Merge branch 'remove' of master.kernel.org:/home/rmk/linux-2.6-arm
[pandora-kernel.git] / drivers / dma / ppc4xx / adma.c
1 /*
2  * Copyright (C) 2006-2009 DENX Software Engineering.
3  *
4  * Author: Yuri Tikhonov <yur@emcraft.com>
5  *
6  * Further porting to arch/powerpc by
7  *      Anatolij Gustschin <agust@denx.de>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called COPYING.
25  */
26
27 /*
28  * This driver supports the asynchrounous DMA copy and RAID engines available
29  * on the AMCC PPC440SPe Processors.
30  * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
31  * ADMA driver written by D.Williams.
32  */
33
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/async_tx.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/spinlock.h>
40 #include <linux/interrupt.h>
41 #include <linux/slab.h>
42 #include <linux/uaccess.h>
43 #include <linux/proc_fs.h>
44 #include <linux/of.h>
45 #include <linux/of_platform.h>
46 #include <asm/dcr.h>
47 #include <asm/dcr-regs.h>
48 #include "adma.h"
49
50 enum ppc_adma_init_code {
51         PPC_ADMA_INIT_OK = 0,
52         PPC_ADMA_INIT_MEMRES,
53         PPC_ADMA_INIT_MEMREG,
54         PPC_ADMA_INIT_ALLOC,
55         PPC_ADMA_INIT_COHERENT,
56         PPC_ADMA_INIT_CHANNEL,
57         PPC_ADMA_INIT_IRQ1,
58         PPC_ADMA_INIT_IRQ2,
59         PPC_ADMA_INIT_REGISTER
60 };
61
62 static char *ppc_adma_errors[] = {
63         [PPC_ADMA_INIT_OK] = "ok",
64         [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
65         [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
66         [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
67                                 "structure",
68         [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
69                                    "hardware descriptors",
70         [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
71         [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
72         [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
73         [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
74 };
75
76 static enum ppc_adma_init_code
77 ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
78
79 struct ppc_dma_chan_ref {
80         struct dma_chan *chan;
81         struct list_head node;
82 };
83
84 /* The list of channels exported by ppc440spe ADMA */
85 struct list_head
86 ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
87
88 /* This flag is set when want to refetch the xor chain in the interrupt
89  * handler
90  */
91 static u32 do_xor_refetch;
92
93 /* Pointer to DMA0, DMA1 CP/CS FIFO */
94 static void *ppc440spe_dma_fifo_buf;
95
96 /* Pointers to last submitted to DMA0, DMA1 CDBs */
97 static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
98 static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
99
100 /* Pointer to last linked and submitted xor CB */
101 static struct ppc440spe_adma_desc_slot *xor_last_linked;
102 static struct ppc440spe_adma_desc_slot *xor_last_submit;
103
104 /* This array is used in data-check operations for storing a pattern */
105 static char ppc440spe_qword[16];
106
107 static atomic_t ppc440spe_adma_err_irq_ref;
108 static dcr_host_t ppc440spe_mq_dcr_host;
109 static unsigned int ppc440spe_mq_dcr_len;
110
111 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
112  * the block size in transactions, then we do not allow to activate more than
113  * only one RXOR transactions simultaneously. So use this var to store
114  * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
115  * set) or not (PPC440SPE_RXOR_RUN is clear).
116  */
117 static unsigned long ppc440spe_rxor_state;
118
119 /* These are used in enable & check routines
120  */
121 static u32 ppc440spe_r6_enabled;
122 static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
123 static struct completion ppc440spe_r6_test_comp;
124
125 static int ppc440spe_adma_dma2rxor_prep_src(
126                 struct ppc440spe_adma_desc_slot *desc,
127                 struct ppc440spe_rxor *cursor, int index,
128                 int src_cnt, u32 addr);
129 static void ppc440spe_adma_dma2rxor_set_src(
130                 struct ppc440spe_adma_desc_slot *desc,
131                 int index, dma_addr_t addr);
132 static void ppc440spe_adma_dma2rxor_set_mult(
133                 struct ppc440spe_adma_desc_slot *desc,
134                 int index, u8 mult);
135
136 #ifdef ADMA_LL_DEBUG
137 #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
138 #else
139 #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
140 #endif
141
142 static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
143 {
144         struct dma_cdb *cdb;
145         struct xor_cb *cb;
146         int i;
147
148         switch (chan->device->id) {
149         case 0:
150         case 1:
151                 cdb = block;
152
153                 pr_debug("CDB at %p [%d]:\n"
154                         "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
155                         "\t sg1u 0x%08x sg1l 0x%08x\n"
156                         "\t sg2u 0x%08x sg2l 0x%08x\n"
157                         "\t sg3u 0x%08x sg3l 0x%08x\n",
158                         cdb, chan->device->id,
159                         cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
160                         le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
161                         le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
162                         le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
163                 );
164                 break;
165         case 2:
166                 cb = block;
167
168                 pr_debug("CB at %p [%d]:\n"
169                         "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
170                         "\t cbtah 0x%08x cbtal 0x%08x\n"
171                         "\t cblah 0x%08x cblal 0x%08x\n",
172                         cb, chan->device->id,
173                         cb->cbc, cb->cbbc, cb->cbs,
174                         cb->cbtah, cb->cbtal,
175                         cb->cblah, cb->cblal);
176                 for (i = 0; i < 16; i++) {
177                         if (i && !cb->ops[i].h && !cb->ops[i].l)
178                                 continue;
179                         pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
180                                 i, cb->ops[i].h, cb->ops[i].l);
181                 }
182                 break;
183         }
184 }
185
186 static void print_cb_list(struct ppc440spe_adma_chan *chan,
187                           struct ppc440spe_adma_desc_slot *iter)
188 {
189         for (; iter; iter = iter->hw_next)
190                 print_cb(chan, iter->hw_desc);
191 }
192
193 static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
194                              unsigned int src_cnt)
195 {
196         int i;
197
198         pr_debug("\n%s(%d):\nsrc: ", __func__, id);
199         for (i = 0; i < src_cnt; i++)
200                 pr_debug("\t0x%016llx ", src[i]);
201         pr_debug("dst:\n\t0x%016llx\n", dst);
202 }
203
204 static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
205                             unsigned int src_cnt)
206 {
207         int i;
208
209         pr_debug("\n%s(%d):\nsrc: ", __func__, id);
210         for (i = 0; i < src_cnt; i++)
211                 pr_debug("\t0x%016llx ", src[i]);
212         pr_debug("dst: ");
213         for (i = 0; i < 2; i++)
214                 pr_debug("\t0x%016llx ", dst[i]);
215 }
216
217 static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
218                                     unsigned int src_cnt,
219                                     const unsigned char *scf)
220 {
221         int i;
222
223         pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
224         if (scf) {
225                 for (i = 0; i < src_cnt; i++)
226                         pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
227         } else {
228                 for (i = 0; i < src_cnt; i++)
229                         pr_debug("\t0x%016llx(no) ", src[i]);
230         }
231
232         pr_debug("dst: ");
233         for (i = 0; i < 2; i++)
234                 pr_debug("\t0x%016llx ", src[src_cnt + i]);
235 }
236
237 /******************************************************************************
238  * Command (Descriptor) Blocks low-level routines
239  ******************************************************************************/
240 /**
241  * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
242  * pseudo operation
243  */
244 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
245                                           struct ppc440spe_adma_chan *chan)
246 {
247         struct xor_cb *p;
248
249         switch (chan->device->id) {
250         case PPC440SPE_XOR_ID:
251                 p = desc->hw_desc;
252                 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
253                 /* NOP with Command Block Complete Enable */
254                 p->cbc = XOR_CBCR_CBCE_BIT;
255                 break;
256         case PPC440SPE_DMA0_ID:
257         case PPC440SPE_DMA1_ID:
258                 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
259                 /* NOP with interrupt */
260                 set_bit(PPC440SPE_DESC_INT, &desc->flags);
261                 break;
262         default:
263                 printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
264                                 __func__);
265                 break;
266         }
267 }
268
269 /**
270  * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
271  * pseudo operation
272  */
273 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
274 {
275         memset(desc->hw_desc, 0, sizeof(struct xor_cb));
276         desc->hw_next = NULL;
277         desc->src_cnt = 0;
278         desc->dst_cnt = 1;
279 }
280
281 /**
282  * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
283  */
284 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
285                                          int src_cnt, unsigned long flags)
286 {
287         struct xor_cb *hw_desc = desc->hw_desc;
288
289         memset(desc->hw_desc, 0, sizeof(struct xor_cb));
290         desc->hw_next = NULL;
291         desc->src_cnt = src_cnt;
292         desc->dst_cnt = 1;
293
294         hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
295         if (flags & DMA_PREP_INTERRUPT)
296                 /* Enable interrupt on completion */
297                 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
298 }
299
300 /**
301  * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
302  * operation in DMA2 controller
303  */
304 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
305                 int dst_cnt, int src_cnt, unsigned long flags)
306 {
307         struct xor_cb *hw_desc = desc->hw_desc;
308
309         memset(desc->hw_desc, 0, sizeof(struct xor_cb));
310         desc->hw_next = NULL;
311         desc->src_cnt = src_cnt;
312         desc->dst_cnt = dst_cnt;
313         memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
314         desc->descs_per_op = 0;
315
316         hw_desc->cbc = XOR_CBCR_TGT_BIT;
317         if (flags & DMA_PREP_INTERRUPT)
318                 /* Enable interrupt on completion */
319                 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
320 }
321
322 #define DMA_CTRL_FLAGS_LAST     DMA_PREP_FENCE
323 #define DMA_PREP_ZERO_P         (DMA_CTRL_FLAGS_LAST << 1)
324 #define DMA_PREP_ZERO_Q         (DMA_PREP_ZERO_P << 1)
325
326 /**
327  * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
328  * with DMA0/1
329  */
330 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
331                                 int dst_cnt, int src_cnt, unsigned long flags,
332                                 unsigned long op)
333 {
334         struct dma_cdb *hw_desc;
335         struct ppc440spe_adma_desc_slot *iter;
336         u8 dopc;
337
338         /* Common initialization of a PQ descriptors chain */
339         set_bits(op, &desc->flags);
340         desc->src_cnt = src_cnt;
341         desc->dst_cnt = dst_cnt;
342
343         /* WXOR MULTICAST if both P and Q are being computed
344          * MV_SG1_SG2 if Q only
345          */
346         dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
347                 DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
348
349         list_for_each_entry(iter, &desc->group_list, chain_node) {
350                 hw_desc = iter->hw_desc;
351                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
352
353                 if (likely(!list_is_last(&iter->chain_node,
354                                 &desc->group_list))) {
355                         /* set 'next' pointer */
356                         iter->hw_next = list_entry(iter->chain_node.next,
357                                 struct ppc440spe_adma_desc_slot, chain_node);
358                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
359                 } else {
360                         /* this is the last descriptor.
361                          * this slot will be pasted from ADMA level
362                          * each time it wants to configure parameters
363                          * of the transaction (src, dst, ...)
364                          */
365                         iter->hw_next = NULL;
366                         if (flags & DMA_PREP_INTERRUPT)
367                                 set_bit(PPC440SPE_DESC_INT, &iter->flags);
368                         else
369                                 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
370                 }
371         }
372
373         /* Set OPS depending on WXOR/RXOR type of operation */
374         if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
375                 /* This is a WXOR only chain:
376                  * - first descriptors are for zeroing destinations
377                  *   if PPC440SPE_ZERO_P/Q set;
378                  * - descriptors remained are for GF-XOR operations.
379                  */
380                 iter = list_first_entry(&desc->group_list,
381                                         struct ppc440spe_adma_desc_slot,
382                                         chain_node);
383
384                 if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
385                         hw_desc = iter->hw_desc;
386                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
387                         iter = list_first_entry(&iter->chain_node,
388                                         struct ppc440spe_adma_desc_slot,
389                                         chain_node);
390                 }
391
392                 if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
393                         hw_desc = iter->hw_desc;
394                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
395                         iter = list_first_entry(&iter->chain_node,
396                                         struct ppc440spe_adma_desc_slot,
397                                         chain_node);
398                 }
399
400                 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
401                         hw_desc = iter->hw_desc;
402                         hw_desc->opc = dopc;
403                 }
404         } else {
405                 /* This is either RXOR-only or mixed RXOR/WXOR */
406
407                 /* The first 1 or 2 slots in chain are always RXOR,
408                  * if need to calculate P & Q, then there are two
409                  * RXOR slots; if only P or only Q, then there is one
410                  */
411                 iter = list_first_entry(&desc->group_list,
412                                         struct ppc440spe_adma_desc_slot,
413                                         chain_node);
414                 hw_desc = iter->hw_desc;
415                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
416
417                 if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
418                         iter = list_first_entry(&iter->chain_node,
419                                                 struct ppc440spe_adma_desc_slot,
420                                                 chain_node);
421                         hw_desc = iter->hw_desc;
422                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
423                 }
424
425                 /* The remaining descs (if any) are WXORs */
426                 if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
427                         iter = list_first_entry(&iter->chain_node,
428                                                 struct ppc440spe_adma_desc_slot,
429                                                 chain_node);
430                         list_for_each_entry_from(iter, &desc->group_list,
431                                                 chain_node) {
432                                 hw_desc = iter->hw_desc;
433                                 hw_desc->opc = dopc;
434                         }
435                 }
436         }
437 }
438
439 /**
440  * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
441  * for PQ_ZERO_SUM operation
442  */
443 static void ppc440spe_desc_init_dma01pqzero_sum(
444                                 struct ppc440spe_adma_desc_slot *desc,
445                                 int dst_cnt, int src_cnt)
446 {
447         struct dma_cdb *hw_desc;
448         struct ppc440spe_adma_desc_slot *iter;
449         int i = 0;
450         u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
451                                    DMA_CDB_OPC_MV_SG1_SG2;
452         /*
453          * Initialize starting from 2nd or 3rd descriptor dependent
454          * on dst_cnt. First one or two slots are for cloning P
455          * and/or Q to chan->pdest and/or chan->qdest as we have
456          * to preserve original P/Q.
457          */
458         iter = list_first_entry(&desc->group_list,
459                                 struct ppc440spe_adma_desc_slot, chain_node);
460         iter = list_entry(iter->chain_node.next,
461                           struct ppc440spe_adma_desc_slot, chain_node);
462
463         if (dst_cnt > 1) {
464                 iter = list_entry(iter->chain_node.next,
465                                   struct ppc440spe_adma_desc_slot, chain_node);
466         }
467         /* initialize each source descriptor in chain */
468         list_for_each_entry_from(iter, &desc->group_list, chain_node) {
469                 hw_desc = iter->hw_desc;
470                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
471                 iter->src_cnt = 0;
472                 iter->dst_cnt = 0;
473
474                 /* This is a ZERO_SUM operation:
475                  * - <src_cnt> descriptors starting from 2nd or 3rd
476                  *   descriptor are for GF-XOR operations;
477                  * - remaining <dst_cnt> descriptors are for checking the result
478                  */
479                 if (i++ < src_cnt)
480                         /* MV_SG1_SG2 if only Q is being verified
481                          * MULTICAST if both P and Q are being verified
482                          */
483                         hw_desc->opc = dopc;
484                 else
485                         /* DMA_CDB_OPC_DCHECK128 operation */
486                         hw_desc->opc = DMA_CDB_OPC_DCHECK128;
487
488                 if (likely(!list_is_last(&iter->chain_node,
489                                          &desc->group_list))) {
490                         /* set 'next' pointer */
491                         iter->hw_next = list_entry(iter->chain_node.next,
492                                                 struct ppc440spe_adma_desc_slot,
493                                                 chain_node);
494                 } else {
495                         /* this is the last descriptor.
496                          * this slot will be pasted from ADMA level
497                          * each time it wants to configure parameters
498                          * of the transaction (src, dst, ...)
499                          */
500                         iter->hw_next = NULL;
501                         /* always enable interrupt generation since we get
502                          * the status of pqzero from the handler
503                          */
504                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
505                 }
506         }
507         desc->src_cnt = src_cnt;
508         desc->dst_cnt = dst_cnt;
509 }
510
511 /**
512  * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
513  */
514 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
515                                         unsigned long flags)
516 {
517         struct dma_cdb *hw_desc = desc->hw_desc;
518
519         memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
520         desc->hw_next = NULL;
521         desc->src_cnt = 1;
522         desc->dst_cnt = 1;
523
524         if (flags & DMA_PREP_INTERRUPT)
525                 set_bit(PPC440SPE_DESC_INT, &desc->flags);
526         else
527                 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
528
529         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
530 }
531
532 /**
533  * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
534  */
535 static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
536                                         int value, unsigned long flags)
537 {
538         struct dma_cdb *hw_desc = desc->hw_desc;
539
540         memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
541         desc->hw_next = NULL;
542         desc->src_cnt = 1;
543         desc->dst_cnt = 1;
544
545         if (flags & DMA_PREP_INTERRUPT)
546                 set_bit(PPC440SPE_DESC_INT, &desc->flags);
547         else
548                 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
549
550         hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
551         hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
552         hw_desc->opc = DMA_CDB_OPC_DFILL128;
553 }
554
555 /**
556  * ppc440spe_desc_set_src_addr - set source address into the descriptor
557  */
558 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
559                                         struct ppc440spe_adma_chan *chan,
560                                         int src_idx, dma_addr_t addrh,
561                                         dma_addr_t addrl)
562 {
563         struct dma_cdb *dma_hw_desc;
564         struct xor_cb *xor_hw_desc;
565         phys_addr_t addr64, tmplow, tmphi;
566
567         switch (chan->device->id) {
568         case PPC440SPE_DMA0_ID:
569         case PPC440SPE_DMA1_ID:
570                 if (!addrh) {
571                         addr64 = addrl;
572                         tmphi = (addr64 >> 32);
573                         tmplow = (addr64 & 0xFFFFFFFF);
574                 } else {
575                         tmphi = addrh;
576                         tmplow = addrl;
577                 }
578                 dma_hw_desc = desc->hw_desc;
579                 dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
580                 dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
581                 break;
582         case PPC440SPE_XOR_ID:
583                 xor_hw_desc = desc->hw_desc;
584                 xor_hw_desc->ops[src_idx].l = addrl;
585                 xor_hw_desc->ops[src_idx].h |= addrh;
586                 break;
587         }
588 }
589
590 /**
591  * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
592  */
593 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
594                         struct ppc440spe_adma_chan *chan, u32 mult_index,
595                         int sg_index, unsigned char mult_value)
596 {
597         struct dma_cdb *dma_hw_desc;
598         struct xor_cb *xor_hw_desc;
599         u32 *psgu;
600
601         switch (chan->device->id) {
602         case PPC440SPE_DMA0_ID:
603         case PPC440SPE_DMA1_ID:
604                 dma_hw_desc = desc->hw_desc;
605
606                 switch (sg_index) {
607                 /* for RXOR operations set multiplier
608                  * into source cued address
609                  */
610                 case DMA_CDB_SG_SRC:
611                         psgu = &dma_hw_desc->sg1u;
612                         break;
613                 /* for WXOR operations set multiplier
614                  * into destination cued address(es)
615                  */
616                 case DMA_CDB_SG_DST1:
617                         psgu = &dma_hw_desc->sg2u;
618                         break;
619                 case DMA_CDB_SG_DST2:
620                         psgu = &dma_hw_desc->sg3u;
621                         break;
622                 default:
623                         BUG();
624                 }
625
626                 *psgu |= cpu_to_le32(mult_value << mult_index);
627                 break;
628         case PPC440SPE_XOR_ID:
629                 xor_hw_desc = desc->hw_desc;
630                 break;
631         default:
632                 BUG();
633         }
634 }
635
636 /**
637  * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
638  */
639 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
640                                 struct ppc440spe_adma_chan *chan,
641                                 dma_addr_t addrh, dma_addr_t addrl,
642                                 u32 dst_idx)
643 {
644         struct dma_cdb *dma_hw_desc;
645         struct xor_cb *xor_hw_desc;
646         phys_addr_t addr64, tmphi, tmplow;
647         u32 *psgu, *psgl;
648
649         switch (chan->device->id) {
650         case PPC440SPE_DMA0_ID:
651         case PPC440SPE_DMA1_ID:
652                 if (!addrh) {
653                         addr64 = addrl;
654                         tmphi = (addr64 >> 32);
655                         tmplow = (addr64 & 0xFFFFFFFF);
656                 } else {
657                         tmphi = addrh;
658                         tmplow = addrl;
659                 }
660                 dma_hw_desc = desc->hw_desc;
661
662                 psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
663                 psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
664
665                 *psgl = cpu_to_le32((u32)tmplow);
666                 *psgu |= cpu_to_le32((u32)tmphi);
667                 break;
668         case PPC440SPE_XOR_ID:
669                 xor_hw_desc = desc->hw_desc;
670                 xor_hw_desc->cbtal = addrl;
671                 xor_hw_desc->cbtah |= addrh;
672                 break;
673         }
674 }
675
676 /**
677  * ppc440spe_desc_set_byte_count - set number of data bytes involved
678  * into the operation
679  */
680 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
681                                 struct ppc440spe_adma_chan *chan,
682                                 u32 byte_count)
683 {
684         struct dma_cdb *dma_hw_desc;
685         struct xor_cb *xor_hw_desc;
686
687         switch (chan->device->id) {
688         case PPC440SPE_DMA0_ID:
689         case PPC440SPE_DMA1_ID:
690                 dma_hw_desc = desc->hw_desc;
691                 dma_hw_desc->cnt = cpu_to_le32(byte_count);
692                 break;
693         case PPC440SPE_XOR_ID:
694                 xor_hw_desc = desc->hw_desc;
695                 xor_hw_desc->cbbc = byte_count;
696                 break;
697         }
698 }
699
700 /**
701  * ppc440spe_desc_set_rxor_block_size - set RXOR block size
702  */
703 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
704 {
705         /* assume that byte_count is aligned on the 512-boundary;
706          * thus write it directly to the register (bits 23:31 are
707          * reserved there).
708          */
709         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
710 }
711
712 /**
713  * ppc440spe_desc_set_dcheck - set CHECK pattern
714  */
715 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
716                                 struct ppc440spe_adma_chan *chan, u8 *qword)
717 {
718         struct dma_cdb *dma_hw_desc;
719
720         switch (chan->device->id) {
721         case PPC440SPE_DMA0_ID:
722         case PPC440SPE_DMA1_ID:
723                 dma_hw_desc = desc->hw_desc;
724                 iowrite32(qword[0], &dma_hw_desc->sg3l);
725                 iowrite32(qword[4], &dma_hw_desc->sg3u);
726                 iowrite32(qword[8], &dma_hw_desc->sg2l);
727                 iowrite32(qword[12], &dma_hw_desc->sg2u);
728                 break;
729         default:
730                 BUG();
731         }
732 }
733
734 /**
735  * ppc440spe_xor_set_link - set link address in xor CB
736  */
737 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
738                                 struct ppc440spe_adma_desc_slot *next_desc)
739 {
740         struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
741
742         if (unlikely(!next_desc || !(next_desc->phys))) {
743                 printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
744                         __func__, next_desc,
745                         next_desc ? next_desc->phys : 0);
746                 BUG();
747         }
748
749         xor_hw_desc->cbs = 0;
750         xor_hw_desc->cblal = next_desc->phys;
751         xor_hw_desc->cblah = 0;
752         xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
753 }
754
755 /**
756  * ppc440spe_desc_set_link - set the address of descriptor following this
757  * descriptor in chain
758  */
759 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
760                                 struct ppc440spe_adma_desc_slot *prev_desc,
761                                 struct ppc440spe_adma_desc_slot *next_desc)
762 {
763         unsigned long flags;
764         struct ppc440spe_adma_desc_slot *tail = next_desc;
765
766         if (unlikely(!prev_desc || !next_desc ||
767                 (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
768                 /* If previous next is overwritten something is wrong.
769                  * though we may refetch from append to initiate list
770                  * processing; in this case - it's ok.
771                  */
772                 printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
773                         "prev->hw_next=0x%p\n", __func__, prev_desc,
774                         next_desc, prev_desc ? prev_desc->hw_next : 0);
775                 BUG();
776         }
777
778         local_irq_save(flags);
779
780         /* do s/w chaining both for DMA and XOR descriptors */
781         prev_desc->hw_next = next_desc;
782
783         switch (chan->device->id) {
784         case PPC440SPE_DMA0_ID:
785         case PPC440SPE_DMA1_ID:
786                 break;
787         case PPC440SPE_XOR_ID:
788                 /* bind descriptor to the chain */
789                 while (tail->hw_next)
790                         tail = tail->hw_next;
791                 xor_last_linked = tail;
792
793                 if (prev_desc == xor_last_submit)
794                         /* do not link to the last submitted CB */
795                         break;
796                 ppc440spe_xor_set_link(prev_desc, next_desc);
797                 break;
798         }
799
800         local_irq_restore(flags);
801 }
802
803 /**
804  * ppc440spe_desc_get_src_addr - extract the source address from the descriptor
805  */
806 static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc,
807                                 struct ppc440spe_adma_chan *chan, int src_idx)
808 {
809         struct dma_cdb *dma_hw_desc;
810         struct xor_cb *xor_hw_desc;
811
812         switch (chan->device->id) {
813         case PPC440SPE_DMA0_ID:
814         case PPC440SPE_DMA1_ID:
815                 dma_hw_desc = desc->hw_desc;
816                 /* May have 0, 1, 2, or 3 sources */
817                 switch (dma_hw_desc->opc) {
818                 case DMA_CDB_OPC_NO_OP:
819                 case DMA_CDB_OPC_DFILL128:
820                         return 0;
821                 case DMA_CDB_OPC_DCHECK128:
822                         if (unlikely(src_idx)) {
823                                 printk(KERN_ERR "%s: try to get %d source for"
824                                     " DCHECK128\n", __func__, src_idx);
825                                 BUG();
826                         }
827                         return le32_to_cpu(dma_hw_desc->sg1l);
828                 case DMA_CDB_OPC_MULTICAST:
829                 case DMA_CDB_OPC_MV_SG1_SG2:
830                         if (unlikely(src_idx > 2)) {
831                                 printk(KERN_ERR "%s: try to get %d source from"
832                                     " DMA descr\n", __func__, src_idx);
833                                 BUG();
834                         }
835                         if (src_idx) {
836                                 if (le32_to_cpu(dma_hw_desc->sg1u) &
837                                     DMA_CUED_XOR_WIN_MSK) {
838                                         u8 region;
839
840                                         if (src_idx == 1)
841                                                 return le32_to_cpu(
842                                                     dma_hw_desc->sg1l) +
843                                                         desc->unmap_len;
844
845                                         region = (le32_to_cpu(
846                                             dma_hw_desc->sg1u)) >>
847                                                 DMA_CUED_REGION_OFF;
848
849                                         region &= DMA_CUED_REGION_MSK;
850                                         switch (region) {
851                                         case DMA_RXOR123:
852                                                 return le32_to_cpu(
853                                                     dma_hw_desc->sg1l) +
854                                                         (desc->unmap_len << 1);
855                                         case DMA_RXOR124:
856                                                 return le32_to_cpu(
857                                                     dma_hw_desc->sg1l) +
858                                                         (desc->unmap_len * 3);
859                                         case DMA_RXOR125:
860                                                 return le32_to_cpu(
861                                                     dma_hw_desc->sg1l) +
862                                                         (desc->unmap_len << 2);
863                                         default:
864                                                 printk(KERN_ERR
865                                                     "%s: try to"
866                                                     " get src3 for region %02x"
867                                                     "PPC440SPE_DESC_RXOR12?\n",
868                                                     __func__, region);
869                                                 BUG();
870                                         }
871                                 } else {
872                                         printk(KERN_ERR
873                                                 "%s: try to get %d"
874                                                 " source for non-cued descr\n",
875                                                 __func__, src_idx);
876                                         BUG();
877                                 }
878                         }
879                         return le32_to_cpu(dma_hw_desc->sg1l);
880                 default:
881                         printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
882                                 __func__, dma_hw_desc->opc);
883                         BUG();
884                 }
885                 return le32_to_cpu(dma_hw_desc->sg1l);
886         case PPC440SPE_XOR_ID:
887                 /* May have up to 16 sources */
888                 xor_hw_desc = desc->hw_desc;
889                 return xor_hw_desc->ops[src_idx].l;
890         }
891         return 0;
892 }
893
894 /**
895  * ppc440spe_desc_get_dest_addr - extract the destination address from the
896  * descriptor
897  */
898 static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc,
899                                 struct ppc440spe_adma_chan *chan, int idx)
900 {
901         struct dma_cdb *dma_hw_desc;
902         struct xor_cb *xor_hw_desc;
903
904         switch (chan->device->id) {
905         case PPC440SPE_DMA0_ID:
906         case PPC440SPE_DMA1_ID:
907                 dma_hw_desc = desc->hw_desc;
908
909                 if (likely(!idx))
910                         return le32_to_cpu(dma_hw_desc->sg2l);
911                 return le32_to_cpu(dma_hw_desc->sg3l);
912         case PPC440SPE_XOR_ID:
913                 xor_hw_desc = desc->hw_desc;
914                 return xor_hw_desc->cbtal;
915         }
916         return 0;
917 }
918
919 /**
920  * ppc440spe_desc_get_src_num - extract the number of source addresses from
921  * the descriptor
922  */
923 static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc,
924                                 struct ppc440spe_adma_chan *chan)
925 {
926         struct dma_cdb *dma_hw_desc;
927         struct xor_cb *xor_hw_desc;
928
929         switch (chan->device->id) {
930         case PPC440SPE_DMA0_ID:
931         case PPC440SPE_DMA1_ID:
932                 dma_hw_desc = desc->hw_desc;
933
934                 switch (dma_hw_desc->opc) {
935                 case DMA_CDB_OPC_NO_OP:
936                 case DMA_CDB_OPC_DFILL128:
937                         return 0;
938                 case DMA_CDB_OPC_DCHECK128:
939                         return 1;
940                 case DMA_CDB_OPC_MV_SG1_SG2:
941                 case DMA_CDB_OPC_MULTICAST:
942                         /*
943                          * Only for RXOR operations we have more than
944                          * one source
945                          */
946                         if (le32_to_cpu(dma_hw_desc->sg1u) &
947                             DMA_CUED_XOR_WIN_MSK) {
948                                 /* RXOR op, there are 2 or 3 sources */
949                                 if (((le32_to_cpu(dma_hw_desc->sg1u) >>
950                                     DMA_CUED_REGION_OFF) &
951                                       DMA_CUED_REGION_MSK) == DMA_RXOR12) {
952                                         /* RXOR 1-2 */
953                                         return 2;
954                                 } else {
955                                         /* RXOR 1-2-3/1-2-4/1-2-5 */
956                                         return 3;
957                                 }
958                         }
959                         return 1;
960                 default:
961                         printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
962                                 __func__, dma_hw_desc->opc);
963                         BUG();
964                 }
965         case PPC440SPE_XOR_ID:
966                 /* up to 16 sources */
967                 xor_hw_desc = desc->hw_desc;
968                 return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK;
969         default:
970                 BUG();
971         }
972         return 0;
973 }
974
975 /**
976  * ppc440spe_desc_get_dst_num - get the number of destination addresses in
977  * this descriptor
978  */
979 static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc,
980                                 struct ppc440spe_adma_chan *chan)
981 {
982         struct dma_cdb *dma_hw_desc;
983
984         switch (chan->device->id) {
985         case PPC440SPE_DMA0_ID:
986         case PPC440SPE_DMA1_ID:
987                 /* May be 1 or 2 destinations */
988                 dma_hw_desc = desc->hw_desc;
989                 switch (dma_hw_desc->opc) {
990                 case DMA_CDB_OPC_NO_OP:
991                 case DMA_CDB_OPC_DCHECK128:
992                         return 0;
993                 case DMA_CDB_OPC_MV_SG1_SG2:
994                 case DMA_CDB_OPC_DFILL128:
995                         return 1;
996                 case DMA_CDB_OPC_MULTICAST:
997                         if (desc->dst_cnt == 2)
998                                 return 2;
999                         else
1000                                 return 1;
1001                 default:
1002                         printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
1003                                 __func__, dma_hw_desc->opc);
1004                         BUG();
1005                 }
1006         case PPC440SPE_XOR_ID:
1007                 /* Always only 1 destination */
1008                 return 1;
1009         default:
1010                 BUG();
1011         }
1012         return 0;
1013 }
1014
1015 /**
1016  * ppc440spe_desc_get_link - get the address of the descriptor that
1017  * follows this one
1018  */
1019 static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
1020                                         struct ppc440spe_adma_chan *chan)
1021 {
1022         if (!desc->hw_next)
1023                 return 0;
1024
1025         return desc->hw_next->phys;
1026 }
1027
1028 /**
1029  * ppc440spe_desc_is_aligned - check alignment
1030  */
1031 static inline int ppc440spe_desc_is_aligned(
1032         struct ppc440spe_adma_desc_slot *desc, int num_slots)
1033 {
1034         return (desc->idx & (num_slots - 1)) ? 0 : 1;
1035 }
1036
1037 /**
1038  * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
1039  * XOR operation
1040  */
1041 static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
1042                         int *slots_per_op)
1043 {
1044         int slot_cnt;
1045
1046         /* each XOR descriptor provides up to 16 source operands */
1047         slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
1048
1049         if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
1050                 return slot_cnt;
1051
1052         printk(KERN_ERR "%s: len %d > max %d !!\n",
1053                 __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
1054         BUG();
1055         return slot_cnt;
1056 }
1057
1058 /**
1059  * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
1060  * DMA2 PQ operation
1061  */
1062 static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
1063                 int src_cnt, size_t len)
1064 {
1065         signed long long order = 0;
1066         int state = 0;
1067         int addr_count = 0;
1068         int i;
1069         for (i = 1; i < src_cnt; i++) {
1070                 dma_addr_t cur_addr = srcs[i];
1071                 dma_addr_t old_addr = srcs[i-1];
1072                 switch (state) {
1073                 case 0:
1074                         if (cur_addr == old_addr + len) {
1075                                 /* direct RXOR */
1076                                 order = 1;
1077                                 state = 1;
1078                                 if (i == src_cnt-1)
1079                                         addr_count++;
1080                         } else if (old_addr == cur_addr + len) {
1081                                 /* reverse RXOR */
1082                                 order = -1;
1083                                 state = 1;
1084                                 if (i == src_cnt-1)
1085                                         addr_count++;
1086                         } else {
1087                                 state = 3;
1088                         }
1089                         break;
1090                 case 1:
1091                         if (i == src_cnt-2 || (order == -1
1092                                 && cur_addr != old_addr - len)) {
1093                                 order = 0;
1094                                 state = 0;
1095                                 addr_count++;
1096                         } else if (cur_addr == old_addr + len*order) {
1097                                 state = 2;
1098                                 if (i == src_cnt-1)
1099                                         addr_count++;
1100                         } else if (cur_addr == old_addr + 2*len) {
1101                                 state = 2;
1102                                 if (i == src_cnt-1)
1103                                         addr_count++;
1104                         } else if (cur_addr == old_addr + 3*len) {
1105                                 state = 2;
1106                                 if (i == src_cnt-1)
1107                                         addr_count++;
1108                         } else {
1109                                 order = 0;
1110                                 state = 0;
1111                                 addr_count++;
1112                         }
1113                         break;
1114                 case 2:
1115                         order = 0;
1116                         state = 0;
1117                         addr_count++;
1118                                 break;
1119                 }
1120                 if (state == 3)
1121                         break;
1122         }
1123         if (src_cnt <= 1 || (state != 1 && state != 2)) {
1124                 pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
1125                         __func__, src_cnt, state, addr_count, order);
1126                 for (i = 0; i < src_cnt; i++)
1127                         pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
1128                 BUG();
1129         }
1130
1131         return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
1132 }
1133
1134
1135 /******************************************************************************
1136  * ADMA channel low-level routines
1137  ******************************************************************************/
1138
1139 static u32
1140 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
1141 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
1142
1143 /**
1144  * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
1145  */
1146 static void ppc440spe_adma_device_clear_eot_status(
1147                                         struct ppc440spe_adma_chan *chan)
1148 {
1149         struct dma_regs *dma_reg;
1150         struct xor_regs *xor_reg;
1151         u8 *p = chan->device->dma_desc_pool_virt;
1152         struct dma_cdb *cdb;
1153         u32 rv, i;
1154
1155         switch (chan->device->id) {
1156         case PPC440SPE_DMA0_ID:
1157         case PPC440SPE_DMA1_ID:
1158                 /* read FIFO to ack */
1159                 dma_reg = chan->device->dma_reg;
1160                 while ((rv = ioread32(&dma_reg->csfpl))) {
1161                         i = rv & DMA_CDB_ADDR_MSK;
1162                         cdb = (struct dma_cdb *)&p[i -
1163                             (u32)chan->device->dma_desc_pool];
1164
1165                         /* Clear opcode to ack. This is necessary for
1166                          * ZeroSum operations only
1167                          */
1168                         cdb->opc = 0;
1169
1170                         if (test_bit(PPC440SPE_RXOR_RUN,
1171                             &ppc440spe_rxor_state)) {
1172                                 /* probably this is a completed RXOR op,
1173                                  * get pointer to CDB using the fact that
1174                                  * physical and virtual addresses of CDB
1175                                  * in pools have the same offsets
1176                                  */
1177                                 if (le32_to_cpu(cdb->sg1u) &
1178                                     DMA_CUED_XOR_BASE) {
1179                                         /* this is a RXOR */
1180                                         clear_bit(PPC440SPE_RXOR_RUN,
1181                                                   &ppc440spe_rxor_state);
1182                                 }
1183                         }
1184
1185                         if (rv & DMA_CDB_STATUS_MSK) {
1186                                 /* ZeroSum check failed
1187                                  */
1188                                 struct ppc440spe_adma_desc_slot *iter;
1189                                 dma_addr_t phys = rv & ~DMA_CDB_MSK;
1190
1191                                 /*
1192                                  * Update the status of corresponding
1193                                  * descriptor.
1194                                  */
1195                                 list_for_each_entry(iter, &chan->chain,
1196                                     chain_node) {
1197                                         if (iter->phys == phys)
1198                                                 break;
1199                                 }
1200                                 /*
1201                                  * if cannot find the corresponding
1202                                  * slot it's a bug
1203                                  */
1204                                 BUG_ON(&iter->chain_node == &chan->chain);
1205
1206                                 if (iter->xor_check_result) {
1207                                         if (test_bit(PPC440SPE_DESC_PCHECK,
1208                                                      &iter->flags)) {
1209                                                 *iter->xor_check_result |=
1210                                                         SUM_CHECK_P_RESULT;
1211                                         } else
1212                                         if (test_bit(PPC440SPE_DESC_QCHECK,
1213                                                      &iter->flags)) {
1214                                                 *iter->xor_check_result |=
1215                                                         SUM_CHECK_Q_RESULT;
1216                                         } else
1217                                                 BUG();
1218                                 }
1219                         }
1220                 }
1221
1222                 rv = ioread32(&dma_reg->dsts);
1223                 if (rv) {
1224                         pr_err("DMA%d err status: 0x%x\n",
1225                                chan->device->id, rv);
1226                         /* write back to clear */
1227                         iowrite32(rv, &dma_reg->dsts);
1228                 }
1229                 break;
1230         case PPC440SPE_XOR_ID:
1231                 /* reset status bits to ack */
1232                 xor_reg = chan->device->xor_reg;
1233                 rv = ioread32be(&xor_reg->sr);
1234                 iowrite32be(rv, &xor_reg->sr);
1235
1236                 if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1237                         if (rv & XOR_IE_RPTIE_BIT) {
1238                                 /* Read PLB Timeout Error.
1239                                  * Try to resubmit the CB
1240                                  */
1241                                 u32 val = ioread32be(&xor_reg->ccbalr);
1242
1243                                 iowrite32be(val, &xor_reg->cblalr);
1244
1245                                 val = ioread32be(&xor_reg->crsr);
1246                                 iowrite32be(val | XOR_CRSR_XAE_BIT,
1247                                             &xor_reg->crsr);
1248                         } else
1249                                 pr_err("XOR ERR 0x%x status\n", rv);
1250                         break;
1251                 }
1252
1253                 /*  if the XORcore is idle, but there are unprocessed CBs
1254                  * then refetch the s/w chain here
1255                  */
1256                 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1257                     do_xor_refetch)
1258                         ppc440spe_chan_append(chan);
1259                 break;
1260         }
1261 }
1262
1263 /**
1264  * ppc440spe_chan_is_busy - get the channel status
1265  */
1266 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1267 {
1268         struct dma_regs *dma_reg;
1269         struct xor_regs *xor_reg;
1270         int busy = 0;
1271
1272         switch (chan->device->id) {
1273         case PPC440SPE_DMA0_ID:
1274         case PPC440SPE_DMA1_ID:
1275                 dma_reg = chan->device->dma_reg;
1276                 /*  if command FIFO's head and tail pointers are equal and
1277                  * status tail is the same as command, then channel is free
1278                  */
1279                 if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1280                     ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1281                         busy = 1;
1282                 break;
1283         case PPC440SPE_XOR_ID:
1284                 /* use the special status bit for the XORcore
1285                  */
1286                 xor_reg = chan->device->xor_reg;
1287                 busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1288                 break;
1289         }
1290
1291         return busy;
1292 }
1293
1294 /**
1295  * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
1296  */
1297 static void ppc440spe_chan_set_first_xor_descriptor(
1298                                 struct ppc440spe_adma_chan *chan,
1299                                 struct ppc440spe_adma_desc_slot *next_desc)
1300 {
1301         struct xor_regs *xor_reg = chan->device->xor_reg;
1302
1303         if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1304                 printk(KERN_INFO "%s: Warn: XORcore is running "
1305                         "when try to set the first CDB!\n",
1306                         __func__);
1307
1308         xor_last_submit = xor_last_linked = next_desc;
1309
1310         iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1311
1312         iowrite32be(next_desc->phys, &xor_reg->cblalr);
1313         iowrite32be(0, &xor_reg->cblahr);
1314         iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1315                     &xor_reg->cbcr);
1316
1317         chan->hw_chain_inited = 1;
1318 }
1319
1320 /**
1321  * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1322  * called with irqs disabled
1323  */
1324 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1325                 struct ppc440spe_adma_desc_slot *desc)
1326 {
1327         u32 pcdb;
1328         struct dma_regs *dma_reg = chan->device->dma_reg;
1329
1330         pcdb = desc->phys;
1331         if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1332                 pcdb |= DMA_CDB_NO_INT;
1333
1334         chan_last_sub[chan->device->id] = desc;
1335
1336         ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1337
1338         iowrite32(pcdb, &dma_reg->cpfpl);
1339 }
1340
1341 /**
1342  * ppc440spe_chan_append - update the h/w chain in the channel
1343  */
1344 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1345 {
1346         struct xor_regs *xor_reg;
1347         struct ppc440spe_adma_desc_slot *iter;
1348         struct xor_cb *xcb;
1349         u32 cur_desc;
1350         unsigned long flags;
1351
1352         local_irq_save(flags);
1353
1354         switch (chan->device->id) {
1355         case PPC440SPE_DMA0_ID:
1356         case PPC440SPE_DMA1_ID:
1357                 cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1358
1359                 if (likely(cur_desc)) {
1360                         iter = chan_last_sub[chan->device->id];
1361                         BUG_ON(!iter);
1362                 } else {
1363                         /* first peer */
1364                         iter = chan_first_cdb[chan->device->id];
1365                         BUG_ON(!iter);
1366                         ppc440spe_dma_put_desc(chan, iter);
1367                         chan->hw_chain_inited = 1;
1368                 }
1369
1370                 /* is there something new to append */
1371                 if (!iter->hw_next)
1372                         break;
1373
1374                 /* flush descriptors from the s/w queue to fifo */
1375                 list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1376                         ppc440spe_dma_put_desc(chan, iter);
1377                         if (!iter->hw_next)
1378                                 break;
1379                 }
1380                 break;
1381         case PPC440SPE_XOR_ID:
1382                 /* update h/w links and refetch */
1383                 if (!xor_last_submit->hw_next)
1384                         break;
1385
1386                 xor_reg = chan->device->xor_reg;
1387                 /* the last linked CDB has to generate an interrupt
1388                  * that we'd be able to append the next lists to h/w
1389                  * regardless of the XOR engine state at the moment of
1390                  * appending of these next lists
1391                  */
1392                 xcb = xor_last_linked->hw_desc;
1393                 xcb->cbc |= XOR_CBCR_CBCE_BIT;
1394
1395                 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1396                         /* XORcore is idle. Refetch now */
1397                         do_xor_refetch = 0;
1398                         ppc440spe_xor_set_link(xor_last_submit,
1399                                 xor_last_submit->hw_next);
1400
1401                         ADMA_LL_DBG(print_cb_list(chan,
1402                                 xor_last_submit->hw_next));
1403
1404                         xor_last_submit = xor_last_linked;
1405                         iowrite32be(ioread32be(&xor_reg->crsr) |
1406                                     XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1407                                     &xor_reg->crsr);
1408                 } else {
1409                         /* XORcore is running. Refetch later in the handler */
1410                         do_xor_refetch = 1;
1411                 }
1412
1413                 break;
1414         }
1415
1416         local_irq_restore(flags);
1417 }
1418
1419 /**
1420  * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1421  */
1422 static u32
1423 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1424 {
1425         struct dma_regs *dma_reg;
1426         struct xor_regs *xor_reg;
1427
1428         if (unlikely(!chan->hw_chain_inited))
1429                 /* h/w descriptor chain is not initialized yet */
1430                 return 0;
1431
1432         switch (chan->device->id) {
1433         case PPC440SPE_DMA0_ID:
1434         case PPC440SPE_DMA1_ID:
1435                 dma_reg = chan->device->dma_reg;
1436                 return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1437         case PPC440SPE_XOR_ID:
1438                 xor_reg = chan->device->xor_reg;
1439                 return ioread32be(&xor_reg->ccbalr);
1440         }
1441         return 0;
1442 }
1443
1444 /**
1445  * ppc440spe_chan_run - enable the channel
1446  */
1447 static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1448 {
1449         struct xor_regs *xor_reg;
1450
1451         switch (chan->device->id) {
1452         case PPC440SPE_DMA0_ID:
1453         case PPC440SPE_DMA1_ID:
1454                 /* DMAs are always enabled, do nothing */
1455                 break;
1456         case PPC440SPE_XOR_ID:
1457                 /* drain write buffer */
1458                 xor_reg = chan->device->xor_reg;
1459
1460                 /* fetch descriptor pointed to in <link> */
1461                 iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1462                             &xor_reg->crsr);
1463                 break;
1464         }
1465 }
1466
1467 /******************************************************************************
1468  * ADMA device level
1469  ******************************************************************************/
1470
1471 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1472 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1473
1474 static dma_cookie_t
1475 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1476
1477 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1478                                     dma_addr_t addr, int index);
1479 static void
1480 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1481                                   dma_addr_t addr, int index);
1482
1483 static void
1484 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1485                            dma_addr_t *paddr, unsigned long flags);
1486 static void
1487 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1488                           dma_addr_t addr, int index);
1489 static void
1490 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1491                                unsigned char mult, int index, int dst_pos);
1492 static void
1493 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1494                                    dma_addr_t paddr, dma_addr_t qaddr);
1495
1496 static struct page *ppc440spe_rxor_srcs[32];
1497
1498 /**
1499  * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1500  */
1501 static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1502 {
1503         int i, order = 0, state = 0;
1504         int idx = 0;
1505
1506         if (unlikely(!(src_cnt > 1)))
1507                 return 0;
1508
1509         BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1510
1511         /* Skip holes in the source list before checking */
1512         for (i = 0; i < src_cnt; i++) {
1513                 if (!srcs[i])
1514                         continue;
1515                 ppc440spe_rxor_srcs[idx++] = srcs[i];
1516         }
1517         src_cnt = idx;
1518
1519         for (i = 1; i < src_cnt; i++) {
1520                 char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1521                 char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1522
1523                 switch (state) {
1524                 case 0:
1525                         if (cur_addr == old_addr + len) {
1526                                 /* direct RXOR */
1527                                 order = 1;
1528                                 state = 1;
1529                         } else if (old_addr == cur_addr + len) {
1530                                 /* reverse RXOR */
1531                                 order = -1;
1532                                 state = 1;
1533                         } else
1534                                 goto out;
1535                         break;
1536                 case 1:
1537                         if ((i == src_cnt - 2) ||
1538                             (order == -1 && cur_addr != old_addr - len)) {
1539                                 order = 0;
1540                                 state = 0;
1541                         } else if ((cur_addr == old_addr + len * order) ||
1542                                    (cur_addr == old_addr + 2 * len) ||
1543                                    (cur_addr == old_addr + 3 * len)) {
1544                                 state = 2;
1545                         } else {
1546                                 order = 0;
1547                                 state = 0;
1548                         }
1549                         break;
1550                 case 2:
1551                         order = 0;
1552                         state = 0;
1553                         break;
1554                 }
1555         }
1556
1557 out:
1558         if (state == 1 || state == 2)
1559                 return 1;
1560
1561         return 0;
1562 }
1563
1564 /**
1565  * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1566  *      the operation given on this channel. It's assumed that 'chan' is
1567  *      capable to process 'cap' type of operation.
1568  * @chan: channel to use
1569  * @cap: type of transaction
1570  * @dst_lst: array of destination pointers
1571  * @dst_cnt: number of destination operands
1572  * @src_lst: array of source pointers
1573  * @src_cnt: number of source operands
1574  * @src_sz: size of each source operand
1575  */
1576 static int ppc440spe_adma_estimate(struct dma_chan *chan,
1577         enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1578         struct page **src_lst, int src_cnt, size_t src_sz)
1579 {
1580         int ef = 1;
1581
1582         if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1583                 /* If RAID-6 capabilities were not activated don't try
1584                  * to use them
1585                  */
1586                 if (unlikely(!ppc440spe_r6_enabled))
1587                         return -1;
1588         }
1589         /*  In the current implementation of ppc440spe ADMA driver it
1590          * makes sense to pick out only pq case, because it may be
1591          * processed:
1592          * (1) either using Biskup method on DMA2;
1593          * (2) or on DMA0/1.
1594          *  Thus we give a favour to (1) if the sources are suitable;
1595          * else let it be processed on one of the DMA0/1 engines.
1596          *  In the sum_product case where destination is also the
1597          * source process it on DMA0/1 only.
1598          */
1599         if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1600
1601                 if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1602                         ef = 0; /* sum_product case, process on DMA0/1 */
1603                 else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1604                         ef = 3; /* override (DMA0/1 + idle) */
1605                 else
1606                         ef = 0; /* can't process on DMA2 if !rxor */
1607         }
1608
1609         /* channel idleness increases the priority */
1610         if (likely(ef) &&
1611             !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1612                 ef++;
1613
1614         return ef;
1615 }
1616
1617 struct dma_chan *
1618 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1619         struct page **dst_lst, int dst_cnt, struct page **src_lst,
1620         int src_cnt, size_t src_sz)
1621 {
1622         struct dma_chan *best_chan = NULL;
1623         struct ppc_dma_chan_ref *ref;
1624         int best_rank = -1;
1625
1626         if (unlikely(!src_sz))
1627                 return NULL;
1628         if (src_sz > PAGE_SIZE) {
1629                 /*
1630                  * should a user of the api ever pass > PAGE_SIZE requests
1631                  * we sort out cases where temporary page-sized buffers
1632                  * are used.
1633                  */
1634                 switch (cap) {
1635                 case DMA_PQ:
1636                         if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1637                                 return NULL;
1638                         if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1639                                 return NULL;
1640                         break;
1641                 case DMA_PQ_VAL:
1642                 case DMA_XOR_VAL:
1643                         return NULL;
1644                 default:
1645                         break;
1646                 }
1647         }
1648
1649         list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1650                 if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1651                         int rank;
1652
1653                         rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1654                                         dst_cnt, src_lst, src_cnt, src_sz);
1655                         if (rank > best_rank) {
1656                                 best_rank = rank;
1657                                 best_chan = ref->chan;
1658                         }
1659                 }
1660         }
1661
1662         return best_chan;
1663 }
1664 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1665
1666 /**
1667  * ppc440spe_get_group_entry - get group entry with index idx
1668  * @tdesc: is the last allocated slot in the group.
1669  */
1670 static struct ppc440spe_adma_desc_slot *
1671 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1672 {
1673         struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1674         int i = 0;
1675
1676         if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1677                 printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1678                         __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1679                 BUG();
1680         }
1681
1682         list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1683                 if (i++ == entry_idx)
1684                         break;
1685         }
1686         return iter;
1687 }
1688
1689 /**
1690  * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1691  * @slot: Slot to free
1692  * Caller must hold &ppc440spe_chan->lock while calling this function
1693  */
1694 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1695                                       struct ppc440spe_adma_chan *chan)
1696 {
1697         int stride = slot->slots_per_op;
1698
1699         while (stride--) {
1700                 slot->slots_per_op = 0;
1701                 slot = list_entry(slot->slot_node.next,
1702                                 struct ppc440spe_adma_desc_slot,
1703                                 slot_node);
1704         }
1705 }
1706
1707 static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan,
1708                                  struct ppc440spe_adma_desc_slot *desc)
1709 {
1710         u32 src_cnt, dst_cnt;
1711         dma_addr_t addr;
1712
1713         /*
1714          * get the number of sources & destination
1715          * included in this descriptor and unmap
1716          * them all
1717          */
1718         src_cnt = ppc440spe_desc_get_src_num(desc, chan);
1719         dst_cnt = ppc440spe_desc_get_dst_num(desc, chan);
1720
1721         /* unmap destinations */
1722         if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1723                 while (dst_cnt--) {
1724                         addr = ppc440spe_desc_get_dest_addr(
1725                                 desc, chan, dst_cnt);
1726                         dma_unmap_page(chan->device->dev,
1727                                         addr, desc->unmap_len,
1728                                         DMA_FROM_DEVICE);
1729                 }
1730         }
1731
1732         /* unmap sources */
1733         if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1734                 while (src_cnt--) {
1735                         addr = ppc440spe_desc_get_src_addr(
1736                                 desc, chan, src_cnt);
1737                         dma_unmap_page(chan->device->dev,
1738                                         addr, desc->unmap_len,
1739                                         DMA_TO_DEVICE);
1740                 }
1741         }
1742 }
1743
1744 /**
1745  * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1746  * upon completion
1747  */
1748 static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1749                 struct ppc440spe_adma_desc_slot *desc,
1750                 struct ppc440spe_adma_chan *chan,
1751                 dma_cookie_t cookie)
1752 {
1753         int i;
1754
1755         BUG_ON(desc->async_tx.cookie < 0);
1756         if (desc->async_tx.cookie > 0) {
1757                 cookie = desc->async_tx.cookie;
1758                 desc->async_tx.cookie = 0;
1759
1760                 /* call the callback (must not sleep or submit new
1761                  * operations to this channel)
1762                  */
1763                 if (desc->async_tx.callback)
1764                         desc->async_tx.callback(
1765                                 desc->async_tx.callback_param);
1766
1767                 /* unmap dma addresses
1768                  * (unmap_single vs unmap_page?)
1769                  *
1770                  * actually, ppc's dma_unmap_page() functions are empty, so
1771                  * the following code is just for the sake of completeness
1772                  */
1773                 if (chan && chan->needs_unmap && desc->group_head &&
1774                      desc->unmap_len) {
1775                         struct ppc440spe_adma_desc_slot *unmap =
1776                                                         desc->group_head;
1777                         /* assume 1 slot per op always */
1778                         u32 slot_count = unmap->slot_cnt;
1779
1780                         /* Run through the group list and unmap addresses */
1781                         for (i = 0; i < slot_count; i++) {
1782                                 BUG_ON(!unmap);
1783                                 ppc440spe_adma_unmap(chan, unmap);
1784                                 unmap = unmap->hw_next;
1785                         }
1786                 }
1787         }
1788
1789         /* run dependent operations */
1790         dma_run_dependencies(&desc->async_tx);
1791
1792         return cookie;
1793 }
1794
1795 /**
1796  * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1797  */
1798 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1799                 struct ppc440spe_adma_chan *chan)
1800 {
1801         /* the client is allowed to attach dependent operations
1802          * until 'ack' is set
1803          */
1804         if (!async_tx_test_ack(&desc->async_tx))
1805                 return 0;
1806
1807         /* leave the last descriptor in the chain
1808          * so we can append to it
1809          */
1810         if (list_is_last(&desc->chain_node, &chan->chain) ||
1811             desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1812                 return 1;
1813
1814         if (chan->device->id != PPC440SPE_XOR_ID) {
1815                 /* our DMA interrupt handler clears opc field of
1816                  * each processed descriptor. For all types of
1817                  * operations except for ZeroSum we do not actually
1818                  * need ack from the interrupt handler. ZeroSum is a
1819                  * special case since the result of this operation
1820                  * is available from the handler only, so if we see
1821                  * such type of descriptor (which is unprocessed yet)
1822                  * then leave it in chain.
1823                  */
1824                 struct dma_cdb *cdb = desc->hw_desc;
1825                 if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1826                         return 1;
1827         }
1828
1829         dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1830                 desc->phys, desc->idx, desc->slots_per_op);
1831
1832         list_del(&desc->chain_node);
1833         ppc440spe_adma_free_slots(desc, chan);
1834         return 0;
1835 }
1836
1837 /**
1838  * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1839  *      which runs through the channel CDBs list until reach the descriptor
1840  *      currently processed. When routine determines that all CDBs of group
1841  *      are completed then corresponding callbacks (if any) are called and slots
1842  *      are freed.
1843  */
1844 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1845 {
1846         struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1847         dma_cookie_t cookie = 0;
1848         u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1849         int busy = ppc440spe_chan_is_busy(chan);
1850         int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1851
1852         dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1853                 chan->device->id, __func__);
1854
1855         if (!current_desc) {
1856                 /*  There were no transactions yet, so
1857                  * nothing to clean
1858                  */
1859                 return;
1860         }
1861
1862         /* free completed slots from the chain starting with
1863          * the oldest descriptor
1864          */
1865         list_for_each_entry_safe(iter, _iter, &chan->chain,
1866                                         chain_node) {
1867                 dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1868                     "busy: %d this_desc: %#llx next_desc: %#x "
1869                     "cur: %#x ack: %d\n",
1870                     iter->async_tx.cookie, iter->idx, busy, iter->phys,
1871                     ppc440spe_desc_get_link(iter, chan), current_desc,
1872                     async_tx_test_ack(&iter->async_tx));
1873                 prefetch(_iter);
1874                 prefetch(&_iter->async_tx);
1875
1876                 /* do not advance past the current descriptor loaded into the
1877                  * hardware channel,subsequent descriptors are either in process
1878                  * or have not been submitted
1879                  */
1880                 if (seen_current)
1881                         break;
1882
1883                 /* stop the search if we reach the current descriptor and the
1884                  * channel is busy, or if it appears that the current descriptor
1885                  * needs to be re-read (i.e. has been appended to)
1886                  */
1887                 if (iter->phys == current_desc) {
1888                         BUG_ON(seen_current++);
1889                         if (busy || ppc440spe_desc_get_link(iter, chan)) {
1890                                 /* not all descriptors of the group have
1891                                  * been completed; exit.
1892                                  */
1893                                 break;
1894                         }
1895                 }
1896
1897                 /* detect the start of a group transaction */
1898                 if (!slot_cnt && !slots_per_op) {
1899                         slot_cnt = iter->slot_cnt;
1900                         slots_per_op = iter->slots_per_op;
1901                         if (slot_cnt <= slots_per_op) {
1902                                 slot_cnt = 0;
1903                                 slots_per_op = 0;
1904                         }
1905                 }
1906
1907                 if (slot_cnt) {
1908                         if (!group_start)
1909                                 group_start = iter;
1910                         slot_cnt -= slots_per_op;
1911                 }
1912
1913                 /* all the members of a group are complete */
1914                 if (slots_per_op != 0 && slot_cnt == 0) {
1915                         struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1916                         int end_of_chain = 0;
1917
1918                         /* clean up the group */
1919                         slot_cnt = group_start->slot_cnt;
1920                         grp_iter = group_start;
1921                         list_for_each_entry_safe_from(grp_iter, _grp_iter,
1922                                 &chan->chain, chain_node) {
1923
1924                                 cookie = ppc440spe_adma_run_tx_complete_actions(
1925                                         grp_iter, chan, cookie);
1926
1927                                 slot_cnt -= slots_per_op;
1928                                 end_of_chain = ppc440spe_adma_clean_slot(
1929                                     grp_iter, chan);
1930                                 if (end_of_chain && slot_cnt) {
1931                                         /* Should wait for ZeroSum completion */
1932                                         if (cookie > 0)
1933                                                 chan->completed_cookie = cookie;
1934                                         return;
1935                                 }
1936
1937                                 if (slot_cnt == 0 || end_of_chain)
1938                                         break;
1939                         }
1940
1941                         /* the group should be complete at this point */
1942                         BUG_ON(slot_cnt);
1943
1944                         slots_per_op = 0;
1945                         group_start = NULL;
1946                         if (end_of_chain)
1947                                 break;
1948                         else
1949                                 continue;
1950                 } else if (slots_per_op) /* wait for group completion */
1951                         continue;
1952
1953                 cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1954                     cookie);
1955
1956                 if (ppc440spe_adma_clean_slot(iter, chan))
1957                         break;
1958         }
1959
1960         BUG_ON(!seen_current);
1961
1962         if (cookie > 0) {
1963                 chan->completed_cookie = cookie;
1964                 pr_debug("\tcompleted cookie %d\n", cookie);
1965         }
1966
1967 }
1968
1969 /**
1970  * ppc440spe_adma_tasklet - clean up watch-dog initiator
1971  */
1972 static void ppc440spe_adma_tasklet(unsigned long data)
1973 {
1974         struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1975
1976         spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1977         __ppc440spe_adma_slot_cleanup(chan);
1978         spin_unlock(&chan->lock);
1979 }
1980
1981 /**
1982  * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1983  */
1984 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1985 {
1986         spin_lock_bh(&chan->lock);
1987         __ppc440spe_adma_slot_cleanup(chan);
1988         spin_unlock_bh(&chan->lock);
1989 }
1990
1991 /**
1992  * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1993  */
1994 static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1995                 struct ppc440spe_adma_chan *chan, int num_slots,
1996                 int slots_per_op)
1997 {
1998         struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
1999         struct ppc440spe_adma_desc_slot *alloc_start = NULL;
2000         struct list_head chain = LIST_HEAD_INIT(chain);
2001         int slots_found, retry = 0;
2002
2003
2004         BUG_ON(!num_slots || !slots_per_op);
2005         /* start search from the last allocated descrtiptor
2006          * if a contiguous allocation can not be found start searching
2007          * from the beginning of the list
2008          */
2009 retry:
2010         slots_found = 0;
2011         if (retry == 0)
2012                 iter = chan->last_used;
2013         else
2014                 iter = list_entry(&chan->all_slots,
2015                                   struct ppc440spe_adma_desc_slot,
2016                                   slot_node);
2017         list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
2018             slot_node) {
2019                 prefetch(_iter);
2020                 prefetch(&_iter->async_tx);
2021                 if (iter->slots_per_op) {
2022                         slots_found = 0;
2023                         continue;
2024                 }
2025
2026                 /* start the allocation if the slot is correctly aligned */
2027                 if (!slots_found++)
2028                         alloc_start = iter;
2029
2030                 if (slots_found == num_slots) {
2031                         struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
2032                         struct ppc440spe_adma_desc_slot *last_used = NULL;
2033
2034                         iter = alloc_start;
2035                         while (num_slots) {
2036                                 int i;
2037                                 /* pre-ack all but the last descriptor */
2038                                 if (num_slots != slots_per_op)
2039                                         async_tx_ack(&iter->async_tx);
2040
2041                                 list_add_tail(&iter->chain_node, &chain);
2042                                 alloc_tail = iter;
2043                                 iter->async_tx.cookie = 0;
2044                                 iter->hw_next = NULL;
2045                                 iter->flags = 0;
2046                                 iter->slot_cnt = num_slots;
2047                                 iter->xor_check_result = NULL;
2048                                 for (i = 0; i < slots_per_op; i++) {
2049                                         iter->slots_per_op = slots_per_op - i;
2050                                         last_used = iter;
2051                                         iter = list_entry(iter->slot_node.next,
2052                                                 struct ppc440spe_adma_desc_slot,
2053                                                 slot_node);
2054                                 }
2055                                 num_slots -= slots_per_op;
2056                         }
2057                         alloc_tail->group_head = alloc_start;
2058                         alloc_tail->async_tx.cookie = -EBUSY;
2059                         list_splice(&chain, &alloc_tail->group_list);
2060                         chan->last_used = last_used;
2061                         return alloc_tail;
2062                 }
2063         }
2064         if (!retry++)
2065                 goto retry;
2066
2067         /* try to free some slots if the allocation fails */
2068         tasklet_schedule(&chan->irq_tasklet);
2069         return NULL;
2070 }
2071
2072 /**
2073  * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
2074  */
2075 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
2076 {
2077         struct ppc440spe_adma_chan *ppc440spe_chan;
2078         struct ppc440spe_adma_desc_slot *slot = NULL;
2079         char *hw_desc;
2080         int i, db_sz;
2081         int init;
2082
2083         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2084         init = ppc440spe_chan->slots_allocated ? 0 : 1;
2085         chan->chan_id = ppc440spe_chan->device->id;
2086
2087         /* Allocate descriptor slots */
2088         i = ppc440spe_chan->slots_allocated;
2089         if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
2090                 db_sz = sizeof(struct dma_cdb);
2091         else
2092                 db_sz = sizeof(struct xor_cb);
2093
2094         for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
2095                 slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
2096                                GFP_KERNEL);
2097                 if (!slot) {
2098                         printk(KERN_INFO "SPE ADMA Channel only initialized"
2099                                 " %d descriptor slots", i--);
2100                         break;
2101                 }
2102
2103                 hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
2104                 slot->hw_desc = (void *) &hw_desc[i * db_sz];
2105                 dma_async_tx_descriptor_init(&slot->async_tx, chan);
2106                 slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
2107                 INIT_LIST_HEAD(&slot->chain_node);
2108                 INIT_LIST_HEAD(&slot->slot_node);
2109                 INIT_LIST_HEAD(&slot->group_list);
2110                 slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
2111                 slot->idx = i;
2112
2113                 spin_lock_bh(&ppc440spe_chan->lock);
2114                 ppc440spe_chan->slots_allocated++;
2115                 list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
2116                 spin_unlock_bh(&ppc440spe_chan->lock);
2117         }
2118
2119         if (i && !ppc440spe_chan->last_used) {
2120                 ppc440spe_chan->last_used =
2121                         list_entry(ppc440spe_chan->all_slots.next,
2122                                 struct ppc440spe_adma_desc_slot,
2123                                 slot_node);
2124         }
2125
2126         dev_dbg(ppc440spe_chan->device->common.dev,
2127                 "ppc440spe adma%d: allocated %d descriptor slots\n",
2128                 ppc440spe_chan->device->id, i);
2129
2130         /* initialize the channel and the chain with a null operation */
2131         if (init) {
2132                 switch (ppc440spe_chan->device->id) {
2133                 case PPC440SPE_DMA0_ID:
2134                 case PPC440SPE_DMA1_ID:
2135                         ppc440spe_chan->hw_chain_inited = 0;
2136                         /* Use WXOR for self-testing */
2137                         if (!ppc440spe_r6_tchan)
2138                                 ppc440spe_r6_tchan = ppc440spe_chan;
2139                         break;
2140                 case PPC440SPE_XOR_ID:
2141                         ppc440spe_chan_start_null_xor(ppc440spe_chan);
2142                         break;
2143                 default:
2144                         BUG();
2145                 }
2146                 ppc440spe_chan->needs_unmap = 1;
2147         }
2148
2149         return (i > 0) ? i : -ENOMEM;
2150 }
2151
2152 /**
2153  * ppc440spe_desc_assign_cookie - assign a cookie
2154  */
2155 static dma_cookie_t ppc440spe_desc_assign_cookie(
2156                 struct ppc440spe_adma_chan *chan,
2157                 struct ppc440spe_adma_desc_slot *desc)
2158 {
2159         dma_cookie_t cookie = chan->common.cookie;
2160
2161         cookie++;
2162         if (cookie < 0)
2163                 cookie = 1;
2164         chan->common.cookie = desc->async_tx.cookie = cookie;
2165         return cookie;
2166 }
2167
2168 /**
2169  * ppc440spe_rxor_set_region_data -
2170  */
2171 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
2172         u8 xor_arg_no, u32 mask)
2173 {
2174         struct xor_cb *xcb = desc->hw_desc;
2175
2176         xcb->ops[xor_arg_no].h |= mask;
2177 }
2178
2179 /**
2180  * ppc440spe_rxor_set_src -
2181  */
2182 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
2183         u8 xor_arg_no, dma_addr_t addr)
2184 {
2185         struct xor_cb *xcb = desc->hw_desc;
2186
2187         xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
2188         xcb->ops[xor_arg_no].l = addr;
2189 }
2190
2191 /**
2192  * ppc440spe_rxor_set_mult -
2193  */
2194 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
2195         u8 xor_arg_no, u8 idx, u8 mult)
2196 {
2197         struct xor_cb *xcb = desc->hw_desc;
2198
2199         xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
2200 }
2201
2202 /**
2203  * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
2204  *      has been achieved
2205  */
2206 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
2207 {
2208         dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
2209                 chan->device->id, chan->pending);
2210
2211         if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
2212                 chan->pending = 0;
2213                 ppc440spe_chan_append(chan);
2214         }
2215 }
2216
2217 /**
2218  * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
2219  *      (it's not necessary that descriptors will be submitted to the h/w
2220  *      chains too right now)
2221  */
2222 static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
2223 {
2224         struct ppc440spe_adma_desc_slot *sw_desc;
2225         struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
2226         struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
2227         int slot_cnt;
2228         int slots_per_op;
2229         dma_cookie_t cookie;
2230
2231         sw_desc = tx_to_ppc440spe_adma_slot(tx);
2232
2233         group_start = sw_desc->group_head;
2234         slot_cnt = group_start->slot_cnt;
2235         slots_per_op = group_start->slots_per_op;
2236
2237         spin_lock_bh(&chan->lock);
2238
2239         cookie = ppc440spe_desc_assign_cookie(chan, sw_desc);
2240
2241         if (unlikely(list_empty(&chan->chain))) {
2242                 /* first peer */
2243                 list_splice_init(&sw_desc->group_list, &chan->chain);
2244                 chan_first_cdb[chan->device->id] = group_start;
2245         } else {
2246                 /* isn't first peer, bind CDBs to chain */
2247                 old_chain_tail = list_entry(chan->chain.prev,
2248                                         struct ppc440spe_adma_desc_slot,
2249                                         chain_node);
2250                 list_splice_init(&sw_desc->group_list,
2251                     &old_chain_tail->chain_node);
2252                 /* fix up the hardware chain */
2253                 ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
2254         }
2255
2256         /* increment the pending count by the number of operations */
2257         chan->pending += slot_cnt / slots_per_op;
2258         ppc440spe_adma_check_threshold(chan);
2259         spin_unlock_bh(&chan->lock);
2260
2261         dev_dbg(chan->device->common.dev,
2262                 "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
2263                 chan->device->id, __func__,
2264                 sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
2265
2266         return cookie;
2267 }
2268
2269 /**
2270  * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
2271  */
2272 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
2273                 struct dma_chan *chan, unsigned long flags)
2274 {
2275         struct ppc440spe_adma_chan *ppc440spe_chan;
2276         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2277         int slot_cnt, slots_per_op;
2278
2279         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2280
2281         dev_dbg(ppc440spe_chan->device->common.dev,
2282                 "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
2283                 __func__);
2284
2285         spin_lock_bh(&ppc440spe_chan->lock);
2286         slot_cnt = slots_per_op = 1;
2287         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2288                         slots_per_op);
2289         if (sw_desc) {
2290                 group_start = sw_desc->group_head;
2291                 ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
2292                 group_start->unmap_len = 0;
2293                 sw_desc->async_tx.flags = flags;
2294         }
2295         spin_unlock_bh(&ppc440spe_chan->lock);
2296
2297         return sw_desc ? &sw_desc->async_tx : NULL;
2298 }
2299
2300 /**
2301  * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
2302  */
2303 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
2304                 struct dma_chan *chan, dma_addr_t dma_dest,
2305                 dma_addr_t dma_src, size_t len, unsigned long flags)
2306 {
2307         struct ppc440spe_adma_chan *ppc440spe_chan;
2308         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2309         int slot_cnt, slots_per_op;
2310
2311         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2312
2313         if (unlikely(!len))
2314                 return NULL;
2315
2316         BUG_ON(unlikely(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT));
2317
2318         spin_lock_bh(&ppc440spe_chan->lock);
2319
2320         dev_dbg(ppc440spe_chan->device->common.dev,
2321                 "ppc440spe adma%d: %s len: %u int_en %d\n",
2322                 ppc440spe_chan->device->id, __func__, len,
2323                 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2324         slot_cnt = slots_per_op = 1;
2325         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2326                 slots_per_op);
2327         if (sw_desc) {
2328                 group_start = sw_desc->group_head;
2329                 ppc440spe_desc_init_memcpy(group_start, flags);
2330                 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2331                 ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2332                 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2333                 sw_desc->unmap_len = len;
2334                 sw_desc->async_tx.flags = flags;
2335         }
2336         spin_unlock_bh(&ppc440spe_chan->lock);
2337
2338         return sw_desc ? &sw_desc->async_tx : NULL;
2339 }
2340
2341 /**
2342  * ppc440spe_adma_prep_dma_memset - prepare CDB for a MEMSET operation
2343  */
2344 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memset(
2345                 struct dma_chan *chan, dma_addr_t dma_dest, int value,
2346                 size_t len, unsigned long flags)
2347 {
2348         struct ppc440spe_adma_chan *ppc440spe_chan;
2349         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2350         int slot_cnt, slots_per_op;
2351
2352         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2353
2354         if (unlikely(!len))
2355                 return NULL;
2356
2357         BUG_ON(unlikely(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT));
2358
2359         spin_lock_bh(&ppc440spe_chan->lock);
2360
2361         dev_dbg(ppc440spe_chan->device->common.dev,
2362                 "ppc440spe adma%d: %s cal: %u len: %u int_en %d\n",
2363                 ppc440spe_chan->device->id, __func__, value, len,
2364                 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2365
2366         slot_cnt = slots_per_op = 1;
2367         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2368                 slots_per_op);
2369         if (sw_desc) {
2370                 group_start = sw_desc->group_head;
2371                 ppc440spe_desc_init_memset(group_start, value, flags);
2372                 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2373                 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2374                 sw_desc->unmap_len = len;
2375                 sw_desc->async_tx.flags = flags;
2376         }
2377         spin_unlock_bh(&ppc440spe_chan->lock);
2378
2379         return sw_desc ? &sw_desc->async_tx : NULL;
2380 }
2381
2382 /**
2383  * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2384  */
2385 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2386                 struct dma_chan *chan, dma_addr_t dma_dest,
2387                 dma_addr_t *dma_src, u32 src_cnt, size_t len,
2388                 unsigned long flags)
2389 {
2390         struct ppc440spe_adma_chan *ppc440spe_chan;
2391         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2392         int slot_cnt, slots_per_op;
2393
2394         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2395
2396         ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2397                                      dma_dest, dma_src, src_cnt));
2398         if (unlikely(!len))
2399                 return NULL;
2400         BUG_ON(unlikely(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT));
2401
2402         dev_dbg(ppc440spe_chan->device->common.dev,
2403                 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2404                 ppc440spe_chan->device->id, __func__, src_cnt, len,
2405                 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2406
2407         spin_lock_bh(&ppc440spe_chan->lock);
2408         slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2409         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2410                         slots_per_op);
2411         if (sw_desc) {
2412                 group_start = sw_desc->group_head;
2413                 ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2414                 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2415                 while (src_cnt--)
2416                         ppc440spe_adma_memcpy_xor_set_src(group_start,
2417                                 dma_src[src_cnt], src_cnt);
2418                 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2419                 sw_desc->unmap_len = len;
2420                 sw_desc->async_tx.flags = flags;
2421         }
2422         spin_unlock_bh(&ppc440spe_chan->lock);
2423
2424         return sw_desc ? &sw_desc->async_tx : NULL;
2425 }
2426
2427 static inline void
2428 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2429                                 int src_cnt);
2430 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2431
2432 /**
2433  * ppc440spe_adma_init_dma2rxor_slot -
2434  */
2435 static void ppc440spe_adma_init_dma2rxor_slot(
2436                 struct ppc440spe_adma_desc_slot *desc,
2437                 dma_addr_t *src, int src_cnt)
2438 {
2439         int i;
2440
2441         /* initialize CDB */
2442         for (i = 0; i < src_cnt; i++) {
2443                 ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2444                                                  desc->src_cnt, (u32)src[i]);
2445         }
2446 }
2447
2448 /**
2449  * ppc440spe_dma01_prep_mult -
2450  * for Q operation where destination is also the source
2451  */
2452 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2453                 struct ppc440spe_adma_chan *ppc440spe_chan,
2454                 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2455                 const unsigned char *scf, size_t len, unsigned long flags)
2456 {
2457         struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2458         unsigned long op = 0;
2459         int slot_cnt;
2460
2461         set_bit(PPC440SPE_DESC_WXOR, &op);
2462         slot_cnt = 2;
2463
2464         spin_lock_bh(&ppc440spe_chan->lock);
2465
2466         /* use WXOR, each descriptor occupies one slot */
2467         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2468         if (sw_desc) {
2469                 struct ppc440spe_adma_chan *chan;
2470                 struct ppc440spe_adma_desc_slot *iter;
2471                 struct dma_cdb *hw_desc;
2472
2473                 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2474                 set_bits(op, &sw_desc->flags);
2475                 sw_desc->src_cnt = src_cnt;
2476                 sw_desc->dst_cnt = dst_cnt;
2477                 /* First descriptor, zero data in the destination and copy it
2478                  * to q page using MULTICAST transfer.
2479                  */
2480                 iter = list_first_entry(&sw_desc->group_list,
2481                                         struct ppc440spe_adma_desc_slot,
2482                                         chain_node);
2483                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2484                 /* set 'next' pointer */
2485                 iter->hw_next = list_entry(iter->chain_node.next,
2486                                            struct ppc440spe_adma_desc_slot,
2487                                            chain_node);
2488                 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2489                 hw_desc = iter->hw_desc;
2490                 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2491
2492                 ppc440spe_desc_set_dest_addr(iter, chan,
2493                                              DMA_CUED_XOR_BASE, dst[0], 0);
2494                 ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2495                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2496                                             src[0]);
2497                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2498                 iter->unmap_len = len;
2499
2500                 /*
2501                  * Second descriptor, multiply data from the q page
2502                  * and store the result in real destination.
2503                  */
2504                 iter = list_first_entry(&iter->chain_node,
2505                                         struct ppc440spe_adma_desc_slot,
2506                                         chain_node);
2507                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2508                 iter->hw_next = NULL;
2509                 if (flags & DMA_PREP_INTERRUPT)
2510                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
2511                 else
2512                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2513
2514                 hw_desc = iter->hw_desc;
2515                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2516                 ppc440spe_desc_set_src_addr(iter, chan, 0,
2517                                             DMA_CUED_XOR_HB, dst[1]);
2518                 ppc440spe_desc_set_dest_addr(iter, chan,
2519                                              DMA_CUED_XOR_BASE, dst[0], 0);
2520
2521                 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2522                                             DMA_CDB_SG_DST1, scf[0]);
2523                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2524                 iter->unmap_len = len;
2525                 sw_desc->async_tx.flags = flags;
2526         }
2527
2528         spin_unlock_bh(&ppc440spe_chan->lock);
2529
2530         return sw_desc;
2531 }
2532
2533 /**
2534  * ppc440spe_dma01_prep_sum_product -
2535  * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2536  * the source.
2537  */
2538 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2539                 struct ppc440spe_adma_chan *ppc440spe_chan,
2540                 dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2541                 const unsigned char *scf, size_t len, unsigned long flags)
2542 {
2543         struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2544         unsigned long op = 0;
2545         int slot_cnt;
2546
2547         set_bit(PPC440SPE_DESC_WXOR, &op);
2548         slot_cnt = 3;
2549
2550         spin_lock_bh(&ppc440spe_chan->lock);
2551
2552         /* WXOR, each descriptor occupies one slot */
2553         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2554         if (sw_desc) {
2555                 struct ppc440spe_adma_chan *chan;
2556                 struct ppc440spe_adma_desc_slot *iter;
2557                 struct dma_cdb *hw_desc;
2558
2559                 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2560                 set_bits(op, &sw_desc->flags);
2561                 sw_desc->src_cnt = src_cnt;
2562                 sw_desc->dst_cnt = 1;
2563                 /* 1st descriptor, src[1] data to q page and zero destination */
2564                 iter = list_first_entry(&sw_desc->group_list,
2565                                         struct ppc440spe_adma_desc_slot,
2566                                         chain_node);
2567                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2568                 iter->hw_next = list_entry(iter->chain_node.next,
2569                                            struct ppc440spe_adma_desc_slot,
2570                                            chain_node);
2571                 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2572                 hw_desc = iter->hw_desc;
2573                 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2574
2575                 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2576                                              *dst, 0);
2577                 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2578                                              ppc440spe_chan->qdest, 1);
2579                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2580                                             src[1]);
2581                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2582                 iter->unmap_len = len;
2583
2584                 /* 2nd descriptor, multiply src[1] data and store the
2585                  * result in destination */
2586                 iter = list_first_entry(&iter->chain_node,
2587                                         struct ppc440spe_adma_desc_slot,
2588                                         chain_node);
2589                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2590                 /* set 'next' pointer */
2591                 iter->hw_next = list_entry(iter->chain_node.next,
2592                                            struct ppc440spe_adma_desc_slot,
2593                                            chain_node);
2594                 if (flags & DMA_PREP_INTERRUPT)
2595                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
2596                 else
2597                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2598
2599                 hw_desc = iter->hw_desc;
2600                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2601                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2602                                             ppc440spe_chan->qdest);
2603                 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2604                                              *dst, 0);
2605                 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2606                                             DMA_CDB_SG_DST1, scf[1]);
2607                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2608                 iter->unmap_len = len;
2609
2610                 /*
2611                  * 3rd descriptor, multiply src[0] data and xor it
2612                  * with destination
2613                  */
2614                 iter = list_first_entry(&iter->chain_node,
2615                                         struct ppc440spe_adma_desc_slot,
2616                                         chain_node);
2617                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2618                 iter->hw_next = NULL;
2619                 if (flags & DMA_PREP_INTERRUPT)
2620                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
2621                 else
2622                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2623
2624                 hw_desc = iter->hw_desc;
2625                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2626                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2627                                             src[0]);
2628                 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2629                                              *dst, 0);
2630                 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2631                                             DMA_CDB_SG_DST1, scf[0]);
2632                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2633                 iter->unmap_len = len;
2634                 sw_desc->async_tx.flags = flags;
2635         }
2636
2637         spin_unlock_bh(&ppc440spe_chan->lock);
2638
2639         return sw_desc;
2640 }
2641
2642 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2643                 struct ppc440spe_adma_chan *ppc440spe_chan,
2644                 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2645                 const unsigned char *scf, size_t len, unsigned long flags)
2646 {
2647         int slot_cnt;
2648         struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2649         unsigned long op = 0;
2650         unsigned char mult = 1;
2651
2652         pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2653                  __func__, dst_cnt, src_cnt, len);
2654         /*  select operations WXOR/RXOR depending on the
2655          * source addresses of operators and the number
2656          * of destinations (RXOR support only Q-parity calculations)
2657          */
2658         set_bit(PPC440SPE_DESC_WXOR, &op);
2659         if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2660                 /* no active RXOR;
2661                  * do RXOR if:
2662                  * - there are more than 1 source,
2663                  * - len is aligned on 512-byte boundary,
2664                  * - source addresses fit to one of 4 possible regions.
2665                  */
2666                 if (src_cnt > 1 &&
2667                     !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2668                     (src[0] + len) == src[1]) {
2669                         /* may do RXOR R1 R2 */
2670                         set_bit(PPC440SPE_DESC_RXOR, &op);
2671                         if (src_cnt != 2) {
2672                                 /* may try to enhance region of RXOR */
2673                                 if ((src[1] + len) == src[2]) {
2674                                         /* do RXOR R1 R2 R3 */
2675                                         set_bit(PPC440SPE_DESC_RXOR123,
2676                                                 &op);
2677                                 } else if ((src[1] + len * 2) == src[2]) {
2678                                         /* do RXOR R1 R2 R4 */
2679                                         set_bit(PPC440SPE_DESC_RXOR124, &op);
2680                                 } else if ((src[1] + len * 3) == src[2]) {
2681                                         /* do RXOR R1 R2 R5 */
2682                                         set_bit(PPC440SPE_DESC_RXOR125,
2683                                                 &op);
2684                                 } else {
2685                                         /* do RXOR R1 R2 */
2686                                         set_bit(PPC440SPE_DESC_RXOR12,
2687                                                 &op);
2688                                 }
2689                         } else {
2690                                 /* do RXOR R1 R2 */
2691                                 set_bit(PPC440SPE_DESC_RXOR12, &op);
2692                         }
2693                 }
2694
2695                 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2696                         /* can not do this operation with RXOR */
2697                         clear_bit(PPC440SPE_RXOR_RUN,
2698                                 &ppc440spe_rxor_state);
2699                 } else {
2700                         /* can do; set block size right now */
2701                         ppc440spe_desc_set_rxor_block_size(len);
2702                 }
2703         }
2704
2705         /* Number of necessary slots depends on operation type selected */
2706         if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2707                 /*  This is a WXOR only chain. Need descriptors for each
2708                  * source to GF-XOR them with WXOR, and need descriptors
2709                  * for each destination to zero them with WXOR
2710                  */
2711                 slot_cnt = src_cnt;
2712
2713                 if (flags & DMA_PREP_ZERO_P) {
2714                         slot_cnt++;
2715                         set_bit(PPC440SPE_ZERO_P, &op);
2716                 }
2717                 if (flags & DMA_PREP_ZERO_Q) {
2718                         slot_cnt++;
2719                         set_bit(PPC440SPE_ZERO_Q, &op);
2720                 }
2721         } else {
2722                 /*  Need 1/2 descriptor for RXOR operation, and
2723                  * need (src_cnt - (2 or 3)) for WXOR of sources
2724                  * remained (if any)
2725                  */
2726                 slot_cnt = dst_cnt;
2727
2728                 if (flags & DMA_PREP_ZERO_P)
2729                         set_bit(PPC440SPE_ZERO_P, &op);
2730                 if (flags & DMA_PREP_ZERO_Q)
2731                         set_bit(PPC440SPE_ZERO_Q, &op);
2732
2733                 if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2734                         slot_cnt += src_cnt - 2;
2735                 else
2736                         slot_cnt += src_cnt - 3;
2737
2738                 /*  Thus we have either RXOR only chain or
2739                  * mixed RXOR/WXOR
2740                  */
2741                 if (slot_cnt == dst_cnt)
2742                         /* RXOR only chain */
2743                         clear_bit(PPC440SPE_DESC_WXOR, &op);
2744         }
2745
2746         spin_lock_bh(&ppc440spe_chan->lock);
2747         /* for both RXOR/WXOR each descriptor occupies one slot */
2748         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2749         if (sw_desc) {
2750                 ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2751                                 flags, op);
2752
2753                 /* setup dst/src/mult */
2754                 pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2755                          __func__, dst[0], dst[1]);
2756                 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2757                 while (src_cnt--) {
2758                         ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2759                                                   src_cnt);
2760
2761                         /* NOTE: "Multi = 0 is equivalent to = 1" as it
2762                          * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2763                          * doesn't work for RXOR with DMA0/1! Instead, multi=0
2764                          * leads to zeroing source data after RXOR.
2765                          * So, for P case set-up mult=1 explicitly.
2766                          */
2767                         if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2768                                 mult = scf[src_cnt];
2769                         ppc440spe_adma_pq_set_src_mult(sw_desc,
2770                                 mult, src_cnt,  dst_cnt - 1);
2771                 }
2772
2773                 /* Setup byte count foreach slot just allocated */
2774                 sw_desc->async_tx.flags = flags;
2775                 list_for_each_entry(iter, &sw_desc->group_list,
2776                                 chain_node) {
2777                         ppc440spe_desc_set_byte_count(iter,
2778                                 ppc440spe_chan, len);
2779                         iter->unmap_len = len;
2780                 }
2781         }
2782         spin_unlock_bh(&ppc440spe_chan->lock);
2783
2784         return sw_desc;
2785 }
2786
2787 static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2788                 struct ppc440spe_adma_chan *ppc440spe_chan,
2789                 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2790                 const unsigned char *scf, size_t len, unsigned long flags)
2791 {
2792         int slot_cnt, descs_per_op;
2793         struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2794         unsigned long op = 0;
2795         unsigned char mult = 1;
2796
2797         BUG_ON(!dst_cnt);
2798         /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2799                  __func__, dst_cnt, src_cnt, len);*/
2800
2801         spin_lock_bh(&ppc440spe_chan->lock);
2802         descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2803         if (descs_per_op < 0) {
2804                 spin_unlock_bh(&ppc440spe_chan->lock);
2805                 return NULL;
2806         }
2807
2808         /* depending on number of sources we have 1 or 2 RXOR chains */
2809         slot_cnt = descs_per_op * dst_cnt;
2810
2811         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2812         if (sw_desc) {
2813                 op = slot_cnt;
2814                 sw_desc->async_tx.flags = flags;
2815                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2816                         ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2817                                 --op ? 0 : flags);
2818                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2819                                 len);
2820                         iter->unmap_len = len;
2821
2822                         ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2823                         iter->rxor_cursor.len = len;
2824                         iter->descs_per_op = descs_per_op;
2825                 }
2826                 op = 0;
2827                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2828                         op++;
2829                         if (op % descs_per_op == 0)
2830                                 ppc440spe_adma_init_dma2rxor_slot(iter, src,
2831                                                                   src_cnt);
2832                         if (likely(!list_is_last(&iter->chain_node,
2833                                                  &sw_desc->group_list))) {
2834                                 /* set 'next' pointer */
2835                                 iter->hw_next =
2836                                         list_entry(iter->chain_node.next,
2837                                                 struct ppc440spe_adma_desc_slot,
2838                                                 chain_node);
2839                                 ppc440spe_xor_set_link(iter, iter->hw_next);
2840                         } else {
2841                                 /* this is the last descriptor. */
2842                                 iter->hw_next = NULL;
2843                         }
2844                 }
2845
2846                 /* fixup head descriptor */
2847                 sw_desc->dst_cnt = dst_cnt;
2848                 if (flags & DMA_PREP_ZERO_P)
2849                         set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2850                 if (flags & DMA_PREP_ZERO_Q)
2851                         set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2852
2853                 /* setup dst/src/mult */
2854                 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2855
2856                 while (src_cnt--) {
2857                         /* handle descriptors (if dst_cnt == 2) inside
2858                          * the ppc440spe_adma_pq_set_srcxxx() functions
2859                          */
2860                         ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2861                                                   src_cnt);
2862                         if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2863                                 mult = scf[src_cnt];
2864                         ppc440spe_adma_pq_set_src_mult(sw_desc,
2865                                         mult, src_cnt, dst_cnt - 1);
2866                 }
2867         }
2868         spin_unlock_bh(&ppc440spe_chan->lock);
2869         ppc440spe_desc_set_rxor_block_size(len);
2870         return sw_desc;
2871 }
2872
2873 /**
2874  * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2875  */
2876 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2877                 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2878                 unsigned int src_cnt, const unsigned char *scf,
2879                 size_t len, unsigned long flags)
2880 {
2881         struct ppc440spe_adma_chan *ppc440spe_chan;
2882         struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2883         int dst_cnt = 0;
2884
2885         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2886
2887         ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2888                                     dst, src, src_cnt));
2889         BUG_ON(!len);
2890         BUG_ON(unlikely(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT));
2891         BUG_ON(!src_cnt);
2892
2893         if (src_cnt == 1 && dst[1] == src[0]) {
2894                 dma_addr_t dest[2];
2895
2896                 /* dst[1] is real destination (Q) */
2897                 dest[0] = dst[1];
2898                 /* this is the page to multicast source data to */
2899                 dest[1] = ppc440spe_chan->qdest;
2900                 sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2901                                 dest, 2, src, src_cnt, scf, len, flags);
2902                 return sw_desc ? &sw_desc->async_tx : NULL;
2903         }
2904
2905         if (src_cnt == 2 && dst[1] == src[1]) {
2906                 sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2907                                         &dst[1], src, 2, scf, len, flags);
2908                 return sw_desc ? &sw_desc->async_tx : NULL;
2909         }
2910
2911         if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2912                 BUG_ON(!dst[0]);
2913                 dst_cnt++;
2914                 flags |= DMA_PREP_ZERO_P;
2915         }
2916
2917         if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2918                 BUG_ON(!dst[1]);
2919                 dst_cnt++;
2920                 flags |= DMA_PREP_ZERO_Q;
2921         }
2922
2923         BUG_ON(!dst_cnt);
2924
2925         dev_dbg(ppc440spe_chan->device->common.dev,
2926                 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2927                 ppc440spe_chan->device->id, __func__, src_cnt, len,
2928                 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2929
2930         switch (ppc440spe_chan->device->id) {
2931         case PPC440SPE_DMA0_ID:
2932         case PPC440SPE_DMA1_ID:
2933                 sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2934                                 dst, dst_cnt, src, src_cnt, scf,
2935                                 len, flags);
2936                 break;
2937
2938         case PPC440SPE_XOR_ID:
2939                 sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2940                                 dst, dst_cnt, src, src_cnt, scf,
2941                                 len, flags);
2942                 break;
2943         }
2944
2945         return sw_desc ? &sw_desc->async_tx : NULL;
2946 }
2947
2948 /**
2949  * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2950  * a PQ_ZERO_SUM operation
2951  */
2952 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2953                 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2954                 unsigned int src_cnt, const unsigned char *scf, size_t len,
2955                 enum sum_check_flags *pqres, unsigned long flags)
2956 {
2957         struct ppc440spe_adma_chan *ppc440spe_chan;
2958         struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2959         dma_addr_t pdest, qdest;
2960         int slot_cnt, slots_per_op, idst, dst_cnt;
2961
2962         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2963
2964         if (flags & DMA_PREP_PQ_DISABLE_P)
2965                 pdest = 0;
2966         else
2967                 pdest = pq[0];
2968
2969         if (flags & DMA_PREP_PQ_DISABLE_Q)
2970                 qdest = 0;
2971         else
2972                 qdest = pq[1];
2973
2974         ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2975                                             src, src_cnt, scf));
2976
2977         /* Always use WXOR for P/Q calculations (two destinations).
2978          * Need 1 or 2 extra slots to verify results are zero.
2979          */
2980         idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2981
2982         /* One additional slot per destination to clone P/Q
2983          * before calculation (we have to preserve destinations).
2984          */
2985         slot_cnt = src_cnt + dst_cnt * 2;
2986         slots_per_op = 1;
2987
2988         spin_lock_bh(&ppc440spe_chan->lock);
2989         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2990                                              slots_per_op);
2991         if (sw_desc) {
2992                 ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2993
2994                 /* Setup byte count for each slot just allocated */
2995                 sw_desc->async_tx.flags = flags;
2996                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2997                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2998                                                       len);
2999                         iter->unmap_len = len;
3000                 }
3001
3002                 if (pdest) {
3003                         struct dma_cdb *hw_desc;
3004                         struct ppc440spe_adma_chan *chan;
3005
3006                         iter = sw_desc->group_head;
3007                         chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
3008                         memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
3009                         iter->hw_next = list_entry(iter->chain_node.next,
3010                                                 struct ppc440spe_adma_desc_slot,
3011                                                 chain_node);
3012                         hw_desc = iter->hw_desc;
3013                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
3014                         iter->src_cnt = 0;
3015                         iter->dst_cnt = 0;
3016                         ppc440spe_desc_set_dest_addr(iter, chan, 0,
3017                                                      ppc440spe_chan->pdest, 0);
3018                         ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
3019                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
3020                                                       len);
3021                         iter->unmap_len = 0;
3022                         /* override pdest to preserve original P */
3023                         pdest = ppc440spe_chan->pdest;
3024                 }
3025                 if (qdest) {
3026                         struct dma_cdb *hw_desc;
3027                         struct ppc440spe_adma_chan *chan;
3028
3029                         iter = list_first_entry(&sw_desc->group_list,
3030                                                 struct ppc440spe_adma_desc_slot,
3031                                                 chain_node);
3032                         chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
3033
3034                         if (pdest) {
3035                                 iter = list_entry(iter->chain_node.next,
3036                                                 struct ppc440spe_adma_desc_slot,
3037                                                 chain_node);
3038                         }
3039
3040                         memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
3041                         iter->hw_next = list_entry(iter->chain_node.next,
3042                                                 struct ppc440spe_adma_desc_slot,
3043                                                 chain_node);
3044                         hw_desc = iter->hw_desc;
3045                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
3046                         iter->src_cnt = 0;
3047                         iter->dst_cnt = 0;
3048                         ppc440spe_desc_set_dest_addr(iter, chan, 0,
3049                                                      ppc440spe_chan->qdest, 0);
3050                         ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
3051                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
3052                                                       len);
3053                         iter->unmap_len = 0;
3054                         /* override qdest to preserve original Q */
3055                         qdest = ppc440spe_chan->qdest;
3056                 }
3057
3058                 /* Setup destinations for P/Q ops */
3059                 ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
3060
3061                 /* Setup zero QWORDs into DCHECK CDBs */
3062                 idst = dst_cnt;
3063                 list_for_each_entry_reverse(iter, &sw_desc->group_list,
3064                                             chain_node) {
3065                         /*
3066                          * The last CDB corresponds to Q-parity check,
3067                          * the one before last CDB corresponds
3068                          * P-parity check
3069                          */
3070                         if (idst == DMA_DEST_MAX_NUM) {
3071                                 if (idst == dst_cnt) {
3072                                         set_bit(PPC440SPE_DESC_QCHECK,
3073                                                 &iter->flags);
3074                                 } else {
3075                                         set_bit(PPC440SPE_DESC_PCHECK,
3076                                                 &iter->flags);
3077                                 }
3078                         } else {
3079                                 if (qdest) {
3080                                         set_bit(PPC440SPE_DESC_QCHECK,
3081                                                 &iter->flags);
3082                                 } else {
3083                                         set_bit(PPC440SPE_DESC_PCHECK,
3084                                                 &iter->flags);
3085                                 }
3086                         }
3087                         iter->xor_check_result = pqres;
3088
3089                         /*
3090                          * set it to zero, if check fail then result will
3091                          * be updated
3092                          */
3093                         *iter->xor_check_result = 0;
3094                         ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
3095                                 ppc440spe_qword);
3096
3097                         if (!(--dst_cnt))
3098                                 break;
3099                 }
3100
3101                 /* Setup sources and mults for P/Q ops */
3102                 list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
3103                                                      chain_node) {
3104                         struct ppc440spe_adma_chan *chan;
3105                         u32 mult_dst;
3106
3107                         chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
3108                         ppc440spe_desc_set_src_addr(iter, chan, 0,
3109                                                     DMA_CUED_XOR_HB,
3110                                                     src[src_cnt - 1]);
3111                         if (qdest) {
3112                                 mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
3113                                                            DMA_CDB_SG_DST1;
3114                                 ppc440spe_desc_set_src_mult(iter, chan,
3115                                                             DMA_CUED_MULT1_OFF,
3116                                                             mult_dst,
3117                                                             scf[src_cnt - 1]);
3118                         }
3119                         if (!(--src_cnt))
3120                                 break;
3121                 }
3122         }
3123         spin_unlock_bh(&ppc440spe_chan->lock);
3124         return sw_desc ? &sw_desc->async_tx : NULL;
3125 }
3126
3127 /**
3128  * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
3129  * XOR ZERO_SUM operation
3130  */
3131 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
3132                 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
3133                 size_t len, enum sum_check_flags *result, unsigned long flags)
3134 {
3135         struct dma_async_tx_descriptor *tx;
3136         dma_addr_t pq[2];
3137
3138         /* validate P, disable Q */
3139         pq[0] = src[0];
3140         pq[1] = 0;
3141         flags |= DMA_PREP_PQ_DISABLE_Q;
3142
3143         tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
3144                                                 src_cnt - 1, 0, len,
3145                                                 result, flags);
3146         return tx;
3147 }
3148
3149 /**
3150  * ppc440spe_adma_set_dest - set destination address into descriptor
3151  */
3152 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3153                 dma_addr_t addr, int index)
3154 {
3155         struct ppc440spe_adma_chan *chan;
3156
3157         BUG_ON(index >= sw_desc->dst_cnt);
3158
3159         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3160
3161         switch (chan->device->id) {
3162         case PPC440SPE_DMA0_ID:
3163         case PPC440SPE_DMA1_ID:
3164                 /* to do: support transfers lengths >
3165                  * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
3166                  */
3167                 ppc440spe_desc_set_dest_addr(sw_desc->group_head,
3168                         chan, 0, addr, index);
3169                 break;
3170         case PPC440SPE_XOR_ID:
3171                 sw_desc = ppc440spe_get_group_entry(sw_desc, index);
3172                 ppc440spe_desc_set_dest_addr(sw_desc,
3173                         chan, 0, addr, index);
3174                 break;
3175         }
3176 }
3177
3178 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
3179                 struct ppc440spe_adma_chan *chan, dma_addr_t addr)
3180 {
3181         /*  To clear destinations update the descriptor
3182          * (P or Q depending on index) as follows:
3183          * addr is destination (0 corresponds to SG2):
3184          */
3185         ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
3186
3187         /* ... and the addr is source: */
3188         ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
3189
3190         /* addr is always SG2 then the mult is always DST1 */
3191         ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
3192                                     DMA_CDB_SG_DST1, 1);
3193 }
3194
3195 /**
3196  * ppc440spe_adma_pq_set_dest - set destination address into descriptor
3197  * for the PQXOR operation
3198  */
3199 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3200                 dma_addr_t *addrs, unsigned long flags)
3201 {
3202         struct ppc440spe_adma_desc_slot *iter;
3203         struct ppc440spe_adma_chan *chan;
3204         dma_addr_t paddr, qaddr;
3205         dma_addr_t addr = 0, ppath, qpath;
3206         int index = 0, i;
3207
3208         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3209
3210         if (flags & DMA_PREP_PQ_DISABLE_P)
3211                 paddr = 0;
3212         else
3213                 paddr = addrs[0];
3214
3215         if (flags & DMA_PREP_PQ_DISABLE_Q)
3216                 qaddr = 0;
3217         else
3218                 qaddr = addrs[1];
3219
3220         if (!paddr || !qaddr)
3221                 addr = paddr ? paddr : qaddr;
3222
3223         switch (chan->device->id) {
3224         case PPC440SPE_DMA0_ID:
3225         case PPC440SPE_DMA1_ID:
3226                 /* walk through the WXOR source list and set P/Q-destinations
3227                  * for each slot:
3228                  */
3229                 if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3230                         /* This is WXOR-only chain; may have 1/2 zero descs */
3231                         if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3232                                 index++;
3233                         if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3234                                 index++;
3235
3236                         iter = ppc440spe_get_group_entry(sw_desc, index);
3237                         if (addr) {
3238                                 /* one destination */
3239                                 list_for_each_entry_from(iter,
3240                                         &sw_desc->group_list, chain_node)
3241                                         ppc440spe_desc_set_dest_addr(iter, chan,
3242                                                 DMA_CUED_XOR_BASE, addr, 0);
3243                         } else {
3244                                 /* two destinations */
3245                                 list_for_each_entry_from(iter,
3246                                         &sw_desc->group_list, chain_node) {
3247                                         ppc440spe_desc_set_dest_addr(iter, chan,
3248                                                 DMA_CUED_XOR_BASE, paddr, 0);
3249                                         ppc440spe_desc_set_dest_addr(iter, chan,
3250                                                 DMA_CUED_XOR_BASE, qaddr, 1);
3251                                 }
3252                         }
3253
3254                         if (index) {
3255                                 /*  To clear destinations update the descriptor
3256                                  * (1st,2nd, or both depending on flags)
3257                                  */
3258                                 index = 0;
3259                                 if (test_bit(PPC440SPE_ZERO_P,
3260                                                 &sw_desc->flags)) {
3261                                         iter = ppc440spe_get_group_entry(
3262                                                         sw_desc, index++);
3263                                         ppc440spe_adma_pq_zero_op(iter, chan,
3264                                                         paddr);
3265                                 }
3266
3267                                 if (test_bit(PPC440SPE_ZERO_Q,
3268                                                 &sw_desc->flags)) {
3269                                         iter = ppc440spe_get_group_entry(
3270                                                         sw_desc, index++);
3271                                         ppc440spe_adma_pq_zero_op(iter, chan,
3272                                                         qaddr);
3273                                 }
3274
3275                                 return;
3276                         }
3277                 } else {
3278                         /* This is RXOR-only or RXOR/WXOR mixed chain */
3279
3280                         /* If we want to include destination into calculations,
3281                          * then make dest addresses cued with mult=1 (XOR).
3282                          */
3283                         ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3284                                         DMA_CUED_XOR_HB :
3285                                         DMA_CUED_XOR_BASE |
3286                                                 (1 << DMA_CUED_MULT1_OFF);
3287                         qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3288                                         DMA_CUED_XOR_HB :
3289                                         DMA_CUED_XOR_BASE |
3290                                                 (1 << DMA_CUED_MULT1_OFF);
3291
3292                         /* Setup destination(s) in RXOR slot(s) */
3293                         iter = ppc440spe_get_group_entry(sw_desc, index++);
3294                         ppc440spe_desc_set_dest_addr(iter, chan,
3295                                                 paddr ? ppath : qpath,
3296                                                 paddr ? paddr : qaddr, 0);
3297                         if (!addr) {
3298                                 /* two destinations */
3299                                 iter = ppc440spe_get_group_entry(sw_desc,
3300                                                                  index++);
3301                                 ppc440spe_desc_set_dest_addr(iter, chan,
3302                                                 qpath, qaddr, 0);
3303                         }
3304
3305                         if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
3306                                 /* Setup destination(s) in remaining WXOR
3307                                  * slots
3308                                  */
3309                                 iter = ppc440spe_get_group_entry(sw_desc,
3310                                                                  index);
3311                                 if (addr) {
3312                                         /* one destination */
3313                                         list_for_each_entry_from(iter,
3314                                             &sw_desc->group_list,
3315                                             chain_node)
3316                                                 ppc440spe_desc_set_dest_addr(
3317                                                         iter, chan,
3318                                                         DMA_CUED_XOR_BASE,
3319                                                         addr, 0);
3320
3321                                 } else {
3322                                         /* two destinations */
3323                                         list_for_each_entry_from(iter,
3324                                             &sw_desc->group_list,
3325                                             chain_node) {
3326                                                 ppc440spe_desc_set_dest_addr(
3327                                                         iter, chan,
3328                                                         DMA_CUED_XOR_BASE,
3329                                                         paddr, 0);
3330                                                 ppc440spe_desc_set_dest_addr(
3331                                                         iter, chan,
3332                                                         DMA_CUED_XOR_BASE,
3333                                                         qaddr, 1);
3334                                         }
3335                                 }
3336                         }
3337
3338                 }
3339                 break;
3340
3341         case PPC440SPE_XOR_ID:
3342                 /* DMA2 descriptors have only 1 destination, so there are
3343                  * two chains - one for each dest.
3344                  * If we want to include destination into calculations,
3345                  * then make dest addresses cued with mult=1 (XOR).
3346                  */
3347                 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3348                                 DMA_CUED_XOR_HB :
3349                                 DMA_CUED_XOR_BASE |
3350                                         (1 << DMA_CUED_MULT1_OFF);
3351
3352                 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3353                                 DMA_CUED_XOR_HB :
3354                                 DMA_CUED_XOR_BASE |
3355                                         (1 << DMA_CUED_MULT1_OFF);
3356
3357                 iter = ppc440spe_get_group_entry(sw_desc, 0);
3358                 for (i = 0; i < sw_desc->descs_per_op; i++) {
3359                         ppc440spe_desc_set_dest_addr(iter, chan,
3360                                 paddr ? ppath : qpath,
3361                                 paddr ? paddr : qaddr, 0);
3362                         iter = list_entry(iter->chain_node.next,
3363                                           struct ppc440spe_adma_desc_slot,
3364                                           chain_node);
3365                 }
3366
3367                 if (!addr) {
3368                         /* Two destinations; setup Q here */
3369                         iter = ppc440spe_get_group_entry(sw_desc,
3370                                 sw_desc->descs_per_op);
3371                         for (i = 0; i < sw_desc->descs_per_op; i++) {
3372                                 ppc440spe_desc_set_dest_addr(iter,
3373                                         chan, qpath, qaddr, 0);
3374                                 iter = list_entry(iter->chain_node.next,
3375                                                 struct ppc440spe_adma_desc_slot,
3376                                                 chain_node);
3377                         }
3378                 }
3379
3380                 break;
3381         }
3382 }
3383
3384 /**
3385  * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3386  * for the PQ_ZERO_SUM operation
3387  */
3388 static void ppc440spe_adma_pqzero_sum_set_dest(
3389                 struct ppc440spe_adma_desc_slot *sw_desc,
3390                 dma_addr_t paddr, dma_addr_t qaddr)
3391 {
3392         struct ppc440spe_adma_desc_slot *iter, *end;
3393         struct ppc440spe_adma_chan *chan;
3394         dma_addr_t addr = 0;
3395         int idx;
3396
3397         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3398
3399         /* walk through the WXOR source list and set P/Q-destinations
3400          * for each slot
3401          */
3402         idx = (paddr && qaddr) ? 2 : 1;
3403         /* set end */
3404         list_for_each_entry_reverse(end, &sw_desc->group_list,
3405                                     chain_node) {
3406                 if (!(--idx))
3407                         break;
3408         }
3409         /* set start */
3410         idx = (paddr && qaddr) ? 2 : 1;
3411         iter = ppc440spe_get_group_entry(sw_desc, idx);
3412
3413         if (paddr && qaddr) {
3414                 /* two destinations */
3415                 list_for_each_entry_from(iter, &sw_desc->group_list,
3416                                          chain_node) {
3417                         if (unlikely(iter == end))
3418                                 break;
3419                         ppc440spe_desc_set_dest_addr(iter, chan,
3420                                                 DMA_CUED_XOR_BASE, paddr, 0);
3421                         ppc440spe_desc_set_dest_addr(iter, chan,
3422                                                 DMA_CUED_XOR_BASE, qaddr, 1);
3423                 }
3424         } else {
3425                 /* one destination */
3426                 addr = paddr ? paddr : qaddr;
3427                 list_for_each_entry_from(iter, &sw_desc->group_list,
3428                                          chain_node) {
3429                         if (unlikely(iter == end))
3430                                 break;
3431                         ppc440spe_desc_set_dest_addr(iter, chan,
3432                                                 DMA_CUED_XOR_BASE, addr, 0);
3433                 }
3434         }
3435
3436         /*  The remaining descriptors are DATACHECK. These have no need in
3437          * destination. Actually, these destinations are used there
3438          * as sources for check operation. So, set addr as source.
3439          */
3440         ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3441
3442         if (!addr) {
3443                 end = list_entry(end->chain_node.next,
3444                                  struct ppc440spe_adma_desc_slot, chain_node);
3445                 ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3446         }
3447 }
3448
3449 /**
3450  * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3451  */
3452 static inline void ppc440spe_desc_set_xor_src_cnt(
3453                         struct ppc440spe_adma_desc_slot *desc,
3454                         int src_cnt)
3455 {
3456         struct xor_cb *hw_desc = desc->hw_desc;
3457
3458         hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3459         hw_desc->cbc |= src_cnt;
3460 }
3461
3462 /**
3463  * ppc440spe_adma_pq_set_src - set source address into descriptor
3464  */
3465 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3466                 dma_addr_t addr, int index)
3467 {
3468         struct ppc440spe_adma_chan *chan;
3469         dma_addr_t haddr = 0;
3470         struct ppc440spe_adma_desc_slot *iter = NULL;
3471
3472         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3473
3474         switch (chan->device->id) {
3475         case PPC440SPE_DMA0_ID:
3476         case PPC440SPE_DMA1_ID:
3477                 /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3478                  */
3479                 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3480                         /* RXOR-only or RXOR/WXOR operation */
3481                         int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3482                                 &sw_desc->flags) ?  2 : 3;
3483
3484                         if (index == 0) {
3485                                 /* 1st slot (RXOR) */
3486                                 /* setup sources region (R1-2-3, R1-2-4,
3487                                  * or R1-2-5)
3488                                  */
3489                                 if (test_bit(PPC440SPE_DESC_RXOR12,
3490                                                 &sw_desc->flags))
3491                                         haddr = DMA_RXOR12 <<
3492                                                 DMA_CUED_REGION_OFF;
3493                                 else if (test_bit(PPC440SPE_DESC_RXOR123,
3494                                     &sw_desc->flags))
3495                                         haddr = DMA_RXOR123 <<
3496                                                 DMA_CUED_REGION_OFF;
3497                                 else if (test_bit(PPC440SPE_DESC_RXOR124,
3498                                     &sw_desc->flags))
3499                                         haddr = DMA_RXOR124 <<
3500                                                 DMA_CUED_REGION_OFF;
3501                                 else if (test_bit(PPC440SPE_DESC_RXOR125,
3502                                     &sw_desc->flags))
3503                                         haddr = DMA_RXOR125 <<
3504                                                 DMA_CUED_REGION_OFF;
3505                                 else
3506                                         BUG();
3507                                 haddr |= DMA_CUED_XOR_BASE;
3508                                 iter = ppc440spe_get_group_entry(sw_desc, 0);
3509                         } else if (index < iskip) {
3510                                 /* 1st slot (RXOR)
3511                                  * shall actually set source address only once
3512                                  * instead of first <iskip>
3513                                  */
3514                                 iter = NULL;
3515                         } else {
3516                                 /* 2nd/3d and next slots (WXOR);
3517                                  * skip first slot with RXOR
3518                                  */
3519                                 haddr = DMA_CUED_XOR_HB;
3520                                 iter = ppc440spe_get_group_entry(sw_desc,
3521                                     index - iskip + sw_desc->dst_cnt);
3522                         }
3523                 } else {
3524                         int znum = 0;
3525
3526                         /* WXOR-only operation; skip first slots with
3527                          * zeroing destinations
3528                          */
3529                         if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3530                                 znum++;
3531                         if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3532                                 znum++;
3533
3534                         haddr = DMA_CUED_XOR_HB;
3535                         iter = ppc440spe_get_group_entry(sw_desc,
3536                                         index + znum);
3537                 }
3538
3539                 if (likely(iter)) {
3540                         ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3541
3542                         if (!index &&
3543                             test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3544                             sw_desc->dst_cnt == 2) {
3545                                 /* if we have two destinations for RXOR, then
3546                                  * setup source in the second descr too
3547                                  */
3548                                 iter = ppc440spe_get_group_entry(sw_desc, 1);
3549                                 ppc440spe_desc_set_src_addr(iter, chan, 0,
3550                                         haddr, addr);
3551                         }
3552                 }
3553                 break;
3554
3555         case PPC440SPE_XOR_ID:
3556                 /* DMA2 may do Biskup */
3557                 iter = sw_desc->group_head;
3558                 if (iter->dst_cnt == 2) {
3559                         /* both P & Q calculations required; set P src here */
3560                         ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3561
3562                         /* this is for Q */
3563                         iter = ppc440spe_get_group_entry(sw_desc,
3564                                 sw_desc->descs_per_op);
3565                 }
3566                 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3567                 break;
3568         }
3569 }
3570
3571 /**
3572  * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3573  */
3574 static void ppc440spe_adma_memcpy_xor_set_src(
3575                 struct ppc440spe_adma_desc_slot *sw_desc,
3576                 dma_addr_t addr, int index)
3577 {
3578         struct ppc440spe_adma_chan *chan;
3579
3580         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3581         sw_desc = sw_desc->group_head;
3582
3583         if (likely(sw_desc))
3584                 ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3585 }
3586
3587 /**
3588  * ppc440spe_adma_dma2rxor_inc_addr  -
3589  */
3590 static void ppc440spe_adma_dma2rxor_inc_addr(
3591                 struct ppc440spe_adma_desc_slot *desc,
3592                 struct ppc440spe_rxor *cursor, int index, int src_cnt)
3593 {
3594         cursor->addr_count++;
3595         if (index == src_cnt - 1) {
3596                 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3597         } else if (cursor->addr_count == XOR_MAX_OPS) {
3598                 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3599                 cursor->addr_count = 0;
3600                 cursor->desc_count++;
3601         }
3602 }
3603
3604 /**
3605  * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3606  */
3607 static int ppc440spe_adma_dma2rxor_prep_src(
3608                 struct ppc440spe_adma_desc_slot *hdesc,
3609                 struct ppc440spe_rxor *cursor, int index,
3610                 int src_cnt, u32 addr)
3611 {
3612         int rval = 0;
3613         u32 sign;
3614         struct ppc440spe_adma_desc_slot *desc = hdesc;
3615         int i;
3616
3617         for (i = 0; i < cursor->desc_count; i++) {
3618                 desc = list_entry(hdesc->chain_node.next,
3619                                   struct ppc440spe_adma_desc_slot,
3620                                   chain_node);
3621         }
3622
3623         switch (cursor->state) {
3624         case 0:
3625                 if (addr == cursor->addrl + cursor->len) {
3626                         /* direct RXOR */
3627                         cursor->state = 1;
3628                         cursor->xor_count++;
3629                         if (index == src_cnt-1) {
3630                                 ppc440spe_rxor_set_region(desc,
3631                                         cursor->addr_count,
3632                                         DMA_RXOR12 << DMA_CUED_REGION_OFF);
3633                                 ppc440spe_adma_dma2rxor_inc_addr(
3634                                         desc, cursor, index, src_cnt);
3635                         }
3636                 } else if (cursor->addrl == addr + cursor->len) {
3637                         /* reverse RXOR */
3638                         cursor->state = 1;
3639                         cursor->xor_count++;
3640                         set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3641                         if (index == src_cnt-1) {
3642                                 ppc440spe_rxor_set_region(desc,
3643                                         cursor->addr_count,
3644                                         DMA_RXOR12 << DMA_CUED_REGION_OFF);
3645                                 ppc440spe_adma_dma2rxor_inc_addr(
3646                                         desc, cursor, index, src_cnt);
3647                         }
3648                 } else {
3649                         printk(KERN_ERR "Cannot build "
3650                                 "DMA2 RXOR command block.\n");
3651                         BUG();
3652                 }
3653                 break;
3654         case 1:
3655                 sign = test_bit(cursor->addr_count,
3656                                 desc->reverse_flags)
3657                         ? -1 : 1;
3658                 if (index == src_cnt-2 || (sign == -1
3659                         && addr != cursor->addrl - 2*cursor->len)) {
3660                         cursor->state = 0;
3661                         cursor->xor_count = 1;
3662                         cursor->addrl = addr;
3663                         ppc440spe_rxor_set_region(desc,
3664                                 cursor->addr_count,
3665                                 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3666                         ppc440spe_adma_dma2rxor_inc_addr(
3667                                 desc, cursor, index, src_cnt);
3668                 } else if (addr == cursor->addrl + 2*sign*cursor->len) {
3669                         cursor->state = 2;
3670                         cursor->xor_count = 0;
3671                         ppc440spe_rxor_set_region(desc,
3672                                 cursor->addr_count,
3673                                 DMA_RXOR123 << DMA_CUED_REGION_OFF);
3674                         if (index == src_cnt-1) {
3675                                 ppc440spe_adma_dma2rxor_inc_addr(
3676                                         desc, cursor, index, src_cnt);
3677                         }
3678                 } else if (addr == cursor->addrl + 3*cursor->len) {
3679                         cursor->state = 2;
3680                         cursor->xor_count = 0;
3681                         ppc440spe_rxor_set_region(desc,
3682                                 cursor->addr_count,
3683                                 DMA_RXOR124 << DMA_CUED_REGION_OFF);
3684                         if (index == src_cnt-1) {
3685                                 ppc440spe_adma_dma2rxor_inc_addr(
3686                                         desc, cursor, index, src_cnt);
3687                         }
3688                 } else if (addr == cursor->addrl + 4*cursor->len) {
3689                         cursor->state = 2;
3690                         cursor->xor_count = 0;
3691                         ppc440spe_rxor_set_region(desc,
3692                                 cursor->addr_count,
3693                                 DMA_RXOR125 << DMA_CUED_REGION_OFF);
3694                         if (index == src_cnt-1) {
3695                                 ppc440spe_adma_dma2rxor_inc_addr(
3696                                         desc, cursor, index, src_cnt);
3697                         }
3698                 } else {
3699                         cursor->state = 0;
3700                         cursor->xor_count = 1;
3701                         cursor->addrl = addr;
3702                         ppc440spe_rxor_set_region(desc,
3703                                 cursor->addr_count,
3704                                 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3705                         ppc440spe_adma_dma2rxor_inc_addr(
3706                                 desc, cursor, index, src_cnt);
3707                 }
3708                 break;
3709         case 2:
3710                 cursor->state = 0;
3711                 cursor->addrl = addr;
3712                 cursor->xor_count++;
3713                 if (index) {
3714                         ppc440spe_adma_dma2rxor_inc_addr(
3715                                 desc, cursor, index, src_cnt);
3716                 }
3717                 break;
3718         }
3719
3720         return rval;
3721 }
3722
3723 /**
3724  * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3725  *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3726  */
3727 static void ppc440spe_adma_dma2rxor_set_src(
3728                 struct ppc440spe_adma_desc_slot *desc,
3729                 int index, dma_addr_t addr)
3730 {
3731         struct xor_cb *xcb = desc->hw_desc;
3732         int k = 0, op = 0, lop = 0;
3733
3734         /* get the RXOR operand which corresponds to index addr */
3735         while (op <= index) {
3736                 lop = op;
3737                 if (k == XOR_MAX_OPS) {
3738                         k = 0;
3739                         desc = list_entry(desc->chain_node.next,
3740                                 struct ppc440spe_adma_desc_slot, chain_node);
3741                         xcb = desc->hw_desc;
3742
3743                 }
3744                 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3745                     (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3746                         op += 2;
3747                 else
3748                         op += 3;
3749         }
3750
3751         BUG_ON(k < 1);
3752
3753         if (test_bit(k-1, desc->reverse_flags)) {
3754                 /* reverse operand order; put last op in RXOR group */
3755                 if (index == op - 1)
3756                         ppc440spe_rxor_set_src(desc, k - 1, addr);
3757         } else {
3758                 /* direct operand order; put first op in RXOR group */
3759                 if (index == lop)
3760                         ppc440spe_rxor_set_src(desc, k - 1, addr);
3761         }
3762 }
3763
3764 /**
3765  * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3766  *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3767  */
3768 static void ppc440spe_adma_dma2rxor_set_mult(
3769                 struct ppc440spe_adma_desc_slot *desc,
3770                 int index, u8 mult)
3771 {
3772         struct xor_cb *xcb = desc->hw_desc;
3773         int k = 0, op = 0, lop = 0;
3774
3775         /* get the RXOR operand which corresponds to index mult */
3776         while (op <= index) {
3777                 lop = op;
3778                 if (k == XOR_MAX_OPS) {
3779                         k = 0;
3780                         desc = list_entry(desc->chain_node.next,
3781                                           struct ppc440spe_adma_desc_slot,
3782                                           chain_node);
3783                         xcb = desc->hw_desc;
3784
3785                 }
3786                 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3787                     (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3788                         op += 2;
3789                 else
3790                         op += 3;
3791         }
3792
3793         BUG_ON(k < 1);
3794         if (test_bit(k-1, desc->reverse_flags)) {
3795                 /* reverse order */
3796                 ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3797         } else {
3798                 /* direct order */
3799                 ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3800         }
3801 }
3802
3803 /**
3804  * ppc440spe_init_rxor_cursor -
3805  */
3806 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3807 {
3808         memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3809         cursor->state = 2;
3810 }
3811
3812 /**
3813  * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3814  * descriptor for the PQXOR operation
3815  */
3816 static void ppc440spe_adma_pq_set_src_mult(
3817                 struct ppc440spe_adma_desc_slot *sw_desc,
3818                 unsigned char mult, int index, int dst_pos)
3819 {
3820         struct ppc440spe_adma_chan *chan;
3821         u32 mult_idx, mult_dst;
3822         struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3823
3824         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3825
3826         switch (chan->device->id) {
3827         case PPC440SPE_DMA0_ID:
3828         case PPC440SPE_DMA1_ID:
3829                 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3830                         int region = test_bit(PPC440SPE_DESC_RXOR12,
3831                                         &sw_desc->flags) ? 2 : 3;
3832
3833                         if (index < region) {
3834                                 /* RXOR multipliers */
3835                                 iter = ppc440spe_get_group_entry(sw_desc,
3836                                         sw_desc->dst_cnt - 1);
3837                                 if (sw_desc->dst_cnt == 2)
3838                                         iter1 = ppc440spe_get_group_entry(
3839                                                         sw_desc, 0);
3840
3841                                 mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3842                                 mult_dst = DMA_CDB_SG_SRC;
3843                         } else {
3844                                 /* WXOR multiplier */
3845                                 iter = ppc440spe_get_group_entry(sw_desc,
3846                                                         index - region +
3847                                                         sw_desc->dst_cnt);
3848                                 mult_idx = DMA_CUED_MULT1_OFF;
3849                                 mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3850                                                      DMA_CDB_SG_DST1;
3851                         }
3852                 } else {
3853                         int znum = 0;
3854
3855                         /* WXOR-only;
3856                          * skip first slots with destinations (if ZERO_DST has
3857                          * place)
3858                          */
3859                         if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3860                                 znum++;
3861                         if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3862                                 znum++;
3863
3864                         iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3865                         mult_idx = DMA_CUED_MULT1_OFF;
3866                         mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3867                 }
3868
3869                 if (likely(iter)) {
3870                         ppc440spe_desc_set_src_mult(iter, chan,
3871                                 mult_idx, mult_dst, mult);
3872
3873                         if (unlikely(iter1)) {
3874                                 /* if we have two destinations for RXOR, then
3875                                  * we've just set Q mult. Set-up P now.
3876                                  */
3877                                 ppc440spe_desc_set_src_mult(iter1, chan,
3878                                         mult_idx, mult_dst, 1);
3879                         }
3880
3881                 }
3882                 break;
3883
3884         case PPC440SPE_XOR_ID:
3885                 iter = sw_desc->group_head;
3886                 if (sw_desc->dst_cnt == 2) {
3887                         /* both P & Q calculations required; set P mult here */
3888                         ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3889
3890                         /* and then set Q mult */
3891                         iter = ppc440spe_get_group_entry(sw_desc,
3892                                sw_desc->descs_per_op);
3893                 }
3894                 ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3895                 break;
3896         }
3897 }
3898
3899 /**
3900  * ppc440spe_adma_free_chan_resources - free the resources allocated
3901  */
3902 static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3903 {
3904         struct ppc440spe_adma_chan *ppc440spe_chan;
3905         struct ppc440spe_adma_desc_slot *iter, *_iter;
3906         int in_use_descs = 0;
3907
3908         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3909         ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3910
3911         spin_lock_bh(&ppc440spe_chan->lock);
3912         list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3913                                         chain_node) {
3914                 in_use_descs++;
3915                 list_del(&iter->chain_node);
3916         }
3917         list_for_each_entry_safe_reverse(iter, _iter,
3918                         &ppc440spe_chan->all_slots, slot_node) {
3919                 list_del(&iter->slot_node);
3920                 kfree(iter);
3921                 ppc440spe_chan->slots_allocated--;
3922         }
3923         ppc440spe_chan->last_used = NULL;
3924
3925         dev_dbg(ppc440spe_chan->device->common.dev,
3926                 "ppc440spe adma%d %s slots_allocated %d\n",
3927                 ppc440spe_chan->device->id,
3928                 __func__, ppc440spe_chan->slots_allocated);
3929         spin_unlock_bh(&ppc440spe_chan->lock);
3930
3931         /* one is ok since we left it on there on purpose */
3932         if (in_use_descs > 1)
3933                 printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3934                         in_use_descs - 1);
3935 }
3936
3937 /**
3938  * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3939  * @chan: ADMA channel handle
3940  * @cookie: ADMA transaction identifier
3941  * @txstate: a holder for the current state of the channel
3942  */
3943 static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3944                         dma_cookie_t cookie, struct dma_tx_state *txstate)
3945 {
3946         struct ppc440spe_adma_chan *ppc440spe_chan;
3947         dma_cookie_t last_used;
3948         dma_cookie_t last_complete;
3949         enum dma_status ret;
3950
3951         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3952         last_used = chan->cookie;
3953         last_complete = ppc440spe_chan->completed_cookie;
3954
3955         dma_set_tx_state(txstate, last_complete, last_used, 0);
3956
3957         ret = dma_async_is_complete(cookie, last_complete, last_used);
3958         if (ret == DMA_SUCCESS)
3959                 return ret;
3960
3961         ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3962
3963         last_used = chan->cookie;
3964         last_complete = ppc440spe_chan->completed_cookie;
3965
3966         dma_set_tx_state(txstate, last_complete, last_used, 0);
3967
3968         return dma_async_is_complete(cookie, last_complete, last_used);
3969 }
3970
3971 /**
3972  * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3973  */
3974 static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3975 {
3976         struct ppc440spe_adma_chan *chan = data;
3977
3978         dev_dbg(chan->device->common.dev,
3979                 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3980
3981         tasklet_schedule(&chan->irq_tasklet);
3982         ppc440spe_adma_device_clear_eot_status(chan);
3983
3984         return IRQ_HANDLED;
3985 }
3986
3987 /**
3988  * ppc440spe_adma_err_handler - DMA error interrupt handler;
3989  *      do the same things as a eot handler
3990  */
3991 static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3992 {
3993         struct ppc440spe_adma_chan *chan = data;
3994
3995         dev_dbg(chan->device->common.dev,
3996                 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3997
3998         tasklet_schedule(&chan->irq_tasklet);
3999         ppc440spe_adma_device_clear_eot_status(chan);
4000
4001         return IRQ_HANDLED;
4002 }
4003
4004 /**
4005  * ppc440spe_test_callback - called when test operation has been done
4006  */
4007 static void ppc440spe_test_callback(void *unused)
4008 {
4009         complete(&ppc440spe_r6_test_comp);
4010 }
4011
4012 /**
4013  * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
4014  */
4015 static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
4016 {
4017         struct ppc440spe_adma_chan *ppc440spe_chan;
4018
4019         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4020         dev_dbg(ppc440spe_chan->device->common.dev,
4021                 "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
4022                 __func__, ppc440spe_chan->pending);
4023
4024         if (ppc440spe_chan->pending) {
4025                 ppc440spe_chan->pending = 0;
4026                 ppc440spe_chan_append(ppc440spe_chan);
4027         }
4028 }
4029
4030 /**
4031  * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
4032  *      use FIFOs (as opposite to chains used in XOR) so this is a XOR
4033  *      specific operation)
4034  */
4035 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
4036 {
4037         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
4038         dma_cookie_t cookie;
4039         int slot_cnt, slots_per_op;
4040
4041         dev_dbg(chan->device->common.dev,
4042                 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
4043
4044         spin_lock_bh(&chan->lock);
4045         slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
4046         sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
4047         if (sw_desc) {
4048                 group_start = sw_desc->group_head;
4049                 list_splice_init(&sw_desc->group_list, &chan->chain);
4050                 async_tx_ack(&sw_desc->async_tx);
4051                 ppc440spe_desc_init_null_xor(group_start);
4052
4053                 cookie = chan->common.cookie;
4054                 cookie++;
4055                 if (cookie <= 1)
4056                         cookie = 2;
4057
4058                 /* initialize the completed cookie to be less than
4059                  * the most recently used cookie
4060                  */
4061                 chan->completed_cookie = cookie - 1;
4062                 chan->common.cookie = sw_desc->async_tx.cookie = cookie;
4063
4064                 /* channel should not be busy */
4065                 BUG_ON(ppc440spe_chan_is_busy(chan));
4066
4067                 /* set the descriptor address */
4068                 ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
4069
4070                 /* run the descriptor */
4071                 ppc440spe_chan_run(chan);
4072         } else
4073                 printk(KERN_ERR "ppc440spe adma%d"
4074                         " failed to allocate null descriptor\n",
4075                         chan->device->id);
4076         spin_unlock_bh(&chan->lock);
4077 }
4078
4079 /**
4080  * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
4081  *      For this we just perform one WXOR operation with the same source
4082  *      and destination addresses, the GF-multiplier is 1; so if RAID-6
4083  *      capabilities are enabled then we'll get src/dst filled with zero.
4084  */
4085 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
4086 {
4087         struct ppc440spe_adma_desc_slot *sw_desc, *iter;
4088         struct page *pg;
4089         char *a;
4090         dma_addr_t dma_addr, addrs[2];
4091         unsigned long op = 0;
4092         int rval = 0;
4093
4094         set_bit(PPC440SPE_DESC_WXOR, &op);
4095
4096         pg = alloc_page(GFP_KERNEL);
4097         if (!pg)
4098                 return -ENOMEM;
4099
4100         spin_lock_bh(&chan->lock);
4101         sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
4102         if (sw_desc) {
4103                 /* 1 src, 1 dsr, int_ena, WXOR */
4104                 ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
4105                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
4106                         ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
4107                         iter->unmap_len = PAGE_SIZE;
4108                 }
4109         } else {
4110                 rval = -EFAULT;
4111                 spin_unlock_bh(&chan->lock);
4112                 goto exit;
4113         }
4114         spin_unlock_bh(&chan->lock);
4115
4116         /* Fill the test page with ones */
4117         memset(page_address(pg), 0xFF, PAGE_SIZE);
4118         dma_addr = dma_map_page(chan->device->dev, pg, 0,
4119                                 PAGE_SIZE, DMA_BIDIRECTIONAL);
4120
4121         /* Setup addresses */
4122         ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
4123         ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
4124         addrs[0] = dma_addr;
4125         addrs[1] = 0;
4126         ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
4127
4128         async_tx_ack(&sw_desc->async_tx);
4129         sw_desc->async_tx.callback = ppc440spe_test_callback;
4130         sw_desc->async_tx.callback_param = NULL;
4131
4132         init_completion(&ppc440spe_r6_test_comp);
4133
4134         ppc440spe_adma_tx_submit(&sw_desc->async_tx);
4135         ppc440spe_adma_issue_pending(&chan->common);
4136
4137         wait_for_completion(&ppc440spe_r6_test_comp);
4138
4139         /* Now check if the test page is zeroed */
4140         a = page_address(pg);
4141         if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
4142                 /* page is zero - RAID-6 enabled */
4143                 rval = 0;
4144         } else {
4145                 /* RAID-6 was not enabled */
4146                 rval = -EINVAL;
4147         }
4148 exit:
4149         __free_page(pg);
4150         return rval;
4151 }
4152
4153 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
4154 {
4155         switch (adev->id) {
4156         case PPC440SPE_DMA0_ID:
4157         case PPC440SPE_DMA1_ID:
4158                 dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
4159                 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4160                 dma_cap_set(DMA_MEMSET, adev->common.cap_mask);
4161                 dma_cap_set(DMA_PQ, adev->common.cap_mask);
4162                 dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
4163                 dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
4164                 break;
4165         case PPC440SPE_XOR_ID:
4166                 dma_cap_set(DMA_XOR, adev->common.cap_mask);
4167                 dma_cap_set(DMA_PQ, adev->common.cap_mask);
4168                 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4169                 adev->common.cap_mask = adev->common.cap_mask;
4170                 break;
4171         }
4172
4173         /* Set base routines */
4174         adev->common.device_alloc_chan_resources =
4175                                 ppc440spe_adma_alloc_chan_resources;
4176         adev->common.device_free_chan_resources =
4177                                 ppc440spe_adma_free_chan_resources;
4178         adev->common.device_tx_status = ppc440spe_adma_tx_status;
4179         adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
4180
4181         /* Set prep routines based on capability */
4182         if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
4183                 adev->common.device_prep_dma_memcpy =
4184                         ppc440spe_adma_prep_dma_memcpy;
4185         }
4186         if (dma_has_cap(DMA_MEMSET, adev->common.cap_mask)) {
4187                 adev->common.device_prep_dma_memset =
4188                         ppc440spe_adma_prep_dma_memset;
4189         }
4190         if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
4191                 adev->common.max_xor = XOR_MAX_OPS;
4192                 adev->common.device_prep_dma_xor =
4193                         ppc440spe_adma_prep_dma_xor;
4194         }
4195         if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
4196                 switch (adev->id) {
4197                 case PPC440SPE_DMA0_ID:
4198                         dma_set_maxpq(&adev->common,
4199                                 DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4200                         break;
4201                 case PPC440SPE_DMA1_ID:
4202                         dma_set_maxpq(&adev->common,
4203                                 DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4204                         break;
4205                 case PPC440SPE_XOR_ID:
4206                         adev->common.max_pq = XOR_MAX_OPS * 3;
4207                         break;
4208                 }
4209                 adev->common.device_prep_dma_pq =
4210                         ppc440spe_adma_prep_dma_pq;
4211         }
4212         if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
4213                 switch (adev->id) {
4214                 case PPC440SPE_DMA0_ID:
4215                         adev->common.max_pq = DMA0_FIFO_SIZE /
4216                                                 sizeof(struct dma_cdb);
4217                         break;
4218                 case PPC440SPE_DMA1_ID:
4219                         adev->common.max_pq = DMA1_FIFO_SIZE /
4220                                                 sizeof(struct dma_cdb);
4221                         break;
4222                 }
4223                 adev->common.device_prep_dma_pq_val =
4224                         ppc440spe_adma_prep_dma_pqzero_sum;
4225         }
4226         if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
4227                 switch (adev->id) {
4228                 case PPC440SPE_DMA0_ID:
4229                         adev->common.max_xor = DMA0_FIFO_SIZE /
4230                                                 sizeof(struct dma_cdb);
4231                         break;
4232                 case PPC440SPE_DMA1_ID:
4233                         adev->common.max_xor = DMA1_FIFO_SIZE /
4234                                                 sizeof(struct dma_cdb);
4235                         break;
4236                 }
4237                 adev->common.device_prep_dma_xor_val =
4238                         ppc440spe_adma_prep_dma_xor_zero_sum;
4239         }
4240         if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
4241                 adev->common.device_prep_dma_interrupt =
4242                         ppc440spe_adma_prep_dma_interrupt;
4243         }
4244         pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
4245           "( %s%s%s%s%s%s%s)\n",
4246           dev_name(adev->dev),
4247           dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
4248           dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
4249           dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
4250           dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
4251           dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
4252           dma_has_cap(DMA_MEMSET, adev->common.cap_mask)  ? "memset " : "",
4253           dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
4254 }
4255
4256 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
4257                                      struct ppc440spe_adma_chan *chan,
4258                                      int *initcode)
4259 {
4260         struct platform_device *ofdev;
4261         struct device_node *np;
4262         int ret;
4263
4264         ofdev = container_of(adev->dev, struct platform_device, dev);
4265         np = ofdev->dev.of_node;
4266         if (adev->id != PPC440SPE_XOR_ID) {
4267                 adev->err_irq = irq_of_parse_and_map(np, 1);
4268                 if (adev->err_irq == NO_IRQ) {
4269                         dev_warn(adev->dev, "no err irq resource?\n");
4270                         *initcode = PPC_ADMA_INIT_IRQ2;
4271                         adev->err_irq = -ENXIO;
4272                 } else
4273                         atomic_inc(&ppc440spe_adma_err_irq_ref);
4274         } else {
4275                 adev->err_irq = -ENXIO;
4276         }
4277
4278         adev->irq = irq_of_parse_and_map(np, 0);
4279         if (adev->irq == NO_IRQ) {
4280                 dev_err(adev->dev, "no irq resource\n");
4281                 *initcode = PPC_ADMA_INIT_IRQ1;
4282                 ret = -ENXIO;
4283                 goto err_irq_map;
4284         }
4285         dev_dbg(adev->dev, "irq %d, err irq %d\n",
4286                 adev->irq, adev->err_irq);
4287
4288         ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
4289                           0, dev_driver_string(adev->dev), chan);
4290         if (ret) {
4291                 dev_err(adev->dev, "can't request irq %d\n",
4292                         adev->irq);
4293                 *initcode = PPC_ADMA_INIT_IRQ1;
4294                 ret = -EIO;
4295                 goto err_req1;
4296         }
4297
4298         /* only DMA engines have a separate error IRQ
4299          * so it's Ok if err_irq < 0 in XOR engine case.
4300          */
4301         if (adev->err_irq > 0) {
4302                 /* both DMA engines share common error IRQ */
4303                 ret = request_irq(adev->err_irq,
4304                                   ppc440spe_adma_err_handler,
4305                                   IRQF_SHARED,
4306                                   dev_driver_string(adev->dev),
4307                                   chan);
4308                 if (ret) {
4309                         dev_err(adev->dev, "can't request irq %d\n",
4310                                 adev->err_irq);
4311                         *initcode = PPC_ADMA_INIT_IRQ2;
4312                         ret = -EIO;
4313                         goto err_req2;
4314                 }
4315         }
4316
4317         if (adev->id == PPC440SPE_XOR_ID) {
4318                 /* enable XOR engine interrupts */
4319                 iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4320                             XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
4321                             &adev->xor_reg->ier);
4322         } else {
4323                 u32 mask, enable;
4324
4325                 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4326                 if (!np) {
4327                         pr_err("%s: can't find I2O device tree node\n",
4328                                 __func__);
4329                         ret = -ENODEV;
4330                         goto err_req2;
4331                 }
4332                 adev->i2o_reg = of_iomap(np, 0);
4333                 if (!adev->i2o_reg) {
4334                         pr_err("%s: failed to map I2O registers\n", __func__);
4335                         of_node_put(np);
4336                         ret = -EINVAL;
4337                         goto err_req2;
4338                 }
4339                 of_node_put(np);
4340                 /* Unmask 'CS FIFO Attention' interrupts and
4341                  * enable generating interrupts on errors
4342                  */
4343                 enable = (adev->id == PPC440SPE_DMA0_ID) ?
4344                          ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4345                          ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4346                 mask = ioread32(&adev->i2o_reg->iopim) & enable;
4347                 iowrite32(mask, &adev->i2o_reg->iopim);
4348         }
4349         return 0;
4350
4351 err_req2:
4352         free_irq(adev->irq, chan);
4353 err_req1:
4354         irq_dispose_mapping(adev->irq);
4355 err_irq_map:
4356         if (adev->err_irq > 0) {
4357                 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
4358                         irq_dispose_mapping(adev->err_irq);
4359         }
4360         return ret;
4361 }
4362
4363 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
4364                                         struct ppc440spe_adma_chan *chan)
4365 {
4366         u32 mask, disable;
4367
4368         if (adev->id == PPC440SPE_XOR_ID) {
4369                 /* disable XOR engine interrupts */
4370                 mask = ioread32be(&adev->xor_reg->ier);
4371                 mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4372                           XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
4373                 iowrite32be(mask, &adev->xor_reg->ier);
4374         } else {
4375                 /* disable DMAx engine interrupts */
4376                 disable = (adev->id == PPC440SPE_DMA0_ID) ?
4377                           (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4378                           (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4379                 mask = ioread32(&adev->i2o_reg->iopim) | disable;
4380                 iowrite32(mask, &adev->i2o_reg->iopim);
4381         }
4382         free_irq(adev->irq, chan);
4383         irq_dispose_mapping(adev->irq);
4384         if (adev->err_irq > 0) {
4385                 free_irq(adev->err_irq, chan);
4386                 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4387                         irq_dispose_mapping(adev->err_irq);
4388                         iounmap(adev->i2o_reg);
4389                 }
4390         }
4391 }
4392
4393 /**
4394  * ppc440spe_adma_probe - probe the asynch device
4395  */
4396 static int __devinit ppc440spe_adma_probe(struct platform_device *ofdev)
4397 {
4398         struct device_node *np = ofdev->dev.of_node;
4399         struct resource res;
4400         struct ppc440spe_adma_device *adev;
4401         struct ppc440spe_adma_chan *chan;
4402         struct ppc_dma_chan_ref *ref, *_ref;
4403         int ret = 0, initcode = PPC_ADMA_INIT_OK;
4404         const u32 *idx;
4405         int len;
4406         void *regs;
4407         u32 id, pool_size;
4408
4409         if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4410                 id = PPC440SPE_XOR_ID;
4411                 /* As far as the XOR engine is concerned, it does not
4412                  * use FIFOs but uses linked list. So there is no dependency
4413                  * between pool size to allocate and the engine configuration.
4414                  */
4415                 pool_size = PAGE_SIZE << 1;
4416         } else {
4417                 /* it is DMA0 or DMA1 */
4418                 idx = of_get_property(np, "cell-index", &len);
4419                 if (!idx || (len != sizeof(u32))) {
4420                         dev_err(&ofdev->dev, "Device node %s has missing "
4421                                 "or invalid cell-index property\n",
4422                                 np->full_name);
4423                         return -EINVAL;
4424                 }
4425                 id = *idx;
4426                 /* DMA0,1 engines use FIFO to maintain CDBs, so we
4427                  * should allocate the pool accordingly to size of this
4428                  * FIFO. Thus, the pool size depends on the FIFO depth:
4429                  * how much CDBs pointers the FIFO may contain then so
4430                  * much CDBs we should provide in the pool.
4431                  * That is
4432                  *   CDB size = 32B;
4433                  *   CDBs number = (DMA0_FIFO_SIZE >> 3);
4434                  *   Pool size = CDBs number * CDB size =
4435                  *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4436                  */
4437                 pool_size = (id == PPC440SPE_DMA0_ID) ?
4438                             DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4439                 pool_size <<= 2;
4440         }
4441
4442         if (of_address_to_resource(np, 0, &res)) {
4443                 dev_err(&ofdev->dev, "failed to get memory resource\n");
4444                 initcode = PPC_ADMA_INIT_MEMRES;
4445                 ret = -ENODEV;
4446                 goto out;
4447         }
4448
4449         if (!request_mem_region(res.start, resource_size(&res),
4450                                 dev_driver_string(&ofdev->dev))) {
4451                 dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4452                         &res);
4453                 initcode = PPC_ADMA_INIT_MEMREG;
4454                 ret = -EBUSY;
4455                 goto out;
4456         }
4457
4458         /* create a device */
4459         adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4460         if (!adev) {
4461                 dev_err(&ofdev->dev, "failed to allocate device\n");
4462                 initcode = PPC_ADMA_INIT_ALLOC;
4463                 ret = -ENOMEM;
4464                 goto err_adev_alloc;
4465         }
4466
4467         adev->id = id;
4468         adev->pool_size = pool_size;
4469         /* allocate coherent memory for hardware descriptors */
4470         adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4471                                         adev->pool_size, &adev->dma_desc_pool,
4472                                         GFP_KERNEL);
4473         if (adev->dma_desc_pool_virt == NULL) {
4474                 dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4475                         "memory for hardware descriptors\n",
4476                         adev->pool_size);
4477                 initcode = PPC_ADMA_INIT_COHERENT;
4478                 ret = -ENOMEM;
4479                 goto err_dma_alloc;
4480         }
4481         dev_dbg(&ofdev->dev, "allocted descriptor pool virt 0x%p phys 0x%llx\n",
4482                 adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4483
4484         regs = ioremap(res.start, resource_size(&res));
4485         if (!regs) {
4486                 dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4487                 goto err_regs_alloc;
4488         }
4489
4490         if (adev->id == PPC440SPE_XOR_ID) {
4491                 adev->xor_reg = regs;
4492                 /* Reset XOR */
4493                 iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4494                 iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4495         } else {
4496                 size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4497                                    DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4498                 adev->dma_reg = regs;
4499                 /* DMAx_FIFO_SIZE is defined in bytes,
4500                  * <fsiz> - is defined in number of CDB pointers (8byte).
4501                  * DMA FIFO Length = CSlength + CPlength, where
4502                  * CSlength = CPlength = (fsiz + 1) * 8.
4503                  */
4504                 iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4505                           &adev->dma_reg->fsiz);
4506                 /* Configure DMA engine */
4507                 iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4508                           &adev->dma_reg->cfg);
4509                 /* Clear Status */
4510                 iowrite32(~0, &adev->dma_reg->dsts);
4511         }
4512
4513         adev->dev = &ofdev->dev;
4514         adev->common.dev = &ofdev->dev;
4515         INIT_LIST_HEAD(&adev->common.channels);
4516         dev_set_drvdata(&ofdev->dev, adev);
4517
4518         /* create a channel */
4519         chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4520         if (!chan) {
4521                 dev_err(&ofdev->dev, "can't allocate channel structure\n");
4522                 initcode = PPC_ADMA_INIT_CHANNEL;
4523                 ret = -ENOMEM;
4524                 goto err_chan_alloc;
4525         }
4526
4527         spin_lock_init(&chan->lock);
4528         INIT_LIST_HEAD(&chan->chain);
4529         INIT_LIST_HEAD(&chan->all_slots);
4530         chan->device = adev;
4531         chan->common.device = &adev->common;
4532         list_add_tail(&chan->common.device_node, &adev->common.channels);
4533         tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4534                      (unsigned long)chan);
4535
4536         /* allocate and map helper pages for async validation or
4537          * async_mult/async_sum_product operations on DMA0/1.
4538          */
4539         if (adev->id != PPC440SPE_XOR_ID) {
4540                 chan->pdest_page = alloc_page(GFP_KERNEL);
4541                 chan->qdest_page = alloc_page(GFP_KERNEL);
4542                 if (!chan->pdest_page ||
4543                     !chan->qdest_page) {
4544                         if (chan->pdest_page)
4545                                 __free_page(chan->pdest_page);
4546                         if (chan->qdest_page)
4547                                 __free_page(chan->qdest_page);
4548                         ret = -ENOMEM;
4549                         goto err_page_alloc;
4550                 }
4551                 chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4552                                            PAGE_SIZE, DMA_BIDIRECTIONAL);
4553                 chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4554                                            PAGE_SIZE, DMA_BIDIRECTIONAL);
4555         }
4556
4557         ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4558         if (ref) {
4559                 ref->chan = &chan->common;
4560                 INIT_LIST_HEAD(&ref->node);
4561                 list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4562         } else {
4563                 dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4564                 ret = -ENOMEM;
4565                 goto err_ref_alloc;
4566         }
4567
4568         ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4569         if (ret)
4570                 goto err_irq;
4571
4572         ppc440spe_adma_init_capabilities(adev);
4573
4574         ret = dma_async_device_register(&adev->common);
4575         if (ret) {
4576                 initcode = PPC_ADMA_INIT_REGISTER;
4577                 dev_err(&ofdev->dev, "failed to register dma device\n");
4578                 goto err_dev_reg;
4579         }
4580
4581         goto out;
4582
4583 err_dev_reg:
4584         ppc440spe_adma_release_irqs(adev, chan);
4585 err_irq:
4586         list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4587                 if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4588                         list_del(&ref->node);
4589                         kfree(ref);
4590                 }
4591         }
4592 err_ref_alloc:
4593         if (adev->id != PPC440SPE_XOR_ID) {
4594                 dma_unmap_page(&ofdev->dev, chan->pdest,
4595                                PAGE_SIZE, DMA_BIDIRECTIONAL);
4596                 dma_unmap_page(&ofdev->dev, chan->qdest,
4597                                PAGE_SIZE, DMA_BIDIRECTIONAL);
4598                 __free_page(chan->pdest_page);
4599                 __free_page(chan->qdest_page);
4600         }
4601 err_page_alloc:
4602         kfree(chan);
4603 err_chan_alloc:
4604         if (adev->id == PPC440SPE_XOR_ID)
4605                 iounmap(adev->xor_reg);
4606         else
4607                 iounmap(adev->dma_reg);
4608 err_regs_alloc:
4609         dma_free_coherent(adev->dev, adev->pool_size,
4610                           adev->dma_desc_pool_virt,
4611                           adev->dma_desc_pool);
4612 err_dma_alloc:
4613         kfree(adev);
4614 err_adev_alloc:
4615         release_mem_region(res.start, resource_size(&res));
4616 out:
4617         if (id < PPC440SPE_ADMA_ENGINES_NUM)
4618                 ppc440spe_adma_devices[id] = initcode;
4619
4620         return ret;
4621 }
4622
4623 /**
4624  * ppc440spe_adma_remove - remove the asynch device
4625  */
4626 static int __devexit ppc440spe_adma_remove(struct platform_device *ofdev)
4627 {
4628         struct ppc440spe_adma_device *adev = dev_get_drvdata(&ofdev->dev);
4629         struct device_node *np = ofdev->dev.of_node;
4630         struct resource res;
4631         struct dma_chan *chan, *_chan;
4632         struct ppc_dma_chan_ref *ref, *_ref;
4633         struct ppc440spe_adma_chan *ppc440spe_chan;
4634
4635         dev_set_drvdata(&ofdev->dev, NULL);
4636         if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4637                 ppc440spe_adma_devices[adev->id] = -1;
4638
4639         dma_async_device_unregister(&adev->common);
4640
4641         list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4642                                  device_node) {
4643                 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4644                 ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4645                 tasklet_kill(&ppc440spe_chan->irq_tasklet);
4646                 if (adev->id != PPC440SPE_XOR_ID) {
4647                         dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4648                                         PAGE_SIZE, DMA_BIDIRECTIONAL);
4649                         dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4650                                         PAGE_SIZE, DMA_BIDIRECTIONAL);
4651                         __free_page(ppc440spe_chan->pdest_page);
4652                         __free_page(ppc440spe_chan->qdest_page);
4653                 }
4654                 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4655                                          node) {
4656                         if (ppc440spe_chan ==
4657                             to_ppc440spe_adma_chan(ref->chan)) {
4658                                 list_del(&ref->node);
4659                                 kfree(ref);
4660                         }
4661                 }
4662                 list_del(&chan->device_node);
4663                 kfree(ppc440spe_chan);
4664         }
4665
4666         dma_free_coherent(adev->dev, adev->pool_size,
4667                           adev->dma_desc_pool_virt, adev->dma_desc_pool);
4668         if (adev->id == PPC440SPE_XOR_ID)
4669                 iounmap(adev->xor_reg);
4670         else
4671                 iounmap(adev->dma_reg);
4672         of_address_to_resource(np, 0, &res);
4673         release_mem_region(res.start, resource_size(&res));
4674         kfree(adev);
4675         return 0;
4676 }
4677
4678 /*
4679  * /sys driver interface to enable h/w RAID-6 capabilities
4680  * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4681  * directory are "devices", "enable" and "poly".
4682  * "devices" shows available engines.
4683  * "enable" is used to enable RAID-6 capabilities or to check
4684  * whether these has been activated.
4685  * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4686  */
4687
4688 static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
4689 {
4690         ssize_t size = 0;
4691         int i;
4692
4693         for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4694                 if (ppc440spe_adma_devices[i] == -1)
4695                         continue;
4696                 size += snprintf(buf + size, PAGE_SIZE - size,
4697                                  "PPC440SP(E)-ADMA.%d: %s\n", i,
4698                                  ppc_adma_errors[ppc440spe_adma_devices[i]]);
4699         }
4700         return size;
4701 }
4702
4703 static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
4704 {
4705         return snprintf(buf, PAGE_SIZE,
4706                         "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4707                         ppc440spe_r6_enabled ? "EN" : "DIS");
4708 }
4709
4710 static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
4711                                         const char *buf, size_t count)
4712 {
4713         unsigned long val;
4714
4715         if (!count || count > 11)
4716                 return -EINVAL;
4717
4718         if (!ppc440spe_r6_tchan)
4719                 return -EFAULT;
4720
4721         /* Write a key */
4722         sscanf(buf, "%lx", &val);
4723         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4724         isync();
4725
4726         /* Verify whether it really works now */
4727         if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4728                 pr_info("PPC440SP(e) RAID-6 has been activated "
4729                         "successfully\n");
4730                 ppc440spe_r6_enabled = 1;
4731         } else {
4732                 pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4733                         " Error key ?\n");
4734                 ppc440spe_r6_enabled = 0;
4735         }
4736         return count;
4737 }
4738
4739 static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
4740 {
4741         ssize_t size = 0;
4742         u32 reg;
4743
4744 #ifdef CONFIG_440SP
4745         /* 440SP has fixed polynomial */
4746         reg = 0x4d;
4747 #else
4748         reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4749         reg >>= MQ0_CFBHL_POLY;
4750         reg &= 0xFF;
4751 #endif
4752
4753         size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4754                         "uses 0x1%02x polynomial.\n", reg);
4755         return size;
4756 }
4757
4758 static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
4759                                       const char *buf, size_t count)
4760 {
4761         unsigned long reg, val;
4762
4763 #ifdef CONFIG_440SP
4764         /* 440SP uses default 0x14D polynomial only */
4765         return -EINVAL;
4766 #endif
4767
4768         if (!count || count > 6)
4769                 return -EINVAL;
4770
4771         /* e.g., 0x14D or 0x11D */
4772         sscanf(buf, "%lx", &val);
4773
4774         if (val & ~0x1FF)
4775                 return -EINVAL;
4776
4777         val &= 0xFF;
4778         reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4779         reg &= ~(0xFF << MQ0_CFBHL_POLY);
4780         reg |= val << MQ0_CFBHL_POLY;
4781         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4782
4783         return count;
4784 }
4785
4786 static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
4787 static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
4788                    store_ppc440spe_r6enable);
4789 static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
4790                    store_ppc440spe_r6poly);
4791
4792 /*
4793  * Common initialisation for RAID engines; allocate memory for
4794  * DMAx FIFOs, perform configuration common for all DMA engines.
4795  * Further DMA engine specific configuration is done at probe time.
4796  */
4797 static int ppc440spe_configure_raid_devices(void)
4798 {
4799         struct device_node *np;
4800         struct resource i2o_res;
4801         struct i2o_regs __iomem *i2o_reg;
4802         dcr_host_t i2o_dcr_host;
4803         unsigned int dcr_base, dcr_len;
4804         int i, ret;
4805
4806         np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4807         if (!np) {
4808                 pr_err("%s: can't find I2O device tree node\n",
4809                         __func__);
4810                 return -ENODEV;
4811         }
4812
4813         if (of_address_to_resource(np, 0, &i2o_res)) {
4814                 of_node_put(np);
4815                 return -EINVAL;
4816         }
4817
4818         i2o_reg = of_iomap(np, 0);
4819         if (!i2o_reg) {
4820                 pr_err("%s: failed to map I2O registers\n", __func__);
4821                 of_node_put(np);
4822                 return -EINVAL;
4823         }
4824
4825         /* Get I2O DCRs base */
4826         dcr_base = dcr_resource_start(np, 0);
4827         dcr_len = dcr_resource_len(np, 0);
4828         if (!dcr_base && !dcr_len) {
4829                 pr_err("%s: can't get DCR registers base/len!\n",
4830                         np->full_name);
4831                 of_node_put(np);
4832                 iounmap(i2o_reg);
4833                 return -ENODEV;
4834         }
4835
4836         i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4837         if (!DCR_MAP_OK(i2o_dcr_host)) {
4838                 pr_err("%s: failed to map DCRs!\n", np->full_name);
4839                 of_node_put(np);
4840                 iounmap(i2o_reg);
4841                 return -ENODEV;
4842         }
4843         of_node_put(np);
4844
4845         /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4846          * the base address of FIFO memory space.
4847          * Actually we need twice more physical memory than programmed in the
4848          * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4849          */
4850         ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4851                                          GFP_KERNEL);
4852         if (!ppc440spe_dma_fifo_buf) {
4853                 pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4854                 iounmap(i2o_reg);
4855                 dcr_unmap(i2o_dcr_host, dcr_len);
4856                 return -ENOMEM;
4857         }
4858
4859         /*
4860          * Configure h/w
4861          */
4862         /* Reset I2O/DMA */
4863         mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4864         mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4865
4866         /* Setup the base address of mmaped registers */
4867         dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4868         dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4869                                                 I2O_REG_ENABLE);
4870         dcr_unmap(i2o_dcr_host, dcr_len);
4871
4872         /* Setup FIFO memory space base address */
4873         iowrite32(0, &i2o_reg->ifbah);
4874         iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4875
4876         /* set zero FIFO size for I2O, so the whole
4877          * ppc440spe_dma_fifo_buf is used by DMAs.
4878          * DMAx_FIFOs will be configured while probe.
4879          */
4880         iowrite32(0, &i2o_reg->ifsiz);
4881         iounmap(i2o_reg);
4882
4883         /* To prepare WXOR/RXOR functionality we need access to
4884          * Memory Queue Module DCRs (finally it will be enabled
4885          * via /sys interface of the ppc440spe ADMA driver).
4886          */
4887         np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4888         if (!np) {
4889                 pr_err("%s: can't find MQ device tree node\n",
4890                         __func__);
4891                 ret = -ENODEV;
4892                 goto out_free;
4893         }
4894
4895         /* Get MQ DCRs base */
4896         dcr_base = dcr_resource_start(np, 0);
4897         dcr_len = dcr_resource_len(np, 0);
4898         if (!dcr_base && !dcr_len) {
4899                 pr_err("%s: can't get DCR registers base/len!\n",
4900                         np->full_name);
4901                 ret = -ENODEV;
4902                 goto out_mq;
4903         }
4904
4905         ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4906         if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4907                 pr_err("%s: failed to map DCRs!\n", np->full_name);
4908                 ret = -ENODEV;
4909                 goto out_mq;
4910         }
4911         of_node_put(np);
4912         ppc440spe_mq_dcr_len = dcr_len;
4913
4914         /* Set HB alias */
4915         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4916
4917         /* Set:
4918          * - LL transaction passing limit to 1;
4919          * - Memory controller cycle limit to 1;
4920          * - Galois Polynomial to 0x14d (default)
4921          */
4922         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4923                   (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4924                   (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4925
4926         atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4927         for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4928                 ppc440spe_adma_devices[i] = -1;
4929
4930         return 0;
4931
4932 out_mq:
4933         of_node_put(np);
4934 out_free:
4935         kfree(ppc440spe_dma_fifo_buf);
4936         return ret;
4937 }
4938
4939 static const struct of_device_id ppc440spe_adma_of_match[] __devinitconst = {
4940         { .compatible   = "ibm,dma-440spe", },
4941         { .compatible   = "amcc,xor-accelerator", },
4942         {},
4943 };
4944 MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4945
4946 static struct platform_driver ppc440spe_adma_driver = {
4947         .probe = ppc440spe_adma_probe,
4948         .remove = __devexit_p(ppc440spe_adma_remove),
4949         .driver = {
4950                 .name = "PPC440SP(E)-ADMA",
4951                 .owner = THIS_MODULE,
4952                 .of_match_table = ppc440spe_adma_of_match,
4953         },
4954 };
4955
4956 static __init int ppc440spe_adma_init(void)
4957 {
4958         int ret;
4959
4960         ret = ppc440spe_configure_raid_devices();
4961         if (ret)
4962                 return ret;
4963
4964         ret = platform_driver_register(&ppc440spe_adma_driver);
4965         if (ret) {
4966                 pr_err("%s: failed to register platform driver\n",
4967                         __func__);
4968                 goto out_reg;
4969         }
4970
4971         /* Initialization status */
4972         ret = driver_create_file(&ppc440spe_adma_driver.driver,
4973                                  &driver_attr_devices);
4974         if (ret)
4975                 goto out_dev;
4976
4977         /* RAID-6 h/w enable entry */
4978         ret = driver_create_file(&ppc440spe_adma_driver.driver,
4979                                  &driver_attr_enable);
4980         if (ret)
4981                 goto out_en;
4982
4983         /* GF polynomial to use */
4984         ret = driver_create_file(&ppc440spe_adma_driver.driver,
4985                                  &driver_attr_poly);
4986         if (!ret)
4987                 return ret;
4988
4989         driver_remove_file(&ppc440spe_adma_driver.driver,
4990                            &driver_attr_enable);
4991 out_en:
4992         driver_remove_file(&ppc440spe_adma_driver.driver,
4993                            &driver_attr_devices);
4994 out_dev:
4995         /* User will not be able to enable h/w RAID-6 */
4996         pr_err("%s: failed to create RAID-6 driver interface\n",
4997                 __func__);
4998         platform_driver_unregister(&ppc440spe_adma_driver);
4999 out_reg:
5000         dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
5001         kfree(ppc440spe_dma_fifo_buf);
5002         return ret;
5003 }
5004
5005 static void __exit ppc440spe_adma_exit(void)
5006 {
5007         driver_remove_file(&ppc440spe_adma_driver.driver,
5008                            &driver_attr_poly);
5009         driver_remove_file(&ppc440spe_adma_driver.driver,
5010                            &driver_attr_enable);
5011         driver_remove_file(&ppc440spe_adma_driver.driver,
5012                            &driver_attr_devices);
5013         platform_driver_unregister(&ppc440spe_adma_driver);
5014         dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
5015         kfree(ppc440spe_dma_fifo_buf);
5016 }
5017
5018 arch_initcall(ppc440spe_adma_init);
5019 module_exit(ppc440spe_adma_exit);
5020
5021 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
5022 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
5023 MODULE_LICENSE("GPL");