Merge branch 'x86/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip...
[pandora-kernel.git] / drivers / crypto / ixp4xx_crypto.c
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20
21 #include <crypto/ctr.h>
22 #include <crypto/des.h>
23 #include <crypto/aes.h>
24 #include <crypto/sha.h>
25 #include <crypto/algapi.h>
26 #include <crypto/aead.h>
27 #include <crypto/authenc.h>
28 #include <crypto/scatterwalk.h>
29
30 #include <asm/arch/npe.h>
31 #include <asm/arch/qmgr.h>
32
33 #define MAX_KEYLEN 32
34
35 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
36 #define NPE_CTX_LEN 80
37 #define AES_BLOCK128 16
38
39 #define NPE_OP_HASH_VERIFY   0x01
40 #define NPE_OP_CCM_ENABLE    0x04
41 #define NPE_OP_CRYPT_ENABLE  0x08
42 #define NPE_OP_HASH_ENABLE   0x10
43 #define NPE_OP_NOT_IN_PLACE  0x20
44 #define NPE_OP_HMAC_DISABLE  0x40
45 #define NPE_OP_CRYPT_ENCRYPT 0x80
46
47 #define NPE_OP_CCM_GEN_MIC   0xcc
48 #define NPE_OP_HASH_GEN_ICV  0x50
49 #define NPE_OP_ENC_GEN_KEY   0xc9
50
51 #define MOD_ECB     0x0000
52 #define MOD_CTR     0x1000
53 #define MOD_CBC_ENC 0x2000
54 #define MOD_CBC_DEC 0x3000
55 #define MOD_CCM_ENC 0x4000
56 #define MOD_CCM_DEC 0x5000
57
58 #define KEYLEN_128  4
59 #define KEYLEN_192  6
60 #define KEYLEN_256  8
61
62 #define CIPH_DECR   0x0000
63 #define CIPH_ENCR   0x0400
64
65 #define MOD_DES     0x0000
66 #define MOD_TDEA2   0x0100
67 #define MOD_3DES   0x0200
68 #define MOD_AES     0x0800
69 #define MOD_AES128  (0x0800 | KEYLEN_128)
70 #define MOD_AES192  (0x0900 | KEYLEN_192)
71 #define MOD_AES256  (0x0a00 | KEYLEN_256)
72
73 #define MAX_IVLEN   16
74 #define NPE_ID      2  /* NPE C */
75 #define NPE_QLEN    16
76 /* Space for registering when the first
77  * NPE_QLEN crypt_ctl are busy */
78 #define NPE_QLEN_TOTAL 64
79
80 #define SEND_QID    29
81 #define RECV_QID    30
82
83 #define CTL_FLAG_UNUSED         0x0000
84 #define CTL_FLAG_USED           0x1000
85 #define CTL_FLAG_PERFORM_ABLK   0x0001
86 #define CTL_FLAG_GEN_ICV        0x0002
87 #define CTL_FLAG_GEN_REVAES     0x0004
88 #define CTL_FLAG_PERFORM_AEAD   0x0008
89 #define CTL_FLAG_MASK           0x000f
90
91 #define HMAC_IPAD_VALUE   0x36
92 #define HMAC_OPAD_VALUE   0x5C
93 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
94
95 #define MD5_DIGEST_SIZE   16
96
97 struct buffer_desc {
98         u32 phys_next;
99         u16 buf_len;
100         u16 pkt_len;
101         u32 phys_addr;
102         u32 __reserved[4];
103         struct buffer_desc *next;
104 };
105
106 struct crypt_ctl {
107         u8 mode;                /* NPE_OP_*  operation mode */
108         u8 init_len;
109         u16 reserved;
110         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
111         u32 icv_rev_aes;        /* icv or rev aes */
112         u32 src_buf;
113         u32 dst_buf;
114         u16 auth_offs;          /* Authentication start offset */
115         u16 auth_len;           /* Authentication data length */
116         u16 crypt_offs;         /* Cryption start offset */
117         u16 crypt_len;          /* Cryption data length */
118         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
119         u32 crypto_ctx;         /* NPE Crypto Param structure address */
120
121         /* Used by Host: 4*4 bytes*/
122         unsigned ctl_flags;
123         union {
124                 struct ablkcipher_request *ablk_req;
125                 struct aead_request *aead_req;
126                 struct crypto_tfm *tfm;
127         } data;
128         struct buffer_desc *regist_buf;
129         u8 *regist_ptr;
130 };
131
132 struct ablk_ctx {
133         struct buffer_desc *src;
134         struct buffer_desc *dst;
135         unsigned src_nents;
136         unsigned dst_nents;
137 };
138
139 struct aead_ctx {
140         struct buffer_desc *buffer;
141         unsigned short assoc_nents;
142         unsigned short src_nents;
143         struct scatterlist ivlist;
144         /* used when the hmac is not on one sg entry */
145         u8 *hmac_virt;
146         int encrypt;
147 };
148
149 struct ix_hash_algo {
150         u32 cfgword;
151         unsigned char *icv;
152 };
153
154 struct ix_sa_dir {
155         unsigned char *npe_ctx;
156         dma_addr_t npe_ctx_phys;
157         int npe_ctx_idx;
158         u8 npe_mode;
159 };
160
161 struct ixp_ctx {
162         struct ix_sa_dir encrypt;
163         struct ix_sa_dir decrypt;
164         int authkey_len;
165         u8 authkey[MAX_KEYLEN];
166         int enckey_len;
167         u8 enckey[MAX_KEYLEN];
168         u8 salt[MAX_IVLEN];
169         u8 nonce[CTR_RFC3686_NONCE_SIZE];
170         unsigned salted;
171         atomic_t configuring;
172         struct completion completion;
173 };
174
175 struct ixp_alg {
176         struct crypto_alg crypto;
177         const struct ix_hash_algo *hash;
178         u32 cfg_enc;
179         u32 cfg_dec;
180
181         int registered;
182 };
183
184 static const struct ix_hash_algo hash_alg_md5 = {
185         .cfgword        = 0xAA010004,
186         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
187                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
188 };
189 static const struct ix_hash_algo hash_alg_sha1 = {
190         .cfgword        = 0x00000005,
191         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
192                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
193 };
194
195 static struct npe *npe_c;
196 static struct dma_pool *buffer_pool = NULL;
197 static struct dma_pool *ctx_pool = NULL;
198
199 static struct crypt_ctl *crypt_virt = NULL;
200 static dma_addr_t crypt_phys;
201
202 static int support_aes = 1;
203
204 static void dev_release(struct device *dev)
205 {
206         return;
207 }
208
209 #define DRIVER_NAME "ixp4xx_crypto"
210 static struct platform_device pseudo_dev = {
211         .name = DRIVER_NAME,
212         .id   = 0,
213         .num_resources = 0,
214         .dev  = {
215                 .coherent_dma_mask = DMA_32BIT_MASK,
216                 .release = dev_release,
217         }
218 };
219
220 static struct device *dev = &pseudo_dev.dev;
221
222 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
223 {
224         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
225 }
226
227 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
228 {
229         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
230 }
231
232 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
233 {
234         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
235 }
236
237 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
238 {
239         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
240 }
241
242 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
243 {
244         return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
245 }
246
247 static int setup_crypt_desc(void)
248 {
249         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
250         crypt_virt = dma_alloc_coherent(dev,
251                         NPE_QLEN * sizeof(struct crypt_ctl),
252                         &crypt_phys, GFP_KERNEL);
253         if (!crypt_virt)
254                 return -ENOMEM;
255         memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
256         return 0;
257 }
258
259 static spinlock_t desc_lock;
260 static struct crypt_ctl *get_crypt_desc(void)
261 {
262         int i;
263         static int idx = 0;
264         unsigned long flags;
265
266         spin_lock_irqsave(&desc_lock, flags);
267
268         if (unlikely(!crypt_virt))
269                 setup_crypt_desc();
270         if (unlikely(!crypt_virt)) {
271                 spin_unlock_irqrestore(&desc_lock, flags);
272                 return NULL;
273         }
274         i = idx;
275         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
276                 if (++idx >= NPE_QLEN)
277                         idx = 0;
278                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
279                 spin_unlock_irqrestore(&desc_lock, flags);
280                 return crypt_virt +i;
281         } else {
282                 spin_unlock_irqrestore(&desc_lock, flags);
283                 return NULL;
284         }
285 }
286
287 static spinlock_t emerg_lock;
288 static struct crypt_ctl *get_crypt_desc_emerg(void)
289 {
290         int i;
291         static int idx = NPE_QLEN;
292         struct crypt_ctl *desc;
293         unsigned long flags;
294
295         desc = get_crypt_desc();
296         if (desc)
297                 return desc;
298         if (unlikely(!crypt_virt))
299                 return NULL;
300
301         spin_lock_irqsave(&emerg_lock, flags);
302         i = idx;
303         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
304                 if (++idx >= NPE_QLEN_TOTAL)
305                         idx = NPE_QLEN;
306                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
307                 spin_unlock_irqrestore(&emerg_lock, flags);
308                 return crypt_virt +i;
309         } else {
310                 spin_unlock_irqrestore(&emerg_lock, flags);
311                 return NULL;
312         }
313 }
314
315 static void free_buf_chain(struct buffer_desc *buf, u32 phys)
316 {
317         while (buf) {
318                 struct buffer_desc *buf1;
319                 u32 phys1;
320
321                 buf1 = buf->next;
322                 phys1 = buf->phys_next;
323                 dma_pool_free(buffer_pool, buf, phys);
324                 buf = buf1;
325                 phys = phys1;
326         }
327 }
328
329 static struct tasklet_struct crypto_done_tasklet;
330
331 static void finish_scattered_hmac(struct crypt_ctl *crypt)
332 {
333         struct aead_request *req = crypt->data.aead_req;
334         struct aead_ctx *req_ctx = aead_request_ctx(req);
335         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
336         int authsize = crypto_aead_authsize(tfm);
337         int decryptlen = req->cryptlen - authsize;
338
339         if (req_ctx->encrypt) {
340                 scatterwalk_map_and_copy(req_ctx->hmac_virt,
341                         req->src, decryptlen, authsize, 1);
342         }
343         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
344 }
345
346 static void one_packet(dma_addr_t phys)
347 {
348         struct crypt_ctl *crypt;
349         struct ixp_ctx *ctx;
350         int failed;
351         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
352
353         failed = phys & 0x1 ? -EBADMSG : 0;
354         phys &= ~0x3;
355         crypt = crypt_phys2virt(phys);
356
357         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
358         case CTL_FLAG_PERFORM_AEAD: {
359                 struct aead_request *req = crypt->data.aead_req;
360                 struct aead_ctx *req_ctx = aead_request_ctx(req);
361                 dma_unmap_sg(dev, req->assoc, req_ctx->assoc_nents,
362                                 DMA_TO_DEVICE);
363                 dma_unmap_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL);
364                 dma_unmap_sg(dev, req->src, req_ctx->src_nents,
365                                 DMA_BIDIRECTIONAL);
366
367                 free_buf_chain(req_ctx->buffer, crypt->src_buf);
368                 if (req_ctx->hmac_virt) {
369                         finish_scattered_hmac(crypt);
370                 }
371                 req->base.complete(&req->base, failed);
372                 break;
373         }
374         case CTL_FLAG_PERFORM_ABLK: {
375                 struct ablkcipher_request *req = crypt->data.ablk_req;
376                 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
377                 int nents;
378                 if (req_ctx->dst) {
379                         nents = req_ctx->dst_nents;
380                         dma_unmap_sg(dev, req->dst, nents, DMA_FROM_DEVICE);
381                         free_buf_chain(req_ctx->dst, crypt->dst_buf);
382                         src_direction = DMA_TO_DEVICE;
383                 }
384                 nents = req_ctx->src_nents;
385                 dma_unmap_sg(dev, req->src, nents, src_direction);
386                 free_buf_chain(req_ctx->src, crypt->src_buf);
387                 req->base.complete(&req->base, failed);
388                 break;
389         }
390         case CTL_FLAG_GEN_ICV:
391                 ctx = crypto_tfm_ctx(crypt->data.tfm);
392                 dma_pool_free(ctx_pool, crypt->regist_ptr,
393                                 crypt->regist_buf->phys_addr);
394                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
395                 if (atomic_dec_and_test(&ctx->configuring))
396                         complete(&ctx->completion);
397                 break;
398         case CTL_FLAG_GEN_REVAES:
399                 ctx = crypto_tfm_ctx(crypt->data.tfm);
400                 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
401                 if (atomic_dec_and_test(&ctx->configuring))
402                         complete(&ctx->completion);
403                 break;
404         default:
405                 BUG();
406         }
407         crypt->ctl_flags = CTL_FLAG_UNUSED;
408 }
409
410 static void irqhandler(void *_unused)
411 {
412         tasklet_schedule(&crypto_done_tasklet);
413 }
414
415 static void crypto_done_action(unsigned long arg)
416 {
417         int i;
418
419         for(i=0; i<4; i++) {
420                 dma_addr_t phys = qmgr_get_entry(RECV_QID);
421                 if (!phys)
422                         return;
423                 one_packet(phys);
424         }
425         tasklet_schedule(&crypto_done_tasklet);
426 }
427
428 static int init_ixp_crypto(void)
429 {
430         int ret = -ENODEV;
431
432         if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
433                                 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
434                 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
435                 return ret;
436         }
437         npe_c = npe_request(NPE_ID);
438         if (!npe_c)
439                 return ret;
440
441         if (!npe_running(npe_c)) {
442                 npe_load_firmware(npe_c, npe_name(npe_c), dev);
443         }
444
445         /* buffer_pool will also be used to sometimes store the hmac,
446          * so assure it is large enough
447          */
448         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
449         buffer_pool = dma_pool_create("buffer", dev,
450                         sizeof(struct buffer_desc), 32, 0);
451         ret = -ENOMEM;
452         if (!buffer_pool) {
453                 goto err;
454         }
455         ctx_pool = dma_pool_create("context", dev,
456                         NPE_CTX_LEN, 16, 0);
457         if (!ctx_pool) {
458                 goto err;
459         }
460         ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0);
461         if (ret)
462                 goto err;
463         ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0);
464         if (ret) {
465                 qmgr_release_queue(SEND_QID);
466                 goto err;
467         }
468         qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
469         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
470
471         qmgr_enable_irq(RECV_QID);
472         return 0;
473 err:
474         if (ctx_pool)
475                 dma_pool_destroy(ctx_pool);
476         if (buffer_pool)
477                 dma_pool_destroy(buffer_pool);
478         npe_release(npe_c);
479         return ret;
480 }
481
482 static void release_ixp_crypto(void)
483 {
484         qmgr_disable_irq(RECV_QID);
485         tasklet_kill(&crypto_done_tasklet);
486
487         qmgr_release_queue(SEND_QID);
488         qmgr_release_queue(RECV_QID);
489
490         dma_pool_destroy(ctx_pool);
491         dma_pool_destroy(buffer_pool);
492
493         npe_release(npe_c);
494
495         if (crypt_virt) {
496                 dma_free_coherent(dev,
497                         NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
498                         crypt_virt, crypt_phys);
499         }
500         return;
501 }
502
503 static void reset_sa_dir(struct ix_sa_dir *dir)
504 {
505         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
506         dir->npe_ctx_idx = 0;
507         dir->npe_mode = 0;
508 }
509
510 static int init_sa_dir(struct ix_sa_dir *dir)
511 {
512         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
513         if (!dir->npe_ctx) {
514                 return -ENOMEM;
515         }
516         reset_sa_dir(dir);
517         return 0;
518 }
519
520 static void free_sa_dir(struct ix_sa_dir *dir)
521 {
522         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
523         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
524 }
525
526 static int init_tfm(struct crypto_tfm *tfm)
527 {
528         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
529         int ret;
530
531         atomic_set(&ctx->configuring, 0);
532         ret = init_sa_dir(&ctx->encrypt);
533         if (ret)
534                 return ret;
535         ret = init_sa_dir(&ctx->decrypt);
536         if (ret) {
537                 free_sa_dir(&ctx->encrypt);
538         }
539         return ret;
540 }
541
542 static int init_tfm_ablk(struct crypto_tfm *tfm)
543 {
544         tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
545         return init_tfm(tfm);
546 }
547
548 static int init_tfm_aead(struct crypto_tfm *tfm)
549 {
550         tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
551         return init_tfm(tfm);
552 }
553
554 static void exit_tfm(struct crypto_tfm *tfm)
555 {
556         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
557         free_sa_dir(&ctx->encrypt);
558         free_sa_dir(&ctx->decrypt);
559 }
560
561 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
562                 int init_len, u32 ctx_addr, const u8 *key, int key_len)
563 {
564         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
565         struct crypt_ctl *crypt;
566         struct buffer_desc *buf;
567         int i;
568         u8 *pad;
569         u32 pad_phys, buf_phys;
570
571         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
572         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
573         if (!pad)
574                 return -ENOMEM;
575         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
576         if (!buf) {
577                 dma_pool_free(ctx_pool, pad, pad_phys);
578                 return -ENOMEM;
579         }
580         crypt = get_crypt_desc_emerg();
581         if (!crypt) {
582                 dma_pool_free(ctx_pool, pad, pad_phys);
583                 dma_pool_free(buffer_pool, buf, buf_phys);
584                 return -EAGAIN;
585         }
586
587         memcpy(pad, key, key_len);
588         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
589         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
590                 pad[i] ^= xpad;
591         }
592
593         crypt->data.tfm = tfm;
594         crypt->regist_ptr = pad;
595         crypt->regist_buf = buf;
596
597         crypt->auth_offs = 0;
598         crypt->auth_len = HMAC_PAD_BLOCKLEN;
599         crypt->crypto_ctx = ctx_addr;
600         crypt->src_buf = buf_phys;
601         crypt->icv_rev_aes = target;
602         crypt->mode = NPE_OP_HASH_GEN_ICV;
603         crypt->init_len = init_len;
604         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
605
606         buf->next = 0;
607         buf->buf_len = HMAC_PAD_BLOCKLEN;
608         buf->pkt_len = 0;
609         buf->phys_addr = pad_phys;
610
611         atomic_inc(&ctx->configuring);
612         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
613         BUG_ON(qmgr_stat_overflow(SEND_QID));
614         return 0;
615 }
616
617 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
618                 const u8 *key, int key_len, unsigned digest_len)
619 {
620         u32 itarget, otarget, npe_ctx_addr;
621         unsigned char *cinfo;
622         int init_len, ret = 0;
623         u32 cfgword;
624         struct ix_sa_dir *dir;
625         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
626         const struct ix_hash_algo *algo;
627
628         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
629         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
630         algo = ix_hash(tfm);
631
632         /* write cfg word to cryptinfo */
633         cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
634         *(u32*)cinfo = cpu_to_be32(cfgword);
635         cinfo += sizeof(cfgword);
636
637         /* write ICV to cryptinfo */
638         memcpy(cinfo, algo->icv, digest_len);
639         cinfo += digest_len;
640
641         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
642                                 + sizeof(algo->cfgword);
643         otarget = itarget + digest_len;
644         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
645         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
646
647         dir->npe_ctx_idx += init_len;
648         dir->npe_mode |= NPE_OP_HASH_ENABLE;
649
650         if (!encrypt)
651                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
652
653         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
654                         init_len, npe_ctx_addr, key, key_len);
655         if (ret)
656                 return ret;
657         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
658                         init_len, npe_ctx_addr, key, key_len);
659 }
660
661 static int gen_rev_aes_key(struct crypto_tfm *tfm)
662 {
663         struct crypt_ctl *crypt;
664         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
665         struct ix_sa_dir *dir = &ctx->decrypt;
666
667         crypt = get_crypt_desc_emerg();
668         if (!crypt) {
669                 return -EAGAIN;
670         }
671         *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
672
673         crypt->data.tfm = tfm;
674         crypt->crypt_offs = 0;
675         crypt->crypt_len = AES_BLOCK128;
676         crypt->src_buf = 0;
677         crypt->crypto_ctx = dir->npe_ctx_phys;
678         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
679         crypt->mode = NPE_OP_ENC_GEN_KEY;
680         crypt->init_len = dir->npe_ctx_idx;
681         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
682
683         atomic_inc(&ctx->configuring);
684         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
685         BUG_ON(qmgr_stat_overflow(SEND_QID));
686         return 0;
687 }
688
689 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
690                 const u8 *key, int key_len)
691 {
692         u8 *cinfo;
693         u32 cipher_cfg;
694         u32 keylen_cfg = 0;
695         struct ix_sa_dir *dir;
696         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
697         u32 *flags = &tfm->crt_flags;
698
699         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
700         cinfo = dir->npe_ctx;
701
702         if (encrypt) {
703                 cipher_cfg = cipher_cfg_enc(tfm);
704                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
705         } else {
706                 cipher_cfg = cipher_cfg_dec(tfm);
707         }
708         if (cipher_cfg & MOD_AES) {
709                 switch (key_len) {
710                         case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break;
711                         case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break;
712                         case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break;
713                         default:
714                                 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
715                                 return -EINVAL;
716                 }
717                 cipher_cfg |= keylen_cfg;
718         } else if (cipher_cfg & MOD_3DES) {
719                 const u32 *K = (const u32 *)key;
720                 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
721                              !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
722                 {
723                         *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
724                         return -EINVAL;
725                 }
726         } else {
727                 u32 tmp[DES_EXPKEY_WORDS];
728                 if (des_ekey(tmp, key) == 0) {
729                         *flags |= CRYPTO_TFM_RES_WEAK_KEY;
730                 }
731         }
732         /* write cfg word to cryptinfo */
733         *(u32*)cinfo = cpu_to_be32(cipher_cfg);
734         cinfo += sizeof(cipher_cfg);
735
736         /* write cipher key to cryptinfo */
737         memcpy(cinfo, key, key_len);
738         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
739         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
740                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
741                 key_len = DES3_EDE_KEY_SIZE;
742         }
743         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
744         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
745         if ((cipher_cfg & MOD_AES) && !encrypt) {
746                 return gen_rev_aes_key(tfm);
747         }
748         return 0;
749 }
750
751 static int count_sg(struct scatterlist *sg, int nbytes)
752 {
753         int i;
754         for (i = 0; nbytes > 0; i++, sg = sg_next(sg))
755                 nbytes -= sg->length;
756         return i;
757 }
758
759 static struct buffer_desc *chainup_buffers(struct scatterlist *sg,
760                         unsigned nbytes, struct buffer_desc *buf, gfp_t flags)
761 {
762         int nents = 0;
763
764         while (nbytes > 0) {
765                 struct buffer_desc *next_buf;
766                 u32 next_buf_phys;
767                 unsigned len = min(nbytes, sg_dma_len(sg));
768
769                 nents++;
770                 nbytes -= len;
771                 if (!buf->phys_addr) {
772                         buf->phys_addr = sg_dma_address(sg);
773                         buf->buf_len = len;
774                         buf->next = NULL;
775                         buf->phys_next = 0;
776                         goto next;
777                 }
778                 /* Two consecutive chunks on one page may be handled by the old
779                  * buffer descriptor, increased by the length of the new one
780                  */
781                 if (sg_dma_address(sg) == buf->phys_addr + buf->buf_len) {
782                         buf->buf_len += len;
783                         goto next;
784                 }
785                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
786                 if (!next_buf)
787                         return NULL;
788                 buf->next = next_buf;
789                 buf->phys_next = next_buf_phys;
790
791                 buf = next_buf;
792                 buf->next = NULL;
793                 buf->phys_next = 0;
794                 buf->phys_addr = sg_dma_address(sg);
795                 buf->buf_len = len;
796 next:
797                 if (nbytes > 0) {
798                         sg = sg_next(sg);
799                 }
800         }
801         return buf;
802 }
803
804 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
805                         unsigned int key_len)
806 {
807         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
808         u32 *flags = &tfm->base.crt_flags;
809         int ret;
810
811         init_completion(&ctx->completion);
812         atomic_inc(&ctx->configuring);
813
814         reset_sa_dir(&ctx->encrypt);
815         reset_sa_dir(&ctx->decrypt);
816
817         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
818         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
819
820         ret = setup_cipher(&tfm->base, 0, key, key_len);
821         if (ret)
822                 goto out;
823         ret = setup_cipher(&tfm->base, 1, key, key_len);
824         if (ret)
825                 goto out;
826
827         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
828                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
829                         ret = -EINVAL;
830                 } else {
831                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
832                 }
833         }
834 out:
835         if (!atomic_dec_and_test(&ctx->configuring))
836                 wait_for_completion(&ctx->completion);
837         return ret;
838 }
839
840 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
841                 unsigned int key_len)
842 {
843         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
844
845         /* the nonce is stored in bytes at end of key */
846         if (key_len < CTR_RFC3686_NONCE_SIZE)
847                 return -EINVAL;
848
849         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
850                         CTR_RFC3686_NONCE_SIZE);
851
852         key_len -= CTR_RFC3686_NONCE_SIZE;
853         return ablk_setkey(tfm, key, key_len);
854 }
855
856 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
857 {
858         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
859         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
860         unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
861         int ret = -ENOMEM;
862         struct ix_sa_dir *dir;
863         struct crypt_ctl *crypt;
864         unsigned int nbytes = req->nbytes, nents;
865         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
866         struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
867         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
868                                 GFP_KERNEL : GFP_ATOMIC;
869
870         if (qmgr_stat_full(SEND_QID))
871                 return -EAGAIN;
872         if (atomic_read(&ctx->configuring))
873                 return -EAGAIN;
874
875         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
876
877         crypt = get_crypt_desc();
878         if (!crypt)
879                 return ret;
880
881         crypt->data.ablk_req = req;
882         crypt->crypto_ctx = dir->npe_ctx_phys;
883         crypt->mode = dir->npe_mode;
884         crypt->init_len = dir->npe_ctx_idx;
885
886         crypt->crypt_offs = 0;
887         crypt->crypt_len = nbytes;
888
889         BUG_ON(ivsize && !req->info);
890         memcpy(crypt->iv, req->info, ivsize);
891         if (req->src != req->dst) {
892                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
893                 nents = count_sg(req->dst, nbytes);
894                 /* This was never tested by Intel
895                  * for more than one dst buffer, I think. */
896                 BUG_ON(nents != 1);
897                 req_ctx->dst_nents = nents;
898                 dma_map_sg(dev, req->dst, nents, DMA_FROM_DEVICE);
899                 req_ctx->dst = dma_pool_alloc(buffer_pool, flags,&crypt->dst_buf);
900                 if (!req_ctx->dst)
901                         goto unmap_sg_dest;
902                 req_ctx->dst->phys_addr = 0;
903                 if (!chainup_buffers(req->dst, nbytes, req_ctx->dst, flags))
904                         goto free_buf_dest;
905                 src_direction = DMA_TO_DEVICE;
906         } else {
907                 req_ctx->dst = NULL;
908                 req_ctx->dst_nents = 0;
909         }
910         nents = count_sg(req->src, nbytes);
911         req_ctx->src_nents = nents;
912         dma_map_sg(dev, req->src, nents, src_direction);
913
914         req_ctx->src = dma_pool_alloc(buffer_pool, flags, &crypt->src_buf);
915         if (!req_ctx->src)
916                 goto unmap_sg_src;
917         req_ctx->src->phys_addr = 0;
918         if (!chainup_buffers(req->src, nbytes, req_ctx->src, flags))
919                 goto free_buf_src;
920
921         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
922         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
923         BUG_ON(qmgr_stat_overflow(SEND_QID));
924         return -EINPROGRESS;
925
926 free_buf_src:
927         free_buf_chain(req_ctx->src, crypt->src_buf);
928 unmap_sg_src:
929         dma_unmap_sg(dev, req->src, req_ctx->src_nents, src_direction);
930 free_buf_dest:
931         if (req->src != req->dst) {
932                 free_buf_chain(req_ctx->dst, crypt->dst_buf);
933 unmap_sg_dest:
934                 dma_unmap_sg(dev, req->src, req_ctx->dst_nents,
935                         DMA_FROM_DEVICE);
936         }
937         crypt->ctl_flags = CTL_FLAG_UNUSED;
938         return ret;
939 }
940
941 static int ablk_encrypt(struct ablkcipher_request *req)
942 {
943         return ablk_perform(req, 1);
944 }
945
946 static int ablk_decrypt(struct ablkcipher_request *req)
947 {
948         return ablk_perform(req, 0);
949 }
950
951 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
952 {
953         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
954         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
955         u8 iv[CTR_RFC3686_BLOCK_SIZE];
956         u8 *info = req->info;
957         int ret;
958
959         /* set up counter block */
960         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
961         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
962
963         /* initialize counter portion of counter block */
964         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
965                 cpu_to_be32(1);
966
967         req->info = iv;
968         ret = ablk_perform(req, 1);
969         req->info = info;
970         return ret;
971 }
972
973 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
974                 unsigned int nbytes)
975 {
976         int offset = 0;
977
978         if (!nbytes)
979                 return 0;
980
981         for (;;) {
982                 if (start < offset + sg->length)
983                         break;
984
985                 offset += sg->length;
986                 sg = sg_next(sg);
987         }
988         return (start + nbytes > offset + sg->length);
989 }
990
991 static int aead_perform(struct aead_request *req, int encrypt,
992                 int cryptoffset, int eff_cryptlen, u8 *iv)
993 {
994         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
995         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
996         unsigned ivsize = crypto_aead_ivsize(tfm);
997         unsigned authsize = crypto_aead_authsize(tfm);
998         int ret = -ENOMEM;
999         struct ix_sa_dir *dir;
1000         struct crypt_ctl *crypt;
1001         unsigned int cryptlen, nents;
1002         struct buffer_desc *buf;
1003         struct aead_ctx *req_ctx = aead_request_ctx(req);
1004         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1005                                 GFP_KERNEL : GFP_ATOMIC;
1006
1007         if (qmgr_stat_full(SEND_QID))
1008                 return -EAGAIN;
1009         if (atomic_read(&ctx->configuring))
1010                 return -EAGAIN;
1011
1012         if (encrypt) {
1013                 dir = &ctx->encrypt;
1014                 cryptlen = req->cryptlen;
1015         } else {
1016                 dir = &ctx->decrypt;
1017                 /* req->cryptlen includes the authsize when decrypting */
1018                 cryptlen = req->cryptlen -authsize;
1019                 eff_cryptlen -= authsize;
1020         }
1021         crypt = get_crypt_desc();
1022         if (!crypt)
1023                 return ret;
1024
1025         crypt->data.aead_req = req;
1026         crypt->crypto_ctx = dir->npe_ctx_phys;
1027         crypt->mode = dir->npe_mode;
1028         crypt->init_len = dir->npe_ctx_idx;
1029
1030         crypt->crypt_offs = cryptoffset;
1031         crypt->crypt_len = eff_cryptlen;
1032
1033         crypt->auth_offs = 0;
1034         crypt->auth_len = req->assoclen + ivsize + cryptlen;
1035         BUG_ON(ivsize && !req->iv);
1036         memcpy(crypt->iv, req->iv, ivsize);
1037
1038         if (req->src != req->dst) {
1039                 BUG(); /* -ENOTSUP because of my lazyness */
1040         }
1041
1042         req_ctx->buffer = dma_pool_alloc(buffer_pool, flags, &crypt->src_buf);
1043         if (!req_ctx->buffer)
1044                 goto out;
1045         req_ctx->buffer->phys_addr = 0;
1046         /* ASSOC data */
1047         nents = count_sg(req->assoc, req->assoclen);
1048         req_ctx->assoc_nents = nents;
1049         dma_map_sg(dev, req->assoc, nents, DMA_TO_DEVICE);
1050         buf = chainup_buffers(req->assoc, req->assoclen, req_ctx->buffer,flags);
1051         if (!buf)
1052                 goto unmap_sg_assoc;
1053         /* IV */
1054         sg_init_table(&req_ctx->ivlist, 1);
1055         sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1056         dma_map_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL);
1057         buf = chainup_buffers(&req_ctx->ivlist, ivsize, buf, flags);
1058         if (!buf)
1059                 goto unmap_sg_iv;
1060         if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1061                 /* The 12 hmac bytes are scattered,
1062                  * we need to copy them into a safe buffer */
1063                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1064                                 &crypt->icv_rev_aes);
1065                 if (unlikely(!req_ctx->hmac_virt))
1066                         goto unmap_sg_iv;
1067                 if (!encrypt) {
1068                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1069                                 req->src, cryptlen, authsize, 0);
1070                 }
1071                 req_ctx->encrypt = encrypt;
1072         } else {
1073                 req_ctx->hmac_virt = NULL;
1074         }
1075         /* Crypt */
1076         nents = count_sg(req->src, cryptlen + authsize);
1077         req_ctx->src_nents = nents;
1078         dma_map_sg(dev, req->src, nents, DMA_BIDIRECTIONAL);
1079         buf = chainup_buffers(req->src, cryptlen + authsize, buf, flags);
1080         if (!buf)
1081                 goto unmap_sg_src;
1082         if (!req_ctx->hmac_virt) {
1083                 crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1084         }
1085         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1086         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1087         BUG_ON(qmgr_stat_overflow(SEND_QID));
1088         return -EINPROGRESS;
1089 unmap_sg_src:
1090         dma_unmap_sg(dev, req->src, req_ctx->src_nents, DMA_BIDIRECTIONAL);
1091         if (req_ctx->hmac_virt) {
1092                 dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1093                                 crypt->icv_rev_aes);
1094         }
1095 unmap_sg_iv:
1096         dma_unmap_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL);
1097 unmap_sg_assoc:
1098         dma_unmap_sg(dev, req->assoc, req_ctx->assoc_nents, DMA_TO_DEVICE);
1099         free_buf_chain(req_ctx->buffer, crypt->src_buf);
1100 out:
1101         crypt->ctl_flags = CTL_FLAG_UNUSED;
1102         return ret;
1103 }
1104
1105 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1106 {
1107         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1108         u32 *flags = &tfm->base.crt_flags;
1109         unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1110         int ret;
1111
1112         if (!ctx->enckey_len && !ctx->authkey_len)
1113                 return 0;
1114         init_completion(&ctx->completion);
1115         atomic_inc(&ctx->configuring);
1116
1117         reset_sa_dir(&ctx->encrypt);
1118         reset_sa_dir(&ctx->decrypt);
1119
1120         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1121         if (ret)
1122                 goto out;
1123         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1124         if (ret)
1125                 goto out;
1126         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1127                         ctx->authkey_len, digest_len);
1128         if (ret)
1129                 goto out;
1130         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1131                         ctx->authkey_len, digest_len);
1132         if (ret)
1133                 goto out;
1134
1135         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1136                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1137                         ret = -EINVAL;
1138                         goto out;
1139                 } else {
1140                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1141                 }
1142         }
1143 out:
1144         if (!atomic_dec_and_test(&ctx->configuring))
1145                 wait_for_completion(&ctx->completion);
1146         return ret;
1147 }
1148
1149 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1150 {
1151         int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1152
1153         if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1154                 return -EINVAL;
1155         return aead_setup(tfm, authsize);
1156 }
1157
1158 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1159                         unsigned int keylen)
1160 {
1161         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1162         struct rtattr *rta = (struct rtattr *)key;
1163         struct crypto_authenc_key_param *param;
1164
1165         if (!RTA_OK(rta, keylen))
1166                 goto badkey;
1167         if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
1168                 goto badkey;
1169         if (RTA_PAYLOAD(rta) < sizeof(*param))
1170                 goto badkey;
1171
1172         param = RTA_DATA(rta);
1173         ctx->enckey_len = be32_to_cpu(param->enckeylen);
1174
1175         key += RTA_ALIGN(rta->rta_len);
1176         keylen -= RTA_ALIGN(rta->rta_len);
1177
1178         if (keylen < ctx->enckey_len)
1179                 goto badkey;
1180
1181         ctx->authkey_len = keylen - ctx->enckey_len;
1182         memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
1183         memcpy(ctx->authkey, key, ctx->authkey_len);
1184
1185         return aead_setup(tfm, crypto_aead_authsize(tfm));
1186 badkey:
1187         ctx->enckey_len = 0;
1188         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1189         return -EINVAL;
1190 }
1191
1192 static int aead_encrypt(struct aead_request *req)
1193 {
1194         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1195         return aead_perform(req, 1, req->assoclen + ivsize,
1196                         req->cryptlen, req->iv);
1197 }
1198
1199 static int aead_decrypt(struct aead_request *req)
1200 {
1201         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1202         return aead_perform(req, 0, req->assoclen + ivsize,
1203                         req->cryptlen, req->iv);
1204 }
1205
1206 static int aead_givencrypt(struct aead_givcrypt_request *req)
1207 {
1208         struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1209         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1210         unsigned len, ivsize = crypto_aead_ivsize(tfm);
1211         __be64 seq;
1212
1213         /* copied from eseqiv.c */
1214         if (!ctx->salted) {
1215                 get_random_bytes(ctx->salt, ivsize);
1216                 ctx->salted = 1;
1217         }
1218         memcpy(req->areq.iv, ctx->salt, ivsize);
1219         len = ivsize;
1220         if (ivsize > sizeof(u64)) {
1221                 memset(req->giv, 0, ivsize - sizeof(u64));
1222                 len = sizeof(u64);
1223         }
1224         seq = cpu_to_be64(req->seq);
1225         memcpy(req->giv + ivsize - len, &seq, len);
1226         return aead_perform(&req->areq, 1, req->areq.assoclen,
1227                         req->areq.cryptlen +ivsize, req->giv);
1228 }
1229
1230 static struct ixp_alg ixp4xx_algos[] = {
1231 {
1232         .crypto = {
1233                 .cra_name       = "cbc(des)",
1234                 .cra_blocksize  = DES_BLOCK_SIZE,
1235                 .cra_u          = { .ablkcipher = {
1236                         .min_keysize    = DES_KEY_SIZE,
1237                         .max_keysize    = DES_KEY_SIZE,
1238                         .ivsize         = DES_BLOCK_SIZE,
1239                         .geniv          = "eseqiv",
1240                         }
1241                 }
1242         },
1243         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1244         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1245
1246 }, {
1247         .crypto = {
1248                 .cra_name       = "ecb(des)",
1249                 .cra_blocksize  = DES_BLOCK_SIZE,
1250                 .cra_u          = { .ablkcipher = {
1251                         .min_keysize    = DES_KEY_SIZE,
1252                         .max_keysize    = DES_KEY_SIZE,
1253                         }
1254                 }
1255         },
1256         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1257         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1258 }, {
1259         .crypto = {
1260                 .cra_name       = "cbc(des3_ede)",
1261                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1262                 .cra_u          = { .ablkcipher = {
1263                         .min_keysize    = DES3_EDE_KEY_SIZE,
1264                         .max_keysize    = DES3_EDE_KEY_SIZE,
1265                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1266                         .geniv          = "eseqiv",
1267                         }
1268                 }
1269         },
1270         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1271         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1272 }, {
1273         .crypto = {
1274                 .cra_name       = "ecb(des3_ede)",
1275                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1276                 .cra_u          = { .ablkcipher = {
1277                         .min_keysize    = DES3_EDE_KEY_SIZE,
1278                         .max_keysize    = DES3_EDE_KEY_SIZE,
1279                         }
1280                 }
1281         },
1282         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1283         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1284 }, {
1285         .crypto = {
1286                 .cra_name       = "cbc(aes)",
1287                 .cra_blocksize  = AES_BLOCK_SIZE,
1288                 .cra_u          = { .ablkcipher = {
1289                         .min_keysize    = AES_MIN_KEY_SIZE,
1290                         .max_keysize    = AES_MAX_KEY_SIZE,
1291                         .ivsize         = AES_BLOCK_SIZE,
1292                         .geniv          = "eseqiv",
1293                         }
1294                 }
1295         },
1296         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1297         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1298 }, {
1299         .crypto = {
1300                 .cra_name       = "ecb(aes)",
1301                 .cra_blocksize  = AES_BLOCK_SIZE,
1302                 .cra_u          = { .ablkcipher = {
1303                         .min_keysize    = AES_MIN_KEY_SIZE,
1304                         .max_keysize    = AES_MAX_KEY_SIZE,
1305                         }
1306                 }
1307         },
1308         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1309         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1310 }, {
1311         .crypto = {
1312                 .cra_name       = "ctr(aes)",
1313                 .cra_blocksize  = AES_BLOCK_SIZE,
1314                 .cra_u          = { .ablkcipher = {
1315                         .min_keysize    = AES_MIN_KEY_SIZE,
1316                         .max_keysize    = AES_MAX_KEY_SIZE,
1317                         .ivsize         = AES_BLOCK_SIZE,
1318                         .geniv          = "eseqiv",
1319                         }
1320                 }
1321         },
1322         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1323         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1324 }, {
1325         .crypto = {
1326                 .cra_name       = "rfc3686(ctr(aes))",
1327                 .cra_blocksize  = AES_BLOCK_SIZE,
1328                 .cra_u          = { .ablkcipher = {
1329                         .min_keysize    = AES_MIN_KEY_SIZE,
1330                         .max_keysize    = AES_MAX_KEY_SIZE,
1331                         .ivsize         = AES_BLOCK_SIZE,
1332                         .geniv          = "eseqiv",
1333                         .setkey         = ablk_rfc3686_setkey,
1334                         .encrypt        = ablk_rfc3686_crypt,
1335                         .decrypt        = ablk_rfc3686_crypt }
1336                 }
1337         },
1338         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1339         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1340 }, {
1341         .crypto = {
1342                 .cra_name       = "authenc(hmac(md5),cbc(des))",
1343                 .cra_blocksize  = DES_BLOCK_SIZE,
1344                 .cra_u          = { .aead = {
1345                         .ivsize         = DES_BLOCK_SIZE,
1346                         .maxauthsize    = MD5_DIGEST_SIZE,
1347                         }
1348                 }
1349         },
1350         .hash = &hash_alg_md5,
1351         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1352         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1353 }, {
1354         .crypto = {
1355                 .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1356                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1357                 .cra_u          = { .aead = {
1358                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1359                         .maxauthsize    = MD5_DIGEST_SIZE,
1360                         }
1361                 }
1362         },
1363         .hash = &hash_alg_md5,
1364         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1365         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1366 }, {
1367         .crypto = {
1368                 .cra_name       = "authenc(hmac(sha1),cbc(des))",
1369                 .cra_blocksize  = DES_BLOCK_SIZE,
1370                 .cra_u          = { .aead = {
1371                         .ivsize         = DES_BLOCK_SIZE,
1372                         .maxauthsize    = SHA1_DIGEST_SIZE,
1373                         }
1374                 }
1375         },
1376         .hash = &hash_alg_sha1,
1377         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1378         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1379 }, {
1380         .crypto = {
1381                 .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1382                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1383                 .cra_u          = { .aead = {
1384                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1385                         .maxauthsize    = SHA1_DIGEST_SIZE,
1386                         }
1387                 }
1388         },
1389         .hash = &hash_alg_sha1,
1390         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1391         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1392 }, {
1393         .crypto = {
1394                 .cra_name       = "authenc(hmac(md5),cbc(aes))",
1395                 .cra_blocksize  = AES_BLOCK_SIZE,
1396                 .cra_u          = { .aead = {
1397                         .ivsize         = AES_BLOCK_SIZE,
1398                         .maxauthsize    = MD5_DIGEST_SIZE,
1399                         }
1400                 }
1401         },
1402         .hash = &hash_alg_md5,
1403         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1404         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1405 }, {
1406         .crypto = {
1407                 .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1408                 .cra_blocksize  = AES_BLOCK_SIZE,
1409                 .cra_u          = { .aead = {
1410                         .ivsize         = AES_BLOCK_SIZE,
1411                         .maxauthsize    = SHA1_DIGEST_SIZE,
1412                         }
1413                 }
1414         },
1415         .hash = &hash_alg_sha1,
1416         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1417         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1418 } };
1419
1420 #define IXP_POSTFIX "-ixp4xx"
1421 static int __init ixp_module_init(void)
1422 {
1423         int num = ARRAY_SIZE(ixp4xx_algos);
1424         int i,err ;
1425
1426         if (platform_device_register(&pseudo_dev))
1427                 return -ENODEV;
1428
1429         spin_lock_init(&desc_lock);
1430         spin_lock_init(&emerg_lock);
1431
1432         err = init_ixp_crypto();
1433         if (err) {
1434                 platform_device_unregister(&pseudo_dev);
1435                 return err;
1436         }
1437         for (i=0; i< num; i++) {
1438                 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1439
1440                 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1441                         "%s"IXP_POSTFIX, cra->cra_name) >=
1442                         CRYPTO_MAX_ALG_NAME)
1443                 {
1444                         continue;
1445                 }
1446                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1447                         continue;
1448                 }
1449                 if (!ixp4xx_algos[i].hash) {
1450                         /* block ciphers */
1451                         cra->cra_type = &crypto_ablkcipher_type;
1452                         cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1453                                          CRYPTO_ALG_ASYNC;
1454                         if (!cra->cra_ablkcipher.setkey)
1455                                 cra->cra_ablkcipher.setkey = ablk_setkey;
1456                         if (!cra->cra_ablkcipher.encrypt)
1457                                 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1458                         if (!cra->cra_ablkcipher.decrypt)
1459                                 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1460                         cra->cra_init = init_tfm_ablk;
1461                 } else {
1462                         /* authenc */
1463                         cra->cra_type = &crypto_aead_type;
1464                         cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1465                                          CRYPTO_ALG_ASYNC;
1466                         cra->cra_aead.setkey = aead_setkey;
1467                         cra->cra_aead.setauthsize = aead_setauthsize;
1468                         cra->cra_aead.encrypt = aead_encrypt;
1469                         cra->cra_aead.decrypt = aead_decrypt;
1470                         cra->cra_aead.givencrypt = aead_givencrypt;
1471                         cra->cra_init = init_tfm_aead;
1472                 }
1473                 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1474                 cra->cra_module = THIS_MODULE;
1475                 cra->cra_alignmask = 3;
1476                 cra->cra_priority = 300;
1477                 cra->cra_exit = exit_tfm;
1478                 if (crypto_register_alg(cra))
1479                         printk(KERN_ERR "Failed to register '%s'\n",
1480                                 cra->cra_name);
1481                 else
1482                         ixp4xx_algos[i].registered = 1;
1483         }
1484         return 0;
1485 }
1486
1487 static void __exit ixp_module_exit(void)
1488 {
1489         int num = ARRAY_SIZE(ixp4xx_algos);
1490         int i;
1491
1492         for (i=0; i< num; i++) {
1493                 if (ixp4xx_algos[i].registered)
1494                         crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1495         }
1496         release_ixp_crypto();
1497         platform_device_unregister(&pseudo_dev);
1498 }
1499
1500 module_init(ixp_module_init);
1501 module_exit(ixp_module_exit);
1502
1503 MODULE_LICENSE("GPL");
1504 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1505 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1506