Merge branch 'master' of git://git.infradead.org/users/linville/wireless-next into...
[pandora-kernel.git] / drivers / dma / ste_dma40.c
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/dmaengine.h>
13 #include <linux/platform_device.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/amba/bus.h>
18
19 #include <plat/ste_dma40.h>
20
21 #include "ste_dma40_ll.h"
22
23 #define D40_NAME "dma40"
24
25 #define D40_PHY_CHAN -1
26
27 /* For masking out/in 2 bit channel positions */
28 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
29 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
30
31 /* Maximum iterations taken before giving up suspending a channel */
32 #define D40_SUSPEND_MAX_IT 500
33
34 /* Hardware requirement on LCLA alignment */
35 #define LCLA_ALIGNMENT 0x40000
36
37 /* Max number of links per event group */
38 #define D40_LCLA_LINK_PER_EVENT_GRP 128
39 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
40
41 /* Attempts before giving up to trying to get pages that are aligned */
42 #define MAX_LCLA_ALLOC_ATTEMPTS 256
43
44 /* Bit markings for allocation map */
45 #define D40_ALLOC_FREE          (1 << 31)
46 #define D40_ALLOC_PHY           (1 << 30)
47 #define D40_ALLOC_LOG_FREE      0
48
49 /**
50  * enum 40_command - The different commands and/or statuses.
51  *
52  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
53  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
54  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
55  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
56  */
57 enum d40_command {
58         D40_DMA_STOP            = 0,
59         D40_DMA_RUN             = 1,
60         D40_DMA_SUSPEND_REQ     = 2,
61         D40_DMA_SUSPENDED       = 3
62 };
63
64 /**
65  * struct d40_lli_pool - Structure for keeping LLIs in memory
66  *
67  * @base: Pointer to memory area when the pre_alloc_lli's are not large
68  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
69  * pre_alloc_lli is used.
70  * @dma_addr: DMA address, if mapped
71  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
72  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
73  * one buffer to one buffer.
74  */
75 struct d40_lli_pool {
76         void    *base;
77         int      size;
78         dma_addr_t      dma_addr;
79         /* Space for dst and src, plus an extra for padding */
80         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
81 };
82
83 /**
84  * struct d40_desc - A descriptor is one DMA job.
85  *
86  * @lli_phy: LLI settings for physical channel. Both src and dst=
87  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
88  * lli_len equals one.
89  * @lli_log: Same as above but for logical channels.
90  * @lli_pool: The pool with two entries pre-allocated.
91  * @lli_len: Number of llis of current descriptor.
92  * @lli_current: Number of transferred llis.
93  * @lcla_alloc: Number of LCLA entries allocated.
94  * @txd: DMA engine struct. Used for among other things for communication
95  * during a transfer.
96  * @node: List entry.
97  * @is_in_client_list: true if the client owns this descriptor.
98  * the previous one.
99  *
100  * This descriptor is used for both logical and physical transfers.
101  */
102 struct d40_desc {
103         /* LLI physical */
104         struct d40_phy_lli_bidir         lli_phy;
105         /* LLI logical */
106         struct d40_log_lli_bidir         lli_log;
107
108         struct d40_lli_pool              lli_pool;
109         int                              lli_len;
110         int                              lli_current;
111         int                              lcla_alloc;
112
113         struct dma_async_tx_descriptor   txd;
114         struct list_head                 node;
115
116         bool                             is_in_client_list;
117         bool                             cyclic;
118 };
119
120 /**
121  * struct d40_lcla_pool - LCLA pool settings and data.
122  *
123  * @base: The virtual address of LCLA. 18 bit aligned.
124  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
125  * This pointer is only there for clean-up on error.
126  * @pages: The number of pages needed for all physical channels.
127  * Only used later for clean-up on error
128  * @lock: Lock to protect the content in this struct.
129  * @alloc_map: big map over which LCLA entry is own by which job.
130  */
131 struct d40_lcla_pool {
132         void            *base;
133         dma_addr_t      dma_addr;
134         void            *base_unaligned;
135         int              pages;
136         spinlock_t       lock;
137         struct d40_desc **alloc_map;
138 };
139
140 /**
141  * struct d40_phy_res - struct for handling eventlines mapped to physical
142  * channels.
143  *
144  * @lock: A lock protection this entity.
145  * @num: The physical channel number of this entity.
146  * @allocated_src: Bit mapped to show which src event line's are mapped to
147  * this physical channel. Can also be free or physically allocated.
148  * @allocated_dst: Same as for src but is dst.
149  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
150  * event line number.
151  */
152 struct d40_phy_res {
153         spinlock_t lock;
154         int        num;
155         u32        allocated_src;
156         u32        allocated_dst;
157 };
158
159 struct d40_base;
160
161 /**
162  * struct d40_chan - Struct that describes a channel.
163  *
164  * @lock: A spinlock to protect this struct.
165  * @log_num: The logical number, if any of this channel.
166  * @completed: Starts with 1, after first interrupt it is set to dma engine's
167  * current cookie.
168  * @pending_tx: The number of pending transfers. Used between interrupt handler
169  * and tasklet.
170  * @busy: Set to true when transfer is ongoing on this channel.
171  * @phy_chan: Pointer to physical channel which this instance runs on. If this
172  * point is NULL, then the channel is not allocated.
173  * @chan: DMA engine handle.
174  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
175  * transfer and call client callback.
176  * @client: Cliented owned descriptor list.
177  * @pending_queue: Submitted jobs, to be issued by issue_pending()
178  * @active: Active descriptor.
179  * @queue: Queued jobs.
180  * @prepare_queue: Prepared jobs.
181  * @dma_cfg: The client configuration of this dma channel.
182  * @configured: whether the dma_cfg configuration is valid
183  * @base: Pointer to the device instance struct.
184  * @src_def_cfg: Default cfg register setting for src.
185  * @dst_def_cfg: Default cfg register setting for dst.
186  * @log_def: Default logical channel settings.
187  * @lcla: Space for one dst src pair for logical channel transfers.
188  * @lcpa: Pointer to dst and src lcpa settings.
189  * @runtime_addr: runtime configured address.
190  * @runtime_direction: runtime configured direction.
191  *
192  * This struct can either "be" a logical or a physical channel.
193  */
194 struct d40_chan {
195         spinlock_t                       lock;
196         int                              log_num;
197         /* ID of the most recent completed transfer */
198         int                              completed;
199         int                              pending_tx;
200         bool                             busy;
201         struct d40_phy_res              *phy_chan;
202         struct dma_chan                  chan;
203         struct tasklet_struct            tasklet;
204         struct list_head                 client;
205         struct list_head                 pending_queue;
206         struct list_head                 active;
207         struct list_head                 queue;
208         struct list_head                 prepare_queue;
209         struct stedma40_chan_cfg         dma_cfg;
210         bool                             configured;
211         struct d40_base                 *base;
212         /* Default register configurations */
213         u32                              src_def_cfg;
214         u32                              dst_def_cfg;
215         struct d40_def_lcsp              log_def;
216         struct d40_log_lli_full         *lcpa;
217         /* Runtime reconfiguration */
218         dma_addr_t                      runtime_addr;
219         enum dma_data_direction         runtime_direction;
220 };
221
222 /**
223  * struct d40_base - The big global struct, one for each probe'd instance.
224  *
225  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
226  * @execmd_lock: Lock for execute command usage since several channels share
227  * the same physical register.
228  * @dev: The device structure.
229  * @virtbase: The virtual base address of the DMA's register.
230  * @rev: silicon revision detected.
231  * @clk: Pointer to the DMA clock structure.
232  * @phy_start: Physical memory start of the DMA registers.
233  * @phy_size: Size of the DMA register map.
234  * @irq: The IRQ number.
235  * @num_phy_chans: The number of physical channels. Read from HW. This
236  * is the number of available channels for this driver, not counting "Secure
237  * mode" allocated physical channels.
238  * @num_log_chans: The number of logical channels. Calculated from
239  * num_phy_chans.
240  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
241  * @dma_slave: dma_device channels that can do only do slave transfers.
242  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
243  * @log_chans: Room for all possible logical channels in system.
244  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
245  * to log_chans entries.
246  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
247  * to phy_chans entries.
248  * @plat_data: Pointer to provided platform_data which is the driver
249  * configuration.
250  * @phy_res: Vector containing all physical channels.
251  * @lcla_pool: lcla pool settings and data.
252  * @lcpa_base: The virtual mapped address of LCPA.
253  * @phy_lcpa: The physical address of the LCPA.
254  * @lcpa_size: The size of the LCPA area.
255  * @desc_slab: cache for descriptors.
256  */
257 struct d40_base {
258         spinlock_t                       interrupt_lock;
259         spinlock_t                       execmd_lock;
260         struct device                    *dev;
261         void __iomem                     *virtbase;
262         u8                                rev:4;
263         struct clk                       *clk;
264         phys_addr_t                       phy_start;
265         resource_size_t                   phy_size;
266         int                               irq;
267         int                               num_phy_chans;
268         int                               num_log_chans;
269         struct dma_device                 dma_both;
270         struct dma_device                 dma_slave;
271         struct dma_device                 dma_memcpy;
272         struct d40_chan                  *phy_chans;
273         struct d40_chan                  *log_chans;
274         struct d40_chan                 **lookup_log_chans;
275         struct d40_chan                 **lookup_phy_chans;
276         struct stedma40_platform_data    *plat_data;
277         /* Physical half channels */
278         struct d40_phy_res               *phy_res;
279         struct d40_lcla_pool              lcla_pool;
280         void                             *lcpa_base;
281         dma_addr_t                        phy_lcpa;
282         resource_size_t                   lcpa_size;
283         struct kmem_cache                *desc_slab;
284 };
285
286 /**
287  * struct d40_interrupt_lookup - lookup table for interrupt handler
288  *
289  * @src: Interrupt mask register.
290  * @clr: Interrupt clear register.
291  * @is_error: true if this is an error interrupt.
292  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
293  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
294  */
295 struct d40_interrupt_lookup {
296         u32 src;
297         u32 clr;
298         bool is_error;
299         int offset;
300 };
301
302 /**
303  * struct d40_reg_val - simple lookup struct
304  *
305  * @reg: The register.
306  * @val: The value that belongs to the register in reg.
307  */
308 struct d40_reg_val {
309         unsigned int reg;
310         unsigned int val;
311 };
312
313 static struct device *chan2dev(struct d40_chan *d40c)
314 {
315         return &d40c->chan.dev->device;
316 }
317
318 static bool chan_is_physical(struct d40_chan *chan)
319 {
320         return chan->log_num == D40_PHY_CHAN;
321 }
322
323 static bool chan_is_logical(struct d40_chan *chan)
324 {
325         return !chan_is_physical(chan);
326 }
327
328 static void __iomem *chan_base(struct d40_chan *chan)
329 {
330         return chan->base->virtbase + D40_DREG_PCBASE +
331                chan->phy_chan->num * D40_DREG_PCDELTA;
332 }
333
334 #define d40_err(dev, format, arg...)            \
335         dev_err(dev, "[%s] " format, __func__, ## arg)
336
337 #define chan_err(d40c, format, arg...)          \
338         d40_err(chan2dev(d40c), format, ## arg)
339
340 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
341                               int lli_len)
342 {
343         bool is_log = chan_is_logical(d40c);
344         u32 align;
345         void *base;
346
347         if (is_log)
348                 align = sizeof(struct d40_log_lli);
349         else
350                 align = sizeof(struct d40_phy_lli);
351
352         if (lli_len == 1) {
353                 base = d40d->lli_pool.pre_alloc_lli;
354                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
355                 d40d->lli_pool.base = NULL;
356         } else {
357                 d40d->lli_pool.size = lli_len * 2 * align;
358
359                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
360                 d40d->lli_pool.base = base;
361
362                 if (d40d->lli_pool.base == NULL)
363                         return -ENOMEM;
364         }
365
366         if (is_log) {
367                 d40d->lli_log.src = PTR_ALIGN(base, align);
368                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
369
370                 d40d->lli_pool.dma_addr = 0;
371         } else {
372                 d40d->lli_phy.src = PTR_ALIGN(base, align);
373                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
374
375                 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
376                                                          d40d->lli_phy.src,
377                                                          d40d->lli_pool.size,
378                                                          DMA_TO_DEVICE);
379
380                 if (dma_mapping_error(d40c->base->dev,
381                                       d40d->lli_pool.dma_addr)) {
382                         kfree(d40d->lli_pool.base);
383                         d40d->lli_pool.base = NULL;
384                         d40d->lli_pool.dma_addr = 0;
385                         return -ENOMEM;
386                 }
387         }
388
389         return 0;
390 }
391
392 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
393 {
394         if (d40d->lli_pool.dma_addr)
395                 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
396                                  d40d->lli_pool.size, DMA_TO_DEVICE);
397
398         kfree(d40d->lli_pool.base);
399         d40d->lli_pool.base = NULL;
400         d40d->lli_pool.size = 0;
401         d40d->lli_log.src = NULL;
402         d40d->lli_log.dst = NULL;
403         d40d->lli_phy.src = NULL;
404         d40d->lli_phy.dst = NULL;
405 }
406
407 static int d40_lcla_alloc_one(struct d40_chan *d40c,
408                               struct d40_desc *d40d)
409 {
410         unsigned long flags;
411         int i;
412         int ret = -EINVAL;
413         int p;
414
415         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
416
417         p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
418
419         /*
420          * Allocate both src and dst at the same time, therefore the half
421          * start on 1 since 0 can't be used since zero is used as end marker.
422          */
423         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
424                 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
425                         d40c->base->lcla_pool.alloc_map[p + i] = d40d;
426                         d40d->lcla_alloc++;
427                         ret = i;
428                         break;
429                 }
430         }
431
432         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
433
434         return ret;
435 }
436
437 static int d40_lcla_free_all(struct d40_chan *d40c,
438                              struct d40_desc *d40d)
439 {
440         unsigned long flags;
441         int i;
442         int ret = -EINVAL;
443
444         if (chan_is_physical(d40c))
445                 return 0;
446
447         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
448
449         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
450                 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
451                                                     D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
452                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
453                                                         D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
454                         d40d->lcla_alloc--;
455                         if (d40d->lcla_alloc == 0) {
456                                 ret = 0;
457                                 break;
458                         }
459                 }
460         }
461
462         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
463
464         return ret;
465
466 }
467
468 static void d40_desc_remove(struct d40_desc *d40d)
469 {
470         list_del(&d40d->node);
471 }
472
473 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
474 {
475         struct d40_desc *desc = NULL;
476
477         if (!list_empty(&d40c->client)) {
478                 struct d40_desc *d;
479                 struct d40_desc *_d;
480
481                 list_for_each_entry_safe(d, _d, &d40c->client, node)
482                         if (async_tx_test_ack(&d->txd)) {
483                                 d40_desc_remove(d);
484                                 desc = d;
485                                 memset(desc, 0, sizeof(*desc));
486                                 break;
487                         }
488         }
489
490         if (!desc)
491                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
492
493         if (desc)
494                 INIT_LIST_HEAD(&desc->node);
495
496         return desc;
497 }
498
499 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
500 {
501
502         d40_pool_lli_free(d40c, d40d);
503         d40_lcla_free_all(d40c, d40d);
504         kmem_cache_free(d40c->base->desc_slab, d40d);
505 }
506
507 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
508 {
509         list_add_tail(&desc->node, &d40c->active);
510 }
511
512 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
513 {
514         struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
515         struct d40_phy_lli *lli_src = desc->lli_phy.src;
516         void __iomem *base = chan_base(chan);
517
518         writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
519         writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
520         writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
521         writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
522
523         writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
524         writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
525         writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
526         writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
527 }
528
529 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
530 {
531         struct d40_lcla_pool *pool = &chan->base->lcla_pool;
532         struct d40_log_lli_bidir *lli = &desc->lli_log;
533         int lli_current = desc->lli_current;
534         int lli_len = desc->lli_len;
535         bool cyclic = desc->cyclic;
536         int curr_lcla = -EINVAL;
537         int first_lcla = 0;
538         bool linkback;
539
540         /*
541          * We may have partially running cyclic transfers, in case we did't get
542          * enough LCLA entries.
543          */
544         linkback = cyclic && lli_current == 0;
545
546         /*
547          * For linkback, we need one LCLA even with only one link, because we
548          * can't link back to the one in LCPA space
549          */
550         if (linkback || (lli_len - lli_current > 1)) {
551                 curr_lcla = d40_lcla_alloc_one(chan, desc);
552                 first_lcla = curr_lcla;
553         }
554
555         /*
556          * For linkback, we normally load the LCPA in the loop since we need to
557          * link it to the second LCLA and not the first.  However, if we
558          * couldn't even get a first LCLA, then we have to run in LCPA and
559          * reload manually.
560          */
561         if (!linkback || curr_lcla == -EINVAL) {
562                 unsigned int flags = 0;
563
564                 if (curr_lcla == -EINVAL)
565                         flags |= LLI_TERM_INT;
566
567                 d40_log_lli_lcpa_write(chan->lcpa,
568                                        &lli->dst[lli_current],
569                                        &lli->src[lli_current],
570                                        curr_lcla,
571                                        flags);
572                 lli_current++;
573         }
574
575         if (curr_lcla < 0)
576                 goto out;
577
578         for (; lli_current < lli_len; lli_current++) {
579                 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
580                                            8 * curr_lcla * 2;
581                 struct d40_log_lli *lcla = pool->base + lcla_offset;
582                 unsigned int flags = 0;
583                 int next_lcla;
584
585                 if (lli_current + 1 < lli_len)
586                         next_lcla = d40_lcla_alloc_one(chan, desc);
587                 else
588                         next_lcla = linkback ? first_lcla : -EINVAL;
589
590                 if (cyclic || next_lcla == -EINVAL)
591                         flags |= LLI_TERM_INT;
592
593                 if (linkback && curr_lcla == first_lcla) {
594                         /* First link goes in both LCPA and LCLA */
595                         d40_log_lli_lcpa_write(chan->lcpa,
596                                                &lli->dst[lli_current],
597                                                &lli->src[lli_current],
598                                                next_lcla, flags);
599                 }
600
601                 /*
602                  * One unused LCLA in the cyclic case if the very first
603                  * next_lcla fails...
604                  */
605                 d40_log_lli_lcla_write(lcla,
606                                        &lli->dst[lli_current],
607                                        &lli->src[lli_current],
608                                        next_lcla, flags);
609
610                 dma_sync_single_range_for_device(chan->base->dev,
611                                         pool->dma_addr, lcla_offset,
612                                         2 * sizeof(struct d40_log_lli),
613                                         DMA_TO_DEVICE);
614
615                 curr_lcla = next_lcla;
616
617                 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
618                         lli_current++;
619                         break;
620                 }
621         }
622
623 out:
624         desc->lli_current = lli_current;
625 }
626
627 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
628 {
629         if (chan_is_physical(d40c)) {
630                 d40_phy_lli_load(d40c, d40d);
631                 d40d->lli_current = d40d->lli_len;
632         } else
633                 d40_log_lli_to_lcxa(d40c, d40d);
634 }
635
636 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
637 {
638         struct d40_desc *d;
639
640         if (list_empty(&d40c->active))
641                 return NULL;
642
643         d = list_first_entry(&d40c->active,
644                              struct d40_desc,
645                              node);
646         return d;
647 }
648
649 /* remove desc from current queue and add it to the pending_queue */
650 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
651 {
652         d40_desc_remove(desc);
653         desc->is_in_client_list = false;
654         list_add_tail(&desc->node, &d40c->pending_queue);
655 }
656
657 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
658 {
659         struct d40_desc *d;
660
661         if (list_empty(&d40c->pending_queue))
662                 return NULL;
663
664         d = list_first_entry(&d40c->pending_queue,
665                              struct d40_desc,
666                              node);
667         return d;
668 }
669
670 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
671 {
672         struct d40_desc *d;
673
674         if (list_empty(&d40c->queue))
675                 return NULL;
676
677         d = list_first_entry(&d40c->queue,
678                              struct d40_desc,
679                              node);
680         return d;
681 }
682
683 static int d40_psize_2_burst_size(bool is_log, int psize)
684 {
685         if (is_log) {
686                 if (psize == STEDMA40_PSIZE_LOG_1)
687                         return 1;
688         } else {
689                 if (psize == STEDMA40_PSIZE_PHY_1)
690                         return 1;
691         }
692
693         return 2 << psize;
694 }
695
696 /*
697  * The dma only supports transmitting packages up to
698  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
699  * dma elements required to send the entire sg list
700  */
701 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
702 {
703         int dmalen;
704         u32 max_w = max(data_width1, data_width2);
705         u32 min_w = min(data_width1, data_width2);
706         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
707
708         if (seg_max > STEDMA40_MAX_SEG_SIZE)
709                 seg_max -= (1 << max_w);
710
711         if (!IS_ALIGNED(size, 1 << max_w))
712                 return -EINVAL;
713
714         if (size <= seg_max)
715                 dmalen = 1;
716         else {
717                 dmalen = size / seg_max;
718                 if (dmalen * seg_max < size)
719                         dmalen++;
720         }
721         return dmalen;
722 }
723
724 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
725                            u32 data_width1, u32 data_width2)
726 {
727         struct scatterlist *sg;
728         int i;
729         int len = 0;
730         int ret;
731
732         for_each_sg(sgl, sg, sg_len, i) {
733                 ret = d40_size_2_dmalen(sg_dma_len(sg),
734                                         data_width1, data_width2);
735                 if (ret < 0)
736                         return ret;
737                 len += ret;
738         }
739         return len;
740 }
741
742 /* Support functions for logical channels */
743
744 static int d40_channel_execute_command(struct d40_chan *d40c,
745                                        enum d40_command command)
746 {
747         u32 status;
748         int i;
749         void __iomem *active_reg;
750         int ret = 0;
751         unsigned long flags;
752         u32 wmask;
753
754         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
755
756         if (d40c->phy_chan->num % 2 == 0)
757                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
758         else
759                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
760
761         if (command == D40_DMA_SUSPEND_REQ) {
762                 status = (readl(active_reg) &
763                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
764                         D40_CHAN_POS(d40c->phy_chan->num);
765
766                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
767                         goto done;
768         }
769
770         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
771         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
772                active_reg);
773
774         if (command == D40_DMA_SUSPEND_REQ) {
775
776                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
777                         status = (readl(active_reg) &
778                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
779                                 D40_CHAN_POS(d40c->phy_chan->num);
780
781                         cpu_relax();
782                         /*
783                          * Reduce the number of bus accesses while
784                          * waiting for the DMA to suspend.
785                          */
786                         udelay(3);
787
788                         if (status == D40_DMA_STOP ||
789                             status == D40_DMA_SUSPENDED)
790                                 break;
791                 }
792
793                 if (i == D40_SUSPEND_MAX_IT) {
794                         chan_err(d40c,
795                                 "unable to suspend the chl %d (log: %d) status %x\n",
796                                 d40c->phy_chan->num, d40c->log_num,
797                                 status);
798                         dump_stack();
799                         ret = -EBUSY;
800                 }
801
802         }
803 done:
804         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
805         return ret;
806 }
807
808 static void d40_term_all(struct d40_chan *d40c)
809 {
810         struct d40_desc *d40d;
811         struct d40_desc *_d;
812
813         /* Release active descriptors */
814         while ((d40d = d40_first_active_get(d40c))) {
815                 d40_desc_remove(d40d);
816                 d40_desc_free(d40c, d40d);
817         }
818
819         /* Release queued descriptors waiting for transfer */
820         while ((d40d = d40_first_queued(d40c))) {
821                 d40_desc_remove(d40d);
822                 d40_desc_free(d40c, d40d);
823         }
824
825         /* Release pending descriptors */
826         while ((d40d = d40_first_pending(d40c))) {
827                 d40_desc_remove(d40d);
828                 d40_desc_free(d40c, d40d);
829         }
830
831         /* Release client owned descriptors */
832         if (!list_empty(&d40c->client))
833                 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
834                         d40_desc_remove(d40d);
835                         d40_desc_free(d40c, d40d);
836                 }
837
838         /* Release descriptors in prepare queue */
839         if (!list_empty(&d40c->prepare_queue))
840                 list_for_each_entry_safe(d40d, _d,
841                                          &d40c->prepare_queue, node) {
842                         d40_desc_remove(d40d);
843                         d40_desc_free(d40c, d40d);
844                 }
845
846         d40c->pending_tx = 0;
847         d40c->busy = false;
848 }
849
850 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
851                                    u32 event, int reg)
852 {
853         void __iomem *addr = chan_base(d40c) + reg;
854         int tries;
855
856         if (!enable) {
857                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
858                        | ~D40_EVENTLINE_MASK(event), addr);
859                 return;
860         }
861
862         /*
863          * The hardware sometimes doesn't register the enable when src and dst
864          * event lines are active on the same logical channel.  Retry to ensure
865          * it does.  Usually only one retry is sufficient.
866          */
867         tries = 100;
868         while (--tries) {
869                 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
870                        | ~D40_EVENTLINE_MASK(event), addr);
871
872                 if (readl(addr) & D40_EVENTLINE_MASK(event))
873                         break;
874         }
875
876         if (tries != 99)
877                 dev_dbg(chan2dev(d40c),
878                         "[%s] workaround enable S%cLNK (%d tries)\n",
879                         __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
880                         100 - tries);
881
882         WARN_ON(!tries);
883 }
884
885 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
886 {
887         unsigned long flags;
888
889         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
890
891         /* Enable event line connected to device (or memcpy) */
892         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
893             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
894                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
895
896                 __d40_config_set_event(d40c, do_enable, event,
897                                        D40_CHAN_REG_SSLNK);
898         }
899
900         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
901                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
902
903                 __d40_config_set_event(d40c, do_enable, event,
904                                        D40_CHAN_REG_SDLNK);
905         }
906
907         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
908 }
909
910 static u32 d40_chan_has_events(struct d40_chan *d40c)
911 {
912         void __iomem *chanbase = chan_base(d40c);
913         u32 val;
914
915         val = readl(chanbase + D40_CHAN_REG_SSLNK);
916         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
917
918         return val;
919 }
920
921 static u32 d40_get_prmo(struct d40_chan *d40c)
922 {
923         static const unsigned int phy_map[] = {
924                 [STEDMA40_PCHAN_BASIC_MODE]
925                         = D40_DREG_PRMO_PCHAN_BASIC,
926                 [STEDMA40_PCHAN_MODULO_MODE]
927                         = D40_DREG_PRMO_PCHAN_MODULO,
928                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
929                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
930         };
931         static const unsigned int log_map[] = {
932                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
933                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
934                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
935                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
936                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
937                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
938         };
939
940         if (chan_is_physical(d40c))
941                 return phy_map[d40c->dma_cfg.mode_opt];
942         else
943                 return log_map[d40c->dma_cfg.mode_opt];
944 }
945
946 static void d40_config_write(struct d40_chan *d40c)
947 {
948         u32 addr_base;
949         u32 var;
950
951         /* Odd addresses are even addresses + 4 */
952         addr_base = (d40c->phy_chan->num % 2) * 4;
953         /* Setup channel mode to logical or physical */
954         var = ((u32)(chan_is_logical(d40c)) + 1) <<
955                 D40_CHAN_POS(d40c->phy_chan->num);
956         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
957
958         /* Setup operational mode option register */
959         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
960
961         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
962
963         if (chan_is_logical(d40c)) {
964                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
965                            & D40_SREG_ELEM_LOG_LIDX_MASK;
966                 void __iomem *chanbase = chan_base(d40c);
967
968                 /* Set default config for CFG reg */
969                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
970                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
971
972                 /* Set LIDX for lcla */
973                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
974                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
975         }
976 }
977
978 static u32 d40_residue(struct d40_chan *d40c)
979 {
980         u32 num_elt;
981
982         if (chan_is_logical(d40c))
983                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
984                         >> D40_MEM_LCSP2_ECNT_POS;
985         else {
986                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
987                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
988                           >> D40_SREG_ELEM_PHY_ECNT_POS;
989         }
990
991         return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
992 }
993
994 static bool d40_tx_is_linked(struct d40_chan *d40c)
995 {
996         bool is_link;
997
998         if (chan_is_logical(d40c))
999                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1000         else
1001                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1002                           & D40_SREG_LNK_PHYS_LNK_MASK;
1003
1004         return is_link;
1005 }
1006
1007 static int d40_pause(struct d40_chan *d40c)
1008 {
1009         int res = 0;
1010         unsigned long flags;
1011
1012         if (!d40c->busy)
1013                 return 0;
1014
1015         spin_lock_irqsave(&d40c->lock, flags);
1016
1017         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1018         if (res == 0) {
1019                 if (chan_is_logical(d40c)) {
1020                         d40_config_set_event(d40c, false);
1021                         /* Resume the other logical channels if any */
1022                         if (d40_chan_has_events(d40c))
1023                                 res = d40_channel_execute_command(d40c,
1024                                                                   D40_DMA_RUN);
1025                 }
1026         }
1027
1028         spin_unlock_irqrestore(&d40c->lock, flags);
1029         return res;
1030 }
1031
1032 static int d40_resume(struct d40_chan *d40c)
1033 {
1034         int res = 0;
1035         unsigned long flags;
1036
1037         if (!d40c->busy)
1038                 return 0;
1039
1040         spin_lock_irqsave(&d40c->lock, flags);
1041
1042         if (d40c->base->rev == 0)
1043                 if (chan_is_logical(d40c)) {
1044                         res = d40_channel_execute_command(d40c,
1045                                                           D40_DMA_SUSPEND_REQ);
1046                         goto no_suspend;
1047                 }
1048
1049         /* If bytes left to transfer or linked tx resume job */
1050         if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1051
1052                 if (chan_is_logical(d40c))
1053                         d40_config_set_event(d40c, true);
1054
1055                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1056         }
1057
1058 no_suspend:
1059         spin_unlock_irqrestore(&d40c->lock, flags);
1060         return res;
1061 }
1062
1063 static int d40_terminate_all(struct d40_chan *chan)
1064 {
1065         unsigned long flags;
1066         int ret = 0;
1067
1068         ret = d40_pause(chan);
1069         if (!ret && chan_is_physical(chan))
1070                 ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1071
1072         spin_lock_irqsave(&chan->lock, flags);
1073         d40_term_all(chan);
1074         spin_unlock_irqrestore(&chan->lock, flags);
1075
1076         return ret;
1077 }
1078
1079 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1080 {
1081         struct d40_chan *d40c = container_of(tx->chan,
1082                                              struct d40_chan,
1083                                              chan);
1084         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1085         unsigned long flags;
1086
1087         spin_lock_irqsave(&d40c->lock, flags);
1088
1089         d40c->chan.cookie++;
1090
1091         if (d40c->chan.cookie < 0)
1092                 d40c->chan.cookie = 1;
1093
1094         d40d->txd.cookie = d40c->chan.cookie;
1095
1096         d40_desc_queue(d40c, d40d);
1097
1098         spin_unlock_irqrestore(&d40c->lock, flags);
1099
1100         return tx->cookie;
1101 }
1102
1103 static int d40_start(struct d40_chan *d40c)
1104 {
1105         if (d40c->base->rev == 0) {
1106                 int err;
1107
1108                 if (chan_is_logical(d40c)) {
1109                         err = d40_channel_execute_command(d40c,
1110                                                           D40_DMA_SUSPEND_REQ);
1111                         if (err)
1112                                 return err;
1113                 }
1114         }
1115
1116         if (chan_is_logical(d40c))
1117                 d40_config_set_event(d40c, true);
1118
1119         return d40_channel_execute_command(d40c, D40_DMA_RUN);
1120 }
1121
1122 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1123 {
1124         struct d40_desc *d40d;
1125         int err;
1126
1127         /* Start queued jobs, if any */
1128         d40d = d40_first_queued(d40c);
1129
1130         if (d40d != NULL) {
1131                 d40c->busy = true;
1132
1133                 /* Remove from queue */
1134                 d40_desc_remove(d40d);
1135
1136                 /* Add to active queue */
1137                 d40_desc_submit(d40c, d40d);
1138
1139                 /* Initiate DMA job */
1140                 d40_desc_load(d40c, d40d);
1141
1142                 /* Start dma job */
1143                 err = d40_start(d40c);
1144
1145                 if (err)
1146                         return NULL;
1147         }
1148
1149         return d40d;
1150 }
1151
1152 /* called from interrupt context */
1153 static void dma_tc_handle(struct d40_chan *d40c)
1154 {
1155         struct d40_desc *d40d;
1156
1157         /* Get first active entry from list */
1158         d40d = d40_first_active_get(d40c);
1159
1160         if (d40d == NULL)
1161                 return;
1162
1163         if (d40d->cyclic) {
1164                 /*
1165                  * If this was a paritially loaded list, we need to reloaded
1166                  * it, and only when the list is completed.  We need to check
1167                  * for done because the interrupt will hit for every link, and
1168                  * not just the last one.
1169                  */
1170                 if (d40d->lli_current < d40d->lli_len
1171                     && !d40_tx_is_linked(d40c)
1172                     && !d40_residue(d40c)) {
1173                         d40_lcla_free_all(d40c, d40d);
1174                         d40_desc_load(d40c, d40d);
1175                         (void) d40_start(d40c);
1176
1177                         if (d40d->lli_current == d40d->lli_len)
1178                                 d40d->lli_current = 0;
1179                 }
1180         } else {
1181                 d40_lcla_free_all(d40c, d40d);
1182
1183                 if (d40d->lli_current < d40d->lli_len) {
1184                         d40_desc_load(d40c, d40d);
1185                         /* Start dma job */
1186                         (void) d40_start(d40c);
1187                         return;
1188                 }
1189
1190                 if (d40_queue_start(d40c) == NULL)
1191                         d40c->busy = false;
1192         }
1193
1194         d40c->pending_tx++;
1195         tasklet_schedule(&d40c->tasklet);
1196
1197 }
1198
1199 static void dma_tasklet(unsigned long data)
1200 {
1201         struct d40_chan *d40c = (struct d40_chan *) data;
1202         struct d40_desc *d40d;
1203         unsigned long flags;
1204         dma_async_tx_callback callback;
1205         void *callback_param;
1206
1207         spin_lock_irqsave(&d40c->lock, flags);
1208
1209         /* Get first active entry from list */
1210         d40d = d40_first_active_get(d40c);
1211         if (d40d == NULL)
1212                 goto err;
1213
1214         if (!d40d->cyclic)
1215                 d40c->completed = d40d->txd.cookie;
1216
1217         /*
1218          * If terminating a channel pending_tx is set to zero.
1219          * This prevents any finished active jobs to return to the client.
1220          */
1221         if (d40c->pending_tx == 0) {
1222                 spin_unlock_irqrestore(&d40c->lock, flags);
1223                 return;
1224         }
1225
1226         /* Callback to client */
1227         callback = d40d->txd.callback;
1228         callback_param = d40d->txd.callback_param;
1229
1230         if (!d40d->cyclic) {
1231                 if (async_tx_test_ack(&d40d->txd)) {
1232                         d40_desc_remove(d40d);
1233                         d40_desc_free(d40c, d40d);
1234                 } else {
1235                         if (!d40d->is_in_client_list) {
1236                                 d40_desc_remove(d40d);
1237                                 d40_lcla_free_all(d40c, d40d);
1238                                 list_add_tail(&d40d->node, &d40c->client);
1239                                 d40d->is_in_client_list = true;
1240                         }
1241                 }
1242         }
1243
1244         d40c->pending_tx--;
1245
1246         if (d40c->pending_tx)
1247                 tasklet_schedule(&d40c->tasklet);
1248
1249         spin_unlock_irqrestore(&d40c->lock, flags);
1250
1251         if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1252                 callback(callback_param);
1253
1254         return;
1255
1256  err:
1257         /* Rescue manoeuvre if receiving double interrupts */
1258         if (d40c->pending_tx > 0)
1259                 d40c->pending_tx--;
1260         spin_unlock_irqrestore(&d40c->lock, flags);
1261 }
1262
1263 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1264 {
1265         static const struct d40_interrupt_lookup il[] = {
1266                 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1267                 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1268                 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1269                 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1270                 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1271                 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1272                 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1273                 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1274                 {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1275                 {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1276         };
1277
1278         int i;
1279         u32 regs[ARRAY_SIZE(il)];
1280         u32 idx;
1281         u32 row;
1282         long chan = -1;
1283         struct d40_chan *d40c;
1284         unsigned long flags;
1285         struct d40_base *base = data;
1286
1287         spin_lock_irqsave(&base->interrupt_lock, flags);
1288
1289         /* Read interrupt status of both logical and physical channels */
1290         for (i = 0; i < ARRAY_SIZE(il); i++)
1291                 regs[i] = readl(base->virtbase + il[i].src);
1292
1293         for (;;) {
1294
1295                 chan = find_next_bit((unsigned long *)regs,
1296                                      BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1297
1298                 /* No more set bits found? */
1299                 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1300                         break;
1301
1302                 row = chan / BITS_PER_LONG;
1303                 idx = chan & (BITS_PER_LONG - 1);
1304
1305                 /* ACK interrupt */
1306                 writel(1 << idx, base->virtbase + il[row].clr);
1307
1308                 if (il[row].offset == D40_PHY_CHAN)
1309                         d40c = base->lookup_phy_chans[idx];
1310                 else
1311                         d40c = base->lookup_log_chans[il[row].offset + idx];
1312                 spin_lock(&d40c->lock);
1313
1314                 if (!il[row].is_error)
1315                         dma_tc_handle(d40c);
1316                 else
1317                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1318                                 chan, il[row].offset, idx);
1319
1320                 spin_unlock(&d40c->lock);
1321         }
1322
1323         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1324
1325         return IRQ_HANDLED;
1326 }
1327
1328 static int d40_validate_conf(struct d40_chan *d40c,
1329                              struct stedma40_chan_cfg *conf)
1330 {
1331         int res = 0;
1332         u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1333         u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1334         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1335
1336         if (!conf->dir) {
1337                 chan_err(d40c, "Invalid direction.\n");
1338                 res = -EINVAL;
1339         }
1340
1341         if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1342             d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1343             d40c->runtime_addr == 0) {
1344
1345                 chan_err(d40c, "Invalid TX channel address (%d)\n",
1346                          conf->dst_dev_type);
1347                 res = -EINVAL;
1348         }
1349
1350         if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1351             d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1352             d40c->runtime_addr == 0) {
1353                 chan_err(d40c, "Invalid RX channel address (%d)\n",
1354                         conf->src_dev_type);
1355                 res = -EINVAL;
1356         }
1357
1358         if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1359             dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1360                 chan_err(d40c, "Invalid dst\n");
1361                 res = -EINVAL;
1362         }
1363
1364         if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1365             src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1366                 chan_err(d40c, "Invalid src\n");
1367                 res = -EINVAL;
1368         }
1369
1370         if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1371             dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1372                 chan_err(d40c, "No event line\n");
1373                 res = -EINVAL;
1374         }
1375
1376         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1377             (src_event_group != dst_event_group)) {
1378                 chan_err(d40c, "Invalid event group\n");
1379                 res = -EINVAL;
1380         }
1381
1382         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1383                 /*
1384                  * DMAC HW supports it. Will be added to this driver,
1385                  * in case any dma client requires it.
1386                  */
1387                 chan_err(d40c, "periph to periph not supported\n");
1388                 res = -EINVAL;
1389         }
1390
1391         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1392             (1 << conf->src_info.data_width) !=
1393             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1394             (1 << conf->dst_info.data_width)) {
1395                 /*
1396                  * The DMAC hardware only supports
1397                  * src (burst x width) == dst (burst x width)
1398                  */
1399
1400                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1401                 res = -EINVAL;
1402         }
1403
1404         return res;
1405 }
1406
1407 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1408                                int log_event_line, bool is_log)
1409 {
1410         unsigned long flags;
1411         spin_lock_irqsave(&phy->lock, flags);
1412         if (!is_log) {
1413                 /* Physical interrupts are masked per physical full channel */
1414                 if (phy->allocated_src == D40_ALLOC_FREE &&
1415                     phy->allocated_dst == D40_ALLOC_FREE) {
1416                         phy->allocated_dst = D40_ALLOC_PHY;
1417                         phy->allocated_src = D40_ALLOC_PHY;
1418                         goto found;
1419                 } else
1420                         goto not_found;
1421         }
1422
1423         /* Logical channel */
1424         if (is_src) {
1425                 if (phy->allocated_src == D40_ALLOC_PHY)
1426                         goto not_found;
1427
1428                 if (phy->allocated_src == D40_ALLOC_FREE)
1429                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1430
1431                 if (!(phy->allocated_src & (1 << log_event_line))) {
1432                         phy->allocated_src |= 1 << log_event_line;
1433                         goto found;
1434                 } else
1435                         goto not_found;
1436         } else {
1437                 if (phy->allocated_dst == D40_ALLOC_PHY)
1438                         goto not_found;
1439
1440                 if (phy->allocated_dst == D40_ALLOC_FREE)
1441                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1442
1443                 if (!(phy->allocated_dst & (1 << log_event_line))) {
1444                         phy->allocated_dst |= 1 << log_event_line;
1445                         goto found;
1446                 } else
1447                         goto not_found;
1448         }
1449
1450 not_found:
1451         spin_unlock_irqrestore(&phy->lock, flags);
1452         return false;
1453 found:
1454         spin_unlock_irqrestore(&phy->lock, flags);
1455         return true;
1456 }
1457
1458 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1459                                int log_event_line)
1460 {
1461         unsigned long flags;
1462         bool is_free = false;
1463
1464         spin_lock_irqsave(&phy->lock, flags);
1465         if (!log_event_line) {
1466                 phy->allocated_dst = D40_ALLOC_FREE;
1467                 phy->allocated_src = D40_ALLOC_FREE;
1468                 is_free = true;
1469                 goto out;
1470         }
1471
1472         /* Logical channel */
1473         if (is_src) {
1474                 phy->allocated_src &= ~(1 << log_event_line);
1475                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1476                         phy->allocated_src = D40_ALLOC_FREE;
1477         } else {
1478                 phy->allocated_dst &= ~(1 << log_event_line);
1479                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1480                         phy->allocated_dst = D40_ALLOC_FREE;
1481         }
1482
1483         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1484                    D40_ALLOC_FREE);
1485
1486 out:
1487         spin_unlock_irqrestore(&phy->lock, flags);
1488
1489         return is_free;
1490 }
1491
1492 static int d40_allocate_channel(struct d40_chan *d40c)
1493 {
1494         int dev_type;
1495         int event_group;
1496         int event_line;
1497         struct d40_phy_res *phys;
1498         int i;
1499         int j;
1500         int log_num;
1501         bool is_src;
1502         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1503
1504         phys = d40c->base->phy_res;
1505
1506         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1507                 dev_type = d40c->dma_cfg.src_dev_type;
1508                 log_num = 2 * dev_type;
1509                 is_src = true;
1510         } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1511                    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1512                 /* dst event lines are used for logical memcpy */
1513                 dev_type = d40c->dma_cfg.dst_dev_type;
1514                 log_num = 2 * dev_type + 1;
1515                 is_src = false;
1516         } else
1517                 return -EINVAL;
1518
1519         event_group = D40_TYPE_TO_GROUP(dev_type);
1520         event_line = D40_TYPE_TO_EVENT(dev_type);
1521
1522         if (!is_log) {
1523                 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1524                         /* Find physical half channel */
1525                         for (i = 0; i < d40c->base->num_phy_chans; i++) {
1526
1527                                 if (d40_alloc_mask_set(&phys[i], is_src,
1528                                                        0, is_log))
1529                                         goto found_phy;
1530                         }
1531                 } else
1532                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1533                                 int phy_num = j  + event_group * 2;
1534                                 for (i = phy_num; i < phy_num + 2; i++) {
1535                                         if (d40_alloc_mask_set(&phys[i],
1536                                                                is_src,
1537                                                                0,
1538                                                                is_log))
1539                                                 goto found_phy;
1540                                 }
1541                         }
1542                 return -EINVAL;
1543 found_phy:
1544                 d40c->phy_chan = &phys[i];
1545                 d40c->log_num = D40_PHY_CHAN;
1546                 goto out;
1547         }
1548         if (dev_type == -1)
1549                 return -EINVAL;
1550
1551         /* Find logical channel */
1552         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1553                 int phy_num = j + event_group * 2;
1554                 /*
1555                  * Spread logical channels across all available physical rather
1556                  * than pack every logical channel at the first available phy
1557                  * channels.
1558                  */
1559                 if (is_src) {
1560                         for (i = phy_num; i < phy_num + 2; i++) {
1561                                 if (d40_alloc_mask_set(&phys[i], is_src,
1562                                                        event_line, is_log))
1563                                         goto found_log;
1564                         }
1565                 } else {
1566                         for (i = phy_num + 1; i >= phy_num; i--) {
1567                                 if (d40_alloc_mask_set(&phys[i], is_src,
1568                                                        event_line, is_log))
1569                                         goto found_log;
1570                         }
1571                 }
1572         }
1573         return -EINVAL;
1574
1575 found_log:
1576         d40c->phy_chan = &phys[i];
1577         d40c->log_num = log_num;
1578 out:
1579
1580         if (is_log)
1581                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1582         else
1583                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1584
1585         return 0;
1586
1587 }
1588
1589 static int d40_config_memcpy(struct d40_chan *d40c)
1590 {
1591         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1592
1593         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1594                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1595                 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1596                 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1597                         memcpy[d40c->chan.chan_id];
1598
1599         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1600                    dma_has_cap(DMA_SLAVE, cap)) {
1601                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1602         } else {
1603                 chan_err(d40c, "No memcpy\n");
1604                 return -EINVAL;
1605         }
1606
1607         return 0;
1608 }
1609
1610
1611 static int d40_free_dma(struct d40_chan *d40c)
1612 {
1613
1614         int res = 0;
1615         u32 event;
1616         struct d40_phy_res *phy = d40c->phy_chan;
1617         bool is_src;
1618
1619         /* Terminate all queued and active transfers */
1620         d40_term_all(d40c);
1621
1622         if (phy == NULL) {
1623                 chan_err(d40c, "phy == null\n");
1624                 return -EINVAL;
1625         }
1626
1627         if (phy->allocated_src == D40_ALLOC_FREE &&
1628             phy->allocated_dst == D40_ALLOC_FREE) {
1629                 chan_err(d40c, "channel already free\n");
1630                 return -EINVAL;
1631         }
1632
1633         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1634             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1635                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1636                 is_src = false;
1637         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1638                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1639                 is_src = true;
1640         } else {
1641                 chan_err(d40c, "Unknown direction\n");
1642                 return -EINVAL;
1643         }
1644
1645         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1646         if (res) {
1647                 chan_err(d40c, "suspend failed\n");
1648                 return res;
1649         }
1650
1651         if (chan_is_logical(d40c)) {
1652                 /* Release logical channel, deactivate the event line */
1653
1654                 d40_config_set_event(d40c, false);
1655                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1656
1657                 /*
1658                  * Check if there are more logical allocation
1659                  * on this phy channel.
1660                  */
1661                 if (!d40_alloc_mask_free(phy, is_src, event)) {
1662                         /* Resume the other logical channels if any */
1663                         if (d40_chan_has_events(d40c)) {
1664                                 res = d40_channel_execute_command(d40c,
1665                                                                   D40_DMA_RUN);
1666                                 if (res) {
1667                                         chan_err(d40c,
1668                                                 "Executing RUN command\n");
1669                                         return res;
1670                                 }
1671                         }
1672                         return 0;
1673                 }
1674         } else {
1675                 (void) d40_alloc_mask_free(phy, is_src, 0);
1676         }
1677
1678         /* Release physical channel */
1679         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1680         if (res) {
1681                 chan_err(d40c, "Failed to stop channel\n");
1682                 return res;
1683         }
1684         d40c->phy_chan = NULL;
1685         d40c->configured = false;
1686         d40c->base->lookup_phy_chans[phy->num] = NULL;
1687
1688         return 0;
1689 }
1690
1691 static bool d40_is_paused(struct d40_chan *d40c)
1692 {
1693         void __iomem *chanbase = chan_base(d40c);
1694         bool is_paused = false;
1695         unsigned long flags;
1696         void __iomem *active_reg;
1697         u32 status;
1698         u32 event;
1699
1700         spin_lock_irqsave(&d40c->lock, flags);
1701
1702         if (chan_is_physical(d40c)) {
1703                 if (d40c->phy_chan->num % 2 == 0)
1704                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1705                 else
1706                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1707
1708                 status = (readl(active_reg) &
1709                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1710                         D40_CHAN_POS(d40c->phy_chan->num);
1711                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1712                         is_paused = true;
1713
1714                 goto _exit;
1715         }
1716
1717         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1718             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1719                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1720                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1721         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1722                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1723                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1724         } else {
1725                 chan_err(d40c, "Unknown direction\n");
1726                 goto _exit;
1727         }
1728
1729         status = (status & D40_EVENTLINE_MASK(event)) >>
1730                 D40_EVENTLINE_POS(event);
1731
1732         if (status != D40_DMA_RUN)
1733                 is_paused = true;
1734 _exit:
1735         spin_unlock_irqrestore(&d40c->lock, flags);
1736         return is_paused;
1737
1738 }
1739
1740
1741 static u32 stedma40_residue(struct dma_chan *chan)
1742 {
1743         struct d40_chan *d40c =
1744                 container_of(chan, struct d40_chan, chan);
1745         u32 bytes_left;
1746         unsigned long flags;
1747
1748         spin_lock_irqsave(&d40c->lock, flags);
1749         bytes_left = d40_residue(d40c);
1750         spin_unlock_irqrestore(&d40c->lock, flags);
1751
1752         return bytes_left;
1753 }
1754
1755 static int
1756 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1757                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1758                 unsigned int sg_len, dma_addr_t src_dev_addr,
1759                 dma_addr_t dst_dev_addr)
1760 {
1761         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1762         struct stedma40_half_channel_info *src_info = &cfg->src_info;
1763         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1764         int ret;
1765
1766         ret = d40_log_sg_to_lli(sg_src, sg_len,
1767                                 src_dev_addr,
1768                                 desc->lli_log.src,
1769                                 chan->log_def.lcsp1,
1770                                 src_info->data_width,
1771                                 dst_info->data_width);
1772
1773         ret = d40_log_sg_to_lli(sg_dst, sg_len,
1774                                 dst_dev_addr,
1775                                 desc->lli_log.dst,
1776                                 chan->log_def.lcsp3,
1777                                 dst_info->data_width,
1778                                 src_info->data_width);
1779
1780         return ret < 0 ? ret : 0;
1781 }
1782
1783 static int
1784 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1785                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1786                 unsigned int sg_len, dma_addr_t src_dev_addr,
1787                 dma_addr_t dst_dev_addr)
1788 {
1789         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1790         struct stedma40_half_channel_info *src_info = &cfg->src_info;
1791         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1792         unsigned long flags = 0;
1793         int ret;
1794
1795         if (desc->cyclic)
1796                 flags |= LLI_CYCLIC | LLI_TERM_INT;
1797
1798         ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1799                                 desc->lli_phy.src,
1800                                 virt_to_phys(desc->lli_phy.src),
1801                                 chan->src_def_cfg,
1802                                 src_info, dst_info, flags);
1803
1804         ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1805                                 desc->lli_phy.dst,
1806                                 virt_to_phys(desc->lli_phy.dst),
1807                                 chan->dst_def_cfg,
1808                                 dst_info, src_info, flags);
1809
1810         dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1811                                    desc->lli_pool.size, DMA_TO_DEVICE);
1812
1813         return ret < 0 ? ret : 0;
1814 }
1815
1816
1817 static struct d40_desc *
1818 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1819               unsigned int sg_len, unsigned long dma_flags)
1820 {
1821         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1822         struct d40_desc *desc;
1823         int ret;
1824
1825         desc = d40_desc_get(chan);
1826         if (!desc)
1827                 return NULL;
1828
1829         desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
1830                                         cfg->dst_info.data_width);
1831         if (desc->lli_len < 0) {
1832                 chan_err(chan, "Unaligned size\n");
1833                 goto err;
1834         }
1835
1836         ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
1837         if (ret < 0) {
1838                 chan_err(chan, "Could not allocate lli\n");
1839                 goto err;
1840         }
1841
1842
1843         desc->lli_current = 0;
1844         desc->txd.flags = dma_flags;
1845         desc->txd.tx_submit = d40_tx_submit;
1846
1847         dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
1848
1849         return desc;
1850
1851 err:
1852         d40_desc_free(chan, desc);
1853         return NULL;
1854 }
1855
1856 static dma_addr_t
1857 d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1858 {
1859         struct stedma40_platform_data *plat = chan->base->plat_data;
1860         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1861         dma_addr_t addr = 0;
1862
1863         if (chan->runtime_addr)
1864                 return chan->runtime_addr;
1865
1866         if (direction == DMA_FROM_DEVICE)
1867                 addr = plat->dev_rx[cfg->src_dev_type];
1868         else if (direction == DMA_TO_DEVICE)
1869                 addr = plat->dev_tx[cfg->dst_dev_type];
1870
1871         return addr;
1872 }
1873
1874 static struct dma_async_tx_descriptor *
1875 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
1876             struct scatterlist *sg_dst, unsigned int sg_len,
1877             enum dma_data_direction direction, unsigned long dma_flags)
1878 {
1879         struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
1880         dma_addr_t src_dev_addr = 0;
1881         dma_addr_t dst_dev_addr = 0;
1882         struct d40_desc *desc;
1883         unsigned long flags;
1884         int ret;
1885
1886         if (!chan->phy_chan) {
1887                 chan_err(chan, "Cannot prepare unallocated channel\n");
1888                 return NULL;
1889         }
1890
1891
1892         spin_lock_irqsave(&chan->lock, flags);
1893
1894         desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
1895         if (desc == NULL)
1896                 goto err;
1897
1898         if (sg_next(&sg_src[sg_len - 1]) == sg_src)
1899                 desc->cyclic = true;
1900
1901         if (direction != DMA_NONE) {
1902                 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
1903
1904                 if (direction == DMA_FROM_DEVICE)
1905                         src_dev_addr = dev_addr;
1906                 else if (direction == DMA_TO_DEVICE)
1907                         dst_dev_addr = dev_addr;
1908         }
1909
1910         if (chan_is_logical(chan))
1911                 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
1912                                       sg_len, src_dev_addr, dst_dev_addr);
1913         else
1914                 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
1915                                       sg_len, src_dev_addr, dst_dev_addr);
1916
1917         if (ret) {
1918                 chan_err(chan, "Failed to prepare %s sg job: %d\n",
1919                          chan_is_logical(chan) ? "log" : "phy", ret);
1920                 goto err;
1921         }
1922
1923         /*
1924          * add descriptor to the prepare queue in order to be able
1925          * to free them later in terminate_all
1926          */
1927         list_add_tail(&desc->node, &chan->prepare_queue);
1928
1929         spin_unlock_irqrestore(&chan->lock, flags);
1930
1931         return &desc->txd;
1932
1933 err:
1934         if (desc)
1935                 d40_desc_free(chan, desc);
1936         spin_unlock_irqrestore(&chan->lock, flags);
1937         return NULL;
1938 }
1939
1940 bool stedma40_filter(struct dma_chan *chan, void *data)
1941 {
1942         struct stedma40_chan_cfg *info = data;
1943         struct d40_chan *d40c =
1944                 container_of(chan, struct d40_chan, chan);
1945         int err;
1946
1947         if (data) {
1948                 err = d40_validate_conf(d40c, info);
1949                 if (!err)
1950                         d40c->dma_cfg = *info;
1951         } else
1952                 err = d40_config_memcpy(d40c);
1953
1954         if (!err)
1955                 d40c->configured = true;
1956
1957         return err == 0;
1958 }
1959 EXPORT_SYMBOL(stedma40_filter);
1960
1961 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1962 {
1963         bool realtime = d40c->dma_cfg.realtime;
1964         bool highprio = d40c->dma_cfg.high_priority;
1965         u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1966         u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1967         u32 event = D40_TYPE_TO_EVENT(dev_type);
1968         u32 group = D40_TYPE_TO_GROUP(dev_type);
1969         u32 bit = 1 << event;
1970
1971         /* Destination event lines are stored in the upper halfword */
1972         if (!src)
1973                 bit <<= 16;
1974
1975         writel(bit, d40c->base->virtbase + prioreg + group * 4);
1976         writel(bit, d40c->base->virtbase + rtreg + group * 4);
1977 }
1978
1979 static void d40_set_prio_realtime(struct d40_chan *d40c)
1980 {
1981         if (d40c->base->rev < 3)
1982                 return;
1983
1984         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1985             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1986                 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1987
1988         if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
1989             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1990                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1991 }
1992
1993 /* DMA ENGINE functions */
1994 static int d40_alloc_chan_resources(struct dma_chan *chan)
1995 {
1996         int err;
1997         unsigned long flags;
1998         struct d40_chan *d40c =
1999                 container_of(chan, struct d40_chan, chan);
2000         bool is_free_phy;
2001         spin_lock_irqsave(&d40c->lock, flags);
2002
2003         d40c->completed = chan->cookie = 1;
2004
2005         /* If no dma configuration is set use default configuration (memcpy) */
2006         if (!d40c->configured) {
2007                 err = d40_config_memcpy(d40c);
2008                 if (err) {
2009                         chan_err(d40c, "Failed to configure memcpy channel\n");
2010                         goto fail;
2011                 }
2012         }
2013         is_free_phy = (d40c->phy_chan == NULL);
2014
2015         err = d40_allocate_channel(d40c);
2016         if (err) {
2017                 chan_err(d40c, "Failed to allocate channel\n");
2018                 goto fail;
2019         }
2020
2021         /* Fill in basic CFG register values */
2022         d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2023                     &d40c->dst_def_cfg, chan_is_logical(d40c));
2024
2025         d40_set_prio_realtime(d40c);
2026
2027         if (chan_is_logical(d40c)) {
2028                 d40_log_cfg(&d40c->dma_cfg,
2029                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2030
2031                 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2032                         d40c->lcpa = d40c->base->lcpa_base +
2033                           d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2034                 else
2035                         d40c->lcpa = d40c->base->lcpa_base +
2036                           d40c->dma_cfg.dst_dev_type *
2037                           D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2038         }
2039
2040         /*
2041          * Only write channel configuration to the DMA if the physical
2042          * resource is free. In case of multiple logical channels
2043          * on the same physical resource, only the first write is necessary.
2044          */
2045         if (is_free_phy)
2046                 d40_config_write(d40c);
2047 fail:
2048         spin_unlock_irqrestore(&d40c->lock, flags);
2049         return err;
2050 }
2051
2052 static void d40_free_chan_resources(struct dma_chan *chan)
2053 {
2054         struct d40_chan *d40c =
2055                 container_of(chan, struct d40_chan, chan);
2056         int err;
2057         unsigned long flags;
2058
2059         if (d40c->phy_chan == NULL) {
2060                 chan_err(d40c, "Cannot free unallocated channel\n");
2061                 return;
2062         }
2063
2064
2065         spin_lock_irqsave(&d40c->lock, flags);
2066
2067         err = d40_free_dma(d40c);
2068
2069         if (err)
2070                 chan_err(d40c, "Failed to free channel\n");
2071         spin_unlock_irqrestore(&d40c->lock, flags);
2072 }
2073
2074 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2075                                                        dma_addr_t dst,
2076                                                        dma_addr_t src,
2077                                                        size_t size,
2078                                                        unsigned long dma_flags)
2079 {
2080         struct scatterlist dst_sg;
2081         struct scatterlist src_sg;
2082
2083         sg_init_table(&dst_sg, 1);
2084         sg_init_table(&src_sg, 1);
2085
2086         sg_dma_address(&dst_sg) = dst;
2087         sg_dma_address(&src_sg) = src;
2088
2089         sg_dma_len(&dst_sg) = size;
2090         sg_dma_len(&src_sg) = size;
2091
2092         return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2093 }
2094
2095 static struct dma_async_tx_descriptor *
2096 d40_prep_memcpy_sg(struct dma_chan *chan,
2097                    struct scatterlist *dst_sg, unsigned int dst_nents,
2098                    struct scatterlist *src_sg, unsigned int src_nents,
2099                    unsigned long dma_flags)
2100 {
2101         if (dst_nents != src_nents)
2102                 return NULL;
2103
2104         return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2105 }
2106
2107 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2108                                                          struct scatterlist *sgl,
2109                                                          unsigned int sg_len,
2110                                                          enum dma_data_direction direction,
2111                                                          unsigned long dma_flags)
2112 {
2113         if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
2114                 return NULL;
2115
2116         return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2117 }
2118
2119 static struct dma_async_tx_descriptor *
2120 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2121                      size_t buf_len, size_t period_len,
2122                      enum dma_data_direction direction)
2123 {
2124         unsigned int periods = buf_len / period_len;
2125         struct dma_async_tx_descriptor *txd;
2126         struct scatterlist *sg;
2127         int i;
2128
2129         sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2130         for (i = 0; i < periods; i++) {
2131                 sg_dma_address(&sg[i]) = dma_addr;
2132                 sg_dma_len(&sg[i]) = period_len;
2133                 dma_addr += period_len;
2134         }
2135
2136         sg[periods].offset = 0;
2137         sg[periods].length = 0;
2138         sg[periods].page_link =
2139                 ((unsigned long)sg | 0x01) & ~0x02;
2140
2141         txd = d40_prep_sg(chan, sg, sg, periods, direction,
2142                           DMA_PREP_INTERRUPT);
2143
2144         kfree(sg);
2145
2146         return txd;
2147 }
2148
2149 static enum dma_status d40_tx_status(struct dma_chan *chan,
2150                                      dma_cookie_t cookie,
2151                                      struct dma_tx_state *txstate)
2152 {
2153         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2154         dma_cookie_t last_used;
2155         dma_cookie_t last_complete;
2156         int ret;
2157
2158         if (d40c->phy_chan == NULL) {
2159                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2160                 return -EINVAL;
2161         }
2162
2163         last_complete = d40c->completed;
2164         last_used = chan->cookie;
2165
2166         if (d40_is_paused(d40c))
2167                 ret = DMA_PAUSED;
2168         else
2169                 ret = dma_async_is_complete(cookie, last_complete, last_used);
2170
2171         dma_set_tx_state(txstate, last_complete, last_used,
2172                          stedma40_residue(chan));
2173
2174         return ret;
2175 }
2176
2177 static void d40_issue_pending(struct dma_chan *chan)
2178 {
2179         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2180         unsigned long flags;
2181
2182         if (d40c->phy_chan == NULL) {
2183                 chan_err(d40c, "Channel is not allocated!\n");
2184                 return;
2185         }
2186
2187         spin_lock_irqsave(&d40c->lock, flags);
2188
2189         list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2190
2191         /* Busy means that queued jobs are already being processed */
2192         if (!d40c->busy)
2193                 (void) d40_queue_start(d40c);
2194
2195         spin_unlock_irqrestore(&d40c->lock, flags);
2196 }
2197
2198 static int
2199 dma40_config_to_halfchannel(struct d40_chan *d40c,
2200                             struct stedma40_half_channel_info *info,
2201                             enum dma_slave_buswidth width,
2202                             u32 maxburst)
2203 {
2204         enum stedma40_periph_data_width addr_width;
2205         int psize;
2206
2207         switch (width) {
2208         case DMA_SLAVE_BUSWIDTH_1_BYTE:
2209                 addr_width = STEDMA40_BYTE_WIDTH;
2210                 break;
2211         case DMA_SLAVE_BUSWIDTH_2_BYTES:
2212                 addr_width = STEDMA40_HALFWORD_WIDTH;
2213                 break;
2214         case DMA_SLAVE_BUSWIDTH_4_BYTES:
2215                 addr_width = STEDMA40_WORD_WIDTH;
2216                 break;
2217         case DMA_SLAVE_BUSWIDTH_8_BYTES:
2218                 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2219                 break;
2220         default:
2221                 dev_err(d40c->base->dev,
2222                         "illegal peripheral address width "
2223                         "requested (%d)\n",
2224                         width);
2225                 return -EINVAL;
2226         }
2227
2228         if (chan_is_logical(d40c)) {
2229                 if (maxburst >= 16)
2230                         psize = STEDMA40_PSIZE_LOG_16;
2231                 else if (maxburst >= 8)
2232                         psize = STEDMA40_PSIZE_LOG_8;
2233                 else if (maxburst >= 4)
2234                         psize = STEDMA40_PSIZE_LOG_4;
2235                 else
2236                         psize = STEDMA40_PSIZE_LOG_1;
2237         } else {
2238                 if (maxburst >= 16)
2239                         psize = STEDMA40_PSIZE_PHY_16;
2240                 else if (maxburst >= 8)
2241                         psize = STEDMA40_PSIZE_PHY_8;
2242                 else if (maxburst >= 4)
2243                         psize = STEDMA40_PSIZE_PHY_4;
2244                 else
2245                         psize = STEDMA40_PSIZE_PHY_1;
2246         }
2247
2248         info->data_width = addr_width;
2249         info->psize = psize;
2250         info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2251
2252         return 0;
2253 }
2254
2255 /* Runtime reconfiguration extension */
2256 static int d40_set_runtime_config(struct dma_chan *chan,
2257                                   struct dma_slave_config *config)
2258 {
2259         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2260         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2261         enum dma_slave_buswidth src_addr_width, dst_addr_width;
2262         dma_addr_t config_addr;
2263         u32 src_maxburst, dst_maxburst;
2264         int ret;
2265
2266         src_addr_width = config->src_addr_width;
2267         src_maxburst = config->src_maxburst;
2268         dst_addr_width = config->dst_addr_width;
2269         dst_maxburst = config->dst_maxburst;
2270
2271         if (config->direction == DMA_FROM_DEVICE) {
2272                 dma_addr_t dev_addr_rx =
2273                         d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2274
2275                 config_addr = config->src_addr;
2276                 if (dev_addr_rx)
2277                         dev_dbg(d40c->base->dev,
2278                                 "channel has a pre-wired RX address %08x "
2279                                 "overriding with %08x\n",
2280                                 dev_addr_rx, config_addr);
2281                 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2282                         dev_dbg(d40c->base->dev,
2283                                 "channel was not configured for peripheral "
2284                                 "to memory transfer (%d) overriding\n",
2285                                 cfg->dir);
2286                 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2287
2288                 /* Configure the memory side */
2289                 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2290                         dst_addr_width = src_addr_width;
2291                 if (dst_maxburst == 0)
2292                         dst_maxburst = src_maxburst;
2293
2294         } else if (config->direction == DMA_TO_DEVICE) {
2295                 dma_addr_t dev_addr_tx =
2296                         d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2297
2298                 config_addr = config->dst_addr;
2299                 if (dev_addr_tx)
2300                         dev_dbg(d40c->base->dev,
2301                                 "channel has a pre-wired TX address %08x "
2302                                 "overriding with %08x\n",
2303                                 dev_addr_tx, config_addr);
2304                 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2305                         dev_dbg(d40c->base->dev,
2306                                 "channel was not configured for memory "
2307                                 "to peripheral transfer (%d) overriding\n",
2308                                 cfg->dir);
2309                 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2310
2311                 /* Configure the memory side */
2312                 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2313                         src_addr_width = dst_addr_width;
2314                 if (src_maxburst == 0)
2315                         src_maxburst = dst_maxburst;
2316         } else {
2317                 dev_err(d40c->base->dev,
2318                         "unrecognized channel direction %d\n",
2319                         config->direction);
2320                 return -EINVAL;
2321         }
2322
2323         if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2324                 dev_err(d40c->base->dev,
2325                         "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2326                         src_maxburst,
2327                         src_addr_width,
2328                         dst_maxburst,
2329                         dst_addr_width);
2330                 return -EINVAL;
2331         }
2332
2333         ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2334                                           src_addr_width,
2335                                           src_maxburst);
2336         if (ret)
2337                 return ret;
2338
2339         ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2340                                           dst_addr_width,
2341                                           dst_maxburst);
2342         if (ret)
2343                 return ret;
2344
2345         /* Fill in register values */
2346         if (chan_is_logical(d40c))
2347                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2348         else
2349                 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2350                             &d40c->dst_def_cfg, false);
2351
2352         /* These settings will take precedence later */
2353         d40c->runtime_addr = config_addr;
2354         d40c->runtime_direction = config->direction;
2355         dev_dbg(d40c->base->dev,
2356                 "configured channel %s for %s, data width %d/%d, "
2357                 "maxburst %d/%d elements, LE, no flow control\n",
2358                 dma_chan_name(chan),
2359                 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2360                 src_addr_width, dst_addr_width,
2361                 src_maxburst, dst_maxburst);
2362
2363         return 0;
2364 }
2365
2366 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2367                        unsigned long arg)
2368 {
2369         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2370
2371         if (d40c->phy_chan == NULL) {
2372                 chan_err(d40c, "Channel is not allocated!\n");
2373                 return -EINVAL;
2374         }
2375
2376         switch (cmd) {
2377         case DMA_TERMINATE_ALL:
2378                 return d40_terminate_all(d40c);
2379         case DMA_PAUSE:
2380                 return d40_pause(d40c);
2381         case DMA_RESUME:
2382                 return d40_resume(d40c);
2383         case DMA_SLAVE_CONFIG:
2384                 return d40_set_runtime_config(chan,
2385                         (struct dma_slave_config *) arg);
2386         default:
2387                 break;
2388         }
2389
2390         /* Other commands are unimplemented */
2391         return -ENXIO;
2392 }
2393
2394 /* Initialization functions */
2395
2396 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2397                                  struct d40_chan *chans, int offset,
2398                                  int num_chans)
2399 {
2400         int i = 0;
2401         struct d40_chan *d40c;
2402
2403         INIT_LIST_HEAD(&dma->channels);
2404
2405         for (i = offset; i < offset + num_chans; i++) {
2406                 d40c = &chans[i];
2407                 d40c->base = base;
2408                 d40c->chan.device = dma;
2409
2410                 spin_lock_init(&d40c->lock);
2411
2412                 d40c->log_num = D40_PHY_CHAN;
2413
2414                 INIT_LIST_HEAD(&d40c->active);
2415                 INIT_LIST_HEAD(&d40c->queue);
2416                 INIT_LIST_HEAD(&d40c->pending_queue);
2417                 INIT_LIST_HEAD(&d40c->client);
2418                 INIT_LIST_HEAD(&d40c->prepare_queue);
2419
2420                 tasklet_init(&d40c->tasklet, dma_tasklet,
2421                              (unsigned long) d40c);
2422
2423                 list_add_tail(&d40c->chan.device_node,
2424                               &dma->channels);
2425         }
2426 }
2427
2428 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2429 {
2430         if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2431                 dev->device_prep_slave_sg = d40_prep_slave_sg;
2432
2433         if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2434                 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2435
2436                 /*
2437                  * This controller can only access address at even
2438                  * 32bit boundaries, i.e. 2^2
2439                  */
2440                 dev->copy_align = 2;
2441         }
2442
2443         if (dma_has_cap(DMA_SG, dev->cap_mask))
2444                 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2445
2446         if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2447                 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2448
2449         dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2450         dev->device_free_chan_resources = d40_free_chan_resources;
2451         dev->device_issue_pending = d40_issue_pending;
2452         dev->device_tx_status = d40_tx_status;
2453         dev->device_control = d40_control;
2454         dev->dev = base->dev;
2455 }
2456
2457 static int __init d40_dmaengine_init(struct d40_base *base,
2458                                      int num_reserved_chans)
2459 {
2460         int err ;
2461
2462         d40_chan_init(base, &base->dma_slave, base->log_chans,
2463                       0, base->num_log_chans);
2464
2465         dma_cap_zero(base->dma_slave.cap_mask);
2466         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2467         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2468
2469         d40_ops_init(base, &base->dma_slave);
2470
2471         err = dma_async_device_register(&base->dma_slave);
2472
2473         if (err) {
2474                 d40_err(base->dev, "Failed to register slave channels\n");
2475                 goto failure1;
2476         }
2477
2478         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2479                       base->num_log_chans, base->plat_data->memcpy_len);
2480
2481         dma_cap_zero(base->dma_memcpy.cap_mask);
2482         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2483         dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2484
2485         d40_ops_init(base, &base->dma_memcpy);
2486
2487         err = dma_async_device_register(&base->dma_memcpy);
2488
2489         if (err) {
2490                 d40_err(base->dev,
2491                         "Failed to regsiter memcpy only channels\n");
2492                 goto failure2;
2493         }
2494
2495         d40_chan_init(base, &base->dma_both, base->phy_chans,
2496                       0, num_reserved_chans);
2497
2498         dma_cap_zero(base->dma_both.cap_mask);
2499         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2500         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2501         dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2502         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2503
2504         d40_ops_init(base, &base->dma_both);
2505         err = dma_async_device_register(&base->dma_both);
2506
2507         if (err) {
2508                 d40_err(base->dev,
2509                         "Failed to register logical and physical capable channels\n");
2510                 goto failure3;
2511         }
2512         return 0;
2513 failure3:
2514         dma_async_device_unregister(&base->dma_memcpy);
2515 failure2:
2516         dma_async_device_unregister(&base->dma_slave);
2517 failure1:
2518         return err;
2519 }
2520
2521 /* Initialization functions. */
2522
2523 static int __init d40_phy_res_init(struct d40_base *base)
2524 {
2525         int i;
2526         int num_phy_chans_avail = 0;
2527         u32 val[2];
2528         int odd_even_bit = -2;
2529
2530         val[0] = readl(base->virtbase + D40_DREG_PRSME);
2531         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2532
2533         for (i = 0; i < base->num_phy_chans; i++) {
2534                 base->phy_res[i].num = i;
2535                 odd_even_bit += 2 * ((i % 2) == 0);
2536                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2537                         /* Mark security only channels as occupied */
2538                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2539                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2540                 } else {
2541                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2542                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2543                         num_phy_chans_avail++;
2544                 }
2545                 spin_lock_init(&base->phy_res[i].lock);
2546         }
2547
2548         /* Mark disabled channels as occupied */
2549         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2550                 int chan = base->plat_data->disabled_channels[i];
2551
2552                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2553                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2554                 num_phy_chans_avail--;
2555         }
2556
2557         dev_info(base->dev, "%d of %d physical DMA channels available\n",
2558                  num_phy_chans_avail, base->num_phy_chans);
2559
2560         /* Verify settings extended vs standard */
2561         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2562
2563         for (i = 0; i < base->num_phy_chans; i++) {
2564
2565                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2566                     (val[0] & 0x3) != 1)
2567                         dev_info(base->dev,
2568                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
2569                                  __func__, i, val[0] & 0x3);
2570
2571                 val[0] = val[0] >> 2;
2572         }
2573
2574         return num_phy_chans_avail;
2575 }
2576
2577 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2578 {
2579         struct stedma40_platform_data *plat_data;
2580         struct clk *clk = NULL;
2581         void __iomem *virtbase = NULL;
2582         struct resource *res = NULL;
2583         struct d40_base *base = NULL;
2584         int num_log_chans = 0;
2585         int num_phy_chans;
2586         int i;
2587         u32 pid;
2588         u32 cid;
2589         u8 rev;
2590
2591         clk = clk_get(&pdev->dev, NULL);
2592
2593         if (IS_ERR(clk)) {
2594                 d40_err(&pdev->dev, "No matching clock found\n");
2595                 goto failure;
2596         }
2597
2598         clk_enable(clk);
2599
2600         /* Get IO for DMAC base address */
2601         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2602         if (!res)
2603                 goto failure;
2604
2605         if (request_mem_region(res->start, resource_size(res),
2606                                D40_NAME " I/O base") == NULL)
2607                 goto failure;
2608
2609         virtbase = ioremap(res->start, resource_size(res));
2610         if (!virtbase)
2611                 goto failure;
2612
2613         /* This is just a regular AMBA PrimeCell ID actually */
2614         for (pid = 0, i = 0; i < 4; i++)
2615                 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2616                         & 255) << (i * 8);
2617         for (cid = 0, i = 0; i < 4; i++)
2618                 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2619                         & 255) << (i * 8);
2620
2621         if (cid != AMBA_CID) {
2622                 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2623                 goto failure;
2624         }
2625         if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2626                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2627                         AMBA_MANF_BITS(pid),
2628                         AMBA_VENDOR_ST);
2629                 goto failure;
2630         }
2631         /*
2632          * HW revision:
2633          * DB8500ed has revision 0
2634          * ? has revision 1
2635          * DB8500v1 has revision 2
2636          * DB8500v2 has revision 3
2637          */
2638         rev = AMBA_REV_BITS(pid);
2639
2640         /* The number of physical channels on this HW */
2641         num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2642
2643         dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2644                  rev, res->start);
2645
2646         plat_data = pdev->dev.platform_data;
2647
2648         /* Count the number of logical channels in use */
2649         for (i = 0; i < plat_data->dev_len; i++)
2650                 if (plat_data->dev_rx[i] != 0)
2651                         num_log_chans++;
2652
2653         for (i = 0; i < plat_data->dev_len; i++)
2654                 if (plat_data->dev_tx[i] != 0)
2655                         num_log_chans++;
2656
2657         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2658                        (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2659                        sizeof(struct d40_chan), GFP_KERNEL);
2660
2661         if (base == NULL) {
2662                 d40_err(&pdev->dev, "Out of memory\n");
2663                 goto failure;
2664         }
2665
2666         base->rev = rev;
2667         base->clk = clk;
2668         base->num_phy_chans = num_phy_chans;
2669         base->num_log_chans = num_log_chans;
2670         base->phy_start = res->start;
2671         base->phy_size = resource_size(res);
2672         base->virtbase = virtbase;
2673         base->plat_data = plat_data;
2674         base->dev = &pdev->dev;
2675         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2676         base->log_chans = &base->phy_chans[num_phy_chans];
2677
2678         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2679                                 GFP_KERNEL);
2680         if (!base->phy_res)
2681                 goto failure;
2682
2683         base->lookup_phy_chans = kzalloc(num_phy_chans *
2684                                          sizeof(struct d40_chan *),
2685                                          GFP_KERNEL);
2686         if (!base->lookup_phy_chans)
2687                 goto failure;
2688
2689         if (num_log_chans + plat_data->memcpy_len) {
2690                 /*
2691                  * The max number of logical channels are event lines for all
2692                  * src devices and dst devices
2693                  */
2694                 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2695                                                  sizeof(struct d40_chan *),
2696                                                  GFP_KERNEL);
2697                 if (!base->lookup_log_chans)
2698                         goto failure;
2699         }
2700
2701         base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2702                                             sizeof(struct d40_desc *) *
2703                                             D40_LCLA_LINK_PER_EVENT_GRP,
2704                                             GFP_KERNEL);
2705         if (!base->lcla_pool.alloc_map)
2706                 goto failure;
2707
2708         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2709                                             0, SLAB_HWCACHE_ALIGN,
2710                                             NULL);
2711         if (base->desc_slab == NULL)
2712                 goto failure;
2713
2714         return base;
2715
2716 failure:
2717         if (!IS_ERR(clk)) {
2718                 clk_disable(clk);
2719                 clk_put(clk);
2720         }
2721         if (virtbase)
2722                 iounmap(virtbase);
2723         if (res)
2724                 release_mem_region(res->start,
2725                                    resource_size(res));
2726         if (virtbase)
2727                 iounmap(virtbase);
2728
2729         if (base) {
2730                 kfree(base->lcla_pool.alloc_map);
2731                 kfree(base->lookup_log_chans);
2732                 kfree(base->lookup_phy_chans);
2733                 kfree(base->phy_res);
2734                 kfree(base);
2735         }
2736
2737         return NULL;
2738 }
2739
2740 static void __init d40_hw_init(struct d40_base *base)
2741 {
2742
2743         static const struct d40_reg_val dma_init_reg[] = {
2744                 /* Clock every part of the DMA block from start */
2745                 { .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2746
2747                 /* Interrupts on all logical channels */
2748                 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2749                 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2750                 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2751                 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2752                 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2753                 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2754                 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2755                 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2756                 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2757                 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2758                 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2759                 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2760         };
2761         int i;
2762         u32 prmseo[2] = {0, 0};
2763         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2764         u32 pcmis = 0;
2765         u32 pcicr = 0;
2766
2767         for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2768                 writel(dma_init_reg[i].val,
2769                        base->virtbase + dma_init_reg[i].reg);
2770
2771         /* Configure all our dma channels to default settings */
2772         for (i = 0; i < base->num_phy_chans; i++) {
2773
2774                 activeo[i % 2] = activeo[i % 2] << 2;
2775
2776                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2777                     == D40_ALLOC_PHY) {
2778                         activeo[i % 2] |= 3;
2779                         continue;
2780                 }
2781
2782                 /* Enable interrupt # */
2783                 pcmis = (pcmis << 1) | 1;
2784
2785                 /* Clear interrupt # */
2786                 pcicr = (pcicr << 1) | 1;
2787
2788                 /* Set channel to physical mode */
2789                 prmseo[i % 2] = prmseo[i % 2] << 2;
2790                 prmseo[i % 2] |= 1;
2791
2792         }
2793
2794         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2795         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2796         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2797         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2798
2799         /* Write which interrupt to enable */
2800         writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2801
2802         /* Write which interrupt to clear */
2803         writel(pcicr, base->virtbase + D40_DREG_PCICR);
2804
2805 }
2806
2807 static int __init d40_lcla_allocate(struct d40_base *base)
2808 {
2809         struct d40_lcla_pool *pool = &base->lcla_pool;
2810         unsigned long *page_list;
2811         int i, j;
2812         int ret = 0;
2813
2814         /*
2815          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2816          * To full fill this hardware requirement without wasting 256 kb
2817          * we allocate pages until we get an aligned one.
2818          */
2819         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2820                             GFP_KERNEL);
2821
2822         if (!page_list) {
2823                 ret = -ENOMEM;
2824                 goto failure;
2825         }
2826
2827         /* Calculating how many pages that are required */
2828         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2829
2830         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2831                 page_list[i] = __get_free_pages(GFP_KERNEL,
2832                                                 base->lcla_pool.pages);
2833                 if (!page_list[i]) {
2834
2835                         d40_err(base->dev, "Failed to allocate %d pages.\n",
2836                                 base->lcla_pool.pages);
2837
2838                         for (j = 0; j < i; j++)
2839                                 free_pages(page_list[j], base->lcla_pool.pages);
2840                         goto failure;
2841                 }
2842
2843                 if ((virt_to_phys((void *)page_list[i]) &
2844                      (LCLA_ALIGNMENT - 1)) == 0)
2845                         break;
2846         }
2847
2848         for (j = 0; j < i; j++)
2849                 free_pages(page_list[j], base->lcla_pool.pages);
2850
2851         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2852                 base->lcla_pool.base = (void *)page_list[i];
2853         } else {
2854                 /*
2855                  * After many attempts and no succees with finding the correct
2856                  * alignment, try with allocating a big buffer.
2857                  */
2858                 dev_warn(base->dev,
2859                          "[%s] Failed to get %d pages @ 18 bit align.\n",
2860                          __func__, base->lcla_pool.pages);
2861                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2862                                                          base->num_phy_chans +
2863                                                          LCLA_ALIGNMENT,
2864                                                          GFP_KERNEL);
2865                 if (!base->lcla_pool.base_unaligned) {
2866                         ret = -ENOMEM;
2867                         goto failure;
2868                 }
2869
2870                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2871                                                  LCLA_ALIGNMENT);
2872         }
2873
2874         pool->dma_addr = dma_map_single(base->dev, pool->base,
2875                                         SZ_1K * base->num_phy_chans,
2876                                         DMA_TO_DEVICE);
2877         if (dma_mapping_error(base->dev, pool->dma_addr)) {
2878                 pool->dma_addr = 0;
2879                 ret = -ENOMEM;
2880                 goto failure;
2881         }
2882
2883         writel(virt_to_phys(base->lcla_pool.base),
2884                base->virtbase + D40_DREG_LCLA);
2885 failure:
2886         kfree(page_list);
2887         return ret;
2888 }
2889
2890 static int __init d40_probe(struct platform_device *pdev)
2891 {
2892         int err;
2893         int ret = -ENOENT;
2894         struct d40_base *base;
2895         struct resource *res = NULL;
2896         int num_reserved_chans;
2897         u32 val;
2898
2899         base = d40_hw_detect_init(pdev);
2900
2901         if (!base)
2902                 goto failure;
2903
2904         num_reserved_chans = d40_phy_res_init(base);
2905
2906         platform_set_drvdata(pdev, base);
2907
2908         spin_lock_init(&base->interrupt_lock);
2909         spin_lock_init(&base->execmd_lock);
2910
2911         /* Get IO for logical channel parameter address */
2912         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2913         if (!res) {
2914                 ret = -ENOENT;
2915                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2916                 goto failure;
2917         }
2918         base->lcpa_size = resource_size(res);
2919         base->phy_lcpa = res->start;
2920
2921         if (request_mem_region(res->start, resource_size(res),
2922                                D40_NAME " I/O lcpa") == NULL) {
2923                 ret = -EBUSY;
2924                 d40_err(&pdev->dev,
2925                         "Failed to request LCPA region 0x%x-0x%x\n",
2926                         res->start, res->end);
2927                 goto failure;
2928         }
2929
2930         /* We make use of ESRAM memory for this. */
2931         val = readl(base->virtbase + D40_DREG_LCPA);
2932         if (res->start != val && val != 0) {
2933                 dev_warn(&pdev->dev,
2934                          "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2935                          __func__, val, res->start);
2936         } else
2937                 writel(res->start, base->virtbase + D40_DREG_LCPA);
2938
2939         base->lcpa_base = ioremap(res->start, resource_size(res));
2940         if (!base->lcpa_base) {
2941                 ret = -ENOMEM;
2942                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2943                 goto failure;
2944         }
2945
2946         ret = d40_lcla_allocate(base);
2947         if (ret) {
2948                 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2949                 goto failure;
2950         }
2951
2952         spin_lock_init(&base->lcla_pool.lock);
2953
2954         base->irq = platform_get_irq(pdev, 0);
2955
2956         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2957         if (ret) {
2958                 d40_err(&pdev->dev, "No IRQ defined\n");
2959                 goto failure;
2960         }
2961
2962         err = d40_dmaengine_init(base, num_reserved_chans);
2963         if (err)
2964                 goto failure;
2965
2966         d40_hw_init(base);
2967
2968         dev_info(base->dev, "initialized\n");
2969         return 0;
2970
2971 failure:
2972         if (base) {
2973                 if (base->desc_slab)
2974                         kmem_cache_destroy(base->desc_slab);
2975                 if (base->virtbase)
2976                         iounmap(base->virtbase);
2977
2978                 if (base->lcla_pool.dma_addr)
2979                         dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2980                                          SZ_1K * base->num_phy_chans,
2981                                          DMA_TO_DEVICE);
2982
2983                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2984                         free_pages((unsigned long)base->lcla_pool.base,
2985                                    base->lcla_pool.pages);
2986
2987                 kfree(base->lcla_pool.base_unaligned);
2988
2989                 if (base->phy_lcpa)
2990                         release_mem_region(base->phy_lcpa,
2991                                            base->lcpa_size);
2992                 if (base->phy_start)
2993                         release_mem_region(base->phy_start,
2994                                            base->phy_size);
2995                 if (base->clk) {
2996                         clk_disable(base->clk);
2997                         clk_put(base->clk);
2998                 }
2999
3000                 kfree(base->lcla_pool.alloc_map);
3001                 kfree(base->lookup_log_chans);
3002                 kfree(base->lookup_phy_chans);
3003                 kfree(base->phy_res);
3004                 kfree(base);
3005         }
3006
3007         d40_err(&pdev->dev, "probe failed\n");
3008         return ret;
3009 }
3010
3011 static struct platform_driver d40_driver = {
3012         .driver = {
3013                 .owner = THIS_MODULE,
3014                 .name  = D40_NAME,
3015         },
3016 };
3017
3018 static int __init stedma40_init(void)
3019 {
3020         return platform_driver_probe(&d40_driver, d40_probe);
3021 }
3022 subsys_initcall(stedma40_init);