Merge branch 'rmobile-latest' of git://git.kernel.org/pub/scm/linux/kernel/git/lethal...
[pandora-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC    10000
81 #define SI_USEC_PER_JIFFY       (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84                                       short timeout */
85
86 enum si_intf_state {
87         SI_NORMAL,
88         SI_GETTING_FLAGS,
89         SI_GETTING_EVENTS,
90         SI_CLEARING_FLAGS,
91         SI_CLEARING_FLAGS_THEN_SET_IRQ,
92         SI_GETTING_MESSAGES,
93         SI_ENABLE_INTERRUPTS1,
94         SI_ENABLE_INTERRUPTS2,
95         SI_DISABLE_INTERRUPTS1,
96         SI_DISABLE_INTERRUPTS2
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111                                         "ACPI", "SMBIOS", "PCI",
112                                         "device-tree", "default" };
113
114 #define DEVICE_NAME "ipmi_si"
115
116 static struct platform_driver ipmi_driver;
117
118 /*
119  * Indexes into stats[] in smi_info below.
120  */
121 enum si_stat_indexes {
122         /*
123          * Number of times the driver requested a timer while an operation
124          * was in progress.
125          */
126         SI_STAT_short_timeouts = 0,
127
128         /*
129          * Number of times the driver requested a timer while nothing was in
130          * progress.
131          */
132         SI_STAT_long_timeouts,
133
134         /* Number of times the interface was idle while being polled. */
135         SI_STAT_idles,
136
137         /* Number of interrupts the driver handled. */
138         SI_STAT_interrupts,
139
140         /* Number of time the driver got an ATTN from the hardware. */
141         SI_STAT_attentions,
142
143         /* Number of times the driver requested flags from the hardware. */
144         SI_STAT_flag_fetches,
145
146         /* Number of times the hardware didn't follow the state machine. */
147         SI_STAT_hosed_count,
148
149         /* Number of completed messages. */
150         SI_STAT_complete_transactions,
151
152         /* Number of IPMI events received from the hardware. */
153         SI_STAT_events,
154
155         /* Number of watchdog pretimeouts. */
156         SI_STAT_watchdog_pretimeouts,
157
158         /* Number of asyncronous messages received. */
159         SI_STAT_incoming_messages,
160
161
162         /* This *must* remain last, add new values above this. */
163         SI_NUM_STATS
164 };
165
166 struct smi_info {
167         int                    intf_num;
168         ipmi_smi_t             intf;
169         struct si_sm_data      *si_sm;
170         struct si_sm_handlers  *handlers;
171         enum si_type           si_type;
172         spinlock_t             si_lock;
173         spinlock_t             msg_lock;
174         struct list_head       xmit_msgs;
175         struct list_head       hp_xmit_msgs;
176         struct ipmi_smi_msg    *curr_msg;
177         enum si_intf_state     si_state;
178
179         /*
180          * Used to handle the various types of I/O that can occur with
181          * IPMI
182          */
183         struct si_sm_io io;
184         int (*io_setup)(struct smi_info *info);
185         void (*io_cleanup)(struct smi_info *info);
186         int (*irq_setup)(struct smi_info *info);
187         void (*irq_cleanup)(struct smi_info *info);
188         unsigned int io_size;
189         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
190         void (*addr_source_cleanup)(struct smi_info *info);
191         void *addr_source_data;
192
193         /*
194          * Per-OEM handler, called from handle_flags().  Returns 1
195          * when handle_flags() needs to be re-run or 0 indicating it
196          * set si_state itself.
197          */
198         int (*oem_data_avail_handler)(struct smi_info *smi_info);
199
200         /*
201          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
202          * is set to hold the flags until we are done handling everything
203          * from the flags.
204          */
205 #define RECEIVE_MSG_AVAIL       0x01
206 #define EVENT_MSG_BUFFER_FULL   0x02
207 #define WDT_PRE_TIMEOUT_INT     0x08
208 #define OEM0_DATA_AVAIL     0x20
209 #define OEM1_DATA_AVAIL     0x40
210 #define OEM2_DATA_AVAIL     0x80
211 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
212                              OEM1_DATA_AVAIL | \
213                              OEM2_DATA_AVAIL)
214         unsigned char       msg_flags;
215
216         /* Does the BMC have an event buffer? */
217         char                has_event_buffer;
218
219         /*
220          * If set to true, this will request events the next time the
221          * state machine is idle.
222          */
223         atomic_t            req_events;
224
225         /*
226          * If true, run the state machine to completion on every send
227          * call.  Generally used after a panic to make sure stuff goes
228          * out.
229          */
230         int                 run_to_completion;
231
232         /* The I/O port of an SI interface. */
233         int                 port;
234
235         /*
236          * The space between start addresses of the two ports.  For
237          * instance, if the first port is 0xca2 and the spacing is 4, then
238          * the second port is 0xca6.
239          */
240         unsigned int        spacing;
241
242         /* zero if no irq; */
243         int                 irq;
244
245         /* The timer for this si. */
246         struct timer_list   si_timer;
247
248         /* The time (in jiffies) the last timeout occurred at. */
249         unsigned long       last_timeout_jiffies;
250
251         /* Used to gracefully stop the timer without race conditions. */
252         atomic_t            stop_operation;
253
254         /*
255          * The driver will disable interrupts when it gets into a
256          * situation where it cannot handle messages due to lack of
257          * memory.  Once that situation clears up, it will re-enable
258          * interrupts.
259          */
260         int interrupt_disabled;
261
262         /* From the get device id response... */
263         struct ipmi_device_id device_id;
264
265         /* Driver model stuff. */
266         struct device *dev;
267         struct platform_device *pdev;
268
269         /*
270          * True if we allocated the device, false if it came from
271          * someplace else (like PCI).
272          */
273         int dev_registered;
274
275         /* Slave address, could be reported from DMI. */
276         unsigned char slave_addr;
277
278         /* Counters and things for the proc filesystem. */
279         atomic_t stats[SI_NUM_STATS];
280
281         struct task_struct *thread;
282
283         struct list_head link;
284         union ipmi_smi_info_union addr_info;
285 };
286
287 #define smi_inc_stat(smi, stat) \
288         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
289 #define smi_get_stat(smi, stat) \
290         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
291
292 #define SI_MAX_PARMS 4
293
294 static int force_kipmid[SI_MAX_PARMS];
295 static int num_force_kipmid;
296 #ifdef CONFIG_PCI
297 static int pci_registered;
298 #endif
299 #ifdef CONFIG_ACPI
300 static int pnp_registered;
301 #endif
302
303 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
304 static int num_max_busy_us;
305
306 static int unload_when_empty = 1;
307
308 static int add_smi(struct smi_info *smi);
309 static int try_smi_init(struct smi_info *smi);
310 static void cleanup_one_si(struct smi_info *to_clean);
311 static void cleanup_ipmi_si(void);
312
313 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
314 static int register_xaction_notifier(struct notifier_block *nb)
315 {
316         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
317 }
318
319 static void deliver_recv_msg(struct smi_info *smi_info,
320                              struct ipmi_smi_msg *msg)
321 {
322         /* Deliver the message to the upper layer with the lock
323            released. */
324
325         if (smi_info->run_to_completion) {
326                 ipmi_smi_msg_received(smi_info->intf, msg);
327         } else {
328                 spin_unlock(&(smi_info->si_lock));
329                 ipmi_smi_msg_received(smi_info->intf, msg);
330                 spin_lock(&(smi_info->si_lock));
331         }
332 }
333
334 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
335 {
336         struct ipmi_smi_msg *msg = smi_info->curr_msg;
337
338         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
339                 cCode = IPMI_ERR_UNSPECIFIED;
340         /* else use it as is */
341
342         /* Make it a reponse */
343         msg->rsp[0] = msg->data[0] | 4;
344         msg->rsp[1] = msg->data[1];
345         msg->rsp[2] = cCode;
346         msg->rsp_size = 3;
347
348         smi_info->curr_msg = NULL;
349         deliver_recv_msg(smi_info, msg);
350 }
351
352 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
353 {
354         int              rv;
355         struct list_head *entry = NULL;
356 #ifdef DEBUG_TIMING
357         struct timeval t;
358 #endif
359
360         /*
361          * No need to save flags, we aleady have interrupts off and we
362          * already hold the SMI lock.
363          */
364         if (!smi_info->run_to_completion)
365                 spin_lock(&(smi_info->msg_lock));
366
367         /* Pick the high priority queue first. */
368         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
369                 entry = smi_info->hp_xmit_msgs.next;
370         } else if (!list_empty(&(smi_info->xmit_msgs))) {
371                 entry = smi_info->xmit_msgs.next;
372         }
373
374         if (!entry) {
375                 smi_info->curr_msg = NULL;
376                 rv = SI_SM_IDLE;
377         } else {
378                 int err;
379
380                 list_del(entry);
381                 smi_info->curr_msg = list_entry(entry,
382                                                 struct ipmi_smi_msg,
383                                                 link);
384 #ifdef DEBUG_TIMING
385                 do_gettimeofday(&t);
386                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
387 #endif
388                 err = atomic_notifier_call_chain(&xaction_notifier_list,
389                                 0, smi_info);
390                 if (err & NOTIFY_STOP_MASK) {
391                         rv = SI_SM_CALL_WITHOUT_DELAY;
392                         goto out;
393                 }
394                 err = smi_info->handlers->start_transaction(
395                         smi_info->si_sm,
396                         smi_info->curr_msg->data,
397                         smi_info->curr_msg->data_size);
398                 if (err)
399                         return_hosed_msg(smi_info, err);
400
401                 rv = SI_SM_CALL_WITHOUT_DELAY;
402         }
403  out:
404         if (!smi_info->run_to_completion)
405                 spin_unlock(&(smi_info->msg_lock));
406
407         return rv;
408 }
409
410 static void start_enable_irq(struct smi_info *smi_info)
411 {
412         unsigned char msg[2];
413
414         /*
415          * If we are enabling interrupts, we have to tell the
416          * BMC to use them.
417          */
418         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
419         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
420
421         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
422         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
423 }
424
425 static void start_disable_irq(struct smi_info *smi_info)
426 {
427         unsigned char msg[2];
428
429         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
430         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
431
432         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
433         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
434 }
435
436 static void start_clear_flags(struct smi_info *smi_info)
437 {
438         unsigned char msg[3];
439
440         /* Make sure the watchdog pre-timeout flag is not set at startup. */
441         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
442         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
443         msg[2] = WDT_PRE_TIMEOUT_INT;
444
445         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
446         smi_info->si_state = SI_CLEARING_FLAGS;
447 }
448
449 /*
450  * When we have a situtaion where we run out of memory and cannot
451  * allocate messages, we just leave them in the BMC and run the system
452  * polled until we can allocate some memory.  Once we have some
453  * memory, we will re-enable the interrupt.
454  */
455 static inline void disable_si_irq(struct smi_info *smi_info)
456 {
457         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
458                 start_disable_irq(smi_info);
459                 smi_info->interrupt_disabled = 1;
460                 if (!atomic_read(&smi_info->stop_operation))
461                         mod_timer(&smi_info->si_timer,
462                                   jiffies + SI_TIMEOUT_JIFFIES);
463         }
464 }
465
466 static inline void enable_si_irq(struct smi_info *smi_info)
467 {
468         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
469                 start_enable_irq(smi_info);
470                 smi_info->interrupt_disabled = 0;
471         }
472 }
473
474 static void handle_flags(struct smi_info *smi_info)
475 {
476  retry:
477         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
478                 /* Watchdog pre-timeout */
479                 smi_inc_stat(smi_info, watchdog_pretimeouts);
480
481                 start_clear_flags(smi_info);
482                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
483                 spin_unlock(&(smi_info->si_lock));
484                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
485                 spin_lock(&(smi_info->si_lock));
486         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
487                 /* Messages available. */
488                 smi_info->curr_msg = ipmi_alloc_smi_msg();
489                 if (!smi_info->curr_msg) {
490                         disable_si_irq(smi_info);
491                         smi_info->si_state = SI_NORMAL;
492                         return;
493                 }
494                 enable_si_irq(smi_info);
495
496                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
497                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
498                 smi_info->curr_msg->data_size = 2;
499
500                 smi_info->handlers->start_transaction(
501                         smi_info->si_sm,
502                         smi_info->curr_msg->data,
503                         smi_info->curr_msg->data_size);
504                 smi_info->si_state = SI_GETTING_MESSAGES;
505         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
506                 /* Events available. */
507                 smi_info->curr_msg = ipmi_alloc_smi_msg();
508                 if (!smi_info->curr_msg) {
509                         disable_si_irq(smi_info);
510                         smi_info->si_state = SI_NORMAL;
511                         return;
512                 }
513                 enable_si_irq(smi_info);
514
515                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
516                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
517                 smi_info->curr_msg->data_size = 2;
518
519                 smi_info->handlers->start_transaction(
520                         smi_info->si_sm,
521                         smi_info->curr_msg->data,
522                         smi_info->curr_msg->data_size);
523                 smi_info->si_state = SI_GETTING_EVENTS;
524         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
525                    smi_info->oem_data_avail_handler) {
526                 if (smi_info->oem_data_avail_handler(smi_info))
527                         goto retry;
528         } else
529                 smi_info->si_state = SI_NORMAL;
530 }
531
532 static void handle_transaction_done(struct smi_info *smi_info)
533 {
534         struct ipmi_smi_msg *msg;
535 #ifdef DEBUG_TIMING
536         struct timeval t;
537
538         do_gettimeofday(&t);
539         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
540 #endif
541         switch (smi_info->si_state) {
542         case SI_NORMAL:
543                 if (!smi_info->curr_msg)
544                         break;
545
546                 smi_info->curr_msg->rsp_size
547                         = smi_info->handlers->get_result(
548                                 smi_info->si_sm,
549                                 smi_info->curr_msg->rsp,
550                                 IPMI_MAX_MSG_LENGTH);
551
552                 /*
553                  * Do this here becase deliver_recv_msg() releases the
554                  * lock, and a new message can be put in during the
555                  * time the lock is released.
556                  */
557                 msg = smi_info->curr_msg;
558                 smi_info->curr_msg = NULL;
559                 deliver_recv_msg(smi_info, msg);
560                 break;
561
562         case SI_GETTING_FLAGS:
563         {
564                 unsigned char msg[4];
565                 unsigned int  len;
566
567                 /* We got the flags from the SMI, now handle them. */
568                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
569                 if (msg[2] != 0) {
570                         /* Error fetching flags, just give up for now. */
571                         smi_info->si_state = SI_NORMAL;
572                 } else if (len < 4) {
573                         /*
574                          * Hmm, no flags.  That's technically illegal, but
575                          * don't use uninitialized data.
576                          */
577                         smi_info->si_state = SI_NORMAL;
578                 } else {
579                         smi_info->msg_flags = msg[3];
580                         handle_flags(smi_info);
581                 }
582                 break;
583         }
584
585         case SI_CLEARING_FLAGS:
586         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
587         {
588                 unsigned char msg[3];
589
590                 /* We cleared the flags. */
591                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
592                 if (msg[2] != 0) {
593                         /* Error clearing flags */
594                         dev_warn(smi_info->dev,
595                                  "Error clearing flags: %2.2x\n", msg[2]);
596                 }
597                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
598                         start_enable_irq(smi_info);
599                 else
600                         smi_info->si_state = SI_NORMAL;
601                 break;
602         }
603
604         case SI_GETTING_EVENTS:
605         {
606                 smi_info->curr_msg->rsp_size
607                         = smi_info->handlers->get_result(
608                                 smi_info->si_sm,
609                                 smi_info->curr_msg->rsp,
610                                 IPMI_MAX_MSG_LENGTH);
611
612                 /*
613                  * Do this here becase deliver_recv_msg() releases the
614                  * lock, and a new message can be put in during the
615                  * time the lock is released.
616                  */
617                 msg = smi_info->curr_msg;
618                 smi_info->curr_msg = NULL;
619                 if (msg->rsp[2] != 0) {
620                         /* Error getting event, probably done. */
621                         msg->done(msg);
622
623                         /* Take off the event flag. */
624                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
625                         handle_flags(smi_info);
626                 } else {
627                         smi_inc_stat(smi_info, events);
628
629                         /*
630                          * Do this before we deliver the message
631                          * because delivering the message releases the
632                          * lock and something else can mess with the
633                          * state.
634                          */
635                         handle_flags(smi_info);
636
637                         deliver_recv_msg(smi_info, msg);
638                 }
639                 break;
640         }
641
642         case SI_GETTING_MESSAGES:
643         {
644                 smi_info->curr_msg->rsp_size
645                         = smi_info->handlers->get_result(
646                                 smi_info->si_sm,
647                                 smi_info->curr_msg->rsp,
648                                 IPMI_MAX_MSG_LENGTH);
649
650                 /*
651                  * Do this here becase deliver_recv_msg() releases the
652                  * lock, and a new message can be put in during the
653                  * time the lock is released.
654                  */
655                 msg = smi_info->curr_msg;
656                 smi_info->curr_msg = NULL;
657                 if (msg->rsp[2] != 0) {
658                         /* Error getting event, probably done. */
659                         msg->done(msg);
660
661                         /* Take off the msg flag. */
662                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
663                         handle_flags(smi_info);
664                 } else {
665                         smi_inc_stat(smi_info, incoming_messages);
666
667                         /*
668                          * Do this before we deliver the message
669                          * because delivering the message releases the
670                          * lock and something else can mess with the
671                          * state.
672                          */
673                         handle_flags(smi_info);
674
675                         deliver_recv_msg(smi_info, msg);
676                 }
677                 break;
678         }
679
680         case SI_ENABLE_INTERRUPTS1:
681         {
682                 unsigned char msg[4];
683
684                 /* We got the flags from the SMI, now handle them. */
685                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
686                 if (msg[2] != 0) {
687                         dev_warn(smi_info->dev, "Could not enable interrupts"
688                                  ", failed get, using polled mode.\n");
689                         smi_info->si_state = SI_NORMAL;
690                 } else {
691                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
692                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
693                         msg[2] = (msg[3] |
694                                   IPMI_BMC_RCV_MSG_INTR |
695                                   IPMI_BMC_EVT_MSG_INTR);
696                         smi_info->handlers->start_transaction(
697                                 smi_info->si_sm, msg, 3);
698                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
699                 }
700                 break;
701         }
702
703         case SI_ENABLE_INTERRUPTS2:
704         {
705                 unsigned char msg[4];
706
707                 /* We got the flags from the SMI, now handle them. */
708                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
709                 if (msg[2] != 0)
710                         dev_warn(smi_info->dev, "Could not enable interrupts"
711                                  ", failed set, using polled mode.\n");
712                 else
713                         smi_info->interrupt_disabled = 0;
714                 smi_info->si_state = SI_NORMAL;
715                 break;
716         }
717
718         case SI_DISABLE_INTERRUPTS1:
719         {
720                 unsigned char msg[4];
721
722                 /* We got the flags from the SMI, now handle them. */
723                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
724                 if (msg[2] != 0) {
725                         dev_warn(smi_info->dev, "Could not disable interrupts"
726                                  ", failed get.\n");
727                         smi_info->si_state = SI_NORMAL;
728                 } else {
729                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
730                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
731                         msg[2] = (msg[3] &
732                                   ~(IPMI_BMC_RCV_MSG_INTR |
733                                     IPMI_BMC_EVT_MSG_INTR));
734                         smi_info->handlers->start_transaction(
735                                 smi_info->si_sm, msg, 3);
736                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
737                 }
738                 break;
739         }
740
741         case SI_DISABLE_INTERRUPTS2:
742         {
743                 unsigned char msg[4];
744
745                 /* We got the flags from the SMI, now handle them. */
746                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
747                 if (msg[2] != 0) {
748                         dev_warn(smi_info->dev, "Could not disable interrupts"
749                                  ", failed set.\n");
750                 }
751                 smi_info->si_state = SI_NORMAL;
752                 break;
753         }
754         }
755 }
756
757 /*
758  * Called on timeouts and events.  Timeouts should pass the elapsed
759  * time, interrupts should pass in zero.  Must be called with
760  * si_lock held and interrupts disabled.
761  */
762 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
763                                            int time)
764 {
765         enum si_sm_result si_sm_result;
766
767  restart:
768         /*
769          * There used to be a loop here that waited a little while
770          * (around 25us) before giving up.  That turned out to be
771          * pointless, the minimum delays I was seeing were in the 300us
772          * range, which is far too long to wait in an interrupt.  So
773          * we just run until the state machine tells us something
774          * happened or it needs a delay.
775          */
776         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
777         time = 0;
778         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
779                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
780
781         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
782                 smi_inc_stat(smi_info, complete_transactions);
783
784                 handle_transaction_done(smi_info);
785                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
786         } else if (si_sm_result == SI_SM_HOSED) {
787                 smi_inc_stat(smi_info, hosed_count);
788
789                 /*
790                  * Do the before return_hosed_msg, because that
791                  * releases the lock.
792                  */
793                 smi_info->si_state = SI_NORMAL;
794                 if (smi_info->curr_msg != NULL) {
795                         /*
796                          * If we were handling a user message, format
797                          * a response to send to the upper layer to
798                          * tell it about the error.
799                          */
800                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
801                 }
802                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
803         }
804
805         /*
806          * We prefer handling attn over new messages.  But don't do
807          * this if there is not yet an upper layer to handle anything.
808          */
809         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
810                 unsigned char msg[2];
811
812                 smi_inc_stat(smi_info, attentions);
813
814                 /*
815                  * Got a attn, send down a get message flags to see
816                  * what's causing it.  It would be better to handle
817                  * this in the upper layer, but due to the way
818                  * interrupts work with the SMI, that's not really
819                  * possible.
820                  */
821                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
822                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
823
824                 smi_info->handlers->start_transaction(
825                         smi_info->si_sm, msg, 2);
826                 smi_info->si_state = SI_GETTING_FLAGS;
827                 goto restart;
828         }
829
830         /* If we are currently idle, try to start the next message. */
831         if (si_sm_result == SI_SM_IDLE) {
832                 smi_inc_stat(smi_info, idles);
833
834                 si_sm_result = start_next_msg(smi_info);
835                 if (si_sm_result != SI_SM_IDLE)
836                         goto restart;
837         }
838
839         if ((si_sm_result == SI_SM_IDLE)
840             && (atomic_read(&smi_info->req_events))) {
841                 /*
842                  * We are idle and the upper layer requested that I fetch
843                  * events, so do so.
844                  */
845                 atomic_set(&smi_info->req_events, 0);
846
847                 smi_info->curr_msg = ipmi_alloc_smi_msg();
848                 if (!smi_info->curr_msg)
849                         goto out;
850
851                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
852                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
853                 smi_info->curr_msg->data_size = 2;
854
855                 smi_info->handlers->start_transaction(
856                         smi_info->si_sm,
857                         smi_info->curr_msg->data,
858                         smi_info->curr_msg->data_size);
859                 smi_info->si_state = SI_GETTING_EVENTS;
860                 goto restart;
861         }
862  out:
863         return si_sm_result;
864 }
865
866 static void sender(void                *send_info,
867                    struct ipmi_smi_msg *msg,
868                    int                 priority)
869 {
870         struct smi_info   *smi_info = send_info;
871         enum si_sm_result result;
872         unsigned long     flags;
873 #ifdef DEBUG_TIMING
874         struct timeval    t;
875 #endif
876
877         if (atomic_read(&smi_info->stop_operation)) {
878                 msg->rsp[0] = msg->data[0] | 4;
879                 msg->rsp[1] = msg->data[1];
880                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
881                 msg->rsp_size = 3;
882                 deliver_recv_msg(smi_info, msg);
883                 return;
884         }
885
886 #ifdef DEBUG_TIMING
887         do_gettimeofday(&t);
888         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
889 #endif
890
891         /*
892          * last_timeout_jiffies is updated here to avoid
893          * smi_timeout() handler passing very large time_diff
894          * value to smi_event_handler() that causes
895          * the send command to abort.
896          */
897         smi_info->last_timeout_jiffies = jiffies;
898
899         mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
900
901         if (smi_info->thread)
902                 wake_up_process(smi_info->thread);
903
904         if (smi_info->run_to_completion) {
905                 /*
906                  * If we are running to completion, then throw it in
907                  * the list and run transactions until everything is
908                  * clear.  Priority doesn't matter here.
909                  */
910
911                 /*
912                  * Run to completion means we are single-threaded, no
913                  * need for locks.
914                  */
915                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
916
917                 result = smi_event_handler(smi_info, 0);
918                 while (result != SI_SM_IDLE) {
919                         udelay(SI_SHORT_TIMEOUT_USEC);
920                         result = smi_event_handler(smi_info,
921                                                    SI_SHORT_TIMEOUT_USEC);
922                 }
923                 return;
924         }
925
926         spin_lock_irqsave(&smi_info->msg_lock, flags);
927         if (priority > 0)
928                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
929         else
930                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
931         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
932
933         spin_lock_irqsave(&smi_info->si_lock, flags);
934         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
935                 start_next_msg(smi_info);
936         spin_unlock_irqrestore(&smi_info->si_lock, flags);
937 }
938
939 static void set_run_to_completion(void *send_info, int i_run_to_completion)
940 {
941         struct smi_info   *smi_info = send_info;
942         enum si_sm_result result;
943
944         smi_info->run_to_completion = i_run_to_completion;
945         if (i_run_to_completion) {
946                 result = smi_event_handler(smi_info, 0);
947                 while (result != SI_SM_IDLE) {
948                         udelay(SI_SHORT_TIMEOUT_USEC);
949                         result = smi_event_handler(smi_info,
950                                                    SI_SHORT_TIMEOUT_USEC);
951                 }
952         }
953 }
954
955 /*
956  * Use -1 in the nsec value of the busy waiting timespec to tell that
957  * we are spinning in kipmid looking for something and not delaying
958  * between checks
959  */
960 static inline void ipmi_si_set_not_busy(struct timespec *ts)
961 {
962         ts->tv_nsec = -1;
963 }
964 static inline int ipmi_si_is_busy(struct timespec *ts)
965 {
966         return ts->tv_nsec != -1;
967 }
968
969 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
970                                  const struct smi_info *smi_info,
971                                  struct timespec *busy_until)
972 {
973         unsigned int max_busy_us = 0;
974
975         if (smi_info->intf_num < num_max_busy_us)
976                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
977         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
978                 ipmi_si_set_not_busy(busy_until);
979         else if (!ipmi_si_is_busy(busy_until)) {
980                 getnstimeofday(busy_until);
981                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
982         } else {
983                 struct timespec now;
984                 getnstimeofday(&now);
985                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
986                         ipmi_si_set_not_busy(busy_until);
987                         return 0;
988                 }
989         }
990         return 1;
991 }
992
993
994 /*
995  * A busy-waiting loop for speeding up IPMI operation.
996  *
997  * Lousy hardware makes this hard.  This is only enabled for systems
998  * that are not BT and do not have interrupts.  It starts spinning
999  * when an operation is complete or until max_busy tells it to stop
1000  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1001  * Documentation/IPMI.txt for details.
1002  */
1003 static int ipmi_thread(void *data)
1004 {
1005         struct smi_info *smi_info = data;
1006         unsigned long flags;
1007         enum si_sm_result smi_result;
1008         struct timespec busy_until;
1009
1010         ipmi_si_set_not_busy(&busy_until);
1011         set_user_nice(current, 19);
1012         while (!kthread_should_stop()) {
1013                 int busy_wait;
1014
1015                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1016                 smi_result = smi_event_handler(smi_info, 0);
1017                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1018                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1019                                                   &busy_until);
1020                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1021                         ; /* do nothing */
1022                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1023                         schedule();
1024                 else if (smi_result == SI_SM_IDLE)
1025                         schedule_timeout_interruptible(100);
1026                 else
1027                         schedule_timeout_interruptible(1);
1028         }
1029         return 0;
1030 }
1031
1032
1033 static void poll(void *send_info)
1034 {
1035         struct smi_info *smi_info = send_info;
1036         unsigned long flags;
1037
1038         /*
1039          * Make sure there is some delay in the poll loop so we can
1040          * drive time forward and timeout things.
1041          */
1042         udelay(10);
1043         spin_lock_irqsave(&smi_info->si_lock, flags);
1044         smi_event_handler(smi_info, 10);
1045         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1046 }
1047
1048 static void request_events(void *send_info)
1049 {
1050         struct smi_info *smi_info = send_info;
1051
1052         if (atomic_read(&smi_info->stop_operation) ||
1053                                 !smi_info->has_event_buffer)
1054                 return;
1055
1056         atomic_set(&smi_info->req_events, 1);
1057 }
1058
1059 static int initialized;
1060
1061 static void smi_timeout(unsigned long data)
1062 {
1063         struct smi_info   *smi_info = (struct smi_info *) data;
1064         enum si_sm_result smi_result;
1065         unsigned long     flags;
1066         unsigned long     jiffies_now;
1067         long              time_diff;
1068         long              timeout;
1069 #ifdef DEBUG_TIMING
1070         struct timeval    t;
1071 #endif
1072
1073         spin_lock_irqsave(&(smi_info->si_lock), flags);
1074 #ifdef DEBUG_TIMING
1075         do_gettimeofday(&t);
1076         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1077 #endif
1078         jiffies_now = jiffies;
1079         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1080                      * SI_USEC_PER_JIFFY);
1081         smi_result = smi_event_handler(smi_info, time_diff);
1082
1083         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1084
1085         smi_info->last_timeout_jiffies = jiffies_now;
1086
1087         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1088                 /* Running with interrupts, only do long timeouts. */
1089                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1090                 smi_inc_stat(smi_info, long_timeouts);
1091                 goto do_mod_timer;
1092         }
1093
1094         /*
1095          * If the state machine asks for a short delay, then shorten
1096          * the timer timeout.
1097          */
1098         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1099                 smi_inc_stat(smi_info, short_timeouts);
1100                 timeout = jiffies + 1;
1101         } else {
1102                 smi_inc_stat(smi_info, long_timeouts);
1103                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1104         }
1105
1106  do_mod_timer:
1107         if (smi_result != SI_SM_IDLE)
1108                 mod_timer(&(smi_info->si_timer), timeout);
1109 }
1110
1111 static irqreturn_t si_irq_handler(int irq, void *data)
1112 {
1113         struct smi_info *smi_info = data;
1114         unsigned long   flags;
1115 #ifdef DEBUG_TIMING
1116         struct timeval  t;
1117 #endif
1118
1119         spin_lock_irqsave(&(smi_info->si_lock), flags);
1120
1121         smi_inc_stat(smi_info, interrupts);
1122
1123 #ifdef DEBUG_TIMING
1124         do_gettimeofday(&t);
1125         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1126 #endif
1127         smi_event_handler(smi_info, 0);
1128         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1129         return IRQ_HANDLED;
1130 }
1131
1132 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1133 {
1134         struct smi_info *smi_info = data;
1135         /* We need to clear the IRQ flag for the BT interface. */
1136         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1137                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1138                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1139         return si_irq_handler(irq, data);
1140 }
1141
1142 static int smi_start_processing(void       *send_info,
1143                                 ipmi_smi_t intf)
1144 {
1145         struct smi_info *new_smi = send_info;
1146         int             enable = 0;
1147
1148         new_smi->intf = intf;
1149
1150         /* Try to claim any interrupts. */
1151         if (new_smi->irq_setup)
1152                 new_smi->irq_setup(new_smi);
1153
1154         /* Set up the timer that drives the interface. */
1155         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1156         new_smi->last_timeout_jiffies = jiffies;
1157         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1158
1159         /*
1160          * Check if the user forcefully enabled the daemon.
1161          */
1162         if (new_smi->intf_num < num_force_kipmid)
1163                 enable = force_kipmid[new_smi->intf_num];
1164         /*
1165          * The BT interface is efficient enough to not need a thread,
1166          * and there is no need for a thread if we have interrupts.
1167          */
1168         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1169                 enable = 1;
1170
1171         if (enable) {
1172                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1173                                               "kipmi%d", new_smi->intf_num);
1174                 if (IS_ERR(new_smi->thread)) {
1175                         dev_notice(new_smi->dev, "Could not start"
1176                                    " kernel thread due to error %ld, only using"
1177                                    " timers to drive the interface\n",
1178                                    PTR_ERR(new_smi->thread));
1179                         new_smi->thread = NULL;
1180                 }
1181         }
1182
1183         return 0;
1184 }
1185
1186 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1187 {
1188         struct smi_info *smi = send_info;
1189
1190         data->addr_src = smi->addr_source;
1191         data->dev = smi->dev;
1192         data->addr_info = smi->addr_info;
1193         get_device(smi->dev);
1194
1195         return 0;
1196 }
1197
1198 static void set_maintenance_mode(void *send_info, int enable)
1199 {
1200         struct smi_info   *smi_info = send_info;
1201
1202         if (!enable)
1203                 atomic_set(&smi_info->req_events, 0);
1204 }
1205
1206 static struct ipmi_smi_handlers handlers = {
1207         .owner                  = THIS_MODULE,
1208         .start_processing       = smi_start_processing,
1209         .get_smi_info           = get_smi_info,
1210         .sender                 = sender,
1211         .request_events         = request_events,
1212         .set_maintenance_mode   = set_maintenance_mode,
1213         .set_run_to_completion  = set_run_to_completion,
1214         .poll                   = poll,
1215 };
1216
1217 /*
1218  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1219  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1220  */
1221
1222 static LIST_HEAD(smi_infos);
1223 static DEFINE_MUTEX(smi_infos_lock);
1224 static int smi_num; /* Used to sequence the SMIs */
1225
1226 #define DEFAULT_REGSPACING      1
1227 #define DEFAULT_REGSIZE         1
1228
1229 static int           si_trydefaults = 1;
1230 static char          *si_type[SI_MAX_PARMS];
1231 #define MAX_SI_TYPE_STR 30
1232 static char          si_type_str[MAX_SI_TYPE_STR];
1233 static unsigned long addrs[SI_MAX_PARMS];
1234 static unsigned int num_addrs;
1235 static unsigned int  ports[SI_MAX_PARMS];
1236 static unsigned int num_ports;
1237 static int           irqs[SI_MAX_PARMS];
1238 static unsigned int num_irqs;
1239 static int           regspacings[SI_MAX_PARMS];
1240 static unsigned int num_regspacings;
1241 static int           regsizes[SI_MAX_PARMS];
1242 static unsigned int num_regsizes;
1243 static int           regshifts[SI_MAX_PARMS];
1244 static unsigned int num_regshifts;
1245 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1246 static unsigned int num_slave_addrs;
1247
1248 #define IPMI_IO_ADDR_SPACE  0
1249 #define IPMI_MEM_ADDR_SPACE 1
1250 static char *addr_space_to_str[] = { "i/o", "mem" };
1251
1252 static int hotmod_handler(const char *val, struct kernel_param *kp);
1253
1254 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1255 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1256                  " Documentation/IPMI.txt in the kernel sources for the"
1257                  " gory details.");
1258
1259 module_param_named(trydefaults, si_trydefaults, bool, 0);
1260 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1261                  " default scan of the KCS and SMIC interface at the standard"
1262                  " address");
1263 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1264 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1265                  " interface separated by commas.  The types are 'kcs',"
1266                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1267                  " the first interface to kcs and the second to bt");
1268 module_param_array(addrs, ulong, &num_addrs, 0);
1269 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1270                  " addresses separated by commas.  Only use if an interface"
1271                  " is in memory.  Otherwise, set it to zero or leave"
1272                  " it blank.");
1273 module_param_array(ports, uint, &num_ports, 0);
1274 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1275                  " addresses separated by commas.  Only use if an interface"
1276                  " is a port.  Otherwise, set it to zero or leave"
1277                  " it blank.");
1278 module_param_array(irqs, int, &num_irqs, 0);
1279 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1280                  " addresses separated by commas.  Only use if an interface"
1281                  " has an interrupt.  Otherwise, set it to zero or leave"
1282                  " it blank.");
1283 module_param_array(regspacings, int, &num_regspacings, 0);
1284 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1285                  " and each successive register used by the interface.  For"
1286                  " instance, if the start address is 0xca2 and the spacing"
1287                  " is 2, then the second address is at 0xca4.  Defaults"
1288                  " to 1.");
1289 module_param_array(regsizes, int, &num_regsizes, 0);
1290 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1291                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1292                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1293                  " the 8-bit IPMI register has to be read from a larger"
1294                  " register.");
1295 module_param_array(regshifts, int, &num_regshifts, 0);
1296 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1297                  " IPMI register, in bits.  For instance, if the data"
1298                  " is read from a 32-bit word and the IPMI data is in"
1299                  " bit 8-15, then the shift would be 8");
1300 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1301 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1302                  " the controller.  Normally this is 0x20, but can be"
1303                  " overridden by this parm.  This is an array indexed"
1304                  " by interface number.");
1305 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1306 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1307                  " disabled(0).  Normally the IPMI driver auto-detects"
1308                  " this, but the value may be overridden by this parm.");
1309 module_param(unload_when_empty, int, 0);
1310 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1311                  " specified or found, default is 1.  Setting to 0"
1312                  " is useful for hot add of devices using hotmod.");
1313 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1314 MODULE_PARM_DESC(kipmid_max_busy_us,
1315                  "Max time (in microseconds) to busy-wait for IPMI data before"
1316                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1317                  " if kipmid is using up a lot of CPU time.");
1318
1319
1320 static void std_irq_cleanup(struct smi_info *info)
1321 {
1322         if (info->si_type == SI_BT)
1323                 /* Disable the interrupt in the BT interface. */
1324                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1325         free_irq(info->irq, info);
1326 }
1327
1328 static int std_irq_setup(struct smi_info *info)
1329 {
1330         int rv;
1331
1332         if (!info->irq)
1333                 return 0;
1334
1335         if (info->si_type == SI_BT) {
1336                 rv = request_irq(info->irq,
1337                                  si_bt_irq_handler,
1338                                  IRQF_SHARED | IRQF_DISABLED,
1339                                  DEVICE_NAME,
1340                                  info);
1341                 if (!rv)
1342                         /* Enable the interrupt in the BT interface. */
1343                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1344                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1345         } else
1346                 rv = request_irq(info->irq,
1347                                  si_irq_handler,
1348                                  IRQF_SHARED | IRQF_DISABLED,
1349                                  DEVICE_NAME,
1350                                  info);
1351         if (rv) {
1352                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1353                          " running polled\n",
1354                          DEVICE_NAME, info->irq);
1355                 info->irq = 0;
1356         } else {
1357                 info->irq_cleanup = std_irq_cleanup;
1358                 dev_info(info->dev, "Using irq %d\n", info->irq);
1359         }
1360
1361         return rv;
1362 }
1363
1364 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1365 {
1366         unsigned int addr = io->addr_data;
1367
1368         return inb(addr + (offset * io->regspacing));
1369 }
1370
1371 static void port_outb(struct si_sm_io *io, unsigned int offset,
1372                       unsigned char b)
1373 {
1374         unsigned int addr = io->addr_data;
1375
1376         outb(b, addr + (offset * io->regspacing));
1377 }
1378
1379 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1380 {
1381         unsigned int addr = io->addr_data;
1382
1383         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1384 }
1385
1386 static void port_outw(struct si_sm_io *io, unsigned int offset,
1387                       unsigned char b)
1388 {
1389         unsigned int addr = io->addr_data;
1390
1391         outw(b << io->regshift, addr + (offset * io->regspacing));
1392 }
1393
1394 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1395 {
1396         unsigned int addr = io->addr_data;
1397
1398         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1399 }
1400
1401 static void port_outl(struct si_sm_io *io, unsigned int offset,
1402                       unsigned char b)
1403 {
1404         unsigned int addr = io->addr_data;
1405
1406         outl(b << io->regshift, addr+(offset * io->regspacing));
1407 }
1408
1409 static void port_cleanup(struct smi_info *info)
1410 {
1411         unsigned int addr = info->io.addr_data;
1412         int          idx;
1413
1414         if (addr) {
1415                 for (idx = 0; idx < info->io_size; idx++)
1416                         release_region(addr + idx * info->io.regspacing,
1417                                        info->io.regsize);
1418         }
1419 }
1420
1421 static int port_setup(struct smi_info *info)
1422 {
1423         unsigned int addr = info->io.addr_data;
1424         int          idx;
1425
1426         if (!addr)
1427                 return -ENODEV;
1428
1429         info->io_cleanup = port_cleanup;
1430
1431         /*
1432          * Figure out the actual inb/inw/inl/etc routine to use based
1433          * upon the register size.
1434          */
1435         switch (info->io.regsize) {
1436         case 1:
1437                 info->io.inputb = port_inb;
1438                 info->io.outputb = port_outb;
1439                 break;
1440         case 2:
1441                 info->io.inputb = port_inw;
1442                 info->io.outputb = port_outw;
1443                 break;
1444         case 4:
1445                 info->io.inputb = port_inl;
1446                 info->io.outputb = port_outl;
1447                 break;
1448         default:
1449                 dev_warn(info->dev, "Invalid register size: %d\n",
1450                          info->io.regsize);
1451                 return -EINVAL;
1452         }
1453
1454         /*
1455          * Some BIOSes reserve disjoint I/O regions in their ACPI
1456          * tables.  This causes problems when trying to register the
1457          * entire I/O region.  Therefore we must register each I/O
1458          * port separately.
1459          */
1460         for (idx = 0; idx < info->io_size; idx++) {
1461                 if (request_region(addr + idx * info->io.regspacing,
1462                                    info->io.regsize, DEVICE_NAME) == NULL) {
1463                         /* Undo allocations */
1464                         while (idx--) {
1465                                 release_region(addr + idx * info->io.regspacing,
1466                                                info->io.regsize);
1467                         }
1468                         return -EIO;
1469                 }
1470         }
1471         return 0;
1472 }
1473
1474 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1475 {
1476         return readb((io->addr)+(offset * io->regspacing));
1477 }
1478
1479 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1480                      unsigned char b)
1481 {
1482         writeb(b, (io->addr)+(offset * io->regspacing));
1483 }
1484
1485 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1486 {
1487         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1488                 & 0xff;
1489 }
1490
1491 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1492                      unsigned char b)
1493 {
1494         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1495 }
1496
1497 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1498 {
1499         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1500                 & 0xff;
1501 }
1502
1503 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1504                      unsigned char b)
1505 {
1506         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1507 }
1508
1509 #ifdef readq
1510 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1511 {
1512         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1513                 & 0xff;
1514 }
1515
1516 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1517                      unsigned char b)
1518 {
1519         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1520 }
1521 #endif
1522
1523 static void mem_cleanup(struct smi_info *info)
1524 {
1525         unsigned long addr = info->io.addr_data;
1526         int           mapsize;
1527
1528         if (info->io.addr) {
1529                 iounmap(info->io.addr);
1530
1531                 mapsize = ((info->io_size * info->io.regspacing)
1532                            - (info->io.regspacing - info->io.regsize));
1533
1534                 release_mem_region(addr, mapsize);
1535         }
1536 }
1537
1538 static int mem_setup(struct smi_info *info)
1539 {
1540         unsigned long addr = info->io.addr_data;
1541         int           mapsize;
1542
1543         if (!addr)
1544                 return -ENODEV;
1545
1546         info->io_cleanup = mem_cleanup;
1547
1548         /*
1549          * Figure out the actual readb/readw/readl/etc routine to use based
1550          * upon the register size.
1551          */
1552         switch (info->io.regsize) {
1553         case 1:
1554                 info->io.inputb = intf_mem_inb;
1555                 info->io.outputb = intf_mem_outb;
1556                 break;
1557         case 2:
1558                 info->io.inputb = intf_mem_inw;
1559                 info->io.outputb = intf_mem_outw;
1560                 break;
1561         case 4:
1562                 info->io.inputb = intf_mem_inl;
1563                 info->io.outputb = intf_mem_outl;
1564                 break;
1565 #ifdef readq
1566         case 8:
1567                 info->io.inputb = mem_inq;
1568                 info->io.outputb = mem_outq;
1569                 break;
1570 #endif
1571         default:
1572                 dev_warn(info->dev, "Invalid register size: %d\n",
1573                          info->io.regsize);
1574                 return -EINVAL;
1575         }
1576
1577         /*
1578          * Calculate the total amount of memory to claim.  This is an
1579          * unusual looking calculation, but it avoids claiming any
1580          * more memory than it has to.  It will claim everything
1581          * between the first address to the end of the last full
1582          * register.
1583          */
1584         mapsize = ((info->io_size * info->io.regspacing)
1585                    - (info->io.regspacing - info->io.regsize));
1586
1587         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1588                 return -EIO;
1589
1590         info->io.addr = ioremap(addr, mapsize);
1591         if (info->io.addr == NULL) {
1592                 release_mem_region(addr, mapsize);
1593                 return -EIO;
1594         }
1595         return 0;
1596 }
1597
1598 /*
1599  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1600  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1601  * Options are:
1602  *   rsp=<regspacing>
1603  *   rsi=<regsize>
1604  *   rsh=<regshift>
1605  *   irq=<irq>
1606  *   ipmb=<ipmb addr>
1607  */
1608 enum hotmod_op { HM_ADD, HM_REMOVE };
1609 struct hotmod_vals {
1610         char *name;
1611         int  val;
1612 };
1613 static struct hotmod_vals hotmod_ops[] = {
1614         { "add",        HM_ADD },
1615         { "remove",     HM_REMOVE },
1616         { NULL }
1617 };
1618 static struct hotmod_vals hotmod_si[] = {
1619         { "kcs",        SI_KCS },
1620         { "smic",       SI_SMIC },
1621         { "bt",         SI_BT },
1622         { NULL }
1623 };
1624 static struct hotmod_vals hotmod_as[] = {
1625         { "mem",        IPMI_MEM_ADDR_SPACE },
1626         { "i/o",        IPMI_IO_ADDR_SPACE },
1627         { NULL }
1628 };
1629
1630 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1631 {
1632         char *s;
1633         int  i;
1634
1635         s = strchr(*curr, ',');
1636         if (!s) {
1637                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1638                 return -EINVAL;
1639         }
1640         *s = '\0';
1641         s++;
1642         for (i = 0; hotmod_ops[i].name; i++) {
1643                 if (strcmp(*curr, v[i].name) == 0) {
1644                         *val = v[i].val;
1645                         *curr = s;
1646                         return 0;
1647                 }
1648         }
1649
1650         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1651         return -EINVAL;
1652 }
1653
1654 static int check_hotmod_int_op(const char *curr, const char *option,
1655                                const char *name, int *val)
1656 {
1657         char *n;
1658
1659         if (strcmp(curr, name) == 0) {
1660                 if (!option) {
1661                         printk(KERN_WARNING PFX
1662                                "No option given for '%s'\n",
1663                                curr);
1664                         return -EINVAL;
1665                 }
1666                 *val = simple_strtoul(option, &n, 0);
1667                 if ((*n != '\0') || (*option == '\0')) {
1668                         printk(KERN_WARNING PFX
1669                                "Bad option given for '%s'\n",
1670                                curr);
1671                         return -EINVAL;
1672                 }
1673                 return 1;
1674         }
1675         return 0;
1676 }
1677
1678 static struct smi_info *smi_info_alloc(void)
1679 {
1680         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1681
1682         if (info) {
1683                 spin_lock_init(&info->si_lock);
1684                 spin_lock_init(&info->msg_lock);
1685         }
1686         return info;
1687 }
1688
1689 static int hotmod_handler(const char *val, struct kernel_param *kp)
1690 {
1691         char *str = kstrdup(val, GFP_KERNEL);
1692         int  rv;
1693         char *next, *curr, *s, *n, *o;
1694         enum hotmod_op op;
1695         enum si_type si_type;
1696         int  addr_space;
1697         unsigned long addr;
1698         int regspacing;
1699         int regsize;
1700         int regshift;
1701         int irq;
1702         int ipmb;
1703         int ival;
1704         int len;
1705         struct smi_info *info;
1706
1707         if (!str)
1708                 return -ENOMEM;
1709
1710         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1711         len = strlen(str);
1712         ival = len - 1;
1713         while ((ival >= 0) && isspace(str[ival])) {
1714                 str[ival] = '\0';
1715                 ival--;
1716         }
1717
1718         for (curr = str; curr; curr = next) {
1719                 regspacing = 1;
1720                 regsize = 1;
1721                 regshift = 0;
1722                 irq = 0;
1723                 ipmb = 0; /* Choose the default if not specified */
1724
1725                 next = strchr(curr, ':');
1726                 if (next) {
1727                         *next = '\0';
1728                         next++;
1729                 }
1730
1731                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1732                 if (rv)
1733                         break;
1734                 op = ival;
1735
1736                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1737                 if (rv)
1738                         break;
1739                 si_type = ival;
1740
1741                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1742                 if (rv)
1743                         break;
1744
1745                 s = strchr(curr, ',');
1746                 if (s) {
1747                         *s = '\0';
1748                         s++;
1749                 }
1750                 addr = simple_strtoul(curr, &n, 0);
1751                 if ((*n != '\0') || (*curr == '\0')) {
1752                         printk(KERN_WARNING PFX "Invalid hotmod address"
1753                                " '%s'\n", curr);
1754                         break;
1755                 }
1756
1757                 while (s) {
1758                         curr = s;
1759                         s = strchr(curr, ',');
1760                         if (s) {
1761                                 *s = '\0';
1762                                 s++;
1763                         }
1764                         o = strchr(curr, '=');
1765                         if (o) {
1766                                 *o = '\0';
1767                                 o++;
1768                         }
1769                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1770                         if (rv < 0)
1771                                 goto out;
1772                         else if (rv)
1773                                 continue;
1774                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1775                         if (rv < 0)
1776                                 goto out;
1777                         else if (rv)
1778                                 continue;
1779                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1780                         if (rv < 0)
1781                                 goto out;
1782                         else if (rv)
1783                                 continue;
1784                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1785                         if (rv < 0)
1786                                 goto out;
1787                         else if (rv)
1788                                 continue;
1789                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1790                         if (rv < 0)
1791                                 goto out;
1792                         else if (rv)
1793                                 continue;
1794
1795                         rv = -EINVAL;
1796                         printk(KERN_WARNING PFX
1797                                "Invalid hotmod option '%s'\n",
1798                                curr);
1799                         goto out;
1800                 }
1801
1802                 if (op == HM_ADD) {
1803                         info = smi_info_alloc();
1804                         if (!info) {
1805                                 rv = -ENOMEM;
1806                                 goto out;
1807                         }
1808
1809                         info->addr_source = SI_HOTMOD;
1810                         info->si_type = si_type;
1811                         info->io.addr_data = addr;
1812                         info->io.addr_type = addr_space;
1813                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1814                                 info->io_setup = mem_setup;
1815                         else
1816                                 info->io_setup = port_setup;
1817
1818                         info->io.addr = NULL;
1819                         info->io.regspacing = regspacing;
1820                         if (!info->io.regspacing)
1821                                 info->io.regspacing = DEFAULT_REGSPACING;
1822                         info->io.regsize = regsize;
1823                         if (!info->io.regsize)
1824                                 info->io.regsize = DEFAULT_REGSPACING;
1825                         info->io.regshift = regshift;
1826                         info->irq = irq;
1827                         if (info->irq)
1828                                 info->irq_setup = std_irq_setup;
1829                         info->slave_addr = ipmb;
1830
1831                         if (!add_smi(info)) {
1832                                 if (try_smi_init(info))
1833                                         cleanup_one_si(info);
1834                         } else {
1835                                 kfree(info);
1836                         }
1837                 } else {
1838                         /* remove */
1839                         struct smi_info *e, *tmp_e;
1840
1841                         mutex_lock(&smi_infos_lock);
1842                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1843                                 if (e->io.addr_type != addr_space)
1844                                         continue;
1845                                 if (e->si_type != si_type)
1846                                         continue;
1847                                 if (e->io.addr_data == addr)
1848                                         cleanup_one_si(e);
1849                         }
1850                         mutex_unlock(&smi_infos_lock);
1851                 }
1852         }
1853         rv = len;
1854  out:
1855         kfree(str);
1856         return rv;
1857 }
1858
1859 static int __devinit hardcode_find_bmc(void)
1860 {
1861         int ret = -ENODEV;
1862         int             i;
1863         struct smi_info *info;
1864
1865         for (i = 0; i < SI_MAX_PARMS; i++) {
1866                 if (!ports[i] && !addrs[i])
1867                         continue;
1868
1869                 info = smi_info_alloc();
1870                 if (!info)
1871                         return -ENOMEM;
1872
1873                 info->addr_source = SI_HARDCODED;
1874                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1875
1876                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1877                         info->si_type = SI_KCS;
1878                 } else if (strcmp(si_type[i], "smic") == 0) {
1879                         info->si_type = SI_SMIC;
1880                 } else if (strcmp(si_type[i], "bt") == 0) {
1881                         info->si_type = SI_BT;
1882                 } else {
1883                         printk(KERN_WARNING PFX "Interface type specified "
1884                                "for interface %d, was invalid: %s\n",
1885                                i, si_type[i]);
1886                         kfree(info);
1887                         continue;
1888                 }
1889
1890                 if (ports[i]) {
1891                         /* An I/O port */
1892                         info->io_setup = port_setup;
1893                         info->io.addr_data = ports[i];
1894                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1895                 } else if (addrs[i]) {
1896                         /* A memory port */
1897                         info->io_setup = mem_setup;
1898                         info->io.addr_data = addrs[i];
1899                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1900                 } else {
1901                         printk(KERN_WARNING PFX "Interface type specified "
1902                                "for interface %d, but port and address were "
1903                                "not set or set to zero.\n", i);
1904                         kfree(info);
1905                         continue;
1906                 }
1907
1908                 info->io.addr = NULL;
1909                 info->io.regspacing = regspacings[i];
1910                 if (!info->io.regspacing)
1911                         info->io.regspacing = DEFAULT_REGSPACING;
1912                 info->io.regsize = regsizes[i];
1913                 if (!info->io.regsize)
1914                         info->io.regsize = DEFAULT_REGSPACING;
1915                 info->io.regshift = regshifts[i];
1916                 info->irq = irqs[i];
1917                 if (info->irq)
1918                         info->irq_setup = std_irq_setup;
1919                 info->slave_addr = slave_addrs[i];
1920
1921                 if (!add_smi(info)) {
1922                         if (try_smi_init(info))
1923                                 cleanup_one_si(info);
1924                         ret = 0;
1925                 } else {
1926                         kfree(info);
1927                 }
1928         }
1929         return ret;
1930 }
1931
1932 #ifdef CONFIG_ACPI
1933
1934 #include <linux/acpi.h>
1935
1936 /*
1937  * Once we get an ACPI failure, we don't try any more, because we go
1938  * through the tables sequentially.  Once we don't find a table, there
1939  * are no more.
1940  */
1941 static int acpi_failure;
1942
1943 /* For GPE-type interrupts. */
1944 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1945         u32 gpe_number, void *context)
1946 {
1947         struct smi_info *smi_info = context;
1948         unsigned long   flags;
1949 #ifdef DEBUG_TIMING
1950         struct timeval t;
1951 #endif
1952
1953         spin_lock_irqsave(&(smi_info->si_lock), flags);
1954
1955         smi_inc_stat(smi_info, interrupts);
1956
1957 #ifdef DEBUG_TIMING
1958         do_gettimeofday(&t);
1959         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1960 #endif
1961         smi_event_handler(smi_info, 0);
1962         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1963
1964         return ACPI_INTERRUPT_HANDLED;
1965 }
1966
1967 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1968 {
1969         if (!info->irq)
1970                 return;
1971
1972         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1973 }
1974
1975 static int acpi_gpe_irq_setup(struct smi_info *info)
1976 {
1977         acpi_status status;
1978
1979         if (!info->irq)
1980                 return 0;
1981
1982         /* FIXME - is level triggered right? */
1983         status = acpi_install_gpe_handler(NULL,
1984                                           info->irq,
1985                                           ACPI_GPE_LEVEL_TRIGGERED,
1986                                           &ipmi_acpi_gpe,
1987                                           info);
1988         if (status != AE_OK) {
1989                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1990                          " running polled\n", DEVICE_NAME, info->irq);
1991                 info->irq = 0;
1992                 return -EINVAL;
1993         } else {
1994                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1995                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1996                 return 0;
1997         }
1998 }
1999
2000 /*
2001  * Defined at
2002  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2003  */
2004 struct SPMITable {
2005         s8      Signature[4];
2006         u32     Length;
2007         u8      Revision;
2008         u8      Checksum;
2009         s8      OEMID[6];
2010         s8      OEMTableID[8];
2011         s8      OEMRevision[4];
2012         s8      CreatorID[4];
2013         s8      CreatorRevision[4];
2014         u8      InterfaceType;
2015         u8      IPMIlegacy;
2016         s16     SpecificationRevision;
2017
2018         /*
2019          * Bit 0 - SCI interrupt supported
2020          * Bit 1 - I/O APIC/SAPIC
2021          */
2022         u8      InterruptType;
2023
2024         /*
2025          * If bit 0 of InterruptType is set, then this is the SCI
2026          * interrupt in the GPEx_STS register.
2027          */
2028         u8      GPE;
2029
2030         s16     Reserved;
2031
2032         /*
2033          * If bit 1 of InterruptType is set, then this is the I/O
2034          * APIC/SAPIC interrupt.
2035          */
2036         u32     GlobalSystemInterrupt;
2037
2038         /* The actual register address. */
2039         struct acpi_generic_address addr;
2040
2041         u8      UID[4];
2042
2043         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2044 };
2045
2046 static int __devinit try_init_spmi(struct SPMITable *spmi)
2047 {
2048         struct smi_info  *info;
2049
2050         if (spmi->IPMIlegacy != 1) {
2051                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2052                 return -ENODEV;
2053         }
2054
2055         info = smi_info_alloc();
2056         if (!info) {
2057                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2058                 return -ENOMEM;
2059         }
2060
2061         info->addr_source = SI_SPMI;
2062         printk(KERN_INFO PFX "probing via SPMI\n");
2063
2064         /* Figure out the interface type. */
2065         switch (spmi->InterfaceType) {
2066         case 1: /* KCS */
2067                 info->si_type = SI_KCS;
2068                 break;
2069         case 2: /* SMIC */
2070                 info->si_type = SI_SMIC;
2071                 break;
2072         case 3: /* BT */
2073                 info->si_type = SI_BT;
2074                 break;
2075         default:
2076                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2077                        spmi->InterfaceType);
2078                 kfree(info);
2079                 return -EIO;
2080         }
2081
2082         if (spmi->InterruptType & 1) {
2083                 /* We've got a GPE interrupt. */
2084                 info->irq = spmi->GPE;
2085                 info->irq_setup = acpi_gpe_irq_setup;
2086         } else if (spmi->InterruptType & 2) {
2087                 /* We've got an APIC/SAPIC interrupt. */
2088                 info->irq = spmi->GlobalSystemInterrupt;
2089                 info->irq_setup = std_irq_setup;
2090         } else {
2091                 /* Use the default interrupt setting. */
2092                 info->irq = 0;
2093                 info->irq_setup = NULL;
2094         }
2095
2096         if (spmi->addr.bit_width) {
2097                 /* A (hopefully) properly formed register bit width. */
2098                 info->io.regspacing = spmi->addr.bit_width / 8;
2099         } else {
2100                 info->io.regspacing = DEFAULT_REGSPACING;
2101         }
2102         info->io.regsize = info->io.regspacing;
2103         info->io.regshift = spmi->addr.bit_offset;
2104
2105         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2106                 info->io_setup = mem_setup;
2107                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2108         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2109                 info->io_setup = port_setup;
2110                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2111         } else {
2112                 kfree(info);
2113                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2114                 return -EIO;
2115         }
2116         info->io.addr_data = spmi->addr.address;
2117
2118         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2119                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2120                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2121                  info->irq);
2122
2123         if (add_smi(info))
2124                 kfree(info);
2125
2126         return 0;
2127 }
2128
2129 static void __devinit spmi_find_bmc(void)
2130 {
2131         acpi_status      status;
2132         struct SPMITable *spmi;
2133         int              i;
2134
2135         if (acpi_disabled)
2136                 return;
2137
2138         if (acpi_failure)
2139                 return;
2140
2141         for (i = 0; ; i++) {
2142                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2143                                         (struct acpi_table_header **)&spmi);
2144                 if (status != AE_OK)
2145                         return;
2146
2147                 try_init_spmi(spmi);
2148         }
2149 }
2150
2151 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2152                                     const struct pnp_device_id *dev_id)
2153 {
2154         struct acpi_device *acpi_dev;
2155         struct smi_info *info;
2156         struct resource *res, *res_second;
2157         acpi_handle handle;
2158         acpi_status status;
2159         unsigned long long tmp;
2160
2161         acpi_dev = pnp_acpi_device(dev);
2162         if (!acpi_dev)
2163                 return -ENODEV;
2164
2165         info = smi_info_alloc();
2166         if (!info)
2167                 return -ENOMEM;
2168
2169         info->addr_source = SI_ACPI;
2170         printk(KERN_INFO PFX "probing via ACPI\n");
2171
2172         handle = acpi_dev->handle;
2173         info->addr_info.acpi_info.acpi_handle = handle;
2174
2175         /* _IFT tells us the interface type: KCS, BT, etc */
2176         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2177         if (ACPI_FAILURE(status))
2178                 goto err_free;
2179
2180         switch (tmp) {
2181         case 1:
2182                 info->si_type = SI_KCS;
2183                 break;
2184         case 2:
2185                 info->si_type = SI_SMIC;
2186                 break;
2187         case 3:
2188                 info->si_type = SI_BT;
2189                 break;
2190         default:
2191                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2192                 goto err_free;
2193         }
2194
2195         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2196         if (res) {
2197                 info->io_setup = port_setup;
2198                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2199         } else {
2200                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2201                 if (res) {
2202                         info->io_setup = mem_setup;
2203                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2204                 }
2205         }
2206         if (!res) {
2207                 dev_err(&dev->dev, "no I/O or memory address\n");
2208                 goto err_free;
2209         }
2210         info->io.addr_data = res->start;
2211
2212         info->io.regspacing = DEFAULT_REGSPACING;
2213         res_second = pnp_get_resource(dev,
2214                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2215                                         IORESOURCE_IO : IORESOURCE_MEM,
2216                                1);
2217         if (res_second) {
2218                 if (res_second->start > info->io.addr_data)
2219                         info->io.regspacing = res_second->start - info->io.addr_data;
2220         }
2221         info->io.regsize = DEFAULT_REGSPACING;
2222         info->io.regshift = 0;
2223
2224         /* If _GPE exists, use it; otherwise use standard interrupts */
2225         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2226         if (ACPI_SUCCESS(status)) {
2227                 info->irq = tmp;
2228                 info->irq_setup = acpi_gpe_irq_setup;
2229         } else if (pnp_irq_valid(dev, 0)) {
2230                 info->irq = pnp_irq(dev, 0);
2231                 info->irq_setup = std_irq_setup;
2232         }
2233
2234         info->dev = &dev->dev;
2235         pnp_set_drvdata(dev, info);
2236
2237         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2238                  res, info->io.regsize, info->io.regspacing,
2239                  info->irq);
2240
2241         if (add_smi(info))
2242                 goto err_free;
2243
2244         return 0;
2245
2246 err_free:
2247         kfree(info);
2248         return -EINVAL;
2249 }
2250
2251 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2252 {
2253         struct smi_info *info = pnp_get_drvdata(dev);
2254
2255         cleanup_one_si(info);
2256 }
2257
2258 static const struct pnp_device_id pnp_dev_table[] = {
2259         {"IPI0001", 0},
2260         {"", 0},
2261 };
2262
2263 static struct pnp_driver ipmi_pnp_driver = {
2264         .name           = DEVICE_NAME,
2265         .probe          = ipmi_pnp_probe,
2266         .remove         = __devexit_p(ipmi_pnp_remove),
2267         .id_table       = pnp_dev_table,
2268 };
2269 #endif
2270
2271 #ifdef CONFIG_DMI
2272 struct dmi_ipmi_data {
2273         u8              type;
2274         u8              addr_space;
2275         unsigned long   base_addr;
2276         u8              irq;
2277         u8              offset;
2278         u8              slave_addr;
2279 };
2280
2281 static int __devinit decode_dmi(const struct dmi_header *dm,
2282                                 struct dmi_ipmi_data *dmi)
2283 {
2284         const u8        *data = (const u8 *)dm;
2285         unsigned long   base_addr;
2286         u8              reg_spacing;
2287         u8              len = dm->length;
2288
2289         dmi->type = data[4];
2290
2291         memcpy(&base_addr, data+8, sizeof(unsigned long));
2292         if (len >= 0x11) {
2293                 if (base_addr & 1) {
2294                         /* I/O */
2295                         base_addr &= 0xFFFE;
2296                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2297                 } else
2298                         /* Memory */
2299                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2300
2301                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2302                    is odd. */
2303                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2304
2305                 dmi->irq = data[0x11];
2306
2307                 /* The top two bits of byte 0x10 hold the register spacing. */
2308                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2309                 switch (reg_spacing) {
2310                 case 0x00: /* Byte boundaries */
2311                     dmi->offset = 1;
2312                     break;
2313                 case 0x01: /* 32-bit boundaries */
2314                     dmi->offset = 4;
2315                     break;
2316                 case 0x02: /* 16-byte boundaries */
2317                     dmi->offset = 16;
2318                     break;
2319                 default:
2320                     /* Some other interface, just ignore it. */
2321                     return -EIO;
2322                 }
2323         } else {
2324                 /* Old DMI spec. */
2325                 /*
2326                  * Note that technically, the lower bit of the base
2327                  * address should be 1 if the address is I/O and 0 if
2328                  * the address is in memory.  So many systems get that
2329                  * wrong (and all that I have seen are I/O) so we just
2330                  * ignore that bit and assume I/O.  Systems that use
2331                  * memory should use the newer spec, anyway.
2332                  */
2333                 dmi->base_addr = base_addr & 0xfffe;
2334                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2335                 dmi->offset = 1;
2336         }
2337
2338         dmi->slave_addr = data[6];
2339
2340         return 0;
2341 }
2342
2343 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2344 {
2345         struct smi_info *info;
2346
2347         info = smi_info_alloc();
2348         if (!info) {
2349                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2350                 return;
2351         }
2352
2353         info->addr_source = SI_SMBIOS;
2354         printk(KERN_INFO PFX "probing via SMBIOS\n");
2355
2356         switch (ipmi_data->type) {
2357         case 0x01: /* KCS */
2358                 info->si_type = SI_KCS;
2359                 break;
2360         case 0x02: /* SMIC */
2361                 info->si_type = SI_SMIC;
2362                 break;
2363         case 0x03: /* BT */
2364                 info->si_type = SI_BT;
2365                 break;
2366         default:
2367                 kfree(info);
2368                 return;
2369         }
2370
2371         switch (ipmi_data->addr_space) {
2372         case IPMI_MEM_ADDR_SPACE:
2373                 info->io_setup = mem_setup;
2374                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2375                 break;
2376
2377         case IPMI_IO_ADDR_SPACE:
2378                 info->io_setup = port_setup;
2379                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2380                 break;
2381
2382         default:
2383                 kfree(info);
2384                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2385                        ipmi_data->addr_space);
2386                 return;
2387         }
2388         info->io.addr_data = ipmi_data->base_addr;
2389
2390         info->io.regspacing = ipmi_data->offset;
2391         if (!info->io.regspacing)
2392                 info->io.regspacing = DEFAULT_REGSPACING;
2393         info->io.regsize = DEFAULT_REGSPACING;
2394         info->io.regshift = 0;
2395
2396         info->slave_addr = ipmi_data->slave_addr;
2397
2398         info->irq = ipmi_data->irq;
2399         if (info->irq)
2400                 info->irq_setup = std_irq_setup;
2401
2402         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2403                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2404                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2405                  info->irq);
2406
2407         if (add_smi(info))
2408                 kfree(info);
2409 }
2410
2411 static void __devinit dmi_find_bmc(void)
2412 {
2413         const struct dmi_device *dev = NULL;
2414         struct dmi_ipmi_data data;
2415         int                  rv;
2416
2417         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2418                 memset(&data, 0, sizeof(data));
2419                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2420                                 &data);
2421                 if (!rv)
2422                         try_init_dmi(&data);
2423         }
2424 }
2425 #endif /* CONFIG_DMI */
2426
2427 #ifdef CONFIG_PCI
2428
2429 #define PCI_ERMC_CLASSCODE              0x0C0700
2430 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2431 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2432 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2433 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2434 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2435
2436 #define PCI_HP_VENDOR_ID    0x103C
2437 #define PCI_MMC_DEVICE_ID   0x121A
2438 #define PCI_MMC_ADDR_CW     0x10
2439
2440 static void ipmi_pci_cleanup(struct smi_info *info)
2441 {
2442         struct pci_dev *pdev = info->addr_source_data;
2443
2444         pci_disable_device(pdev);
2445 }
2446
2447 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2448                                     const struct pci_device_id *ent)
2449 {
2450         int rv;
2451         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2452         struct smi_info *info;
2453
2454         info = smi_info_alloc();
2455         if (!info)
2456                 return -ENOMEM;
2457
2458         info->addr_source = SI_PCI;
2459         dev_info(&pdev->dev, "probing via PCI");
2460
2461         switch (class_type) {
2462         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2463                 info->si_type = SI_SMIC;
2464                 break;
2465
2466         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2467                 info->si_type = SI_KCS;
2468                 break;
2469
2470         case PCI_ERMC_CLASSCODE_TYPE_BT:
2471                 info->si_type = SI_BT;
2472                 break;
2473
2474         default:
2475                 kfree(info);
2476                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2477                 return -ENOMEM;
2478         }
2479
2480         rv = pci_enable_device(pdev);
2481         if (rv) {
2482                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2483                 kfree(info);
2484                 return rv;
2485         }
2486
2487         info->addr_source_cleanup = ipmi_pci_cleanup;
2488         info->addr_source_data = pdev;
2489
2490         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2491                 info->io_setup = port_setup;
2492                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2493         } else {
2494                 info->io_setup = mem_setup;
2495                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2496         }
2497         info->io.addr_data = pci_resource_start(pdev, 0);
2498
2499         info->io.regspacing = DEFAULT_REGSPACING;
2500         info->io.regsize = DEFAULT_REGSPACING;
2501         info->io.regshift = 0;
2502
2503         info->irq = pdev->irq;
2504         if (info->irq)
2505                 info->irq_setup = std_irq_setup;
2506
2507         info->dev = &pdev->dev;
2508         pci_set_drvdata(pdev, info);
2509
2510         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2511                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2512                 info->irq);
2513
2514         if (add_smi(info))
2515                 kfree(info);
2516
2517         return 0;
2518 }
2519
2520 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2521 {
2522         struct smi_info *info = pci_get_drvdata(pdev);
2523         cleanup_one_si(info);
2524 }
2525
2526 #ifdef CONFIG_PM
2527 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2528 {
2529         return 0;
2530 }
2531
2532 static int ipmi_pci_resume(struct pci_dev *pdev)
2533 {
2534         return 0;
2535 }
2536 #endif
2537
2538 static struct pci_device_id ipmi_pci_devices[] = {
2539         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2540         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2541         { 0, }
2542 };
2543 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2544
2545 static struct pci_driver ipmi_pci_driver = {
2546         .name =         DEVICE_NAME,
2547         .id_table =     ipmi_pci_devices,
2548         .probe =        ipmi_pci_probe,
2549         .remove =       __devexit_p(ipmi_pci_remove),
2550 #ifdef CONFIG_PM
2551         .suspend =      ipmi_pci_suspend,
2552         .resume =       ipmi_pci_resume,
2553 #endif
2554 };
2555 #endif /* CONFIG_PCI */
2556
2557 static int __devinit ipmi_probe(struct platform_device *dev)
2558 {
2559 #ifdef CONFIG_OF
2560         struct smi_info *info;
2561         struct resource resource;
2562         const __be32 *regsize, *regspacing, *regshift;
2563         struct device_node *np = dev->dev.of_node;
2564         int ret;
2565         int proplen;
2566
2567         dev_info(&dev->dev, "probing via device tree\n");
2568
2569         if (!dev->dev.of_match)
2570                 return -EINVAL;
2571
2572         ret = of_address_to_resource(np, 0, &resource);
2573         if (ret) {
2574                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2575                 return ret;
2576         }
2577
2578         regsize = of_get_property(np, "reg-size", &proplen);
2579         if (regsize && proplen != 4) {
2580                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2581                 return -EINVAL;
2582         }
2583
2584         regspacing = of_get_property(np, "reg-spacing", &proplen);
2585         if (regspacing && proplen != 4) {
2586                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2587                 return -EINVAL;
2588         }
2589
2590         regshift = of_get_property(np, "reg-shift", &proplen);
2591         if (regshift && proplen != 4) {
2592                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2593                 return -EINVAL;
2594         }
2595
2596         info = smi_info_alloc();
2597
2598         if (!info) {
2599                 dev_err(&dev->dev,
2600                         "could not allocate memory for OF probe\n");
2601                 return -ENOMEM;
2602         }
2603
2604         info->si_type           = (enum si_type) dev->dev.of_match->data;
2605         info->addr_source       = SI_DEVICETREE;
2606         info->irq_setup         = std_irq_setup;
2607
2608         if (resource.flags & IORESOURCE_IO) {
2609                 info->io_setup          = port_setup;
2610                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2611         } else {
2612                 info->io_setup          = mem_setup;
2613                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2614         }
2615
2616         info->io.addr_data      = resource.start;
2617
2618         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2619         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2620         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2621
2622         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2623         info->dev               = &dev->dev;
2624
2625         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2626                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2627                 info->irq);
2628
2629         dev_set_drvdata(&dev->dev, info);
2630
2631         if (add_smi(info)) {
2632                 kfree(info);
2633                 return -EBUSY;
2634         }
2635 #endif
2636         return 0;
2637 }
2638
2639 static int __devexit ipmi_remove(struct platform_device *dev)
2640 {
2641 #ifdef CONFIG_OF
2642         cleanup_one_si(dev_get_drvdata(&dev->dev));
2643 #endif
2644         return 0;
2645 }
2646
2647 static struct of_device_id ipmi_match[] =
2648 {
2649         { .type = "ipmi", .compatible = "ipmi-kcs",
2650           .data = (void *)(unsigned long) SI_KCS },
2651         { .type = "ipmi", .compatible = "ipmi-smic",
2652           .data = (void *)(unsigned long) SI_SMIC },
2653         { .type = "ipmi", .compatible = "ipmi-bt",
2654           .data = (void *)(unsigned long) SI_BT },
2655         {},
2656 };
2657
2658 static struct platform_driver ipmi_driver = {
2659         .driver = {
2660                 .name = DEVICE_NAME,
2661                 .owner = THIS_MODULE,
2662                 .of_match_table = ipmi_match,
2663         },
2664         .probe          = ipmi_probe,
2665         .remove         = __devexit_p(ipmi_remove),
2666 };
2667
2668 static int wait_for_msg_done(struct smi_info *smi_info)
2669 {
2670         enum si_sm_result     smi_result;
2671
2672         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2673         for (;;) {
2674                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2675                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2676                         schedule_timeout_uninterruptible(1);
2677                         smi_result = smi_info->handlers->event(
2678                                 smi_info->si_sm, 100);
2679                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2680                         smi_result = smi_info->handlers->event(
2681                                 smi_info->si_sm, 0);
2682                 } else
2683                         break;
2684         }
2685         if (smi_result == SI_SM_HOSED)
2686                 /*
2687                  * We couldn't get the state machine to run, so whatever's at
2688                  * the port is probably not an IPMI SMI interface.
2689                  */
2690                 return -ENODEV;
2691
2692         return 0;
2693 }
2694
2695 static int try_get_dev_id(struct smi_info *smi_info)
2696 {
2697         unsigned char         msg[2];
2698         unsigned char         *resp;
2699         unsigned long         resp_len;
2700         int                   rv = 0;
2701
2702         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2703         if (!resp)
2704                 return -ENOMEM;
2705
2706         /*
2707          * Do a Get Device ID command, since it comes back with some
2708          * useful info.
2709          */
2710         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2711         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2712         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2713
2714         rv = wait_for_msg_done(smi_info);
2715         if (rv)
2716                 goto out;
2717
2718         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2719                                                   resp, IPMI_MAX_MSG_LENGTH);
2720
2721         /* Check and record info from the get device id, in case we need it. */
2722         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2723
2724  out:
2725         kfree(resp);
2726         return rv;
2727 }
2728
2729 static int try_enable_event_buffer(struct smi_info *smi_info)
2730 {
2731         unsigned char         msg[3];
2732         unsigned char         *resp;
2733         unsigned long         resp_len;
2734         int                   rv = 0;
2735
2736         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2737         if (!resp)
2738                 return -ENOMEM;
2739
2740         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2741         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2742         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2743
2744         rv = wait_for_msg_done(smi_info);
2745         if (rv) {
2746                 printk(KERN_WARNING PFX "Error getting response from get"
2747                        " global enables command, the event buffer is not"
2748                        " enabled.\n");
2749                 goto out;
2750         }
2751
2752         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2753                                                   resp, IPMI_MAX_MSG_LENGTH);
2754
2755         if (resp_len < 4 ||
2756                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2757                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2758                         resp[2] != 0) {
2759                 printk(KERN_WARNING PFX "Invalid return from get global"
2760                        " enables command, cannot enable the event buffer.\n");
2761                 rv = -EINVAL;
2762                 goto out;
2763         }
2764
2765         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2766                 /* buffer is already enabled, nothing to do. */
2767                 goto out;
2768
2769         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2770         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2771         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2772         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2773
2774         rv = wait_for_msg_done(smi_info);
2775         if (rv) {
2776                 printk(KERN_WARNING PFX "Error getting response from set"
2777                        " global, enables command, the event buffer is not"
2778                        " enabled.\n");
2779                 goto out;
2780         }
2781
2782         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2783                                                   resp, IPMI_MAX_MSG_LENGTH);
2784
2785         if (resp_len < 3 ||
2786                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2787                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2788                 printk(KERN_WARNING PFX "Invalid return from get global,"
2789                        "enables command, not enable the event buffer.\n");
2790                 rv = -EINVAL;
2791                 goto out;
2792         }
2793
2794         if (resp[2] != 0)
2795                 /*
2796                  * An error when setting the event buffer bit means
2797                  * that the event buffer is not supported.
2798                  */
2799                 rv = -ENOENT;
2800  out:
2801         kfree(resp);
2802         return rv;
2803 }
2804
2805 static int type_file_read_proc(char *page, char **start, off_t off,
2806                                int count, int *eof, void *data)
2807 {
2808         struct smi_info *smi = data;
2809
2810         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2811 }
2812
2813 static int stat_file_read_proc(char *page, char **start, off_t off,
2814                                int count, int *eof, void *data)
2815 {
2816         char            *out = (char *) page;
2817         struct smi_info *smi = data;
2818
2819         out += sprintf(out, "interrupts_enabled:    %d\n",
2820                        smi->irq && !smi->interrupt_disabled);
2821         out += sprintf(out, "short_timeouts:        %u\n",
2822                        smi_get_stat(smi, short_timeouts));
2823         out += sprintf(out, "long_timeouts:         %u\n",
2824                        smi_get_stat(smi, long_timeouts));
2825         out += sprintf(out, "idles:                 %u\n",
2826                        smi_get_stat(smi, idles));
2827         out += sprintf(out, "interrupts:            %u\n",
2828                        smi_get_stat(smi, interrupts));
2829         out += sprintf(out, "attentions:            %u\n",
2830                        smi_get_stat(smi, attentions));
2831         out += sprintf(out, "flag_fetches:          %u\n",
2832                        smi_get_stat(smi, flag_fetches));
2833         out += sprintf(out, "hosed_count:           %u\n",
2834                        smi_get_stat(smi, hosed_count));
2835         out += sprintf(out, "complete_transactions: %u\n",
2836                        smi_get_stat(smi, complete_transactions));
2837         out += sprintf(out, "events:                %u\n",
2838                        smi_get_stat(smi, events));
2839         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2840                        smi_get_stat(smi, watchdog_pretimeouts));
2841         out += sprintf(out, "incoming_messages:     %u\n",
2842                        smi_get_stat(smi, incoming_messages));
2843
2844         return out - page;
2845 }
2846
2847 static int param_read_proc(char *page, char **start, off_t off,
2848                            int count, int *eof, void *data)
2849 {
2850         struct smi_info *smi = data;
2851
2852         return sprintf(page,
2853                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2854                        si_to_str[smi->si_type],
2855                        addr_space_to_str[smi->io.addr_type],
2856                        smi->io.addr_data,
2857                        smi->io.regspacing,
2858                        smi->io.regsize,
2859                        smi->io.regshift,
2860                        smi->irq,
2861                        smi->slave_addr);
2862 }
2863
2864 /*
2865  * oem_data_avail_to_receive_msg_avail
2866  * @info - smi_info structure with msg_flags set
2867  *
2868  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2869  * Returns 1 indicating need to re-run handle_flags().
2870  */
2871 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2872 {
2873         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2874                                RECEIVE_MSG_AVAIL);
2875         return 1;
2876 }
2877
2878 /*
2879  * setup_dell_poweredge_oem_data_handler
2880  * @info - smi_info.device_id must be populated
2881  *
2882  * Systems that match, but have firmware version < 1.40 may assert
2883  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2884  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2885  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2886  * as RECEIVE_MSG_AVAIL instead.
2887  *
2888  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2889  * assert the OEM[012] bits, and if it did, the driver would have to
2890  * change to handle that properly, we don't actually check for the
2891  * firmware version.
2892  * Device ID = 0x20                BMC on PowerEdge 8G servers
2893  * Device Revision = 0x80
2894  * Firmware Revision1 = 0x01       BMC version 1.40
2895  * Firmware Revision2 = 0x40       BCD encoded
2896  * IPMI Version = 0x51             IPMI 1.5
2897  * Manufacturer ID = A2 02 00      Dell IANA
2898  *
2899  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2900  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2901  *
2902  */
2903 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2904 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2905 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2906 #define DELL_IANA_MFR_ID 0x0002a2
2907 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2908 {
2909         struct ipmi_device_id *id = &smi_info->device_id;
2910         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2911                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2912                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2913                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2914                         smi_info->oem_data_avail_handler =
2915                                 oem_data_avail_to_receive_msg_avail;
2916                 } else if (ipmi_version_major(id) < 1 ||
2917                            (ipmi_version_major(id) == 1 &&
2918                             ipmi_version_minor(id) < 5)) {
2919                         smi_info->oem_data_avail_handler =
2920                                 oem_data_avail_to_receive_msg_avail;
2921                 }
2922         }
2923 }
2924
2925 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2926 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2927 {
2928         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2929
2930         /* Make it a reponse */
2931         msg->rsp[0] = msg->data[0] | 4;
2932         msg->rsp[1] = msg->data[1];
2933         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2934         msg->rsp_size = 3;
2935         smi_info->curr_msg = NULL;
2936         deliver_recv_msg(smi_info, msg);
2937 }
2938
2939 /*
2940  * dell_poweredge_bt_xaction_handler
2941  * @info - smi_info.device_id must be populated
2942  *
2943  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2944  * not respond to a Get SDR command if the length of the data
2945  * requested is exactly 0x3A, which leads to command timeouts and no
2946  * data returned.  This intercepts such commands, and causes userspace
2947  * callers to try again with a different-sized buffer, which succeeds.
2948  */
2949
2950 #define STORAGE_NETFN 0x0A
2951 #define STORAGE_CMD_GET_SDR 0x23
2952 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2953                                              unsigned long unused,
2954                                              void *in)
2955 {
2956         struct smi_info *smi_info = in;
2957         unsigned char *data = smi_info->curr_msg->data;
2958         unsigned int size   = smi_info->curr_msg->data_size;
2959         if (size >= 8 &&
2960             (data[0]>>2) == STORAGE_NETFN &&
2961             data[1] == STORAGE_CMD_GET_SDR &&
2962             data[7] == 0x3A) {
2963                 return_hosed_msg_badsize(smi_info);
2964                 return NOTIFY_STOP;
2965         }
2966         return NOTIFY_DONE;
2967 }
2968
2969 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2970         .notifier_call  = dell_poweredge_bt_xaction_handler,
2971 };
2972
2973 /*
2974  * setup_dell_poweredge_bt_xaction_handler
2975  * @info - smi_info.device_id must be filled in already
2976  *
2977  * Fills in smi_info.device_id.start_transaction_pre_hook
2978  * when we know what function to use there.
2979  */
2980 static void
2981 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2982 {
2983         struct ipmi_device_id *id = &smi_info->device_id;
2984         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2985             smi_info->si_type == SI_BT)
2986                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2987 }
2988
2989 /*
2990  * setup_oem_data_handler
2991  * @info - smi_info.device_id must be filled in already
2992  *
2993  * Fills in smi_info.device_id.oem_data_available_handler
2994  * when we know what function to use there.
2995  */
2996
2997 static void setup_oem_data_handler(struct smi_info *smi_info)
2998 {
2999         setup_dell_poweredge_oem_data_handler(smi_info);
3000 }
3001
3002 static void setup_xaction_handlers(struct smi_info *smi_info)
3003 {
3004         setup_dell_poweredge_bt_xaction_handler(smi_info);
3005 }
3006
3007 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3008 {
3009         if (smi_info->intf) {
3010                 /*
3011                  * The timer and thread are only running if the
3012                  * interface has been started up and registered.
3013                  */
3014                 if (smi_info->thread != NULL)
3015                         kthread_stop(smi_info->thread);
3016                 del_timer_sync(&smi_info->si_timer);
3017         }
3018 }
3019
3020 static __devinitdata struct ipmi_default_vals
3021 {
3022         int type;
3023         int port;
3024 } ipmi_defaults[] =
3025 {
3026         { .type = SI_KCS, .port = 0xca2 },
3027         { .type = SI_SMIC, .port = 0xca9 },
3028         { .type = SI_BT, .port = 0xe4 },
3029         { .port = 0 }
3030 };
3031
3032 static void __devinit default_find_bmc(void)
3033 {
3034         struct smi_info *info;
3035         int             i;
3036
3037         for (i = 0; ; i++) {
3038                 if (!ipmi_defaults[i].port)
3039                         break;
3040 #ifdef CONFIG_PPC
3041                 if (check_legacy_ioport(ipmi_defaults[i].port))
3042                         continue;
3043 #endif
3044                 info = smi_info_alloc();
3045                 if (!info)
3046                         return;
3047
3048                 info->addr_source = SI_DEFAULT;
3049
3050                 info->si_type = ipmi_defaults[i].type;
3051                 info->io_setup = port_setup;
3052                 info->io.addr_data = ipmi_defaults[i].port;
3053                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3054
3055                 info->io.addr = NULL;
3056                 info->io.regspacing = DEFAULT_REGSPACING;
3057                 info->io.regsize = DEFAULT_REGSPACING;
3058                 info->io.regshift = 0;
3059
3060                 if (add_smi(info) == 0) {
3061                         if ((try_smi_init(info)) == 0) {
3062                                 /* Found one... */
3063                                 printk(KERN_INFO PFX "Found default %s"
3064                                 " state machine at %s address 0x%lx\n",
3065                                 si_to_str[info->si_type],
3066                                 addr_space_to_str[info->io.addr_type],
3067                                 info->io.addr_data);
3068                         } else
3069                                 cleanup_one_si(info);
3070                 } else {
3071                         kfree(info);
3072                 }
3073         }
3074 }
3075
3076 static int is_new_interface(struct smi_info *info)
3077 {
3078         struct smi_info *e;
3079
3080         list_for_each_entry(e, &smi_infos, link) {
3081                 if (e->io.addr_type != info->io.addr_type)
3082                         continue;
3083                 if (e->io.addr_data == info->io.addr_data)
3084                         return 0;
3085         }
3086
3087         return 1;
3088 }
3089
3090 static int add_smi(struct smi_info *new_smi)
3091 {
3092         int rv = 0;
3093
3094         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3095                         ipmi_addr_src_to_str[new_smi->addr_source],
3096                         si_to_str[new_smi->si_type]);
3097         mutex_lock(&smi_infos_lock);
3098         if (!is_new_interface(new_smi)) {
3099                 printk(KERN_CONT " duplicate interface\n");
3100                 rv = -EBUSY;
3101                 goto out_err;
3102         }
3103
3104         printk(KERN_CONT "\n");
3105
3106         /* So we know not to free it unless we have allocated one. */
3107         new_smi->intf = NULL;
3108         new_smi->si_sm = NULL;
3109         new_smi->handlers = NULL;
3110
3111         list_add_tail(&new_smi->link, &smi_infos);
3112
3113 out_err:
3114         mutex_unlock(&smi_infos_lock);
3115         return rv;
3116 }
3117
3118 static int try_smi_init(struct smi_info *new_smi)
3119 {
3120         int rv = 0;
3121         int i;
3122
3123         printk(KERN_INFO PFX "Trying %s-specified %s state"
3124                " machine at %s address 0x%lx, slave address 0x%x,"
3125                " irq %d\n",
3126                ipmi_addr_src_to_str[new_smi->addr_source],
3127                si_to_str[new_smi->si_type],
3128                addr_space_to_str[new_smi->io.addr_type],
3129                new_smi->io.addr_data,
3130                new_smi->slave_addr, new_smi->irq);
3131
3132         switch (new_smi->si_type) {
3133         case SI_KCS:
3134                 new_smi->handlers = &kcs_smi_handlers;
3135                 break;
3136
3137         case SI_SMIC:
3138                 new_smi->handlers = &smic_smi_handlers;
3139                 break;
3140
3141         case SI_BT:
3142                 new_smi->handlers = &bt_smi_handlers;
3143                 break;
3144
3145         default:
3146                 /* No support for anything else yet. */
3147                 rv = -EIO;
3148                 goto out_err;
3149         }
3150
3151         /* Allocate the state machine's data and initialize it. */
3152         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3153         if (!new_smi->si_sm) {
3154                 printk(KERN_ERR PFX
3155                        "Could not allocate state machine memory\n");
3156                 rv = -ENOMEM;
3157                 goto out_err;
3158         }
3159         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3160                                                         &new_smi->io);
3161
3162         /* Now that we know the I/O size, we can set up the I/O. */
3163         rv = new_smi->io_setup(new_smi);
3164         if (rv) {
3165                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3166                 goto out_err;
3167         }
3168
3169         /* Do low-level detection first. */
3170         if (new_smi->handlers->detect(new_smi->si_sm)) {
3171                 if (new_smi->addr_source)
3172                         printk(KERN_INFO PFX "Interface detection failed\n");
3173                 rv = -ENODEV;
3174                 goto out_err;
3175         }
3176
3177         /*
3178          * Attempt a get device id command.  If it fails, we probably
3179          * don't have a BMC here.
3180          */
3181         rv = try_get_dev_id(new_smi);
3182         if (rv) {
3183                 if (new_smi->addr_source)
3184                         printk(KERN_INFO PFX "There appears to be no BMC"
3185                                " at this location\n");
3186                 goto out_err;
3187         }
3188
3189         setup_oem_data_handler(new_smi);
3190         setup_xaction_handlers(new_smi);
3191
3192         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3193         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3194         new_smi->curr_msg = NULL;
3195         atomic_set(&new_smi->req_events, 0);
3196         new_smi->run_to_completion = 0;
3197         for (i = 0; i < SI_NUM_STATS; i++)
3198                 atomic_set(&new_smi->stats[i], 0);
3199
3200         new_smi->interrupt_disabled = 1;
3201         atomic_set(&new_smi->stop_operation, 0);
3202         new_smi->intf_num = smi_num;
3203         smi_num++;
3204
3205         rv = try_enable_event_buffer(new_smi);
3206         if (rv == 0)
3207                 new_smi->has_event_buffer = 1;
3208
3209         /*
3210          * Start clearing the flags before we enable interrupts or the
3211          * timer to avoid racing with the timer.
3212          */
3213         start_clear_flags(new_smi);
3214         /* IRQ is defined to be set when non-zero. */
3215         if (new_smi->irq)
3216                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3217
3218         if (!new_smi->dev) {
3219                 /*
3220                  * If we don't already have a device from something
3221                  * else (like PCI), then register a new one.
3222                  */
3223                 new_smi->pdev = platform_device_alloc("ipmi_si",
3224                                                       new_smi->intf_num);
3225                 if (!new_smi->pdev) {
3226                         printk(KERN_ERR PFX
3227                                "Unable to allocate platform device\n");
3228                         goto out_err;
3229                 }
3230                 new_smi->dev = &new_smi->pdev->dev;
3231                 new_smi->dev->driver = &ipmi_driver.driver;
3232
3233                 rv = platform_device_add(new_smi->pdev);
3234                 if (rv) {
3235                         printk(KERN_ERR PFX
3236                                "Unable to register system interface device:"
3237                                " %d\n",
3238                                rv);
3239                         goto out_err;
3240                 }
3241                 new_smi->dev_registered = 1;
3242         }
3243
3244         rv = ipmi_register_smi(&handlers,
3245                                new_smi,
3246                                &new_smi->device_id,
3247                                new_smi->dev,
3248                                "bmc",
3249                                new_smi->slave_addr);
3250         if (rv) {
3251                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3252                         rv);
3253                 goto out_err_stop_timer;
3254         }
3255
3256         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3257                                      type_file_read_proc,
3258                                      new_smi);
3259         if (rv) {
3260                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3261                 goto out_err_stop_timer;
3262         }
3263
3264         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3265                                      stat_file_read_proc,
3266                                      new_smi);
3267         if (rv) {
3268                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3269                 goto out_err_stop_timer;
3270         }
3271
3272         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3273                                      param_read_proc,
3274                                      new_smi);
3275         if (rv) {
3276                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3277                 goto out_err_stop_timer;
3278         }
3279
3280         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3281                  si_to_str[new_smi->si_type]);
3282
3283         return 0;
3284
3285  out_err_stop_timer:
3286         atomic_inc(&new_smi->stop_operation);
3287         wait_for_timer_and_thread(new_smi);
3288
3289  out_err:
3290         new_smi->interrupt_disabled = 1;
3291
3292         if (new_smi->intf) {
3293                 ipmi_unregister_smi(new_smi->intf);
3294                 new_smi->intf = NULL;
3295         }
3296
3297         if (new_smi->irq_cleanup) {
3298                 new_smi->irq_cleanup(new_smi);
3299                 new_smi->irq_cleanup = NULL;
3300         }
3301
3302         /*
3303          * Wait until we know that we are out of any interrupt
3304          * handlers might have been running before we freed the
3305          * interrupt.
3306          */
3307         synchronize_sched();
3308
3309         if (new_smi->si_sm) {
3310                 if (new_smi->handlers)
3311                         new_smi->handlers->cleanup(new_smi->si_sm);
3312                 kfree(new_smi->si_sm);
3313                 new_smi->si_sm = NULL;
3314         }
3315         if (new_smi->addr_source_cleanup) {
3316                 new_smi->addr_source_cleanup(new_smi);
3317                 new_smi->addr_source_cleanup = NULL;
3318         }
3319         if (new_smi->io_cleanup) {
3320                 new_smi->io_cleanup(new_smi);
3321                 new_smi->io_cleanup = NULL;
3322         }
3323
3324         if (new_smi->dev_registered) {
3325                 platform_device_unregister(new_smi->pdev);
3326                 new_smi->dev_registered = 0;
3327         }
3328
3329         return rv;
3330 }
3331
3332 static int __devinit init_ipmi_si(void)
3333 {
3334         int  i;
3335         char *str;
3336         int  rv;
3337         struct smi_info *e;
3338         enum ipmi_addr_src type = SI_INVALID;
3339
3340         if (initialized)
3341                 return 0;
3342         initialized = 1;
3343
3344         rv = platform_driver_register(&ipmi_driver);
3345         if (rv) {
3346                 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3347                 return rv;
3348         }
3349
3350
3351         /* Parse out the si_type string into its components. */
3352         str = si_type_str;
3353         if (*str != '\0') {
3354                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3355                         si_type[i] = str;
3356                         str = strchr(str, ',');
3357                         if (str) {
3358                                 *str = '\0';
3359                                 str++;
3360                         } else {
3361                                 break;
3362                         }
3363                 }
3364         }
3365
3366         printk(KERN_INFO "IPMI System Interface driver.\n");
3367
3368         /* If the user gave us a device, they presumably want us to use it */
3369         if (!hardcode_find_bmc())
3370                 return 0;
3371
3372 #ifdef CONFIG_PCI
3373         rv = pci_register_driver(&ipmi_pci_driver);
3374         if (rv)
3375                 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3376         else
3377                 pci_registered = 1;
3378 #endif
3379
3380 #ifdef CONFIG_ACPI
3381         pnp_register_driver(&ipmi_pnp_driver);
3382         pnp_registered = 1;
3383 #endif
3384
3385 #ifdef CONFIG_DMI
3386         dmi_find_bmc();
3387 #endif
3388
3389 #ifdef CONFIG_ACPI
3390         spmi_find_bmc();
3391 #endif
3392
3393         /* We prefer devices with interrupts, but in the case of a machine
3394            with multiple BMCs we assume that there will be several instances
3395            of a given type so if we succeed in registering a type then also
3396            try to register everything else of the same type */
3397
3398         mutex_lock(&smi_infos_lock);
3399         list_for_each_entry(e, &smi_infos, link) {
3400                 /* Try to register a device if it has an IRQ and we either
3401                    haven't successfully registered a device yet or this
3402                    device has the same type as one we successfully registered */
3403                 if (e->irq && (!type || e->addr_source == type)) {
3404                         if (!try_smi_init(e)) {
3405                                 type = e->addr_source;
3406                         }
3407                 }
3408         }
3409
3410         /* type will only have been set if we successfully registered an si */
3411         if (type) {
3412                 mutex_unlock(&smi_infos_lock);
3413                 return 0;
3414         }
3415
3416         /* Fall back to the preferred device */
3417
3418         list_for_each_entry(e, &smi_infos, link) {
3419                 if (!e->irq && (!type || e->addr_source == type)) {
3420                         if (!try_smi_init(e)) {
3421                                 type = e->addr_source;
3422                         }
3423                 }
3424         }
3425         mutex_unlock(&smi_infos_lock);
3426
3427         if (type)
3428                 return 0;
3429
3430         if (si_trydefaults) {
3431                 mutex_lock(&smi_infos_lock);
3432                 if (list_empty(&smi_infos)) {
3433                         /* No BMC was found, try defaults. */
3434                         mutex_unlock(&smi_infos_lock);
3435                         default_find_bmc();
3436                 } else
3437                         mutex_unlock(&smi_infos_lock);
3438         }
3439
3440         mutex_lock(&smi_infos_lock);
3441         if (unload_when_empty && list_empty(&smi_infos)) {
3442                 mutex_unlock(&smi_infos_lock);
3443                 cleanup_ipmi_si();
3444                 printk(KERN_WARNING PFX
3445                        "Unable to find any System Interface(s)\n");
3446                 return -ENODEV;
3447         } else {
3448                 mutex_unlock(&smi_infos_lock);
3449                 return 0;
3450         }
3451 }
3452 module_init(init_ipmi_si);
3453
3454 static void cleanup_one_si(struct smi_info *to_clean)
3455 {
3456         int           rv = 0;
3457         unsigned long flags;
3458
3459         if (!to_clean)
3460                 return;
3461
3462         list_del(&to_clean->link);
3463
3464         /* Tell the driver that we are shutting down. */
3465         atomic_inc(&to_clean->stop_operation);
3466
3467         /*
3468          * Make sure the timer and thread are stopped and will not run
3469          * again.
3470          */
3471         wait_for_timer_and_thread(to_clean);
3472
3473         /*
3474          * Timeouts are stopped, now make sure the interrupts are off
3475          * for the device.  A little tricky with locks to make sure
3476          * there are no races.
3477          */
3478         spin_lock_irqsave(&to_clean->si_lock, flags);
3479         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3480                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3481                 poll(to_clean);
3482                 schedule_timeout_uninterruptible(1);
3483                 spin_lock_irqsave(&to_clean->si_lock, flags);
3484         }
3485         disable_si_irq(to_clean);
3486         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3487         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3488                 poll(to_clean);
3489                 schedule_timeout_uninterruptible(1);
3490         }
3491
3492         /* Clean up interrupts and make sure that everything is done. */
3493         if (to_clean->irq_cleanup)
3494                 to_clean->irq_cleanup(to_clean);
3495         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3496                 poll(to_clean);
3497                 schedule_timeout_uninterruptible(1);
3498         }
3499
3500         if (to_clean->intf)
3501                 rv = ipmi_unregister_smi(to_clean->intf);
3502
3503         if (rv) {
3504                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3505                        rv);
3506         }
3507
3508         if (to_clean->handlers)
3509                 to_clean->handlers->cleanup(to_clean->si_sm);
3510
3511         kfree(to_clean->si_sm);
3512
3513         if (to_clean->addr_source_cleanup)
3514                 to_clean->addr_source_cleanup(to_clean);
3515         if (to_clean->io_cleanup)
3516                 to_clean->io_cleanup(to_clean);
3517
3518         if (to_clean->dev_registered)
3519                 platform_device_unregister(to_clean->pdev);
3520
3521         kfree(to_clean);
3522 }
3523
3524 static void cleanup_ipmi_si(void)
3525 {
3526         struct smi_info *e, *tmp_e;
3527
3528         if (!initialized)
3529                 return;
3530
3531 #ifdef CONFIG_PCI
3532         if (pci_registered)
3533                 pci_unregister_driver(&ipmi_pci_driver);
3534 #endif
3535 #ifdef CONFIG_ACPI
3536         if (pnp_registered)
3537                 pnp_unregister_driver(&ipmi_pnp_driver);
3538 #endif
3539
3540         platform_driver_unregister(&ipmi_driver);
3541
3542         mutex_lock(&smi_infos_lock);
3543         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3544                 cleanup_one_si(e);
3545         mutex_unlock(&smi_infos_lock);
3546 }
3547 module_exit(cleanup_ipmi_si);
3548
3549 MODULE_LICENSE("GPL");
3550 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3551 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3552                    " system interfaces.");