Merge branch 'drm-intel-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/keith...
[pandora-kernel.git] / drivers / crypto / ixp4xx_crypto.c
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21
22 #include <crypto/ctr.h>
23 #include <crypto/des.h>
24 #include <crypto/aes.h>
25 #include <crypto/sha.h>
26 #include <crypto/algapi.h>
27 #include <crypto/aead.h>
28 #include <crypto/authenc.h>
29 #include <crypto/scatterwalk.h>
30
31 #include <mach/npe.h>
32 #include <mach/qmgr.h>
33
34 #define MAX_KEYLEN 32
35
36 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
37 #define NPE_CTX_LEN 80
38 #define AES_BLOCK128 16
39
40 #define NPE_OP_HASH_VERIFY   0x01
41 #define NPE_OP_CCM_ENABLE    0x04
42 #define NPE_OP_CRYPT_ENABLE  0x08
43 #define NPE_OP_HASH_ENABLE   0x10
44 #define NPE_OP_NOT_IN_PLACE  0x20
45 #define NPE_OP_HMAC_DISABLE  0x40
46 #define NPE_OP_CRYPT_ENCRYPT 0x80
47
48 #define NPE_OP_CCM_GEN_MIC   0xcc
49 #define NPE_OP_HASH_GEN_ICV  0x50
50 #define NPE_OP_ENC_GEN_KEY   0xc9
51
52 #define MOD_ECB     0x0000
53 #define MOD_CTR     0x1000
54 #define MOD_CBC_ENC 0x2000
55 #define MOD_CBC_DEC 0x3000
56 #define MOD_CCM_ENC 0x4000
57 #define MOD_CCM_DEC 0x5000
58
59 #define KEYLEN_128  4
60 #define KEYLEN_192  6
61 #define KEYLEN_256  8
62
63 #define CIPH_DECR   0x0000
64 #define CIPH_ENCR   0x0400
65
66 #define MOD_DES     0x0000
67 #define MOD_TDEA2   0x0100
68 #define MOD_3DES   0x0200
69 #define MOD_AES     0x0800
70 #define MOD_AES128  (0x0800 | KEYLEN_128)
71 #define MOD_AES192  (0x0900 | KEYLEN_192)
72 #define MOD_AES256  (0x0a00 | KEYLEN_256)
73
74 #define MAX_IVLEN   16
75 #define NPE_ID      2  /* NPE C */
76 #define NPE_QLEN    16
77 /* Space for registering when the first
78  * NPE_QLEN crypt_ctl are busy */
79 #define NPE_QLEN_TOTAL 64
80
81 #define SEND_QID    29
82 #define RECV_QID    30
83
84 #define CTL_FLAG_UNUSED         0x0000
85 #define CTL_FLAG_USED           0x1000
86 #define CTL_FLAG_PERFORM_ABLK   0x0001
87 #define CTL_FLAG_GEN_ICV        0x0002
88 #define CTL_FLAG_GEN_REVAES     0x0004
89 #define CTL_FLAG_PERFORM_AEAD   0x0008
90 #define CTL_FLAG_MASK           0x000f
91
92 #define HMAC_IPAD_VALUE   0x36
93 #define HMAC_OPAD_VALUE   0x5C
94 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
95
96 #define MD5_DIGEST_SIZE   16
97
98 struct buffer_desc {
99         u32 phys_next;
100 #ifdef __ARMEB__
101         u16 buf_len;
102         u16 pkt_len;
103 #else
104         u16 pkt_len;
105         u16 buf_len;
106 #endif
107         u32 phys_addr;
108         u32 __reserved[4];
109         struct buffer_desc *next;
110         enum dma_data_direction dir;
111 };
112
113 struct crypt_ctl {
114 #ifdef __ARMEB__
115         u8 mode;                /* NPE_OP_*  operation mode */
116         u8 init_len;
117         u16 reserved;
118 #else
119         u16 reserved;
120         u8 init_len;
121         u8 mode;                /* NPE_OP_*  operation mode */
122 #endif
123         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
124         u32 icv_rev_aes;        /* icv or rev aes */
125         u32 src_buf;
126         u32 dst_buf;
127 #ifdef __ARMEB__
128         u16 auth_offs;          /* Authentication start offset */
129         u16 auth_len;           /* Authentication data length */
130         u16 crypt_offs;         /* Cryption start offset */
131         u16 crypt_len;          /* Cryption data length */
132 #else
133         u16 auth_len;           /* Authentication data length */
134         u16 auth_offs;          /* Authentication start offset */
135         u16 crypt_len;          /* Cryption data length */
136         u16 crypt_offs;         /* Cryption start offset */
137 #endif
138         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
139         u32 crypto_ctx;         /* NPE Crypto Param structure address */
140
141         /* Used by Host: 4*4 bytes*/
142         unsigned ctl_flags;
143         union {
144                 struct ablkcipher_request *ablk_req;
145                 struct aead_request *aead_req;
146                 struct crypto_tfm *tfm;
147         } data;
148         struct buffer_desc *regist_buf;
149         u8 *regist_ptr;
150 };
151
152 struct ablk_ctx {
153         struct buffer_desc *src;
154         struct buffer_desc *dst;
155 };
156
157 struct aead_ctx {
158         struct buffer_desc *buffer;
159         struct scatterlist ivlist;
160         /* used when the hmac is not on one sg entry */
161         u8 *hmac_virt;
162         int encrypt;
163 };
164
165 struct ix_hash_algo {
166         u32 cfgword;
167         unsigned char *icv;
168 };
169
170 struct ix_sa_dir {
171         unsigned char *npe_ctx;
172         dma_addr_t npe_ctx_phys;
173         int npe_ctx_idx;
174         u8 npe_mode;
175 };
176
177 struct ixp_ctx {
178         struct ix_sa_dir encrypt;
179         struct ix_sa_dir decrypt;
180         int authkey_len;
181         u8 authkey[MAX_KEYLEN];
182         int enckey_len;
183         u8 enckey[MAX_KEYLEN];
184         u8 salt[MAX_IVLEN];
185         u8 nonce[CTR_RFC3686_NONCE_SIZE];
186         unsigned salted;
187         atomic_t configuring;
188         struct completion completion;
189 };
190
191 struct ixp_alg {
192         struct crypto_alg crypto;
193         const struct ix_hash_algo *hash;
194         u32 cfg_enc;
195         u32 cfg_dec;
196
197         int registered;
198 };
199
200 static const struct ix_hash_algo hash_alg_md5 = {
201         .cfgword        = 0xAA010004,
202         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
203                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
204 };
205 static const struct ix_hash_algo hash_alg_sha1 = {
206         .cfgword        = 0x00000005,
207         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
208                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
209 };
210
211 static struct npe *npe_c;
212 static struct dma_pool *buffer_pool = NULL;
213 static struct dma_pool *ctx_pool = NULL;
214
215 static struct crypt_ctl *crypt_virt = NULL;
216 static dma_addr_t crypt_phys;
217
218 static int support_aes = 1;
219
220 static void dev_release(struct device *dev)
221 {
222         return;
223 }
224
225 #define DRIVER_NAME "ixp4xx_crypto"
226 static struct platform_device pseudo_dev = {
227         .name = DRIVER_NAME,
228         .id   = 0,
229         .num_resources = 0,
230         .dev  = {
231                 .coherent_dma_mask = DMA_BIT_MASK(32),
232                 .release = dev_release,
233         }
234 };
235
236 static struct device *dev = &pseudo_dev.dev;
237
238 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
239 {
240         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
241 }
242
243 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
244 {
245         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
246 }
247
248 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
249 {
250         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
251 }
252
253 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
254 {
255         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
256 }
257
258 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
259 {
260         return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
261 }
262
263 static int setup_crypt_desc(void)
264 {
265         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
266         crypt_virt = dma_alloc_coherent(dev,
267                         NPE_QLEN * sizeof(struct crypt_ctl),
268                         &crypt_phys, GFP_KERNEL);
269         if (!crypt_virt)
270                 return -ENOMEM;
271         memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
272         return 0;
273 }
274
275 static spinlock_t desc_lock;
276 static struct crypt_ctl *get_crypt_desc(void)
277 {
278         int i;
279         static int idx = 0;
280         unsigned long flags;
281
282         spin_lock_irqsave(&desc_lock, flags);
283
284         if (unlikely(!crypt_virt))
285                 setup_crypt_desc();
286         if (unlikely(!crypt_virt)) {
287                 spin_unlock_irqrestore(&desc_lock, flags);
288                 return NULL;
289         }
290         i = idx;
291         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
292                 if (++idx >= NPE_QLEN)
293                         idx = 0;
294                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
295                 spin_unlock_irqrestore(&desc_lock, flags);
296                 return crypt_virt +i;
297         } else {
298                 spin_unlock_irqrestore(&desc_lock, flags);
299                 return NULL;
300         }
301 }
302
303 static spinlock_t emerg_lock;
304 static struct crypt_ctl *get_crypt_desc_emerg(void)
305 {
306         int i;
307         static int idx = NPE_QLEN;
308         struct crypt_ctl *desc;
309         unsigned long flags;
310
311         desc = get_crypt_desc();
312         if (desc)
313                 return desc;
314         if (unlikely(!crypt_virt))
315                 return NULL;
316
317         spin_lock_irqsave(&emerg_lock, flags);
318         i = idx;
319         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
320                 if (++idx >= NPE_QLEN_TOTAL)
321                         idx = NPE_QLEN;
322                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
323                 spin_unlock_irqrestore(&emerg_lock, flags);
324                 return crypt_virt +i;
325         } else {
326                 spin_unlock_irqrestore(&emerg_lock, flags);
327                 return NULL;
328         }
329 }
330
331 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
332 {
333         while (buf) {
334                 struct buffer_desc *buf1;
335                 u32 phys1;
336
337                 buf1 = buf->next;
338                 phys1 = buf->phys_next;
339                 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
340                 dma_pool_free(buffer_pool, buf, phys);
341                 buf = buf1;
342                 phys = phys1;
343         }
344 }
345
346 static struct tasklet_struct crypto_done_tasklet;
347
348 static void finish_scattered_hmac(struct crypt_ctl *crypt)
349 {
350         struct aead_request *req = crypt->data.aead_req;
351         struct aead_ctx *req_ctx = aead_request_ctx(req);
352         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
353         int authsize = crypto_aead_authsize(tfm);
354         int decryptlen = req->cryptlen - authsize;
355
356         if (req_ctx->encrypt) {
357                 scatterwalk_map_and_copy(req_ctx->hmac_virt,
358                         req->src, decryptlen, authsize, 1);
359         }
360         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
361 }
362
363 static void one_packet(dma_addr_t phys)
364 {
365         struct crypt_ctl *crypt;
366         struct ixp_ctx *ctx;
367         int failed;
368
369         failed = phys & 0x1 ? -EBADMSG : 0;
370         phys &= ~0x3;
371         crypt = crypt_phys2virt(phys);
372
373         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
374         case CTL_FLAG_PERFORM_AEAD: {
375                 struct aead_request *req = crypt->data.aead_req;
376                 struct aead_ctx *req_ctx = aead_request_ctx(req);
377
378                 free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
379                 if (req_ctx->hmac_virt) {
380                         finish_scattered_hmac(crypt);
381                 }
382                 req->base.complete(&req->base, failed);
383                 break;
384         }
385         case CTL_FLAG_PERFORM_ABLK: {
386                 struct ablkcipher_request *req = crypt->data.ablk_req;
387                 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
388
389                 if (req_ctx->dst) {
390                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
391                 }
392                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
393                 req->base.complete(&req->base, failed);
394                 break;
395         }
396         case CTL_FLAG_GEN_ICV:
397                 ctx = crypto_tfm_ctx(crypt->data.tfm);
398                 dma_pool_free(ctx_pool, crypt->regist_ptr,
399                                 crypt->regist_buf->phys_addr);
400                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
401                 if (atomic_dec_and_test(&ctx->configuring))
402                         complete(&ctx->completion);
403                 break;
404         case CTL_FLAG_GEN_REVAES:
405                 ctx = crypto_tfm_ctx(crypt->data.tfm);
406                 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
407                 if (atomic_dec_and_test(&ctx->configuring))
408                         complete(&ctx->completion);
409                 break;
410         default:
411                 BUG();
412         }
413         crypt->ctl_flags = CTL_FLAG_UNUSED;
414 }
415
416 static void irqhandler(void *_unused)
417 {
418         tasklet_schedule(&crypto_done_tasklet);
419 }
420
421 static void crypto_done_action(unsigned long arg)
422 {
423         int i;
424
425         for(i=0; i<4; i++) {
426                 dma_addr_t phys = qmgr_get_entry(RECV_QID);
427                 if (!phys)
428                         return;
429                 one_packet(phys);
430         }
431         tasklet_schedule(&crypto_done_tasklet);
432 }
433
434 static int init_ixp_crypto(void)
435 {
436         int ret = -ENODEV;
437         u32 msg[2] = { 0, 0 };
438
439         if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
440                                 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
441                 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
442                 return ret;
443         }
444         npe_c = npe_request(NPE_ID);
445         if (!npe_c)
446                 return ret;
447
448         if (!npe_running(npe_c)) {
449                 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
450                 if (ret) {
451                         return ret;
452                 }
453                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
454                         goto npe_error;
455         } else {
456                 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
457                         goto npe_error;
458
459                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
460                         goto npe_error;
461         }
462
463         switch ((msg[1]>>16) & 0xff) {
464         case 3:
465                 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
466                                 npe_name(npe_c));
467                 support_aes = 0;
468                 break;
469         case 4:
470         case 5:
471                 support_aes = 1;
472                 break;
473         default:
474                 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
475                         npe_name(npe_c));
476                 return -ENODEV;
477         }
478         /* buffer_pool will also be used to sometimes store the hmac,
479          * so assure it is large enough
480          */
481         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
482         buffer_pool = dma_pool_create("buffer", dev,
483                         sizeof(struct buffer_desc), 32, 0);
484         ret = -ENOMEM;
485         if (!buffer_pool) {
486                 goto err;
487         }
488         ctx_pool = dma_pool_create("context", dev,
489                         NPE_CTX_LEN, 16, 0);
490         if (!ctx_pool) {
491                 goto err;
492         }
493         ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
494                                  "ixp_crypto:out", NULL);
495         if (ret)
496                 goto err;
497         ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
498                                  "ixp_crypto:in", NULL);
499         if (ret) {
500                 qmgr_release_queue(SEND_QID);
501                 goto err;
502         }
503         qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
504         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
505
506         qmgr_enable_irq(RECV_QID);
507         return 0;
508
509 npe_error:
510         printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
511         ret = -EIO;
512 err:
513         if (ctx_pool)
514                 dma_pool_destroy(ctx_pool);
515         if (buffer_pool)
516                 dma_pool_destroy(buffer_pool);
517         npe_release(npe_c);
518         return ret;
519 }
520
521 static void release_ixp_crypto(void)
522 {
523         qmgr_disable_irq(RECV_QID);
524         tasklet_kill(&crypto_done_tasklet);
525
526         qmgr_release_queue(SEND_QID);
527         qmgr_release_queue(RECV_QID);
528
529         dma_pool_destroy(ctx_pool);
530         dma_pool_destroy(buffer_pool);
531
532         npe_release(npe_c);
533
534         if (crypt_virt) {
535                 dma_free_coherent(dev,
536                         NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
537                         crypt_virt, crypt_phys);
538         }
539         return;
540 }
541
542 static void reset_sa_dir(struct ix_sa_dir *dir)
543 {
544         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
545         dir->npe_ctx_idx = 0;
546         dir->npe_mode = 0;
547 }
548
549 static int init_sa_dir(struct ix_sa_dir *dir)
550 {
551         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
552         if (!dir->npe_ctx) {
553                 return -ENOMEM;
554         }
555         reset_sa_dir(dir);
556         return 0;
557 }
558
559 static void free_sa_dir(struct ix_sa_dir *dir)
560 {
561         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
562         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
563 }
564
565 static int init_tfm(struct crypto_tfm *tfm)
566 {
567         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
568         int ret;
569
570         atomic_set(&ctx->configuring, 0);
571         ret = init_sa_dir(&ctx->encrypt);
572         if (ret)
573                 return ret;
574         ret = init_sa_dir(&ctx->decrypt);
575         if (ret) {
576                 free_sa_dir(&ctx->encrypt);
577         }
578         return ret;
579 }
580
581 static int init_tfm_ablk(struct crypto_tfm *tfm)
582 {
583         tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
584         return init_tfm(tfm);
585 }
586
587 static int init_tfm_aead(struct crypto_tfm *tfm)
588 {
589         tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
590         return init_tfm(tfm);
591 }
592
593 static void exit_tfm(struct crypto_tfm *tfm)
594 {
595         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
596         free_sa_dir(&ctx->encrypt);
597         free_sa_dir(&ctx->decrypt);
598 }
599
600 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
601                 int init_len, u32 ctx_addr, const u8 *key, int key_len)
602 {
603         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
604         struct crypt_ctl *crypt;
605         struct buffer_desc *buf;
606         int i;
607         u8 *pad;
608         u32 pad_phys, buf_phys;
609
610         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
611         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
612         if (!pad)
613                 return -ENOMEM;
614         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
615         if (!buf) {
616                 dma_pool_free(ctx_pool, pad, pad_phys);
617                 return -ENOMEM;
618         }
619         crypt = get_crypt_desc_emerg();
620         if (!crypt) {
621                 dma_pool_free(ctx_pool, pad, pad_phys);
622                 dma_pool_free(buffer_pool, buf, buf_phys);
623                 return -EAGAIN;
624         }
625
626         memcpy(pad, key, key_len);
627         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
628         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
629                 pad[i] ^= xpad;
630         }
631
632         crypt->data.tfm = tfm;
633         crypt->regist_ptr = pad;
634         crypt->regist_buf = buf;
635
636         crypt->auth_offs = 0;
637         crypt->auth_len = HMAC_PAD_BLOCKLEN;
638         crypt->crypto_ctx = ctx_addr;
639         crypt->src_buf = buf_phys;
640         crypt->icv_rev_aes = target;
641         crypt->mode = NPE_OP_HASH_GEN_ICV;
642         crypt->init_len = init_len;
643         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
644
645         buf->next = 0;
646         buf->buf_len = HMAC_PAD_BLOCKLEN;
647         buf->pkt_len = 0;
648         buf->phys_addr = pad_phys;
649
650         atomic_inc(&ctx->configuring);
651         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
652         BUG_ON(qmgr_stat_overflow(SEND_QID));
653         return 0;
654 }
655
656 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
657                 const u8 *key, int key_len, unsigned digest_len)
658 {
659         u32 itarget, otarget, npe_ctx_addr;
660         unsigned char *cinfo;
661         int init_len, ret = 0;
662         u32 cfgword;
663         struct ix_sa_dir *dir;
664         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
665         const struct ix_hash_algo *algo;
666
667         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
668         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
669         algo = ix_hash(tfm);
670
671         /* write cfg word to cryptinfo */
672         cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
673 #ifndef __ARMEB__
674         cfgword ^= 0xAA000000; /* change the "byte swap" flags */
675 #endif
676         *(u32*)cinfo = cpu_to_be32(cfgword);
677         cinfo += sizeof(cfgword);
678
679         /* write ICV to cryptinfo */
680         memcpy(cinfo, algo->icv, digest_len);
681         cinfo += digest_len;
682
683         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
684                                 + sizeof(algo->cfgword);
685         otarget = itarget + digest_len;
686         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
687         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
688
689         dir->npe_ctx_idx += init_len;
690         dir->npe_mode |= NPE_OP_HASH_ENABLE;
691
692         if (!encrypt)
693                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
694
695         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
696                         init_len, npe_ctx_addr, key, key_len);
697         if (ret)
698                 return ret;
699         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
700                         init_len, npe_ctx_addr, key, key_len);
701 }
702
703 static int gen_rev_aes_key(struct crypto_tfm *tfm)
704 {
705         struct crypt_ctl *crypt;
706         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
707         struct ix_sa_dir *dir = &ctx->decrypt;
708
709         crypt = get_crypt_desc_emerg();
710         if (!crypt) {
711                 return -EAGAIN;
712         }
713         *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
714
715         crypt->data.tfm = tfm;
716         crypt->crypt_offs = 0;
717         crypt->crypt_len = AES_BLOCK128;
718         crypt->src_buf = 0;
719         crypt->crypto_ctx = dir->npe_ctx_phys;
720         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
721         crypt->mode = NPE_OP_ENC_GEN_KEY;
722         crypt->init_len = dir->npe_ctx_idx;
723         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
724
725         atomic_inc(&ctx->configuring);
726         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
727         BUG_ON(qmgr_stat_overflow(SEND_QID));
728         return 0;
729 }
730
731 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
732                 const u8 *key, int key_len)
733 {
734         u8 *cinfo;
735         u32 cipher_cfg;
736         u32 keylen_cfg = 0;
737         struct ix_sa_dir *dir;
738         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
739         u32 *flags = &tfm->crt_flags;
740
741         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
742         cinfo = dir->npe_ctx;
743
744         if (encrypt) {
745                 cipher_cfg = cipher_cfg_enc(tfm);
746                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
747         } else {
748                 cipher_cfg = cipher_cfg_dec(tfm);
749         }
750         if (cipher_cfg & MOD_AES) {
751                 switch (key_len) {
752                         case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break;
753                         case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break;
754                         case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break;
755                         default:
756                                 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
757                                 return -EINVAL;
758                 }
759                 cipher_cfg |= keylen_cfg;
760         } else if (cipher_cfg & MOD_3DES) {
761                 const u32 *K = (const u32 *)key;
762                 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
763                              !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
764                 {
765                         *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
766                         return -EINVAL;
767                 }
768         } else {
769                 u32 tmp[DES_EXPKEY_WORDS];
770                 if (des_ekey(tmp, key) == 0) {
771                         *flags |= CRYPTO_TFM_RES_WEAK_KEY;
772                 }
773         }
774         /* write cfg word to cryptinfo */
775         *(u32*)cinfo = cpu_to_be32(cipher_cfg);
776         cinfo += sizeof(cipher_cfg);
777
778         /* write cipher key to cryptinfo */
779         memcpy(cinfo, key, key_len);
780         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
781         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
782                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
783                 key_len = DES3_EDE_KEY_SIZE;
784         }
785         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
786         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
787         if ((cipher_cfg & MOD_AES) && !encrypt) {
788                 return gen_rev_aes_key(tfm);
789         }
790         return 0;
791 }
792
793 static struct buffer_desc *chainup_buffers(struct device *dev,
794                 struct scatterlist *sg, unsigned nbytes,
795                 struct buffer_desc *buf, gfp_t flags,
796                 enum dma_data_direction dir)
797 {
798         for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
799                 unsigned len = min(nbytes, sg->length);
800                 struct buffer_desc *next_buf;
801                 u32 next_buf_phys;
802                 void *ptr;
803
804                 nbytes -= len;
805                 ptr = page_address(sg_page(sg)) + sg->offset;
806                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
807                 if (!next_buf) {
808                         buf = NULL;
809                         break;
810                 }
811                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
812                 buf->next = next_buf;
813                 buf->phys_next = next_buf_phys;
814                 buf = next_buf;
815
816                 buf->phys_addr = sg_dma_address(sg);
817                 buf->buf_len = len;
818                 buf->dir = dir;
819         }
820         buf->next = NULL;
821         buf->phys_next = 0;
822         return buf;
823 }
824
825 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
826                         unsigned int key_len)
827 {
828         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
829         u32 *flags = &tfm->base.crt_flags;
830         int ret;
831
832         init_completion(&ctx->completion);
833         atomic_inc(&ctx->configuring);
834
835         reset_sa_dir(&ctx->encrypt);
836         reset_sa_dir(&ctx->decrypt);
837
838         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
839         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
840
841         ret = setup_cipher(&tfm->base, 0, key, key_len);
842         if (ret)
843                 goto out;
844         ret = setup_cipher(&tfm->base, 1, key, key_len);
845         if (ret)
846                 goto out;
847
848         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
849                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
850                         ret = -EINVAL;
851                 } else {
852                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
853                 }
854         }
855 out:
856         if (!atomic_dec_and_test(&ctx->configuring))
857                 wait_for_completion(&ctx->completion);
858         return ret;
859 }
860
861 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
862                 unsigned int key_len)
863 {
864         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
865
866         /* the nonce is stored in bytes at end of key */
867         if (key_len < CTR_RFC3686_NONCE_SIZE)
868                 return -EINVAL;
869
870         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
871                         CTR_RFC3686_NONCE_SIZE);
872
873         key_len -= CTR_RFC3686_NONCE_SIZE;
874         return ablk_setkey(tfm, key, key_len);
875 }
876
877 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
878 {
879         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
880         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
881         unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
882         struct ix_sa_dir *dir;
883         struct crypt_ctl *crypt;
884         unsigned int nbytes = req->nbytes;
885         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
886         struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
887         struct buffer_desc src_hook;
888         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
889                                 GFP_KERNEL : GFP_ATOMIC;
890
891         if (qmgr_stat_full(SEND_QID))
892                 return -EAGAIN;
893         if (atomic_read(&ctx->configuring))
894                 return -EAGAIN;
895
896         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
897
898         crypt = get_crypt_desc();
899         if (!crypt)
900                 return -ENOMEM;
901
902         crypt->data.ablk_req = req;
903         crypt->crypto_ctx = dir->npe_ctx_phys;
904         crypt->mode = dir->npe_mode;
905         crypt->init_len = dir->npe_ctx_idx;
906
907         crypt->crypt_offs = 0;
908         crypt->crypt_len = nbytes;
909
910         BUG_ON(ivsize && !req->info);
911         memcpy(crypt->iv, req->info, ivsize);
912         if (req->src != req->dst) {
913                 struct buffer_desc dst_hook;
914                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
915                 /* This was never tested by Intel
916                  * for more than one dst buffer, I think. */
917                 BUG_ON(req->dst->length < nbytes);
918                 req_ctx->dst = NULL;
919                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
920                                         flags, DMA_FROM_DEVICE))
921                         goto free_buf_dest;
922                 src_direction = DMA_TO_DEVICE;
923                 req_ctx->dst = dst_hook.next;
924                 crypt->dst_buf = dst_hook.phys_next;
925         } else {
926                 req_ctx->dst = NULL;
927         }
928         req_ctx->src = NULL;
929         if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
930                                 flags, src_direction))
931                 goto free_buf_src;
932
933         req_ctx->src = src_hook.next;
934         crypt->src_buf = src_hook.phys_next;
935         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
936         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
937         BUG_ON(qmgr_stat_overflow(SEND_QID));
938         return -EINPROGRESS;
939
940 free_buf_src:
941         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
942 free_buf_dest:
943         if (req->src != req->dst) {
944                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
945         }
946         crypt->ctl_flags = CTL_FLAG_UNUSED;
947         return -ENOMEM;
948 }
949
950 static int ablk_encrypt(struct ablkcipher_request *req)
951 {
952         return ablk_perform(req, 1);
953 }
954
955 static int ablk_decrypt(struct ablkcipher_request *req)
956 {
957         return ablk_perform(req, 0);
958 }
959
960 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
961 {
962         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
963         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
964         u8 iv[CTR_RFC3686_BLOCK_SIZE];
965         u8 *info = req->info;
966         int ret;
967
968         /* set up counter block */
969         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
970         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
971
972         /* initialize counter portion of counter block */
973         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
974                 cpu_to_be32(1);
975
976         req->info = iv;
977         ret = ablk_perform(req, 1);
978         req->info = info;
979         return ret;
980 }
981
982 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
983                 unsigned int nbytes)
984 {
985         int offset = 0;
986
987         if (!nbytes)
988                 return 0;
989
990         for (;;) {
991                 if (start < offset + sg->length)
992                         break;
993
994                 offset += sg->length;
995                 sg = scatterwalk_sg_next(sg);
996         }
997         return (start + nbytes > offset + sg->length);
998 }
999
1000 static int aead_perform(struct aead_request *req, int encrypt,
1001                 int cryptoffset, int eff_cryptlen, u8 *iv)
1002 {
1003         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1004         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1005         unsigned ivsize = crypto_aead_ivsize(tfm);
1006         unsigned authsize = crypto_aead_authsize(tfm);
1007         struct ix_sa_dir *dir;
1008         struct crypt_ctl *crypt;
1009         unsigned int cryptlen;
1010         struct buffer_desc *buf, src_hook;
1011         struct aead_ctx *req_ctx = aead_request_ctx(req);
1012         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1013                                 GFP_KERNEL : GFP_ATOMIC;
1014
1015         if (qmgr_stat_full(SEND_QID))
1016                 return -EAGAIN;
1017         if (atomic_read(&ctx->configuring))
1018                 return -EAGAIN;
1019
1020         if (encrypt) {
1021                 dir = &ctx->encrypt;
1022                 cryptlen = req->cryptlen;
1023         } else {
1024                 dir = &ctx->decrypt;
1025                 /* req->cryptlen includes the authsize when decrypting */
1026                 cryptlen = req->cryptlen -authsize;
1027                 eff_cryptlen -= authsize;
1028         }
1029         crypt = get_crypt_desc();
1030         if (!crypt)
1031                 return -ENOMEM;
1032
1033         crypt->data.aead_req = req;
1034         crypt->crypto_ctx = dir->npe_ctx_phys;
1035         crypt->mode = dir->npe_mode;
1036         crypt->init_len = dir->npe_ctx_idx;
1037
1038         crypt->crypt_offs = cryptoffset;
1039         crypt->crypt_len = eff_cryptlen;
1040
1041         crypt->auth_offs = 0;
1042         crypt->auth_len = req->assoclen + ivsize + cryptlen;
1043         BUG_ON(ivsize && !req->iv);
1044         memcpy(crypt->iv, req->iv, ivsize);
1045
1046         if (req->src != req->dst) {
1047                 BUG(); /* -ENOTSUP because of my laziness */
1048         }
1049
1050         /* ASSOC data */
1051         buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
1052                 flags, DMA_TO_DEVICE);
1053         req_ctx->buffer = src_hook.next;
1054         crypt->src_buf = src_hook.phys_next;
1055         if (!buf)
1056                 goto out;
1057         /* IV */
1058         sg_init_table(&req_ctx->ivlist, 1);
1059         sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1060         buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
1061                         DMA_BIDIRECTIONAL);
1062         if (!buf)
1063                 goto free_chain;
1064         if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1065                 /* The 12 hmac bytes are scattered,
1066                  * we need to copy them into a safe buffer */
1067                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1068                                 &crypt->icv_rev_aes);
1069                 if (unlikely(!req_ctx->hmac_virt))
1070                         goto free_chain;
1071                 if (!encrypt) {
1072                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1073                                 req->src, cryptlen, authsize, 0);
1074                 }
1075                 req_ctx->encrypt = encrypt;
1076         } else {
1077                 req_ctx->hmac_virt = NULL;
1078         }
1079         /* Crypt */
1080         buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
1081                         DMA_BIDIRECTIONAL);
1082         if (!buf)
1083                 goto free_hmac_virt;
1084         if (!req_ctx->hmac_virt) {
1085                 crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1086         }
1087
1088         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1089         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1090         BUG_ON(qmgr_stat_overflow(SEND_QID));
1091         return -EINPROGRESS;
1092 free_hmac_virt:
1093         if (req_ctx->hmac_virt) {
1094                 dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1095                                 crypt->icv_rev_aes);
1096         }
1097 free_chain:
1098         free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
1099 out:
1100         crypt->ctl_flags = CTL_FLAG_UNUSED;
1101         return -ENOMEM;
1102 }
1103
1104 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1105 {
1106         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1107         u32 *flags = &tfm->base.crt_flags;
1108         unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1109         int ret;
1110
1111         if (!ctx->enckey_len && !ctx->authkey_len)
1112                 return 0;
1113         init_completion(&ctx->completion);
1114         atomic_inc(&ctx->configuring);
1115
1116         reset_sa_dir(&ctx->encrypt);
1117         reset_sa_dir(&ctx->decrypt);
1118
1119         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1120         if (ret)
1121                 goto out;
1122         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1123         if (ret)
1124                 goto out;
1125         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1126                         ctx->authkey_len, digest_len);
1127         if (ret)
1128                 goto out;
1129         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1130                         ctx->authkey_len, digest_len);
1131         if (ret)
1132                 goto out;
1133
1134         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1135                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1136                         ret = -EINVAL;
1137                         goto out;
1138                 } else {
1139                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1140                 }
1141         }
1142 out:
1143         if (!atomic_dec_and_test(&ctx->configuring))
1144                 wait_for_completion(&ctx->completion);
1145         return ret;
1146 }
1147
1148 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1149 {
1150         int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1151
1152         if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1153                 return -EINVAL;
1154         return aead_setup(tfm, authsize);
1155 }
1156
1157 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1158                         unsigned int keylen)
1159 {
1160         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1161         struct rtattr *rta = (struct rtattr *)key;
1162         struct crypto_authenc_key_param *param;
1163
1164         if (!RTA_OK(rta, keylen))
1165                 goto badkey;
1166         if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
1167                 goto badkey;
1168         if (RTA_PAYLOAD(rta) < sizeof(*param))
1169                 goto badkey;
1170
1171         param = RTA_DATA(rta);
1172         ctx->enckey_len = be32_to_cpu(param->enckeylen);
1173
1174         key += RTA_ALIGN(rta->rta_len);
1175         keylen -= RTA_ALIGN(rta->rta_len);
1176
1177         if (keylen < ctx->enckey_len)
1178                 goto badkey;
1179
1180         ctx->authkey_len = keylen - ctx->enckey_len;
1181         memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
1182         memcpy(ctx->authkey, key, ctx->authkey_len);
1183
1184         return aead_setup(tfm, crypto_aead_authsize(tfm));
1185 badkey:
1186         ctx->enckey_len = 0;
1187         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1188         return -EINVAL;
1189 }
1190
1191 static int aead_encrypt(struct aead_request *req)
1192 {
1193         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1194         return aead_perform(req, 1, req->assoclen + ivsize,
1195                         req->cryptlen, req->iv);
1196 }
1197
1198 static int aead_decrypt(struct aead_request *req)
1199 {
1200         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1201         return aead_perform(req, 0, req->assoclen + ivsize,
1202                         req->cryptlen, req->iv);
1203 }
1204
1205 static int aead_givencrypt(struct aead_givcrypt_request *req)
1206 {
1207         struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1208         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1209         unsigned len, ivsize = crypto_aead_ivsize(tfm);
1210         __be64 seq;
1211
1212         /* copied from eseqiv.c */
1213         if (!ctx->salted) {
1214                 get_random_bytes(ctx->salt, ivsize);
1215                 ctx->salted = 1;
1216         }
1217         memcpy(req->areq.iv, ctx->salt, ivsize);
1218         len = ivsize;
1219         if (ivsize > sizeof(u64)) {
1220                 memset(req->giv, 0, ivsize - sizeof(u64));
1221                 len = sizeof(u64);
1222         }
1223         seq = cpu_to_be64(req->seq);
1224         memcpy(req->giv + ivsize - len, &seq, len);
1225         return aead_perform(&req->areq, 1, req->areq.assoclen,
1226                         req->areq.cryptlen +ivsize, req->giv);
1227 }
1228
1229 static struct ixp_alg ixp4xx_algos[] = {
1230 {
1231         .crypto = {
1232                 .cra_name       = "cbc(des)",
1233                 .cra_blocksize  = DES_BLOCK_SIZE,
1234                 .cra_u          = { .ablkcipher = {
1235                         .min_keysize    = DES_KEY_SIZE,
1236                         .max_keysize    = DES_KEY_SIZE,
1237                         .ivsize         = DES_BLOCK_SIZE,
1238                         .geniv          = "eseqiv",
1239                         }
1240                 }
1241         },
1242         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1243         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1244
1245 }, {
1246         .crypto = {
1247                 .cra_name       = "ecb(des)",
1248                 .cra_blocksize  = DES_BLOCK_SIZE,
1249                 .cra_u          = { .ablkcipher = {
1250                         .min_keysize    = DES_KEY_SIZE,
1251                         .max_keysize    = DES_KEY_SIZE,
1252                         }
1253                 }
1254         },
1255         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1256         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1257 }, {
1258         .crypto = {
1259                 .cra_name       = "cbc(des3_ede)",
1260                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1261                 .cra_u          = { .ablkcipher = {
1262                         .min_keysize    = DES3_EDE_KEY_SIZE,
1263                         .max_keysize    = DES3_EDE_KEY_SIZE,
1264                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1265                         .geniv          = "eseqiv",
1266                         }
1267                 }
1268         },
1269         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1270         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1271 }, {
1272         .crypto = {
1273                 .cra_name       = "ecb(des3_ede)",
1274                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1275                 .cra_u          = { .ablkcipher = {
1276                         .min_keysize    = DES3_EDE_KEY_SIZE,
1277                         .max_keysize    = DES3_EDE_KEY_SIZE,
1278                         }
1279                 }
1280         },
1281         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1282         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1283 }, {
1284         .crypto = {
1285                 .cra_name       = "cbc(aes)",
1286                 .cra_blocksize  = AES_BLOCK_SIZE,
1287                 .cra_u          = { .ablkcipher = {
1288                         .min_keysize    = AES_MIN_KEY_SIZE,
1289                         .max_keysize    = AES_MAX_KEY_SIZE,
1290                         .ivsize         = AES_BLOCK_SIZE,
1291                         .geniv          = "eseqiv",
1292                         }
1293                 }
1294         },
1295         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1296         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1297 }, {
1298         .crypto = {
1299                 .cra_name       = "ecb(aes)",
1300                 .cra_blocksize  = AES_BLOCK_SIZE,
1301                 .cra_u          = { .ablkcipher = {
1302                         .min_keysize    = AES_MIN_KEY_SIZE,
1303                         .max_keysize    = AES_MAX_KEY_SIZE,
1304                         }
1305                 }
1306         },
1307         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1308         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1309 }, {
1310         .crypto = {
1311                 .cra_name       = "ctr(aes)",
1312                 .cra_blocksize  = AES_BLOCK_SIZE,
1313                 .cra_u          = { .ablkcipher = {
1314                         .min_keysize    = AES_MIN_KEY_SIZE,
1315                         .max_keysize    = AES_MAX_KEY_SIZE,
1316                         .ivsize         = AES_BLOCK_SIZE,
1317                         .geniv          = "eseqiv",
1318                         }
1319                 }
1320         },
1321         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1322         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1323 }, {
1324         .crypto = {
1325                 .cra_name       = "rfc3686(ctr(aes))",
1326                 .cra_blocksize  = AES_BLOCK_SIZE,
1327                 .cra_u          = { .ablkcipher = {
1328                         .min_keysize    = AES_MIN_KEY_SIZE,
1329                         .max_keysize    = AES_MAX_KEY_SIZE,
1330                         .ivsize         = AES_BLOCK_SIZE,
1331                         .geniv          = "eseqiv",
1332                         .setkey         = ablk_rfc3686_setkey,
1333                         .encrypt        = ablk_rfc3686_crypt,
1334                         .decrypt        = ablk_rfc3686_crypt }
1335                 }
1336         },
1337         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1338         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1339 }, {
1340         .crypto = {
1341                 .cra_name       = "authenc(hmac(md5),cbc(des))",
1342                 .cra_blocksize  = DES_BLOCK_SIZE,
1343                 .cra_u          = { .aead = {
1344                         .ivsize         = DES_BLOCK_SIZE,
1345                         .maxauthsize    = MD5_DIGEST_SIZE,
1346                         }
1347                 }
1348         },
1349         .hash = &hash_alg_md5,
1350         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1351         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1352 }, {
1353         .crypto = {
1354                 .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1355                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1356                 .cra_u          = { .aead = {
1357                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1358                         .maxauthsize    = MD5_DIGEST_SIZE,
1359                         }
1360                 }
1361         },
1362         .hash = &hash_alg_md5,
1363         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1364         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1365 }, {
1366         .crypto = {
1367                 .cra_name       = "authenc(hmac(sha1),cbc(des))",
1368                 .cra_blocksize  = DES_BLOCK_SIZE,
1369                 .cra_u          = { .aead = {
1370                         .ivsize         = DES_BLOCK_SIZE,
1371                         .maxauthsize    = SHA1_DIGEST_SIZE,
1372                         }
1373                 }
1374         },
1375         .hash = &hash_alg_sha1,
1376         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1377         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1378 }, {
1379         .crypto = {
1380                 .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1381                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1382                 .cra_u          = { .aead = {
1383                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1384                         .maxauthsize    = SHA1_DIGEST_SIZE,
1385                         }
1386                 }
1387         },
1388         .hash = &hash_alg_sha1,
1389         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1390         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1391 }, {
1392         .crypto = {
1393                 .cra_name       = "authenc(hmac(md5),cbc(aes))",
1394                 .cra_blocksize  = AES_BLOCK_SIZE,
1395                 .cra_u          = { .aead = {
1396                         .ivsize         = AES_BLOCK_SIZE,
1397                         .maxauthsize    = MD5_DIGEST_SIZE,
1398                         }
1399                 }
1400         },
1401         .hash = &hash_alg_md5,
1402         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1403         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1404 }, {
1405         .crypto = {
1406                 .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1407                 .cra_blocksize  = AES_BLOCK_SIZE,
1408                 .cra_u          = { .aead = {
1409                         .ivsize         = AES_BLOCK_SIZE,
1410                         .maxauthsize    = SHA1_DIGEST_SIZE,
1411                         }
1412                 }
1413         },
1414         .hash = &hash_alg_sha1,
1415         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1416         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1417 } };
1418
1419 #define IXP_POSTFIX "-ixp4xx"
1420 static int __init ixp_module_init(void)
1421 {
1422         int num = ARRAY_SIZE(ixp4xx_algos);
1423         int i,err ;
1424
1425         if (platform_device_register(&pseudo_dev))
1426                 return -ENODEV;
1427
1428         spin_lock_init(&desc_lock);
1429         spin_lock_init(&emerg_lock);
1430
1431         err = init_ixp_crypto();
1432         if (err) {
1433                 platform_device_unregister(&pseudo_dev);
1434                 return err;
1435         }
1436         for (i=0; i< num; i++) {
1437                 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1438
1439                 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1440                         "%s"IXP_POSTFIX, cra->cra_name) >=
1441                         CRYPTO_MAX_ALG_NAME)
1442                 {
1443                         continue;
1444                 }
1445                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1446                         continue;
1447                 }
1448                 if (!ixp4xx_algos[i].hash) {
1449                         /* block ciphers */
1450                         cra->cra_type = &crypto_ablkcipher_type;
1451                         cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1452                                          CRYPTO_ALG_ASYNC;
1453                         if (!cra->cra_ablkcipher.setkey)
1454                                 cra->cra_ablkcipher.setkey = ablk_setkey;
1455                         if (!cra->cra_ablkcipher.encrypt)
1456                                 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1457                         if (!cra->cra_ablkcipher.decrypt)
1458                                 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1459                         cra->cra_init = init_tfm_ablk;
1460                 } else {
1461                         /* authenc */
1462                         cra->cra_type = &crypto_aead_type;
1463                         cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1464                                          CRYPTO_ALG_ASYNC;
1465                         cra->cra_aead.setkey = aead_setkey;
1466                         cra->cra_aead.setauthsize = aead_setauthsize;
1467                         cra->cra_aead.encrypt = aead_encrypt;
1468                         cra->cra_aead.decrypt = aead_decrypt;
1469                         cra->cra_aead.givencrypt = aead_givencrypt;
1470                         cra->cra_init = init_tfm_aead;
1471                 }
1472                 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1473                 cra->cra_module = THIS_MODULE;
1474                 cra->cra_alignmask = 3;
1475                 cra->cra_priority = 300;
1476                 cra->cra_exit = exit_tfm;
1477                 if (crypto_register_alg(cra))
1478                         printk(KERN_ERR "Failed to register '%s'\n",
1479                                 cra->cra_name);
1480                 else
1481                         ixp4xx_algos[i].registered = 1;
1482         }
1483         return 0;
1484 }
1485
1486 static void __exit ixp_module_exit(void)
1487 {
1488         int num = ARRAY_SIZE(ixp4xx_algos);
1489         int i;
1490
1491         for (i=0; i< num; i++) {
1492                 if (ixp4xx_algos[i].registered)
1493                         crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1494         }
1495         release_ixp_crypto();
1496         platform_device_unregister(&pseudo_dev);
1497 }
1498
1499 module_init(ixp_module_init);
1500 module_exit(ixp_module_exit);
1501
1502 MODULE_LICENSE("GPL");
1503 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1504 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1505