Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-fixes
[pandora-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68
69 #ifdef CONFIG_PPC_OF
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #endif
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC    10000
81 #define SI_USEC_PER_JIFFY       (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84                                       short timeout */
85
86 enum si_intf_state {
87         SI_NORMAL,
88         SI_GETTING_FLAGS,
89         SI_GETTING_EVENTS,
90         SI_CLEARING_FLAGS,
91         SI_CLEARING_FLAGS_THEN_SET_IRQ,
92         SI_GETTING_MESSAGES,
93         SI_ENABLE_INTERRUPTS1,
94         SI_ENABLE_INTERRUPTS2,
95         SI_DISABLE_INTERRUPTS1,
96         SI_DISABLE_INTERRUPTS2
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 #define DEVICE_NAME "ipmi_si"
111
112 static struct platform_driver ipmi_driver = {
113         .driver = {
114                 .name = DEVICE_NAME,
115                 .bus = &platform_bus_type
116         }
117 };
118
119
120 /*
121  * Indexes into stats[] in smi_info below.
122  */
123 enum si_stat_indexes {
124         /*
125          * Number of times the driver requested a timer while an operation
126          * was in progress.
127          */
128         SI_STAT_short_timeouts = 0,
129
130         /*
131          * Number of times the driver requested a timer while nothing was in
132          * progress.
133          */
134         SI_STAT_long_timeouts,
135
136         /* Number of times the interface was idle while being polled. */
137         SI_STAT_idles,
138
139         /* Number of interrupts the driver handled. */
140         SI_STAT_interrupts,
141
142         /* Number of time the driver got an ATTN from the hardware. */
143         SI_STAT_attentions,
144
145         /* Number of times the driver requested flags from the hardware. */
146         SI_STAT_flag_fetches,
147
148         /* Number of times the hardware didn't follow the state machine. */
149         SI_STAT_hosed_count,
150
151         /* Number of completed messages. */
152         SI_STAT_complete_transactions,
153
154         /* Number of IPMI events received from the hardware. */
155         SI_STAT_events,
156
157         /* Number of watchdog pretimeouts. */
158         SI_STAT_watchdog_pretimeouts,
159
160         /* Number of asyncronous messages received. */
161         SI_STAT_incoming_messages,
162
163
164         /* This *must* remain last, add new values above this. */
165         SI_NUM_STATS
166 };
167
168 struct smi_info {
169         int                    intf_num;
170         ipmi_smi_t             intf;
171         struct si_sm_data      *si_sm;
172         struct si_sm_handlers  *handlers;
173         enum si_type           si_type;
174         spinlock_t             si_lock;
175         spinlock_t             msg_lock;
176         struct list_head       xmit_msgs;
177         struct list_head       hp_xmit_msgs;
178         struct ipmi_smi_msg    *curr_msg;
179         enum si_intf_state     si_state;
180
181         /*
182          * Used to handle the various types of I/O that can occur with
183          * IPMI
184          */
185         struct si_sm_io io;
186         int (*io_setup)(struct smi_info *info);
187         void (*io_cleanup)(struct smi_info *info);
188         int (*irq_setup)(struct smi_info *info);
189         void (*irq_cleanup)(struct smi_info *info);
190         unsigned int io_size;
191         char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
192         void (*addr_source_cleanup)(struct smi_info *info);
193         void *addr_source_data;
194
195         /*
196          * Per-OEM handler, called from handle_flags().  Returns 1
197          * when handle_flags() needs to be re-run or 0 indicating it
198          * set si_state itself.
199          */
200         int (*oem_data_avail_handler)(struct smi_info *smi_info);
201
202         /*
203          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
204          * is set to hold the flags until we are done handling everything
205          * from the flags.
206          */
207 #define RECEIVE_MSG_AVAIL       0x01
208 #define EVENT_MSG_BUFFER_FULL   0x02
209 #define WDT_PRE_TIMEOUT_INT     0x08
210 #define OEM0_DATA_AVAIL     0x20
211 #define OEM1_DATA_AVAIL     0x40
212 #define OEM2_DATA_AVAIL     0x80
213 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
214                              OEM1_DATA_AVAIL | \
215                              OEM2_DATA_AVAIL)
216         unsigned char       msg_flags;
217
218         /* Does the BMC have an event buffer? */
219         char                has_event_buffer;
220
221         /*
222          * If set to true, this will request events the next time the
223          * state machine is idle.
224          */
225         atomic_t            req_events;
226
227         /*
228          * If true, run the state machine to completion on every send
229          * call.  Generally used after a panic to make sure stuff goes
230          * out.
231          */
232         int                 run_to_completion;
233
234         /* The I/O port of an SI interface. */
235         int                 port;
236
237         /*
238          * The space between start addresses of the two ports.  For
239          * instance, if the first port is 0xca2 and the spacing is 4, then
240          * the second port is 0xca6.
241          */
242         unsigned int        spacing;
243
244         /* zero if no irq; */
245         int                 irq;
246
247         /* The timer for this si. */
248         struct timer_list   si_timer;
249
250         /* The time (in jiffies) the last timeout occurred at. */
251         unsigned long       last_timeout_jiffies;
252
253         /* Used to gracefully stop the timer without race conditions. */
254         atomic_t            stop_operation;
255
256         /*
257          * The driver will disable interrupts when it gets into a
258          * situation where it cannot handle messages due to lack of
259          * memory.  Once that situation clears up, it will re-enable
260          * interrupts.
261          */
262         int interrupt_disabled;
263
264         /* From the get device id response... */
265         struct ipmi_device_id device_id;
266
267         /* Driver model stuff. */
268         struct device *dev;
269         struct platform_device *pdev;
270
271         /*
272          * True if we allocated the device, false if it came from
273          * someplace else (like PCI).
274          */
275         int dev_registered;
276
277         /* Slave address, could be reported from DMI. */
278         unsigned char slave_addr;
279
280         /* Counters and things for the proc filesystem. */
281         atomic_t stats[SI_NUM_STATS];
282
283         struct task_struct *thread;
284
285         struct list_head link;
286 };
287
288 #define smi_inc_stat(smi, stat) \
289         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
290 #define smi_get_stat(smi, stat) \
291         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
292
293 #define SI_MAX_PARMS 4
294
295 static int force_kipmid[SI_MAX_PARMS];
296 static int num_force_kipmid;
297
298 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
299 static int num_max_busy_us;
300
301 static int unload_when_empty = 1;
302
303 static int try_smi_init(struct smi_info *smi);
304 static void cleanup_one_si(struct smi_info *to_clean);
305
306 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
307 static int register_xaction_notifier(struct notifier_block *nb)
308 {
309         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
310 }
311
312 static void deliver_recv_msg(struct smi_info *smi_info,
313                              struct ipmi_smi_msg *msg)
314 {
315         /* Deliver the message to the upper layer with the lock
316            released. */
317         spin_unlock(&(smi_info->si_lock));
318         ipmi_smi_msg_received(smi_info->intf, msg);
319         spin_lock(&(smi_info->si_lock));
320 }
321
322 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
323 {
324         struct ipmi_smi_msg *msg = smi_info->curr_msg;
325
326         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
327                 cCode = IPMI_ERR_UNSPECIFIED;
328         /* else use it as is */
329
330         /* Make it a reponse */
331         msg->rsp[0] = msg->data[0] | 4;
332         msg->rsp[1] = msg->data[1];
333         msg->rsp[2] = cCode;
334         msg->rsp_size = 3;
335
336         smi_info->curr_msg = NULL;
337         deliver_recv_msg(smi_info, msg);
338 }
339
340 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
341 {
342         int              rv;
343         struct list_head *entry = NULL;
344 #ifdef DEBUG_TIMING
345         struct timeval t;
346 #endif
347
348         /*
349          * No need to save flags, we aleady have interrupts off and we
350          * already hold the SMI lock.
351          */
352         if (!smi_info->run_to_completion)
353                 spin_lock(&(smi_info->msg_lock));
354
355         /* Pick the high priority queue first. */
356         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
357                 entry = smi_info->hp_xmit_msgs.next;
358         } else if (!list_empty(&(smi_info->xmit_msgs))) {
359                 entry = smi_info->xmit_msgs.next;
360         }
361
362         if (!entry) {
363                 smi_info->curr_msg = NULL;
364                 rv = SI_SM_IDLE;
365         } else {
366                 int err;
367
368                 list_del(entry);
369                 smi_info->curr_msg = list_entry(entry,
370                                                 struct ipmi_smi_msg,
371                                                 link);
372 #ifdef DEBUG_TIMING
373                 do_gettimeofday(&t);
374                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
375 #endif
376                 err = atomic_notifier_call_chain(&xaction_notifier_list,
377                                 0, smi_info);
378                 if (err & NOTIFY_STOP_MASK) {
379                         rv = SI_SM_CALL_WITHOUT_DELAY;
380                         goto out;
381                 }
382                 err = smi_info->handlers->start_transaction(
383                         smi_info->si_sm,
384                         smi_info->curr_msg->data,
385                         smi_info->curr_msg->data_size);
386                 if (err)
387                         return_hosed_msg(smi_info, err);
388
389                 rv = SI_SM_CALL_WITHOUT_DELAY;
390         }
391  out:
392         if (!smi_info->run_to_completion)
393                 spin_unlock(&(smi_info->msg_lock));
394
395         return rv;
396 }
397
398 static void start_enable_irq(struct smi_info *smi_info)
399 {
400         unsigned char msg[2];
401
402         /*
403          * If we are enabling interrupts, we have to tell the
404          * BMC to use them.
405          */
406         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
407         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
408
409         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
410         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
411 }
412
413 static void start_disable_irq(struct smi_info *smi_info)
414 {
415         unsigned char msg[2];
416
417         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
418         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
419
420         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
421         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
422 }
423
424 static void start_clear_flags(struct smi_info *smi_info)
425 {
426         unsigned char msg[3];
427
428         /* Make sure the watchdog pre-timeout flag is not set at startup. */
429         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
430         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
431         msg[2] = WDT_PRE_TIMEOUT_INT;
432
433         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
434         smi_info->si_state = SI_CLEARING_FLAGS;
435 }
436
437 /*
438  * When we have a situtaion where we run out of memory and cannot
439  * allocate messages, we just leave them in the BMC and run the system
440  * polled until we can allocate some memory.  Once we have some
441  * memory, we will re-enable the interrupt.
442  */
443 static inline void disable_si_irq(struct smi_info *smi_info)
444 {
445         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
446                 start_disable_irq(smi_info);
447                 smi_info->interrupt_disabled = 1;
448         }
449 }
450
451 static inline void enable_si_irq(struct smi_info *smi_info)
452 {
453         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
454                 start_enable_irq(smi_info);
455                 smi_info->interrupt_disabled = 0;
456         }
457 }
458
459 static void handle_flags(struct smi_info *smi_info)
460 {
461  retry:
462         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
463                 /* Watchdog pre-timeout */
464                 smi_inc_stat(smi_info, watchdog_pretimeouts);
465
466                 start_clear_flags(smi_info);
467                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
468                 spin_unlock(&(smi_info->si_lock));
469                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
470                 spin_lock(&(smi_info->si_lock));
471         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
472                 /* Messages available. */
473                 smi_info->curr_msg = ipmi_alloc_smi_msg();
474                 if (!smi_info->curr_msg) {
475                         disable_si_irq(smi_info);
476                         smi_info->si_state = SI_NORMAL;
477                         return;
478                 }
479                 enable_si_irq(smi_info);
480
481                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
483                 smi_info->curr_msg->data_size = 2;
484
485                 smi_info->handlers->start_transaction(
486                         smi_info->si_sm,
487                         smi_info->curr_msg->data,
488                         smi_info->curr_msg->data_size);
489                 smi_info->si_state = SI_GETTING_MESSAGES;
490         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
491                 /* Events available. */
492                 smi_info->curr_msg = ipmi_alloc_smi_msg();
493                 if (!smi_info->curr_msg) {
494                         disable_si_irq(smi_info);
495                         smi_info->si_state = SI_NORMAL;
496                         return;
497                 }
498                 enable_si_irq(smi_info);
499
500                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
501                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
502                 smi_info->curr_msg->data_size = 2;
503
504                 smi_info->handlers->start_transaction(
505                         smi_info->si_sm,
506                         smi_info->curr_msg->data,
507                         smi_info->curr_msg->data_size);
508                 smi_info->si_state = SI_GETTING_EVENTS;
509         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
510                    smi_info->oem_data_avail_handler) {
511                 if (smi_info->oem_data_avail_handler(smi_info))
512                         goto retry;
513         } else
514                 smi_info->si_state = SI_NORMAL;
515 }
516
517 static void handle_transaction_done(struct smi_info *smi_info)
518 {
519         struct ipmi_smi_msg *msg;
520 #ifdef DEBUG_TIMING
521         struct timeval t;
522
523         do_gettimeofday(&t);
524         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
525 #endif
526         switch (smi_info->si_state) {
527         case SI_NORMAL:
528                 if (!smi_info->curr_msg)
529                         break;
530
531                 smi_info->curr_msg->rsp_size
532                         = smi_info->handlers->get_result(
533                                 smi_info->si_sm,
534                                 smi_info->curr_msg->rsp,
535                                 IPMI_MAX_MSG_LENGTH);
536
537                 /*
538                  * Do this here becase deliver_recv_msg() releases the
539                  * lock, and a new message can be put in during the
540                  * time the lock is released.
541                  */
542                 msg = smi_info->curr_msg;
543                 smi_info->curr_msg = NULL;
544                 deliver_recv_msg(smi_info, msg);
545                 break;
546
547         case SI_GETTING_FLAGS:
548         {
549                 unsigned char msg[4];
550                 unsigned int  len;
551
552                 /* We got the flags from the SMI, now handle them. */
553                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
554                 if (msg[2] != 0) {
555                         /* Error fetching flags, just give up for now. */
556                         smi_info->si_state = SI_NORMAL;
557                 } else if (len < 4) {
558                         /*
559                          * Hmm, no flags.  That's technically illegal, but
560                          * don't use uninitialized data.
561                          */
562                         smi_info->si_state = SI_NORMAL;
563                 } else {
564                         smi_info->msg_flags = msg[3];
565                         handle_flags(smi_info);
566                 }
567                 break;
568         }
569
570         case SI_CLEARING_FLAGS:
571         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
572         {
573                 unsigned char msg[3];
574
575                 /* We cleared the flags. */
576                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
577                 if (msg[2] != 0) {
578                         /* Error clearing flags */
579                         printk(KERN_WARNING
580                                "ipmi_si: Error clearing flags: %2.2x\n",
581                                msg[2]);
582                 }
583                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
584                         start_enable_irq(smi_info);
585                 else
586                         smi_info->si_state = SI_NORMAL;
587                 break;
588         }
589
590         case SI_GETTING_EVENTS:
591         {
592                 smi_info->curr_msg->rsp_size
593                         = smi_info->handlers->get_result(
594                                 smi_info->si_sm,
595                                 smi_info->curr_msg->rsp,
596                                 IPMI_MAX_MSG_LENGTH);
597
598                 /*
599                  * Do this here becase deliver_recv_msg() releases the
600                  * lock, and a new message can be put in during the
601                  * time the lock is released.
602                  */
603                 msg = smi_info->curr_msg;
604                 smi_info->curr_msg = NULL;
605                 if (msg->rsp[2] != 0) {
606                         /* Error getting event, probably done. */
607                         msg->done(msg);
608
609                         /* Take off the event flag. */
610                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
611                         handle_flags(smi_info);
612                 } else {
613                         smi_inc_stat(smi_info, events);
614
615                         /*
616                          * Do this before we deliver the message
617                          * because delivering the message releases the
618                          * lock and something else can mess with the
619                          * state.
620                          */
621                         handle_flags(smi_info);
622
623                         deliver_recv_msg(smi_info, msg);
624                 }
625                 break;
626         }
627
628         case SI_GETTING_MESSAGES:
629         {
630                 smi_info->curr_msg->rsp_size
631                         = smi_info->handlers->get_result(
632                                 smi_info->si_sm,
633                                 smi_info->curr_msg->rsp,
634                                 IPMI_MAX_MSG_LENGTH);
635
636                 /*
637                  * Do this here becase deliver_recv_msg() releases the
638                  * lock, and a new message can be put in during the
639                  * time the lock is released.
640                  */
641                 msg = smi_info->curr_msg;
642                 smi_info->curr_msg = NULL;
643                 if (msg->rsp[2] != 0) {
644                         /* Error getting event, probably done. */
645                         msg->done(msg);
646
647                         /* Take off the msg flag. */
648                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
649                         handle_flags(smi_info);
650                 } else {
651                         smi_inc_stat(smi_info, incoming_messages);
652
653                         /*
654                          * Do this before we deliver the message
655                          * because delivering the message releases the
656                          * lock and something else can mess with the
657                          * state.
658                          */
659                         handle_flags(smi_info);
660
661                         deliver_recv_msg(smi_info, msg);
662                 }
663                 break;
664         }
665
666         case SI_ENABLE_INTERRUPTS1:
667         {
668                 unsigned char msg[4];
669
670                 /* We got the flags from the SMI, now handle them. */
671                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
672                 if (msg[2] != 0) {
673                         printk(KERN_WARNING
674                                "ipmi_si: Could not enable interrupts"
675                                ", failed get, using polled mode.\n");
676                         smi_info->si_state = SI_NORMAL;
677                 } else {
678                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
679                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
680                         msg[2] = (msg[3] |
681                                   IPMI_BMC_RCV_MSG_INTR |
682                                   IPMI_BMC_EVT_MSG_INTR);
683                         smi_info->handlers->start_transaction(
684                                 smi_info->si_sm, msg, 3);
685                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
686                 }
687                 break;
688         }
689
690         case SI_ENABLE_INTERRUPTS2:
691         {
692                 unsigned char msg[4];
693
694                 /* We got the flags from the SMI, now handle them. */
695                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
696                 if (msg[2] != 0) {
697                         printk(KERN_WARNING
698                                "ipmi_si: Could not enable interrupts"
699                                ", failed set, using polled mode.\n");
700                 }
701                 smi_info->si_state = SI_NORMAL;
702                 break;
703         }
704
705         case SI_DISABLE_INTERRUPTS1:
706         {
707                 unsigned char msg[4];
708
709                 /* We got the flags from the SMI, now handle them. */
710                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
711                 if (msg[2] != 0) {
712                         printk(KERN_WARNING
713                                "ipmi_si: Could not disable interrupts"
714                                ", failed get.\n");
715                         smi_info->si_state = SI_NORMAL;
716                 } else {
717                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
718                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
719                         msg[2] = (msg[3] &
720                                   ~(IPMI_BMC_RCV_MSG_INTR |
721                                     IPMI_BMC_EVT_MSG_INTR));
722                         smi_info->handlers->start_transaction(
723                                 smi_info->si_sm, msg, 3);
724                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
725                 }
726                 break;
727         }
728
729         case SI_DISABLE_INTERRUPTS2:
730         {
731                 unsigned char msg[4];
732
733                 /* We got the flags from the SMI, now handle them. */
734                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
735                 if (msg[2] != 0) {
736                         printk(KERN_WARNING
737                                "ipmi_si: Could not disable interrupts"
738                                ", failed set.\n");
739                 }
740                 smi_info->si_state = SI_NORMAL;
741                 break;
742         }
743         }
744 }
745
746 /*
747  * Called on timeouts and events.  Timeouts should pass the elapsed
748  * time, interrupts should pass in zero.  Must be called with
749  * si_lock held and interrupts disabled.
750  */
751 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
752                                            int time)
753 {
754         enum si_sm_result si_sm_result;
755
756  restart:
757         /*
758          * There used to be a loop here that waited a little while
759          * (around 25us) before giving up.  That turned out to be
760          * pointless, the minimum delays I was seeing were in the 300us
761          * range, which is far too long to wait in an interrupt.  So
762          * we just run until the state machine tells us something
763          * happened or it needs a delay.
764          */
765         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
766         time = 0;
767         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
768                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
769
770         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
771                 smi_inc_stat(smi_info, complete_transactions);
772
773                 handle_transaction_done(smi_info);
774                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
775         } else if (si_sm_result == SI_SM_HOSED) {
776                 smi_inc_stat(smi_info, hosed_count);
777
778                 /*
779                  * Do the before return_hosed_msg, because that
780                  * releases the lock.
781                  */
782                 smi_info->si_state = SI_NORMAL;
783                 if (smi_info->curr_msg != NULL) {
784                         /*
785                          * If we were handling a user message, format
786                          * a response to send to the upper layer to
787                          * tell it about the error.
788                          */
789                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
790                 }
791                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
792         }
793
794         /*
795          * We prefer handling attn over new messages.  But don't do
796          * this if there is not yet an upper layer to handle anything.
797          */
798         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
799                 unsigned char msg[2];
800
801                 smi_inc_stat(smi_info, attentions);
802
803                 /*
804                  * Got a attn, send down a get message flags to see
805                  * what's causing it.  It would be better to handle
806                  * this in the upper layer, but due to the way
807                  * interrupts work with the SMI, that's not really
808                  * possible.
809                  */
810                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
811                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
812
813                 smi_info->handlers->start_transaction(
814                         smi_info->si_sm, msg, 2);
815                 smi_info->si_state = SI_GETTING_FLAGS;
816                 goto restart;
817         }
818
819         /* If we are currently idle, try to start the next message. */
820         if (si_sm_result == SI_SM_IDLE) {
821                 smi_inc_stat(smi_info, idles);
822
823                 si_sm_result = start_next_msg(smi_info);
824                 if (si_sm_result != SI_SM_IDLE)
825                         goto restart;
826         }
827
828         if ((si_sm_result == SI_SM_IDLE)
829             && (atomic_read(&smi_info->req_events))) {
830                 /*
831                  * We are idle and the upper layer requested that I fetch
832                  * events, so do so.
833                  */
834                 atomic_set(&smi_info->req_events, 0);
835
836                 smi_info->curr_msg = ipmi_alloc_smi_msg();
837                 if (!smi_info->curr_msg)
838                         goto out;
839
840                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
841                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
842                 smi_info->curr_msg->data_size = 2;
843
844                 smi_info->handlers->start_transaction(
845                         smi_info->si_sm,
846                         smi_info->curr_msg->data,
847                         smi_info->curr_msg->data_size);
848                 smi_info->si_state = SI_GETTING_EVENTS;
849                 goto restart;
850         }
851  out:
852         return si_sm_result;
853 }
854
855 static void sender(void                *send_info,
856                    struct ipmi_smi_msg *msg,
857                    int                 priority)
858 {
859         struct smi_info   *smi_info = send_info;
860         enum si_sm_result result;
861         unsigned long     flags;
862 #ifdef DEBUG_TIMING
863         struct timeval    t;
864 #endif
865
866         if (atomic_read(&smi_info->stop_operation)) {
867                 msg->rsp[0] = msg->data[0] | 4;
868                 msg->rsp[1] = msg->data[1];
869                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
870                 msg->rsp_size = 3;
871                 deliver_recv_msg(smi_info, msg);
872                 return;
873         }
874
875 #ifdef DEBUG_TIMING
876         do_gettimeofday(&t);
877         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
878 #endif
879
880         if (smi_info->run_to_completion) {
881                 /*
882                  * If we are running to completion, then throw it in
883                  * the list and run transactions until everything is
884                  * clear.  Priority doesn't matter here.
885                  */
886
887                 /*
888                  * Run to completion means we are single-threaded, no
889                  * need for locks.
890                  */
891                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
892
893                 result = smi_event_handler(smi_info, 0);
894                 while (result != SI_SM_IDLE) {
895                         udelay(SI_SHORT_TIMEOUT_USEC);
896                         result = smi_event_handler(smi_info,
897                                                    SI_SHORT_TIMEOUT_USEC);
898                 }
899                 return;
900         }
901
902         spin_lock_irqsave(&smi_info->msg_lock, flags);
903         if (priority > 0)
904                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
905         else
906                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
907         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
908
909         spin_lock_irqsave(&smi_info->si_lock, flags);
910         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
911                 start_next_msg(smi_info);
912         spin_unlock_irqrestore(&smi_info->si_lock, flags);
913 }
914
915 static void set_run_to_completion(void *send_info, int i_run_to_completion)
916 {
917         struct smi_info   *smi_info = send_info;
918         enum si_sm_result result;
919
920         smi_info->run_to_completion = i_run_to_completion;
921         if (i_run_to_completion) {
922                 result = smi_event_handler(smi_info, 0);
923                 while (result != SI_SM_IDLE) {
924                         udelay(SI_SHORT_TIMEOUT_USEC);
925                         result = smi_event_handler(smi_info,
926                                                    SI_SHORT_TIMEOUT_USEC);
927                 }
928         }
929 }
930
931 /*
932  * Use -1 in the nsec value of the busy waiting timespec to tell that
933  * we are spinning in kipmid looking for something and not delaying
934  * between checks
935  */
936 static inline void ipmi_si_set_not_busy(struct timespec *ts)
937 {
938         ts->tv_nsec = -1;
939 }
940 static inline int ipmi_si_is_busy(struct timespec *ts)
941 {
942         return ts->tv_nsec != -1;
943 }
944
945 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
946                                  const struct smi_info *smi_info,
947                                  struct timespec *busy_until)
948 {
949         unsigned int max_busy_us = 0;
950
951         if (smi_info->intf_num < num_max_busy_us)
952                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
953         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
954                 ipmi_si_set_not_busy(busy_until);
955         else if (!ipmi_si_is_busy(busy_until)) {
956                 getnstimeofday(busy_until);
957                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
958         } else {
959                 struct timespec now;
960                 getnstimeofday(&now);
961                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
962                         ipmi_si_set_not_busy(busy_until);
963                         return 0;
964                 }
965         }
966         return 1;
967 }
968
969
970 /*
971  * A busy-waiting loop for speeding up IPMI operation.
972  *
973  * Lousy hardware makes this hard.  This is only enabled for systems
974  * that are not BT and do not have interrupts.  It starts spinning
975  * when an operation is complete or until max_busy tells it to stop
976  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
977  * Documentation/IPMI.txt for details.
978  */
979 static int ipmi_thread(void *data)
980 {
981         struct smi_info *smi_info = data;
982         unsigned long flags;
983         enum si_sm_result smi_result;
984         struct timespec busy_until;
985
986         ipmi_si_set_not_busy(&busy_until);
987         set_user_nice(current, 19);
988         while (!kthread_should_stop()) {
989                 int busy_wait;
990
991                 spin_lock_irqsave(&(smi_info->si_lock), flags);
992                 smi_result = smi_event_handler(smi_info, 0);
993                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
994                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
995                                                   &busy_until);
996                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
997                         ; /* do nothing */
998                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
999                         schedule();
1000                 else
1001                         schedule_timeout_interruptible(0);
1002         }
1003         return 0;
1004 }
1005
1006
1007 static void poll(void *send_info)
1008 {
1009         struct smi_info *smi_info = send_info;
1010         unsigned long flags;
1011
1012         /*
1013          * Make sure there is some delay in the poll loop so we can
1014          * drive time forward and timeout things.
1015          */
1016         udelay(10);
1017         spin_lock_irqsave(&smi_info->si_lock, flags);
1018         smi_event_handler(smi_info, 10);
1019         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1020 }
1021
1022 static void request_events(void *send_info)
1023 {
1024         struct smi_info *smi_info = send_info;
1025
1026         if (atomic_read(&smi_info->stop_operation) ||
1027                                 !smi_info->has_event_buffer)
1028                 return;
1029
1030         atomic_set(&smi_info->req_events, 1);
1031 }
1032
1033 static int initialized;
1034
1035 static void smi_timeout(unsigned long data)
1036 {
1037         struct smi_info   *smi_info = (struct smi_info *) data;
1038         enum si_sm_result smi_result;
1039         unsigned long     flags;
1040         unsigned long     jiffies_now;
1041         long              time_diff;
1042 #ifdef DEBUG_TIMING
1043         struct timeval    t;
1044 #endif
1045
1046         spin_lock_irqsave(&(smi_info->si_lock), flags);
1047 #ifdef DEBUG_TIMING
1048         do_gettimeofday(&t);
1049         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1050 #endif
1051         jiffies_now = jiffies;
1052         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1053                      * SI_USEC_PER_JIFFY);
1054         smi_result = smi_event_handler(smi_info, time_diff);
1055
1056         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1057
1058         smi_info->last_timeout_jiffies = jiffies_now;
1059
1060         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1061                 /* Running with interrupts, only do long timeouts. */
1062                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1063                 smi_inc_stat(smi_info, long_timeouts);
1064                 goto do_add_timer;
1065         }
1066
1067         /*
1068          * If the state machine asks for a short delay, then shorten
1069          * the timer timeout.
1070          */
1071         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1072                 smi_inc_stat(smi_info, short_timeouts);
1073                 smi_info->si_timer.expires = jiffies + 1;
1074         } else {
1075                 smi_inc_stat(smi_info, long_timeouts);
1076                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1077         }
1078
1079  do_add_timer:
1080         add_timer(&(smi_info->si_timer));
1081 }
1082
1083 static irqreturn_t si_irq_handler(int irq, void *data)
1084 {
1085         struct smi_info *smi_info = data;
1086         unsigned long   flags;
1087 #ifdef DEBUG_TIMING
1088         struct timeval  t;
1089 #endif
1090
1091         spin_lock_irqsave(&(smi_info->si_lock), flags);
1092
1093         smi_inc_stat(smi_info, interrupts);
1094
1095 #ifdef DEBUG_TIMING
1096         do_gettimeofday(&t);
1097         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1098 #endif
1099         smi_event_handler(smi_info, 0);
1100         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1101         return IRQ_HANDLED;
1102 }
1103
1104 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1105 {
1106         struct smi_info *smi_info = data;
1107         /* We need to clear the IRQ flag for the BT interface. */
1108         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1109                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1110                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1111         return si_irq_handler(irq, data);
1112 }
1113
1114 static int smi_start_processing(void       *send_info,
1115                                 ipmi_smi_t intf)
1116 {
1117         struct smi_info *new_smi = send_info;
1118         int             enable = 0;
1119
1120         new_smi->intf = intf;
1121
1122         /* Try to claim any interrupts. */
1123         if (new_smi->irq_setup)
1124                 new_smi->irq_setup(new_smi);
1125
1126         /* Set up the timer that drives the interface. */
1127         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1128         new_smi->last_timeout_jiffies = jiffies;
1129         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1130
1131         /*
1132          * Check if the user forcefully enabled the daemon.
1133          */
1134         if (new_smi->intf_num < num_force_kipmid)
1135                 enable = force_kipmid[new_smi->intf_num];
1136         /*
1137          * The BT interface is efficient enough to not need a thread,
1138          * and there is no need for a thread if we have interrupts.
1139          */
1140         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1141                 enable = 1;
1142
1143         if (enable) {
1144                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1145                                               "kipmi%d", new_smi->intf_num);
1146                 if (IS_ERR(new_smi->thread)) {
1147                         printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1148                                " kernel thread due to error %ld, only using"
1149                                " timers to drive the interface\n",
1150                                PTR_ERR(new_smi->thread));
1151                         new_smi->thread = NULL;
1152                 }
1153         }
1154
1155         return 0;
1156 }
1157
1158 static void set_maintenance_mode(void *send_info, int enable)
1159 {
1160         struct smi_info   *smi_info = send_info;
1161
1162         if (!enable)
1163                 atomic_set(&smi_info->req_events, 0);
1164 }
1165
1166 static struct ipmi_smi_handlers handlers = {
1167         .owner                  = THIS_MODULE,
1168         .start_processing       = smi_start_processing,
1169         .sender                 = sender,
1170         .request_events         = request_events,
1171         .set_maintenance_mode   = set_maintenance_mode,
1172         .set_run_to_completion  = set_run_to_completion,
1173         .poll                   = poll,
1174 };
1175
1176 /*
1177  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1178  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1179  */
1180
1181 static LIST_HEAD(smi_infos);
1182 static DEFINE_MUTEX(smi_infos_lock);
1183 static int smi_num; /* Used to sequence the SMIs */
1184
1185 #define DEFAULT_REGSPACING      1
1186 #define DEFAULT_REGSIZE         1
1187
1188 static int           si_trydefaults = 1;
1189 static char          *si_type[SI_MAX_PARMS];
1190 #define MAX_SI_TYPE_STR 30
1191 static char          si_type_str[MAX_SI_TYPE_STR];
1192 static unsigned long addrs[SI_MAX_PARMS];
1193 static unsigned int num_addrs;
1194 static unsigned int  ports[SI_MAX_PARMS];
1195 static unsigned int num_ports;
1196 static int           irqs[SI_MAX_PARMS];
1197 static unsigned int num_irqs;
1198 static int           regspacings[SI_MAX_PARMS];
1199 static unsigned int num_regspacings;
1200 static int           regsizes[SI_MAX_PARMS];
1201 static unsigned int num_regsizes;
1202 static int           regshifts[SI_MAX_PARMS];
1203 static unsigned int num_regshifts;
1204 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1205 static unsigned int num_slave_addrs;
1206
1207 #define IPMI_IO_ADDR_SPACE  0
1208 #define IPMI_MEM_ADDR_SPACE 1
1209 static char *addr_space_to_str[] = { "i/o", "mem" };
1210
1211 static int hotmod_handler(const char *val, struct kernel_param *kp);
1212
1213 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1214 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1215                  " Documentation/IPMI.txt in the kernel sources for the"
1216                  " gory details.");
1217
1218 module_param_named(trydefaults, si_trydefaults, bool, 0);
1219 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1220                  " default scan of the KCS and SMIC interface at the standard"
1221                  " address");
1222 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1223 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1224                  " interface separated by commas.  The types are 'kcs',"
1225                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1226                  " the first interface to kcs and the second to bt");
1227 module_param_array(addrs, ulong, &num_addrs, 0);
1228 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1229                  " addresses separated by commas.  Only use if an interface"
1230                  " is in memory.  Otherwise, set it to zero or leave"
1231                  " it blank.");
1232 module_param_array(ports, uint, &num_ports, 0);
1233 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1234                  " addresses separated by commas.  Only use if an interface"
1235                  " is a port.  Otherwise, set it to zero or leave"
1236                  " it blank.");
1237 module_param_array(irqs, int, &num_irqs, 0);
1238 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1239                  " addresses separated by commas.  Only use if an interface"
1240                  " has an interrupt.  Otherwise, set it to zero or leave"
1241                  " it blank.");
1242 module_param_array(regspacings, int, &num_regspacings, 0);
1243 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1244                  " and each successive register used by the interface.  For"
1245                  " instance, if the start address is 0xca2 and the spacing"
1246                  " is 2, then the second address is at 0xca4.  Defaults"
1247                  " to 1.");
1248 module_param_array(regsizes, int, &num_regsizes, 0);
1249 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1250                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1251                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1252                  " the 8-bit IPMI register has to be read from a larger"
1253                  " register.");
1254 module_param_array(regshifts, int, &num_regshifts, 0);
1255 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1256                  " IPMI register, in bits.  For instance, if the data"
1257                  " is read from a 32-bit word and the IPMI data is in"
1258                  " bit 8-15, then the shift would be 8");
1259 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1260 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1261                  " the controller.  Normally this is 0x20, but can be"
1262                  " overridden by this parm.  This is an array indexed"
1263                  " by interface number.");
1264 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1265 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1266                  " disabled(0).  Normally the IPMI driver auto-detects"
1267                  " this, but the value may be overridden by this parm.");
1268 module_param(unload_when_empty, int, 0);
1269 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1270                  " specified or found, default is 1.  Setting to 0"
1271                  " is useful for hot add of devices using hotmod.");
1272 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1273 MODULE_PARM_DESC(kipmid_max_busy_us,
1274                  "Max time (in microseconds) to busy-wait for IPMI data before"
1275                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1276                  " if kipmid is using up a lot of CPU time.");
1277
1278
1279 static void std_irq_cleanup(struct smi_info *info)
1280 {
1281         if (info->si_type == SI_BT)
1282                 /* Disable the interrupt in the BT interface. */
1283                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1284         free_irq(info->irq, info);
1285 }
1286
1287 static int std_irq_setup(struct smi_info *info)
1288 {
1289         int rv;
1290
1291         if (!info->irq)
1292                 return 0;
1293
1294         if (info->si_type == SI_BT) {
1295                 rv = request_irq(info->irq,
1296                                  si_bt_irq_handler,
1297                                  IRQF_SHARED | IRQF_DISABLED,
1298                                  DEVICE_NAME,
1299                                  info);
1300                 if (!rv)
1301                         /* Enable the interrupt in the BT interface. */
1302                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1303                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1304         } else
1305                 rv = request_irq(info->irq,
1306                                  si_irq_handler,
1307                                  IRQF_SHARED | IRQF_DISABLED,
1308                                  DEVICE_NAME,
1309                                  info);
1310         if (rv) {
1311                 printk(KERN_WARNING
1312                        "ipmi_si: %s unable to claim interrupt %d,"
1313                        " running polled\n",
1314                        DEVICE_NAME, info->irq);
1315                 info->irq = 0;
1316         } else {
1317                 info->irq_cleanup = std_irq_cleanup;
1318                 printk("  Using irq %d\n", info->irq);
1319         }
1320
1321         return rv;
1322 }
1323
1324 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1325 {
1326         unsigned int addr = io->addr_data;
1327
1328         return inb(addr + (offset * io->regspacing));
1329 }
1330
1331 static void port_outb(struct si_sm_io *io, unsigned int offset,
1332                       unsigned char b)
1333 {
1334         unsigned int addr = io->addr_data;
1335
1336         outb(b, addr + (offset * io->regspacing));
1337 }
1338
1339 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1340 {
1341         unsigned int addr = io->addr_data;
1342
1343         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1344 }
1345
1346 static void port_outw(struct si_sm_io *io, unsigned int offset,
1347                       unsigned char b)
1348 {
1349         unsigned int addr = io->addr_data;
1350
1351         outw(b << io->regshift, addr + (offset * io->regspacing));
1352 }
1353
1354 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1355 {
1356         unsigned int addr = io->addr_data;
1357
1358         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1359 }
1360
1361 static void port_outl(struct si_sm_io *io, unsigned int offset,
1362                       unsigned char b)
1363 {
1364         unsigned int addr = io->addr_data;
1365
1366         outl(b << io->regshift, addr+(offset * io->regspacing));
1367 }
1368
1369 static void port_cleanup(struct smi_info *info)
1370 {
1371         unsigned int addr = info->io.addr_data;
1372         int          idx;
1373
1374         if (addr) {
1375                 for (idx = 0; idx < info->io_size; idx++)
1376                         release_region(addr + idx * info->io.regspacing,
1377                                        info->io.regsize);
1378         }
1379 }
1380
1381 static int port_setup(struct smi_info *info)
1382 {
1383         unsigned int addr = info->io.addr_data;
1384         int          idx;
1385
1386         if (!addr)
1387                 return -ENODEV;
1388
1389         info->io_cleanup = port_cleanup;
1390
1391         /*
1392          * Figure out the actual inb/inw/inl/etc routine to use based
1393          * upon the register size.
1394          */
1395         switch (info->io.regsize) {
1396         case 1:
1397                 info->io.inputb = port_inb;
1398                 info->io.outputb = port_outb;
1399                 break;
1400         case 2:
1401                 info->io.inputb = port_inw;
1402                 info->io.outputb = port_outw;
1403                 break;
1404         case 4:
1405                 info->io.inputb = port_inl;
1406                 info->io.outputb = port_outl;
1407                 break;
1408         default:
1409                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1410                        info->io.regsize);
1411                 return -EINVAL;
1412         }
1413
1414         /*
1415          * Some BIOSes reserve disjoint I/O regions in their ACPI
1416          * tables.  This causes problems when trying to register the
1417          * entire I/O region.  Therefore we must register each I/O
1418          * port separately.
1419          */
1420         for (idx = 0; idx < info->io_size; idx++) {
1421                 if (request_region(addr + idx * info->io.regspacing,
1422                                    info->io.regsize, DEVICE_NAME) == NULL) {
1423                         /* Undo allocations */
1424                         while (idx--) {
1425                                 release_region(addr + idx * info->io.regspacing,
1426                                                info->io.regsize);
1427                         }
1428                         return -EIO;
1429                 }
1430         }
1431         return 0;
1432 }
1433
1434 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1435 {
1436         return readb((io->addr)+(offset * io->regspacing));
1437 }
1438
1439 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1440                      unsigned char b)
1441 {
1442         writeb(b, (io->addr)+(offset * io->regspacing));
1443 }
1444
1445 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1446 {
1447         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1448                 & 0xff;
1449 }
1450
1451 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1452                      unsigned char b)
1453 {
1454         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1455 }
1456
1457 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1458 {
1459         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1460                 & 0xff;
1461 }
1462
1463 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1464                      unsigned char b)
1465 {
1466         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1467 }
1468
1469 #ifdef readq
1470 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1471 {
1472         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1473                 & 0xff;
1474 }
1475
1476 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1477                      unsigned char b)
1478 {
1479         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1480 }
1481 #endif
1482
1483 static void mem_cleanup(struct smi_info *info)
1484 {
1485         unsigned long addr = info->io.addr_data;
1486         int           mapsize;
1487
1488         if (info->io.addr) {
1489                 iounmap(info->io.addr);
1490
1491                 mapsize = ((info->io_size * info->io.regspacing)
1492                            - (info->io.regspacing - info->io.regsize));
1493
1494                 release_mem_region(addr, mapsize);
1495         }
1496 }
1497
1498 static int mem_setup(struct smi_info *info)
1499 {
1500         unsigned long addr = info->io.addr_data;
1501         int           mapsize;
1502
1503         if (!addr)
1504                 return -ENODEV;
1505
1506         info->io_cleanup = mem_cleanup;
1507
1508         /*
1509          * Figure out the actual readb/readw/readl/etc routine to use based
1510          * upon the register size.
1511          */
1512         switch (info->io.regsize) {
1513         case 1:
1514                 info->io.inputb = intf_mem_inb;
1515                 info->io.outputb = intf_mem_outb;
1516                 break;
1517         case 2:
1518                 info->io.inputb = intf_mem_inw;
1519                 info->io.outputb = intf_mem_outw;
1520                 break;
1521         case 4:
1522                 info->io.inputb = intf_mem_inl;
1523                 info->io.outputb = intf_mem_outl;
1524                 break;
1525 #ifdef readq
1526         case 8:
1527                 info->io.inputb = mem_inq;
1528                 info->io.outputb = mem_outq;
1529                 break;
1530 #endif
1531         default:
1532                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1533                        info->io.regsize);
1534                 return -EINVAL;
1535         }
1536
1537         /*
1538          * Calculate the total amount of memory to claim.  This is an
1539          * unusual looking calculation, but it avoids claiming any
1540          * more memory than it has to.  It will claim everything
1541          * between the first address to the end of the last full
1542          * register.
1543          */
1544         mapsize = ((info->io_size * info->io.regspacing)
1545                    - (info->io.regspacing - info->io.regsize));
1546
1547         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1548                 return -EIO;
1549
1550         info->io.addr = ioremap(addr, mapsize);
1551         if (info->io.addr == NULL) {
1552                 release_mem_region(addr, mapsize);
1553                 return -EIO;
1554         }
1555         return 0;
1556 }
1557
1558 /*
1559  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1560  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1561  * Options are:
1562  *   rsp=<regspacing>
1563  *   rsi=<regsize>
1564  *   rsh=<regshift>
1565  *   irq=<irq>
1566  *   ipmb=<ipmb addr>
1567  */
1568 enum hotmod_op { HM_ADD, HM_REMOVE };
1569 struct hotmod_vals {
1570         char *name;
1571         int  val;
1572 };
1573 static struct hotmod_vals hotmod_ops[] = {
1574         { "add",        HM_ADD },
1575         { "remove",     HM_REMOVE },
1576         { NULL }
1577 };
1578 static struct hotmod_vals hotmod_si[] = {
1579         { "kcs",        SI_KCS },
1580         { "smic",       SI_SMIC },
1581         { "bt",         SI_BT },
1582         { NULL }
1583 };
1584 static struct hotmod_vals hotmod_as[] = {
1585         { "mem",        IPMI_MEM_ADDR_SPACE },
1586         { "i/o",        IPMI_IO_ADDR_SPACE },
1587         { NULL }
1588 };
1589
1590 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1591 {
1592         char *s;
1593         int  i;
1594
1595         s = strchr(*curr, ',');
1596         if (!s) {
1597                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1598                 return -EINVAL;
1599         }
1600         *s = '\0';
1601         s++;
1602         for (i = 0; hotmod_ops[i].name; i++) {
1603                 if (strcmp(*curr, v[i].name) == 0) {
1604                         *val = v[i].val;
1605                         *curr = s;
1606                         return 0;
1607                 }
1608         }
1609
1610         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1611         return -EINVAL;
1612 }
1613
1614 static int check_hotmod_int_op(const char *curr, const char *option,
1615                                const char *name, int *val)
1616 {
1617         char *n;
1618
1619         if (strcmp(curr, name) == 0) {
1620                 if (!option) {
1621                         printk(KERN_WARNING PFX
1622                                "No option given for '%s'\n",
1623                                curr);
1624                         return -EINVAL;
1625                 }
1626                 *val = simple_strtoul(option, &n, 0);
1627                 if ((*n != '\0') || (*option == '\0')) {
1628                         printk(KERN_WARNING PFX
1629                                "Bad option given for '%s'\n",
1630                                curr);
1631                         return -EINVAL;
1632                 }
1633                 return 1;
1634         }
1635         return 0;
1636 }
1637
1638 static int hotmod_handler(const char *val, struct kernel_param *kp)
1639 {
1640         char *str = kstrdup(val, GFP_KERNEL);
1641         int  rv;
1642         char *next, *curr, *s, *n, *o;
1643         enum hotmod_op op;
1644         enum si_type si_type;
1645         int  addr_space;
1646         unsigned long addr;
1647         int regspacing;
1648         int regsize;
1649         int regshift;
1650         int irq;
1651         int ipmb;
1652         int ival;
1653         int len;
1654         struct smi_info *info;
1655
1656         if (!str)
1657                 return -ENOMEM;
1658
1659         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1660         len = strlen(str);
1661         ival = len - 1;
1662         while ((ival >= 0) && isspace(str[ival])) {
1663                 str[ival] = '\0';
1664                 ival--;
1665         }
1666
1667         for (curr = str; curr; curr = next) {
1668                 regspacing = 1;
1669                 regsize = 1;
1670                 regshift = 0;
1671                 irq = 0;
1672                 ipmb = 0; /* Choose the default if not specified */
1673
1674                 next = strchr(curr, ':');
1675                 if (next) {
1676                         *next = '\0';
1677                         next++;
1678                 }
1679
1680                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1681                 if (rv)
1682                         break;
1683                 op = ival;
1684
1685                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1686                 if (rv)
1687                         break;
1688                 si_type = ival;
1689
1690                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1691                 if (rv)
1692                         break;
1693
1694                 s = strchr(curr, ',');
1695                 if (s) {
1696                         *s = '\0';
1697                         s++;
1698                 }
1699                 addr = simple_strtoul(curr, &n, 0);
1700                 if ((*n != '\0') || (*curr == '\0')) {
1701                         printk(KERN_WARNING PFX "Invalid hotmod address"
1702                                " '%s'\n", curr);
1703                         break;
1704                 }
1705
1706                 while (s) {
1707                         curr = s;
1708                         s = strchr(curr, ',');
1709                         if (s) {
1710                                 *s = '\0';
1711                                 s++;
1712                         }
1713                         o = strchr(curr, '=');
1714                         if (o) {
1715                                 *o = '\0';
1716                                 o++;
1717                         }
1718                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1719                         if (rv < 0)
1720                                 goto out;
1721                         else if (rv)
1722                                 continue;
1723                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1724                         if (rv < 0)
1725                                 goto out;
1726                         else if (rv)
1727                                 continue;
1728                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1729                         if (rv < 0)
1730                                 goto out;
1731                         else if (rv)
1732                                 continue;
1733                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1734                         if (rv < 0)
1735                                 goto out;
1736                         else if (rv)
1737                                 continue;
1738                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1739                         if (rv < 0)
1740                                 goto out;
1741                         else if (rv)
1742                                 continue;
1743
1744                         rv = -EINVAL;
1745                         printk(KERN_WARNING PFX
1746                                "Invalid hotmod option '%s'\n",
1747                                curr);
1748                         goto out;
1749                 }
1750
1751                 if (op == HM_ADD) {
1752                         info = kzalloc(sizeof(*info), GFP_KERNEL);
1753                         if (!info) {
1754                                 rv = -ENOMEM;
1755                                 goto out;
1756                         }
1757
1758                         info->addr_source = "hotmod";
1759                         info->si_type = si_type;
1760                         info->io.addr_data = addr;
1761                         info->io.addr_type = addr_space;
1762                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1763                                 info->io_setup = mem_setup;
1764                         else
1765                                 info->io_setup = port_setup;
1766
1767                         info->io.addr = NULL;
1768                         info->io.regspacing = regspacing;
1769                         if (!info->io.regspacing)
1770                                 info->io.regspacing = DEFAULT_REGSPACING;
1771                         info->io.regsize = regsize;
1772                         if (!info->io.regsize)
1773                                 info->io.regsize = DEFAULT_REGSPACING;
1774                         info->io.regshift = regshift;
1775                         info->irq = irq;
1776                         if (info->irq)
1777                                 info->irq_setup = std_irq_setup;
1778                         info->slave_addr = ipmb;
1779
1780                         try_smi_init(info);
1781                 } else {
1782                         /* remove */
1783                         struct smi_info *e, *tmp_e;
1784
1785                         mutex_lock(&smi_infos_lock);
1786                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1787                                 if (e->io.addr_type != addr_space)
1788                                         continue;
1789                                 if (e->si_type != si_type)
1790                                         continue;
1791                                 if (e->io.addr_data == addr)
1792                                         cleanup_one_si(e);
1793                         }
1794                         mutex_unlock(&smi_infos_lock);
1795                 }
1796         }
1797         rv = len;
1798  out:
1799         kfree(str);
1800         return rv;
1801 }
1802
1803 static __devinit void hardcode_find_bmc(void)
1804 {
1805         int             i;
1806         struct smi_info *info;
1807
1808         for (i = 0; i < SI_MAX_PARMS; i++) {
1809                 if (!ports[i] && !addrs[i])
1810                         continue;
1811
1812                 info = kzalloc(sizeof(*info), GFP_KERNEL);
1813                 if (!info)
1814                         return;
1815
1816                 info->addr_source = "hardcoded";
1817
1818                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1819                         info->si_type = SI_KCS;
1820                 } else if (strcmp(si_type[i], "smic") == 0) {
1821                         info->si_type = SI_SMIC;
1822                 } else if (strcmp(si_type[i], "bt") == 0) {
1823                         info->si_type = SI_BT;
1824                 } else {
1825                         printk(KERN_WARNING
1826                                "ipmi_si: Interface type specified "
1827                                "for interface %d, was invalid: %s\n",
1828                                i, si_type[i]);
1829                         kfree(info);
1830                         continue;
1831                 }
1832
1833                 if (ports[i]) {
1834                         /* An I/O port */
1835                         info->io_setup = port_setup;
1836                         info->io.addr_data = ports[i];
1837                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1838                 } else if (addrs[i]) {
1839                         /* A memory port */
1840                         info->io_setup = mem_setup;
1841                         info->io.addr_data = addrs[i];
1842                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1843                 } else {
1844                         printk(KERN_WARNING
1845                                "ipmi_si: Interface type specified "
1846                                "for interface %d, "
1847                                "but port and address were not set or "
1848                                "set to zero.\n", i);
1849                         kfree(info);
1850                         continue;
1851                 }
1852
1853                 info->io.addr = NULL;
1854                 info->io.regspacing = regspacings[i];
1855                 if (!info->io.regspacing)
1856                         info->io.regspacing = DEFAULT_REGSPACING;
1857                 info->io.regsize = regsizes[i];
1858                 if (!info->io.regsize)
1859                         info->io.regsize = DEFAULT_REGSPACING;
1860                 info->io.regshift = regshifts[i];
1861                 info->irq = irqs[i];
1862                 if (info->irq)
1863                         info->irq_setup = std_irq_setup;
1864                 info->slave_addr = slave_addrs[i];
1865
1866                 try_smi_init(info);
1867         }
1868 }
1869
1870 #ifdef CONFIG_ACPI
1871
1872 #include <linux/acpi.h>
1873
1874 /*
1875  * Once we get an ACPI failure, we don't try any more, because we go
1876  * through the tables sequentially.  Once we don't find a table, there
1877  * are no more.
1878  */
1879 static int acpi_failure;
1880
1881 /* For GPE-type interrupts. */
1882 static u32 ipmi_acpi_gpe(void *context)
1883 {
1884         struct smi_info *smi_info = context;
1885         unsigned long   flags;
1886 #ifdef DEBUG_TIMING
1887         struct timeval t;
1888 #endif
1889
1890         spin_lock_irqsave(&(smi_info->si_lock), flags);
1891
1892         smi_inc_stat(smi_info, interrupts);
1893
1894 #ifdef DEBUG_TIMING
1895         do_gettimeofday(&t);
1896         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1897 #endif
1898         smi_event_handler(smi_info, 0);
1899         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1900
1901         return ACPI_INTERRUPT_HANDLED;
1902 }
1903
1904 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1905 {
1906         if (!info->irq)
1907                 return;
1908
1909         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1910 }
1911
1912 static int acpi_gpe_irq_setup(struct smi_info *info)
1913 {
1914         acpi_status status;
1915
1916         if (!info->irq)
1917                 return 0;
1918
1919         /* FIXME - is level triggered right? */
1920         status = acpi_install_gpe_handler(NULL,
1921                                           info->irq,
1922                                           ACPI_GPE_LEVEL_TRIGGERED,
1923                                           &ipmi_acpi_gpe,
1924                                           info);
1925         if (status != AE_OK) {
1926                 printk(KERN_WARNING
1927                        "ipmi_si: %s unable to claim ACPI GPE %d,"
1928                        " running polled\n",
1929                        DEVICE_NAME, info->irq);
1930                 info->irq = 0;
1931                 return -EINVAL;
1932         } else {
1933                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1934                 printk("  Using ACPI GPE %d\n", info->irq);
1935                 return 0;
1936         }
1937 }
1938
1939 /*
1940  * Defined at
1941  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1942  * Docs/TechPapers/IA64/hpspmi.pdf
1943  */
1944 struct SPMITable {
1945         s8      Signature[4];
1946         u32     Length;
1947         u8      Revision;
1948         u8      Checksum;
1949         s8      OEMID[6];
1950         s8      OEMTableID[8];
1951         s8      OEMRevision[4];
1952         s8      CreatorID[4];
1953         s8      CreatorRevision[4];
1954         u8      InterfaceType;
1955         u8      IPMIlegacy;
1956         s16     SpecificationRevision;
1957
1958         /*
1959          * Bit 0 - SCI interrupt supported
1960          * Bit 1 - I/O APIC/SAPIC
1961          */
1962         u8      InterruptType;
1963
1964         /*
1965          * If bit 0 of InterruptType is set, then this is the SCI
1966          * interrupt in the GPEx_STS register.
1967          */
1968         u8      GPE;
1969
1970         s16     Reserved;
1971
1972         /*
1973          * If bit 1 of InterruptType is set, then this is the I/O
1974          * APIC/SAPIC interrupt.
1975          */
1976         u32     GlobalSystemInterrupt;
1977
1978         /* The actual register address. */
1979         struct acpi_generic_address addr;
1980
1981         u8      UID[4];
1982
1983         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1984 };
1985
1986 static __devinit int try_init_spmi(struct SPMITable *spmi)
1987 {
1988         struct smi_info  *info;
1989         u8               addr_space;
1990
1991         if (spmi->IPMIlegacy != 1) {
1992             printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1993             return -ENODEV;
1994         }
1995
1996         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1997                 addr_space = IPMI_MEM_ADDR_SPACE;
1998         else
1999                 addr_space = IPMI_IO_ADDR_SPACE;
2000
2001         info = kzalloc(sizeof(*info), GFP_KERNEL);
2002         if (!info) {
2003                 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
2004                 return -ENOMEM;
2005         }
2006
2007         info->addr_source = "SPMI";
2008
2009         /* Figure out the interface type. */
2010         switch (spmi->InterfaceType) {
2011         case 1: /* KCS */
2012                 info->si_type = SI_KCS;
2013                 break;
2014         case 2: /* SMIC */
2015                 info->si_type = SI_SMIC;
2016                 break;
2017         case 3: /* BT */
2018                 info->si_type = SI_BT;
2019                 break;
2020         default:
2021                 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
2022                         spmi->InterfaceType);
2023                 kfree(info);
2024                 return -EIO;
2025         }
2026
2027         if (spmi->InterruptType & 1) {
2028                 /* We've got a GPE interrupt. */
2029                 info->irq = spmi->GPE;
2030                 info->irq_setup = acpi_gpe_irq_setup;
2031         } else if (spmi->InterruptType & 2) {
2032                 /* We've got an APIC/SAPIC interrupt. */
2033                 info->irq = spmi->GlobalSystemInterrupt;
2034                 info->irq_setup = std_irq_setup;
2035         } else {
2036                 /* Use the default interrupt setting. */
2037                 info->irq = 0;
2038                 info->irq_setup = NULL;
2039         }
2040
2041         if (spmi->addr.bit_width) {
2042                 /* A (hopefully) properly formed register bit width. */
2043                 info->io.regspacing = spmi->addr.bit_width / 8;
2044         } else {
2045                 info->io.regspacing = DEFAULT_REGSPACING;
2046         }
2047         info->io.regsize = info->io.regspacing;
2048         info->io.regshift = spmi->addr.bit_offset;
2049
2050         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2051                 info->io_setup = mem_setup;
2052                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2053         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2054                 info->io_setup = port_setup;
2055                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2056         } else {
2057                 kfree(info);
2058                 printk(KERN_WARNING
2059                        "ipmi_si: Unknown ACPI I/O Address type\n");
2060                 return -EIO;
2061         }
2062         info->io.addr_data = spmi->addr.address;
2063
2064         try_smi_init(info);
2065
2066         return 0;
2067 }
2068
2069 static __devinit void spmi_find_bmc(void)
2070 {
2071         acpi_status      status;
2072         struct SPMITable *spmi;
2073         int              i;
2074
2075         if (acpi_disabled)
2076                 return;
2077
2078         if (acpi_failure)
2079                 return;
2080
2081         for (i = 0; ; i++) {
2082                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2083                                         (struct acpi_table_header **)&spmi);
2084                 if (status != AE_OK)
2085                         return;
2086
2087                 try_init_spmi(spmi);
2088         }
2089 }
2090
2091 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2092                                     const struct pnp_device_id *dev_id)
2093 {
2094         struct acpi_device *acpi_dev;
2095         struct smi_info *info;
2096         acpi_handle handle;
2097         acpi_status status;
2098         unsigned long long tmp;
2099
2100         acpi_dev = pnp_acpi_device(dev);
2101         if (!acpi_dev)
2102                 return -ENODEV;
2103
2104         info = kzalloc(sizeof(*info), GFP_KERNEL);
2105         if (!info)
2106                 return -ENOMEM;
2107
2108         info->addr_source = "ACPI";
2109
2110         handle = acpi_dev->handle;
2111
2112         /* _IFT tells us the interface type: KCS, BT, etc */
2113         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2114         if (ACPI_FAILURE(status))
2115                 goto err_free;
2116
2117         switch (tmp) {
2118         case 1:
2119                 info->si_type = SI_KCS;
2120                 break;
2121         case 2:
2122                 info->si_type = SI_SMIC;
2123                 break;
2124         case 3:
2125                 info->si_type = SI_BT;
2126                 break;
2127         default:
2128                 dev_info(&dev->dev, "unknown interface type %lld\n", tmp);
2129                 goto err_free;
2130         }
2131
2132         if (pnp_port_valid(dev, 0)) {
2133                 info->io_setup = port_setup;
2134                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2135                 info->io.addr_data = pnp_port_start(dev, 0);
2136         } else if (pnp_mem_valid(dev, 0)) {
2137                 info->io_setup = mem_setup;
2138                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2139                 info->io.addr_data = pnp_mem_start(dev, 0);
2140         } else {
2141                 dev_err(&dev->dev, "no I/O or memory address\n");
2142                 goto err_free;
2143         }
2144
2145         info->io.regspacing = DEFAULT_REGSPACING;
2146         info->io.regsize = DEFAULT_REGSPACING;
2147         info->io.regshift = 0;
2148
2149         /* If _GPE exists, use it; otherwise use standard interrupts */
2150         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2151         if (ACPI_SUCCESS(status)) {
2152                 info->irq = tmp;
2153                 info->irq_setup = acpi_gpe_irq_setup;
2154         } else if (pnp_irq_valid(dev, 0)) {
2155                 info->irq = pnp_irq(dev, 0);
2156                 info->irq_setup = std_irq_setup;
2157         }
2158
2159         info->dev = &acpi_dev->dev;
2160         pnp_set_drvdata(dev, info);
2161
2162         return try_smi_init(info);
2163
2164 err_free:
2165         kfree(info);
2166         return -EINVAL;
2167 }
2168
2169 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2170 {
2171         struct smi_info *info = pnp_get_drvdata(dev);
2172
2173         cleanup_one_si(info);
2174 }
2175
2176 static const struct pnp_device_id pnp_dev_table[] = {
2177         {"IPI0001", 0},
2178         {"", 0},
2179 };
2180
2181 static struct pnp_driver ipmi_pnp_driver = {
2182         .name           = DEVICE_NAME,
2183         .probe          = ipmi_pnp_probe,
2184         .remove         = __devexit_p(ipmi_pnp_remove),
2185         .id_table       = pnp_dev_table,
2186 };
2187 #endif
2188
2189 #ifdef CONFIG_DMI
2190 struct dmi_ipmi_data {
2191         u8              type;
2192         u8              addr_space;
2193         unsigned long   base_addr;
2194         u8              irq;
2195         u8              offset;
2196         u8              slave_addr;
2197 };
2198
2199 static int __devinit decode_dmi(const struct dmi_header *dm,
2200                                 struct dmi_ipmi_data *dmi)
2201 {
2202         const u8        *data = (const u8 *)dm;
2203         unsigned long   base_addr;
2204         u8              reg_spacing;
2205         u8              len = dm->length;
2206
2207         dmi->type = data[4];
2208
2209         memcpy(&base_addr, data+8, sizeof(unsigned long));
2210         if (len >= 0x11) {
2211                 if (base_addr & 1) {
2212                         /* I/O */
2213                         base_addr &= 0xFFFE;
2214                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2215                 } else
2216                         /* Memory */
2217                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2218
2219                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2220                    is odd. */
2221                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2222
2223                 dmi->irq = data[0x11];
2224
2225                 /* The top two bits of byte 0x10 hold the register spacing. */
2226                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2227                 switch (reg_spacing) {
2228                 case 0x00: /* Byte boundaries */
2229                     dmi->offset = 1;
2230                     break;
2231                 case 0x01: /* 32-bit boundaries */
2232                     dmi->offset = 4;
2233                     break;
2234                 case 0x02: /* 16-byte boundaries */
2235                     dmi->offset = 16;
2236                     break;
2237                 default:
2238                     /* Some other interface, just ignore it. */
2239                     return -EIO;
2240                 }
2241         } else {
2242                 /* Old DMI spec. */
2243                 /*
2244                  * Note that technically, the lower bit of the base
2245                  * address should be 1 if the address is I/O and 0 if
2246                  * the address is in memory.  So many systems get that
2247                  * wrong (and all that I have seen are I/O) so we just
2248                  * ignore that bit and assume I/O.  Systems that use
2249                  * memory should use the newer spec, anyway.
2250                  */
2251                 dmi->base_addr = base_addr & 0xfffe;
2252                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2253                 dmi->offset = 1;
2254         }
2255
2256         dmi->slave_addr = data[6];
2257
2258         return 0;
2259 }
2260
2261 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2262 {
2263         struct smi_info *info;
2264
2265         info = kzalloc(sizeof(*info), GFP_KERNEL);
2266         if (!info) {
2267                 printk(KERN_ERR
2268                        "ipmi_si: Could not allocate SI data\n");
2269                 return;
2270         }
2271
2272         info->addr_source = "SMBIOS";
2273
2274         switch (ipmi_data->type) {
2275         case 0x01: /* KCS */
2276                 info->si_type = SI_KCS;
2277                 break;
2278         case 0x02: /* SMIC */
2279                 info->si_type = SI_SMIC;
2280                 break;
2281         case 0x03: /* BT */
2282                 info->si_type = SI_BT;
2283                 break;
2284         default:
2285                 kfree(info);
2286                 return;
2287         }
2288
2289         switch (ipmi_data->addr_space) {
2290         case IPMI_MEM_ADDR_SPACE:
2291                 info->io_setup = mem_setup;
2292                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2293                 break;
2294
2295         case IPMI_IO_ADDR_SPACE:
2296                 info->io_setup = port_setup;
2297                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2298                 break;
2299
2300         default:
2301                 kfree(info);
2302                 printk(KERN_WARNING
2303                        "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2304                        ipmi_data->addr_space);
2305                 return;
2306         }
2307         info->io.addr_data = ipmi_data->base_addr;
2308
2309         info->io.regspacing = ipmi_data->offset;
2310         if (!info->io.regspacing)
2311                 info->io.regspacing = DEFAULT_REGSPACING;
2312         info->io.regsize = DEFAULT_REGSPACING;
2313         info->io.regshift = 0;
2314
2315         info->slave_addr = ipmi_data->slave_addr;
2316
2317         info->irq = ipmi_data->irq;
2318         if (info->irq)
2319                 info->irq_setup = std_irq_setup;
2320
2321         try_smi_init(info);
2322 }
2323
2324 static void __devinit dmi_find_bmc(void)
2325 {
2326         const struct dmi_device *dev = NULL;
2327         struct dmi_ipmi_data data;
2328         int                  rv;
2329
2330         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2331                 memset(&data, 0, sizeof(data));
2332                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2333                                 &data);
2334                 if (!rv)
2335                         try_init_dmi(&data);
2336         }
2337 }
2338 #endif /* CONFIG_DMI */
2339
2340 #ifdef CONFIG_PCI
2341
2342 #define PCI_ERMC_CLASSCODE              0x0C0700
2343 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2344 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2345 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2346 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2347 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2348
2349 #define PCI_HP_VENDOR_ID    0x103C
2350 #define PCI_MMC_DEVICE_ID   0x121A
2351 #define PCI_MMC_ADDR_CW     0x10
2352
2353 static void ipmi_pci_cleanup(struct smi_info *info)
2354 {
2355         struct pci_dev *pdev = info->addr_source_data;
2356
2357         pci_disable_device(pdev);
2358 }
2359
2360 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2361                                     const struct pci_device_id *ent)
2362 {
2363         int rv;
2364         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2365         struct smi_info *info;
2366
2367         info = kzalloc(sizeof(*info), GFP_KERNEL);
2368         if (!info)
2369                 return -ENOMEM;
2370
2371         info->addr_source = "PCI";
2372
2373         switch (class_type) {
2374         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2375                 info->si_type = SI_SMIC;
2376                 break;
2377
2378         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2379                 info->si_type = SI_KCS;
2380                 break;
2381
2382         case PCI_ERMC_CLASSCODE_TYPE_BT:
2383                 info->si_type = SI_BT;
2384                 break;
2385
2386         default:
2387                 kfree(info);
2388                 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2389                        pci_name(pdev), class_type);
2390                 return -ENOMEM;
2391         }
2392
2393         rv = pci_enable_device(pdev);
2394         if (rv) {
2395                 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2396                        pci_name(pdev));
2397                 kfree(info);
2398                 return rv;
2399         }
2400
2401         info->addr_source_cleanup = ipmi_pci_cleanup;
2402         info->addr_source_data = pdev;
2403
2404         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2405                 info->io_setup = port_setup;
2406                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2407         } else {
2408                 info->io_setup = mem_setup;
2409                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2410         }
2411         info->io.addr_data = pci_resource_start(pdev, 0);
2412
2413         info->io.regspacing = DEFAULT_REGSPACING;
2414         info->io.regsize = DEFAULT_REGSPACING;
2415         info->io.regshift = 0;
2416
2417         info->irq = pdev->irq;
2418         if (info->irq)
2419                 info->irq_setup = std_irq_setup;
2420
2421         info->dev = &pdev->dev;
2422         pci_set_drvdata(pdev, info);
2423
2424         return try_smi_init(info);
2425 }
2426
2427 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2428 {
2429         struct smi_info *info = pci_get_drvdata(pdev);
2430         cleanup_one_si(info);
2431 }
2432
2433 #ifdef CONFIG_PM
2434 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2435 {
2436         return 0;
2437 }
2438
2439 static int ipmi_pci_resume(struct pci_dev *pdev)
2440 {
2441         return 0;
2442 }
2443 #endif
2444
2445 static struct pci_device_id ipmi_pci_devices[] = {
2446         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2447         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2448         { 0, }
2449 };
2450 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2451
2452 static struct pci_driver ipmi_pci_driver = {
2453         .name =         DEVICE_NAME,
2454         .id_table =     ipmi_pci_devices,
2455         .probe =        ipmi_pci_probe,
2456         .remove =       __devexit_p(ipmi_pci_remove),
2457 #ifdef CONFIG_PM
2458         .suspend =      ipmi_pci_suspend,
2459         .resume =       ipmi_pci_resume,
2460 #endif
2461 };
2462 #endif /* CONFIG_PCI */
2463
2464
2465 #ifdef CONFIG_PPC_OF
2466 static int __devinit ipmi_of_probe(struct of_device *dev,
2467                          const struct of_device_id *match)
2468 {
2469         struct smi_info *info;
2470         struct resource resource;
2471         const int *regsize, *regspacing, *regshift;
2472         struct device_node *np = dev->dev.of_node;
2473         int ret;
2474         int proplen;
2475
2476         dev_info(&dev->dev, PFX "probing via device tree\n");
2477
2478         ret = of_address_to_resource(np, 0, &resource);
2479         if (ret) {
2480                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2481                 return ret;
2482         }
2483
2484         regsize = of_get_property(np, "reg-size", &proplen);
2485         if (regsize && proplen != 4) {
2486                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2487                 return -EINVAL;
2488         }
2489
2490         regspacing = of_get_property(np, "reg-spacing", &proplen);
2491         if (regspacing && proplen != 4) {
2492                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2493                 return -EINVAL;
2494         }
2495
2496         regshift = of_get_property(np, "reg-shift", &proplen);
2497         if (regshift && proplen != 4) {
2498                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2499                 return -EINVAL;
2500         }
2501
2502         info = kzalloc(sizeof(*info), GFP_KERNEL);
2503
2504         if (!info) {
2505                 dev_err(&dev->dev,
2506                         PFX "could not allocate memory for OF probe\n");
2507                 return -ENOMEM;
2508         }
2509
2510         info->si_type           = (enum si_type) match->data;
2511         info->addr_source       = "device-tree";
2512         info->irq_setup         = std_irq_setup;
2513
2514         if (resource.flags & IORESOURCE_IO) {
2515                 info->io_setup          = port_setup;
2516                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2517         } else {
2518                 info->io_setup          = mem_setup;
2519                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2520         }
2521
2522         info->io.addr_data      = resource.start;
2523
2524         info->io.regsize        = regsize ? *regsize : DEFAULT_REGSIZE;
2525         info->io.regspacing     = regspacing ? *regspacing : DEFAULT_REGSPACING;
2526         info->io.regshift       = regshift ? *regshift : 0;
2527
2528         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2529         info->dev               = &dev->dev;
2530
2531         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2532                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2533                 info->irq);
2534
2535         dev_set_drvdata(&dev->dev, info);
2536
2537         return try_smi_init(info);
2538 }
2539
2540 static int __devexit ipmi_of_remove(struct of_device *dev)
2541 {
2542         cleanup_one_si(dev_get_drvdata(&dev->dev));
2543         return 0;
2544 }
2545
2546 static struct of_device_id ipmi_match[] =
2547 {
2548         { .type = "ipmi", .compatible = "ipmi-kcs",
2549           .data = (void *)(unsigned long) SI_KCS },
2550         { .type = "ipmi", .compatible = "ipmi-smic",
2551           .data = (void *)(unsigned long) SI_SMIC },
2552         { .type = "ipmi", .compatible = "ipmi-bt",
2553           .data = (void *)(unsigned long) SI_BT },
2554         {},
2555 };
2556
2557 static struct of_platform_driver ipmi_of_platform_driver = {
2558         .driver = {
2559                 .name = "ipmi",
2560                 .owner = THIS_MODULE,
2561                 .of_match_table = ipmi_match,
2562         },
2563         .probe          = ipmi_of_probe,
2564         .remove         = __devexit_p(ipmi_of_remove),
2565 };
2566 #endif /* CONFIG_PPC_OF */
2567
2568 static int wait_for_msg_done(struct smi_info *smi_info)
2569 {
2570         enum si_sm_result     smi_result;
2571
2572         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2573         for (;;) {
2574                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2575                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2576                         schedule_timeout_uninterruptible(1);
2577                         smi_result = smi_info->handlers->event(
2578                                 smi_info->si_sm, 100);
2579                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2580                         smi_result = smi_info->handlers->event(
2581                                 smi_info->si_sm, 0);
2582                 } else
2583                         break;
2584         }
2585         if (smi_result == SI_SM_HOSED)
2586                 /*
2587                  * We couldn't get the state machine to run, so whatever's at
2588                  * the port is probably not an IPMI SMI interface.
2589                  */
2590                 return -ENODEV;
2591
2592         return 0;
2593 }
2594
2595 static int try_get_dev_id(struct smi_info *smi_info)
2596 {
2597         unsigned char         msg[2];
2598         unsigned char         *resp;
2599         unsigned long         resp_len;
2600         int                   rv = 0;
2601
2602         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2603         if (!resp)
2604                 return -ENOMEM;
2605
2606         /*
2607          * Do a Get Device ID command, since it comes back with some
2608          * useful info.
2609          */
2610         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2611         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2612         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2613
2614         rv = wait_for_msg_done(smi_info);
2615         if (rv)
2616                 goto out;
2617
2618         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2619                                                   resp, IPMI_MAX_MSG_LENGTH);
2620
2621         /* Check and record info from the get device id, in case we need it. */
2622         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2623
2624  out:
2625         kfree(resp);
2626         return rv;
2627 }
2628
2629 static int try_enable_event_buffer(struct smi_info *smi_info)
2630 {
2631         unsigned char         msg[3];
2632         unsigned char         *resp;
2633         unsigned long         resp_len;
2634         int                   rv = 0;
2635
2636         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2637         if (!resp)
2638                 return -ENOMEM;
2639
2640         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2641         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2642         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2643
2644         rv = wait_for_msg_done(smi_info);
2645         if (rv) {
2646                 printk(KERN_WARNING
2647                        "ipmi_si: Error getting response from get global,"
2648                        " enables command, the event buffer is not"
2649                        " enabled.\n");
2650                 goto out;
2651         }
2652
2653         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2654                                                   resp, IPMI_MAX_MSG_LENGTH);
2655
2656         if (resp_len < 4 ||
2657                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2658                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2659                         resp[2] != 0) {
2660                 printk(KERN_WARNING
2661                        "ipmi_si: Invalid return from get global"
2662                        " enables command, cannot enable the event"
2663                        " buffer.\n");
2664                 rv = -EINVAL;
2665                 goto out;
2666         }
2667
2668         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2669                 /* buffer is already enabled, nothing to do. */
2670                 goto out;
2671
2672         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2673         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2674         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2675         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2676
2677         rv = wait_for_msg_done(smi_info);
2678         if (rv) {
2679                 printk(KERN_WARNING
2680                        "ipmi_si: Error getting response from set global,"
2681                        " enables command, the event buffer is not"
2682                        " enabled.\n");
2683                 goto out;
2684         }
2685
2686         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2687                                                   resp, IPMI_MAX_MSG_LENGTH);
2688
2689         if (resp_len < 3 ||
2690                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2691                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2692                 printk(KERN_WARNING
2693                        "ipmi_si: Invalid return from get global,"
2694                        "enables command, not enable the event"
2695                        " buffer.\n");
2696                 rv = -EINVAL;
2697                 goto out;
2698         }
2699
2700         if (resp[2] != 0)
2701                 /*
2702                  * An error when setting the event buffer bit means
2703                  * that the event buffer is not supported.
2704                  */
2705                 rv = -ENOENT;
2706  out:
2707         kfree(resp);
2708         return rv;
2709 }
2710
2711 static int type_file_read_proc(char *page, char **start, off_t off,
2712                                int count, int *eof, void *data)
2713 {
2714         struct smi_info *smi = data;
2715
2716         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2717 }
2718
2719 static int stat_file_read_proc(char *page, char **start, off_t off,
2720                                int count, int *eof, void *data)
2721 {
2722         char            *out = (char *) page;
2723         struct smi_info *smi = data;
2724
2725         out += sprintf(out, "interrupts_enabled:    %d\n",
2726                        smi->irq && !smi->interrupt_disabled);
2727         out += sprintf(out, "short_timeouts:        %u\n",
2728                        smi_get_stat(smi, short_timeouts));
2729         out += sprintf(out, "long_timeouts:         %u\n",
2730                        smi_get_stat(smi, long_timeouts));
2731         out += sprintf(out, "idles:                 %u\n",
2732                        smi_get_stat(smi, idles));
2733         out += sprintf(out, "interrupts:            %u\n",
2734                        smi_get_stat(smi, interrupts));
2735         out += sprintf(out, "attentions:            %u\n",
2736                        smi_get_stat(smi, attentions));
2737         out += sprintf(out, "flag_fetches:          %u\n",
2738                        smi_get_stat(smi, flag_fetches));
2739         out += sprintf(out, "hosed_count:           %u\n",
2740                        smi_get_stat(smi, hosed_count));
2741         out += sprintf(out, "complete_transactions: %u\n",
2742                        smi_get_stat(smi, complete_transactions));
2743         out += sprintf(out, "events:                %u\n",
2744                        smi_get_stat(smi, events));
2745         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2746                        smi_get_stat(smi, watchdog_pretimeouts));
2747         out += sprintf(out, "incoming_messages:     %u\n",
2748                        smi_get_stat(smi, incoming_messages));
2749
2750         return out - page;
2751 }
2752
2753 static int param_read_proc(char *page, char **start, off_t off,
2754                            int count, int *eof, void *data)
2755 {
2756         struct smi_info *smi = data;
2757
2758         return sprintf(page,
2759                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2760                        si_to_str[smi->si_type],
2761                        addr_space_to_str[smi->io.addr_type],
2762                        smi->io.addr_data,
2763                        smi->io.regspacing,
2764                        smi->io.regsize,
2765                        smi->io.regshift,
2766                        smi->irq,
2767                        smi->slave_addr);
2768 }
2769
2770 /*
2771  * oem_data_avail_to_receive_msg_avail
2772  * @info - smi_info structure with msg_flags set
2773  *
2774  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2775  * Returns 1 indicating need to re-run handle_flags().
2776  */
2777 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2778 {
2779         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2780                                RECEIVE_MSG_AVAIL);
2781         return 1;
2782 }
2783
2784 /*
2785  * setup_dell_poweredge_oem_data_handler
2786  * @info - smi_info.device_id must be populated
2787  *
2788  * Systems that match, but have firmware version < 1.40 may assert
2789  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2790  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2791  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2792  * as RECEIVE_MSG_AVAIL instead.
2793  *
2794  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2795  * assert the OEM[012] bits, and if it did, the driver would have to
2796  * change to handle that properly, we don't actually check for the
2797  * firmware version.
2798  * Device ID = 0x20                BMC on PowerEdge 8G servers
2799  * Device Revision = 0x80
2800  * Firmware Revision1 = 0x01       BMC version 1.40
2801  * Firmware Revision2 = 0x40       BCD encoded
2802  * IPMI Version = 0x51             IPMI 1.5
2803  * Manufacturer ID = A2 02 00      Dell IANA
2804  *
2805  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2806  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2807  *
2808  */
2809 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2810 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2811 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2812 #define DELL_IANA_MFR_ID 0x0002a2
2813 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2814 {
2815         struct ipmi_device_id *id = &smi_info->device_id;
2816         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2817                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2818                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2819                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2820                         smi_info->oem_data_avail_handler =
2821                                 oem_data_avail_to_receive_msg_avail;
2822                 } else if (ipmi_version_major(id) < 1 ||
2823                            (ipmi_version_major(id) == 1 &&
2824                             ipmi_version_minor(id) < 5)) {
2825                         smi_info->oem_data_avail_handler =
2826                                 oem_data_avail_to_receive_msg_avail;
2827                 }
2828         }
2829 }
2830
2831 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2832 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2833 {
2834         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2835
2836         /* Make it a reponse */
2837         msg->rsp[0] = msg->data[0] | 4;
2838         msg->rsp[1] = msg->data[1];
2839         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2840         msg->rsp_size = 3;
2841         smi_info->curr_msg = NULL;
2842         deliver_recv_msg(smi_info, msg);
2843 }
2844
2845 /*
2846  * dell_poweredge_bt_xaction_handler
2847  * @info - smi_info.device_id must be populated
2848  *
2849  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2850  * not respond to a Get SDR command if the length of the data
2851  * requested is exactly 0x3A, which leads to command timeouts and no
2852  * data returned.  This intercepts such commands, and causes userspace
2853  * callers to try again with a different-sized buffer, which succeeds.
2854  */
2855
2856 #define STORAGE_NETFN 0x0A
2857 #define STORAGE_CMD_GET_SDR 0x23
2858 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2859                                              unsigned long unused,
2860                                              void *in)
2861 {
2862         struct smi_info *smi_info = in;
2863         unsigned char *data = smi_info->curr_msg->data;
2864         unsigned int size   = smi_info->curr_msg->data_size;
2865         if (size >= 8 &&
2866             (data[0]>>2) == STORAGE_NETFN &&
2867             data[1] == STORAGE_CMD_GET_SDR &&
2868             data[7] == 0x3A) {
2869                 return_hosed_msg_badsize(smi_info);
2870                 return NOTIFY_STOP;
2871         }
2872         return NOTIFY_DONE;
2873 }
2874
2875 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2876         .notifier_call  = dell_poweredge_bt_xaction_handler,
2877 };
2878
2879 /*
2880  * setup_dell_poweredge_bt_xaction_handler
2881  * @info - smi_info.device_id must be filled in already
2882  *
2883  * Fills in smi_info.device_id.start_transaction_pre_hook
2884  * when we know what function to use there.
2885  */
2886 static void
2887 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2888 {
2889         struct ipmi_device_id *id = &smi_info->device_id;
2890         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2891             smi_info->si_type == SI_BT)
2892                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2893 }
2894
2895 /*
2896  * setup_oem_data_handler
2897  * @info - smi_info.device_id must be filled in already
2898  *
2899  * Fills in smi_info.device_id.oem_data_available_handler
2900  * when we know what function to use there.
2901  */
2902
2903 static void setup_oem_data_handler(struct smi_info *smi_info)
2904 {
2905         setup_dell_poweredge_oem_data_handler(smi_info);
2906 }
2907
2908 static void setup_xaction_handlers(struct smi_info *smi_info)
2909 {
2910         setup_dell_poweredge_bt_xaction_handler(smi_info);
2911 }
2912
2913 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2914 {
2915         if (smi_info->intf) {
2916                 /*
2917                  * The timer and thread are only running if the
2918                  * interface has been started up and registered.
2919                  */
2920                 if (smi_info->thread != NULL)
2921                         kthread_stop(smi_info->thread);
2922                 del_timer_sync(&smi_info->si_timer);
2923         }
2924 }
2925
2926 static __devinitdata struct ipmi_default_vals
2927 {
2928         int type;
2929         int port;
2930 } ipmi_defaults[] =
2931 {
2932         { .type = SI_KCS, .port = 0xca2 },
2933         { .type = SI_SMIC, .port = 0xca9 },
2934         { .type = SI_BT, .port = 0xe4 },
2935         { .port = 0 }
2936 };
2937
2938 static __devinit void default_find_bmc(void)
2939 {
2940         struct smi_info *info;
2941         int             i;
2942
2943         for (i = 0; ; i++) {
2944                 if (!ipmi_defaults[i].port)
2945                         break;
2946 #ifdef CONFIG_PPC
2947                 if (check_legacy_ioport(ipmi_defaults[i].port))
2948                         continue;
2949 #endif
2950                 info = kzalloc(sizeof(*info), GFP_KERNEL);
2951                 if (!info)
2952                         return;
2953
2954                 info->addr_source = NULL;
2955
2956                 info->si_type = ipmi_defaults[i].type;
2957                 info->io_setup = port_setup;
2958                 info->io.addr_data = ipmi_defaults[i].port;
2959                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2960
2961                 info->io.addr = NULL;
2962                 info->io.regspacing = DEFAULT_REGSPACING;
2963                 info->io.regsize = DEFAULT_REGSPACING;
2964                 info->io.regshift = 0;
2965
2966                 if (try_smi_init(info) == 0) {
2967                         /* Found one... */
2968                         printk(KERN_INFO "ipmi_si: Found default %s state"
2969                                " machine at %s address 0x%lx\n",
2970                                si_to_str[info->si_type],
2971                                addr_space_to_str[info->io.addr_type],
2972                                info->io.addr_data);
2973                         return;
2974                 }
2975         }
2976 }
2977
2978 static int is_new_interface(struct smi_info *info)
2979 {
2980         struct smi_info *e;
2981
2982         list_for_each_entry(e, &smi_infos, link) {
2983                 if (e->io.addr_type != info->io.addr_type)
2984                         continue;
2985                 if (e->io.addr_data == info->io.addr_data)
2986                         return 0;
2987         }
2988
2989         return 1;
2990 }
2991
2992 static int try_smi_init(struct smi_info *new_smi)
2993 {
2994         int rv;
2995         int i;
2996
2997         if (new_smi->addr_source) {
2998                 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2999                        " machine at %s address 0x%lx, slave address 0x%x,"
3000                        " irq %d\n",
3001                        new_smi->addr_source,
3002                        si_to_str[new_smi->si_type],
3003                        addr_space_to_str[new_smi->io.addr_type],
3004                        new_smi->io.addr_data,
3005                        new_smi->slave_addr, new_smi->irq);
3006         }
3007
3008         mutex_lock(&smi_infos_lock);
3009         if (!is_new_interface(new_smi)) {
3010                 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
3011                 rv = -EBUSY;
3012                 goto out_err;
3013         }
3014
3015         /* So we know not to free it unless we have allocated one. */
3016         new_smi->intf = NULL;
3017         new_smi->si_sm = NULL;
3018         new_smi->handlers = NULL;
3019
3020         switch (new_smi->si_type) {
3021         case SI_KCS:
3022                 new_smi->handlers = &kcs_smi_handlers;
3023                 break;
3024
3025         case SI_SMIC:
3026                 new_smi->handlers = &smic_smi_handlers;
3027                 break;
3028
3029         case SI_BT:
3030                 new_smi->handlers = &bt_smi_handlers;
3031                 break;
3032
3033         default:
3034                 /* No support for anything else yet. */
3035                 rv = -EIO;
3036                 goto out_err;
3037         }
3038
3039         /* Allocate the state machine's data and initialize it. */
3040         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3041         if (!new_smi->si_sm) {
3042                 printk(KERN_ERR "Could not allocate state machine memory\n");
3043                 rv = -ENOMEM;
3044                 goto out_err;
3045         }
3046         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3047                                                         &new_smi->io);
3048
3049         /* Now that we know the I/O size, we can set up the I/O. */
3050         rv = new_smi->io_setup(new_smi);
3051         if (rv) {
3052                 printk(KERN_ERR "Could not set up I/O space\n");
3053                 goto out_err;
3054         }
3055
3056         spin_lock_init(&(new_smi->si_lock));
3057         spin_lock_init(&(new_smi->msg_lock));
3058
3059         /* Do low-level detection first. */
3060         if (new_smi->handlers->detect(new_smi->si_sm)) {
3061                 if (new_smi->addr_source)
3062                         printk(KERN_INFO "ipmi_si: Interface detection"
3063                                " failed\n");
3064                 rv = -ENODEV;
3065                 goto out_err;
3066         }
3067
3068         /*
3069          * Attempt a get device id command.  If it fails, we probably
3070          * don't have a BMC here.
3071          */
3072         rv = try_get_dev_id(new_smi);
3073         if (rv) {
3074                 if (new_smi->addr_source)
3075                         printk(KERN_INFO "ipmi_si: There appears to be no BMC"
3076                                " at this location\n");
3077                 goto out_err;
3078         }
3079
3080         setup_oem_data_handler(new_smi);
3081         setup_xaction_handlers(new_smi);
3082
3083         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3084         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3085         new_smi->curr_msg = NULL;
3086         atomic_set(&new_smi->req_events, 0);
3087         new_smi->run_to_completion = 0;
3088         for (i = 0; i < SI_NUM_STATS; i++)
3089                 atomic_set(&new_smi->stats[i], 0);
3090
3091         new_smi->interrupt_disabled = 0;
3092         atomic_set(&new_smi->stop_operation, 0);
3093         new_smi->intf_num = smi_num;
3094         smi_num++;
3095
3096         rv = try_enable_event_buffer(new_smi);
3097         if (rv == 0)
3098                 new_smi->has_event_buffer = 1;
3099
3100         /*
3101          * Start clearing the flags before we enable interrupts or the
3102          * timer to avoid racing with the timer.
3103          */
3104         start_clear_flags(new_smi);
3105         /* IRQ is defined to be set when non-zero. */
3106         if (new_smi->irq)
3107                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3108
3109         if (!new_smi->dev) {
3110                 /*
3111                  * If we don't already have a device from something
3112                  * else (like PCI), then register a new one.
3113                  */
3114                 new_smi->pdev = platform_device_alloc("ipmi_si",
3115                                                       new_smi->intf_num);
3116                 if (!new_smi->pdev) {
3117                         printk(KERN_ERR
3118                                "ipmi_si_intf:"
3119                                " Unable to allocate platform device\n");
3120                         goto out_err;
3121                 }
3122                 new_smi->dev = &new_smi->pdev->dev;
3123                 new_smi->dev->driver = &ipmi_driver.driver;
3124
3125                 rv = platform_device_add(new_smi->pdev);
3126                 if (rv) {
3127                         printk(KERN_ERR
3128                                "ipmi_si_intf:"
3129                                " Unable to register system interface device:"
3130                                " %d\n",
3131                                rv);
3132                         goto out_err;
3133                 }
3134                 new_smi->dev_registered = 1;
3135         }
3136
3137         rv = ipmi_register_smi(&handlers,
3138                                new_smi,
3139                                &new_smi->device_id,
3140                                new_smi->dev,
3141                                "bmc",
3142                                new_smi->slave_addr);
3143         if (rv) {
3144                 printk(KERN_ERR
3145                        "ipmi_si: Unable to register device: error %d\n",
3146                        rv);
3147                 goto out_err_stop_timer;
3148         }
3149
3150         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3151                                      type_file_read_proc,
3152                                      new_smi);
3153         if (rv) {
3154                 printk(KERN_ERR
3155                        "ipmi_si: Unable to create proc entry: %d\n",
3156                        rv);
3157                 goto out_err_stop_timer;
3158         }
3159
3160         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3161                                      stat_file_read_proc,
3162                                      new_smi);
3163         if (rv) {
3164                 printk(KERN_ERR
3165                        "ipmi_si: Unable to create proc entry: %d\n",
3166                        rv);
3167                 goto out_err_stop_timer;
3168         }
3169
3170         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3171                                      param_read_proc,
3172                                      new_smi);
3173         if (rv) {
3174                 printk(KERN_ERR
3175                        "ipmi_si: Unable to create proc entry: %d\n",
3176                        rv);
3177                 goto out_err_stop_timer;
3178         }
3179
3180         list_add_tail(&new_smi->link, &smi_infos);
3181
3182         mutex_unlock(&smi_infos_lock);
3183
3184         printk(KERN_INFO "IPMI %s interface initialized\n",
3185                si_to_str[new_smi->si_type]);
3186
3187         return 0;
3188
3189  out_err_stop_timer:
3190         atomic_inc(&new_smi->stop_operation);
3191         wait_for_timer_and_thread(new_smi);
3192
3193  out_err:
3194         if (new_smi->intf)
3195                 ipmi_unregister_smi(new_smi->intf);
3196
3197         if (new_smi->irq_cleanup)
3198                 new_smi->irq_cleanup(new_smi);
3199
3200         /*
3201          * Wait until we know that we are out of any interrupt
3202          * handlers might have been running before we freed the
3203          * interrupt.
3204          */
3205         synchronize_sched();
3206
3207         if (new_smi->si_sm) {
3208                 if (new_smi->handlers)
3209                         new_smi->handlers->cleanup(new_smi->si_sm);
3210                 kfree(new_smi->si_sm);
3211         }
3212         if (new_smi->addr_source_cleanup)
3213                 new_smi->addr_source_cleanup(new_smi);
3214         if (new_smi->io_cleanup)
3215                 new_smi->io_cleanup(new_smi);
3216
3217         if (new_smi->dev_registered)
3218                 platform_device_unregister(new_smi->pdev);
3219
3220         kfree(new_smi);
3221
3222         mutex_unlock(&smi_infos_lock);
3223
3224         return rv;
3225 }
3226
3227 static __devinit int init_ipmi_si(void)
3228 {
3229         int  i;
3230         char *str;
3231         int  rv;
3232
3233         if (initialized)
3234                 return 0;
3235         initialized = 1;
3236
3237         /* Register the device drivers. */
3238         rv = driver_register(&ipmi_driver.driver);
3239         if (rv) {
3240                 printk(KERN_ERR
3241                        "init_ipmi_si: Unable to register driver: %d\n",
3242                        rv);
3243                 return rv;
3244         }
3245
3246
3247         /* Parse out the si_type string into its components. */
3248         str = si_type_str;
3249         if (*str != '\0') {
3250                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3251                         si_type[i] = str;
3252                         str = strchr(str, ',');
3253                         if (str) {
3254                                 *str = '\0';
3255                                 str++;
3256                         } else {
3257                                 break;
3258                         }
3259                 }
3260         }
3261
3262         printk(KERN_INFO "IPMI System Interface driver.\n");
3263
3264         hardcode_find_bmc();
3265
3266 #ifdef CONFIG_DMI
3267         dmi_find_bmc();
3268 #endif
3269
3270 #ifdef CONFIG_ACPI
3271         spmi_find_bmc();
3272 #endif
3273 #ifdef CONFIG_ACPI
3274         pnp_register_driver(&ipmi_pnp_driver);
3275 #endif
3276
3277 #ifdef CONFIG_PCI
3278         rv = pci_register_driver(&ipmi_pci_driver);
3279         if (rv)
3280                 printk(KERN_ERR
3281                        "init_ipmi_si: Unable to register PCI driver: %d\n",
3282                        rv);
3283 #endif
3284
3285 #ifdef CONFIG_PPC_OF
3286         of_register_platform_driver(&ipmi_of_platform_driver);
3287 #endif
3288
3289         if (si_trydefaults) {
3290                 mutex_lock(&smi_infos_lock);
3291                 if (list_empty(&smi_infos)) {
3292                         /* No BMC was found, try defaults. */
3293                         mutex_unlock(&smi_infos_lock);
3294                         default_find_bmc();
3295                 } else {
3296                         mutex_unlock(&smi_infos_lock);
3297                 }
3298         }
3299
3300         mutex_lock(&smi_infos_lock);
3301         if (unload_when_empty && list_empty(&smi_infos)) {
3302                 mutex_unlock(&smi_infos_lock);
3303 #ifdef CONFIG_PCI
3304                 pci_unregister_driver(&ipmi_pci_driver);
3305 #endif
3306
3307 #ifdef CONFIG_PPC_OF
3308                 of_unregister_platform_driver(&ipmi_of_platform_driver);
3309 #endif
3310                 driver_unregister(&ipmi_driver.driver);
3311                 printk(KERN_WARNING
3312                        "ipmi_si: Unable to find any System Interface(s)\n");
3313                 return -ENODEV;
3314         } else {
3315                 mutex_unlock(&smi_infos_lock);
3316                 return 0;
3317         }
3318 }
3319 module_init(init_ipmi_si);
3320
3321 static void cleanup_one_si(struct smi_info *to_clean)
3322 {
3323         int           rv;
3324         unsigned long flags;
3325
3326         if (!to_clean)
3327                 return;
3328
3329         list_del(&to_clean->link);
3330
3331         /* Tell the driver that we are shutting down. */
3332         atomic_inc(&to_clean->stop_operation);
3333
3334         /*
3335          * Make sure the timer and thread are stopped and will not run
3336          * again.
3337          */
3338         wait_for_timer_and_thread(to_clean);
3339
3340         /*
3341          * Timeouts are stopped, now make sure the interrupts are off
3342          * for the device.  A little tricky with locks to make sure
3343          * there are no races.
3344          */
3345         spin_lock_irqsave(&to_clean->si_lock, flags);
3346         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3347                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3348                 poll(to_clean);
3349                 schedule_timeout_uninterruptible(1);
3350                 spin_lock_irqsave(&to_clean->si_lock, flags);
3351         }
3352         disable_si_irq(to_clean);
3353         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3354         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3355                 poll(to_clean);
3356                 schedule_timeout_uninterruptible(1);
3357         }
3358
3359         /* Clean up interrupts and make sure that everything is done. */
3360         if (to_clean->irq_cleanup)
3361                 to_clean->irq_cleanup(to_clean);
3362         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3363                 poll(to_clean);
3364                 schedule_timeout_uninterruptible(1);
3365         }
3366
3367         rv = ipmi_unregister_smi(to_clean->intf);
3368         if (rv) {
3369                 printk(KERN_ERR
3370                        "ipmi_si: Unable to unregister device: errno=%d\n",
3371                        rv);
3372         }
3373
3374         to_clean->handlers->cleanup(to_clean->si_sm);
3375
3376         kfree(to_clean->si_sm);
3377
3378         if (to_clean->addr_source_cleanup)
3379                 to_clean->addr_source_cleanup(to_clean);
3380         if (to_clean->io_cleanup)
3381                 to_clean->io_cleanup(to_clean);
3382
3383         if (to_clean->dev_registered)
3384                 platform_device_unregister(to_clean->pdev);
3385
3386         kfree(to_clean);
3387 }
3388
3389 static __exit void cleanup_ipmi_si(void)
3390 {
3391         struct smi_info *e, *tmp_e;
3392
3393         if (!initialized)
3394                 return;
3395
3396 #ifdef CONFIG_PCI
3397         pci_unregister_driver(&ipmi_pci_driver);
3398 #endif
3399 #ifdef CONFIG_ACPI
3400         pnp_unregister_driver(&ipmi_pnp_driver);
3401 #endif
3402
3403 #ifdef CONFIG_PPC_OF
3404         of_unregister_platform_driver(&ipmi_of_platform_driver);
3405 #endif
3406
3407         mutex_lock(&smi_infos_lock);
3408         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3409                 cleanup_one_si(e);
3410         mutex_unlock(&smi_infos_lock);
3411
3412         driver_unregister(&ipmi_driver.driver);
3413 }
3414 module_exit(cleanup_ipmi_si);
3415
3416 MODULE_LICENSE("GPL");
3417 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3418 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3419                    " system interfaces.");