Merge branch 'topic/asoc' into for-linus
[pandora-kernel.git] / drivers / crypto / ixp4xx_crypto.c
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20
21 #include <crypto/ctr.h>
22 #include <crypto/des.h>
23 #include <crypto/aes.h>
24 #include <crypto/sha.h>
25 #include <crypto/algapi.h>
26 #include <crypto/aead.h>
27 #include <crypto/authenc.h>
28 #include <crypto/scatterwalk.h>
29
30 #include <mach/npe.h>
31 #include <mach/qmgr.h>
32
33 #define MAX_KEYLEN 32
34
35 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
36 #define NPE_CTX_LEN 80
37 #define AES_BLOCK128 16
38
39 #define NPE_OP_HASH_VERIFY   0x01
40 #define NPE_OP_CCM_ENABLE    0x04
41 #define NPE_OP_CRYPT_ENABLE  0x08
42 #define NPE_OP_HASH_ENABLE   0x10
43 #define NPE_OP_NOT_IN_PLACE  0x20
44 #define NPE_OP_HMAC_DISABLE  0x40
45 #define NPE_OP_CRYPT_ENCRYPT 0x80
46
47 #define NPE_OP_CCM_GEN_MIC   0xcc
48 #define NPE_OP_HASH_GEN_ICV  0x50
49 #define NPE_OP_ENC_GEN_KEY   0xc9
50
51 #define MOD_ECB     0x0000
52 #define MOD_CTR     0x1000
53 #define MOD_CBC_ENC 0x2000
54 #define MOD_CBC_DEC 0x3000
55 #define MOD_CCM_ENC 0x4000
56 #define MOD_CCM_DEC 0x5000
57
58 #define KEYLEN_128  4
59 #define KEYLEN_192  6
60 #define KEYLEN_256  8
61
62 #define CIPH_DECR   0x0000
63 #define CIPH_ENCR   0x0400
64
65 #define MOD_DES     0x0000
66 #define MOD_TDEA2   0x0100
67 #define MOD_3DES   0x0200
68 #define MOD_AES     0x0800
69 #define MOD_AES128  (0x0800 | KEYLEN_128)
70 #define MOD_AES192  (0x0900 | KEYLEN_192)
71 #define MOD_AES256  (0x0a00 | KEYLEN_256)
72
73 #define MAX_IVLEN   16
74 #define NPE_ID      2  /* NPE C */
75 #define NPE_QLEN    16
76 /* Space for registering when the first
77  * NPE_QLEN crypt_ctl are busy */
78 #define NPE_QLEN_TOTAL 64
79
80 #define SEND_QID    29
81 #define RECV_QID    30
82
83 #define CTL_FLAG_UNUSED         0x0000
84 #define CTL_FLAG_USED           0x1000
85 #define CTL_FLAG_PERFORM_ABLK   0x0001
86 #define CTL_FLAG_GEN_ICV        0x0002
87 #define CTL_FLAG_GEN_REVAES     0x0004
88 #define CTL_FLAG_PERFORM_AEAD   0x0008
89 #define CTL_FLAG_MASK           0x000f
90
91 #define HMAC_IPAD_VALUE   0x36
92 #define HMAC_OPAD_VALUE   0x5C
93 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
94
95 #define MD5_DIGEST_SIZE   16
96
97 struct buffer_desc {
98         u32 phys_next;
99         u16 buf_len;
100         u16 pkt_len;
101         u32 phys_addr;
102         u32 __reserved[4];
103         struct buffer_desc *next;
104         enum dma_data_direction dir;
105 };
106
107 struct crypt_ctl {
108         u8 mode;                /* NPE_OP_*  operation mode */
109         u8 init_len;
110         u16 reserved;
111         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
112         u32 icv_rev_aes;        /* icv or rev aes */
113         u32 src_buf;
114         u32 dst_buf;
115         u16 auth_offs;          /* Authentication start offset */
116         u16 auth_len;           /* Authentication data length */
117         u16 crypt_offs;         /* Cryption start offset */
118         u16 crypt_len;          /* Cryption data length */
119         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
120         u32 crypto_ctx;         /* NPE Crypto Param structure address */
121
122         /* Used by Host: 4*4 bytes*/
123         unsigned ctl_flags;
124         union {
125                 struct ablkcipher_request *ablk_req;
126                 struct aead_request *aead_req;
127                 struct crypto_tfm *tfm;
128         } data;
129         struct buffer_desc *regist_buf;
130         u8 *regist_ptr;
131 };
132
133 struct ablk_ctx {
134         struct buffer_desc *src;
135         struct buffer_desc *dst;
136 };
137
138 struct aead_ctx {
139         struct buffer_desc *buffer;
140         struct scatterlist ivlist;
141         /* used when the hmac is not on one sg entry */
142         u8 *hmac_virt;
143         int encrypt;
144 };
145
146 struct ix_hash_algo {
147         u32 cfgword;
148         unsigned char *icv;
149 };
150
151 struct ix_sa_dir {
152         unsigned char *npe_ctx;
153         dma_addr_t npe_ctx_phys;
154         int npe_ctx_idx;
155         u8 npe_mode;
156 };
157
158 struct ixp_ctx {
159         struct ix_sa_dir encrypt;
160         struct ix_sa_dir decrypt;
161         int authkey_len;
162         u8 authkey[MAX_KEYLEN];
163         int enckey_len;
164         u8 enckey[MAX_KEYLEN];
165         u8 salt[MAX_IVLEN];
166         u8 nonce[CTR_RFC3686_NONCE_SIZE];
167         unsigned salted;
168         atomic_t configuring;
169         struct completion completion;
170 };
171
172 struct ixp_alg {
173         struct crypto_alg crypto;
174         const struct ix_hash_algo *hash;
175         u32 cfg_enc;
176         u32 cfg_dec;
177
178         int registered;
179 };
180
181 static const struct ix_hash_algo hash_alg_md5 = {
182         .cfgword        = 0xAA010004,
183         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
184                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
185 };
186 static const struct ix_hash_algo hash_alg_sha1 = {
187         .cfgword        = 0x00000005,
188         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
189                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
190 };
191
192 static struct npe *npe_c;
193 static struct dma_pool *buffer_pool = NULL;
194 static struct dma_pool *ctx_pool = NULL;
195
196 static struct crypt_ctl *crypt_virt = NULL;
197 static dma_addr_t crypt_phys;
198
199 static int support_aes = 1;
200
201 static void dev_release(struct device *dev)
202 {
203         return;
204 }
205
206 #define DRIVER_NAME "ixp4xx_crypto"
207 static struct platform_device pseudo_dev = {
208         .name = DRIVER_NAME,
209         .id   = 0,
210         .num_resources = 0,
211         .dev  = {
212                 .coherent_dma_mask = DMA_BIT_MASK(32),
213                 .release = dev_release,
214         }
215 };
216
217 static struct device *dev = &pseudo_dev.dev;
218
219 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
220 {
221         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
222 }
223
224 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
225 {
226         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
227 }
228
229 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
230 {
231         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
232 }
233
234 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
235 {
236         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
237 }
238
239 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
240 {
241         return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
242 }
243
244 static int setup_crypt_desc(void)
245 {
246         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
247         crypt_virt = dma_alloc_coherent(dev,
248                         NPE_QLEN * sizeof(struct crypt_ctl),
249                         &crypt_phys, GFP_KERNEL);
250         if (!crypt_virt)
251                 return -ENOMEM;
252         memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
253         return 0;
254 }
255
256 static spinlock_t desc_lock;
257 static struct crypt_ctl *get_crypt_desc(void)
258 {
259         int i;
260         static int idx = 0;
261         unsigned long flags;
262
263         spin_lock_irqsave(&desc_lock, flags);
264
265         if (unlikely(!crypt_virt))
266                 setup_crypt_desc();
267         if (unlikely(!crypt_virt)) {
268                 spin_unlock_irqrestore(&desc_lock, flags);
269                 return NULL;
270         }
271         i = idx;
272         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
273                 if (++idx >= NPE_QLEN)
274                         idx = 0;
275                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
276                 spin_unlock_irqrestore(&desc_lock, flags);
277                 return crypt_virt +i;
278         } else {
279                 spin_unlock_irqrestore(&desc_lock, flags);
280                 return NULL;
281         }
282 }
283
284 static spinlock_t emerg_lock;
285 static struct crypt_ctl *get_crypt_desc_emerg(void)
286 {
287         int i;
288         static int idx = NPE_QLEN;
289         struct crypt_ctl *desc;
290         unsigned long flags;
291
292         desc = get_crypt_desc();
293         if (desc)
294                 return desc;
295         if (unlikely(!crypt_virt))
296                 return NULL;
297
298         spin_lock_irqsave(&emerg_lock, flags);
299         i = idx;
300         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
301                 if (++idx >= NPE_QLEN_TOTAL)
302                         idx = NPE_QLEN;
303                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
304                 spin_unlock_irqrestore(&emerg_lock, flags);
305                 return crypt_virt +i;
306         } else {
307                 spin_unlock_irqrestore(&emerg_lock, flags);
308                 return NULL;
309         }
310 }
311
312 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
313 {
314         while (buf) {
315                 struct buffer_desc *buf1;
316                 u32 phys1;
317
318                 buf1 = buf->next;
319                 phys1 = buf->phys_next;
320                 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
321                 dma_pool_free(buffer_pool, buf, phys);
322                 buf = buf1;
323                 phys = phys1;
324         }
325 }
326
327 static struct tasklet_struct crypto_done_tasklet;
328
329 static void finish_scattered_hmac(struct crypt_ctl *crypt)
330 {
331         struct aead_request *req = crypt->data.aead_req;
332         struct aead_ctx *req_ctx = aead_request_ctx(req);
333         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
334         int authsize = crypto_aead_authsize(tfm);
335         int decryptlen = req->cryptlen - authsize;
336
337         if (req_ctx->encrypt) {
338                 scatterwalk_map_and_copy(req_ctx->hmac_virt,
339                         req->src, decryptlen, authsize, 1);
340         }
341         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
342 }
343
344 static void one_packet(dma_addr_t phys)
345 {
346         struct crypt_ctl *crypt;
347         struct ixp_ctx *ctx;
348         int failed;
349
350         failed = phys & 0x1 ? -EBADMSG : 0;
351         phys &= ~0x3;
352         crypt = crypt_phys2virt(phys);
353
354         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
355         case CTL_FLAG_PERFORM_AEAD: {
356                 struct aead_request *req = crypt->data.aead_req;
357                 struct aead_ctx *req_ctx = aead_request_ctx(req);
358
359                 free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
360                 if (req_ctx->hmac_virt) {
361                         finish_scattered_hmac(crypt);
362                 }
363                 req->base.complete(&req->base, failed);
364                 break;
365         }
366         case CTL_FLAG_PERFORM_ABLK: {
367                 struct ablkcipher_request *req = crypt->data.ablk_req;
368                 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
369
370                 if (req_ctx->dst) {
371                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
372                 }
373                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
374                 req->base.complete(&req->base, failed);
375                 break;
376         }
377         case CTL_FLAG_GEN_ICV:
378                 ctx = crypto_tfm_ctx(crypt->data.tfm);
379                 dma_pool_free(ctx_pool, crypt->regist_ptr,
380                                 crypt->regist_buf->phys_addr);
381                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
382                 if (atomic_dec_and_test(&ctx->configuring))
383                         complete(&ctx->completion);
384                 break;
385         case CTL_FLAG_GEN_REVAES:
386                 ctx = crypto_tfm_ctx(crypt->data.tfm);
387                 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
388                 if (atomic_dec_and_test(&ctx->configuring))
389                         complete(&ctx->completion);
390                 break;
391         default:
392                 BUG();
393         }
394         crypt->ctl_flags = CTL_FLAG_UNUSED;
395 }
396
397 static void irqhandler(void *_unused)
398 {
399         tasklet_schedule(&crypto_done_tasklet);
400 }
401
402 static void crypto_done_action(unsigned long arg)
403 {
404         int i;
405
406         for(i=0; i<4; i++) {
407                 dma_addr_t phys = qmgr_get_entry(RECV_QID);
408                 if (!phys)
409                         return;
410                 one_packet(phys);
411         }
412         tasklet_schedule(&crypto_done_tasklet);
413 }
414
415 static int init_ixp_crypto(void)
416 {
417         int ret = -ENODEV;
418         u32 msg[2] = { 0, 0 };
419
420         if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
421                                 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
422                 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
423                 return ret;
424         }
425         npe_c = npe_request(NPE_ID);
426         if (!npe_c)
427                 return ret;
428
429         if (!npe_running(npe_c)) {
430                 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
431                 if (ret) {
432                         return ret;
433                 }
434                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
435                         goto npe_error;
436         } else {
437                 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
438                         goto npe_error;
439
440                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
441                         goto npe_error;
442         }
443
444         switch ((msg[1]>>16) & 0xff) {
445         case 3:
446                 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
447                                 npe_name(npe_c));
448                 support_aes = 0;
449                 break;
450         case 4:
451         case 5:
452                 support_aes = 1;
453                 break;
454         default:
455                 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
456                         npe_name(npe_c));
457                 return -ENODEV;
458         }
459         /* buffer_pool will also be used to sometimes store the hmac,
460          * so assure it is large enough
461          */
462         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
463         buffer_pool = dma_pool_create("buffer", dev,
464                         sizeof(struct buffer_desc), 32, 0);
465         ret = -ENOMEM;
466         if (!buffer_pool) {
467                 goto err;
468         }
469         ctx_pool = dma_pool_create("context", dev,
470                         NPE_CTX_LEN, 16, 0);
471         if (!ctx_pool) {
472                 goto err;
473         }
474         ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
475                                  "ixp_crypto:out", NULL);
476         if (ret)
477                 goto err;
478         ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
479                                  "ixp_crypto:in", NULL);
480         if (ret) {
481                 qmgr_release_queue(SEND_QID);
482                 goto err;
483         }
484         qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
485         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
486
487         qmgr_enable_irq(RECV_QID);
488         return 0;
489
490 npe_error:
491         printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
492         ret = -EIO;
493 err:
494         if (ctx_pool)
495                 dma_pool_destroy(ctx_pool);
496         if (buffer_pool)
497                 dma_pool_destroy(buffer_pool);
498         npe_release(npe_c);
499         return ret;
500 }
501
502 static void release_ixp_crypto(void)
503 {
504         qmgr_disable_irq(RECV_QID);
505         tasklet_kill(&crypto_done_tasklet);
506
507         qmgr_release_queue(SEND_QID);
508         qmgr_release_queue(RECV_QID);
509
510         dma_pool_destroy(ctx_pool);
511         dma_pool_destroy(buffer_pool);
512
513         npe_release(npe_c);
514
515         if (crypt_virt) {
516                 dma_free_coherent(dev,
517                         NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
518                         crypt_virt, crypt_phys);
519         }
520         return;
521 }
522
523 static void reset_sa_dir(struct ix_sa_dir *dir)
524 {
525         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
526         dir->npe_ctx_idx = 0;
527         dir->npe_mode = 0;
528 }
529
530 static int init_sa_dir(struct ix_sa_dir *dir)
531 {
532         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
533         if (!dir->npe_ctx) {
534                 return -ENOMEM;
535         }
536         reset_sa_dir(dir);
537         return 0;
538 }
539
540 static void free_sa_dir(struct ix_sa_dir *dir)
541 {
542         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
543         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
544 }
545
546 static int init_tfm(struct crypto_tfm *tfm)
547 {
548         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
549         int ret;
550
551         atomic_set(&ctx->configuring, 0);
552         ret = init_sa_dir(&ctx->encrypt);
553         if (ret)
554                 return ret;
555         ret = init_sa_dir(&ctx->decrypt);
556         if (ret) {
557                 free_sa_dir(&ctx->encrypt);
558         }
559         return ret;
560 }
561
562 static int init_tfm_ablk(struct crypto_tfm *tfm)
563 {
564         tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
565         return init_tfm(tfm);
566 }
567
568 static int init_tfm_aead(struct crypto_tfm *tfm)
569 {
570         tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
571         return init_tfm(tfm);
572 }
573
574 static void exit_tfm(struct crypto_tfm *tfm)
575 {
576         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
577         free_sa_dir(&ctx->encrypt);
578         free_sa_dir(&ctx->decrypt);
579 }
580
581 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
582                 int init_len, u32 ctx_addr, const u8 *key, int key_len)
583 {
584         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
585         struct crypt_ctl *crypt;
586         struct buffer_desc *buf;
587         int i;
588         u8 *pad;
589         u32 pad_phys, buf_phys;
590
591         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
592         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
593         if (!pad)
594                 return -ENOMEM;
595         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
596         if (!buf) {
597                 dma_pool_free(ctx_pool, pad, pad_phys);
598                 return -ENOMEM;
599         }
600         crypt = get_crypt_desc_emerg();
601         if (!crypt) {
602                 dma_pool_free(ctx_pool, pad, pad_phys);
603                 dma_pool_free(buffer_pool, buf, buf_phys);
604                 return -EAGAIN;
605         }
606
607         memcpy(pad, key, key_len);
608         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
609         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
610                 pad[i] ^= xpad;
611         }
612
613         crypt->data.tfm = tfm;
614         crypt->regist_ptr = pad;
615         crypt->regist_buf = buf;
616
617         crypt->auth_offs = 0;
618         crypt->auth_len = HMAC_PAD_BLOCKLEN;
619         crypt->crypto_ctx = ctx_addr;
620         crypt->src_buf = buf_phys;
621         crypt->icv_rev_aes = target;
622         crypt->mode = NPE_OP_HASH_GEN_ICV;
623         crypt->init_len = init_len;
624         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
625
626         buf->next = 0;
627         buf->buf_len = HMAC_PAD_BLOCKLEN;
628         buf->pkt_len = 0;
629         buf->phys_addr = pad_phys;
630
631         atomic_inc(&ctx->configuring);
632         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
633         BUG_ON(qmgr_stat_overflow(SEND_QID));
634         return 0;
635 }
636
637 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
638                 const u8 *key, int key_len, unsigned digest_len)
639 {
640         u32 itarget, otarget, npe_ctx_addr;
641         unsigned char *cinfo;
642         int init_len, ret = 0;
643         u32 cfgword;
644         struct ix_sa_dir *dir;
645         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
646         const struct ix_hash_algo *algo;
647
648         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
649         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
650         algo = ix_hash(tfm);
651
652         /* write cfg word to cryptinfo */
653         cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
654         *(u32*)cinfo = cpu_to_be32(cfgword);
655         cinfo += sizeof(cfgword);
656
657         /* write ICV to cryptinfo */
658         memcpy(cinfo, algo->icv, digest_len);
659         cinfo += digest_len;
660
661         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
662                                 + sizeof(algo->cfgword);
663         otarget = itarget + digest_len;
664         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
665         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
666
667         dir->npe_ctx_idx += init_len;
668         dir->npe_mode |= NPE_OP_HASH_ENABLE;
669
670         if (!encrypt)
671                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
672
673         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
674                         init_len, npe_ctx_addr, key, key_len);
675         if (ret)
676                 return ret;
677         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
678                         init_len, npe_ctx_addr, key, key_len);
679 }
680
681 static int gen_rev_aes_key(struct crypto_tfm *tfm)
682 {
683         struct crypt_ctl *crypt;
684         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
685         struct ix_sa_dir *dir = &ctx->decrypt;
686
687         crypt = get_crypt_desc_emerg();
688         if (!crypt) {
689                 return -EAGAIN;
690         }
691         *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
692
693         crypt->data.tfm = tfm;
694         crypt->crypt_offs = 0;
695         crypt->crypt_len = AES_BLOCK128;
696         crypt->src_buf = 0;
697         crypt->crypto_ctx = dir->npe_ctx_phys;
698         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
699         crypt->mode = NPE_OP_ENC_GEN_KEY;
700         crypt->init_len = dir->npe_ctx_idx;
701         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
702
703         atomic_inc(&ctx->configuring);
704         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
705         BUG_ON(qmgr_stat_overflow(SEND_QID));
706         return 0;
707 }
708
709 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
710                 const u8 *key, int key_len)
711 {
712         u8 *cinfo;
713         u32 cipher_cfg;
714         u32 keylen_cfg = 0;
715         struct ix_sa_dir *dir;
716         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
717         u32 *flags = &tfm->crt_flags;
718
719         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
720         cinfo = dir->npe_ctx;
721
722         if (encrypt) {
723                 cipher_cfg = cipher_cfg_enc(tfm);
724                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
725         } else {
726                 cipher_cfg = cipher_cfg_dec(tfm);
727         }
728         if (cipher_cfg & MOD_AES) {
729                 switch (key_len) {
730                         case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break;
731                         case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break;
732                         case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break;
733                         default:
734                                 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
735                                 return -EINVAL;
736                 }
737                 cipher_cfg |= keylen_cfg;
738         } else if (cipher_cfg & MOD_3DES) {
739                 const u32 *K = (const u32 *)key;
740                 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
741                              !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
742                 {
743                         *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
744                         return -EINVAL;
745                 }
746         } else {
747                 u32 tmp[DES_EXPKEY_WORDS];
748                 if (des_ekey(tmp, key) == 0) {
749                         *flags |= CRYPTO_TFM_RES_WEAK_KEY;
750                 }
751         }
752         /* write cfg word to cryptinfo */
753         *(u32*)cinfo = cpu_to_be32(cipher_cfg);
754         cinfo += sizeof(cipher_cfg);
755
756         /* write cipher key to cryptinfo */
757         memcpy(cinfo, key, key_len);
758         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
759         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
760                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
761                 key_len = DES3_EDE_KEY_SIZE;
762         }
763         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
764         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
765         if ((cipher_cfg & MOD_AES) && !encrypt) {
766                 return gen_rev_aes_key(tfm);
767         }
768         return 0;
769 }
770
771 static struct buffer_desc *chainup_buffers(struct device *dev,
772                 struct scatterlist *sg, unsigned nbytes,
773                 struct buffer_desc *buf, gfp_t flags,
774                 enum dma_data_direction dir)
775 {
776         for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
777                 unsigned len = min(nbytes, sg->length);
778                 struct buffer_desc *next_buf;
779                 u32 next_buf_phys;
780                 void *ptr;
781
782                 nbytes -= len;
783                 ptr = page_address(sg_page(sg)) + sg->offset;
784                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
785                 if (!next_buf) {
786                         buf = NULL;
787                         break;
788                 }
789                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
790                 buf->next = next_buf;
791                 buf->phys_next = next_buf_phys;
792                 buf = next_buf;
793
794                 buf->phys_addr = sg_dma_address(sg);
795                 buf->buf_len = len;
796                 buf->dir = dir;
797         }
798         buf->next = NULL;
799         buf->phys_next = 0;
800         return buf;
801 }
802
803 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
804                         unsigned int key_len)
805 {
806         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
807         u32 *flags = &tfm->base.crt_flags;
808         int ret;
809
810         init_completion(&ctx->completion);
811         atomic_inc(&ctx->configuring);
812
813         reset_sa_dir(&ctx->encrypt);
814         reset_sa_dir(&ctx->decrypt);
815
816         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
817         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
818
819         ret = setup_cipher(&tfm->base, 0, key, key_len);
820         if (ret)
821                 goto out;
822         ret = setup_cipher(&tfm->base, 1, key, key_len);
823         if (ret)
824                 goto out;
825
826         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
827                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
828                         ret = -EINVAL;
829                 } else {
830                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
831                 }
832         }
833 out:
834         if (!atomic_dec_and_test(&ctx->configuring))
835                 wait_for_completion(&ctx->completion);
836         return ret;
837 }
838
839 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
840                 unsigned int key_len)
841 {
842         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
843
844         /* the nonce is stored in bytes at end of key */
845         if (key_len < CTR_RFC3686_NONCE_SIZE)
846                 return -EINVAL;
847
848         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
849                         CTR_RFC3686_NONCE_SIZE);
850
851         key_len -= CTR_RFC3686_NONCE_SIZE;
852         return ablk_setkey(tfm, key, key_len);
853 }
854
855 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
856 {
857         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
858         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
859         unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
860         struct ix_sa_dir *dir;
861         struct crypt_ctl *crypt;
862         unsigned int nbytes = req->nbytes;
863         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
864         struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
865         struct buffer_desc src_hook;
866         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
867                                 GFP_KERNEL : GFP_ATOMIC;
868
869         if (qmgr_stat_full(SEND_QID))
870                 return -EAGAIN;
871         if (atomic_read(&ctx->configuring))
872                 return -EAGAIN;
873
874         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
875
876         crypt = get_crypt_desc();
877         if (!crypt)
878                 return -ENOMEM;
879
880         crypt->data.ablk_req = req;
881         crypt->crypto_ctx = dir->npe_ctx_phys;
882         crypt->mode = dir->npe_mode;
883         crypt->init_len = dir->npe_ctx_idx;
884
885         crypt->crypt_offs = 0;
886         crypt->crypt_len = nbytes;
887
888         BUG_ON(ivsize && !req->info);
889         memcpy(crypt->iv, req->info, ivsize);
890         if (req->src != req->dst) {
891                 struct buffer_desc dst_hook;
892                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
893                 /* This was never tested by Intel
894                  * for more than one dst buffer, I think. */
895                 BUG_ON(req->dst->length < nbytes);
896                 req_ctx->dst = NULL;
897                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
898                                         flags, DMA_FROM_DEVICE))
899                         goto free_buf_dest;
900                 src_direction = DMA_TO_DEVICE;
901                 req_ctx->dst = dst_hook.next;
902                 crypt->dst_buf = dst_hook.phys_next;
903         } else {
904                 req_ctx->dst = NULL;
905         }
906         req_ctx->src = NULL;
907         if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
908                                 flags, src_direction))
909                 goto free_buf_src;
910
911         req_ctx->src = src_hook.next;
912         crypt->src_buf = src_hook.phys_next;
913         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
914         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
915         BUG_ON(qmgr_stat_overflow(SEND_QID));
916         return -EINPROGRESS;
917
918 free_buf_src:
919         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
920 free_buf_dest:
921         if (req->src != req->dst) {
922                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
923         }
924         crypt->ctl_flags = CTL_FLAG_UNUSED;
925         return -ENOMEM;
926 }
927
928 static int ablk_encrypt(struct ablkcipher_request *req)
929 {
930         return ablk_perform(req, 1);
931 }
932
933 static int ablk_decrypt(struct ablkcipher_request *req)
934 {
935         return ablk_perform(req, 0);
936 }
937
938 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
939 {
940         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
941         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
942         u8 iv[CTR_RFC3686_BLOCK_SIZE];
943         u8 *info = req->info;
944         int ret;
945
946         /* set up counter block */
947         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
948         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
949
950         /* initialize counter portion of counter block */
951         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
952                 cpu_to_be32(1);
953
954         req->info = iv;
955         ret = ablk_perform(req, 1);
956         req->info = info;
957         return ret;
958 }
959
960 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
961                 unsigned int nbytes)
962 {
963         int offset = 0;
964
965         if (!nbytes)
966                 return 0;
967
968         for (;;) {
969                 if (start < offset + sg->length)
970                         break;
971
972                 offset += sg->length;
973                 sg = scatterwalk_sg_next(sg);
974         }
975         return (start + nbytes > offset + sg->length);
976 }
977
978 static int aead_perform(struct aead_request *req, int encrypt,
979                 int cryptoffset, int eff_cryptlen, u8 *iv)
980 {
981         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
982         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
983         unsigned ivsize = crypto_aead_ivsize(tfm);
984         unsigned authsize = crypto_aead_authsize(tfm);
985         struct ix_sa_dir *dir;
986         struct crypt_ctl *crypt;
987         unsigned int cryptlen;
988         struct buffer_desc *buf, src_hook;
989         struct aead_ctx *req_ctx = aead_request_ctx(req);
990         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
991                                 GFP_KERNEL : GFP_ATOMIC;
992
993         if (qmgr_stat_full(SEND_QID))
994                 return -EAGAIN;
995         if (atomic_read(&ctx->configuring))
996                 return -EAGAIN;
997
998         if (encrypt) {
999                 dir = &ctx->encrypt;
1000                 cryptlen = req->cryptlen;
1001         } else {
1002                 dir = &ctx->decrypt;
1003                 /* req->cryptlen includes the authsize when decrypting */
1004                 cryptlen = req->cryptlen -authsize;
1005                 eff_cryptlen -= authsize;
1006         }
1007         crypt = get_crypt_desc();
1008         if (!crypt)
1009                 return -ENOMEM;
1010
1011         crypt->data.aead_req = req;
1012         crypt->crypto_ctx = dir->npe_ctx_phys;
1013         crypt->mode = dir->npe_mode;
1014         crypt->init_len = dir->npe_ctx_idx;
1015
1016         crypt->crypt_offs = cryptoffset;
1017         crypt->crypt_len = eff_cryptlen;
1018
1019         crypt->auth_offs = 0;
1020         crypt->auth_len = req->assoclen + ivsize + cryptlen;
1021         BUG_ON(ivsize && !req->iv);
1022         memcpy(crypt->iv, req->iv, ivsize);
1023
1024         if (req->src != req->dst) {
1025                 BUG(); /* -ENOTSUP because of my lazyness */
1026         }
1027
1028         /* ASSOC data */
1029         buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
1030                 flags, DMA_TO_DEVICE);
1031         req_ctx->buffer = src_hook.next;
1032         crypt->src_buf = src_hook.phys_next;
1033         if (!buf)
1034                 goto out;
1035         /* IV */
1036         sg_init_table(&req_ctx->ivlist, 1);
1037         sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1038         buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
1039                         DMA_BIDIRECTIONAL);
1040         if (!buf)
1041                 goto free_chain;
1042         if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1043                 /* The 12 hmac bytes are scattered,
1044                  * we need to copy them into a safe buffer */
1045                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1046                                 &crypt->icv_rev_aes);
1047                 if (unlikely(!req_ctx->hmac_virt))
1048                         goto free_chain;
1049                 if (!encrypt) {
1050                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1051                                 req->src, cryptlen, authsize, 0);
1052                 }
1053                 req_ctx->encrypt = encrypt;
1054         } else {
1055                 req_ctx->hmac_virt = NULL;
1056         }
1057         /* Crypt */
1058         buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
1059                         DMA_BIDIRECTIONAL);
1060         if (!buf)
1061                 goto free_hmac_virt;
1062         if (!req_ctx->hmac_virt) {
1063                 crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1064         }
1065
1066         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1067         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1068         BUG_ON(qmgr_stat_overflow(SEND_QID));
1069         return -EINPROGRESS;
1070 free_hmac_virt:
1071         if (req_ctx->hmac_virt) {
1072                 dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1073                                 crypt->icv_rev_aes);
1074         }
1075 free_chain:
1076         free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
1077 out:
1078         crypt->ctl_flags = CTL_FLAG_UNUSED;
1079         return -ENOMEM;
1080 }
1081
1082 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1083 {
1084         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1085         u32 *flags = &tfm->base.crt_flags;
1086         unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1087         int ret;
1088
1089         if (!ctx->enckey_len && !ctx->authkey_len)
1090                 return 0;
1091         init_completion(&ctx->completion);
1092         atomic_inc(&ctx->configuring);
1093
1094         reset_sa_dir(&ctx->encrypt);
1095         reset_sa_dir(&ctx->decrypt);
1096
1097         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1098         if (ret)
1099                 goto out;
1100         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1101         if (ret)
1102                 goto out;
1103         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1104                         ctx->authkey_len, digest_len);
1105         if (ret)
1106                 goto out;
1107         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1108                         ctx->authkey_len, digest_len);
1109         if (ret)
1110                 goto out;
1111
1112         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1113                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1114                         ret = -EINVAL;
1115                         goto out;
1116                 } else {
1117                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1118                 }
1119         }
1120 out:
1121         if (!atomic_dec_and_test(&ctx->configuring))
1122                 wait_for_completion(&ctx->completion);
1123         return ret;
1124 }
1125
1126 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1127 {
1128         int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1129
1130         if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1131                 return -EINVAL;
1132         return aead_setup(tfm, authsize);
1133 }
1134
1135 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1136                         unsigned int keylen)
1137 {
1138         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1139         struct rtattr *rta = (struct rtattr *)key;
1140         struct crypto_authenc_key_param *param;
1141
1142         if (!RTA_OK(rta, keylen))
1143                 goto badkey;
1144         if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
1145                 goto badkey;
1146         if (RTA_PAYLOAD(rta) < sizeof(*param))
1147                 goto badkey;
1148
1149         param = RTA_DATA(rta);
1150         ctx->enckey_len = be32_to_cpu(param->enckeylen);
1151
1152         key += RTA_ALIGN(rta->rta_len);
1153         keylen -= RTA_ALIGN(rta->rta_len);
1154
1155         if (keylen < ctx->enckey_len)
1156                 goto badkey;
1157
1158         ctx->authkey_len = keylen - ctx->enckey_len;
1159         memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
1160         memcpy(ctx->authkey, key, ctx->authkey_len);
1161
1162         return aead_setup(tfm, crypto_aead_authsize(tfm));
1163 badkey:
1164         ctx->enckey_len = 0;
1165         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1166         return -EINVAL;
1167 }
1168
1169 static int aead_encrypt(struct aead_request *req)
1170 {
1171         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1172         return aead_perform(req, 1, req->assoclen + ivsize,
1173                         req->cryptlen, req->iv);
1174 }
1175
1176 static int aead_decrypt(struct aead_request *req)
1177 {
1178         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1179         return aead_perform(req, 0, req->assoclen + ivsize,
1180                         req->cryptlen, req->iv);
1181 }
1182
1183 static int aead_givencrypt(struct aead_givcrypt_request *req)
1184 {
1185         struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1186         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1187         unsigned len, ivsize = crypto_aead_ivsize(tfm);
1188         __be64 seq;
1189
1190         /* copied from eseqiv.c */
1191         if (!ctx->salted) {
1192                 get_random_bytes(ctx->salt, ivsize);
1193                 ctx->salted = 1;
1194         }
1195         memcpy(req->areq.iv, ctx->salt, ivsize);
1196         len = ivsize;
1197         if (ivsize > sizeof(u64)) {
1198                 memset(req->giv, 0, ivsize - sizeof(u64));
1199                 len = sizeof(u64);
1200         }
1201         seq = cpu_to_be64(req->seq);
1202         memcpy(req->giv + ivsize - len, &seq, len);
1203         return aead_perform(&req->areq, 1, req->areq.assoclen,
1204                         req->areq.cryptlen +ivsize, req->giv);
1205 }
1206
1207 static struct ixp_alg ixp4xx_algos[] = {
1208 {
1209         .crypto = {
1210                 .cra_name       = "cbc(des)",
1211                 .cra_blocksize  = DES_BLOCK_SIZE,
1212                 .cra_u          = { .ablkcipher = {
1213                         .min_keysize    = DES_KEY_SIZE,
1214                         .max_keysize    = DES_KEY_SIZE,
1215                         .ivsize         = DES_BLOCK_SIZE,
1216                         .geniv          = "eseqiv",
1217                         }
1218                 }
1219         },
1220         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1221         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1222
1223 }, {
1224         .crypto = {
1225                 .cra_name       = "ecb(des)",
1226                 .cra_blocksize  = DES_BLOCK_SIZE,
1227                 .cra_u          = { .ablkcipher = {
1228                         .min_keysize    = DES_KEY_SIZE,
1229                         .max_keysize    = DES_KEY_SIZE,
1230                         }
1231                 }
1232         },
1233         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1234         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1235 }, {
1236         .crypto = {
1237                 .cra_name       = "cbc(des3_ede)",
1238                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1239                 .cra_u          = { .ablkcipher = {
1240                         .min_keysize    = DES3_EDE_KEY_SIZE,
1241                         .max_keysize    = DES3_EDE_KEY_SIZE,
1242                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1243                         .geniv          = "eseqiv",
1244                         }
1245                 }
1246         },
1247         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1248         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1249 }, {
1250         .crypto = {
1251                 .cra_name       = "ecb(des3_ede)",
1252                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1253                 .cra_u          = { .ablkcipher = {
1254                         .min_keysize    = DES3_EDE_KEY_SIZE,
1255                         .max_keysize    = DES3_EDE_KEY_SIZE,
1256                         }
1257                 }
1258         },
1259         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1260         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1261 }, {
1262         .crypto = {
1263                 .cra_name       = "cbc(aes)",
1264                 .cra_blocksize  = AES_BLOCK_SIZE,
1265                 .cra_u          = { .ablkcipher = {
1266                         .min_keysize    = AES_MIN_KEY_SIZE,
1267                         .max_keysize    = AES_MAX_KEY_SIZE,
1268                         .ivsize         = AES_BLOCK_SIZE,
1269                         .geniv          = "eseqiv",
1270                         }
1271                 }
1272         },
1273         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1274         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1275 }, {
1276         .crypto = {
1277                 .cra_name       = "ecb(aes)",
1278                 .cra_blocksize  = AES_BLOCK_SIZE,
1279                 .cra_u          = { .ablkcipher = {
1280                         .min_keysize    = AES_MIN_KEY_SIZE,
1281                         .max_keysize    = AES_MAX_KEY_SIZE,
1282                         }
1283                 }
1284         },
1285         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1286         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1287 }, {
1288         .crypto = {
1289                 .cra_name       = "ctr(aes)",
1290                 .cra_blocksize  = AES_BLOCK_SIZE,
1291                 .cra_u          = { .ablkcipher = {
1292                         .min_keysize    = AES_MIN_KEY_SIZE,
1293                         .max_keysize    = AES_MAX_KEY_SIZE,
1294                         .ivsize         = AES_BLOCK_SIZE,
1295                         .geniv          = "eseqiv",
1296                         }
1297                 }
1298         },
1299         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1300         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1301 }, {
1302         .crypto = {
1303                 .cra_name       = "rfc3686(ctr(aes))",
1304                 .cra_blocksize  = AES_BLOCK_SIZE,
1305                 .cra_u          = { .ablkcipher = {
1306                         .min_keysize    = AES_MIN_KEY_SIZE,
1307                         .max_keysize    = AES_MAX_KEY_SIZE,
1308                         .ivsize         = AES_BLOCK_SIZE,
1309                         .geniv          = "eseqiv",
1310                         .setkey         = ablk_rfc3686_setkey,
1311                         .encrypt        = ablk_rfc3686_crypt,
1312                         .decrypt        = ablk_rfc3686_crypt }
1313                 }
1314         },
1315         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1316         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1317 }, {
1318         .crypto = {
1319                 .cra_name       = "authenc(hmac(md5),cbc(des))",
1320                 .cra_blocksize  = DES_BLOCK_SIZE,
1321                 .cra_u          = { .aead = {
1322                         .ivsize         = DES_BLOCK_SIZE,
1323                         .maxauthsize    = MD5_DIGEST_SIZE,
1324                         }
1325                 }
1326         },
1327         .hash = &hash_alg_md5,
1328         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1329         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1330 }, {
1331         .crypto = {
1332                 .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1333                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1334                 .cra_u          = { .aead = {
1335                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1336                         .maxauthsize    = MD5_DIGEST_SIZE,
1337                         }
1338                 }
1339         },
1340         .hash = &hash_alg_md5,
1341         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1342         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1343 }, {
1344         .crypto = {
1345                 .cra_name       = "authenc(hmac(sha1),cbc(des))",
1346                 .cra_blocksize  = DES_BLOCK_SIZE,
1347                 .cra_u          = { .aead = {
1348                         .ivsize         = DES_BLOCK_SIZE,
1349                         .maxauthsize    = SHA1_DIGEST_SIZE,
1350                         }
1351                 }
1352         },
1353         .hash = &hash_alg_sha1,
1354         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1355         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1356 }, {
1357         .crypto = {
1358                 .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1359                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1360                 .cra_u          = { .aead = {
1361                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1362                         .maxauthsize    = SHA1_DIGEST_SIZE,
1363                         }
1364                 }
1365         },
1366         .hash = &hash_alg_sha1,
1367         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1368         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1369 }, {
1370         .crypto = {
1371                 .cra_name       = "authenc(hmac(md5),cbc(aes))",
1372                 .cra_blocksize  = AES_BLOCK_SIZE,
1373                 .cra_u          = { .aead = {
1374                         .ivsize         = AES_BLOCK_SIZE,
1375                         .maxauthsize    = MD5_DIGEST_SIZE,
1376                         }
1377                 }
1378         },
1379         .hash = &hash_alg_md5,
1380         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1381         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1382 }, {
1383         .crypto = {
1384                 .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1385                 .cra_blocksize  = AES_BLOCK_SIZE,
1386                 .cra_u          = { .aead = {
1387                         .ivsize         = AES_BLOCK_SIZE,
1388                         .maxauthsize    = SHA1_DIGEST_SIZE,
1389                         }
1390                 }
1391         },
1392         .hash = &hash_alg_sha1,
1393         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1394         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1395 } };
1396
1397 #define IXP_POSTFIX "-ixp4xx"
1398 static int __init ixp_module_init(void)
1399 {
1400         int num = ARRAY_SIZE(ixp4xx_algos);
1401         int i,err ;
1402
1403         if (platform_device_register(&pseudo_dev))
1404                 return -ENODEV;
1405
1406         spin_lock_init(&desc_lock);
1407         spin_lock_init(&emerg_lock);
1408
1409         err = init_ixp_crypto();
1410         if (err) {
1411                 platform_device_unregister(&pseudo_dev);
1412                 return err;
1413         }
1414         for (i=0; i< num; i++) {
1415                 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1416
1417                 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1418                         "%s"IXP_POSTFIX, cra->cra_name) >=
1419                         CRYPTO_MAX_ALG_NAME)
1420                 {
1421                         continue;
1422                 }
1423                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1424                         continue;
1425                 }
1426                 if (!ixp4xx_algos[i].hash) {
1427                         /* block ciphers */
1428                         cra->cra_type = &crypto_ablkcipher_type;
1429                         cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1430                                          CRYPTO_ALG_ASYNC;
1431                         if (!cra->cra_ablkcipher.setkey)
1432                                 cra->cra_ablkcipher.setkey = ablk_setkey;
1433                         if (!cra->cra_ablkcipher.encrypt)
1434                                 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1435                         if (!cra->cra_ablkcipher.decrypt)
1436                                 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1437                         cra->cra_init = init_tfm_ablk;
1438                 } else {
1439                         /* authenc */
1440                         cra->cra_type = &crypto_aead_type;
1441                         cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1442                                          CRYPTO_ALG_ASYNC;
1443                         cra->cra_aead.setkey = aead_setkey;
1444                         cra->cra_aead.setauthsize = aead_setauthsize;
1445                         cra->cra_aead.encrypt = aead_encrypt;
1446                         cra->cra_aead.decrypt = aead_decrypt;
1447                         cra->cra_aead.givencrypt = aead_givencrypt;
1448                         cra->cra_init = init_tfm_aead;
1449                 }
1450                 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1451                 cra->cra_module = THIS_MODULE;
1452                 cra->cra_alignmask = 3;
1453                 cra->cra_priority = 300;
1454                 cra->cra_exit = exit_tfm;
1455                 if (crypto_register_alg(cra))
1456                         printk(KERN_ERR "Failed to register '%s'\n",
1457                                 cra->cra_name);
1458                 else
1459                         ixp4xx_algos[i].registered = 1;
1460         }
1461         return 0;
1462 }
1463
1464 static void __exit ixp_module_exit(void)
1465 {
1466         int num = ARRAY_SIZE(ixp4xx_algos);
1467         int i;
1468
1469         for (i=0; i< num; i++) {
1470                 if (ixp4xx_algos[i].registered)
1471                         crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1472         }
1473         release_ixp_crypto();
1474         platform_device_unregister(&pseudo_dev);
1475 }
1476
1477 module_init(ixp_module_init);
1478 module_exit(ixp_module_exit);
1479
1480 MODULE_LICENSE("GPL");
1481 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1482 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1483