Merge git://github.com/herbertx/crypto
[pandora-kernel.git] / drivers / crypto / picoxcell_crypto.c
1 /*
2  * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17  */
18 #include <crypto/aead.h>
19 #include <crypto/aes.h>
20 #include <crypto/algapi.h>
21 #include <crypto/authenc.h>
22 #include <crypto/des.h>
23 #include <crypto/md5.h>
24 #include <crypto/sha.h>
25 #include <crypto/internal/skcipher.h>
26 #include <linux/clk.h>
27 #include <linux/crypto.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/err.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/list.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/scatterlist.h>
42 #include <linux/sched.h>
43 #include <linux/slab.h>
44 #include <linux/timer.h>
45
46 #include "picoxcell_crypto_regs.h"
47
48 /*
49  * The threshold for the number of entries in the CMD FIFO available before
50  * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
51  * number of interrupts raised to the CPU.
52  */
53 #define CMD0_IRQ_THRESHOLD   1
54
55 /*
56  * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
57  * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
58  * When there are packets in flight but lower than the threshold, we enable
59  * the timer and at expiry, attempt to remove any processed packets from the
60  * queue and if there are still packets left, schedule the timer again.
61  */
62 #define PACKET_TIMEOUT      1
63
64 /* The priority to register each algorithm with. */
65 #define SPACC_CRYPTO_ALG_PRIORITY       10000
66
67 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN  16
68 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
69 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ   64
70 #define SPACC_CRYPTO_IPSEC_MAX_CTXS     32
71 #define SPACC_CRYPTO_IPSEC_FIFO_SZ      32
72 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ    64
73 #define SPACC_CRYPTO_L2_HASH_PG_SZ      64
74 #define SPACC_CRYPTO_L2_MAX_CTXS        128
75 #define SPACC_CRYPTO_L2_FIFO_SZ         128
76
77 #define MAX_DDT_LEN                     16
78
79 /* DDT format. This must match the hardware DDT format exactly. */
80 struct spacc_ddt {
81         dma_addr_t      p;
82         u32             len;
83 };
84
85 /*
86  * Asynchronous crypto request structure.
87  *
88  * This structure defines a request that is either queued for processing or
89  * being processed.
90  */
91 struct spacc_req {
92         struct list_head                list;
93         struct spacc_engine             *engine;
94         struct crypto_async_request     *req;
95         int                             result;
96         bool                            is_encrypt;
97         unsigned                        ctx_id;
98         dma_addr_t                      src_addr, dst_addr;
99         struct spacc_ddt                *src_ddt, *dst_ddt;
100         void                            (*complete)(struct spacc_req *req);
101
102         /* AEAD specific bits. */
103         u8                              *giv;
104         size_t                          giv_len;
105         dma_addr_t                      giv_pa;
106 };
107
108 struct spacc_engine {
109         void __iomem                    *regs;
110         struct list_head                pending;
111         int                             next_ctx;
112         spinlock_t                      hw_lock;
113         int                             in_flight;
114         struct list_head                completed;
115         struct list_head                in_progress;
116         struct tasklet_struct           complete;
117         unsigned long                   fifo_sz;
118         void __iomem                    *cipher_ctx_base;
119         void __iomem                    *hash_key_base;
120         struct spacc_alg                *algs;
121         unsigned                        num_algs;
122         struct list_head                registered_algs;
123         size_t                          cipher_pg_sz;
124         size_t                          hash_pg_sz;
125         const char                      *name;
126         struct clk                      *clk;
127         struct device                   *dev;
128         unsigned                        max_ctxs;
129         struct timer_list               packet_timeout;
130         unsigned                        stat_irq_thresh;
131         struct dma_pool                 *req_pool;
132 };
133
134 /* Algorithm type mask. */
135 #define SPACC_CRYPTO_ALG_MASK           0x7
136
137 /* SPACC definition of a crypto algorithm. */
138 struct spacc_alg {
139         unsigned long                   ctrl_default;
140         unsigned long                   type;
141         struct crypto_alg               alg;
142         struct spacc_engine             *engine;
143         struct list_head                entry;
144         int                             key_offs;
145         int                             iv_offs;
146 };
147
148 /* Generic context structure for any algorithm type. */
149 struct spacc_generic_ctx {
150         struct spacc_engine             *engine;
151         int                             flags;
152         int                             key_offs;
153         int                             iv_offs;
154 };
155
156 /* Block cipher context. */
157 struct spacc_ablk_ctx {
158         struct spacc_generic_ctx        generic;
159         u8                              key[AES_MAX_KEY_SIZE];
160         u8                              key_len;
161         /*
162          * The fallback cipher. If the operation can't be done in hardware,
163          * fallback to a software version.
164          */
165         struct crypto_ablkcipher        *sw_cipher;
166 };
167
168 /* AEAD cipher context. */
169 struct spacc_aead_ctx {
170         struct spacc_generic_ctx        generic;
171         u8                              cipher_key[AES_MAX_KEY_SIZE];
172         u8                              hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
173         u8                              cipher_key_len;
174         u8                              hash_key_len;
175         struct crypto_aead              *sw_cipher;
176         size_t                          auth_size;
177         u8                              salt[AES_BLOCK_SIZE];
178 };
179
180 static int spacc_ablk_submit(struct spacc_req *req);
181
182 static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
183 {
184         return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
185 }
186
187 static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
188 {
189         u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
190
191         return fifo_stat & SPA_FIFO_CMD_FULL;
192 }
193
194 /*
195  * Given a cipher context, and a context number, get the base address of the
196  * context page.
197  *
198  * Returns the address of the context page where the key/context may
199  * be written.
200  */
201 static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
202                                                 unsigned indx,
203                                                 bool is_cipher_ctx)
204 {
205         return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
206                         (indx * ctx->engine->cipher_pg_sz) :
207                 ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
208 }
209
210 /* The context pages can only be written with 32-bit accesses. */
211 static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
212                                  unsigned count)
213 {
214         const u32 *src32 = (const u32 *) src;
215
216         while (count--)
217                 writel(*src32++, dst++);
218 }
219
220 static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
221                                    void __iomem *page_addr, const u8 *key,
222                                    size_t key_len, const u8 *iv, size_t iv_len)
223 {
224         void __iomem *key_ptr = page_addr + ctx->key_offs;
225         void __iomem *iv_ptr = page_addr + ctx->iv_offs;
226
227         memcpy_toio32(key_ptr, key, key_len / 4);
228         memcpy_toio32(iv_ptr, iv, iv_len / 4);
229 }
230
231 /*
232  * Load a context into the engines context memory.
233  *
234  * Returns the index of the context page where the context was loaded.
235  */
236 static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
237                                const u8 *ciph_key, size_t ciph_len,
238                                const u8 *iv, size_t ivlen, const u8 *hash_key,
239                                size_t hash_len)
240 {
241         unsigned indx = ctx->engine->next_ctx++;
242         void __iomem *ciph_page_addr, *hash_page_addr;
243
244         ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
245         hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
246
247         ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
248         spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
249                                ivlen);
250         writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
251                (1 << SPA_KEY_SZ_CIPHER_OFFSET),
252                ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
253
254         if (hash_key) {
255                 memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
256                 writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
257                        ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
258         }
259
260         return indx;
261 }
262
263 /* Count the number of scatterlist entries in a scatterlist. */
264 static int sg_count(struct scatterlist *sg_list, int nbytes)
265 {
266         struct scatterlist *sg = sg_list;
267         int sg_nents = 0;
268
269         while (nbytes > 0) {
270                 ++sg_nents;
271                 nbytes -= sg->length;
272                 sg = sg_next(sg);
273         }
274
275         return sg_nents;
276 }
277
278 static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
279 {
280         ddt->p = phys;
281         ddt->len = len;
282 }
283
284 /*
285  * Take a crypto request and scatterlists for the data and turn them into DDTs
286  * for passing to the crypto engines. This also DMA maps the data so that the
287  * crypto engines can DMA to/from them.
288  */
289 static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
290                                          struct scatterlist *payload,
291                                          unsigned nbytes,
292                                          enum dma_data_direction dir,
293                                          dma_addr_t *ddt_phys)
294 {
295         unsigned nents, mapped_ents;
296         struct scatterlist *cur;
297         struct spacc_ddt *ddt;
298         int i;
299
300         nents = sg_count(payload, nbytes);
301         mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
302
303         if (mapped_ents + 1 > MAX_DDT_LEN)
304                 goto out;
305
306         ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
307         if (!ddt)
308                 goto out;
309
310         for_each_sg(payload, cur, mapped_ents, i)
311                 ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
312         ddt_set(&ddt[mapped_ents], 0, 0);
313
314         return ddt;
315
316 out:
317         dma_unmap_sg(engine->dev, payload, nents, dir);
318         return NULL;
319 }
320
321 static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv)
322 {
323         struct aead_request *areq = container_of(req->req, struct aead_request,
324                                                  base);
325         struct spacc_engine *engine = req->engine;
326         struct spacc_ddt *src_ddt, *dst_ddt;
327         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq));
328         unsigned nents = sg_count(areq->src, areq->cryptlen);
329         dma_addr_t iv_addr;
330         struct scatterlist *cur;
331         int i, dst_ents, src_ents, assoc_ents;
332         u8 *iv = giv ? giv : areq->iv;
333
334         src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
335         if (!src_ddt)
336                 return -ENOMEM;
337
338         dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
339         if (!dst_ddt) {
340                 dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
341                 return -ENOMEM;
342         }
343
344         req->src_ddt = src_ddt;
345         req->dst_ddt = dst_ddt;
346
347         assoc_ents = dma_map_sg(engine->dev, areq->assoc,
348                 sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
349         if (areq->src != areq->dst) {
350                 src_ents = dma_map_sg(engine->dev, areq->src, nents,
351                                       DMA_TO_DEVICE);
352                 dst_ents = dma_map_sg(engine->dev, areq->dst, nents,
353                                       DMA_FROM_DEVICE);
354         } else {
355                 src_ents = dma_map_sg(engine->dev, areq->src, nents,
356                                       DMA_BIDIRECTIONAL);
357                 dst_ents = 0;
358         }
359
360         /*
361          * Map the IV/GIV. For the GIV it needs to be bidirectional as it is
362          * formed by the crypto block and sent as the ESP IV for IPSEC.
363          */
364         iv_addr = dma_map_single(engine->dev, iv, ivsize,
365                                  giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
366         req->giv_pa = iv_addr;
367
368         /*
369          * Map the associated data. For decryption we don't copy the
370          * associated data.
371          */
372         for_each_sg(areq->assoc, cur, assoc_ents, i) {
373                 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
374                 if (req->is_encrypt)
375                         ddt_set(dst_ddt++, sg_dma_address(cur),
376                                 sg_dma_len(cur));
377         }
378         ddt_set(src_ddt++, iv_addr, ivsize);
379
380         if (giv || req->is_encrypt)
381                 ddt_set(dst_ddt++, iv_addr, ivsize);
382
383         /*
384          * Now map in the payload for the source and destination and terminate
385          * with the NULL pointers.
386          */
387         for_each_sg(areq->src, cur, src_ents, i) {
388                 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
389                 if (areq->src == areq->dst)
390                         ddt_set(dst_ddt++, sg_dma_address(cur),
391                                 sg_dma_len(cur));
392         }
393
394         for_each_sg(areq->dst, cur, dst_ents, i)
395                 ddt_set(dst_ddt++, sg_dma_address(cur),
396                         sg_dma_len(cur));
397
398         ddt_set(src_ddt, 0, 0);
399         ddt_set(dst_ddt, 0, 0);
400
401         return 0;
402 }
403
404 static void spacc_aead_free_ddts(struct spacc_req *req)
405 {
406         struct aead_request *areq = container_of(req->req, struct aead_request,
407                                                  base);
408         struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg);
409         struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm);
410         struct spacc_engine *engine = aead_ctx->generic.engine;
411         unsigned ivsize = alg->alg.cra_aead.ivsize;
412         unsigned nents = sg_count(areq->src, areq->cryptlen);
413
414         if (areq->src != areq->dst) {
415                 dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
416                 dma_unmap_sg(engine->dev, areq->dst,
417                              sg_count(areq->dst, areq->cryptlen),
418                              DMA_FROM_DEVICE);
419         } else
420                 dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
421
422         dma_unmap_sg(engine->dev, areq->assoc,
423                      sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
424
425         dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL);
426
427         dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
428         dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
429 }
430
431 static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
432                            dma_addr_t ddt_addr, struct scatterlist *payload,
433                            unsigned nbytes, enum dma_data_direction dir)
434 {
435         unsigned nents = sg_count(payload, nbytes);
436
437         dma_unmap_sg(req->engine->dev, payload, nents, dir);
438         dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
439 }
440
441 /*
442  * Set key for a DES operation in an AEAD cipher. This also performs weak key
443  * checking if required.
444  */
445 static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key,
446                                  unsigned int len)
447 {
448         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
449         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
450         u32 tmp[DES_EXPKEY_WORDS];
451
452         if (unlikely(!des_ekey(tmp, key)) &&
453             (crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) {
454                 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
455                 return -EINVAL;
456         }
457
458         memcpy(ctx->cipher_key, key, len);
459         ctx->cipher_key_len = len;
460
461         return 0;
462 }
463
464 /* Set the key for the AES block cipher component of the AEAD transform. */
465 static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key,
466                                  unsigned int len)
467 {
468         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
469         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
470
471         /*
472          * IPSec engine only supports 128 and 256 bit AES keys. If we get a
473          * request for any other size (192 bits) then we need to do a software
474          * fallback.
475          */
476         if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
477                 /*
478                  * Set the fallback transform to use the same request flags as
479                  * the hardware transform.
480                  */
481                 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
482                 ctx->sw_cipher->base.crt_flags |=
483                         tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
484                 return crypto_aead_setkey(ctx->sw_cipher, key, len);
485         }
486
487         memcpy(ctx->cipher_key, key, len);
488         ctx->cipher_key_len = len;
489
490         return 0;
491 }
492
493 static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
494                              unsigned int keylen)
495 {
496         struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
497         struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
498         struct rtattr *rta = (void *)key;
499         struct crypto_authenc_key_param *param;
500         unsigned int authkeylen, enckeylen;
501         int err = -EINVAL;
502
503         if (!RTA_OK(rta, keylen))
504                 goto badkey;
505
506         if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
507                 goto badkey;
508
509         if (RTA_PAYLOAD(rta) < sizeof(*param))
510                 goto badkey;
511
512         param = RTA_DATA(rta);
513         enckeylen = be32_to_cpu(param->enckeylen);
514
515         key += RTA_ALIGN(rta->rta_len);
516         keylen -= RTA_ALIGN(rta->rta_len);
517
518         if (keylen < enckeylen)
519                 goto badkey;
520
521         authkeylen = keylen - enckeylen;
522
523         if (enckeylen > AES_MAX_KEY_SIZE)
524                 goto badkey;
525
526         if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
527             SPA_CTRL_CIPH_ALG_AES)
528                 err = spacc_aead_aes_setkey(tfm, key + authkeylen, enckeylen);
529         else
530                 err = spacc_aead_des_setkey(tfm, key + authkeylen, enckeylen);
531
532         if (err)
533                 goto badkey;
534
535         memcpy(ctx->hash_ctx, key, authkeylen);
536         ctx->hash_key_len = authkeylen;
537
538         return 0;
539
540 badkey:
541         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
542         return -EINVAL;
543 }
544
545 static int spacc_aead_setauthsize(struct crypto_aead *tfm,
546                                   unsigned int authsize)
547 {
548         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
549
550         ctx->auth_size = authsize;
551
552         return 0;
553 }
554
555 /*
556  * Check if an AEAD request requires a fallback operation. Some requests can't
557  * be completed in hardware because the hardware may not support certain key
558  * sizes. In these cases we need to complete the request in software.
559  */
560 static int spacc_aead_need_fallback(struct spacc_req *req)
561 {
562         struct aead_request *aead_req;
563         struct crypto_tfm *tfm = req->req->tfm;
564         struct crypto_alg *alg = req->req->tfm->__crt_alg;
565         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
566         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
567
568         aead_req = container_of(req->req, struct aead_request, base);
569         /*
570          * If we have a non-supported key-length, then we need to do a
571          * software fallback.
572          */
573         if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
574             SPA_CTRL_CIPH_ALG_AES &&
575             ctx->cipher_key_len != AES_KEYSIZE_128 &&
576             ctx->cipher_key_len != AES_KEYSIZE_256)
577                 return 1;
578
579         return 0;
580 }
581
582 static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
583                                   bool is_encrypt)
584 {
585         struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
586         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
587         int err;
588
589         if (ctx->sw_cipher) {
590                 /*
591                  * Change the request to use the software fallback transform,
592                  * and once the ciphering has completed, put the old transform
593                  * back into the request.
594                  */
595                 aead_request_set_tfm(req, ctx->sw_cipher);
596                 err = is_encrypt ? crypto_aead_encrypt(req) :
597                     crypto_aead_decrypt(req);
598                 aead_request_set_tfm(req, __crypto_aead_cast(old_tfm));
599         } else
600                 err = -EINVAL;
601
602         return err;
603 }
604
605 static void spacc_aead_complete(struct spacc_req *req)
606 {
607         spacc_aead_free_ddts(req);
608         req->req->complete(req->req, req->result);
609 }
610
611 static int spacc_aead_submit(struct spacc_req *req)
612 {
613         struct crypto_tfm *tfm = req->req->tfm;
614         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
615         struct crypto_alg *alg = req->req->tfm->__crt_alg;
616         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
617         struct spacc_engine *engine = ctx->generic.engine;
618         u32 ctrl, proc_len, assoc_len;
619         struct aead_request *aead_req =
620                 container_of(req->req, struct aead_request, base);
621
622         req->result = -EINPROGRESS;
623         req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
624                 ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize,
625                 ctx->hash_ctx, ctx->hash_key_len);
626
627         /* Set the source and destination DDT pointers. */
628         writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
629         writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
630         writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
631
632         assoc_len = aead_req->assoclen;
633         proc_len = aead_req->cryptlen + assoc_len;
634
635         /*
636          * If we aren't generating an IV, then we need to include the IV in the
637          * associated data so that it is included in the hash.
638          */
639         if (!req->giv) {
640                 assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
641                 proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
642         } else
643                 proc_len += req->giv_len;
644
645         /*
646          * If we are decrypting, we need to take the length of the ICV out of
647          * the processing length.
648          */
649         if (!req->is_encrypt)
650                 proc_len -= ctx->auth_size;
651
652         writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
653         writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
654         writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET);
655         writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
656         writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
657
658         ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
659                 (1 << SPA_CTRL_ICV_APPEND);
660         if (req->is_encrypt)
661                 ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
662         else
663                 ctrl |= (1 << SPA_CTRL_KEY_EXP);
664
665         mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
666
667         writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
668
669         return -EINPROGRESS;
670 }
671
672 static int spacc_req_submit(struct spacc_req *req);
673
674 static void spacc_push(struct spacc_engine *engine)
675 {
676         struct spacc_req *req;
677
678         while (!list_empty(&engine->pending) &&
679                engine->in_flight + 1 <= engine->fifo_sz) {
680
681                 ++engine->in_flight;
682                 req = list_first_entry(&engine->pending, struct spacc_req,
683                                        list);
684                 list_move_tail(&req->list, &engine->in_progress);
685
686                 req->result = spacc_req_submit(req);
687         }
688 }
689
690 /*
691  * Setup an AEAD request for processing. This will configure the engine, load
692  * the context and then start the packet processing.
693  *
694  * @giv Pointer to destination address for a generated IV. If the
695  *      request does not need to generate an IV then this should be set to NULL.
696  */
697 static int spacc_aead_setup(struct aead_request *req, u8 *giv,
698                             unsigned alg_type, bool is_encrypt)
699 {
700         struct crypto_alg *alg = req->base.tfm->__crt_alg;
701         struct spacc_engine *engine = to_spacc_alg(alg)->engine;
702         struct spacc_req *dev_req = aead_request_ctx(req);
703         int err = -EINPROGRESS;
704         unsigned long flags;
705         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
706
707         dev_req->giv            = giv;
708         dev_req->giv_len        = ivsize;
709         dev_req->req            = &req->base;
710         dev_req->is_encrypt     = is_encrypt;
711         dev_req->result         = -EBUSY;
712         dev_req->engine         = engine;
713         dev_req->complete       = spacc_aead_complete;
714
715         if (unlikely(spacc_aead_need_fallback(dev_req)))
716                 return spacc_aead_do_fallback(req, alg_type, is_encrypt);
717
718         spacc_aead_make_ddts(dev_req, dev_req->giv);
719
720         err = -EINPROGRESS;
721         spin_lock_irqsave(&engine->hw_lock, flags);
722         if (unlikely(spacc_fifo_cmd_full(engine)) ||
723             engine->in_flight + 1 > engine->fifo_sz) {
724                 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
725                         err = -EBUSY;
726                         spin_unlock_irqrestore(&engine->hw_lock, flags);
727                         goto out_free_ddts;
728                 }
729                 list_add_tail(&dev_req->list, &engine->pending);
730         } else {
731                 list_add_tail(&dev_req->list, &engine->pending);
732                 spacc_push(engine);
733         }
734         spin_unlock_irqrestore(&engine->hw_lock, flags);
735
736         goto out;
737
738 out_free_ddts:
739         spacc_aead_free_ddts(dev_req);
740 out:
741         return err;
742 }
743
744 static int spacc_aead_encrypt(struct aead_request *req)
745 {
746         struct crypto_aead *aead = crypto_aead_reqtfm(req);
747         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
748         struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
749
750         return spacc_aead_setup(req, NULL, alg->type, 1);
751 }
752
753 static int spacc_aead_givencrypt(struct aead_givcrypt_request *req)
754 {
755         struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
756         struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
757         size_t ivsize = crypto_aead_ivsize(tfm);
758         struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
759         unsigned len;
760         __be64 seq;
761
762         memcpy(req->areq.iv, ctx->salt, ivsize);
763         len = ivsize;
764         if (ivsize > sizeof(u64)) {
765                 memset(req->giv, 0, ivsize - sizeof(u64));
766                 len = sizeof(u64);
767         }
768         seq = cpu_to_be64(req->seq);
769         memcpy(req->giv + ivsize - len, &seq, len);
770
771         return spacc_aead_setup(&req->areq, req->giv, alg->type, 1);
772 }
773
774 static int spacc_aead_decrypt(struct aead_request *req)
775 {
776         struct crypto_aead *aead = crypto_aead_reqtfm(req);
777         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
778         struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
779
780         return spacc_aead_setup(req, NULL, alg->type, 0);
781 }
782
783 /*
784  * Initialise a new AEAD context. This is responsible for allocating the
785  * fallback cipher and initialising the context.
786  */
787 static int spacc_aead_cra_init(struct crypto_tfm *tfm)
788 {
789         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
790         struct crypto_alg *alg = tfm->__crt_alg;
791         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
792         struct spacc_engine *engine = spacc_alg->engine;
793
794         ctx->generic.flags = spacc_alg->type;
795         ctx->generic.engine = engine;
796         ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0,
797                                            CRYPTO_ALG_ASYNC |
798                                            CRYPTO_ALG_NEED_FALLBACK);
799         if (IS_ERR(ctx->sw_cipher)) {
800                 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
801                          alg->cra_name);
802                 ctx->sw_cipher = NULL;
803         }
804         ctx->generic.key_offs = spacc_alg->key_offs;
805         ctx->generic.iv_offs = spacc_alg->iv_offs;
806
807         get_random_bytes(ctx->salt, sizeof(ctx->salt));
808
809         tfm->crt_aead.reqsize = sizeof(struct spacc_req);
810
811         return 0;
812 }
813
814 /*
815  * Destructor for an AEAD context. This is called when the transform is freed
816  * and must free the fallback cipher.
817  */
818 static void spacc_aead_cra_exit(struct crypto_tfm *tfm)
819 {
820         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
821
822         if (ctx->sw_cipher)
823                 crypto_free_aead(ctx->sw_cipher);
824         ctx->sw_cipher = NULL;
825 }
826
827 /*
828  * Set the DES key for a block cipher transform. This also performs weak key
829  * checking if the transform has requested it.
830  */
831 static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
832                             unsigned int len)
833 {
834         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
835         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
836         u32 tmp[DES_EXPKEY_WORDS];
837
838         if (len > DES3_EDE_KEY_SIZE) {
839                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
840                 return -EINVAL;
841         }
842
843         if (unlikely(!des_ekey(tmp, key)) &&
844             (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
845                 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
846                 return -EINVAL;
847         }
848
849         memcpy(ctx->key, key, len);
850         ctx->key_len = len;
851
852         return 0;
853 }
854
855 /*
856  * Set the key for an AES block cipher. Some key lengths are not supported in
857  * hardware so this must also check whether a fallback is needed.
858  */
859 static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
860                             unsigned int len)
861 {
862         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
863         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
864         int err = 0;
865
866         if (len > AES_MAX_KEY_SIZE) {
867                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
868                 return -EINVAL;
869         }
870
871         /*
872          * IPSec engine only supports 128 and 256 bit AES keys. If we get a
873          * request for any other size (192 bits) then we need to do a software
874          * fallback.
875          */
876         if ((len != AES_KEYSIZE_128 || len != AES_KEYSIZE_256) &&
877             ctx->sw_cipher) {
878                 /*
879                  * Set the fallback transform to use the same request flags as
880                  * the hardware transform.
881                  */
882                 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
883                 ctx->sw_cipher->base.crt_flags |=
884                         cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
885
886                 err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
887                 if (err)
888                         goto sw_setkey_failed;
889         } else if ((len != AES_KEYSIZE_128 || len != AES_KEYSIZE_256) &&
890                    !ctx->sw_cipher)
891                 err = -EINVAL;
892
893         memcpy(ctx->key, key, len);
894         ctx->key_len = len;
895
896 sw_setkey_failed:
897         if (err && ctx->sw_cipher) {
898                 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
899                 tfm->crt_flags |=
900                         ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
901         }
902
903         return err;
904 }
905
906 static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
907                                   const u8 *key, unsigned int len)
908 {
909         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
910         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
911         int err = 0;
912
913         if (len > AES_MAX_KEY_SIZE) {
914                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
915                 err = -EINVAL;
916                 goto out;
917         }
918
919         memcpy(ctx->key, key, len);
920         ctx->key_len = len;
921
922 out:
923         return err;
924 }
925
926 static int spacc_ablk_need_fallback(struct spacc_req *req)
927 {
928         struct spacc_ablk_ctx *ctx;
929         struct crypto_tfm *tfm = req->req->tfm;
930         struct crypto_alg *alg = req->req->tfm->__crt_alg;
931         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
932
933         ctx = crypto_tfm_ctx(tfm);
934
935         return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
936                         SPA_CTRL_CIPH_ALG_AES &&
937                         ctx->key_len != AES_KEYSIZE_128 &&
938                         ctx->key_len != AES_KEYSIZE_256;
939 }
940
941 static void spacc_ablk_complete(struct spacc_req *req)
942 {
943         struct ablkcipher_request *ablk_req =
944                 container_of(req->req, struct ablkcipher_request, base);
945
946         if (ablk_req->src != ablk_req->dst) {
947                 spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
948                                ablk_req->nbytes, DMA_TO_DEVICE);
949                 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
950                                ablk_req->nbytes, DMA_FROM_DEVICE);
951         } else
952                 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
953                                ablk_req->nbytes, DMA_BIDIRECTIONAL);
954
955         req->req->complete(req->req, req->result);
956 }
957
958 static int spacc_ablk_submit(struct spacc_req *req)
959 {
960         struct crypto_tfm *tfm = req->req->tfm;
961         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
962         struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
963         struct crypto_alg *alg = req->req->tfm->__crt_alg;
964         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
965         struct spacc_engine *engine = ctx->generic.engine;
966         u32 ctrl;
967
968         req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
969                 ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
970                 NULL, 0);
971
972         writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
973         writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
974         writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
975
976         writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
977         writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
978         writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
979         writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
980
981         ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
982                 (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
983                  (1 << SPA_CTRL_KEY_EXP));
984
985         mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
986
987         writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
988
989         return -EINPROGRESS;
990 }
991
992 static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
993                                   unsigned alg_type, bool is_encrypt)
994 {
995         struct crypto_tfm *old_tfm =
996             crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
997         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
998         int err;
999
1000         if (!ctx->sw_cipher)
1001                 return -EINVAL;
1002
1003         /*
1004          * Change the request to use the software fallback transform, and once
1005          * the ciphering has completed, put the old transform back into the
1006          * request.
1007          */
1008         ablkcipher_request_set_tfm(req, ctx->sw_cipher);
1009         err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
1010                 crypto_ablkcipher_decrypt(req);
1011         ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
1012
1013         return err;
1014 }
1015
1016 static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
1017                             bool is_encrypt)
1018 {
1019         struct crypto_alg *alg = req->base.tfm->__crt_alg;
1020         struct spacc_engine *engine = to_spacc_alg(alg)->engine;
1021         struct spacc_req *dev_req = ablkcipher_request_ctx(req);
1022         unsigned long flags;
1023         int err = -ENOMEM;
1024
1025         dev_req->req            = &req->base;
1026         dev_req->is_encrypt     = is_encrypt;
1027         dev_req->engine         = engine;
1028         dev_req->complete       = spacc_ablk_complete;
1029         dev_req->result         = -EINPROGRESS;
1030
1031         if (unlikely(spacc_ablk_need_fallback(dev_req)))
1032                 return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
1033
1034         /*
1035          * Create the DDT's for the engine. If we share the same source and
1036          * destination then we can optimize by reusing the DDT's.
1037          */
1038         if (req->src != req->dst) {
1039                 dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
1040                         req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
1041                 if (!dev_req->src_ddt)
1042                         goto out;
1043
1044                 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1045                         req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
1046                 if (!dev_req->dst_ddt)
1047                         goto out_free_src;
1048         } else {
1049                 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1050                         req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
1051                 if (!dev_req->dst_ddt)
1052                         goto out;
1053
1054                 dev_req->src_ddt = NULL;
1055                 dev_req->src_addr = dev_req->dst_addr;
1056         }
1057
1058         err = -EINPROGRESS;
1059         spin_lock_irqsave(&engine->hw_lock, flags);
1060         /*
1061          * Check if the engine will accept the operation now. If it won't then
1062          * we either stick it on the end of a pending list if we can backlog,
1063          * or bailout with an error if not.
1064          */
1065         if (unlikely(spacc_fifo_cmd_full(engine)) ||
1066             engine->in_flight + 1 > engine->fifo_sz) {
1067                 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1068                         err = -EBUSY;
1069                         spin_unlock_irqrestore(&engine->hw_lock, flags);
1070                         goto out_free_ddts;
1071                 }
1072                 list_add_tail(&dev_req->list, &engine->pending);
1073         } else {
1074                 list_add_tail(&dev_req->list, &engine->pending);
1075                 spacc_push(engine);
1076         }
1077         spin_unlock_irqrestore(&engine->hw_lock, flags);
1078
1079         goto out;
1080
1081 out_free_ddts:
1082         spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
1083                        req->nbytes, req->src == req->dst ?
1084                        DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
1085 out_free_src:
1086         if (req->src != req->dst)
1087                 spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1088                                req->src, req->nbytes, DMA_TO_DEVICE);
1089 out:
1090         return err;
1091 }
1092
1093 static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1094 {
1095         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1096         struct crypto_alg *alg = tfm->__crt_alg;
1097         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1098         struct spacc_engine *engine = spacc_alg->engine;
1099
1100         ctx->generic.flags = spacc_alg->type;
1101         ctx->generic.engine = engine;
1102         if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1103                 ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0,
1104                                 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
1105                 if (IS_ERR(ctx->sw_cipher)) {
1106                         dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1107                                  alg->cra_name);
1108                         ctx->sw_cipher = NULL;
1109                 }
1110         }
1111         ctx->generic.key_offs = spacc_alg->key_offs;
1112         ctx->generic.iv_offs = spacc_alg->iv_offs;
1113
1114         tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1115
1116         return 0;
1117 }
1118
1119 static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1120 {
1121         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1122
1123         if (ctx->sw_cipher)
1124                 crypto_free_ablkcipher(ctx->sw_cipher);
1125         ctx->sw_cipher = NULL;
1126 }
1127
1128 static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1129 {
1130         struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1131         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1132         struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1133
1134         return spacc_ablk_setup(req, alg->type, 1);
1135 }
1136
1137 static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1138 {
1139         struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1140         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1141         struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1142
1143         return spacc_ablk_setup(req, alg->type, 0);
1144 }
1145
1146 static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1147 {
1148         return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1149                 SPA_FIFO_STAT_EMPTY;
1150 }
1151
1152 static void spacc_process_done(struct spacc_engine *engine)
1153 {
1154         struct spacc_req *req;
1155         unsigned long flags;
1156
1157         spin_lock_irqsave(&engine->hw_lock, flags);
1158
1159         while (!spacc_fifo_stat_empty(engine)) {
1160                 req = list_first_entry(&engine->in_progress, struct spacc_req,
1161                                        list);
1162                 list_move_tail(&req->list, &engine->completed);
1163                 --engine->in_flight;
1164
1165                 /* POP the status register. */
1166                 writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1167                 req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1168                      SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1169
1170                 /*
1171                  * Convert the SPAcc error status into the standard POSIX error
1172                  * codes.
1173                  */
1174                 if (unlikely(req->result)) {
1175                         switch (req->result) {
1176                         case SPA_STATUS_ICV_FAIL:
1177                                 req->result = -EBADMSG;
1178                                 break;
1179
1180                         case SPA_STATUS_MEMORY_ERROR:
1181                                 dev_warn(engine->dev,
1182                                          "memory error triggered\n");
1183                                 req->result = -EFAULT;
1184                                 break;
1185
1186                         case SPA_STATUS_BLOCK_ERROR:
1187                                 dev_warn(engine->dev,
1188                                          "block error triggered\n");
1189                                 req->result = -EIO;
1190                                 break;
1191                         }
1192                 }
1193         }
1194
1195         tasklet_schedule(&engine->complete);
1196
1197         spin_unlock_irqrestore(&engine->hw_lock, flags);
1198 }
1199
1200 static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1201 {
1202         struct spacc_engine *engine = (struct spacc_engine *)dev;
1203         u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1204
1205         writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1206         spacc_process_done(engine);
1207
1208         return IRQ_HANDLED;
1209 }
1210
1211 static void spacc_packet_timeout(unsigned long data)
1212 {
1213         struct spacc_engine *engine = (struct spacc_engine *)data;
1214
1215         spacc_process_done(engine);
1216 }
1217
1218 static int spacc_req_submit(struct spacc_req *req)
1219 {
1220         struct crypto_alg *alg = req->req->tfm->__crt_alg;
1221
1222         if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1223                 return spacc_aead_submit(req);
1224         else
1225                 return spacc_ablk_submit(req);
1226 }
1227
1228 static void spacc_spacc_complete(unsigned long data)
1229 {
1230         struct spacc_engine *engine = (struct spacc_engine *)data;
1231         struct spacc_req *req, *tmp;
1232         unsigned long flags;
1233         LIST_HEAD(completed);
1234
1235         spin_lock_irqsave(&engine->hw_lock, flags);
1236
1237         list_splice_init(&engine->completed, &completed);
1238         spacc_push(engine);
1239         if (engine->in_flight)
1240                 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1241
1242         spin_unlock_irqrestore(&engine->hw_lock, flags);
1243
1244         list_for_each_entry_safe(req, tmp, &completed, list) {
1245                 list_del(&req->list);
1246                 req->complete(req);
1247         }
1248 }
1249
1250 #ifdef CONFIG_PM
1251 static int spacc_suspend(struct device *dev)
1252 {
1253         struct platform_device *pdev = to_platform_device(dev);
1254         struct spacc_engine *engine = platform_get_drvdata(pdev);
1255
1256         /*
1257          * We only support standby mode. All we have to do is gate the clock to
1258          * the spacc. The hardware will preserve state until we turn it back
1259          * on again.
1260          */
1261         clk_disable(engine->clk);
1262
1263         return 0;
1264 }
1265
1266 static int spacc_resume(struct device *dev)
1267 {
1268         struct platform_device *pdev = to_platform_device(dev);
1269         struct spacc_engine *engine = platform_get_drvdata(pdev);
1270
1271         return clk_enable(engine->clk);
1272 }
1273
1274 static const struct dev_pm_ops spacc_pm_ops = {
1275         .suspend        = spacc_suspend,
1276         .resume         = spacc_resume,
1277 };
1278 #endif /* CONFIG_PM */
1279
1280 static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1281 {
1282         return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
1283 }
1284
1285 static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1286                                           struct device_attribute *attr,
1287                                           char *buf)
1288 {
1289         struct spacc_engine *engine = spacc_dev_to_engine(dev);
1290
1291         return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1292 }
1293
1294 static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1295                                            struct device_attribute *attr,
1296                                            const char *buf, size_t len)
1297 {
1298         struct spacc_engine *engine = spacc_dev_to_engine(dev);
1299         unsigned long thresh;
1300
1301         if (strict_strtoul(buf, 0, &thresh))
1302                 return -EINVAL;
1303
1304         thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1305
1306         engine->stat_irq_thresh = thresh;
1307         writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1308                engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1309
1310         return len;
1311 }
1312 static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1313                    spacc_stat_irq_thresh_store);
1314
1315 static struct spacc_alg ipsec_engine_algs[] = {
1316         {
1317                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1318                 .key_offs = 0,
1319                 .iv_offs = AES_MAX_KEY_SIZE,
1320                 .alg = {
1321                         .cra_name = "cbc(aes)",
1322                         .cra_driver_name = "cbc-aes-picoxcell",
1323                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1324                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1325                                      CRYPTO_ALG_ASYNC |
1326                                      CRYPTO_ALG_NEED_FALLBACK,
1327                         .cra_blocksize = AES_BLOCK_SIZE,
1328                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1329                         .cra_type = &crypto_ablkcipher_type,
1330                         .cra_module = THIS_MODULE,
1331                         .cra_ablkcipher = {
1332                                 .setkey = spacc_aes_setkey,
1333                                 .encrypt = spacc_ablk_encrypt,
1334                                 .decrypt = spacc_ablk_decrypt,
1335                                 .min_keysize = AES_MIN_KEY_SIZE,
1336                                 .max_keysize = AES_MAX_KEY_SIZE,
1337                                 .ivsize = AES_BLOCK_SIZE,
1338                         },
1339                         .cra_init = spacc_ablk_cra_init,
1340                         .cra_exit = spacc_ablk_cra_exit,
1341                 },
1342         },
1343         {
1344                 .key_offs = 0,
1345                 .iv_offs = AES_MAX_KEY_SIZE,
1346                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1347                 .alg = {
1348                         .cra_name = "ecb(aes)",
1349                         .cra_driver_name = "ecb-aes-picoxcell",
1350                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1351                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1352                                 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1353                         .cra_blocksize = AES_BLOCK_SIZE,
1354                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1355                         .cra_type = &crypto_ablkcipher_type,
1356                         .cra_module = THIS_MODULE,
1357                         .cra_ablkcipher = {
1358                                 .setkey = spacc_aes_setkey,
1359                                 .encrypt = spacc_ablk_encrypt,
1360                                 .decrypt = spacc_ablk_decrypt,
1361                                 .min_keysize = AES_MIN_KEY_SIZE,
1362                                 .max_keysize = AES_MAX_KEY_SIZE,
1363                         },
1364                         .cra_init = spacc_ablk_cra_init,
1365                         .cra_exit = spacc_ablk_cra_exit,
1366                 },
1367         },
1368         {
1369                 .key_offs = DES_BLOCK_SIZE,
1370                 .iv_offs = 0,
1371                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1372                 .alg = {
1373                         .cra_name = "cbc(des)",
1374                         .cra_driver_name = "cbc-des-picoxcell",
1375                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1376                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1377                         .cra_blocksize = DES_BLOCK_SIZE,
1378                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1379                         .cra_type = &crypto_ablkcipher_type,
1380                         .cra_module = THIS_MODULE,
1381                         .cra_ablkcipher = {
1382                                 .setkey = spacc_des_setkey,
1383                                 .encrypt = spacc_ablk_encrypt,
1384                                 .decrypt = spacc_ablk_decrypt,
1385                                 .min_keysize = DES_KEY_SIZE,
1386                                 .max_keysize = DES_KEY_SIZE,
1387                                 .ivsize = DES_BLOCK_SIZE,
1388                         },
1389                         .cra_init = spacc_ablk_cra_init,
1390                         .cra_exit = spacc_ablk_cra_exit,
1391                 },
1392         },
1393         {
1394                 .key_offs = DES_BLOCK_SIZE,
1395                 .iv_offs = 0,
1396                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1397                 .alg = {
1398                         .cra_name = "ecb(des)",
1399                         .cra_driver_name = "ecb-des-picoxcell",
1400                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1401                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1402                         .cra_blocksize = DES_BLOCK_SIZE,
1403                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1404                         .cra_type = &crypto_ablkcipher_type,
1405                         .cra_module = THIS_MODULE,
1406                         .cra_ablkcipher = {
1407                                 .setkey = spacc_des_setkey,
1408                                 .encrypt = spacc_ablk_encrypt,
1409                                 .decrypt = spacc_ablk_decrypt,
1410                                 .min_keysize = DES_KEY_SIZE,
1411                                 .max_keysize = DES_KEY_SIZE,
1412                         },
1413                         .cra_init = spacc_ablk_cra_init,
1414                         .cra_exit = spacc_ablk_cra_exit,
1415                 },
1416         },
1417         {
1418                 .key_offs = DES_BLOCK_SIZE,
1419                 .iv_offs = 0,
1420                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1421                 .alg = {
1422                         .cra_name = "cbc(des3_ede)",
1423                         .cra_driver_name = "cbc-des3-ede-picoxcell",
1424                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1425                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1426                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1427                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1428                         .cra_type = &crypto_ablkcipher_type,
1429                         .cra_module = THIS_MODULE,
1430                         .cra_ablkcipher = {
1431                                 .setkey = spacc_des_setkey,
1432                                 .encrypt = spacc_ablk_encrypt,
1433                                 .decrypt = spacc_ablk_decrypt,
1434                                 .min_keysize = DES3_EDE_KEY_SIZE,
1435                                 .max_keysize = DES3_EDE_KEY_SIZE,
1436                                 .ivsize = DES3_EDE_BLOCK_SIZE,
1437                         },
1438                         .cra_init = spacc_ablk_cra_init,
1439                         .cra_exit = spacc_ablk_cra_exit,
1440                 },
1441         },
1442         {
1443                 .key_offs = DES_BLOCK_SIZE,
1444                 .iv_offs = 0,
1445                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1446                 .alg = {
1447                         .cra_name = "ecb(des3_ede)",
1448                         .cra_driver_name = "ecb-des3-ede-picoxcell",
1449                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1450                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1451                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1452                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1453                         .cra_type = &crypto_ablkcipher_type,
1454                         .cra_module = THIS_MODULE,
1455                         .cra_ablkcipher = {
1456                                 .setkey = spacc_des_setkey,
1457                                 .encrypt = spacc_ablk_encrypt,
1458                                 .decrypt = spacc_ablk_decrypt,
1459                                 .min_keysize = DES3_EDE_KEY_SIZE,
1460                                 .max_keysize = DES3_EDE_KEY_SIZE,
1461                         },
1462                         .cra_init = spacc_ablk_cra_init,
1463                         .cra_exit = spacc_ablk_cra_exit,
1464                 },
1465         },
1466         {
1467                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1468                                 SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1469                 .key_offs = 0,
1470                 .iv_offs = AES_MAX_KEY_SIZE,
1471                 .alg = {
1472                         .cra_name = "authenc(hmac(sha1),cbc(aes))",
1473                         .cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell",
1474                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1475                         .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1476                         .cra_blocksize = AES_BLOCK_SIZE,
1477                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1478                         .cra_type = &crypto_aead_type,
1479                         .cra_module = THIS_MODULE,
1480                         .cra_aead = {
1481                                 .setkey = spacc_aead_setkey,
1482                                 .setauthsize = spacc_aead_setauthsize,
1483                                 .encrypt = spacc_aead_encrypt,
1484                                 .decrypt = spacc_aead_decrypt,
1485                                 .givencrypt = spacc_aead_givencrypt,
1486                                 .ivsize = AES_BLOCK_SIZE,
1487                                 .maxauthsize = SHA1_DIGEST_SIZE,
1488                         },
1489                         .cra_init = spacc_aead_cra_init,
1490                         .cra_exit = spacc_aead_cra_exit,
1491                 },
1492         },
1493         {
1494                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1495                                 SPA_CTRL_HASH_ALG_SHA256 |
1496                                 SPA_CTRL_HASH_MODE_HMAC,
1497                 .key_offs = 0,
1498                 .iv_offs = AES_MAX_KEY_SIZE,
1499                 .alg = {
1500                         .cra_name = "authenc(hmac(sha256),cbc(aes))",
1501                         .cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell",
1502                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1503                         .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1504                         .cra_blocksize = AES_BLOCK_SIZE,
1505                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1506                         .cra_type = &crypto_aead_type,
1507                         .cra_module = THIS_MODULE,
1508                         .cra_aead = {
1509                                 .setkey = spacc_aead_setkey,
1510                                 .setauthsize = spacc_aead_setauthsize,
1511                                 .encrypt = spacc_aead_encrypt,
1512                                 .decrypt = spacc_aead_decrypt,
1513                                 .givencrypt = spacc_aead_givencrypt,
1514                                 .ivsize = AES_BLOCK_SIZE,
1515                                 .maxauthsize = SHA256_DIGEST_SIZE,
1516                         },
1517                         .cra_init = spacc_aead_cra_init,
1518                         .cra_exit = spacc_aead_cra_exit,
1519                 },
1520         },
1521         {
1522                 .key_offs = 0,
1523                 .iv_offs = AES_MAX_KEY_SIZE,
1524                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1525                                 SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1526                 .alg = {
1527                         .cra_name = "authenc(hmac(md5),cbc(aes))",
1528                         .cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell",
1529                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1530                         .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1531                         .cra_blocksize = AES_BLOCK_SIZE,
1532                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1533                         .cra_type = &crypto_aead_type,
1534                         .cra_module = THIS_MODULE,
1535                         .cra_aead = {
1536                                 .setkey = spacc_aead_setkey,
1537                                 .setauthsize = spacc_aead_setauthsize,
1538                                 .encrypt = spacc_aead_encrypt,
1539                                 .decrypt = spacc_aead_decrypt,
1540                                 .givencrypt = spacc_aead_givencrypt,
1541                                 .ivsize = AES_BLOCK_SIZE,
1542                                 .maxauthsize = MD5_DIGEST_SIZE,
1543                         },
1544                         .cra_init = spacc_aead_cra_init,
1545                         .cra_exit = spacc_aead_cra_exit,
1546                 },
1547         },
1548         {
1549                 .key_offs = DES_BLOCK_SIZE,
1550                 .iv_offs = 0,
1551                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1552                                 SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1553                 .alg = {
1554                         .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1555                         .cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell",
1556                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1557                         .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1558                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1559                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1560                         .cra_type = &crypto_aead_type,
1561                         .cra_module = THIS_MODULE,
1562                         .cra_aead = {
1563                                 .setkey = spacc_aead_setkey,
1564                                 .setauthsize = spacc_aead_setauthsize,
1565                                 .encrypt = spacc_aead_encrypt,
1566                                 .decrypt = spacc_aead_decrypt,
1567                                 .givencrypt = spacc_aead_givencrypt,
1568                                 .ivsize = DES3_EDE_BLOCK_SIZE,
1569                                 .maxauthsize = SHA1_DIGEST_SIZE,
1570                         },
1571                         .cra_init = spacc_aead_cra_init,
1572                         .cra_exit = spacc_aead_cra_exit,
1573                 },
1574         },
1575         {
1576                 .key_offs = DES_BLOCK_SIZE,
1577                 .iv_offs = 0,
1578                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1579                                 SPA_CTRL_HASH_ALG_SHA256 |
1580                                 SPA_CTRL_HASH_MODE_HMAC,
1581                 .alg = {
1582                         .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
1583                         .cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell",
1584                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1585                         .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1586                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1587                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1588                         .cra_type = &crypto_aead_type,
1589                         .cra_module = THIS_MODULE,
1590                         .cra_aead = {
1591                                 .setkey = spacc_aead_setkey,
1592                                 .setauthsize = spacc_aead_setauthsize,
1593                                 .encrypt = spacc_aead_encrypt,
1594                                 .decrypt = spacc_aead_decrypt,
1595                                 .givencrypt = spacc_aead_givencrypt,
1596                                 .ivsize = DES3_EDE_BLOCK_SIZE,
1597                                 .maxauthsize = SHA256_DIGEST_SIZE,
1598                         },
1599                         .cra_init = spacc_aead_cra_init,
1600                         .cra_exit = spacc_aead_cra_exit,
1601                 },
1602         },
1603         {
1604                 .key_offs = DES_BLOCK_SIZE,
1605                 .iv_offs = 0,
1606                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1607                                 SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1608                 .alg = {
1609                         .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1610                         .cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell",
1611                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1612                         .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1613                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1614                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1615                         .cra_type = &crypto_aead_type,
1616                         .cra_module = THIS_MODULE,
1617                         .cra_aead = {
1618                                 .setkey = spacc_aead_setkey,
1619                                 .setauthsize = spacc_aead_setauthsize,
1620                                 .encrypt = spacc_aead_encrypt,
1621                                 .decrypt = spacc_aead_decrypt,
1622                                 .givencrypt = spacc_aead_givencrypt,
1623                                 .ivsize = DES3_EDE_BLOCK_SIZE,
1624                                 .maxauthsize = MD5_DIGEST_SIZE,
1625                         },
1626                         .cra_init = spacc_aead_cra_init,
1627                         .cra_exit = spacc_aead_cra_exit,
1628                 },
1629         },
1630 };
1631
1632 static struct spacc_alg l2_engine_algs[] = {
1633         {
1634                 .key_offs = 0,
1635                 .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1636                 .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1637                                 SPA_CTRL_CIPH_MODE_F8,
1638                 .alg = {
1639                         .cra_name = "f8(kasumi)",
1640                         .cra_driver_name = "f8-kasumi-picoxcell",
1641                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1642                         .cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER | CRYPTO_ALG_ASYNC,
1643                         .cra_blocksize = 8,
1644                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1645                         .cra_type = &crypto_ablkcipher_type,
1646                         .cra_module = THIS_MODULE,
1647                         .cra_ablkcipher = {
1648                                 .setkey = spacc_kasumi_f8_setkey,
1649                                 .encrypt = spacc_ablk_encrypt,
1650                                 .decrypt = spacc_ablk_decrypt,
1651                                 .min_keysize = 16,
1652                                 .max_keysize = 16,
1653                                 .ivsize = 8,
1654                         },
1655                         .cra_init = spacc_ablk_cra_init,
1656                         .cra_exit = spacc_ablk_cra_exit,
1657                 },
1658         },
1659 };
1660
1661 #ifdef CONFIG_OF
1662 static const struct of_device_id spacc_of_id_table[] = {
1663         { .compatible = "picochip,spacc-ipsec" },
1664         { .compatible = "picochip,spacc-l2" },
1665         {}
1666 };
1667 #else /* CONFIG_OF */
1668 #define spacc_of_id_table NULL
1669 #endif /* CONFIG_OF */
1670
1671 static bool spacc_is_compatible(struct platform_device *pdev,
1672                                 const char *spacc_type)
1673 {
1674         const struct platform_device_id *platid = platform_get_device_id(pdev);
1675
1676         if (platid && !strcmp(platid->name, spacc_type))
1677                 return true;
1678
1679 #ifdef CONFIG_OF
1680         if (of_device_is_compatible(pdev->dev.of_node, spacc_type))
1681                 return true;
1682 #endif /* CONFIG_OF */
1683
1684         return false;
1685 }
1686
1687 static int __devinit spacc_probe(struct platform_device *pdev)
1688 {
1689         int i, err, ret = -EINVAL;
1690         struct resource *mem, *irq;
1691         struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1692                                                    GFP_KERNEL);
1693         if (!engine)
1694                 return -ENOMEM;
1695
1696         if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) {
1697                 engine->max_ctxs        = SPACC_CRYPTO_IPSEC_MAX_CTXS;
1698                 engine->cipher_pg_sz    = SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1699                 engine->hash_pg_sz      = SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1700                 engine->fifo_sz         = SPACC_CRYPTO_IPSEC_FIFO_SZ;
1701                 engine->algs            = ipsec_engine_algs;
1702                 engine->num_algs        = ARRAY_SIZE(ipsec_engine_algs);
1703         } else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) {
1704                 engine->max_ctxs        = SPACC_CRYPTO_L2_MAX_CTXS;
1705                 engine->cipher_pg_sz    = SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1706                 engine->hash_pg_sz      = SPACC_CRYPTO_L2_HASH_PG_SZ;
1707                 engine->fifo_sz         = SPACC_CRYPTO_L2_FIFO_SZ;
1708                 engine->algs            = l2_engine_algs;
1709                 engine->num_algs        = ARRAY_SIZE(l2_engine_algs);
1710         } else {
1711                 return -EINVAL;
1712         }
1713
1714         engine->name = dev_name(&pdev->dev);
1715
1716         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1717         irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1718         if (!mem || !irq) {
1719                 dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1720                 return -ENXIO;
1721         }
1722
1723         if (!devm_request_mem_region(&pdev->dev, mem->start, resource_size(mem),
1724                                      engine->name))
1725                 return -ENOMEM;
1726
1727         engine->regs = devm_ioremap(&pdev->dev, mem->start, resource_size(mem));
1728         if (!engine->regs) {
1729                 dev_err(&pdev->dev, "memory map failed\n");
1730                 return -ENOMEM;
1731         }
1732
1733         if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1734                              engine->name, engine)) {
1735                 dev_err(engine->dev, "failed to request IRQ\n");
1736                 return -EBUSY;
1737         }
1738
1739         engine->dev             = &pdev->dev;
1740         engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1741         engine->hash_key_base   = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1742
1743         engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1744                 MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1745         if (!engine->req_pool)
1746                 return -ENOMEM;
1747
1748         spin_lock_init(&engine->hw_lock);
1749
1750         engine->clk = clk_get(&pdev->dev, "ref");
1751         if (IS_ERR(engine->clk)) {
1752                 dev_info(&pdev->dev, "clk unavailable\n");
1753                 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1754                 return PTR_ERR(engine->clk);
1755         }
1756
1757         if (clk_enable(engine->clk)) {
1758                 dev_info(&pdev->dev, "unable to enable clk\n");
1759                 clk_put(engine->clk);
1760                 return -EIO;
1761         }
1762
1763         err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1764         if (err) {
1765                 clk_disable(engine->clk);
1766                 clk_put(engine->clk);
1767                 return err;
1768         }
1769
1770
1771         /*
1772          * Use an IRQ threshold of 50% as a default. This seems to be a
1773          * reasonable trade off of latency against throughput but can be
1774          * changed at runtime.
1775          */
1776         engine->stat_irq_thresh = (engine->fifo_sz / 2);
1777
1778         /*
1779          * Configure the interrupts. We only use the STAT_CNT interrupt as we
1780          * only submit a new packet for processing when we complete another in
1781          * the queue. This minimizes time spent in the interrupt handler.
1782          */
1783         writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1784                engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1785         writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1786                engine->regs + SPA_IRQ_EN_REG_OFFSET);
1787
1788         setup_timer(&engine->packet_timeout, spacc_packet_timeout,
1789                     (unsigned long)engine);
1790
1791         INIT_LIST_HEAD(&engine->pending);
1792         INIT_LIST_HEAD(&engine->completed);
1793         INIT_LIST_HEAD(&engine->in_progress);
1794         engine->in_flight = 0;
1795         tasklet_init(&engine->complete, spacc_spacc_complete,
1796                      (unsigned long)engine);
1797
1798         platform_set_drvdata(pdev, engine);
1799
1800         INIT_LIST_HEAD(&engine->registered_algs);
1801         for (i = 0; i < engine->num_algs; ++i) {
1802                 engine->algs[i].engine = engine;
1803                 err = crypto_register_alg(&engine->algs[i].alg);
1804                 if (!err) {
1805                         list_add_tail(&engine->algs[i].entry,
1806                                       &engine->registered_algs);
1807                         ret = 0;
1808                 }
1809                 if (err)
1810                         dev_err(engine->dev, "failed to register alg \"%s\"\n",
1811                                 engine->algs[i].alg.cra_name);
1812                 else
1813                         dev_dbg(engine->dev, "registered alg \"%s\"\n",
1814                                 engine->algs[i].alg.cra_name);
1815         }
1816
1817         return ret;
1818 }
1819
1820 static int __devexit spacc_remove(struct platform_device *pdev)
1821 {
1822         struct spacc_alg *alg, *next;
1823         struct spacc_engine *engine = platform_get_drvdata(pdev);
1824
1825         del_timer_sync(&engine->packet_timeout);
1826         device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1827
1828         list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1829                 list_del(&alg->entry);
1830                 crypto_unregister_alg(&alg->alg);
1831         }
1832
1833         clk_disable(engine->clk);
1834         clk_put(engine->clk);
1835
1836         return 0;
1837 }
1838
1839 static const struct platform_device_id spacc_id_table[] = {
1840         { "picochip,spacc-ipsec", },
1841         { "picochip,spacc-l2", },
1842 };
1843
1844 static struct platform_driver spacc_driver = {
1845         .probe          = spacc_probe,
1846         .remove         = __devexit_p(spacc_remove),
1847         .driver         = {
1848                 .name   = "picochip,spacc",
1849 #ifdef CONFIG_PM
1850                 .pm     = &spacc_pm_ops,
1851 #endif /* CONFIG_PM */
1852                 .of_match_table = spacc_of_id_table,
1853         },
1854         .id_table       = spacc_id_table,
1855 };
1856
1857 static int __init spacc_init(void)
1858 {
1859         return platform_driver_register(&spacc_driver);
1860 }
1861 module_init(spacc_init);
1862
1863 static void __exit spacc_exit(void)
1864 {
1865         platform_driver_unregister(&spacc_driver);
1866 }
1867 module_exit(spacc_exit);
1868
1869 MODULE_LICENSE("GPL");
1870 MODULE_AUTHOR("Jamie Iles");