pandora: reserve CMA area for c64_tools
[pandora-kernel.git] / drivers / cpufreq / powernow-k8.c
1 /*
2  *   (c) 2003-2010 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Support : mark.langsdorf@amd.com
8  *
9  *  Based on the powernow-k7.c module written by Dave Jones.
10  *  (C) 2003 Dave Jones on behalf of SuSE Labs
11  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
12  *  (C) 2004 Pavel Machek <pavel@ucw.cz>
13  *  Licensed under the terms of the GNU GPL License version 2.
14  *  Based upon datasheets & sample CPUs kindly provided by AMD.
15  *
16  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
17  *  Dominik Brodowski, Jacob Shin, and others.
18  *  Originally developed by Paul Devriendt.
19  *  Processor information obtained from Chapter 9 (Power and Thermal Management)
20  *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21  *  Opteron Processors" available for download from www.amd.com
22  *
23  *  Tables for specific CPUs can be inferred from
24  *     http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/io.h>
36 #include <linux/delay.h>
37
38 #include <asm/msr.h>
39
40 #include <linux/acpi.h>
41 #include <linux/mutex.h>
42 #include <acpi/processor.h>
43
44 #define PFX "powernow-k8: "
45 #define VERSION "version 2.20.00"
46 #include "powernow-k8.h"
47 #include "mperf.h"
48
49 /* serialize freq changes  */
50 static DEFINE_MUTEX(fidvid_mutex);
51
52 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
53
54 static int cpu_family = CPU_OPTERON;
55
56 /* array to map SW pstate number to acpi state */
57 static u32 ps_to_as[8];
58
59 /* core performance boost */
60 static bool cpb_capable, cpb_enabled;
61 static struct msr __percpu *msrs;
62
63 static struct cpufreq_driver cpufreq_amd64_driver;
64
65 #ifndef CONFIG_SMP
66 static inline const struct cpumask *cpu_core_mask(int cpu)
67 {
68         return cpumask_of(0);
69 }
70 #endif
71
72 /* Return a frequency in MHz, given an input fid */
73 static u32 find_freq_from_fid(u32 fid)
74 {
75         return 800 + (fid * 100);
76 }
77
78 /* Return a frequency in KHz, given an input fid */
79 static u32 find_khz_freq_from_fid(u32 fid)
80 {
81         return 1000 * find_freq_from_fid(fid);
82 }
83
84 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
85                                      u32 pstate)
86 {
87         return data[ps_to_as[pstate]].frequency;
88 }
89
90 /* Return the vco fid for an input fid
91  *
92  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
93  * only from corresponding high fids. This returns "high" fid corresponding to
94  * "low" one.
95  */
96 static u32 convert_fid_to_vco_fid(u32 fid)
97 {
98         if (fid < HI_FID_TABLE_BOTTOM)
99                 return 8 + (2 * fid);
100         else
101                 return fid;
102 }
103
104 /*
105  * Return 1 if the pending bit is set. Unless we just instructed the processor
106  * to transition to a new state, seeing this bit set is really bad news.
107  */
108 static int pending_bit_stuck(void)
109 {
110         u32 lo, hi;
111
112         if (cpu_family == CPU_HW_PSTATE)
113                 return 0;
114
115         rdmsr(MSR_FIDVID_STATUS, lo, hi);
116         return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
117 }
118
119 /*
120  * Update the global current fid / vid values from the status msr.
121  * Returns 1 on error.
122  */
123 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
124 {
125         u32 lo, hi;
126         u32 i = 0;
127
128         if (cpu_family == CPU_HW_PSTATE) {
129                 rdmsr(MSR_PSTATE_STATUS, lo, hi);
130                 i = lo & HW_PSTATE_MASK;
131                 data->currpstate = i;
132
133                 /*
134                  * a workaround for family 11h erratum 311 might cause
135                  * an "out-of-range Pstate if the core is in Pstate-0
136                  */
137                 if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
138                         data->currpstate = HW_PSTATE_0;
139
140                 return 0;
141         }
142         do {
143                 if (i++ > 10000) {
144                         pr_debug("detected change pending stuck\n");
145                         return 1;
146                 }
147                 rdmsr(MSR_FIDVID_STATUS, lo, hi);
148         } while (lo & MSR_S_LO_CHANGE_PENDING);
149
150         data->currvid = hi & MSR_S_HI_CURRENT_VID;
151         data->currfid = lo & MSR_S_LO_CURRENT_FID;
152
153         return 0;
154 }
155
156 /* the isochronous relief time */
157 static void count_off_irt(struct powernow_k8_data *data)
158 {
159         udelay((1 << data->irt) * 10);
160         return;
161 }
162
163 /* the voltage stabilization time */
164 static void count_off_vst(struct powernow_k8_data *data)
165 {
166         udelay(data->vstable * VST_UNITS_20US);
167         return;
168 }
169
170 /* need to init the control msr to a safe value (for each cpu) */
171 static void fidvid_msr_init(void)
172 {
173         u32 lo, hi;
174         u8 fid, vid;
175
176         rdmsr(MSR_FIDVID_STATUS, lo, hi);
177         vid = hi & MSR_S_HI_CURRENT_VID;
178         fid = lo & MSR_S_LO_CURRENT_FID;
179         lo = fid | (vid << MSR_C_LO_VID_SHIFT);
180         hi = MSR_C_HI_STP_GNT_BENIGN;
181         pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
182         wrmsr(MSR_FIDVID_CTL, lo, hi);
183 }
184
185 /* write the new fid value along with the other control fields to the msr */
186 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
187 {
188         u32 lo;
189         u32 savevid = data->currvid;
190         u32 i = 0;
191
192         if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
193                 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
194                 return 1;
195         }
196
197         lo = fid;
198         lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
199         lo |= MSR_C_LO_INIT_FID_VID;
200
201         pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
202                 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
203
204         do {
205                 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
206                 if (i++ > 100) {
207                         printk(KERN_ERR PFX
208                                 "Hardware error - pending bit very stuck - "
209                                 "no further pstate changes possible\n");
210                         return 1;
211                 }
212         } while (query_current_values_with_pending_wait(data));
213
214         count_off_irt(data);
215
216         if (savevid != data->currvid) {
217                 printk(KERN_ERR PFX
218                         "vid change on fid trans, old 0x%x, new 0x%x\n",
219                         savevid, data->currvid);
220                 return 1;
221         }
222
223         if (fid != data->currfid) {
224                 printk(KERN_ERR PFX
225                         "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
226                         data->currfid);
227                 return 1;
228         }
229
230         return 0;
231 }
232
233 /* Write a new vid to the hardware */
234 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
235 {
236         u32 lo;
237         u32 savefid = data->currfid;
238         int i = 0;
239
240         if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
241                 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
242                 return 1;
243         }
244
245         lo = data->currfid;
246         lo |= (vid << MSR_C_LO_VID_SHIFT);
247         lo |= MSR_C_LO_INIT_FID_VID;
248
249         pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
250                 vid, lo, STOP_GRANT_5NS);
251
252         do {
253                 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
254                 if (i++ > 100) {
255                         printk(KERN_ERR PFX "internal error - pending bit "
256                                         "very stuck - no further pstate "
257                                         "changes possible\n");
258                         return 1;
259                 }
260         } while (query_current_values_with_pending_wait(data));
261
262         if (savefid != data->currfid) {
263                 printk(KERN_ERR PFX "fid changed on vid trans, old "
264                         "0x%x new 0x%x\n",
265                        savefid, data->currfid);
266                 return 1;
267         }
268
269         if (vid != data->currvid) {
270                 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
271                                 "curr 0x%x\n",
272                                 vid, data->currvid);
273                 return 1;
274         }
275
276         return 0;
277 }
278
279 /*
280  * Reduce the vid by the max of step or reqvid.
281  * Decreasing vid codes represent increasing voltages:
282  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
283  */
284 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
285                 u32 reqvid, u32 step)
286 {
287         if ((data->currvid - reqvid) > step)
288                 reqvid = data->currvid - step;
289
290         if (write_new_vid(data, reqvid))
291                 return 1;
292
293         count_off_vst(data);
294
295         return 0;
296 }
297
298 /* Change hardware pstate by single MSR write */
299 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
300 {
301         wrmsr(MSR_PSTATE_CTRL, pstate, 0);
302         data->currpstate = pstate;
303         return 0;
304 }
305
306 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
307 static int transition_fid_vid(struct powernow_k8_data *data,
308                 u32 reqfid, u32 reqvid)
309 {
310         if (core_voltage_pre_transition(data, reqvid, reqfid))
311                 return 1;
312
313         if (core_frequency_transition(data, reqfid))
314                 return 1;
315
316         if (core_voltage_post_transition(data, reqvid))
317                 return 1;
318
319         if (query_current_values_with_pending_wait(data))
320                 return 1;
321
322         if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
323                 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
324                                 "curr 0x%x 0x%x\n",
325                                 smp_processor_id(),
326                                 reqfid, reqvid, data->currfid, data->currvid);
327                 return 1;
328         }
329
330         pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
331                 smp_processor_id(), data->currfid, data->currvid);
332
333         return 0;
334 }
335
336 /* Phase 1 - core voltage transition ... setup voltage */
337 static int core_voltage_pre_transition(struct powernow_k8_data *data,
338                 u32 reqvid, u32 reqfid)
339 {
340         u32 rvosteps = data->rvo;
341         u32 savefid = data->currfid;
342         u32 maxvid, lo, rvomult = 1;
343
344         pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
345                 "reqvid 0x%x, rvo 0x%x\n",
346                 smp_processor_id(),
347                 data->currfid, data->currvid, reqvid, data->rvo);
348
349         if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
350                 rvomult = 2;
351         rvosteps *= rvomult;
352         rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
353         maxvid = 0x1f & (maxvid >> 16);
354         pr_debug("ph1 maxvid=0x%x\n", maxvid);
355         if (reqvid < maxvid) /* lower numbers are higher voltages */
356                 reqvid = maxvid;
357
358         while (data->currvid > reqvid) {
359                 pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
360                         data->currvid, reqvid);
361                 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
362                         return 1;
363         }
364
365         while ((rvosteps > 0) &&
366                         ((rvomult * data->rvo + data->currvid) > reqvid)) {
367                 if (data->currvid == maxvid) {
368                         rvosteps = 0;
369                 } else {
370                         pr_debug("ph1: changing vid for rvo, req 0x%x\n",
371                                 data->currvid - 1);
372                         if (decrease_vid_code_by_step(data, data->currvid-1, 1))
373                                 return 1;
374                         rvosteps--;
375                 }
376         }
377
378         if (query_current_values_with_pending_wait(data))
379                 return 1;
380
381         if (savefid != data->currfid) {
382                 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
383                                 data->currfid);
384                 return 1;
385         }
386
387         pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
388                 data->currfid, data->currvid);
389
390         return 0;
391 }
392
393 /* Phase 2 - core frequency transition */
394 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
395 {
396         u32 vcoreqfid, vcocurrfid, vcofiddiff;
397         u32 fid_interval, savevid = data->currvid;
398
399         if (data->currfid == reqfid) {
400                 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
401                                 data->currfid);
402                 return 0;
403         }
404
405         pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
406                 "reqfid 0x%x\n",
407                 smp_processor_id(),
408                 data->currfid, data->currvid, reqfid);
409
410         vcoreqfid = convert_fid_to_vco_fid(reqfid);
411         vcocurrfid = convert_fid_to_vco_fid(data->currfid);
412         vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
413             : vcoreqfid - vcocurrfid;
414
415         if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
416                 vcofiddiff = 0;
417
418         while (vcofiddiff > 2) {
419                 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
420
421                 if (reqfid > data->currfid) {
422                         if (data->currfid > LO_FID_TABLE_TOP) {
423                                 if (write_new_fid(data,
424                                                 data->currfid + fid_interval))
425                                         return 1;
426                         } else {
427                                 if (write_new_fid
428                                     (data,
429                                      2 + convert_fid_to_vco_fid(data->currfid)))
430                                         return 1;
431                         }
432                 } else {
433                         if (write_new_fid(data, data->currfid - fid_interval))
434                                 return 1;
435                 }
436
437                 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
438                 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
439                     : vcoreqfid - vcocurrfid;
440         }
441
442         if (write_new_fid(data, reqfid))
443                 return 1;
444
445         if (query_current_values_with_pending_wait(data))
446                 return 1;
447
448         if (data->currfid != reqfid) {
449                 printk(KERN_ERR PFX
450                         "ph2: mismatch, failed fid transition, "
451                         "curr 0x%x, req 0x%x\n",
452                         data->currfid, reqfid);
453                 return 1;
454         }
455
456         if (savevid != data->currvid) {
457                 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
458                         savevid, data->currvid);
459                 return 1;
460         }
461
462         pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
463                 data->currfid, data->currvid);
464
465         return 0;
466 }
467
468 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
469 static int core_voltage_post_transition(struct powernow_k8_data *data,
470                 u32 reqvid)
471 {
472         u32 savefid = data->currfid;
473         u32 savereqvid = reqvid;
474
475         pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
476                 smp_processor_id(),
477                 data->currfid, data->currvid);
478
479         if (reqvid != data->currvid) {
480                 if (write_new_vid(data, reqvid))
481                         return 1;
482
483                 if (savefid != data->currfid) {
484                         printk(KERN_ERR PFX
485                                "ph3: bad fid change, save 0x%x, curr 0x%x\n",
486                                savefid, data->currfid);
487                         return 1;
488                 }
489
490                 if (data->currvid != reqvid) {
491                         printk(KERN_ERR PFX
492                                "ph3: failed vid transition\n, "
493                                "req 0x%x, curr 0x%x",
494                                reqvid, data->currvid);
495                         return 1;
496                 }
497         }
498
499         if (query_current_values_with_pending_wait(data))
500                 return 1;
501
502         if (savereqvid != data->currvid) {
503                 pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
504                 return 1;
505         }
506
507         if (savefid != data->currfid) {
508                 pr_debug("ph3 failed, currfid changed 0x%x\n",
509                         data->currfid);
510                 return 1;
511         }
512
513         pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
514                 data->currfid, data->currvid);
515
516         return 0;
517 }
518
519 static void check_supported_cpu(void *_rc)
520 {
521         u32 eax, ebx, ecx, edx;
522         int *rc = _rc;
523
524         *rc = -ENODEV;
525
526         if (__this_cpu_read(cpu_info.x86_vendor) != X86_VENDOR_AMD)
527                 return;
528
529         eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
530         if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
531             ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
532                 return;
533
534         if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
535                 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
536                     ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
537                         printk(KERN_INFO PFX
538                                 "Processor cpuid %x not supported\n", eax);
539                         return;
540                 }
541
542                 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
543                 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
544                         printk(KERN_INFO PFX
545                                "No frequency change capabilities detected\n");
546                         return;
547                 }
548
549                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
550                 if ((edx & P_STATE_TRANSITION_CAPABLE)
551                         != P_STATE_TRANSITION_CAPABLE) {
552                         printk(KERN_INFO PFX
553                                 "Power state transitions not supported\n");
554                         return;
555                 }
556         } else { /* must be a HW Pstate capable processor */
557                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
558                 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
559                         cpu_family = CPU_HW_PSTATE;
560                 else
561                         return;
562         }
563
564         *rc = 0;
565 }
566
567 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
568                 u8 maxvid)
569 {
570         unsigned int j;
571         u8 lastfid = 0xff;
572
573         for (j = 0; j < data->numps; j++) {
574                 if (pst[j].vid > LEAST_VID) {
575                         printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
576                                j, pst[j].vid);
577                         return -EINVAL;
578                 }
579                 if (pst[j].vid < data->rvo) {
580                         /* vid + rvo >= 0 */
581                         printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
582                                " %d\n", j);
583                         return -ENODEV;
584                 }
585                 if (pst[j].vid < maxvid + data->rvo) {
586                         /* vid + rvo >= maxvid */
587                         printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
588                                " %d\n", j);
589                         return -ENODEV;
590                 }
591                 if (pst[j].fid > MAX_FID) {
592                         printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
593                                " %d\n", j);
594                         return -ENODEV;
595                 }
596                 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
597                         /* Only first fid is allowed to be in "low" range */
598                         printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
599                                "0x%x\n", j, pst[j].fid);
600                         return -EINVAL;
601                 }
602                 if (pst[j].fid < lastfid)
603                         lastfid = pst[j].fid;
604         }
605         if (lastfid & 1) {
606                 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
607                 return -EINVAL;
608         }
609         if (lastfid > LO_FID_TABLE_TOP)
610                 printk(KERN_INFO FW_BUG PFX
611                         "first fid not from lo freq table\n");
612
613         return 0;
614 }
615
616 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
617                 unsigned int entry)
618 {
619         powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
620 }
621
622 static void print_basics(struct powernow_k8_data *data)
623 {
624         int j;
625         for (j = 0; j < data->numps; j++) {
626                 if (data->powernow_table[j].frequency !=
627                                 CPUFREQ_ENTRY_INVALID) {
628                         if (cpu_family == CPU_HW_PSTATE) {
629                                 printk(KERN_INFO PFX
630                                         "   %d : pstate %d (%d MHz)\n", j,
631                                         data->powernow_table[j].index,
632                                         data->powernow_table[j].frequency/1000);
633                         } else {
634                                 printk(KERN_INFO PFX
635                                         "fid 0x%x (%d MHz), vid 0x%x\n",
636                                         data->powernow_table[j].index & 0xff,
637                                         data->powernow_table[j].frequency/1000,
638                                         data->powernow_table[j].index >> 8);
639                         }
640                 }
641         }
642         if (data->batps)
643                 printk(KERN_INFO PFX "Only %d pstates on battery\n",
644                                 data->batps);
645 }
646
647 static u32 freq_from_fid_did(u32 fid, u32 did)
648 {
649         u32 mhz = 0;
650
651         if (boot_cpu_data.x86 == 0x10)
652                 mhz = (100 * (fid + 0x10)) >> did;
653         else if (boot_cpu_data.x86 == 0x11)
654                 mhz = (100 * (fid + 8)) >> did;
655         else
656                 BUG();
657
658         return mhz * 1000;
659 }
660
661 static int fill_powernow_table(struct powernow_k8_data *data,
662                 struct pst_s *pst, u8 maxvid)
663 {
664         struct cpufreq_frequency_table *powernow_table;
665         unsigned int j;
666
667         if (data->batps) {
668                 /* use ACPI support to get full speed on mains power */
669                 printk(KERN_WARNING PFX
670                         "Only %d pstates usable (use ACPI driver for full "
671                         "range\n", data->batps);
672                 data->numps = data->batps;
673         }
674
675         for (j = 1; j < data->numps; j++) {
676                 if (pst[j-1].fid >= pst[j].fid) {
677                         printk(KERN_ERR PFX "PST out of sequence\n");
678                         return -EINVAL;
679                 }
680         }
681
682         if (data->numps < 2) {
683                 printk(KERN_ERR PFX "no p states to transition\n");
684                 return -ENODEV;
685         }
686
687         if (check_pst_table(data, pst, maxvid))
688                 return -EINVAL;
689
690         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
691                 * (data->numps + 1)), GFP_KERNEL);
692         if (!powernow_table) {
693                 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
694                 return -ENOMEM;
695         }
696
697         for (j = 0; j < data->numps; j++) {
698                 int freq;
699                 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
700                 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
701                 freq = find_khz_freq_from_fid(pst[j].fid);
702                 powernow_table[j].frequency = freq;
703         }
704         powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
705         powernow_table[data->numps].index = 0;
706
707         if (query_current_values_with_pending_wait(data)) {
708                 kfree(powernow_table);
709                 return -EIO;
710         }
711
712         pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
713         data->powernow_table = powernow_table;
714         if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
715                 print_basics(data);
716
717         for (j = 0; j < data->numps; j++)
718                 if ((pst[j].fid == data->currfid) &&
719                     (pst[j].vid == data->currvid))
720                         return 0;
721
722         pr_debug("currfid/vid do not match PST, ignoring\n");
723         return 0;
724 }
725
726 /* Find and validate the PSB/PST table in BIOS. */
727 static int find_psb_table(struct powernow_k8_data *data)
728 {
729         struct psb_s *psb;
730         unsigned int i;
731         u32 mvs;
732         u8 maxvid;
733         u32 cpst = 0;
734         u32 thiscpuid;
735
736         for (i = 0xc0000; i < 0xffff0; i += 0x10) {
737                 /* Scan BIOS looking for the signature. */
738                 /* It can not be at ffff0 - it is too big. */
739
740                 psb = phys_to_virt(i);
741                 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
742                         continue;
743
744                 pr_debug("found PSB header at 0x%p\n", psb);
745
746                 pr_debug("table vers: 0x%x\n", psb->tableversion);
747                 if (psb->tableversion != PSB_VERSION_1_4) {
748                         printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
749                         return -ENODEV;
750                 }
751
752                 pr_debug("flags: 0x%x\n", psb->flags1);
753                 if (psb->flags1) {
754                         printk(KERN_ERR FW_BUG PFX "unknown flags\n");
755                         return -ENODEV;
756                 }
757
758                 data->vstable = psb->vstable;
759                 pr_debug("voltage stabilization time: %d(*20us)\n",
760                                 data->vstable);
761
762                 pr_debug("flags2: 0x%x\n", psb->flags2);
763                 data->rvo = psb->flags2 & 3;
764                 data->irt = ((psb->flags2) >> 2) & 3;
765                 mvs = ((psb->flags2) >> 4) & 3;
766                 data->vidmvs = 1 << mvs;
767                 data->batps = ((psb->flags2) >> 6) & 3;
768
769                 pr_debug("ramp voltage offset: %d\n", data->rvo);
770                 pr_debug("isochronous relief time: %d\n", data->irt);
771                 pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
772
773                 pr_debug("numpst: 0x%x\n", psb->num_tables);
774                 cpst = psb->num_tables;
775                 if ((psb->cpuid == 0x00000fc0) ||
776                     (psb->cpuid == 0x00000fe0)) {
777                         thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
778                         if ((thiscpuid == 0x00000fc0) ||
779                             (thiscpuid == 0x00000fe0))
780                                 cpst = 1;
781                 }
782                 if (cpst != 1) {
783                         printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
784                         return -ENODEV;
785                 }
786
787                 data->plllock = psb->plllocktime;
788                 pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
789                 pr_debug("maxfid: 0x%x\n", psb->maxfid);
790                 pr_debug("maxvid: 0x%x\n", psb->maxvid);
791                 maxvid = psb->maxvid;
792
793                 data->numps = psb->numps;
794                 pr_debug("numpstates: 0x%x\n", data->numps);
795                 return fill_powernow_table(data,
796                                 (struct pst_s *)(psb+1), maxvid);
797         }
798         /*
799          * If you see this message, complain to BIOS manufacturer. If
800          * he tells you "we do not support Linux" or some similar
801          * nonsense, remember that Windows 2000 uses the same legacy
802          * mechanism that the old Linux PSB driver uses. Tell them it
803          * is broken with Windows 2000.
804          *
805          * The reference to the AMD documentation is chapter 9 in the
806          * BIOS and Kernel Developer's Guide, which is available on
807          * www.amd.com
808          */
809         printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
810         printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
811                 " and Cool'N'Quiet support is enabled in BIOS setup\n");
812         return -ENODEV;
813 }
814
815 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
816                 unsigned int index)
817 {
818         u64 control;
819
820         if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
821                 return;
822
823         control = data->acpi_data.states[index].control;
824         data->irt = (control >> IRT_SHIFT) & IRT_MASK;
825         data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
826         data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
827         data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
828         data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
829         data->vstable = (control >> VST_SHIFT) & VST_MASK;
830 }
831
832 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
833 {
834         struct cpufreq_frequency_table *powernow_table;
835         int ret_val = -ENODEV;
836         u64 control, status;
837
838         if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
839                 pr_debug("register performance failed: bad ACPI data\n");
840                 return -EIO;
841         }
842
843         /* verify the data contained in the ACPI structures */
844         if (data->acpi_data.state_count <= 1) {
845                 pr_debug("No ACPI P-States\n");
846                 goto err_out;
847         }
848
849         control = data->acpi_data.control_register.space_id;
850         status = data->acpi_data.status_register.space_id;
851
852         if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
853             (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
854                 pr_debug("Invalid control/status registers (%llx - %llx)\n",
855                         control, status);
856                 goto err_out;
857         }
858
859         /* fill in data->powernow_table */
860         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
861                 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
862         if (!powernow_table) {
863                 pr_debug("powernow_table memory alloc failure\n");
864                 goto err_out;
865         }
866
867         /* fill in data */
868         data->numps = data->acpi_data.state_count;
869         powernow_k8_acpi_pst_values(data, 0);
870
871         if (cpu_family == CPU_HW_PSTATE)
872                 ret_val = fill_powernow_table_pstate(data, powernow_table);
873         else
874                 ret_val = fill_powernow_table_fidvid(data, powernow_table);
875         if (ret_val)
876                 goto err_out_mem;
877
878         powernow_table[data->acpi_data.state_count].frequency =
879                 CPUFREQ_TABLE_END;
880         powernow_table[data->acpi_data.state_count].index = 0;
881         data->powernow_table = powernow_table;
882
883         if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
884                 print_basics(data);
885
886         /* notify BIOS that we exist */
887         acpi_processor_notify_smm(THIS_MODULE);
888
889         if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
890                 printk(KERN_ERR PFX
891                                 "unable to alloc powernow_k8_data cpumask\n");
892                 ret_val = -ENOMEM;
893                 goto err_out_mem;
894         }
895
896         return 0;
897
898 err_out_mem:
899         kfree(powernow_table);
900
901 err_out:
902         acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
903
904         /* data->acpi_data.state_count informs us at ->exit()
905          * whether ACPI was used */
906         data->acpi_data.state_count = 0;
907
908         return ret_val;
909 }
910
911 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
912                 struct cpufreq_frequency_table *powernow_table)
913 {
914         int i;
915         u32 hi = 0, lo = 0;
916         rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
917         data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
918
919         for (i = 0; i < data->acpi_data.state_count; i++) {
920                 u32 index;
921
922                 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
923                 if (index > data->max_hw_pstate) {
924                         printk(KERN_ERR PFX "invalid pstate %d - "
925                                         "bad value %d.\n", i, index);
926                         printk(KERN_ERR PFX "Please report to BIOS "
927                                         "manufacturer\n");
928                         invalidate_entry(powernow_table, i);
929                         continue;
930                 }
931
932                 ps_to_as[index] = i;
933
934                 /* Frequency may be rounded for these */
935                 if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
936                                  || boot_cpu_data.x86 == 0x11) {
937
938                         rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
939                         if (!(hi & HW_PSTATE_VALID_MASK)) {
940                                 pr_debug("invalid pstate %d, ignoring\n", index);
941                                 invalidate_entry(powernow_table, i);
942                                 continue;
943                         }
944
945                         powernow_table[i].frequency =
946                                 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
947                 } else
948                         powernow_table[i].frequency =
949                                 data->acpi_data.states[i].core_frequency * 1000;
950
951                 powernow_table[i].index = index;
952         }
953         return 0;
954 }
955
956 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
957                 struct cpufreq_frequency_table *powernow_table)
958 {
959         int i;
960
961         for (i = 0; i < data->acpi_data.state_count; i++) {
962                 u32 fid;
963                 u32 vid;
964                 u32 freq, index;
965                 u64 status, control;
966
967                 if (data->exttype) {
968                         status =  data->acpi_data.states[i].status;
969                         fid = status & EXT_FID_MASK;
970                         vid = (status >> VID_SHIFT) & EXT_VID_MASK;
971                 } else {
972                         control =  data->acpi_data.states[i].control;
973                         fid = control & FID_MASK;
974                         vid = (control >> VID_SHIFT) & VID_MASK;
975                 }
976
977                 pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
978
979                 index = fid | (vid<<8);
980                 powernow_table[i].index = index;
981
982                 freq = find_khz_freq_from_fid(fid);
983                 powernow_table[i].frequency = freq;
984
985                 /* verify frequency is OK */
986                 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
987                         pr_debug("invalid freq %u kHz, ignoring\n", freq);
988                         invalidate_entry(powernow_table, i);
989                         continue;
990                 }
991
992                 /* verify voltage is OK -
993                  * BIOSs are using "off" to indicate invalid */
994                 if (vid == VID_OFF) {
995                         pr_debug("invalid vid %u, ignoring\n", vid);
996                         invalidate_entry(powernow_table, i);
997                         continue;
998                 }
999
1000                 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1001                         printk(KERN_INFO PFX "invalid freq entries "
1002                                 "%u kHz vs. %u kHz\n", freq,
1003                                 (unsigned int)
1004                                 (data->acpi_data.states[i].core_frequency
1005                                  * 1000));
1006                         invalidate_entry(powernow_table, i);
1007                         continue;
1008                 }
1009         }
1010         return 0;
1011 }
1012
1013 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1014 {
1015         if (data->acpi_data.state_count)
1016                 acpi_processor_unregister_performance(&data->acpi_data,
1017                                 data->cpu);
1018         free_cpumask_var(data->acpi_data.shared_cpu_map);
1019 }
1020
1021 static int get_transition_latency(struct powernow_k8_data *data)
1022 {
1023         int max_latency = 0;
1024         int i;
1025         for (i = 0; i < data->acpi_data.state_count; i++) {
1026                 int cur_latency = data->acpi_data.states[i].transition_latency
1027                         + data->acpi_data.states[i].bus_master_latency;
1028                 if (cur_latency > max_latency)
1029                         max_latency = cur_latency;
1030         }
1031         if (max_latency == 0) {
1032                 /*
1033                  * Fam 11h and later may return 0 as transition latency. This
1034                  * is intended and means "very fast". While cpufreq core and
1035                  * governors currently can handle that gracefully, better set it
1036                  * to 1 to avoid problems in the future.
1037                  */
1038                 if (boot_cpu_data.x86 < 0x11)
1039                         printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1040                                 "latency\n");
1041                 max_latency = 1;
1042         }
1043         /* value in usecs, needs to be in nanoseconds */
1044         return 1000 * max_latency;
1045 }
1046
1047 /* Take a frequency, and issue the fid/vid transition command */
1048 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1049                 unsigned int index)
1050 {
1051         u32 fid = 0;
1052         u32 vid = 0;
1053         int res, i;
1054         struct cpufreq_freqs freqs;
1055
1056         pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1057
1058         /* fid/vid correctness check for k8 */
1059         /* fid are the lower 8 bits of the index we stored into
1060          * the cpufreq frequency table in find_psb_table, vid
1061          * are the upper 8 bits.
1062          */
1063         fid = data->powernow_table[index].index & 0xFF;
1064         vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1065
1066         pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1067
1068         if (query_current_values_with_pending_wait(data))
1069                 return 1;
1070
1071         if ((data->currvid == vid) && (data->currfid == fid)) {
1072                 pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1073                         fid, vid);
1074                 return 0;
1075         }
1076
1077         pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1078                 smp_processor_id(), fid, vid);
1079         freqs.old = find_khz_freq_from_fid(data->currfid);
1080         freqs.new = find_khz_freq_from_fid(fid);
1081
1082         for_each_cpu(i, data->available_cores) {
1083                 freqs.cpu = i;
1084                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1085         }
1086
1087         res = transition_fid_vid(data, fid, vid);
1088         if (res)
1089                 return res;
1090
1091         freqs.new = find_khz_freq_from_fid(data->currfid);
1092
1093         for_each_cpu(i, data->available_cores) {
1094                 freqs.cpu = i;
1095                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1096         }
1097         return res;
1098 }
1099
1100 /* Take a frequency, and issue the hardware pstate transition command */
1101 static int transition_frequency_pstate(struct powernow_k8_data *data,
1102                 unsigned int index)
1103 {
1104         u32 pstate = 0;
1105         int res, i;
1106         struct cpufreq_freqs freqs;
1107
1108         pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1109
1110         /* get MSR index for hardware pstate transition */
1111         pstate = index & HW_PSTATE_MASK;
1112         if (pstate > data->max_hw_pstate)
1113                 return -EINVAL;
1114
1115         freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1116                         data->currpstate);
1117         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1118
1119         for_each_cpu(i, data->available_cores) {
1120                 freqs.cpu = i;
1121                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1122         }
1123
1124         res = transition_pstate(data, pstate);
1125         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1126
1127         for_each_cpu(i, data->available_cores) {
1128                 freqs.cpu = i;
1129                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1130         }
1131         return res;
1132 }
1133
1134 struct powernowk8_target_arg {
1135         struct cpufreq_policy           *pol;
1136         unsigned                        targfreq;
1137         unsigned                        relation;
1138 };
1139
1140 static long powernowk8_target_fn(void *arg)
1141 {
1142         struct powernowk8_target_arg *pta = arg;
1143         struct cpufreq_policy *pol = pta->pol;
1144         unsigned targfreq = pta->targfreq;
1145         unsigned relation = pta->relation;
1146         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1147         u32 checkfid;
1148         u32 checkvid;
1149         unsigned int newstate;
1150         int ret;
1151
1152         if (!data)
1153                 return -EINVAL;
1154
1155         checkfid = data->currfid;
1156         checkvid = data->currvid;
1157
1158         if (pending_bit_stuck()) {
1159                 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1160                 return -EIO;
1161         }
1162
1163         pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1164                 pol->cpu, targfreq, pol->min, pol->max, relation);
1165
1166         if (query_current_values_with_pending_wait(data))
1167                 return -EIO;
1168
1169         if (cpu_family != CPU_HW_PSTATE) {
1170                 pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1171                 data->currfid, data->currvid);
1172
1173                 if ((checkvid != data->currvid) ||
1174                     (checkfid != data->currfid)) {
1175                         printk(KERN_INFO PFX
1176                                 "error - out of sync, fix 0x%x 0x%x, "
1177                                 "vid 0x%x 0x%x\n",
1178                                 checkfid, data->currfid,
1179                                 checkvid, data->currvid);
1180                 }
1181         }
1182
1183         if (cpufreq_frequency_table_target(pol, data->powernow_table,
1184                                 targfreq, relation, &newstate))
1185                 return -EIO;
1186
1187         mutex_lock(&fidvid_mutex);
1188
1189         powernow_k8_acpi_pst_values(data, newstate);
1190
1191         if (cpu_family == CPU_HW_PSTATE)
1192                 ret = transition_frequency_pstate(data,
1193                         data->powernow_table[newstate].index);
1194         else
1195                 ret = transition_frequency_fidvid(data, newstate);
1196         if (ret) {
1197                 printk(KERN_ERR PFX "transition frequency failed\n");
1198                 mutex_unlock(&fidvid_mutex);
1199                 return 1;
1200         }
1201         mutex_unlock(&fidvid_mutex);
1202
1203         if (cpu_family == CPU_HW_PSTATE)
1204                 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1205                                 data->powernow_table[newstate].index);
1206         else
1207                 pol->cur = find_khz_freq_from_fid(data->currfid);
1208
1209         return 0;
1210 }
1211
1212 /* Driver entry point to switch to the target frequency */
1213 static int powernowk8_target(struct cpufreq_policy *pol,
1214                 unsigned targfreq, unsigned relation)
1215 {
1216         struct powernowk8_target_arg pta = { .pol = pol, .targfreq = targfreq,
1217                                              .relation = relation };
1218
1219         return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta);
1220 }
1221
1222 /* Driver entry point to verify the policy and range of frequencies */
1223 static int powernowk8_verify(struct cpufreq_policy *pol)
1224 {
1225         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1226
1227         if (!data)
1228                 return -EINVAL;
1229
1230         return cpufreq_frequency_table_verify(pol, data->powernow_table);
1231 }
1232
1233 struct init_on_cpu {
1234         struct powernow_k8_data *data;
1235         int rc;
1236 };
1237
1238 static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1239 {
1240         struct init_on_cpu *init_on_cpu = _init_on_cpu;
1241
1242         if (pending_bit_stuck()) {
1243                 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1244                 init_on_cpu->rc = -ENODEV;
1245                 return;
1246         }
1247
1248         if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1249                 init_on_cpu->rc = -ENODEV;
1250                 return;
1251         }
1252
1253         if (cpu_family == CPU_OPTERON)
1254                 fidvid_msr_init();
1255
1256         init_on_cpu->rc = 0;
1257 }
1258
1259 /* per CPU init entry point to the driver */
1260 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1261 {
1262         static const char ACPI_PSS_BIOS_BUG_MSG[] =
1263                 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1264                 FW_BUG PFX "Try again with latest BIOS.\n";
1265         struct powernow_k8_data *data;
1266         struct init_on_cpu init_on_cpu;
1267         int rc;
1268         struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1269
1270         if (!cpu_online(pol->cpu))
1271                 return -ENODEV;
1272
1273         smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1274         if (rc)
1275                 return -ENODEV;
1276
1277         data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1278         if (!data) {
1279                 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1280                 return -ENOMEM;
1281         }
1282
1283         data->cpu = pol->cpu;
1284         data->currpstate = HW_PSTATE_INVALID;
1285
1286         if (powernow_k8_cpu_init_acpi(data)) {
1287                 /*
1288                  * Use the PSB BIOS structure. This is only available on
1289                  * an UP version, and is deprecated by AMD.
1290                  */
1291                 if (num_online_cpus() != 1) {
1292                         printk_once(ACPI_PSS_BIOS_BUG_MSG);
1293                         goto err_out;
1294                 }
1295                 if (pol->cpu != 0) {
1296                         printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1297                                "CPU other than CPU0. Complain to your BIOS "
1298                                "vendor.\n");
1299                         goto err_out;
1300                 }
1301                 rc = find_psb_table(data);
1302                 if (rc)
1303                         goto err_out;
1304
1305                 /* Take a crude guess here.
1306                  * That guess was in microseconds, so multiply with 1000 */
1307                 pol->cpuinfo.transition_latency = (
1308                          ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1309                          ((1 << data->irt) * 30)) * 1000;
1310         } else /* ACPI _PSS objects available */
1311                 pol->cpuinfo.transition_latency = get_transition_latency(data);
1312
1313         /* only run on specific CPU from here on */
1314         init_on_cpu.data = data;
1315         smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1316                                  &init_on_cpu, 1);
1317         rc = init_on_cpu.rc;
1318         if (rc != 0)
1319                 goto err_out_exit_acpi;
1320
1321         if (cpu_family == CPU_HW_PSTATE)
1322                 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1323         else
1324                 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1325         data->available_cores = pol->cpus;
1326
1327         if (cpu_family == CPU_HW_PSTATE)
1328                 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1329                                 data->currpstate);
1330         else
1331                 pol->cur = find_khz_freq_from_fid(data->currfid);
1332         pr_debug("policy current frequency %d kHz\n", pol->cur);
1333
1334         /* min/max the cpu is capable of */
1335         if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1336                 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1337                 powernow_k8_cpu_exit_acpi(data);
1338                 kfree(data->powernow_table);
1339                 kfree(data);
1340                 return -EINVAL;
1341         }
1342
1343         /* Check for APERF/MPERF support in hardware */
1344         if (cpu_has(c, X86_FEATURE_APERFMPERF))
1345                 cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1346
1347         cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1348
1349         if (cpu_family == CPU_HW_PSTATE)
1350                 pr_debug("cpu_init done, current pstate 0x%x\n",
1351                                 data->currpstate);
1352         else
1353                 pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1354                         data->currfid, data->currvid);
1355
1356         per_cpu(powernow_data, pol->cpu) = data;
1357
1358         return 0;
1359
1360 err_out_exit_acpi:
1361         powernow_k8_cpu_exit_acpi(data);
1362
1363 err_out:
1364         kfree(data);
1365         return -ENODEV;
1366 }
1367
1368 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1369 {
1370         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1371
1372         if (!data)
1373                 return -EINVAL;
1374
1375         powernow_k8_cpu_exit_acpi(data);
1376
1377         cpufreq_frequency_table_put_attr(pol->cpu);
1378
1379         kfree(data->powernow_table);
1380         kfree(data);
1381         per_cpu(powernow_data, pol->cpu) = NULL;
1382
1383         return 0;
1384 }
1385
1386 static void query_values_on_cpu(void *_err)
1387 {
1388         int *err = _err;
1389         struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1390
1391         *err = query_current_values_with_pending_wait(data);
1392 }
1393
1394 static unsigned int powernowk8_get(unsigned int cpu)
1395 {
1396         struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1397         unsigned int khz = 0;
1398         int err;
1399
1400         if (!data)
1401                 return 0;
1402
1403         smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1404         if (err)
1405                 goto out;
1406
1407         if (cpu_family == CPU_HW_PSTATE)
1408                 khz = find_khz_freq_from_pstate(data->powernow_table,
1409                                                 data->currpstate);
1410         else
1411                 khz = find_khz_freq_from_fid(data->currfid);
1412
1413
1414 out:
1415         return khz;
1416 }
1417
1418 static void _cpb_toggle_msrs(bool t)
1419 {
1420         int cpu;
1421
1422         get_online_cpus();
1423
1424         rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1425
1426         for_each_cpu(cpu, cpu_online_mask) {
1427                 struct msr *reg = per_cpu_ptr(msrs, cpu);
1428                 if (t)
1429                         reg->l &= ~BIT(25);
1430                 else
1431                         reg->l |= BIT(25);
1432         }
1433         wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1434
1435         put_online_cpus();
1436 }
1437
1438 /*
1439  * Switch on/off core performance boosting.
1440  *
1441  * 0=disable
1442  * 1=enable.
1443  */
1444 static void cpb_toggle(bool t)
1445 {
1446         if (!cpb_capable)
1447                 return;
1448
1449         if (t && !cpb_enabled) {
1450                 cpb_enabled = true;
1451                 _cpb_toggle_msrs(t);
1452                 printk(KERN_INFO PFX "Core Boosting enabled.\n");
1453         } else if (!t && cpb_enabled) {
1454                 cpb_enabled = false;
1455                 _cpb_toggle_msrs(t);
1456                 printk(KERN_INFO PFX "Core Boosting disabled.\n");
1457         }
1458 }
1459
1460 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1461                                  size_t count)
1462 {
1463         int ret = -EINVAL;
1464         unsigned long val = 0;
1465
1466         ret = strict_strtoul(buf, 10, &val);
1467         if (!ret && (val == 0 || val == 1) && cpb_capable)
1468                 cpb_toggle(val);
1469         else
1470                 return -EINVAL;
1471
1472         return count;
1473 }
1474
1475 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1476 {
1477         return sprintf(buf, "%u\n", cpb_enabled);
1478 }
1479
1480 #define define_one_rw(_name) \
1481 static struct freq_attr _name = \
1482 __ATTR(_name, 0644, show_##_name, store_##_name)
1483
1484 define_one_rw(cpb);
1485
1486 static struct freq_attr *powernow_k8_attr[] = {
1487         &cpufreq_freq_attr_scaling_available_freqs,
1488         &cpb,
1489         NULL,
1490 };
1491
1492 static struct cpufreq_driver cpufreq_amd64_driver = {
1493         .verify         = powernowk8_verify,
1494         .target         = powernowk8_target,
1495         .bios_limit     = acpi_processor_get_bios_limit,
1496         .init           = powernowk8_cpu_init,
1497         .exit           = __devexit_p(powernowk8_cpu_exit),
1498         .get            = powernowk8_get,
1499         .name           = "powernow-k8",
1500         .owner          = THIS_MODULE,
1501         .attr           = powernow_k8_attr,
1502 };
1503
1504 /*
1505  * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1506  * cannot block the remaining ones from boosting. On the CPU_UP path we
1507  * simply keep the boost-disable flag in sync with the current global
1508  * state.
1509  */
1510 static int cpb_notify(struct notifier_block *nb, unsigned long action,
1511                       void *hcpu)
1512 {
1513         unsigned cpu = (long)hcpu;
1514         u32 lo, hi;
1515
1516         switch (action) {
1517         case CPU_UP_PREPARE:
1518         case CPU_UP_PREPARE_FROZEN:
1519
1520                 if (!cpb_enabled) {
1521                         rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1522                         lo |= BIT(25);
1523                         wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1524                 }
1525                 break;
1526
1527         case CPU_DOWN_PREPARE:
1528         case CPU_DOWN_PREPARE_FROZEN:
1529                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1530                 lo &= ~BIT(25);
1531                 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1532                 break;
1533
1534         default:
1535                 break;
1536         }
1537
1538         return NOTIFY_OK;
1539 }
1540
1541 static struct notifier_block cpb_nb = {
1542         .notifier_call          = cpb_notify,
1543 };
1544
1545 /* driver entry point for init */
1546 static int __cpuinit powernowk8_init(void)
1547 {
1548         unsigned int i, supported_cpus = 0, cpu;
1549         int rv;
1550
1551         for_each_online_cpu(i) {
1552                 int rc;
1553                 smp_call_function_single(i, check_supported_cpu, &rc, 1);
1554                 if (rc == 0)
1555                         supported_cpus++;
1556         }
1557
1558         if (supported_cpus != num_online_cpus())
1559                 return -ENODEV;
1560
1561         printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1562                 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1563
1564         if (boot_cpu_has(X86_FEATURE_CPB)) {
1565
1566                 cpb_capable = true;
1567
1568                 msrs = msrs_alloc();
1569                 if (!msrs) {
1570                         printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1571                         return -ENOMEM;
1572                 }
1573
1574                 register_cpu_notifier(&cpb_nb);
1575
1576                 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1577
1578                 for_each_cpu(cpu, cpu_online_mask) {
1579                         struct msr *reg = per_cpu_ptr(msrs, cpu);
1580                         cpb_enabled |= !(!!(reg->l & BIT(25)));
1581                 }
1582
1583                 printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1584                         (cpb_enabled ? "on" : "off"));
1585         }
1586
1587         rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1588         if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
1589                 unregister_cpu_notifier(&cpb_nb);
1590                 msrs_free(msrs);
1591                 msrs = NULL;
1592         }
1593         return rv;
1594 }
1595
1596 /* driver entry point for term */
1597 static void __exit powernowk8_exit(void)
1598 {
1599         pr_debug("exit\n");
1600
1601         if (boot_cpu_has(X86_FEATURE_CPB)) {
1602                 msrs_free(msrs);
1603                 msrs = NULL;
1604
1605                 unregister_cpu_notifier(&cpb_nb);
1606         }
1607
1608         cpufreq_unregister_driver(&cpufreq_amd64_driver);
1609 }
1610
1611 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1612                 "Mark Langsdorf <mark.langsdorf@amd.com>");
1613 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1614 MODULE_LICENSE("GPL");
1615
1616 late_initcall(powernowk8_init);
1617 module_exit(powernowk8_exit);