (1 << conf->dst_info.data_width)) {
1355                 /*
1356                  * The DMAC hardware only supports
1357                  * src (burst x width) == dst (burst x width)
1358                  */
1359
1360                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1361                 res = -EINVAL;
1362         }
1363
1364         return res;
1365 }
1366
1367 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1368                                int log_event_line, bool is_log)
1369 {
1370         unsigned long flags;
1371         spin_lock_irqsave(&phy->lock, flags);
1372         if (!is_log) {
1373                 /* Physical interrupts are masked per physical full channel */
1374                 if (phy->allocated_src == D40_ALLOC_FREE &&
1375                     phy->allocated_dst == D40_ALLOC_FREE) {
1376                         phy->allocated_dst = D40_ALLOC_PHY;
1377                         phy->allocated_src = D40_ALLOC_PHY;
1378                         goto found;
1379                 } else
1380                         goto not_found;
1381         }
1382
1383         /* Logical channel */
1384         if (is_src) {
1385                 if (phy->allocated_src == D40_ALLOC_PHY)
1386                         goto not_found;
1387
1388                 if (phy->allocated_src == D40_ALLOC_FREE)
1389                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1390
1391                 if (!(phy->allocated_src & (1 << log_event_line))) {
1392                         phy->allocated_src |= 1 << log_event_line;
1393                         goto found;
1394                 } else
1395                         goto not_found;
1396         } else {
1397                 if (phy->allocated_dst == D40_ALLOC_PHY)
1398                         goto not_found;
1399
1400                 if (phy->allocated_dst == D40_ALLOC_FREE)
1401                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1402
1403                 if (!(phy->allocated_dst & (1 << log_event_line))) {
1404                         phy->allocated_dst |= 1 << log_event_line;
1405                         goto found;
1406                 } else
1407                         goto not_found;
1408         }
1409
1410 not_found:
1411         spin_unlock_irqrestore(&phy->lock, flags);
1412         return false;
1413 found:
1414         spin_unlock_irqrestore(&phy->lock, flags);
1415         return true;
1416 }
1417
1418 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1419                                int log_event_line)
1420 {
1421         unsigned long flags;
1422         bool is_free = false;
1423
1424         spin_lock_irqsave(&phy->lock, flags);
1425         if (!log_event_line) {
1426                 phy->allocated_dst = D40_ALLOC_FREE;
1427                 phy->allocated_src = D40_ALLOC_FREE;
1428                 is_free = true;
1429                 goto out;
1430         }
1431
1432         /* Logical channel */
1433         if (is_src) {
1434                 phy->allocated_src &= ~(1 << log_event_line);
1435                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1436                         phy->allocated_src = D40_ALLOC_FREE;
1437         } else {
1438                 phy->allocated_dst &= ~(1 << log_event_line);
1439                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1440                         phy->allocated_dst = D40_ALLOC_FREE;
1441         }
1442
1443         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1444                    D40_ALLOC_FREE);
1445
1446 out:
1447         spin_unlock_irqrestore(&phy->lock, flags);
1448
1449         return is_free;
1450 }
1451
1452 static int d40_allocate_channel(struct d40_chan *d40c)
1453 {
1454         int dev_type;
1455         int event_group;
1456         int event_line;
1457         struct d40_phy_res *phys;
1458         int i;
1459         int j;
1460         int log_num;
1461         bool is_src;
1462         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1463
1464         phys = d40c->base->phy_res;
1465
1466         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1467                 dev_type = d40c->dma_cfg.src_dev_type;
1468                 log_num = 2 * dev_type;
1469                 is_src = true;
1470         } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1471                    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1472                 /* dst event lines are used for logical memcpy */
1473                 dev_type = d40c->dma_cfg.dst_dev_type;
1474                 log_num = 2 * dev_type + 1;
1475                 is_src = false;
1476         } else
1477                 return -EINVAL;
1478
1479         event_group = D40_TYPE_TO_GROUP(dev_type);
1480         event_line = D40_TYPE_TO_EVENT(dev_type);
1481
1482         if (!is_log) {
1483                 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1484                         /* Find physical half channel */
1485                         for (i = 0; i < d40c->base->num_phy_chans; i++) {
1486
1487                                 if (d40_alloc_mask_set(&phys[i], is_src,
1488                                                        0, is_log))
1489                                         goto found_phy;
1490                         }
1491                 } else
1492                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1493                                 int phy_num = j  + event_group * 2;
1494                                 for (i = phy_num; i < phy_num + 2; i++) {
1495                                         if (d40_alloc_mask_set(&phys[i],
1496                                                                is_src,
1497                                                                0,
1498                                                                is_log))
1499                                                 goto found_phy;
1500                                 }
1501                         }
1502                 return -EINVAL;
1503 found_phy:
1504                 d40c->phy_chan = &phys[i];
1505                 d40c->log_num = D40_PHY_CHAN;
1506                 goto out;
1507         }
1508         if (dev_type == -1)
1509                 return -EINVAL;
1510
1511         /* Find logical channel */
1512         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1513                 int phy_num = j + event_group * 2;
1514                 /*
1515                  * Spread logical channels across all available physical rather
1516                  * than pack every logical channel at the first available phy
1517                  * channels.
1518                  */
1519                 if (is_src) {
1520                         for (i = phy_num; i < phy_num + 2; i++) {
1521                                 if (d40_alloc_mask_set(&phys[i], is_src,
1522                                                        event_line, is_log))
1523                                         goto found_log;
1524                         }
1525                 } else {
1526                         for (i = phy_num + 1; i >= phy_num; i--) {
1527                                 if (d40_alloc_mask_set(&phys[i], is_src,
1528                                                        event_line, is_log))
1529                                         goto found_log;
1530                         }
1531                 }
1532         }
1533         return -EINVAL;
1534
1535 found_log:
1536         d40c->phy_chan = &phys[i];
1537         d40c->log_num = log_num;
1538 out:
1539
1540         if (is_log)
1541                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1542         else
1543                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1544
1545         return 0;
1546
1547 }
1548
1549 static int d40_config_memcpy(struct d40_chan *d40c)
1550 {
1551         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1552
1553         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1554                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1555                 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1556                 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1557                         memcpy[d40c->chan.chan_id];
1558
1559         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1560                    dma_has_cap(DMA_SLAVE, cap)) {
1561                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1562         } else {
1563                 chan_err(d40c, "No memcpy\n");
1564                 return -EINVAL;
1565         }
1566
1567         return 0;
1568 }
1569
1570
1571 static int d40_free_dma(struct d40_chan *d40c)
1572 {
1573
1574         int res = 0;
1575         u32 event;
1576         struct d40_phy_res *phy = d40c->phy_chan;
1577         bool is_src;
1578         struct d40_desc *d;
1579         struct d40_desc *_d;
1580
1581
1582         /* Terminate all queued and active transfers */
1583         d40_term_all(d40c);
1584
1585         /* Release client owned descriptors */
1586         if (!list_empty(&d40c->client))
1587                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1588                         d40_pool_lli_free(d40c, d);
1589                         d40_desc_remove(d);
1590                         d40_desc_free(d40c, d);
1591                 }
1592
1593         if (phy == NULL) {
1594                 chan_err(d40c, "phy == null\n");
1595                 return -EINVAL;
1596         }
1597
1598         if (phy->allocated_src == D40_ALLOC_FREE &&
1599             phy->allocated_dst == D40_ALLOC_FREE) {
1600                 chan_err(d40c, "channel already free\n");
1601                 return -EINVAL;
1602         }
1603
1604         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1605             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1606                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1607                 is_src = false;
1608         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1609                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1610                 is_src = true;
1611         } else {
1612                 chan_err(d40c, "Unknown direction\n");
1613                 return -EINVAL;
1614         }
1615
1616         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1617         if (res) {
1618                 chan_err(d40c, "suspend failed\n");
1619                 return res;
1620         }
1621
1622         if (chan_is_logical(d40c)) {
1623                 /* Release logical channel, deactivate the event line */
1624
1625                 d40_config_set_event(d40c, false);
1626                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1627
1628                 /*
1629                  * Check if there are more logical allocation
1630                  * on this phy channel.
1631                  */
1632                 if (!d40_alloc_mask_free(phy, is_src, event)) {
1633                         /* Resume the other logical channels if any */
1634                         if (d40_chan_has_events(d40c)) {
1635                                 res = d40_channel_execute_command(d40c,
1636                                                                   D40_DMA_RUN);
1637                                 if (res) {
1638                                         chan_err(d40c,
1639                                                 "Executing RUN command\n");
1640                                         return res;
1641                                 }
1642                         }
1643                         return 0;
1644                 }
1645         } else {
1646                 (void) d40_alloc_mask_free(phy, is_src, 0);
1647         }
1648
1649         /* Release physical channel */
1650         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1651         if (res) {
1652                 chan_err(d40c, "Failed to stop channel\n");
1653                 return res;
1654         }
1655         d40c->phy_chan = NULL;
1656         d40c->configured = false;
1657         d40c->base->lookup_phy_chans[phy->num] = NULL;
1658
1659         return 0;
1660 }
1661
1662 static bool d40_is_paused(struct d40_chan *d40c)
1663 {
1664         void __iomem *chanbase = chan_base(d40c);
1665         bool is_paused = false;
1666         unsigned long flags;
1667         void __iomem *active_reg;
1668         u32 status;
1669         u32 event;
1670
1671         spin_lock_irqsave(&d40c->lock, flags);
1672
1673         if (chan_is_physical(d40c)) {
1674                 if (d40c->phy_chan->num % 2 == 0)
1675                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1676                 else
1677                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1678
1679                 status = (readl(active_reg) &
1680                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1681                         D40_CHAN_POS(d40c->phy_chan->num);
1682                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1683                         is_paused = true;
1684
1685                 goto _exit;
1686         }
1687
1688         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1689             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1690                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1691                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1692         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1693                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1694                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1695         } else {
1696                 chan_err(d40c, "Unknown direction\n");
1697                 goto _exit;
1698         }
1699
1700         status = (status & D40_EVENTLINE_MASK(event)) >>
1701                 D40_EVENTLINE_POS(event);
1702
1703         if (status != D40_DMA_RUN)
1704                 is_paused = true;
1705 _exit:
1706         spin_unlock_irqrestore(&d40c->lock, flags);
1707         return is_paused;
1708
1709 }
1710
1711
1712 static u32 stedma40_residue(struct dma_chan *chan)
1713 {
1714         struct d40_chan *d40c =
1715                 container_of(chan, struct d40_chan, chan);
1716         u32 bytes_left;
1717         unsigned long flags;
1718
1719         spin_lock_irqsave(&d40c->lock, flags);
1720         bytes_left = d40_residue(d40c);
1721         spin_unlock_irqrestore(&d40c->lock, flags);
1722
1723         return bytes_left;
1724 }
1725
1726 static int
1727 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1728                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1729                 unsigned int sg_len, dma_addr_t src_dev_addr,
1730                 dma_addr_t dst_dev_addr)
1731 {
1732         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1733         struct stedma40_half_channel_info *src_info = &cfg->src_info;
1734         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1735         int ret;
1736
1737         ret = d40_log_sg_to_lli(sg_src, sg_len,
1738                                 src_dev_addr,
1739                                 desc->lli_log.src,
1740                                 chan->log_def.lcsp1,
1741                                 src_info->data_width,
1742                                 dst_info->data_width);
1743
1744         ret = d40_log_sg_to_lli(sg_dst, sg_len,
1745                                 dst_dev_addr,
1746                                 desc->lli_log.dst,
1747                                 chan->log_def.lcsp3,
1748                                 dst_info->data_width,
1749                                 src_info->data_width);
1750
1751         return ret < 0 ? ret : 0;
1752 }
1753
1754 static int
1755 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1756                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1757                 unsigned int sg_len, dma_addr_t src_dev_addr,
1758                 dma_addr_t dst_dev_addr)
1759 {
1760         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1761         struct stedma40_half_channel_info *src_info = &cfg->src_info;
1762         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1763         unsigned long flags = 0;
1764         int ret;
1765
1766         if (desc->cyclic)
1767                 flags |= LLI_CYCLIC | LLI_TERM_INT;
1768
1769         ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1770                                 desc->lli_phy.src,
1771                                 virt_to_phys(desc->lli_phy.src),
1772                                 chan->src_def_cfg,
1773                                 src_info, dst_info, flags);
1774
1775         ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1776                                 desc->lli_phy.dst,
1777                                 virt_to_phys(desc->lli_phy.dst),
1778                                 chan->dst_def_cfg,
1779                                 dst_info, src_info, flags);
1780
1781         dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1782                                    desc->lli_pool.size, DMA_TO_DEVICE);
1783
1784         return ret < 0 ? ret : 0;
1785 }
1786
1787
1788 static struct d40_desc *
1789 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1790               unsigned int sg_len, unsigned long dma_flags)
1791 {
1792         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1793         struct d40_desc *desc;
1794         int ret;
1795
1796         desc = d40_desc_get(chan);
1797         if (!desc)
1798                 return NULL;
1799
1800         desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
1801                                         cfg->dst_info.data_width);
1802         if (desc->lli_len < 0) {
1803                 chan_err(chan, "Unaligned size\n");
1804                 goto err;
1805         }
1806
1807         ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
1808         if (ret < 0) {
1809                 chan_err(chan, "Could not allocate lli\n");
1810                 goto err;
1811         }
1812
1813
1814         desc->lli_current = 0;
1815         desc->txd.flags = dma_flags;
1816         desc->txd.tx_submit = d40_tx_submit;
1817
1818         dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
1819
1820         return desc;
1821
1822 err:
1823         d40_desc_free(chan, desc);
1824         return NULL;
1825 }
1826
1827 static dma_addr_t
1828 d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1829 {
1830         struct stedma40_platform_data *plat = chan->base->plat_data;
1831         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1832         dma_addr_t addr;
1833
1834         if (chan->runtime_addr)
1835                 return chan->runtime_addr;
1836
1837         if (direction == DMA_FROM_DEVICE)
1838                 addr = plat->dev_rx[cfg->src_dev_type];
1839         else if (direction == DMA_TO_DEVICE)
1840                 addr = plat->dev_tx[cfg->dst_dev_type];
1841
1842         return addr;
1843 }
1844
1845 static struct dma_async_tx_descriptor *
1846 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
1847             struct scatterlist *sg_dst, unsigned int sg_len,
1848             enum dma_data_direction direction, unsigned long dma_flags)
1849 {
1850         struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
1851         dma_addr_t src_dev_addr = 0;
1852         dma_addr_t dst_dev_addr = 0;
1853         struct d40_desc *desc;
1854         unsigned long flags;
1855         int ret;
1856
1857         if (!chan->phy_chan) {
1858                 chan_err(chan, "Cannot prepare unallocated channel\n");
1859                 return NULL;
1860         }
1861
1862
1863         spin_lock_irqsave(&chan->lock, flags);
1864
1865         desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
1866         if (desc == NULL)
1867                 goto err;
1868
1869         if (sg_next(&sg_src[sg_len - 1]) == sg_src)
1870                 desc->cyclic = true;
1871
1872         if (direction != DMA_NONE) {
1873                 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
1874
1875                 if (direction == DMA_FROM_DEVICE)
1876                         src_dev_addr = dev_addr;
1877                 else if (direction == DMA_TO_DEVICE)
1878                         dst_dev_addr = dev_addr;
1879         }
1880
1881         if (chan_is_logical(chan))
1882                 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
1883                                       sg_len, src_dev_addr, dst_dev_addr);
1884         else
1885                 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
1886                                       sg_len, src_dev_addr, dst_dev_addr);
1887
1888         if (ret) {
1889                 chan_err(chan, "Failed to prepare %s sg job: %d\n",
1890                          chan_is_logical(chan) ? "log" : "phy", ret);
1891                 goto err;
1892         }
1893
1894         spin_unlock_irqrestore(&chan->lock, flags);
1895
1896         return &desc->txd;
1897
1898 err:
1899         if (desc)
1900                 d40_desc_free(chan, desc);
1901         spin_unlock_irqrestore(&chan->lock, flags);
1902         return NULL;
1903 }
1904
1905 bool stedma40_filter(struct dma_chan *chan, void *data)
1906 {
1907         struct stedma40_chan_cfg *info = data;
1908         struct d40_chan *d40c =
1909                 container_of(chan, struct d40_chan, chan);
1910         int err;
1911
1912         if (data) {
1913                 err = d40_validate_conf(d40c, info);
1914                 if (!err)
1915                         d40c->dma_cfg = *info;
1916         } else
1917                 err = d40_config_memcpy(d40c);
1918
1919         if (!err)
1920                 d40c->configured = true;
1921
1922         return err == 0;
1923 }
1924 EXPORT_SYMBOL(stedma40_filter);
1925
1926 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1927 {
1928         bool realtime = d40c->dma_cfg.realtime;
1929         bool highprio = d40c->dma_cfg.high_priority;
1930         u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1931         u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1932         u32 event = D40_TYPE_TO_EVENT(dev_type);
1933         u32 group = D40_TYPE_TO_GROUP(dev_type);
1934         u32 bit = 1 << event;
1935
1936         /* Destination event lines are stored in the upper halfword */
1937         if (!src)
1938                 bit <<= 16;
1939
1940         writel(bit, d40c->base->virtbase + prioreg + group * 4);
1941         writel(bit, d40c->base->virtbase + rtreg + group * 4);
1942 }
1943
1944 static void d40_set_prio_realtime(struct d40_chan *d40c)
1945 {
1946         if (d40c->base->rev < 3)
1947                 return;
1948
1949         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1950             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1951                 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1952
1953         if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
1954             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1955                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1956 }
1957
1958 /* DMA ENGINE functions */
1959 static int d40_alloc_chan_resources(struct dma_chan *chan)
1960 {
1961         int err;
1962         unsigned long flags;
1963         struct d40_chan *d40c =
1964                 container_of(chan, struct d40_chan, chan);
1965         bool is_free_phy;
1966         spin_lock_irqsave(&d40c->lock, flags);
1967
1968         d40c->completed = chan->cookie = 1;
1969
1970         /* If no dma configuration is set use default configuration (memcpy) */
1971         if (!d40c->configured) {
1972                 err = d40_config_memcpy(d40c);
1973                 if (err) {
1974                         chan_err(d40c, "Failed to configure memcpy channel\n");
1975                         goto fail;
1976                 }
1977         }
1978         is_free_phy = (d40c->phy_chan == NULL);
1979
1980         err = d40_allocate_channel(d40c);
1981         if (err) {
1982                 chan_err(d40c, "Failed to allocate channel\n");
1983                 goto fail;
1984         }
1985
1986         /* Fill in basic CFG register values */
1987         d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1988                     &d40c->dst_def_cfg, chan_is_logical(d40c));
1989
1990         d40_set_prio_realtime(d40c);
1991
1992         if (chan_is_logical(d40c)) {
1993                 d40_log_cfg(&d40c->dma_cfg,
1994                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1995
1996                 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1997                         d40c->lcpa = d40c->base->lcpa_base +
1998                           d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1999                 else
2000                         d40c->lcpa = d40c->base->lcpa_base +
2001                           d40c->dma_cfg.dst_dev_type *
2002                           D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2003         }
2004
2005         /*
2006          * Only write channel configuration to the DMA if the physical
2007          * resource is free. In case of multiple logical channels
2008          * on the same physical resource, only the first write is necessary.
2009          */
2010         if (is_free_phy)
2011                 d40_config_write(d40c);
2012 fail:
2013         spin_unlock_irqrestore(&d40c->lock, flags);
2014         return err;
2015 }
2016
2017 static void d40_free_chan_resources(struct dma_chan *chan)
2018 {
2019         struct d40_chan *d40c =
2020                 container_of(chan, struct d40_chan, chan);
2021         int err;
2022         unsigned long flags;
2023
2024         if (d40c->phy_chan == NULL) {
2025                 chan_err(d40c, "Cannot free unallocated channel\n");
2026                 return;
2027         }
2028
2029
2030         spin_lock_irqsave(&d40c->lock, flags);
2031
2032         err = d40_free_dma(d40c);
2033
2034         if (err)
2035                 chan_err(d40c, "Failed to free channel\n");
2036         spin_unlock_irqrestore(&d40c->lock, flags);
2037 }
2038
2039 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2040                                                        dma_addr_t dst,
2041                                                        dma_addr_t src,
2042                                                        size_t size,
2043                                                        unsigned long dma_flags)
2044 {
2045         struct scatterlist dst_sg;
2046         struct scatterlist src_sg;
2047
2048         sg_init_table(&dst_sg, 1);
2049         sg_init_table(&src_sg, 1);
2050
2051         sg_dma_address(&dst_sg) = dst;
2052         sg_dma_address(&src_sg) = src;
2053
2054         sg_dma_len(&dst_sg) = size;
2055         sg_dma_len(&src_sg) = size;
2056
2057         return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2058 }
2059
2060 static struct dma_async_tx_descriptor *
2061 d40_prep_memcpy_sg(struct dma_chan *chan,
2062                    struct scatterlist *dst_sg, unsigned int dst_nents,
2063                    struct scatterlist *src_sg, unsigned int src_nents,
2064                    unsigned long dma_flags)
2065 {
2066         if (dst_nents != src_nents)
2067                 return NULL;
2068
2069         return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2070 }
2071
2072 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2073                                                          struct scatterlist *sgl,
2074                                                          unsigned int sg_len,
2075                                                          enum dma_data_direction direction,
2076                                                          unsigned long dma_flags)
2077 {
2078         if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
2079                 return NULL;
2080
2081         return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2082 }
2083
2084 static struct dma_async_tx_descriptor *
2085 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2086                      size_t buf_len, size_t period_len,
2087                      enum dma_data_direction direction)
2088 {
2089         unsigned int periods = buf_len / period_len;
2090         struct dma_async_tx_descriptor *txd;
2091         struct scatterlist *sg;
2092         int i;
2093
2094         sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_KERNEL);
2095         for (i = 0; i < periods; i++) {
2096                 sg_dma_address(&sg[i]) = dma_addr;
2097                 sg_dma_len(&sg[i]) = period_len;
2098                 dma_addr += period_len;
2099         }
2100
2101         sg[periods].offset = 0;
2102         sg[periods].length = 0;
2103         sg[periods].page_link =
2104                 ((unsigned long)sg | 0x01) & ~0x02;
2105
2106         txd = d40_prep_sg(chan, sg, sg, periods, direction,
2107                           DMA_PREP_INTERRUPT);
2108
2109         kfree(sg);
2110
2111         return txd;
2112 }
2113
2114 static enum dma_status d40_tx_status(struct dma_chan *chan,
2115                                      dma_cookie_t cookie,
2116                                      struct dma_tx_state *txstate)
2117 {
2118         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2119         dma_cookie_t last_used;
2120         dma_cookie_t last_complete;
2121         int ret;
2122
2123         if (d40c->phy_chan == NULL) {
2124                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2125                 return -EINVAL;
2126         }
2127
2128         last_complete = d40c->completed;
2129         last_used = chan->cookie;
2130
2131         if (d40_is_paused(d40c))
2132                 ret = DMA_PAUSED;
2133         else
2134                 ret = dma_async_is_complete(cookie, last_complete, last_used);
2135
2136         dma_set_tx_state(txstate, last_complete, last_used,
2137                          stedma40_residue(chan));
2138
2139         return ret;
2140 }
2141
2142 static void d40_issue_pending(struct dma_chan *chan)
2143 {
2144         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2145         unsigned long flags;
2146
2147         if (d40c->phy_chan == NULL) {
2148                 chan_err(d40c, "Channel is not allocated!\n");
2149                 return;
2150         }
2151
2152         spin_lock_irqsave(&d40c->lock, flags);
2153
2154         /* Busy means that pending jobs are already being processed */
2155         if (!d40c->busy)
2156                 (void) d40_queue_start(d40c);
2157
2158         spin_unlock_irqrestore(&d40c->lock, flags);
2159 }
2160
2161 /* Runtime reconfiguration extension */
2162 static void d40_set_runtime_config(struct dma_chan *chan,
2163                                struct dma_slave_config *config)
2164 {
2165         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2166         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2167         enum dma_slave_buswidth config_addr_width;
2168         dma_addr_t config_addr;
2169         u32 config_maxburst;
2170         enum stedma40_periph_data_width addr_width;
2171         int psize;
2172
2173         if (config->direction == DMA_FROM_DEVICE) {
2174                 dma_addr_t dev_addr_rx =
2175                         d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2176
2177                 config_addr = config->src_addr;
2178                 if (dev_addr_rx)
2179                         dev_dbg(d40c->base->dev,
2180                                 "channel has a pre-wired RX address %08x "
2181                                 "overriding with %08x\n",
2182                                 dev_addr_rx, config_addr);
2183                 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2184                         dev_dbg(d40c->base->dev,
2185                                 "channel was not configured for peripheral "
2186                                 "to memory transfer (%d) overriding\n",
2187                                 cfg->dir);
2188                 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2189
2190                 config_addr_width = config->src_addr_width;
2191                 config_maxburst = config->src_maxburst;
2192
2193         } else if (config->direction == DMA_TO_DEVICE) {
2194                 dma_addr_t dev_addr_tx =
2195                         d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2196
2197                 config_addr = config->dst_addr;
2198                 if (dev_addr_tx)
2199                         dev_dbg(d40c->base->dev,
2200                                 "channel has a pre-wired TX address %08x "
2201                                 "overriding with %08x\n",
2202                                 dev_addr_tx, config_addr);
2203                 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2204                         dev_dbg(d40c->base->dev,
2205                                 "channel was not configured for memory "
2206                                 "to peripheral transfer (%d) overriding\n",
2207                                 cfg->dir);
2208                 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2209
2210                 config_addr_width = config->dst_addr_width;
2211                 config_maxburst = config->dst_maxburst;
2212
2213         } else {
2214                 dev_err(d40c->base->dev,
2215                         "unrecognized channel direction %d\n",
2216                         config->direction);
2217                 return;
2218         }
2219
2220         switch (config_addr_width) {
2221         case DMA_SLAVE_BUSWIDTH_1_BYTE:
2222                 addr_width = STEDMA40_BYTE_WIDTH;
2223                 break;
2224         case DMA_SLAVE_BUSWIDTH_2_BYTES:
2225                 addr_width = STEDMA40_HALFWORD_WIDTH;
2226                 break;
2227         case DMA_SLAVE_BUSWIDTH_4_BYTES:
2228                 addr_width = STEDMA40_WORD_WIDTH;
2229                 break;
2230         case DMA_SLAVE_BUSWIDTH_8_BYTES:
2231                 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2232                 break;
2233         default:
2234                 dev_err(d40c->base->dev,
2235                         "illegal peripheral address width "
2236                         "requested (%d)\n",
2237                         config->src_addr_width);
2238                 return;
2239         }
2240
2241         if (chan_is_logical(d40c)) {
2242                 if (config_maxburst >= 16)
2243                         psize = STEDMA40_PSIZE_LOG_16;
2244                 else if (config_maxburst >= 8)
2245                         psize = STEDMA40_PSIZE_LOG_8;
2246                 else if (config_maxburst >= 4)
2247                         psize = STEDMA40_PSIZE_LOG_4;
2248                 else
2249                         psize = STEDMA40_PSIZE_LOG_1;
2250         } else {
2251                 if (config_maxburst >= 16)
2252                         psize = STEDMA40_PSIZE_PHY_16;
2253                 else if (config_maxburst >= 8)
2254                         psize = STEDMA40_PSIZE_PHY_8;
2255                 else if (config_maxburst >= 4)
2256                         psize = STEDMA40_PSIZE_PHY_4;
2257                 else if (config_maxburst >= 2)
2258                         psize = STEDMA40_PSIZE_PHY_2;
2259                 else
2260                         psize = STEDMA40_PSIZE_PHY_1;
2261         }
2262
2263         /* Set up all the endpoint configs */
2264         cfg->src_info.data_width = addr_width;
2265         cfg->src_info.psize = psize;
2266         cfg->src_info.big_endian = false;
2267         cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2268         cfg->dst_info.data_width = addr_width;
2269         cfg->dst_info.psize = psize;
2270         cfg->dst_info.big_endian = false;
2271         cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2272
2273         /* Fill in register values */
2274         if (chan_is_logical(d40c))
2275                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2276         else
2277                 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2278                             &d40c->dst_def_cfg, false);
2279
2280         /* These settings will take precedence later */
2281         d40c->runtime_addr = config_addr;
2282         d40c->runtime_direction = config->direction;
2283         dev_dbg(d40c->base->dev,
2284                 "configured channel %s for %s, data width %d, "
2285                 "maxburst %d bytes, LE, no flow control\n",
2286                 dma_chan_name(chan),
2287                 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2288                 config_addr_width,
2289                 config_maxburst);
2290 }
2291
2292 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2293                        unsigned long arg)
2294 {
2295         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2296
2297         if (d40c->phy_chan == NULL) {
2298                 chan_err(d40c, "Channel is not allocated!\n");
2299                 return -EINVAL;
2300         }
2301
2302         switch (cmd) {
2303         case DMA_TERMINATE_ALL:
2304                 return d40_terminate_all(d40c);
2305         case DMA_PAUSE:
2306                 return d40_pause(d40c);
2307         case DMA_RESUME:
2308                 return d40_resume(d40c);
2309         case DMA_SLAVE_CONFIG:
2310                 d40_set_runtime_config(chan,
2311                         (struct dma_slave_config *) arg);
2312                 return 0;
2313         default:
2314                 break;
2315         }
2316
2317         /* Other commands are unimplemented */
2318         return -ENXIO;
2319 }
2320
2321 /* Initialization functions */
2322
2323 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2324                                  struct d40_chan *chans, int offset,
2325                                  int num_chans)
2326 {
2327         int i = 0;
2328         struct d40_chan *d40c;
2329
2330         INIT_LIST_HEAD(&dma->channels);
2331
2332         for (i = offset; i < offset + num_chans; i++) {
2333                 d40c = &chans[i];
2334                 d40c->base = base;
2335                 d40c->chan.device = dma;
2336
2337                 spin_lock_init(&d40c->lock);
2338
2339                 d40c->log_num = D40_PHY_CHAN;
2340
2341                 INIT_LIST_HEAD(&d40c->active);
2342                 INIT_LIST_HEAD(&d40c->queue);
2343                 INIT_LIST_HEAD(&d40c->client);
2344
2345                 tasklet_init(&d40c->tasklet, dma_tasklet,
2346                              (unsigned long) d40c);
2347
2348                 list_add_tail(&d40c->chan.device_node,
2349                               &dma->channels);
2350         }
2351 }
2352
2353 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2354 {
2355         if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2356                 dev->device_prep_slave_sg = d40_prep_slave_sg;
2357
2358         if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2359                 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2360
2361                 /*
2362                  * This controller can only access address at even
2363                  * 32bit boundaries, i.e. 2^2
2364                  */
2365                 dev->copy_align = 2;
2366         }
2367
2368         if (dma_has_cap(DMA_SG, dev->cap_mask))
2369                 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2370
2371         if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2372                 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2373
2374         dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2375         dev->device_free_chan_resources = d40_free_chan_resources;
2376         dev->device_issue_pending = d40_issue_pending;
2377         dev->device_tx_status = d40_tx_status;
2378         dev->device_control = d40_control;
2379         dev->dev = base->dev;
2380 }
2381
2382 static int __init d40_dmaengine_init(struct d40_base *base,
2383                                      int num_reserved_chans)
2384 {
2385         int err ;
2386
2387         d40_chan_init(base, &base->dma_slave, base->log_chans,
2388                       0, base->num_log_chans);
2389
2390         dma_cap_zero(base->dma_slave.cap_mask);
2391         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2392         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2393
2394         d40_ops_init(base, &base->dma_slave);
2395
2396         err = dma_async_device_register(&base->dma_slave);
2397
2398         if (err) {
2399                 d40_err(base->dev, "Failed to register slave channels\n");
2400                 goto failure1;
2401         }
2402
2403         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2404                       base->num_log_chans, base->plat_data->memcpy_len);
2405
2406         dma_cap_zero(base->dma_memcpy.cap_mask);
2407         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2408         dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2409
2410         d40_ops_init(base, &base->dma_memcpy);
2411
2412         err = dma_async_device_register(&base->dma_memcpy);
2413
2414         if (err) {
2415                 d40_err(base->dev,
2416                         "Failed to regsiter memcpy only channels\n");
2417                 goto failure2;
2418         }
2419
2420         d40_chan_init(base, &base->dma_both, base->phy_chans,
2421                       0, num_reserved_chans);
2422
2423         dma_cap_zero(base->dma_both.cap_mask);
2424         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2425         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2426         dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2427         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2428
2429         d40_ops_init(base, &base->dma_both);
2430         err = dma_async_device_register(&base->dma_both);
2431
2432         if (err) {
2433                 d40_err(base->dev,
2434                         "Failed to register logical and physical capable channels\n");
2435                 goto failure3;
2436         }
2437         return 0;
2438 failure3:
2439         dma_async_device_unregister(&base->dma_memcpy);
2440 failure2:
2441         dma_async_device_unregister(&base->dma_slave);
2442 failure1:
2443         return err;
2444 }
2445
2446 /* Initialization functions. */
2447
2448 static int __init d40_phy_res_init(struct d40_base *base)
2449 {
2450         int i;
2451         int num_phy_chans_avail = 0;
2452         u32 val[2];
2453         int odd_even_bit = -2;
2454
2455         val[0] = readl(base->virtbase + D40_DREG_PRSME);
2456         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2457
2458         for (i = 0; i < base->num_phy_chans; i++) {
2459                 base->phy_res[i].num = i;
2460                 odd_even_bit += 2 * ((i % 2) == 0);
2461                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2462                         /* Mark security only channels as occupied */
2463                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2464                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2465                 } else {
2466                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2467                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2468                         num_phy_chans_avail++;
2469                 }
2470                 spin_lock_init(&base->phy_res[i].lock);
2471         }
2472
2473         /* Mark disabled channels as occupied */
2474         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2475                 int chan = base->plat_data->disabled_channels[i];
2476
2477                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2478                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2479                 num_phy_chans_avail--;
2480         }
2481
2482         dev_info(base->dev, "%d of %d physical DMA channels available\n",
2483                  num_phy_chans_avail, base->num_phy_chans);
2484
2485         /* Verify settings extended vs standard */
2486         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2487
2488         for (i = 0; i < base->num_phy_chans; i++) {
2489
2490                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2491                     (val[0] & 0x3) != 1)
2492                         dev_info(base->dev,
2493                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
2494                                  __func__, i, val[0] & 0x3);
2495
2496                 val[0] = val[0] >> 2;
2497         }
2498
2499         return num_phy_chans_avail;
2500 }
2501
2502 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2503 {
2504         static const struct d40_reg_val dma_id_regs[] = {
2505                 /* Peripheral Id */
2506                 { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2507                 { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2508                 /*
2509                  * D40_DREG_PERIPHID2 Depends on HW revision:
2510                  *  DB8500ed has 0x0008,
2511                  *  ? has 0x0018,
2512                  *  DB8500v1 has 0x0028
2513                  *  DB8500v2 has 0x0038
2514                  */
2515                 { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2516
2517                 /* PCell Id */
2518                 { .reg = D40_DREG_CELLID0, .val = 0x000d},
2519                 { .reg = D40_DREG_CELLID1, .val = 0x00f0},
2520                 { .reg = D40_DREG_CELLID2, .val = 0x0005},
2521                 { .reg = D40_DREG_CELLID3, .val = 0x00b1}
2522         };
2523         struct stedma40_platform_data *plat_data;
2524         struct clk *clk = NULL;
2525         void __iomem *virtbase = NULL;
2526         struct resource *res = NULL;
2527         struct d40_base *base = NULL;
2528         int num_log_chans = 0;
2529         int num_phy_chans;
2530         int i;
2531         u32 val;
2532         u32 rev;
2533
2534         clk = clk_get(&pdev->dev, NULL);
2535
2536         if (IS_ERR(clk)) {
2537                 d40_err(&pdev->dev, "No matching clock found\n");
2538                 goto failure;
2539         }
2540
2541         clk_enable(clk);
2542
2543         /* Get IO for DMAC base address */
2544         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2545         if (!res)
2546                 goto failure;
2547
2548         if (request_mem_region(res->start, resource_size(res),
2549                                D40_NAME " I/O base") == NULL)
2550                 goto failure;
2551
2552         virtbase = ioremap(res->start, resource_size(res));
2553         if (!virtbase)
2554                 goto failure;
2555
2556         /* HW version check */
2557         for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2558                 if (dma_id_regs[i].val !=
2559                     readl(virtbase + dma_id_regs[i].reg)) {
2560                         d40_err(&pdev->dev,
2561                                 "Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2562                                 dma_id_regs[i].val,
2563                                 dma_id_regs[i].reg,
2564                                 readl(virtbase + dma_id_regs[i].reg));
2565                         goto failure;
2566                 }
2567         }
2568
2569         /* Get silicon revision and designer */
2570         val = readl(virtbase + D40_DREG_PERIPHID2);
2571
2572         if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
2573             D40_HW_DESIGNER) {
2574                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2575                         val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2576                         D40_HW_DESIGNER);
2577                 goto failure;
2578         }
2579
2580         rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
2581                 D40_DREG_PERIPHID2_REV_POS;
2582
2583         /* The number of physical channels on this HW */
2584         num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2585
2586         dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2587                  rev, res->start);
2588
2589         plat_data = pdev->dev.platform_data;
2590
2591         /* Count the number of logical channels in use */
2592         for (i = 0; i < plat_data->dev_len; i++)
2593                 if (plat_data->dev_rx[i] != 0)
2594                         num_log_chans++;
2595
2596         for (i = 0; i < plat_data->dev_len; i++)
2597                 if (plat_data->dev_tx[i] != 0)
2598                         num_log_chans++;
2599
2600         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2601                        (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2602                        sizeof(struct d40_chan), GFP_KERNEL);
2603
2604         if (base == NULL) {
2605                 d40_err(&pdev->dev, "Out of memory\n");
2606                 goto failure;
2607         }
2608
2609         base->rev = rev;
2610         base->clk = clk;
2611         base->num_phy_chans = num_phy_chans;
2612         base->num_log_chans = num_log_chans;
2613         base->phy_start = res->start;
2614         base->phy_size = resource_size(res);
2615         base->virtbase = virtbase;
2616         base->plat_data = plat_data;
2617         base->dev = &pdev->dev;
2618         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2619         base->log_chans = &base->phy_chans[num_phy_chans];
2620
2621         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2622                                 GFP_KERNEL);
2623         if (!base->phy_res)
2624                 goto failure;
2625
2626         base->lookup_phy_chans = kzalloc(num_phy_chans *
2627                                          sizeof(struct d40_chan *),
2628                                          GFP_KERNEL);
2629         if (!base->lookup_phy_chans)
2630                 goto failure;
2631
2632         if (num_log_chans + plat_data->memcpy_len) {
2633                 /*
2634                  * The max number of logical channels are event lines for all
2635                  * src devices and dst devices
2636                  */
2637                 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2638                                                  sizeof(struct d40_chan *),
2639                                                  GFP_KERNEL);
2640                 if (!base->lookup_log_chans)
2641                         goto failure;
2642         }
2643
2644         base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2645                                             sizeof(struct d40_desc *) *
2646                                             D40_LCLA_LINK_PER_EVENT_GRP,
2647                                             GFP_KERNEL);
2648         if (!base->lcla_pool.alloc_map)
2649                 goto failure;
2650
2651         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2652                                             0, SLAB_HWCACHE_ALIGN,
2653                                             NULL);
2654         if (base->desc_slab == NULL)
2655                 goto failure;
2656
2657         return base;
2658
2659 failure:
2660         if (!IS_ERR(clk)) {
2661                 clk_disable(clk);
2662                 clk_put(clk);
2663         }
2664         if (virtbase)
2665                 iounmap(virtbase);
2666         if (res)
2667                 release_mem_region(res->start,
2668                                    resource_size(res));
2669         if (virtbase)
2670                 iounmap(virtbase);
2671
2672         if (base) {
2673                 kfree(base->lcla_pool.alloc_map);
2674                 kfree(base->lookup_log_chans);
2675                 kfree(base->lookup_phy_chans);
2676                 kfree(base->phy_res);
2677                 kfree(base);
2678         }
2679
2680         return NULL;
2681 }
2682
2683 static void __init d40_hw_init(struct d40_base *base)
2684 {
2685
2686         static const struct d40_reg_val dma_init_reg[] = {
2687                 /* Clock every part of the DMA block from start */
2688                 { .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2689
2690                 /* Interrupts on all logical channels */
2691                 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2692                 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2693                 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2694                 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2695                 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2696                 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2697                 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2698                 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2699                 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2700                 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2701                 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2702                 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2703         };
2704         int i;
2705         u32 prmseo[2] = {0, 0};
2706         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2707         u32 pcmis = 0;
2708         u32 pcicr = 0;
2709
2710         for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2711                 writel(dma_init_reg[i].val,
2712                        base->virtbase + dma_init_reg[i].reg);
2713
2714         /* Configure all our dma channels to default settings */
2715         for (i = 0; i < base->num_phy_chans; i++) {
2716
2717                 activeo[i % 2] = activeo[i % 2] << 2;
2718
2719                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2720                     == D40_ALLOC_PHY) {
2721                         activeo[i % 2] |= 3;
2722                         continue;
2723                 }
2724
2725                 /* Enable interrupt # */
2726                 pcmis = (pcmis << 1) | 1;
2727
2728                 /* Clear interrupt # */
2729                 pcicr = (pcicr << 1) | 1;
2730
2731                 /* Set channel to physical mode */
2732                 prmseo[i % 2] = prmseo[i % 2] << 2;
2733                 prmseo[i % 2] |= 1;
2734
2735         }
2736
2737         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2738         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2739         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2740         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2741
2742         /* Write which interrupt to enable */
2743         writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2744
2745         /* Write which interrupt to clear */
2746         writel(pcicr, base->virtbase + D40_DREG_PCICR);
2747
2748 }
2749
2750 static int __init d40_lcla_allocate(struct d40_base *base)
2751 {
2752         struct d40_lcla_pool *pool = &base->lcla_pool;
2753         unsigned long *page_list;
2754         int i, j;
2755         int ret = 0;
2756
2757         /*
2758          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2759          * To full fill this hardware requirement without wasting 256 kb
2760          * we allocate pages until we get an aligned one.
2761          */
2762         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2763                             GFP_KERNEL);
2764
2765         if (!page_list) {
2766                 ret = -ENOMEM;
2767                 goto failure;
2768         }
2769
2770         /* Calculating how many pages that are required */
2771         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2772
2773         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2774                 page_list[i] = __get_free_pages(GFP_KERNEL,
2775                                                 base->lcla_pool.pages);
2776                 if (!page_list[i]) {
2777
2778                         d40_err(base->dev, "Failed to allocate %d pages.\n",
2779                                 base->lcla_pool.pages);
2780
2781                         for (j = 0; j < i; j++)
2782                                 free_pages(page_list[j], base->lcla_pool.pages);
2783                         goto failure;
2784                 }
2785
2786                 if ((virt_to_phys((void *)page_list[i]) &
2787                      (LCLA_ALIGNMENT - 1)) == 0)
2788                         break;
2789         }
2790
2791         for (j = 0; j < i; j++)
2792                 free_pages(page_list[j], base->lcla_pool.pages);
2793
2794         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2795                 base->lcla_pool.base = (void *)page_list[i];
2796         } else {
2797                 /*
2798                  * After many attempts and no succees with finding the correct
2799                  * alignment, try with allocating a big buffer.
2800                  */
2801                 dev_warn(base->dev,
2802                          "[%s] Failed to get %d pages @ 18 bit align.\n",
2803                          __func__, base->lcla_pool.pages);
2804                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2805                                                          base->num_phy_chans +
2806                                                          LCLA_ALIGNMENT,
2807                                                          GFP_KERNEL);
2808                 if (!base->lcla_pool.base_unaligned) {
2809                         ret = -ENOMEM;
2810                         goto failure;
2811                 }
2812
2813                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2814                                                  LCLA_ALIGNMENT);
2815         }
2816
2817         pool->dma_addr = dma_map_single(base->dev, pool->base,
2818                                         SZ_1K * base->num_phy_chans,
2819                                         DMA_TO_DEVICE);
2820         if (dma_mapping_error(base->dev, pool->dma_addr)) {
2821                 pool->dma_addr = 0;
2822                 ret = -ENOMEM;
2823                 goto failure;
2824         }
2825
2826         writel(virt_to_phys(base->lcla_pool.base),
2827                base->virtbase + D40_DREG_LCLA);
2828 failure:
2829         kfree(page_list);
2830         return ret;
2831 }
2832
2833 static int __init d40_probe(struct platform_device *pdev)
2834 {
2835         int err;
2836         int ret = -ENOENT;
2837         struct d40_base *base;
2838         struct resource *res = NULL;
2839         int num_reserved_chans;
2840         u32 val;
2841
2842         base = d40_hw_detect_init(pdev);
2843
2844         if (!base)
2845                 goto failure;
2846
2847         num_reserved_chans = d40_phy_res_init(base);
2848
2849         platform_set_drvdata(pdev, base);
2850
2851         spin_lock_init(&base->interrupt_lock);
2852         spin_lock_init(&base->execmd_lock);
2853
2854         /* Get IO for logical channel parameter address */
2855         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2856         if (!res) {
2857                 ret = -ENOENT;
2858                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2859                 goto failure;
2860         }
2861         base->lcpa_size = resource_size(res);
2862         base->phy_lcpa = res->start;
2863
2864         if (request_mem_region(res->start, resource_size(res),
2865                                D40_NAME " I/O lcpa") == NULL) {
2866                 ret = -EBUSY;
2867                 d40_err(&pdev->dev,
2868                         "Failed to request LCPA region 0x%x-0x%x\n",
2869                         res->start, res->end);
2870                 goto failure;
2871         }
2872
2873         /* We make use of ESRAM memory for this. */
2874         val = readl(base->virtbase + D40_DREG_LCPA);
2875         if (res->start != val && val != 0) {
2876                 dev_warn(&pdev->dev,
2877                          "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2878                          __func__, val, res->start);
2879         } else
2880                 writel(res->start, base->virtbase + D40_DREG_LCPA);
2881
2882         base->lcpa_base = ioremap(res->start, resource_size(res));
2883         if (!base->lcpa_base) {
2884                 ret = -ENOMEM;
2885                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2886                 goto failure;
2887         }
2888
2889         ret = d40_lcla_allocate(base);
2890         if (ret) {
2891                 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2892                 goto failure;
2893         }
2894
2895         spin_lock_init(&base->lcla_pool.lock);
2896
2897         base->irq = platform_get_irq(pdev, 0);
2898
2899         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2900         if (ret) {
2901                 d40_err(&pdev->dev, "No IRQ defined\n");
2902                 goto failure;
2903         }
2904
2905         err = d40_dmaengine_init(base, num_reserved_chans);
2906         if (err)
2907                 goto failure;
2908
2909         d40_hw_init(base);
2910
2911         dev_info(base->dev, "initialized\n");
2912         return 0;
2913
2914 failure:
2915         if (base) {
2916                 if (base->desc_slab)
2917                         kmem_cache_destroy(base->desc_slab);
2918                 if (base->virtbase)
2919                         iounmap(base->virtbase);
2920
2921                 if (base->lcla_pool.dma_addr)
2922                         dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2923                                          SZ_1K * base->num_phy_chans,
2924                                          DMA_TO_DEVICE);
2925
2926                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2927                         free_pages((unsigned long)base->lcla_pool.base,
2928                                    base->lcla_pool.pages);
2929
2930                 kfree(base->lcla_pool.base_unaligned);
2931
2932                 if (base->phy_lcpa)
2933                         release_mem_region(base->phy_lcpa,
2934                                            base->lcpa_size);
2935                 if (base->phy_start)
2936                         release_mem_region(base->phy_start,
2937                                            base->phy_size);
2938                 if (base->clk) {
2939                         clk_disable(base->clk);
2940                         clk_put(base->clk);
2941                 }
2942
2943                 kfree(base->lcla_pool.alloc_map);
2944                 kfree(base->lookup_log_chans);
2945                 kfree(base->lookup_phy_chans);
2946                 kfree(base->phy_res);
2947                 kfree(base);
2948         }
2949
2950         d40_err(&pdev->dev, "probe failed\n");
2951         return ret;
2952 }
2953
2954 static struct platform_driver d40_driver = {
2955         .driver = {
2956                 .owner = THIS_MODULE,
2957                 .name  = D40_NAME,
2958         },
2959 };
2960
2961 static int __init stedma40_init(void)
2962 {
2963         return platform_driver_probe(&d40_driver, d40_probe);
2964 }
2965 arch_initcall(stedma40_init);