Merge branch 'exec_rm_compat' of git://git.kernel.org/pub/scm/linux/kernel/git/oleg...
[pandora-kernel.git] / drivers / crypto / mv_cesa.c
1 /*
2  * Support for Marvell's crypto engine which can be found on some Orion5X
3  * boards.
4  *
5  * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6  * License: GPLv2
7  *
8  */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <crypto/internal/hash.h>
19 #include <crypto/sha.h>
20
21 #include "mv_cesa.h"
22
23 #define MV_CESA "MV-CESA:"
24 #define MAX_HW_HASH_SIZE        0xFFFF
25
26 /*
27  * STM:
28  *   /---------------------------------------\
29  *   |                                       | request complete
30  *  \./                                      |
31  * IDLE -> new request -> BUSY -> done -> DEQUEUE
32  *                         /°\               |
33  *                          |                | more scatter entries
34  *                          \________________/
35  */
36 enum engine_status {
37         ENGINE_IDLE,
38         ENGINE_BUSY,
39         ENGINE_W_DEQUEUE,
40 };
41
42 /**
43  * struct req_progress - used for every crypt request
44  * @src_sg_it:          sg iterator for src
45  * @dst_sg_it:          sg iterator for dst
46  * @sg_src_left:        bytes left in src to process (scatter list)
47  * @src_start:          offset to add to src start position (scatter list)
48  * @crypt_len:          length of current hw crypt/hash process
49  * @hw_nbytes:          total bytes to process in hw for this request
50  * @copy_back:          whether to copy data back (crypt) or not (hash)
51  * @sg_dst_left:        bytes left dst to process in this scatter list
52  * @dst_start:          offset to add to dst start position (scatter list)
53  * @hw_processed_bytes: number of bytes processed by hw (request).
54  *
55  * sg helper are used to iterate over the scatterlist. Since the size of the
56  * SRAM may be less than the scatter size, this struct struct is used to keep
57  * track of progress within current scatterlist.
58  */
59 struct req_progress {
60         struct sg_mapping_iter src_sg_it;
61         struct sg_mapping_iter dst_sg_it;
62         void (*complete) (void);
63         void (*process) (int is_first);
64
65         /* src mostly */
66         int sg_src_left;
67         int src_start;
68         int crypt_len;
69         int hw_nbytes;
70         /* dst mostly */
71         int copy_back;
72         int sg_dst_left;
73         int dst_start;
74         int hw_processed_bytes;
75 };
76
77 struct crypto_priv {
78         void __iomem *reg;
79         void __iomem *sram;
80         int irq;
81         struct task_struct *queue_th;
82
83         /* the lock protects queue and eng_st */
84         spinlock_t lock;
85         struct crypto_queue queue;
86         enum engine_status eng_st;
87         struct crypto_async_request *cur_req;
88         struct req_progress p;
89         int max_req_size;
90         int sram_size;
91         int has_sha1;
92         int has_hmac_sha1;
93 };
94
95 static struct crypto_priv *cpg;
96
97 struct mv_ctx {
98         u8 aes_enc_key[AES_KEY_LEN];
99         u32 aes_dec_key[8];
100         int key_len;
101         u32 need_calc_aes_dkey;
102 };
103
104 enum crypto_op {
105         COP_AES_ECB,
106         COP_AES_CBC,
107 };
108
109 struct mv_req_ctx {
110         enum crypto_op op;
111         int decrypt;
112 };
113
114 enum hash_op {
115         COP_SHA1,
116         COP_HMAC_SHA1
117 };
118
119 struct mv_tfm_hash_ctx {
120         struct crypto_shash *fallback;
121         struct crypto_shash *base_hash;
122         u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
123         int count_add;
124         enum hash_op op;
125 };
126
127 struct mv_req_hash_ctx {
128         u64 count;
129         u32 state[SHA1_DIGEST_SIZE / 4];
130         u8 buffer[SHA1_BLOCK_SIZE];
131         int first_hash;         /* marks that we don't have previous state */
132         int last_chunk;         /* marks that this is the 'final' request */
133         int extra_bytes;        /* unprocessed bytes in buffer */
134         enum hash_op op;
135         int count_add;
136 };
137
138 static void compute_aes_dec_key(struct mv_ctx *ctx)
139 {
140         struct crypto_aes_ctx gen_aes_key;
141         int key_pos;
142
143         if (!ctx->need_calc_aes_dkey)
144                 return;
145
146         crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
147
148         key_pos = ctx->key_len + 24;
149         memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
150         switch (ctx->key_len) {
151         case AES_KEYSIZE_256:
152                 key_pos -= 2;
153                 /* fall */
154         case AES_KEYSIZE_192:
155                 key_pos -= 2;
156                 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
157                                 4 * 4);
158                 break;
159         }
160         ctx->need_calc_aes_dkey = 0;
161 }
162
163 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
164                 unsigned int len)
165 {
166         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
167         struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
168
169         switch (len) {
170         case AES_KEYSIZE_128:
171         case AES_KEYSIZE_192:
172         case AES_KEYSIZE_256:
173                 break;
174         default:
175                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
176                 return -EINVAL;
177         }
178         ctx->key_len = len;
179         ctx->need_calc_aes_dkey = 1;
180
181         memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
182         return 0;
183 }
184
185 static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
186 {
187         int ret;
188         void *sbuf;
189         int copy_len;
190
191         while (len) {
192                 if (!p->sg_src_left) {
193                         ret = sg_miter_next(&p->src_sg_it);
194                         BUG_ON(!ret);
195                         p->sg_src_left = p->src_sg_it.length;
196                         p->src_start = 0;
197                 }
198
199                 sbuf = p->src_sg_it.addr + p->src_start;
200
201                 copy_len = min(p->sg_src_left, len);
202                 memcpy(dbuf, sbuf, copy_len);
203
204                 p->src_start += copy_len;
205                 p->sg_src_left -= copy_len;
206
207                 len -= copy_len;
208                 dbuf += copy_len;
209         }
210 }
211
212 static void setup_data_in(void)
213 {
214         struct req_progress *p = &cpg->p;
215         int data_in_sram =
216             min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
217         copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
218                         data_in_sram - p->crypt_len);
219         p->crypt_len = data_in_sram;
220 }
221
222 static void mv_process_current_q(int first_block)
223 {
224         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
225         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
226         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
227         struct sec_accel_config op;
228
229         switch (req_ctx->op) {
230         case COP_AES_ECB:
231                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
232                 break;
233         case COP_AES_CBC:
234         default:
235                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
236                 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
237                         ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
238                 if (first_block)
239                         memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
240                 break;
241         }
242         if (req_ctx->decrypt) {
243                 op.config |= CFG_DIR_DEC;
244                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
245                                 AES_KEY_LEN);
246         } else {
247                 op.config |= CFG_DIR_ENC;
248                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
249                                 AES_KEY_LEN);
250         }
251
252         switch (ctx->key_len) {
253         case AES_KEYSIZE_128:
254                 op.config |= CFG_AES_LEN_128;
255                 break;
256         case AES_KEYSIZE_192:
257                 op.config |= CFG_AES_LEN_192;
258                 break;
259         case AES_KEYSIZE_256:
260                 op.config |= CFG_AES_LEN_256;
261                 break;
262         }
263         op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
264                 ENC_P_DST(SRAM_DATA_OUT_START);
265         op.enc_key_p = SRAM_DATA_KEY_P;
266
267         setup_data_in();
268         op.enc_len = cpg->p.crypt_len;
269         memcpy(cpg->sram + SRAM_CONFIG, &op,
270                         sizeof(struct sec_accel_config));
271
272         /* GO */
273         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
274
275         /*
276          * XXX: add timer if the interrupt does not occur for some mystery
277          * reason
278          */
279 }
280
281 static void mv_crypto_algo_completion(void)
282 {
283         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
284         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
285
286         sg_miter_stop(&cpg->p.src_sg_it);
287         sg_miter_stop(&cpg->p.dst_sg_it);
288
289         if (req_ctx->op != COP_AES_CBC)
290                 return ;
291
292         memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
293 }
294
295 static void mv_process_hash_current(int first_block)
296 {
297         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
298         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
299         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
300         struct req_progress *p = &cpg->p;
301         struct sec_accel_config op = { 0 };
302         int is_last;
303
304         switch (req_ctx->op) {
305         case COP_SHA1:
306         default:
307                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
308                 break;
309         case COP_HMAC_SHA1:
310                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
311                 memcpy(cpg->sram + SRAM_HMAC_IV_IN,
312                                 tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
313                 break;
314         }
315
316         op.mac_src_p =
317                 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
318                 req_ctx->
319                 count);
320
321         setup_data_in();
322
323         op.mac_digest =
324                 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
325         op.mac_iv =
326                 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
327                 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
328
329         is_last = req_ctx->last_chunk
330                 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
331                 && (req_ctx->count <= MAX_HW_HASH_SIZE);
332         if (req_ctx->first_hash) {
333                 if (is_last)
334                         op.config |= CFG_NOT_FRAG;
335                 else
336                         op.config |= CFG_FIRST_FRAG;
337
338                 req_ctx->first_hash = 0;
339         } else {
340                 if (is_last)
341                         op.config |= CFG_LAST_FRAG;
342                 else
343                         op.config |= CFG_MID_FRAG;
344
345                 writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
346                 writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
347                 writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
348                 writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
349                 writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
350         }
351
352         memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
353
354         /* GO */
355         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
356
357         /*
358         * XXX: add timer if the interrupt does not occur for some mystery
359         * reason
360         */
361 }
362
363 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
364                                           struct shash_desc *desc)
365 {
366         int i;
367         struct sha1_state shash_state;
368
369         shash_state.count = ctx->count + ctx->count_add;
370         for (i = 0; i < 5; i++)
371                 shash_state.state[i] = ctx->state[i];
372         memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
373         return crypto_shash_import(desc, &shash_state);
374 }
375
376 static int mv_hash_final_fallback(struct ahash_request *req)
377 {
378         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
379         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
380         struct {
381                 struct shash_desc shash;
382                 char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
383         } desc;
384         int rc;
385
386         desc.shash.tfm = tfm_ctx->fallback;
387         desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
388         if (unlikely(req_ctx->first_hash)) {
389                 crypto_shash_init(&desc.shash);
390                 crypto_shash_update(&desc.shash, req_ctx->buffer,
391                                     req_ctx->extra_bytes);
392         } else {
393                 /* only SHA1 for now....
394                  */
395                 rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
396                 if (rc)
397                         goto out;
398         }
399         rc = crypto_shash_final(&desc.shash, req->result);
400 out:
401         return rc;
402 }
403
404 static void mv_hash_algo_completion(void)
405 {
406         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
407         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
408
409         if (ctx->extra_bytes)
410                 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
411         sg_miter_stop(&cpg->p.src_sg_it);
412
413         if (likely(ctx->last_chunk)) {
414                 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
415                         memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
416                                crypto_ahash_digestsize(crypto_ahash_reqtfm
417                                                        (req)));
418                 } else
419                         mv_hash_final_fallback(req);
420         } else {
421                 ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
422                 ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
423                 ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
424                 ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
425                 ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
426         }
427 }
428
429 static void dequeue_complete_req(void)
430 {
431         struct crypto_async_request *req = cpg->cur_req;
432         void *buf;
433         int ret;
434         cpg->p.hw_processed_bytes += cpg->p.crypt_len;
435         if (cpg->p.copy_back) {
436                 int need_copy_len = cpg->p.crypt_len;
437                 int sram_offset = 0;
438                 do {
439                         int dst_copy;
440
441                         if (!cpg->p.sg_dst_left) {
442                                 ret = sg_miter_next(&cpg->p.dst_sg_it);
443                                 BUG_ON(!ret);
444                                 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
445                                 cpg->p.dst_start = 0;
446                         }
447
448                         buf = cpg->p.dst_sg_it.addr;
449                         buf += cpg->p.dst_start;
450
451                         dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
452
453                         memcpy(buf,
454                                cpg->sram + SRAM_DATA_OUT_START + sram_offset,
455                                dst_copy);
456                         sram_offset += dst_copy;
457                         cpg->p.sg_dst_left -= dst_copy;
458                         need_copy_len -= dst_copy;
459                         cpg->p.dst_start += dst_copy;
460                 } while (need_copy_len > 0);
461         }
462
463         cpg->p.crypt_len = 0;
464
465         BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
466         if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
467                 /* process next scatter list entry */
468                 cpg->eng_st = ENGINE_BUSY;
469                 cpg->p.process(0);
470         } else {
471                 cpg->p.complete();
472                 cpg->eng_st = ENGINE_IDLE;
473                 local_bh_disable();
474                 req->complete(req, 0);
475                 local_bh_enable();
476         }
477 }
478
479 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
480 {
481         int i = 0;
482         size_t cur_len;
483
484         while (sl) {
485                 cur_len = sl[i].length;
486                 ++i;
487                 if (total_bytes > cur_len)
488                         total_bytes -= cur_len;
489                 else
490                         break;
491         }
492
493         return i;
494 }
495
496 static void mv_start_new_crypt_req(struct ablkcipher_request *req)
497 {
498         struct req_progress *p = &cpg->p;
499         int num_sgs;
500
501         cpg->cur_req = &req->base;
502         memset(p, 0, sizeof(struct req_progress));
503         p->hw_nbytes = req->nbytes;
504         p->complete = mv_crypto_algo_completion;
505         p->process = mv_process_current_q;
506         p->copy_back = 1;
507
508         num_sgs = count_sgs(req->src, req->nbytes);
509         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
510
511         num_sgs = count_sgs(req->dst, req->nbytes);
512         sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
513
514         mv_process_current_q(1);
515 }
516
517 static void mv_start_new_hash_req(struct ahash_request *req)
518 {
519         struct req_progress *p = &cpg->p;
520         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
521         int num_sgs, hw_bytes, old_extra_bytes, rc;
522         cpg->cur_req = &req->base;
523         memset(p, 0, sizeof(struct req_progress));
524         hw_bytes = req->nbytes + ctx->extra_bytes;
525         old_extra_bytes = ctx->extra_bytes;
526
527         ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
528         if (ctx->extra_bytes != 0
529             && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
530                 hw_bytes -= ctx->extra_bytes;
531         else
532                 ctx->extra_bytes = 0;
533
534         num_sgs = count_sgs(req->src, req->nbytes);
535         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
536
537         if (hw_bytes) {
538                 p->hw_nbytes = hw_bytes;
539                 p->complete = mv_hash_algo_completion;
540                 p->process = mv_process_hash_current;
541
542                 if (unlikely(old_extra_bytes)) {
543                         memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
544                                old_extra_bytes);
545                         p->crypt_len = old_extra_bytes;
546                 }
547
548                 mv_process_hash_current(1);
549         } else {
550                 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
551                                 ctx->extra_bytes - old_extra_bytes);
552                 sg_miter_stop(&p->src_sg_it);
553                 if (ctx->last_chunk)
554                         rc = mv_hash_final_fallback(req);
555                 else
556                         rc = 0;
557                 cpg->eng_st = ENGINE_IDLE;
558                 local_bh_disable();
559                 req->base.complete(&req->base, rc);
560                 local_bh_enable();
561         }
562 }
563
564 static int queue_manag(void *data)
565 {
566         cpg->eng_st = ENGINE_IDLE;
567         do {
568                 struct crypto_async_request *async_req = NULL;
569                 struct crypto_async_request *backlog;
570
571                 __set_current_state(TASK_INTERRUPTIBLE);
572
573                 if (cpg->eng_st == ENGINE_W_DEQUEUE)
574                         dequeue_complete_req();
575
576                 spin_lock_irq(&cpg->lock);
577                 if (cpg->eng_st == ENGINE_IDLE) {
578                         backlog = crypto_get_backlog(&cpg->queue);
579                         async_req = crypto_dequeue_request(&cpg->queue);
580                         if (async_req) {
581                                 BUG_ON(cpg->eng_st != ENGINE_IDLE);
582                                 cpg->eng_st = ENGINE_BUSY;
583                         }
584                 }
585                 spin_unlock_irq(&cpg->lock);
586
587                 if (backlog) {
588                         backlog->complete(backlog, -EINPROGRESS);
589                         backlog = NULL;
590                 }
591
592                 if (async_req) {
593                         if (async_req->tfm->__crt_alg->cra_type !=
594                             &crypto_ahash_type) {
595                                 struct ablkcipher_request *req =
596                                     ablkcipher_request_cast(async_req);
597                                 mv_start_new_crypt_req(req);
598                         } else {
599                                 struct ahash_request *req =
600                                     ahash_request_cast(async_req);
601                                 mv_start_new_hash_req(req);
602                         }
603                         async_req = NULL;
604                 }
605
606                 schedule();
607
608         } while (!kthread_should_stop());
609         return 0;
610 }
611
612 static int mv_handle_req(struct crypto_async_request *req)
613 {
614         unsigned long flags;
615         int ret;
616
617         spin_lock_irqsave(&cpg->lock, flags);
618         ret = crypto_enqueue_request(&cpg->queue, req);
619         spin_unlock_irqrestore(&cpg->lock, flags);
620         wake_up_process(cpg->queue_th);
621         return ret;
622 }
623
624 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
625 {
626         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
627
628         req_ctx->op = COP_AES_ECB;
629         req_ctx->decrypt = 0;
630
631         return mv_handle_req(&req->base);
632 }
633
634 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
635 {
636         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
637         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
638
639         req_ctx->op = COP_AES_ECB;
640         req_ctx->decrypt = 1;
641
642         compute_aes_dec_key(ctx);
643         return mv_handle_req(&req->base);
644 }
645
646 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
647 {
648         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
649
650         req_ctx->op = COP_AES_CBC;
651         req_ctx->decrypt = 0;
652
653         return mv_handle_req(&req->base);
654 }
655
656 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
657 {
658         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
659         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
660
661         req_ctx->op = COP_AES_CBC;
662         req_ctx->decrypt = 1;
663
664         compute_aes_dec_key(ctx);
665         return mv_handle_req(&req->base);
666 }
667
668 static int mv_cra_init(struct crypto_tfm *tfm)
669 {
670         tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
671         return 0;
672 }
673
674 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
675                                  int is_last, unsigned int req_len,
676                                  int count_add)
677 {
678         memset(ctx, 0, sizeof(*ctx));
679         ctx->op = op;
680         ctx->count = req_len;
681         ctx->first_hash = 1;
682         ctx->last_chunk = is_last;
683         ctx->count_add = count_add;
684 }
685
686 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
687                                    unsigned req_len)
688 {
689         ctx->last_chunk = is_last;
690         ctx->count += req_len;
691 }
692
693 static int mv_hash_init(struct ahash_request *req)
694 {
695         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
696         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
697                              tfm_ctx->count_add);
698         return 0;
699 }
700
701 static int mv_hash_update(struct ahash_request *req)
702 {
703         if (!req->nbytes)
704                 return 0;
705
706         mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
707         return mv_handle_req(&req->base);
708 }
709
710 static int mv_hash_final(struct ahash_request *req)
711 {
712         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
713
714         mv_update_hash_req_ctx(ctx, 1, 0);
715         return mv_handle_req(&req->base);
716 }
717
718 static int mv_hash_finup(struct ahash_request *req)
719 {
720         mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
721         return mv_handle_req(&req->base);
722 }
723
724 static int mv_hash_digest(struct ahash_request *req)
725 {
726         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
727         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
728                              req->nbytes, tfm_ctx->count_add);
729         return mv_handle_req(&req->base);
730 }
731
732 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
733                              const void *ostate)
734 {
735         const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
736         int i;
737         for (i = 0; i < 5; i++) {
738                 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
739                 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
740         }
741 }
742
743 static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
744                           unsigned int keylen)
745 {
746         int rc;
747         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
748         int bs, ds, ss;
749
750         if (!ctx->base_hash)
751                 return 0;
752
753         rc = crypto_shash_setkey(ctx->fallback, key, keylen);
754         if (rc)
755                 return rc;
756
757         /* Can't see a way to extract the ipad/opad from the fallback tfm
758            so I'm basically copying code from the hmac module */
759         bs = crypto_shash_blocksize(ctx->base_hash);
760         ds = crypto_shash_digestsize(ctx->base_hash);
761         ss = crypto_shash_statesize(ctx->base_hash);
762
763         {
764                 struct {
765                         struct shash_desc shash;
766                         char ctx[crypto_shash_descsize(ctx->base_hash)];
767                 } desc;
768                 unsigned int i;
769                 char ipad[ss];
770                 char opad[ss];
771
772                 desc.shash.tfm = ctx->base_hash;
773                 desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
774                     CRYPTO_TFM_REQ_MAY_SLEEP;
775
776                 if (keylen > bs) {
777                         int err;
778
779                         err =
780                             crypto_shash_digest(&desc.shash, key, keylen, ipad);
781                         if (err)
782                                 return err;
783
784                         keylen = ds;
785                 } else
786                         memcpy(ipad, key, keylen);
787
788                 memset(ipad + keylen, 0, bs - keylen);
789                 memcpy(opad, ipad, bs);
790
791                 for (i = 0; i < bs; i++) {
792                         ipad[i] ^= 0x36;
793                         opad[i] ^= 0x5c;
794                 }
795
796                 rc = crypto_shash_init(&desc.shash) ? :
797                     crypto_shash_update(&desc.shash, ipad, bs) ? :
798                     crypto_shash_export(&desc.shash, ipad) ? :
799                     crypto_shash_init(&desc.shash) ? :
800                     crypto_shash_update(&desc.shash, opad, bs) ? :
801                     crypto_shash_export(&desc.shash, opad);
802
803                 if (rc == 0)
804                         mv_hash_init_ivs(ctx, ipad, opad);
805
806                 return rc;
807         }
808 }
809
810 static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
811                             enum hash_op op, int count_add)
812 {
813         const char *fallback_driver_name = tfm->__crt_alg->cra_name;
814         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
815         struct crypto_shash *fallback_tfm = NULL;
816         struct crypto_shash *base_hash = NULL;
817         int err = -ENOMEM;
818
819         ctx->op = op;
820         ctx->count_add = count_add;
821
822         /* Allocate a fallback and abort if it failed. */
823         fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
824                                           CRYPTO_ALG_NEED_FALLBACK);
825         if (IS_ERR(fallback_tfm)) {
826                 printk(KERN_WARNING MV_CESA
827                        "Fallback driver '%s' could not be loaded!\n",
828                        fallback_driver_name);
829                 err = PTR_ERR(fallback_tfm);
830                 goto out;
831         }
832         ctx->fallback = fallback_tfm;
833
834         if (base_hash_name) {
835                 /* Allocate a hash to compute the ipad/opad of hmac. */
836                 base_hash = crypto_alloc_shash(base_hash_name, 0,
837                                                CRYPTO_ALG_NEED_FALLBACK);
838                 if (IS_ERR(base_hash)) {
839                         printk(KERN_WARNING MV_CESA
840                                "Base driver '%s' could not be loaded!\n",
841                                base_hash_name);
842                         err = PTR_ERR(base_hash);
843                         goto err_bad_base;
844                 }
845         }
846         ctx->base_hash = base_hash;
847
848         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
849                                  sizeof(struct mv_req_hash_ctx) +
850                                  crypto_shash_descsize(ctx->fallback));
851         return 0;
852 err_bad_base:
853         crypto_free_shash(fallback_tfm);
854 out:
855         return err;
856 }
857
858 static void mv_cra_hash_exit(struct crypto_tfm *tfm)
859 {
860         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
861
862         crypto_free_shash(ctx->fallback);
863         if (ctx->base_hash)
864                 crypto_free_shash(ctx->base_hash);
865 }
866
867 static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
868 {
869         return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
870 }
871
872 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
873 {
874         return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
875 }
876
877 irqreturn_t crypto_int(int irq, void *priv)
878 {
879         u32 val;
880
881         val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
882         if (!(val & SEC_INT_ACCEL0_DONE))
883                 return IRQ_NONE;
884
885         val &= ~SEC_INT_ACCEL0_DONE;
886         writel(val, cpg->reg + FPGA_INT_STATUS);
887         writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
888         BUG_ON(cpg->eng_st != ENGINE_BUSY);
889         cpg->eng_st = ENGINE_W_DEQUEUE;
890         wake_up_process(cpg->queue_th);
891         return IRQ_HANDLED;
892 }
893
894 struct crypto_alg mv_aes_alg_ecb = {
895         .cra_name               = "ecb(aes)",
896         .cra_driver_name        = "mv-ecb-aes",
897         .cra_priority   = 300,
898         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
899         .cra_blocksize  = 16,
900         .cra_ctxsize    = sizeof(struct mv_ctx),
901         .cra_alignmask  = 0,
902         .cra_type       = &crypto_ablkcipher_type,
903         .cra_module     = THIS_MODULE,
904         .cra_init       = mv_cra_init,
905         .cra_u          = {
906                 .ablkcipher = {
907                         .min_keysize    =       AES_MIN_KEY_SIZE,
908                         .max_keysize    =       AES_MAX_KEY_SIZE,
909                         .setkey         =       mv_setkey_aes,
910                         .encrypt        =       mv_enc_aes_ecb,
911                         .decrypt        =       mv_dec_aes_ecb,
912                 },
913         },
914 };
915
916 struct crypto_alg mv_aes_alg_cbc = {
917         .cra_name               = "cbc(aes)",
918         .cra_driver_name        = "mv-cbc-aes",
919         .cra_priority   = 300,
920         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
921         .cra_blocksize  = AES_BLOCK_SIZE,
922         .cra_ctxsize    = sizeof(struct mv_ctx),
923         .cra_alignmask  = 0,
924         .cra_type       = &crypto_ablkcipher_type,
925         .cra_module     = THIS_MODULE,
926         .cra_init       = mv_cra_init,
927         .cra_u          = {
928                 .ablkcipher = {
929                         .ivsize         =       AES_BLOCK_SIZE,
930                         .min_keysize    =       AES_MIN_KEY_SIZE,
931                         .max_keysize    =       AES_MAX_KEY_SIZE,
932                         .setkey         =       mv_setkey_aes,
933                         .encrypt        =       mv_enc_aes_cbc,
934                         .decrypt        =       mv_dec_aes_cbc,
935                 },
936         },
937 };
938
939 struct ahash_alg mv_sha1_alg = {
940         .init = mv_hash_init,
941         .update = mv_hash_update,
942         .final = mv_hash_final,
943         .finup = mv_hash_finup,
944         .digest = mv_hash_digest,
945         .halg = {
946                  .digestsize = SHA1_DIGEST_SIZE,
947                  .base = {
948                           .cra_name = "sha1",
949                           .cra_driver_name = "mv-sha1",
950                           .cra_priority = 300,
951                           .cra_flags =
952                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
953                           .cra_blocksize = SHA1_BLOCK_SIZE,
954                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
955                           .cra_init = mv_cra_hash_sha1_init,
956                           .cra_exit = mv_cra_hash_exit,
957                           .cra_module = THIS_MODULE,
958                           }
959                  }
960 };
961
962 struct ahash_alg mv_hmac_sha1_alg = {
963         .init = mv_hash_init,
964         .update = mv_hash_update,
965         .final = mv_hash_final,
966         .finup = mv_hash_finup,
967         .digest = mv_hash_digest,
968         .setkey = mv_hash_setkey,
969         .halg = {
970                  .digestsize = SHA1_DIGEST_SIZE,
971                  .base = {
972                           .cra_name = "hmac(sha1)",
973                           .cra_driver_name = "mv-hmac-sha1",
974                           .cra_priority = 300,
975                           .cra_flags =
976                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
977                           .cra_blocksize = SHA1_BLOCK_SIZE,
978                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
979                           .cra_init = mv_cra_hash_hmac_sha1_init,
980                           .cra_exit = mv_cra_hash_exit,
981                           .cra_module = THIS_MODULE,
982                           }
983                  }
984 };
985
986 static int mv_probe(struct platform_device *pdev)
987 {
988         struct crypto_priv *cp;
989         struct resource *res;
990         int irq;
991         int ret;
992
993         if (cpg) {
994                 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
995                 return -EEXIST;
996         }
997
998         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
999         if (!res)
1000                 return -ENXIO;
1001
1002         cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1003         if (!cp)
1004                 return -ENOMEM;
1005
1006         spin_lock_init(&cp->lock);
1007         crypto_init_queue(&cp->queue, 50);
1008         cp->reg = ioremap(res->start, resource_size(res));
1009         if (!cp->reg) {
1010                 ret = -ENOMEM;
1011                 goto err;
1012         }
1013
1014         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1015         if (!res) {
1016                 ret = -ENXIO;
1017                 goto err_unmap_reg;
1018         }
1019         cp->sram_size = resource_size(res);
1020         cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1021         cp->sram = ioremap(res->start, cp->sram_size);
1022         if (!cp->sram) {
1023                 ret = -ENOMEM;
1024                 goto err_unmap_reg;
1025         }
1026
1027         irq = platform_get_irq(pdev, 0);
1028         if (irq < 0 || irq == NO_IRQ) {
1029                 ret = irq;
1030                 goto err_unmap_sram;
1031         }
1032         cp->irq = irq;
1033
1034         platform_set_drvdata(pdev, cp);
1035         cpg = cp;
1036
1037         cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1038         if (IS_ERR(cp->queue_th)) {
1039                 ret = PTR_ERR(cp->queue_th);
1040                 goto err_unmap_sram;
1041         }
1042
1043         ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1044                         cp);
1045         if (ret)
1046                 goto err_thread;
1047
1048         writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1049         writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1050         writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1051
1052         ret = crypto_register_alg(&mv_aes_alg_ecb);
1053         if (ret) {
1054                 printk(KERN_WARNING MV_CESA
1055                        "Could not register aes-ecb driver\n");
1056                 goto err_irq;
1057         }
1058
1059         ret = crypto_register_alg(&mv_aes_alg_cbc);
1060         if (ret) {
1061                 printk(KERN_WARNING MV_CESA
1062                        "Could not register aes-cbc driver\n");
1063                 goto err_unreg_ecb;
1064         }
1065
1066         ret = crypto_register_ahash(&mv_sha1_alg);
1067         if (ret == 0)
1068                 cpg->has_sha1 = 1;
1069         else
1070                 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1071
1072         ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1073         if (ret == 0) {
1074                 cpg->has_hmac_sha1 = 1;
1075         } else {
1076                 printk(KERN_WARNING MV_CESA
1077                        "Could not register hmac-sha1 driver\n");
1078         }
1079
1080         return 0;
1081 err_unreg_ecb:
1082         crypto_unregister_alg(&mv_aes_alg_ecb);
1083 err_irq:
1084         free_irq(irq, cp);
1085 err_thread:
1086         kthread_stop(cp->queue_th);
1087 err_unmap_sram:
1088         iounmap(cp->sram);
1089 err_unmap_reg:
1090         iounmap(cp->reg);
1091 err:
1092         kfree(cp);
1093         cpg = NULL;
1094         platform_set_drvdata(pdev, NULL);
1095         return ret;
1096 }
1097
1098 static int mv_remove(struct platform_device *pdev)
1099 {
1100         struct crypto_priv *cp = platform_get_drvdata(pdev);
1101
1102         crypto_unregister_alg(&mv_aes_alg_ecb);
1103         crypto_unregister_alg(&mv_aes_alg_cbc);
1104         if (cp->has_sha1)
1105                 crypto_unregister_ahash(&mv_sha1_alg);
1106         if (cp->has_hmac_sha1)
1107                 crypto_unregister_ahash(&mv_hmac_sha1_alg);
1108         kthread_stop(cp->queue_th);
1109         free_irq(cp->irq, cp);
1110         memset(cp->sram, 0, cp->sram_size);
1111         iounmap(cp->sram);
1112         iounmap(cp->reg);
1113         kfree(cp);
1114         cpg = NULL;
1115         return 0;
1116 }
1117
1118 static struct platform_driver marvell_crypto = {
1119         .probe          = mv_probe,
1120         .remove         = mv_remove,
1121         .driver         = {
1122                 .owner  = THIS_MODULE,
1123                 .name   = "mv_crypto",
1124         },
1125 };
1126 MODULE_ALIAS("platform:mv_crypto");
1127
1128 static int __init mv_crypto_init(void)
1129 {
1130         return platform_driver_register(&marvell_crypto);
1131 }
1132 module_init(mv_crypto_init);
1133
1134 static void __exit mv_crypto_exit(void)
1135 {
1136         platform_driver_unregister(&marvell_crypto);
1137 }
1138 module_exit(mv_crypto_exit);
1139
1140 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1141 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1142 MODULE_LICENSE("GPL");