Merge branch 'devel-stable' of master.kernel.org:/home/rmk/linux-2.6-arm
[pandora-kernel.git] / drivers / crypto / n2_core.c
1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
2  *
3  * Copyright (C) 2010 David S. Miller <davem@davemloft.net>
4  */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
27
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
30
31 #include "n2_core.h"
32
33 #define DRV_MODULE_NAME         "n2_crypto"
34 #define DRV_MODULE_VERSION      "0.1"
35 #define DRV_MODULE_RELDATE      "April 29, 2010"
36
37 static char version[] __devinitdata =
38         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
39
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION);
44
45 #define N2_CRA_PRIORITY         300
46
47 static DEFINE_MUTEX(spu_lock);
48
49 struct spu_queue {
50         cpumask_t               sharing;
51         unsigned long           qhandle;
52
53         spinlock_t              lock;
54         u8                      q_type;
55         void                    *q;
56         unsigned long           head;
57         unsigned long           tail;
58         struct list_head        jobs;
59
60         unsigned long           devino;
61
62         char                    irq_name[32];
63         unsigned int            irq;
64
65         struct list_head        list;
66 };
67
68 static struct spu_queue **cpu_to_cwq;
69 static struct spu_queue **cpu_to_mau;
70
71 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
72 {
73         if (q->q_type == HV_NCS_QTYPE_MAU) {
74                 off += MAU_ENTRY_SIZE;
75                 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
76                         off = 0;
77         } else {
78                 off += CWQ_ENTRY_SIZE;
79                 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
80                         off = 0;
81         }
82         return off;
83 }
84
85 struct n2_request_common {
86         struct list_head        entry;
87         unsigned int            offset;
88 };
89 #define OFFSET_NOT_RUNNING      (~(unsigned int)0)
90
91 /* An async job request records the final tail value it used in
92  * n2_request_common->offset, test to see if that offset is in
93  * the range old_head, new_head, inclusive.
94  */
95 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
96                                 unsigned long old_head, unsigned long new_head)
97 {
98         if (old_head <= new_head) {
99                 if (offset > old_head && offset <= new_head)
100                         return true;
101         } else {
102                 if (offset > old_head || offset <= new_head)
103                         return true;
104         }
105         return false;
106 }
107
108 /* When the HEAD marker is unequal to the actual HEAD, we get
109  * a virtual device INO interrupt.  We should process the
110  * completed CWQ entries and adjust the HEAD marker to clear
111  * the IRQ.
112  */
113 static irqreturn_t cwq_intr(int irq, void *dev_id)
114 {
115         unsigned long off, new_head, hv_ret;
116         struct spu_queue *q = dev_id;
117
118         pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
119                smp_processor_id(), q->qhandle);
120
121         spin_lock(&q->lock);
122
123         hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
124
125         pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
126                smp_processor_id(), new_head, hv_ret);
127
128         for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
129                 /* XXX ... XXX */
130         }
131
132         hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
133         if (hv_ret == HV_EOK)
134                 q->head = new_head;
135
136         spin_unlock(&q->lock);
137
138         return IRQ_HANDLED;
139 }
140
141 static irqreturn_t mau_intr(int irq, void *dev_id)
142 {
143         struct spu_queue *q = dev_id;
144         unsigned long head, hv_ret;
145
146         spin_lock(&q->lock);
147
148         pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
149                smp_processor_id(), q->qhandle);
150
151         hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
152
153         pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
154                smp_processor_id(), head, hv_ret);
155
156         sun4v_ncs_sethead_marker(q->qhandle, head);
157
158         spin_unlock(&q->lock);
159
160         return IRQ_HANDLED;
161 }
162
163 static void *spu_queue_next(struct spu_queue *q, void *cur)
164 {
165         return q->q + spu_next_offset(q, cur - q->q);
166 }
167
168 static int spu_queue_num_free(struct spu_queue *q)
169 {
170         unsigned long head = q->head;
171         unsigned long tail = q->tail;
172         unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
173         unsigned long diff;
174
175         if (head > tail)
176                 diff = head - tail;
177         else
178                 diff = (end - tail) + head;
179
180         return (diff / CWQ_ENTRY_SIZE) - 1;
181 }
182
183 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
184 {
185         int avail = spu_queue_num_free(q);
186
187         if (avail >= num_entries)
188                 return q->q + q->tail;
189
190         return NULL;
191 }
192
193 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
194 {
195         unsigned long hv_ret, new_tail;
196
197         new_tail = spu_next_offset(q, last - q->q);
198
199         hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
200         if (hv_ret == HV_EOK)
201                 q->tail = new_tail;
202         return hv_ret;
203 }
204
205 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
206                              int enc_type, int auth_type,
207                              unsigned int hash_len,
208                              bool sfas, bool sob, bool eob, bool encrypt,
209                              int opcode)
210 {
211         u64 word = (len - 1) & CONTROL_LEN;
212
213         word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
214         word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
215         word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
216         if (sfas)
217                 word |= CONTROL_STORE_FINAL_AUTH_STATE;
218         if (sob)
219                 word |= CONTROL_START_OF_BLOCK;
220         if (eob)
221                 word |= CONTROL_END_OF_BLOCK;
222         if (encrypt)
223                 word |= CONTROL_ENCRYPT;
224         if (hmac_key_len)
225                 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
226         if (hash_len)
227                 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
228
229         return word;
230 }
231
232 #if 0
233 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
234 {
235         if (this_len >= 64 ||
236             qp->head != qp->tail)
237                 return true;
238         return false;
239 }
240 #endif
241
242 struct n2_ahash_alg {
243         struct list_head        entry;
244         const char              *hash_zero;
245         const u32               *hash_init;
246         u8                      hw_op_hashsz;
247         u8                      digest_size;
248         u8                      auth_type;
249         u8                      hmac_type;
250         struct ahash_alg        alg;
251 };
252
253 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
254 {
255         struct crypto_alg *alg = tfm->__crt_alg;
256         struct ahash_alg *ahash_alg;
257
258         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
259
260         return container_of(ahash_alg, struct n2_ahash_alg, alg);
261 }
262
263 struct n2_hmac_alg {
264         const char              *child_alg;
265         struct n2_ahash_alg     derived;
266 };
267
268 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
269 {
270         struct crypto_alg *alg = tfm->__crt_alg;
271         struct ahash_alg *ahash_alg;
272
273         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
274
275         return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
276 }
277
278 struct n2_hash_ctx {
279         struct crypto_ahash             *fallback_tfm;
280 };
281
282 #define N2_HASH_KEY_MAX                 32 /* HW limit for all HMAC requests */
283
284 struct n2_hmac_ctx {
285         struct n2_hash_ctx              base;
286
287         struct crypto_shash             *child_shash;
288
289         int                             hash_key_len;
290         unsigned char                   hash_key[N2_HASH_KEY_MAX];
291 };
292
293 struct n2_hash_req_ctx {
294         union {
295                 struct md5_state        md5;
296                 struct sha1_state       sha1;
297                 struct sha256_state     sha256;
298         } u;
299
300         struct ahash_request            fallback_req;
301 };
302
303 static int n2_hash_async_init(struct ahash_request *req)
304 {
305         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
306         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
307         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
308
309         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
310         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
311
312         return crypto_ahash_init(&rctx->fallback_req);
313 }
314
315 static int n2_hash_async_update(struct ahash_request *req)
316 {
317         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
318         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
319         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
320
321         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
322         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
323         rctx->fallback_req.nbytes = req->nbytes;
324         rctx->fallback_req.src = req->src;
325
326         return crypto_ahash_update(&rctx->fallback_req);
327 }
328
329 static int n2_hash_async_final(struct ahash_request *req)
330 {
331         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
332         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
333         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
334
335         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
336         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
337         rctx->fallback_req.result = req->result;
338
339         return crypto_ahash_final(&rctx->fallback_req);
340 }
341
342 static int n2_hash_async_finup(struct ahash_request *req)
343 {
344         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
345         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
346         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
347
348         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
349         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
350         rctx->fallback_req.nbytes = req->nbytes;
351         rctx->fallback_req.src = req->src;
352         rctx->fallback_req.result = req->result;
353
354         return crypto_ahash_finup(&rctx->fallback_req);
355 }
356
357 static int n2_hash_cra_init(struct crypto_tfm *tfm)
358 {
359         const char *fallback_driver_name = tfm->__crt_alg->cra_name;
360         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
361         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
362         struct crypto_ahash *fallback_tfm;
363         int err;
364
365         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
366                                           CRYPTO_ALG_NEED_FALLBACK);
367         if (IS_ERR(fallback_tfm)) {
368                 pr_warning("Fallback driver '%s' could not be loaded!\n",
369                            fallback_driver_name);
370                 err = PTR_ERR(fallback_tfm);
371                 goto out;
372         }
373
374         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
375                                          crypto_ahash_reqsize(fallback_tfm)));
376
377         ctx->fallback_tfm = fallback_tfm;
378         return 0;
379
380 out:
381         return err;
382 }
383
384 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
385 {
386         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
387         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
388
389         crypto_free_ahash(ctx->fallback_tfm);
390 }
391
392 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
393 {
394         const char *fallback_driver_name = tfm->__crt_alg->cra_name;
395         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
396         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
397         struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
398         struct crypto_ahash *fallback_tfm;
399         struct crypto_shash *child_shash;
400         int err;
401
402         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
403                                           CRYPTO_ALG_NEED_FALLBACK);
404         if (IS_ERR(fallback_tfm)) {
405                 pr_warning("Fallback driver '%s' could not be loaded!\n",
406                            fallback_driver_name);
407                 err = PTR_ERR(fallback_tfm);
408                 goto out;
409         }
410
411         child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
412         if (IS_ERR(child_shash)) {
413                 pr_warning("Child shash '%s' could not be loaded!\n",
414                            n2alg->child_alg);
415                 err = PTR_ERR(child_shash);
416                 goto out_free_fallback;
417         }
418
419         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
420                                          crypto_ahash_reqsize(fallback_tfm)));
421
422         ctx->child_shash = child_shash;
423         ctx->base.fallback_tfm = fallback_tfm;
424         return 0;
425
426 out_free_fallback:
427         crypto_free_ahash(fallback_tfm);
428
429 out:
430         return err;
431 }
432
433 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
434 {
435         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
436         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
437
438         crypto_free_ahash(ctx->base.fallback_tfm);
439         crypto_free_shash(ctx->child_shash);
440 }
441
442 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
443                                 unsigned int keylen)
444 {
445         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
446         struct crypto_shash *child_shash = ctx->child_shash;
447         struct crypto_ahash *fallback_tfm;
448         struct {
449                 struct shash_desc shash;
450                 char ctx[crypto_shash_descsize(child_shash)];
451         } desc;
452         int err, bs, ds;
453
454         fallback_tfm = ctx->base.fallback_tfm;
455         err = crypto_ahash_setkey(fallback_tfm, key, keylen);
456         if (err)
457                 return err;
458
459         desc.shash.tfm = child_shash;
460         desc.shash.flags = crypto_ahash_get_flags(tfm) &
461                 CRYPTO_TFM_REQ_MAY_SLEEP;
462
463         bs = crypto_shash_blocksize(child_shash);
464         ds = crypto_shash_digestsize(child_shash);
465         BUG_ON(ds > N2_HASH_KEY_MAX);
466         if (keylen > bs) {
467                 err = crypto_shash_digest(&desc.shash, key, keylen,
468                                           ctx->hash_key);
469                 if (err)
470                         return err;
471                 keylen = ds;
472         } else if (keylen <= N2_HASH_KEY_MAX)
473                 memcpy(ctx->hash_key, key, keylen);
474
475         ctx->hash_key_len = keylen;
476
477         return err;
478 }
479
480 static unsigned long wait_for_tail(struct spu_queue *qp)
481 {
482         unsigned long head, hv_ret;
483
484         do {
485                 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
486                 if (hv_ret != HV_EOK) {
487                         pr_err("Hypervisor error on gethead\n");
488                         break;
489                 }
490                 if (head == qp->tail) {
491                         qp->head = head;
492                         break;
493                 }
494         } while (1);
495         return hv_ret;
496 }
497
498 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
499                                               struct cwq_initial_entry *ent)
500 {
501         unsigned long hv_ret = spu_queue_submit(qp, ent);
502
503         if (hv_ret == HV_EOK)
504                 hv_ret = wait_for_tail(qp);
505
506         return hv_ret;
507 }
508
509 static int n2_do_async_digest(struct ahash_request *req,
510                               unsigned int auth_type, unsigned int digest_size,
511                               unsigned int result_size, void *hash_loc,
512                               unsigned long auth_key, unsigned int auth_key_len)
513 {
514         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
515         struct cwq_initial_entry *ent;
516         struct crypto_hash_walk walk;
517         struct spu_queue *qp;
518         unsigned long flags;
519         int err = -ENODEV;
520         int nbytes, cpu;
521
522         /* The total effective length of the operation may not
523          * exceed 2^16.
524          */
525         if (unlikely(req->nbytes > (1 << 16))) {
526                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
527                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
528
529                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
530                 rctx->fallback_req.base.flags =
531                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
532                 rctx->fallback_req.nbytes = req->nbytes;
533                 rctx->fallback_req.src = req->src;
534                 rctx->fallback_req.result = req->result;
535
536                 return crypto_ahash_digest(&rctx->fallback_req);
537         }
538
539         nbytes = crypto_hash_walk_first(req, &walk);
540
541         cpu = get_cpu();
542         qp = cpu_to_cwq[cpu];
543         if (!qp)
544                 goto out;
545
546         spin_lock_irqsave(&qp->lock, flags);
547
548         /* XXX can do better, improve this later by doing a by-hand scatterlist
549          * XXX walk, etc.
550          */
551         ent = qp->q + qp->tail;
552
553         ent->control = control_word_base(nbytes, auth_key_len, 0,
554                                          auth_type, digest_size,
555                                          false, true, false, false,
556                                          OPCODE_INPLACE_BIT |
557                                          OPCODE_AUTH_MAC);
558         ent->src_addr = __pa(walk.data);
559         ent->auth_key_addr = auth_key;
560         ent->auth_iv_addr = __pa(hash_loc);
561         ent->final_auth_state_addr = 0UL;
562         ent->enc_key_addr = 0UL;
563         ent->enc_iv_addr = 0UL;
564         ent->dest_addr = __pa(hash_loc);
565
566         nbytes = crypto_hash_walk_done(&walk, 0);
567         while (nbytes > 0) {
568                 ent = spu_queue_next(qp, ent);
569
570                 ent->control = (nbytes - 1);
571                 ent->src_addr = __pa(walk.data);
572                 ent->auth_key_addr = 0UL;
573                 ent->auth_iv_addr = 0UL;
574                 ent->final_auth_state_addr = 0UL;
575                 ent->enc_key_addr = 0UL;
576                 ent->enc_iv_addr = 0UL;
577                 ent->dest_addr = 0UL;
578
579                 nbytes = crypto_hash_walk_done(&walk, 0);
580         }
581         ent->control |= CONTROL_END_OF_BLOCK;
582
583         if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
584                 err = -EINVAL;
585         else
586                 err = 0;
587
588         spin_unlock_irqrestore(&qp->lock, flags);
589
590         if (!err)
591                 memcpy(req->result, hash_loc, result_size);
592 out:
593         put_cpu();
594
595         return err;
596 }
597
598 static int n2_hash_async_digest(struct ahash_request *req)
599 {
600         struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
601         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
602         int ds;
603
604         ds = n2alg->digest_size;
605         if (unlikely(req->nbytes == 0)) {
606                 memcpy(req->result, n2alg->hash_zero, ds);
607                 return 0;
608         }
609         memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
610
611         return n2_do_async_digest(req, n2alg->auth_type,
612                                   n2alg->hw_op_hashsz, ds,
613                                   &rctx->u, 0UL, 0);
614 }
615
616 static int n2_hmac_async_digest(struct ahash_request *req)
617 {
618         struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
619         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
620         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
621         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
622         int ds;
623
624         ds = n2alg->derived.digest_size;
625         if (unlikely(req->nbytes == 0) ||
626             unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
627                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
628                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
629
630                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
631                 rctx->fallback_req.base.flags =
632                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
633                 rctx->fallback_req.nbytes = req->nbytes;
634                 rctx->fallback_req.src = req->src;
635                 rctx->fallback_req.result = req->result;
636
637                 return crypto_ahash_digest(&rctx->fallback_req);
638         }
639         memcpy(&rctx->u, n2alg->derived.hash_init,
640                n2alg->derived.hw_op_hashsz);
641
642         return n2_do_async_digest(req, n2alg->derived.hmac_type,
643                                   n2alg->derived.hw_op_hashsz, ds,
644                                   &rctx->u,
645                                   __pa(&ctx->hash_key),
646                                   ctx->hash_key_len);
647 }
648
649 struct n2_cipher_context {
650         int                     key_len;
651         int                     enc_type;
652         union {
653                 u8              aes[AES_MAX_KEY_SIZE];
654                 u8              des[DES_KEY_SIZE];
655                 u8              des3[3 * DES_KEY_SIZE];
656                 u8              arc4[258]; /* S-box, X, Y */
657         } key;
658 };
659
660 #define N2_CHUNK_ARR_LEN        16
661
662 struct n2_crypto_chunk {
663         struct list_head        entry;
664         unsigned long           iv_paddr : 44;
665         unsigned long           arr_len : 20;
666         unsigned long           dest_paddr;
667         unsigned long           dest_final;
668         struct {
669                 unsigned long   src_paddr : 44;
670                 unsigned long   src_len : 20;
671         } arr[N2_CHUNK_ARR_LEN];
672 };
673
674 struct n2_request_context {
675         struct ablkcipher_walk  walk;
676         struct list_head        chunk_list;
677         struct n2_crypto_chunk  chunk;
678         u8                      temp_iv[16];
679 };
680
681 /* The SPU allows some level of flexibility for partial cipher blocks
682  * being specified in a descriptor.
683  *
684  * It merely requires that every descriptor's length field is at least
685  * as large as the cipher block size.  This means that a cipher block
686  * can span at most 2 descriptors.  However, this does not allow a
687  * partial block to span into the final descriptor as that would
688  * violate the rule (since every descriptor's length must be at lest
689  * the block size).  So, for example, assuming an 8 byte block size:
690  *
691  *      0xe --> 0xa --> 0x8
692  *
693  * is a valid length sequence, whereas:
694  *
695  *      0xe --> 0xb --> 0x7
696  *
697  * is not a valid sequence.
698  */
699
700 struct n2_cipher_alg {
701         struct list_head        entry;
702         u8                      enc_type;
703         struct crypto_alg       alg;
704 };
705
706 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
707 {
708         struct crypto_alg *alg = tfm->__crt_alg;
709
710         return container_of(alg, struct n2_cipher_alg, alg);
711 }
712
713 struct n2_cipher_request_context {
714         struct ablkcipher_walk  walk;
715 };
716
717 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
718                          unsigned int keylen)
719 {
720         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
721         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
722         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
723
724         ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
725
726         switch (keylen) {
727         case AES_KEYSIZE_128:
728                 ctx->enc_type |= ENC_TYPE_ALG_AES128;
729                 break;
730         case AES_KEYSIZE_192:
731                 ctx->enc_type |= ENC_TYPE_ALG_AES192;
732                 break;
733         case AES_KEYSIZE_256:
734                 ctx->enc_type |= ENC_TYPE_ALG_AES256;
735                 break;
736         default:
737                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
738                 return -EINVAL;
739         }
740
741         ctx->key_len = keylen;
742         memcpy(ctx->key.aes, key, keylen);
743         return 0;
744 }
745
746 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
747                          unsigned int keylen)
748 {
749         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
750         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
751         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
752         u32 tmp[DES_EXPKEY_WORDS];
753         int err;
754
755         ctx->enc_type = n2alg->enc_type;
756
757         if (keylen != DES_KEY_SIZE) {
758                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
759                 return -EINVAL;
760         }
761
762         err = des_ekey(tmp, key);
763         if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
764                 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
765                 return -EINVAL;
766         }
767
768         ctx->key_len = keylen;
769         memcpy(ctx->key.des, key, keylen);
770         return 0;
771 }
772
773 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
774                           unsigned int keylen)
775 {
776         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
777         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
778         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
779
780         ctx->enc_type = n2alg->enc_type;
781
782         if (keylen != (3 * DES_KEY_SIZE)) {
783                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
784                 return -EINVAL;
785         }
786         ctx->key_len = keylen;
787         memcpy(ctx->key.des3, key, keylen);
788         return 0;
789 }
790
791 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
792                           unsigned int keylen)
793 {
794         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
795         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
796         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
797         u8 *s = ctx->key.arc4;
798         u8 *x = s + 256;
799         u8 *y = x + 1;
800         int i, j, k;
801
802         ctx->enc_type = n2alg->enc_type;
803
804         j = k = 0;
805         *x = 0;
806         *y = 0;
807         for (i = 0; i < 256; i++)
808                 s[i] = i;
809         for (i = 0; i < 256; i++) {
810                 u8 a = s[i];
811                 j = (j + key[k] + a) & 0xff;
812                 s[i] = s[j];
813                 s[j] = a;
814                 if (++k >= keylen)
815                         k = 0;
816         }
817
818         return 0;
819 }
820
821 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
822 {
823         int this_len = nbytes;
824
825         this_len -= (nbytes & (block_size - 1));
826         return this_len > (1 << 16) ? (1 << 16) : this_len;
827 }
828
829 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
830                             struct spu_queue *qp, bool encrypt)
831 {
832         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
833         struct cwq_initial_entry *ent;
834         bool in_place;
835         int i;
836
837         ent = spu_queue_alloc(qp, cp->arr_len);
838         if (!ent) {
839                 pr_info("queue_alloc() of %d fails\n",
840                         cp->arr_len);
841                 return -EBUSY;
842         }
843
844         in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
845
846         ent->control = control_word_base(cp->arr[0].src_len,
847                                          0, ctx->enc_type, 0, 0,
848                                          false, true, false, encrypt,
849                                          OPCODE_ENCRYPT |
850                                          (in_place ? OPCODE_INPLACE_BIT : 0));
851         ent->src_addr = cp->arr[0].src_paddr;
852         ent->auth_key_addr = 0UL;
853         ent->auth_iv_addr = 0UL;
854         ent->final_auth_state_addr = 0UL;
855         ent->enc_key_addr = __pa(&ctx->key);
856         ent->enc_iv_addr = cp->iv_paddr;
857         ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
858
859         for (i = 1; i < cp->arr_len; i++) {
860                 ent = spu_queue_next(qp, ent);
861
862                 ent->control = cp->arr[i].src_len - 1;
863                 ent->src_addr = cp->arr[i].src_paddr;
864                 ent->auth_key_addr = 0UL;
865                 ent->auth_iv_addr = 0UL;
866                 ent->final_auth_state_addr = 0UL;
867                 ent->enc_key_addr = 0UL;
868                 ent->enc_iv_addr = 0UL;
869                 ent->dest_addr = 0UL;
870         }
871         ent->control |= CONTROL_END_OF_BLOCK;
872
873         return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
874 }
875
876 static int n2_compute_chunks(struct ablkcipher_request *req)
877 {
878         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
879         struct ablkcipher_walk *walk = &rctx->walk;
880         struct n2_crypto_chunk *chunk;
881         unsigned long dest_prev;
882         unsigned int tot_len;
883         bool prev_in_place;
884         int err, nbytes;
885
886         ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
887         err = ablkcipher_walk_phys(req, walk);
888         if (err)
889                 return err;
890
891         INIT_LIST_HEAD(&rctx->chunk_list);
892
893         chunk = &rctx->chunk;
894         INIT_LIST_HEAD(&chunk->entry);
895
896         chunk->iv_paddr = 0UL;
897         chunk->arr_len = 0;
898         chunk->dest_paddr = 0UL;
899
900         prev_in_place = false;
901         dest_prev = ~0UL;
902         tot_len = 0;
903
904         while ((nbytes = walk->nbytes) != 0) {
905                 unsigned long dest_paddr, src_paddr;
906                 bool in_place;
907                 int this_len;
908
909                 src_paddr = (page_to_phys(walk->src.page) +
910                              walk->src.offset);
911                 dest_paddr = (page_to_phys(walk->dst.page) +
912                               walk->dst.offset);
913                 in_place = (src_paddr == dest_paddr);
914                 this_len = cipher_descriptor_len(nbytes, walk->blocksize);
915
916                 if (chunk->arr_len != 0) {
917                         if (in_place != prev_in_place ||
918                             (!prev_in_place &&
919                              dest_paddr != dest_prev) ||
920                             chunk->arr_len == N2_CHUNK_ARR_LEN ||
921                             tot_len + this_len > (1 << 16)) {
922                                 chunk->dest_final = dest_prev;
923                                 list_add_tail(&chunk->entry,
924                                               &rctx->chunk_list);
925                                 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
926                                 if (!chunk) {
927                                         err = -ENOMEM;
928                                         break;
929                                 }
930                                 INIT_LIST_HEAD(&chunk->entry);
931                         }
932                 }
933                 if (chunk->arr_len == 0) {
934                         chunk->dest_paddr = dest_paddr;
935                         tot_len = 0;
936                 }
937                 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
938                 chunk->arr[chunk->arr_len].src_len = this_len;
939                 chunk->arr_len++;
940
941                 dest_prev = dest_paddr + this_len;
942                 prev_in_place = in_place;
943                 tot_len += this_len;
944
945                 err = ablkcipher_walk_done(req, walk, nbytes - this_len);
946                 if (err)
947                         break;
948         }
949         if (!err && chunk->arr_len != 0) {
950                 chunk->dest_final = dest_prev;
951                 list_add_tail(&chunk->entry, &rctx->chunk_list);
952         }
953
954         return err;
955 }
956
957 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
958 {
959         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
960         struct n2_crypto_chunk *c, *tmp;
961
962         if (final_iv)
963                 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
964
965         ablkcipher_walk_complete(&rctx->walk);
966         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
967                 list_del(&c->entry);
968                 if (unlikely(c != &rctx->chunk))
969                         kfree(c);
970         }
971
972 }
973
974 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
975 {
976         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
977         struct crypto_tfm *tfm = req->base.tfm;
978         int err = n2_compute_chunks(req);
979         struct n2_crypto_chunk *c, *tmp;
980         unsigned long flags, hv_ret;
981         struct spu_queue *qp;
982
983         if (err)
984                 return err;
985
986         qp = cpu_to_cwq[get_cpu()];
987         err = -ENODEV;
988         if (!qp)
989                 goto out;
990
991         spin_lock_irqsave(&qp->lock, flags);
992
993         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
994                 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
995                 if (err)
996                         break;
997                 list_del(&c->entry);
998                 if (unlikely(c != &rctx->chunk))
999                         kfree(c);
1000         }
1001         if (!err) {
1002                 hv_ret = wait_for_tail(qp);
1003                 if (hv_ret != HV_EOK)
1004                         err = -EINVAL;
1005         }
1006
1007         spin_unlock_irqrestore(&qp->lock, flags);
1008
1009         put_cpu();
1010
1011 out:
1012         n2_chunk_complete(req, NULL);
1013         return err;
1014 }
1015
1016 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1017 {
1018         return n2_do_ecb(req, true);
1019 }
1020
1021 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1022 {
1023         return n2_do_ecb(req, false);
1024 }
1025
1026 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1027 {
1028         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1029         struct crypto_tfm *tfm = req->base.tfm;
1030         unsigned long flags, hv_ret, iv_paddr;
1031         int err = n2_compute_chunks(req);
1032         struct n2_crypto_chunk *c, *tmp;
1033         struct spu_queue *qp;
1034         void *final_iv_addr;
1035
1036         final_iv_addr = NULL;
1037
1038         if (err)
1039                 return err;
1040
1041         qp = cpu_to_cwq[get_cpu()];
1042         err = -ENODEV;
1043         if (!qp)
1044                 goto out;
1045
1046         spin_lock_irqsave(&qp->lock, flags);
1047
1048         if (encrypt) {
1049                 iv_paddr = __pa(rctx->walk.iv);
1050                 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1051                                          entry) {
1052                         c->iv_paddr = iv_paddr;
1053                         err = __n2_crypt_chunk(tfm, c, qp, true);
1054                         if (err)
1055                                 break;
1056                         iv_paddr = c->dest_final - rctx->walk.blocksize;
1057                         list_del(&c->entry);
1058                         if (unlikely(c != &rctx->chunk))
1059                                 kfree(c);
1060                 }
1061                 final_iv_addr = __va(iv_paddr);
1062         } else {
1063                 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1064                                                  entry) {
1065                         if (c == &rctx->chunk) {
1066                                 iv_paddr = __pa(rctx->walk.iv);
1067                         } else {
1068                                 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1069                                             tmp->arr[tmp->arr_len-1].src_len -
1070                                             rctx->walk.blocksize);
1071                         }
1072                         if (!final_iv_addr) {
1073                                 unsigned long pa;
1074
1075                                 pa = (c->arr[c->arr_len-1].src_paddr +
1076                                       c->arr[c->arr_len-1].src_len -
1077                                       rctx->walk.blocksize);
1078                                 final_iv_addr = rctx->temp_iv;
1079                                 memcpy(rctx->temp_iv, __va(pa),
1080                                        rctx->walk.blocksize);
1081                         }
1082                         c->iv_paddr = iv_paddr;
1083                         err = __n2_crypt_chunk(tfm, c, qp, false);
1084                         if (err)
1085                                 break;
1086                         list_del(&c->entry);
1087                         if (unlikely(c != &rctx->chunk))
1088                                 kfree(c);
1089                 }
1090         }
1091         if (!err) {
1092                 hv_ret = wait_for_tail(qp);
1093                 if (hv_ret != HV_EOK)
1094                         err = -EINVAL;
1095         }
1096
1097         spin_unlock_irqrestore(&qp->lock, flags);
1098
1099         put_cpu();
1100
1101 out:
1102         n2_chunk_complete(req, err ? NULL : final_iv_addr);
1103         return err;
1104 }
1105
1106 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1107 {
1108         return n2_do_chaining(req, true);
1109 }
1110
1111 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1112 {
1113         return n2_do_chaining(req, false);
1114 }
1115
1116 struct n2_cipher_tmpl {
1117         const char              *name;
1118         const char              *drv_name;
1119         u8                      block_size;
1120         u8                      enc_type;
1121         struct ablkcipher_alg   ablkcipher;
1122 };
1123
1124 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1125         /* ARC4: only ECB is supported (chaining bits ignored) */
1126         {       .name           = "ecb(arc4)",
1127                 .drv_name       = "ecb-arc4",
1128                 .block_size     = 1,
1129                 .enc_type       = (ENC_TYPE_ALG_RC4_STREAM |
1130                                    ENC_TYPE_CHAINING_ECB),
1131                 .ablkcipher     = {
1132                         .min_keysize    = 1,
1133                         .max_keysize    = 256,
1134                         .setkey         = n2_arc4_setkey,
1135                         .encrypt        = n2_encrypt_ecb,
1136                         .decrypt        = n2_decrypt_ecb,
1137                 },
1138         },
1139
1140         /* DES: ECB CBC and CFB are supported */
1141         {       .name           = "ecb(des)",
1142                 .drv_name       = "ecb-des",
1143                 .block_size     = DES_BLOCK_SIZE,
1144                 .enc_type       = (ENC_TYPE_ALG_DES |
1145                                    ENC_TYPE_CHAINING_ECB),
1146                 .ablkcipher     = {
1147                         .min_keysize    = DES_KEY_SIZE,
1148                         .max_keysize    = DES_KEY_SIZE,
1149                         .setkey         = n2_des_setkey,
1150                         .encrypt        = n2_encrypt_ecb,
1151                         .decrypt        = n2_decrypt_ecb,
1152                 },
1153         },
1154         {       .name           = "cbc(des)",
1155                 .drv_name       = "cbc-des",
1156                 .block_size     = DES_BLOCK_SIZE,
1157                 .enc_type       = (ENC_TYPE_ALG_DES |
1158                                    ENC_TYPE_CHAINING_CBC),
1159                 .ablkcipher     = {
1160                         .ivsize         = DES_BLOCK_SIZE,
1161                         .min_keysize    = DES_KEY_SIZE,
1162                         .max_keysize    = DES_KEY_SIZE,
1163                         .setkey         = n2_des_setkey,
1164                         .encrypt        = n2_encrypt_chaining,
1165                         .decrypt        = n2_decrypt_chaining,
1166                 },
1167         },
1168         {       .name           = "cfb(des)",
1169                 .drv_name       = "cfb-des",
1170                 .block_size     = DES_BLOCK_SIZE,
1171                 .enc_type       = (ENC_TYPE_ALG_DES |
1172                                    ENC_TYPE_CHAINING_CFB),
1173                 .ablkcipher     = {
1174                         .min_keysize    = DES_KEY_SIZE,
1175                         .max_keysize    = DES_KEY_SIZE,
1176                         .setkey         = n2_des_setkey,
1177                         .encrypt        = n2_encrypt_chaining,
1178                         .decrypt        = n2_decrypt_chaining,
1179                 },
1180         },
1181
1182         /* 3DES: ECB CBC and CFB are supported */
1183         {       .name           = "ecb(des3_ede)",
1184                 .drv_name       = "ecb-3des",
1185                 .block_size     = DES_BLOCK_SIZE,
1186                 .enc_type       = (ENC_TYPE_ALG_3DES |
1187                                    ENC_TYPE_CHAINING_ECB),
1188                 .ablkcipher     = {
1189                         .min_keysize    = 3 * DES_KEY_SIZE,
1190                         .max_keysize    = 3 * DES_KEY_SIZE,
1191                         .setkey         = n2_3des_setkey,
1192                         .encrypt        = n2_encrypt_ecb,
1193                         .decrypt        = n2_decrypt_ecb,
1194                 },
1195         },
1196         {       .name           = "cbc(des3_ede)",
1197                 .drv_name       = "cbc-3des",
1198                 .block_size     = DES_BLOCK_SIZE,
1199                 .enc_type       = (ENC_TYPE_ALG_3DES |
1200                                    ENC_TYPE_CHAINING_CBC),
1201                 .ablkcipher     = {
1202                         .ivsize         = DES_BLOCK_SIZE,
1203                         .min_keysize    = 3 * DES_KEY_SIZE,
1204                         .max_keysize    = 3 * DES_KEY_SIZE,
1205                         .setkey         = n2_3des_setkey,
1206                         .encrypt        = n2_encrypt_chaining,
1207                         .decrypt        = n2_decrypt_chaining,
1208                 },
1209         },
1210         {       .name           = "cfb(des3_ede)",
1211                 .drv_name       = "cfb-3des",
1212                 .block_size     = DES_BLOCK_SIZE,
1213                 .enc_type       = (ENC_TYPE_ALG_3DES |
1214                                    ENC_TYPE_CHAINING_CFB),
1215                 .ablkcipher     = {
1216                         .min_keysize    = 3 * DES_KEY_SIZE,
1217                         .max_keysize    = 3 * DES_KEY_SIZE,
1218                         .setkey         = n2_3des_setkey,
1219                         .encrypt        = n2_encrypt_chaining,
1220                         .decrypt        = n2_decrypt_chaining,
1221                 },
1222         },
1223         /* AES: ECB CBC and CTR are supported */
1224         {       .name           = "ecb(aes)",
1225                 .drv_name       = "ecb-aes",
1226                 .block_size     = AES_BLOCK_SIZE,
1227                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1228                                    ENC_TYPE_CHAINING_ECB),
1229                 .ablkcipher     = {
1230                         .min_keysize    = AES_MIN_KEY_SIZE,
1231                         .max_keysize    = AES_MAX_KEY_SIZE,
1232                         .setkey         = n2_aes_setkey,
1233                         .encrypt        = n2_encrypt_ecb,
1234                         .decrypt        = n2_decrypt_ecb,
1235                 },
1236         },
1237         {       .name           = "cbc(aes)",
1238                 .drv_name       = "cbc-aes",
1239                 .block_size     = AES_BLOCK_SIZE,
1240                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1241                                    ENC_TYPE_CHAINING_CBC),
1242                 .ablkcipher     = {
1243                         .ivsize         = AES_BLOCK_SIZE,
1244                         .min_keysize    = AES_MIN_KEY_SIZE,
1245                         .max_keysize    = AES_MAX_KEY_SIZE,
1246                         .setkey         = n2_aes_setkey,
1247                         .encrypt        = n2_encrypt_chaining,
1248                         .decrypt        = n2_decrypt_chaining,
1249                 },
1250         },
1251         {       .name           = "ctr(aes)",
1252                 .drv_name       = "ctr-aes",
1253                 .block_size     = AES_BLOCK_SIZE,
1254                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1255                                    ENC_TYPE_CHAINING_COUNTER),
1256                 .ablkcipher     = {
1257                         .ivsize         = AES_BLOCK_SIZE,
1258                         .min_keysize    = AES_MIN_KEY_SIZE,
1259                         .max_keysize    = AES_MAX_KEY_SIZE,
1260                         .setkey         = n2_aes_setkey,
1261                         .encrypt        = n2_encrypt_chaining,
1262                         .decrypt        = n2_encrypt_chaining,
1263                 },
1264         },
1265
1266 };
1267 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1268
1269 static LIST_HEAD(cipher_algs);
1270
1271 struct n2_hash_tmpl {
1272         const char      *name;
1273         const char      *hash_zero;
1274         const u32       *hash_init;
1275         u8              hw_op_hashsz;
1276         u8              digest_size;
1277         u8              block_size;
1278         u8              auth_type;
1279         u8              hmac_type;
1280 };
1281
1282 static const char md5_zero[MD5_DIGEST_SIZE] = {
1283         0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04,
1284         0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e,
1285 };
1286 static const u32 md5_init[MD5_HASH_WORDS] = {
1287         cpu_to_le32(0x67452301),
1288         cpu_to_le32(0xefcdab89),
1289         cpu_to_le32(0x98badcfe),
1290         cpu_to_le32(0x10325476),
1291 };
1292 static const char sha1_zero[SHA1_DIGEST_SIZE] = {
1293         0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32,
1294         0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8,
1295         0x07, 0x09
1296 };
1297 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1298         SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1299 };
1300 static const char sha256_zero[SHA256_DIGEST_SIZE] = {
1301         0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a,
1302         0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae,
1303         0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99,
1304         0x1b, 0x78, 0x52, 0xb8, 0x55
1305 };
1306 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1307         SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1308         SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1309 };
1310 static const char sha224_zero[SHA224_DIGEST_SIZE] = {
1311         0xd1, 0x4a, 0x02, 0x8c, 0x2a, 0x3a, 0x2b, 0xc9, 0x47,
1312         0x61, 0x02, 0xbb, 0x28, 0x82, 0x34, 0xc4, 0x15, 0xa2,
1313         0xb0, 0x1f, 0x82, 0x8e, 0xa6, 0x2a, 0xc5, 0xb3, 0xe4,
1314         0x2f
1315 };
1316 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1317         SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1318         SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1319 };
1320
1321 static const struct n2_hash_tmpl hash_tmpls[] = {
1322         { .name         = "md5",
1323           .hash_zero    = md5_zero,
1324           .hash_init    = md5_init,
1325           .auth_type    = AUTH_TYPE_MD5,
1326           .hmac_type    = AUTH_TYPE_HMAC_MD5,
1327           .hw_op_hashsz = MD5_DIGEST_SIZE,
1328           .digest_size  = MD5_DIGEST_SIZE,
1329           .block_size   = MD5_HMAC_BLOCK_SIZE },
1330         { .name         = "sha1",
1331           .hash_zero    = sha1_zero,
1332           .hash_init    = sha1_init,
1333           .auth_type    = AUTH_TYPE_SHA1,
1334           .hmac_type    = AUTH_TYPE_HMAC_SHA1,
1335           .hw_op_hashsz = SHA1_DIGEST_SIZE,
1336           .digest_size  = SHA1_DIGEST_SIZE,
1337           .block_size   = SHA1_BLOCK_SIZE },
1338         { .name         = "sha256",
1339           .hash_zero    = sha256_zero,
1340           .hash_init    = sha256_init,
1341           .auth_type    = AUTH_TYPE_SHA256,
1342           .hmac_type    = AUTH_TYPE_HMAC_SHA256,
1343           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1344           .digest_size  = SHA256_DIGEST_SIZE,
1345           .block_size   = SHA256_BLOCK_SIZE },
1346         { .name         = "sha224",
1347           .hash_zero    = sha224_zero,
1348           .hash_init    = sha224_init,
1349           .auth_type    = AUTH_TYPE_SHA256,
1350           .hmac_type    = AUTH_TYPE_RESERVED,
1351           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1352           .digest_size  = SHA224_DIGEST_SIZE,
1353           .block_size   = SHA224_BLOCK_SIZE },
1354 };
1355 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1356
1357 static LIST_HEAD(ahash_algs);
1358 static LIST_HEAD(hmac_algs);
1359
1360 static int algs_registered;
1361
1362 static void __n2_unregister_algs(void)
1363 {
1364         struct n2_cipher_alg *cipher, *cipher_tmp;
1365         struct n2_ahash_alg *alg, *alg_tmp;
1366         struct n2_hmac_alg *hmac, *hmac_tmp;
1367
1368         list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1369                 crypto_unregister_alg(&cipher->alg);
1370                 list_del(&cipher->entry);
1371                 kfree(cipher);
1372         }
1373         list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1374                 crypto_unregister_ahash(&hmac->derived.alg);
1375                 list_del(&hmac->derived.entry);
1376                 kfree(hmac);
1377         }
1378         list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1379                 crypto_unregister_ahash(&alg->alg);
1380                 list_del(&alg->entry);
1381                 kfree(alg);
1382         }
1383 }
1384
1385 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1386 {
1387         tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1388         return 0;
1389 }
1390
1391 static int __devinit __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1392 {
1393         struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1394         struct crypto_alg *alg;
1395         int err;
1396
1397         if (!p)
1398                 return -ENOMEM;
1399
1400         alg = &p->alg;
1401
1402         snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1403         snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1404         alg->cra_priority = N2_CRA_PRIORITY;
1405         alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
1406         alg->cra_blocksize = tmpl->block_size;
1407         p->enc_type = tmpl->enc_type;
1408         alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1409         alg->cra_type = &crypto_ablkcipher_type;
1410         alg->cra_u.ablkcipher = tmpl->ablkcipher;
1411         alg->cra_init = n2_cipher_cra_init;
1412         alg->cra_module = THIS_MODULE;
1413
1414         list_add(&p->entry, &cipher_algs);
1415         err = crypto_register_alg(alg);
1416         if (err) {
1417                 pr_err("%s alg registration failed\n", alg->cra_name);
1418                 list_del(&p->entry);
1419                 kfree(p);
1420         } else {
1421                 pr_info("%s alg registered\n", alg->cra_name);
1422         }
1423         return err;
1424 }
1425
1426 static int __devinit __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1427 {
1428         struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1429         struct ahash_alg *ahash;
1430         struct crypto_alg *base;
1431         int err;
1432
1433         if (!p)
1434                 return -ENOMEM;
1435
1436         p->child_alg = n2ahash->alg.halg.base.cra_name;
1437         memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1438         INIT_LIST_HEAD(&p->derived.entry);
1439
1440         ahash = &p->derived.alg;
1441         ahash->digest = n2_hmac_async_digest;
1442         ahash->setkey = n2_hmac_async_setkey;
1443
1444         base = &ahash->halg.base;
1445         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1446         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1447
1448         base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1449         base->cra_init = n2_hmac_cra_init;
1450         base->cra_exit = n2_hmac_cra_exit;
1451
1452         list_add(&p->derived.entry, &hmac_algs);
1453         err = crypto_register_ahash(ahash);
1454         if (err) {
1455                 pr_err("%s alg registration failed\n", base->cra_name);
1456                 list_del(&p->derived.entry);
1457                 kfree(p);
1458         } else {
1459                 pr_info("%s alg registered\n", base->cra_name);
1460         }
1461         return err;
1462 }
1463
1464 static int __devinit __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1465 {
1466         struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1467         struct hash_alg_common *halg;
1468         struct crypto_alg *base;
1469         struct ahash_alg *ahash;
1470         int err;
1471
1472         if (!p)
1473                 return -ENOMEM;
1474
1475         p->hash_zero = tmpl->hash_zero;
1476         p->hash_init = tmpl->hash_init;
1477         p->auth_type = tmpl->auth_type;
1478         p->hmac_type = tmpl->hmac_type;
1479         p->hw_op_hashsz = tmpl->hw_op_hashsz;
1480         p->digest_size = tmpl->digest_size;
1481
1482         ahash = &p->alg;
1483         ahash->init = n2_hash_async_init;
1484         ahash->update = n2_hash_async_update;
1485         ahash->final = n2_hash_async_final;
1486         ahash->finup = n2_hash_async_finup;
1487         ahash->digest = n2_hash_async_digest;
1488
1489         halg = &ahash->halg;
1490         halg->digestsize = tmpl->digest_size;
1491
1492         base = &halg->base;
1493         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1494         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1495         base->cra_priority = N2_CRA_PRIORITY;
1496         base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_NEED_FALLBACK;
1497         base->cra_blocksize = tmpl->block_size;
1498         base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1499         base->cra_module = THIS_MODULE;
1500         base->cra_init = n2_hash_cra_init;
1501         base->cra_exit = n2_hash_cra_exit;
1502
1503         list_add(&p->entry, &ahash_algs);
1504         err = crypto_register_ahash(ahash);
1505         if (err) {
1506                 pr_err("%s alg registration failed\n", base->cra_name);
1507                 list_del(&p->entry);
1508                 kfree(p);
1509         } else {
1510                 pr_info("%s alg registered\n", base->cra_name);
1511         }
1512         if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1513                 err = __n2_register_one_hmac(p);
1514         return err;
1515 }
1516
1517 static int __devinit n2_register_algs(void)
1518 {
1519         int i, err = 0;
1520
1521         mutex_lock(&spu_lock);
1522         if (algs_registered++)
1523                 goto out;
1524
1525         for (i = 0; i < NUM_HASH_TMPLS; i++) {
1526                 err = __n2_register_one_ahash(&hash_tmpls[i]);
1527                 if (err) {
1528                         __n2_unregister_algs();
1529                         goto out;
1530                 }
1531         }
1532         for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1533                 err = __n2_register_one_cipher(&cipher_tmpls[i]);
1534                 if (err) {
1535                         __n2_unregister_algs();
1536                         goto out;
1537                 }
1538         }
1539
1540 out:
1541         mutex_unlock(&spu_lock);
1542         return err;
1543 }
1544
1545 static void __devexit n2_unregister_algs(void)
1546 {
1547         mutex_lock(&spu_lock);
1548         if (!--algs_registered)
1549                 __n2_unregister_algs();
1550         mutex_unlock(&spu_lock);
1551 }
1552
1553 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1554  * a devino.  This isn't very useful to us because all of the
1555  * interrupts listed in the device_node have been translated to
1556  * Linux virtual IRQ cookie numbers.
1557  *
1558  * So we have to back-translate, going through the 'intr' and 'ino'
1559  * property tables of the n2cp MDESC node, matching it with the OF
1560  * 'interrupts' property entries, in order to to figure out which
1561  * devino goes to which already-translated IRQ.
1562  */
1563 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1564                              unsigned long dev_ino)
1565 {
1566         const unsigned int *dev_intrs;
1567         unsigned int intr;
1568         int i;
1569
1570         for (i = 0; i < ip->num_intrs; i++) {
1571                 if (ip->ino_table[i].ino == dev_ino)
1572                         break;
1573         }
1574         if (i == ip->num_intrs)
1575                 return -ENODEV;
1576
1577         intr = ip->ino_table[i].intr;
1578
1579         dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1580         if (!dev_intrs)
1581                 return -ENODEV;
1582
1583         for (i = 0; i < dev->archdata.num_irqs; i++) {
1584                 if (dev_intrs[i] == intr)
1585                         return i;
1586         }
1587
1588         return -ENODEV;
1589 }
1590
1591 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1592                        const char *irq_name, struct spu_queue *p,
1593                        irq_handler_t handler)
1594 {
1595         unsigned long herr;
1596         int index;
1597
1598         herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1599         if (herr)
1600                 return -EINVAL;
1601
1602         index = find_devino_index(dev, ip, p->devino);
1603         if (index < 0)
1604                 return index;
1605
1606         p->irq = dev->archdata.irqs[index];
1607
1608         sprintf(p->irq_name, "%s-%d", irq_name, index);
1609
1610         return request_irq(p->irq, handler, IRQF_SAMPLE_RANDOM,
1611                            p->irq_name, p);
1612 }
1613
1614 static struct kmem_cache *queue_cache[2];
1615
1616 static void *new_queue(unsigned long q_type)
1617 {
1618         return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1619 }
1620
1621 static void free_queue(void *p, unsigned long q_type)
1622 {
1623         return kmem_cache_free(queue_cache[q_type - 1], p);
1624 }
1625
1626 static int queue_cache_init(void)
1627 {
1628         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1629                 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1630                         kmem_cache_create("mau_queue",
1631                                           (MAU_NUM_ENTRIES *
1632                                            MAU_ENTRY_SIZE),
1633                                           MAU_ENTRY_SIZE, 0, NULL);
1634         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1635                 return -ENOMEM;
1636
1637         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1638                 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1639                         kmem_cache_create("cwq_queue",
1640                                           (CWQ_NUM_ENTRIES *
1641                                            CWQ_ENTRY_SIZE),
1642                                           CWQ_ENTRY_SIZE, 0, NULL);
1643         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1644                 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1645                 return -ENOMEM;
1646         }
1647         return 0;
1648 }
1649
1650 static void queue_cache_destroy(void)
1651 {
1652         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1653         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1654 }
1655
1656 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1657 {
1658         cpumask_var_t old_allowed;
1659         unsigned long hv_ret;
1660
1661         if (cpumask_empty(&p->sharing))
1662                 return -EINVAL;
1663
1664         if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL))
1665                 return -ENOMEM;
1666
1667         cpumask_copy(old_allowed, &current->cpus_allowed);
1668
1669         set_cpus_allowed_ptr(current, &p->sharing);
1670
1671         hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1672                                  CWQ_NUM_ENTRIES, &p->qhandle);
1673         if (!hv_ret)
1674                 sun4v_ncs_sethead_marker(p->qhandle, 0);
1675
1676         set_cpus_allowed_ptr(current, old_allowed);
1677
1678         free_cpumask_var(old_allowed);
1679
1680         return (hv_ret ? -EINVAL : 0);
1681 }
1682
1683 static int spu_queue_setup(struct spu_queue *p)
1684 {
1685         int err;
1686
1687         p->q = new_queue(p->q_type);
1688         if (!p->q)
1689                 return -ENOMEM;
1690
1691         err = spu_queue_register(p, p->q_type);
1692         if (err) {
1693                 free_queue(p->q, p->q_type);
1694                 p->q = NULL;
1695         }
1696
1697         return err;
1698 }
1699
1700 static void spu_queue_destroy(struct spu_queue *p)
1701 {
1702         unsigned long hv_ret;
1703
1704         if (!p->q)
1705                 return;
1706
1707         hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1708
1709         if (!hv_ret)
1710                 free_queue(p->q, p->q_type);
1711 }
1712
1713 static void spu_list_destroy(struct list_head *list)
1714 {
1715         struct spu_queue *p, *n;
1716
1717         list_for_each_entry_safe(p, n, list, list) {
1718                 int i;
1719
1720                 for (i = 0; i < NR_CPUS; i++) {
1721                         if (cpu_to_cwq[i] == p)
1722                                 cpu_to_cwq[i] = NULL;
1723                 }
1724
1725                 if (p->irq) {
1726                         free_irq(p->irq, p);
1727                         p->irq = 0;
1728                 }
1729                 spu_queue_destroy(p);
1730                 list_del(&p->list);
1731                 kfree(p);
1732         }
1733 }
1734
1735 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1736  * gathering cpu membership information.
1737  */
1738 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1739                                struct platform_device *dev,
1740                                u64 node, struct spu_queue *p,
1741                                struct spu_queue **table)
1742 {
1743         u64 arc;
1744
1745         mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1746                 u64 tgt = mdesc_arc_target(mdesc, arc);
1747                 const char *name = mdesc_node_name(mdesc, tgt);
1748                 const u64 *id;
1749
1750                 if (strcmp(name, "cpu"))
1751                         continue;
1752                 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1753                 if (table[*id] != NULL) {
1754                         dev_err(&dev->dev, "%s: SPU cpu slot already set.\n",
1755                                 dev->dev.of_node->full_name);
1756                         return -EINVAL;
1757                 }
1758                 cpu_set(*id, p->sharing);
1759                 table[*id] = p;
1760         }
1761         return 0;
1762 }
1763
1764 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1765 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1766                             struct platform_device *dev, struct mdesc_handle *mdesc,
1767                             u64 node, const char *iname, unsigned long q_type,
1768                             irq_handler_t handler, struct spu_queue **table)
1769 {
1770         struct spu_queue *p;
1771         int err;
1772
1773         p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1774         if (!p) {
1775                 dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n",
1776                         dev->dev.of_node->full_name);
1777                 return -ENOMEM;
1778         }
1779
1780         cpus_clear(p->sharing);
1781         spin_lock_init(&p->lock);
1782         p->q_type = q_type;
1783         INIT_LIST_HEAD(&p->jobs);
1784         list_add(&p->list, list);
1785
1786         err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1787         if (err)
1788                 return err;
1789
1790         err = spu_queue_setup(p);
1791         if (err)
1792                 return err;
1793
1794         return spu_map_ino(dev, ip, iname, p, handler);
1795 }
1796
1797 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1798                           struct spu_mdesc_info *ip, struct list_head *list,
1799                           const char *exec_name, unsigned long q_type,
1800                           irq_handler_t handler, struct spu_queue **table)
1801 {
1802         int err = 0;
1803         u64 node;
1804
1805         mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1806                 const char *type;
1807
1808                 type = mdesc_get_property(mdesc, node, "type", NULL);
1809                 if (!type || strcmp(type, exec_name))
1810                         continue;
1811
1812                 err = handle_exec_unit(ip, list, dev, mdesc, node,
1813                                        exec_name, q_type, handler, table);
1814                 if (err) {
1815                         spu_list_destroy(list);
1816                         break;
1817                 }
1818         }
1819
1820         return err;
1821 }
1822
1823 static int __devinit get_irq_props(struct mdesc_handle *mdesc, u64 node,
1824                                    struct spu_mdesc_info *ip)
1825 {
1826         const u64 *intr, *ino;
1827         int intr_len, ino_len;
1828         int i;
1829
1830         intr = mdesc_get_property(mdesc, node, "intr", &intr_len);
1831         if (!intr)
1832                 return -ENODEV;
1833
1834         ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1835         if (!ino)
1836                 return -ENODEV;
1837
1838         if (intr_len != ino_len)
1839                 return -EINVAL;
1840
1841         ip->num_intrs = intr_len / sizeof(u64);
1842         ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1843                                  ip->num_intrs),
1844                                 GFP_KERNEL);
1845         if (!ip->ino_table)
1846                 return -ENOMEM;
1847
1848         for (i = 0; i < ip->num_intrs; i++) {
1849                 struct ino_blob *b = &ip->ino_table[i];
1850                 b->intr = intr[i];
1851                 b->ino = ino[i];
1852         }
1853
1854         return 0;
1855 }
1856
1857 static int __devinit grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1858                                           struct platform_device *dev,
1859                                           struct spu_mdesc_info *ip,
1860                                           const char *node_name)
1861 {
1862         const unsigned int *reg;
1863         u64 node;
1864
1865         reg = of_get_property(dev->dev.of_node, "reg", NULL);
1866         if (!reg)
1867                 return -ENODEV;
1868
1869         mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1870                 const char *name;
1871                 const u64 *chdl;
1872
1873                 name = mdesc_get_property(mdesc, node, "name", NULL);
1874                 if (!name || strcmp(name, node_name))
1875                         continue;
1876                 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1877                 if (!chdl || (*chdl != *reg))
1878                         continue;
1879                 ip->cfg_handle = *chdl;
1880                 return get_irq_props(mdesc, node, ip);
1881         }
1882
1883         return -ENODEV;
1884 }
1885
1886 static unsigned long n2_spu_hvapi_major;
1887 static unsigned long n2_spu_hvapi_minor;
1888
1889 static int __devinit n2_spu_hvapi_register(void)
1890 {
1891         int err;
1892
1893         n2_spu_hvapi_major = 2;
1894         n2_spu_hvapi_minor = 0;
1895
1896         err = sun4v_hvapi_register(HV_GRP_NCS,
1897                                    n2_spu_hvapi_major,
1898                                    &n2_spu_hvapi_minor);
1899
1900         if (!err)
1901                 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1902                         n2_spu_hvapi_major,
1903                         n2_spu_hvapi_minor);
1904
1905         return err;
1906 }
1907
1908 static void n2_spu_hvapi_unregister(void)
1909 {
1910         sun4v_hvapi_unregister(HV_GRP_NCS);
1911 }
1912
1913 static int global_ref;
1914
1915 static int __devinit grab_global_resources(void)
1916 {
1917         int err = 0;
1918
1919         mutex_lock(&spu_lock);
1920
1921         if (global_ref++)
1922                 goto out;
1923
1924         err = n2_spu_hvapi_register();
1925         if (err)
1926                 goto out;
1927
1928         err = queue_cache_init();
1929         if (err)
1930                 goto out_hvapi_release;
1931
1932         err = -ENOMEM;
1933         cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1934                              GFP_KERNEL);
1935         if (!cpu_to_cwq)
1936                 goto out_queue_cache_destroy;
1937
1938         cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1939                              GFP_KERNEL);
1940         if (!cpu_to_mau)
1941                 goto out_free_cwq_table;
1942
1943         err = 0;
1944
1945 out:
1946         if (err)
1947                 global_ref--;
1948         mutex_unlock(&spu_lock);
1949         return err;
1950
1951 out_free_cwq_table:
1952         kfree(cpu_to_cwq);
1953         cpu_to_cwq = NULL;
1954
1955 out_queue_cache_destroy:
1956         queue_cache_destroy();
1957
1958 out_hvapi_release:
1959         n2_spu_hvapi_unregister();
1960         goto out;
1961 }
1962
1963 static void release_global_resources(void)
1964 {
1965         mutex_lock(&spu_lock);
1966         if (!--global_ref) {
1967                 kfree(cpu_to_cwq);
1968                 cpu_to_cwq = NULL;
1969
1970                 kfree(cpu_to_mau);
1971                 cpu_to_mau = NULL;
1972
1973                 queue_cache_destroy();
1974                 n2_spu_hvapi_unregister();
1975         }
1976         mutex_unlock(&spu_lock);
1977 }
1978
1979 static struct n2_crypto * __devinit alloc_n2cp(void)
1980 {
1981         struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1982
1983         if (np)
1984                 INIT_LIST_HEAD(&np->cwq_list);
1985
1986         return np;
1987 }
1988
1989 static void free_n2cp(struct n2_crypto *np)
1990 {
1991         if (np->cwq_info.ino_table) {
1992                 kfree(np->cwq_info.ino_table);
1993                 np->cwq_info.ino_table = NULL;
1994         }
1995
1996         kfree(np);
1997 }
1998
1999 static void __devinit n2_spu_driver_version(void)
2000 {
2001         static int n2_spu_version_printed;
2002
2003         if (n2_spu_version_printed++ == 0)
2004                 pr_info("%s", version);
2005 }
2006
2007 static int __devinit n2_crypto_probe(struct platform_device *dev,
2008                                      const struct of_device_id *match)
2009 {
2010         struct mdesc_handle *mdesc;
2011         const char *full_name;
2012         struct n2_crypto *np;
2013         int err;
2014
2015         n2_spu_driver_version();
2016
2017         full_name = dev->dev.of_node->full_name;
2018         pr_info("Found N2CP at %s\n", full_name);
2019
2020         np = alloc_n2cp();
2021         if (!np) {
2022                 dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n",
2023                         full_name);
2024                 return -ENOMEM;
2025         }
2026
2027         err = grab_global_resources();
2028         if (err) {
2029                 dev_err(&dev->dev, "%s: Unable to grab "
2030                         "global resources.\n", full_name);
2031                 goto out_free_n2cp;
2032         }
2033
2034         mdesc = mdesc_grab();
2035
2036         if (!mdesc) {
2037                 dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
2038                         full_name);
2039                 err = -ENODEV;
2040                 goto out_free_global;
2041         }
2042         err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2043         if (err) {
2044                 dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
2045                         full_name);
2046                 mdesc_release(mdesc);
2047                 goto out_free_global;
2048         }
2049
2050         err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2051                              "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2052                              cpu_to_cwq);
2053         mdesc_release(mdesc);
2054
2055         if (err) {
2056                 dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n",
2057                         full_name);
2058                 goto out_free_global;
2059         }
2060
2061         err = n2_register_algs();
2062         if (err) {
2063                 dev_err(&dev->dev, "%s: Unable to register algorithms.\n",
2064                         full_name);
2065                 goto out_free_spu_list;
2066         }
2067
2068         dev_set_drvdata(&dev->dev, np);
2069
2070         return 0;
2071
2072 out_free_spu_list:
2073         spu_list_destroy(&np->cwq_list);
2074
2075 out_free_global:
2076         release_global_resources();
2077
2078 out_free_n2cp:
2079         free_n2cp(np);
2080
2081         return err;
2082 }
2083
2084 static int __devexit n2_crypto_remove(struct platform_device *dev)
2085 {
2086         struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2087
2088         n2_unregister_algs();
2089
2090         spu_list_destroy(&np->cwq_list);
2091
2092         release_global_resources();
2093
2094         free_n2cp(np);
2095
2096         return 0;
2097 }
2098
2099 static struct n2_mau * __devinit alloc_ncp(void)
2100 {
2101         struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2102
2103         if (mp)
2104                 INIT_LIST_HEAD(&mp->mau_list);
2105
2106         return mp;
2107 }
2108
2109 static void free_ncp(struct n2_mau *mp)
2110 {
2111         if (mp->mau_info.ino_table) {
2112                 kfree(mp->mau_info.ino_table);
2113                 mp->mau_info.ino_table = NULL;
2114         }
2115
2116         kfree(mp);
2117 }
2118
2119 static int __devinit n2_mau_probe(struct platform_device *dev,
2120                                      const struct of_device_id *match)
2121 {
2122         struct mdesc_handle *mdesc;
2123         const char *full_name;
2124         struct n2_mau *mp;
2125         int err;
2126
2127         n2_spu_driver_version();
2128
2129         full_name = dev->dev.of_node->full_name;
2130         pr_info("Found NCP at %s\n", full_name);
2131
2132         mp = alloc_ncp();
2133         if (!mp) {
2134                 dev_err(&dev->dev, "%s: Unable to allocate ncp.\n",
2135                         full_name);
2136                 return -ENOMEM;
2137         }
2138
2139         err = grab_global_resources();
2140         if (err) {
2141                 dev_err(&dev->dev, "%s: Unable to grab "
2142                         "global resources.\n", full_name);
2143                 goto out_free_ncp;
2144         }
2145
2146         mdesc = mdesc_grab();
2147
2148         if (!mdesc) {
2149                 dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
2150                         full_name);
2151                 err = -ENODEV;
2152                 goto out_free_global;
2153         }
2154
2155         err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2156         if (err) {
2157                 dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
2158                         full_name);
2159                 mdesc_release(mdesc);
2160                 goto out_free_global;
2161         }
2162
2163         err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2164                              "mau", HV_NCS_QTYPE_MAU, mau_intr,
2165                              cpu_to_mau);
2166         mdesc_release(mdesc);
2167
2168         if (err) {
2169                 dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n",
2170                         full_name);
2171                 goto out_free_global;
2172         }
2173
2174         dev_set_drvdata(&dev->dev, mp);
2175
2176         return 0;
2177
2178 out_free_global:
2179         release_global_resources();
2180
2181 out_free_ncp:
2182         free_ncp(mp);
2183
2184         return err;
2185 }
2186
2187 static int __devexit n2_mau_remove(struct platform_device *dev)
2188 {
2189         struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2190
2191         spu_list_destroy(&mp->mau_list);
2192
2193         release_global_resources();
2194
2195         free_ncp(mp);
2196
2197         return 0;
2198 }
2199
2200 static struct of_device_id n2_crypto_match[] = {
2201         {
2202                 .name = "n2cp",
2203                 .compatible = "SUNW,n2-cwq",
2204         },
2205         {
2206                 .name = "n2cp",
2207                 .compatible = "SUNW,vf-cwq",
2208         },
2209         {},
2210 };
2211
2212 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2213
2214 static struct of_platform_driver n2_crypto_driver = {
2215         .driver = {
2216                 .name           =       "n2cp",
2217                 .owner          =       THIS_MODULE,
2218                 .of_match_table =       n2_crypto_match,
2219         },
2220         .probe          =       n2_crypto_probe,
2221         .remove         =       __devexit_p(n2_crypto_remove),
2222 };
2223
2224 static struct of_device_id n2_mau_match[] = {
2225         {
2226                 .name = "ncp",
2227                 .compatible = "SUNW,n2-mau",
2228         },
2229         {
2230                 .name = "ncp",
2231                 .compatible = "SUNW,vf-mau",
2232         },
2233         {},
2234 };
2235
2236 MODULE_DEVICE_TABLE(of, n2_mau_match);
2237
2238 static struct of_platform_driver n2_mau_driver = {
2239         .driver = {
2240                 .name           =       "ncp",
2241                 .owner          =       THIS_MODULE,
2242                 .of_match_table =       n2_mau_match,
2243         },
2244         .probe          =       n2_mau_probe,
2245         .remove         =       __devexit_p(n2_mau_remove),
2246 };
2247
2248 static int __init n2_init(void)
2249 {
2250         int err = of_register_platform_driver(&n2_crypto_driver);
2251
2252         if (!err) {
2253                 err = of_register_platform_driver(&n2_mau_driver);
2254                 if (err)
2255                         of_unregister_platform_driver(&n2_crypto_driver);
2256         }
2257         return err;
2258 }
2259
2260 static void __exit n2_exit(void)
2261 {
2262         of_unregister_platform_driver(&n2_mau_driver);
2263         of_unregister_platform_driver(&n2_crypto_driver);
2264 }
2265
2266 module_init(n2_init);
2267 module_exit(n2_exit);