pandora: reserve CMA area for c64_tools
[pandora-kernel.git] / drivers / crypto / mv_cesa.c
1 /*
2  * Support for Marvell's crypto engine which can be found on some Orion5X
3  * boards.
4  *
5  * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6  * License: GPLv2
7  *
8  */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <crypto/internal/hash.h>
20 #include <crypto/sha.h>
21
22 #include "mv_cesa.h"
23
24 #define MV_CESA "MV-CESA:"
25 #define MAX_HW_HASH_SIZE        0xFFFF
26
27 /*
28  * STM:
29  *   /---------------------------------------\
30  *   |                                       | request complete
31  *  \./                                      |
32  * IDLE -> new request -> BUSY -> done -> DEQUEUE
33  *                         /°\               |
34  *                          |                | more scatter entries
35  *                          \________________/
36  */
37 enum engine_status {
38         ENGINE_IDLE,
39         ENGINE_BUSY,
40         ENGINE_W_DEQUEUE,
41 };
42
43 /**
44  * struct req_progress - used for every crypt request
45  * @src_sg_it:          sg iterator for src
46  * @dst_sg_it:          sg iterator for dst
47  * @sg_src_left:        bytes left in src to process (scatter list)
48  * @src_start:          offset to add to src start position (scatter list)
49  * @crypt_len:          length of current hw crypt/hash process
50  * @hw_nbytes:          total bytes to process in hw for this request
51  * @copy_back:          whether to copy data back (crypt) or not (hash)
52  * @sg_dst_left:        bytes left dst to process in this scatter list
53  * @dst_start:          offset to add to dst start position (scatter list)
54  * @hw_processed_bytes: number of bytes processed by hw (request).
55  *
56  * sg helper are used to iterate over the scatterlist. Since the size of the
57  * SRAM may be less than the scatter size, this struct struct is used to keep
58  * track of progress within current scatterlist.
59  */
60 struct req_progress {
61         struct sg_mapping_iter src_sg_it;
62         struct sg_mapping_iter dst_sg_it;
63         void (*complete) (void);
64         void (*process) (int is_first);
65
66         /* src mostly */
67         int sg_src_left;
68         int src_start;
69         int crypt_len;
70         int hw_nbytes;
71         /* dst mostly */
72         int copy_back;
73         int sg_dst_left;
74         int dst_start;
75         int hw_processed_bytes;
76 };
77
78 struct crypto_priv {
79         void __iomem *reg;
80         void __iomem *sram;
81         int irq;
82         struct task_struct *queue_th;
83
84         /* the lock protects queue and eng_st */
85         spinlock_t lock;
86         struct crypto_queue queue;
87         enum engine_status eng_st;
88         struct crypto_async_request *cur_req;
89         struct req_progress p;
90         int max_req_size;
91         int sram_size;
92         int has_sha1;
93         int has_hmac_sha1;
94 };
95
96 static struct crypto_priv *cpg;
97
98 struct mv_ctx {
99         u8 aes_enc_key[AES_KEY_LEN];
100         u32 aes_dec_key[8];
101         int key_len;
102         u32 need_calc_aes_dkey;
103 };
104
105 enum crypto_op {
106         COP_AES_ECB,
107         COP_AES_CBC,
108 };
109
110 struct mv_req_ctx {
111         enum crypto_op op;
112         int decrypt;
113 };
114
115 enum hash_op {
116         COP_SHA1,
117         COP_HMAC_SHA1
118 };
119
120 struct mv_tfm_hash_ctx {
121         struct crypto_shash *fallback;
122         struct crypto_shash *base_hash;
123         u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
124         int count_add;
125         enum hash_op op;
126 };
127
128 struct mv_req_hash_ctx {
129         u64 count;
130         u32 state[SHA1_DIGEST_SIZE / 4];
131         u8 buffer[SHA1_BLOCK_SIZE];
132         int first_hash;         /* marks that we don't have previous state */
133         int last_chunk;         /* marks that this is the 'final' request */
134         int extra_bytes;        /* unprocessed bytes in buffer */
135         enum hash_op op;
136         int count_add;
137 };
138
139 static void compute_aes_dec_key(struct mv_ctx *ctx)
140 {
141         struct crypto_aes_ctx gen_aes_key;
142         int key_pos;
143
144         if (!ctx->need_calc_aes_dkey)
145                 return;
146
147         crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
148
149         key_pos = ctx->key_len + 24;
150         memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
151         switch (ctx->key_len) {
152         case AES_KEYSIZE_256:
153                 key_pos -= 2;
154                 /* fall */
155         case AES_KEYSIZE_192:
156                 key_pos -= 2;
157                 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
158                                 4 * 4);
159                 break;
160         }
161         ctx->need_calc_aes_dkey = 0;
162 }
163
164 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
165                 unsigned int len)
166 {
167         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
168         struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
169
170         switch (len) {
171         case AES_KEYSIZE_128:
172         case AES_KEYSIZE_192:
173         case AES_KEYSIZE_256:
174                 break;
175         default:
176                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
177                 return -EINVAL;
178         }
179         ctx->key_len = len;
180         ctx->need_calc_aes_dkey = 1;
181
182         memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
183         return 0;
184 }
185
186 static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
187 {
188         int ret;
189         void *sbuf;
190         int copy_len;
191
192         while (len) {
193                 if (!p->sg_src_left) {
194                         ret = sg_miter_next(&p->src_sg_it);
195                         BUG_ON(!ret);
196                         p->sg_src_left = p->src_sg_it.length;
197                         p->src_start = 0;
198                 }
199
200                 sbuf = p->src_sg_it.addr + p->src_start;
201
202                 copy_len = min(p->sg_src_left, len);
203                 memcpy(dbuf, sbuf, copy_len);
204
205                 p->src_start += copy_len;
206                 p->sg_src_left -= copy_len;
207
208                 len -= copy_len;
209                 dbuf += copy_len;
210         }
211 }
212
213 static void setup_data_in(void)
214 {
215         struct req_progress *p = &cpg->p;
216         int data_in_sram =
217             min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
218         copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
219                         data_in_sram - p->crypt_len);
220         p->crypt_len = data_in_sram;
221 }
222
223 static void mv_process_current_q(int first_block)
224 {
225         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
226         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
227         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
228         struct sec_accel_config op;
229
230         switch (req_ctx->op) {
231         case COP_AES_ECB:
232                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
233                 break;
234         case COP_AES_CBC:
235         default:
236                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
237                 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
238                         ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
239                 if (first_block)
240                         memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
241                 break;
242         }
243         if (req_ctx->decrypt) {
244                 op.config |= CFG_DIR_DEC;
245                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
246                                 AES_KEY_LEN);
247         } else {
248                 op.config |= CFG_DIR_ENC;
249                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
250                                 AES_KEY_LEN);
251         }
252
253         switch (ctx->key_len) {
254         case AES_KEYSIZE_128:
255                 op.config |= CFG_AES_LEN_128;
256                 break;
257         case AES_KEYSIZE_192:
258                 op.config |= CFG_AES_LEN_192;
259                 break;
260         case AES_KEYSIZE_256:
261                 op.config |= CFG_AES_LEN_256;
262                 break;
263         }
264         op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
265                 ENC_P_DST(SRAM_DATA_OUT_START);
266         op.enc_key_p = SRAM_DATA_KEY_P;
267
268         setup_data_in();
269         op.enc_len = cpg->p.crypt_len;
270         memcpy(cpg->sram + SRAM_CONFIG, &op,
271                         sizeof(struct sec_accel_config));
272
273         /* GO */
274         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
275
276         /*
277          * XXX: add timer if the interrupt does not occur for some mystery
278          * reason
279          */
280 }
281
282 static void mv_crypto_algo_completion(void)
283 {
284         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
285         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
286
287         sg_miter_stop(&cpg->p.src_sg_it);
288         sg_miter_stop(&cpg->p.dst_sg_it);
289
290         if (req_ctx->op != COP_AES_CBC)
291                 return ;
292
293         memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
294 }
295
296 static void mv_process_hash_current(int first_block)
297 {
298         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
299         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
300         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
301         struct req_progress *p = &cpg->p;
302         struct sec_accel_config op = { 0 };
303         int is_last;
304
305         switch (req_ctx->op) {
306         case COP_SHA1:
307         default:
308                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
309                 break;
310         case COP_HMAC_SHA1:
311                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
312                 memcpy(cpg->sram + SRAM_HMAC_IV_IN,
313                                 tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
314                 break;
315         }
316
317         op.mac_src_p =
318                 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
319                 req_ctx->
320                 count);
321
322         setup_data_in();
323
324         op.mac_digest =
325                 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
326         op.mac_iv =
327                 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
328                 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
329
330         is_last = req_ctx->last_chunk
331                 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
332                 && (req_ctx->count <= MAX_HW_HASH_SIZE);
333         if (req_ctx->first_hash) {
334                 if (is_last)
335                         op.config |= CFG_NOT_FRAG;
336                 else
337                         op.config |= CFG_FIRST_FRAG;
338
339                 req_ctx->first_hash = 0;
340         } else {
341                 if (is_last)
342                         op.config |= CFG_LAST_FRAG;
343                 else
344                         op.config |= CFG_MID_FRAG;
345
346                 if (first_block) {
347                         writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
348                         writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
349                         writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
350                         writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
351                         writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
352                 }
353         }
354
355         memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
356
357         /* GO */
358         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
359
360         /*
361         * XXX: add timer if the interrupt does not occur for some mystery
362         * reason
363         */
364 }
365
366 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
367                                           struct shash_desc *desc)
368 {
369         int i;
370         struct sha1_state shash_state;
371
372         shash_state.count = ctx->count + ctx->count_add;
373         for (i = 0; i < 5; i++)
374                 shash_state.state[i] = ctx->state[i];
375         memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
376         return crypto_shash_import(desc, &shash_state);
377 }
378
379 static int mv_hash_final_fallback(struct ahash_request *req)
380 {
381         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
382         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
383         struct {
384                 struct shash_desc shash;
385                 char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
386         } desc;
387         int rc;
388
389         desc.shash.tfm = tfm_ctx->fallback;
390         desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
391         if (unlikely(req_ctx->first_hash)) {
392                 crypto_shash_init(&desc.shash);
393                 crypto_shash_update(&desc.shash, req_ctx->buffer,
394                                     req_ctx->extra_bytes);
395         } else {
396                 /* only SHA1 for now....
397                  */
398                 rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
399                 if (rc)
400                         goto out;
401         }
402         rc = crypto_shash_final(&desc.shash, req->result);
403 out:
404         return rc;
405 }
406
407 static void mv_hash_algo_completion(void)
408 {
409         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
410         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
411
412         if (ctx->extra_bytes)
413                 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
414         sg_miter_stop(&cpg->p.src_sg_it);
415
416         if (likely(ctx->last_chunk)) {
417                 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
418                         memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
419                                crypto_ahash_digestsize(crypto_ahash_reqtfm
420                                                        (req)));
421                 } else
422                         mv_hash_final_fallback(req);
423         } else {
424                 ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
425                 ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
426                 ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
427                 ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
428                 ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
429         }
430 }
431
432 static void dequeue_complete_req(void)
433 {
434         struct crypto_async_request *req = cpg->cur_req;
435         void *buf;
436         int ret;
437         cpg->p.hw_processed_bytes += cpg->p.crypt_len;
438         if (cpg->p.copy_back) {
439                 int need_copy_len = cpg->p.crypt_len;
440                 int sram_offset = 0;
441                 do {
442                         int dst_copy;
443
444                         if (!cpg->p.sg_dst_left) {
445                                 ret = sg_miter_next(&cpg->p.dst_sg_it);
446                                 BUG_ON(!ret);
447                                 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
448                                 cpg->p.dst_start = 0;
449                         }
450
451                         buf = cpg->p.dst_sg_it.addr;
452                         buf += cpg->p.dst_start;
453
454                         dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
455
456                         memcpy(buf,
457                                cpg->sram + SRAM_DATA_OUT_START + sram_offset,
458                                dst_copy);
459                         sram_offset += dst_copy;
460                         cpg->p.sg_dst_left -= dst_copy;
461                         need_copy_len -= dst_copy;
462                         cpg->p.dst_start += dst_copy;
463                 } while (need_copy_len > 0);
464         }
465
466         cpg->p.crypt_len = 0;
467
468         BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
469         if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
470                 /* process next scatter list entry */
471                 cpg->eng_st = ENGINE_BUSY;
472                 cpg->p.process(0);
473         } else {
474                 cpg->p.complete();
475                 cpg->eng_st = ENGINE_IDLE;
476                 local_bh_disable();
477                 req->complete(req, 0);
478                 local_bh_enable();
479         }
480 }
481
482 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
483 {
484         int i = 0;
485         size_t cur_len;
486
487         while (sl) {
488                 cur_len = sl[i].length;
489                 ++i;
490                 if (total_bytes > cur_len)
491                         total_bytes -= cur_len;
492                 else
493                         break;
494         }
495
496         return i;
497 }
498
499 static void mv_start_new_crypt_req(struct ablkcipher_request *req)
500 {
501         struct req_progress *p = &cpg->p;
502         int num_sgs;
503
504         cpg->cur_req = &req->base;
505         memset(p, 0, sizeof(struct req_progress));
506         p->hw_nbytes = req->nbytes;
507         p->complete = mv_crypto_algo_completion;
508         p->process = mv_process_current_q;
509         p->copy_back = 1;
510
511         num_sgs = count_sgs(req->src, req->nbytes);
512         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
513
514         num_sgs = count_sgs(req->dst, req->nbytes);
515         sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
516
517         mv_process_current_q(1);
518 }
519
520 static void mv_start_new_hash_req(struct ahash_request *req)
521 {
522         struct req_progress *p = &cpg->p;
523         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
524         int num_sgs, hw_bytes, old_extra_bytes, rc;
525         cpg->cur_req = &req->base;
526         memset(p, 0, sizeof(struct req_progress));
527         hw_bytes = req->nbytes + ctx->extra_bytes;
528         old_extra_bytes = ctx->extra_bytes;
529
530         ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
531         if (ctx->extra_bytes != 0
532             && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
533                 hw_bytes -= ctx->extra_bytes;
534         else
535                 ctx->extra_bytes = 0;
536
537         num_sgs = count_sgs(req->src, req->nbytes);
538         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
539
540         if (hw_bytes) {
541                 p->hw_nbytes = hw_bytes;
542                 p->complete = mv_hash_algo_completion;
543                 p->process = mv_process_hash_current;
544
545                 if (unlikely(old_extra_bytes)) {
546                         memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
547                                old_extra_bytes);
548                         p->crypt_len = old_extra_bytes;
549                 }
550
551                 mv_process_hash_current(1);
552         } else {
553                 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
554                                 ctx->extra_bytes - old_extra_bytes);
555                 sg_miter_stop(&p->src_sg_it);
556                 if (ctx->last_chunk)
557                         rc = mv_hash_final_fallback(req);
558                 else
559                         rc = 0;
560                 cpg->eng_st = ENGINE_IDLE;
561                 local_bh_disable();
562                 req->base.complete(&req->base, rc);
563                 local_bh_enable();
564         }
565 }
566
567 static int queue_manag(void *data)
568 {
569         cpg->eng_st = ENGINE_IDLE;
570         do {
571                 struct crypto_async_request *async_req = NULL;
572                 struct crypto_async_request *backlog;
573
574                 __set_current_state(TASK_INTERRUPTIBLE);
575
576                 if (cpg->eng_st == ENGINE_W_DEQUEUE)
577                         dequeue_complete_req();
578
579                 spin_lock_irq(&cpg->lock);
580                 if (cpg->eng_st == ENGINE_IDLE) {
581                         backlog = crypto_get_backlog(&cpg->queue);
582                         async_req = crypto_dequeue_request(&cpg->queue);
583                         if (async_req) {
584                                 BUG_ON(cpg->eng_st != ENGINE_IDLE);
585                                 cpg->eng_st = ENGINE_BUSY;
586                         }
587                 }
588                 spin_unlock_irq(&cpg->lock);
589
590                 if (backlog) {
591                         backlog->complete(backlog, -EINPROGRESS);
592                         backlog = NULL;
593                 }
594
595                 if (async_req) {
596                         if (async_req->tfm->__crt_alg->cra_type !=
597                             &crypto_ahash_type) {
598                                 struct ablkcipher_request *req =
599                                     ablkcipher_request_cast(async_req);
600                                 mv_start_new_crypt_req(req);
601                         } else {
602                                 struct ahash_request *req =
603                                     ahash_request_cast(async_req);
604                                 mv_start_new_hash_req(req);
605                         }
606                         async_req = NULL;
607                 }
608
609                 schedule();
610
611         } while (!kthread_should_stop());
612         return 0;
613 }
614
615 static int mv_handle_req(struct crypto_async_request *req)
616 {
617         unsigned long flags;
618         int ret;
619
620         spin_lock_irqsave(&cpg->lock, flags);
621         ret = crypto_enqueue_request(&cpg->queue, req);
622         spin_unlock_irqrestore(&cpg->lock, flags);
623         wake_up_process(cpg->queue_th);
624         return ret;
625 }
626
627 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
628 {
629         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
630
631         req_ctx->op = COP_AES_ECB;
632         req_ctx->decrypt = 0;
633
634         return mv_handle_req(&req->base);
635 }
636
637 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
638 {
639         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
640         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
641
642         req_ctx->op = COP_AES_ECB;
643         req_ctx->decrypt = 1;
644
645         compute_aes_dec_key(ctx);
646         return mv_handle_req(&req->base);
647 }
648
649 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
650 {
651         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
652
653         req_ctx->op = COP_AES_CBC;
654         req_ctx->decrypt = 0;
655
656         return mv_handle_req(&req->base);
657 }
658
659 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
660 {
661         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
662         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
663
664         req_ctx->op = COP_AES_CBC;
665         req_ctx->decrypt = 1;
666
667         compute_aes_dec_key(ctx);
668         return mv_handle_req(&req->base);
669 }
670
671 static int mv_cra_init(struct crypto_tfm *tfm)
672 {
673         tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
674         return 0;
675 }
676
677 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
678                                  int is_last, unsigned int req_len,
679                                  int count_add)
680 {
681         memset(ctx, 0, sizeof(*ctx));
682         ctx->op = op;
683         ctx->count = req_len;
684         ctx->first_hash = 1;
685         ctx->last_chunk = is_last;
686         ctx->count_add = count_add;
687 }
688
689 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
690                                    unsigned req_len)
691 {
692         ctx->last_chunk = is_last;
693         ctx->count += req_len;
694 }
695
696 static int mv_hash_init(struct ahash_request *req)
697 {
698         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
699         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
700                              tfm_ctx->count_add);
701         return 0;
702 }
703
704 static int mv_hash_update(struct ahash_request *req)
705 {
706         if (!req->nbytes)
707                 return 0;
708
709         mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
710         return mv_handle_req(&req->base);
711 }
712
713 static int mv_hash_final(struct ahash_request *req)
714 {
715         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
716
717         ahash_request_set_crypt(req, NULL, req->result, 0);
718         mv_update_hash_req_ctx(ctx, 1, 0);
719         return mv_handle_req(&req->base);
720 }
721
722 static int mv_hash_finup(struct ahash_request *req)
723 {
724         mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
725         return mv_handle_req(&req->base);
726 }
727
728 static int mv_hash_digest(struct ahash_request *req)
729 {
730         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
731         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
732                              req->nbytes, tfm_ctx->count_add);
733         return mv_handle_req(&req->base);
734 }
735
736 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
737                              const void *ostate)
738 {
739         const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
740         int i;
741         for (i = 0; i < 5; i++) {
742                 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
743                 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
744         }
745 }
746
747 static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
748                           unsigned int keylen)
749 {
750         int rc;
751         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
752         int bs, ds, ss;
753
754         if (!ctx->base_hash)
755                 return 0;
756
757         rc = crypto_shash_setkey(ctx->fallback, key, keylen);
758         if (rc)
759                 return rc;
760
761         /* Can't see a way to extract the ipad/opad from the fallback tfm
762            so I'm basically copying code from the hmac module */
763         bs = crypto_shash_blocksize(ctx->base_hash);
764         ds = crypto_shash_digestsize(ctx->base_hash);
765         ss = crypto_shash_statesize(ctx->base_hash);
766
767         {
768                 struct {
769                         struct shash_desc shash;
770                         char ctx[crypto_shash_descsize(ctx->base_hash)];
771                 } desc;
772                 unsigned int i;
773                 char ipad[ss];
774                 char opad[ss];
775
776                 desc.shash.tfm = ctx->base_hash;
777                 desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
778                     CRYPTO_TFM_REQ_MAY_SLEEP;
779
780                 if (keylen > bs) {
781                         int err;
782
783                         err =
784                             crypto_shash_digest(&desc.shash, key, keylen, ipad);
785                         if (err)
786                                 return err;
787
788                         keylen = ds;
789                 } else
790                         memcpy(ipad, key, keylen);
791
792                 memset(ipad + keylen, 0, bs - keylen);
793                 memcpy(opad, ipad, bs);
794
795                 for (i = 0; i < bs; i++) {
796                         ipad[i] ^= 0x36;
797                         opad[i] ^= 0x5c;
798                 }
799
800                 rc = crypto_shash_init(&desc.shash) ? :
801                     crypto_shash_update(&desc.shash, ipad, bs) ? :
802                     crypto_shash_export(&desc.shash, ipad) ? :
803                     crypto_shash_init(&desc.shash) ? :
804                     crypto_shash_update(&desc.shash, opad, bs) ? :
805                     crypto_shash_export(&desc.shash, opad);
806
807                 if (rc == 0)
808                         mv_hash_init_ivs(ctx, ipad, opad);
809
810                 return rc;
811         }
812 }
813
814 static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
815                             enum hash_op op, int count_add)
816 {
817         const char *fallback_driver_name = tfm->__crt_alg->cra_name;
818         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
819         struct crypto_shash *fallback_tfm = NULL;
820         struct crypto_shash *base_hash = NULL;
821         int err = -ENOMEM;
822
823         ctx->op = op;
824         ctx->count_add = count_add;
825
826         /* Allocate a fallback and abort if it failed. */
827         fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
828                                           CRYPTO_ALG_NEED_FALLBACK);
829         if (IS_ERR(fallback_tfm)) {
830                 printk(KERN_WARNING MV_CESA
831                        "Fallback driver '%s' could not be loaded!\n",
832                        fallback_driver_name);
833                 err = PTR_ERR(fallback_tfm);
834                 goto out;
835         }
836         ctx->fallback = fallback_tfm;
837
838         if (base_hash_name) {
839                 /* Allocate a hash to compute the ipad/opad of hmac. */
840                 base_hash = crypto_alloc_shash(base_hash_name, 0,
841                                                CRYPTO_ALG_NEED_FALLBACK);
842                 if (IS_ERR(base_hash)) {
843                         printk(KERN_WARNING MV_CESA
844                                "Base driver '%s' could not be loaded!\n",
845                                base_hash_name);
846                         err = PTR_ERR(base_hash);
847                         goto err_bad_base;
848                 }
849         }
850         ctx->base_hash = base_hash;
851
852         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
853                                  sizeof(struct mv_req_hash_ctx) +
854                                  crypto_shash_descsize(ctx->fallback));
855         return 0;
856 err_bad_base:
857         crypto_free_shash(fallback_tfm);
858 out:
859         return err;
860 }
861
862 static void mv_cra_hash_exit(struct crypto_tfm *tfm)
863 {
864         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
865
866         crypto_free_shash(ctx->fallback);
867         if (ctx->base_hash)
868                 crypto_free_shash(ctx->base_hash);
869 }
870
871 static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
872 {
873         return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
874 }
875
876 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
877 {
878         return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
879 }
880
881 irqreturn_t crypto_int(int irq, void *priv)
882 {
883         u32 val;
884
885         val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
886         if (!(val & SEC_INT_ACCEL0_DONE))
887                 return IRQ_NONE;
888
889         val &= ~SEC_INT_ACCEL0_DONE;
890         writel(val, cpg->reg + FPGA_INT_STATUS);
891         writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
892         BUG_ON(cpg->eng_st != ENGINE_BUSY);
893         cpg->eng_st = ENGINE_W_DEQUEUE;
894         wake_up_process(cpg->queue_th);
895         return IRQ_HANDLED;
896 }
897
898 struct crypto_alg mv_aes_alg_ecb = {
899         .cra_name               = "ecb(aes)",
900         .cra_driver_name        = "mv-ecb-aes",
901         .cra_priority   = 300,
902         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
903         .cra_blocksize  = 16,
904         .cra_ctxsize    = sizeof(struct mv_ctx),
905         .cra_alignmask  = 0,
906         .cra_type       = &crypto_ablkcipher_type,
907         .cra_module     = THIS_MODULE,
908         .cra_init       = mv_cra_init,
909         .cra_u          = {
910                 .ablkcipher = {
911                         .min_keysize    =       AES_MIN_KEY_SIZE,
912                         .max_keysize    =       AES_MAX_KEY_SIZE,
913                         .setkey         =       mv_setkey_aes,
914                         .encrypt        =       mv_enc_aes_ecb,
915                         .decrypt        =       mv_dec_aes_ecb,
916                 },
917         },
918 };
919
920 struct crypto_alg mv_aes_alg_cbc = {
921         .cra_name               = "cbc(aes)",
922         .cra_driver_name        = "mv-cbc-aes",
923         .cra_priority   = 300,
924         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
925         .cra_blocksize  = AES_BLOCK_SIZE,
926         .cra_ctxsize    = sizeof(struct mv_ctx),
927         .cra_alignmask  = 0,
928         .cra_type       = &crypto_ablkcipher_type,
929         .cra_module     = THIS_MODULE,
930         .cra_init       = mv_cra_init,
931         .cra_u          = {
932                 .ablkcipher = {
933                         .ivsize         =       AES_BLOCK_SIZE,
934                         .min_keysize    =       AES_MIN_KEY_SIZE,
935                         .max_keysize    =       AES_MAX_KEY_SIZE,
936                         .setkey         =       mv_setkey_aes,
937                         .encrypt        =       mv_enc_aes_cbc,
938                         .decrypt        =       mv_dec_aes_cbc,
939                 },
940         },
941 };
942
943 struct ahash_alg mv_sha1_alg = {
944         .init = mv_hash_init,
945         .update = mv_hash_update,
946         .final = mv_hash_final,
947         .finup = mv_hash_finup,
948         .digest = mv_hash_digest,
949         .halg = {
950                  .digestsize = SHA1_DIGEST_SIZE,
951                  .base = {
952                           .cra_name = "sha1",
953                           .cra_driver_name = "mv-sha1",
954                           .cra_priority = 300,
955                           .cra_flags =
956                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
957                           .cra_blocksize = SHA1_BLOCK_SIZE,
958                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
959                           .cra_init = mv_cra_hash_sha1_init,
960                           .cra_exit = mv_cra_hash_exit,
961                           .cra_module = THIS_MODULE,
962                           }
963                  }
964 };
965
966 struct ahash_alg mv_hmac_sha1_alg = {
967         .init = mv_hash_init,
968         .update = mv_hash_update,
969         .final = mv_hash_final,
970         .finup = mv_hash_finup,
971         .digest = mv_hash_digest,
972         .setkey = mv_hash_setkey,
973         .halg = {
974                  .digestsize = SHA1_DIGEST_SIZE,
975                  .base = {
976                           .cra_name = "hmac(sha1)",
977                           .cra_driver_name = "mv-hmac-sha1",
978                           .cra_priority = 300,
979                           .cra_flags =
980                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
981                           .cra_blocksize = SHA1_BLOCK_SIZE,
982                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
983                           .cra_init = mv_cra_hash_hmac_sha1_init,
984                           .cra_exit = mv_cra_hash_exit,
985                           .cra_module = THIS_MODULE,
986                           }
987                  }
988 };
989
990 static int mv_probe(struct platform_device *pdev)
991 {
992         struct crypto_priv *cp;
993         struct resource *res;
994         int irq;
995         int ret;
996
997         if (cpg) {
998                 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
999                 return -EEXIST;
1000         }
1001
1002         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1003         if (!res)
1004                 return -ENXIO;
1005
1006         cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1007         if (!cp)
1008                 return -ENOMEM;
1009
1010         spin_lock_init(&cp->lock);
1011         crypto_init_queue(&cp->queue, 50);
1012         cp->reg = ioremap(res->start, resource_size(res));
1013         if (!cp->reg) {
1014                 ret = -ENOMEM;
1015                 goto err;
1016         }
1017
1018         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1019         if (!res) {
1020                 ret = -ENXIO;
1021                 goto err_unmap_reg;
1022         }
1023         cp->sram_size = resource_size(res);
1024         cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1025         cp->sram = ioremap(res->start, cp->sram_size);
1026         if (!cp->sram) {
1027                 ret = -ENOMEM;
1028                 goto err_unmap_reg;
1029         }
1030
1031         irq = platform_get_irq(pdev, 0);
1032         if (irq < 0 || irq == NO_IRQ) {
1033                 ret = irq;
1034                 goto err_unmap_sram;
1035         }
1036         cp->irq = irq;
1037
1038         platform_set_drvdata(pdev, cp);
1039         cpg = cp;
1040
1041         cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1042         if (IS_ERR(cp->queue_th)) {
1043                 ret = PTR_ERR(cp->queue_th);
1044                 goto err_unmap_sram;
1045         }
1046
1047         ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1048                         cp);
1049         if (ret)
1050                 goto err_thread;
1051
1052         writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1053         writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1054         writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1055
1056         ret = crypto_register_alg(&mv_aes_alg_ecb);
1057         if (ret) {
1058                 printk(KERN_WARNING MV_CESA
1059                        "Could not register aes-ecb driver\n");
1060                 goto err_irq;
1061         }
1062
1063         ret = crypto_register_alg(&mv_aes_alg_cbc);
1064         if (ret) {
1065                 printk(KERN_WARNING MV_CESA
1066                        "Could not register aes-cbc driver\n");
1067                 goto err_unreg_ecb;
1068         }
1069
1070         ret = crypto_register_ahash(&mv_sha1_alg);
1071         if (ret == 0)
1072                 cpg->has_sha1 = 1;
1073         else
1074                 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1075
1076         ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1077         if (ret == 0) {
1078                 cpg->has_hmac_sha1 = 1;
1079         } else {
1080                 printk(KERN_WARNING MV_CESA
1081                        "Could not register hmac-sha1 driver\n");
1082         }
1083
1084         return 0;
1085 err_unreg_ecb:
1086         crypto_unregister_alg(&mv_aes_alg_ecb);
1087 err_irq:
1088         free_irq(irq, cp);
1089 err_thread:
1090         kthread_stop(cp->queue_th);
1091 err_unmap_sram:
1092         iounmap(cp->sram);
1093 err_unmap_reg:
1094         iounmap(cp->reg);
1095 err:
1096         kfree(cp);
1097         cpg = NULL;
1098         platform_set_drvdata(pdev, NULL);
1099         return ret;
1100 }
1101
1102 static int mv_remove(struct platform_device *pdev)
1103 {
1104         struct crypto_priv *cp = platform_get_drvdata(pdev);
1105
1106         crypto_unregister_alg(&mv_aes_alg_ecb);
1107         crypto_unregister_alg(&mv_aes_alg_cbc);
1108         if (cp->has_sha1)
1109                 crypto_unregister_ahash(&mv_sha1_alg);
1110         if (cp->has_hmac_sha1)
1111                 crypto_unregister_ahash(&mv_hmac_sha1_alg);
1112         kthread_stop(cp->queue_th);
1113         free_irq(cp->irq, cp);
1114         memset(cp->sram, 0, cp->sram_size);
1115         iounmap(cp->sram);
1116         iounmap(cp->reg);
1117         kfree(cp);
1118         cpg = NULL;
1119         return 0;
1120 }
1121
1122 static struct platform_driver marvell_crypto = {
1123         .probe          = mv_probe,
1124         .remove         = mv_remove,
1125         .driver         = {
1126                 .owner  = THIS_MODULE,
1127                 .name   = "mv_crypto",
1128         },
1129 };
1130 MODULE_ALIAS("platform:mv_crypto");
1131
1132 static int __init mv_crypto_init(void)
1133 {
1134         return platform_driver_register(&marvell_crypto);
1135 }
1136 module_init(mv_crypto_init);
1137
1138 static void __exit mv_crypto_exit(void)
1139 {
1140         platform_driver_unregister(&marvell_crypto);
1141 }
1142 module_exit(mv_crypto_exit);
1143
1144 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1145 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1146 MODULE_LICENSE("GPL");