Merge branch 'fix' of git://git.kernel.org/pub/scm/linux/kernel/git/ycmiao/pxa-linux-2.6
[pandora-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68
69 #ifdef CONFIG_PPC_OF
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #endif
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC    10000
81 #define SI_USEC_PER_JIFFY       (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84                                       short timeout */
85
86 enum si_intf_state {
87         SI_NORMAL,
88         SI_GETTING_FLAGS,
89         SI_GETTING_EVENTS,
90         SI_CLEARING_FLAGS,
91         SI_CLEARING_FLAGS_THEN_SET_IRQ,
92         SI_GETTING_MESSAGES,
93         SI_ENABLE_INTERRUPTS1,
94         SI_ENABLE_INTERRUPTS2,
95         SI_DISABLE_INTERRUPTS1,
96         SI_DISABLE_INTERRUPTS2
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 enum ipmi_addr_src {
111         SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112         SI_PCI, SI_DEVICETREE, SI_DEFAULT
113 };
114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115                                         "ACPI", "SMBIOS", "PCI",
116                                         "device-tree", "default" };
117
118 #define DEVICE_NAME "ipmi_si"
119
120 static struct platform_driver ipmi_driver = {
121         .driver = {
122                 .name = DEVICE_NAME,
123                 .bus = &platform_bus_type
124         }
125 };
126
127
128 /*
129  * Indexes into stats[] in smi_info below.
130  */
131 enum si_stat_indexes {
132         /*
133          * Number of times the driver requested a timer while an operation
134          * was in progress.
135          */
136         SI_STAT_short_timeouts = 0,
137
138         /*
139          * Number of times the driver requested a timer while nothing was in
140          * progress.
141          */
142         SI_STAT_long_timeouts,
143
144         /* Number of times the interface was idle while being polled. */
145         SI_STAT_idles,
146
147         /* Number of interrupts the driver handled. */
148         SI_STAT_interrupts,
149
150         /* Number of time the driver got an ATTN from the hardware. */
151         SI_STAT_attentions,
152
153         /* Number of times the driver requested flags from the hardware. */
154         SI_STAT_flag_fetches,
155
156         /* Number of times the hardware didn't follow the state machine. */
157         SI_STAT_hosed_count,
158
159         /* Number of completed messages. */
160         SI_STAT_complete_transactions,
161
162         /* Number of IPMI events received from the hardware. */
163         SI_STAT_events,
164
165         /* Number of watchdog pretimeouts. */
166         SI_STAT_watchdog_pretimeouts,
167
168         /* Number of asyncronous messages received. */
169         SI_STAT_incoming_messages,
170
171
172         /* This *must* remain last, add new values above this. */
173         SI_NUM_STATS
174 };
175
176 struct smi_info {
177         int                    intf_num;
178         ipmi_smi_t             intf;
179         struct si_sm_data      *si_sm;
180         struct si_sm_handlers  *handlers;
181         enum si_type           si_type;
182         spinlock_t             si_lock;
183         spinlock_t             msg_lock;
184         struct list_head       xmit_msgs;
185         struct list_head       hp_xmit_msgs;
186         struct ipmi_smi_msg    *curr_msg;
187         enum si_intf_state     si_state;
188
189         /*
190          * Used to handle the various types of I/O that can occur with
191          * IPMI
192          */
193         struct si_sm_io io;
194         int (*io_setup)(struct smi_info *info);
195         void (*io_cleanup)(struct smi_info *info);
196         int (*irq_setup)(struct smi_info *info);
197         void (*irq_cleanup)(struct smi_info *info);
198         unsigned int io_size;
199         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
200         void (*addr_source_cleanup)(struct smi_info *info);
201         void *addr_source_data;
202
203         /*
204          * Per-OEM handler, called from handle_flags().  Returns 1
205          * when handle_flags() needs to be re-run or 0 indicating it
206          * set si_state itself.
207          */
208         int (*oem_data_avail_handler)(struct smi_info *smi_info);
209
210         /*
211          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212          * is set to hold the flags until we are done handling everything
213          * from the flags.
214          */
215 #define RECEIVE_MSG_AVAIL       0x01
216 #define EVENT_MSG_BUFFER_FULL   0x02
217 #define WDT_PRE_TIMEOUT_INT     0x08
218 #define OEM0_DATA_AVAIL     0x20
219 #define OEM1_DATA_AVAIL     0x40
220 #define OEM2_DATA_AVAIL     0x80
221 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
222                              OEM1_DATA_AVAIL | \
223                              OEM2_DATA_AVAIL)
224         unsigned char       msg_flags;
225
226         /* Does the BMC have an event buffer? */
227         char                has_event_buffer;
228
229         /*
230          * If set to true, this will request events the next time the
231          * state machine is idle.
232          */
233         atomic_t            req_events;
234
235         /*
236          * If true, run the state machine to completion on every send
237          * call.  Generally used after a panic to make sure stuff goes
238          * out.
239          */
240         int                 run_to_completion;
241
242         /* The I/O port of an SI interface. */
243         int                 port;
244
245         /*
246          * The space between start addresses of the two ports.  For
247          * instance, if the first port is 0xca2 and the spacing is 4, then
248          * the second port is 0xca6.
249          */
250         unsigned int        spacing;
251
252         /* zero if no irq; */
253         int                 irq;
254
255         /* The timer for this si. */
256         struct timer_list   si_timer;
257
258         /* The time (in jiffies) the last timeout occurred at. */
259         unsigned long       last_timeout_jiffies;
260
261         /* Used to gracefully stop the timer without race conditions. */
262         atomic_t            stop_operation;
263
264         /*
265          * The driver will disable interrupts when it gets into a
266          * situation where it cannot handle messages due to lack of
267          * memory.  Once that situation clears up, it will re-enable
268          * interrupts.
269          */
270         int interrupt_disabled;
271
272         /* From the get device id response... */
273         struct ipmi_device_id device_id;
274
275         /* Driver model stuff. */
276         struct device *dev;
277         struct platform_device *pdev;
278
279         /*
280          * True if we allocated the device, false if it came from
281          * someplace else (like PCI).
282          */
283         int dev_registered;
284
285         /* Slave address, could be reported from DMI. */
286         unsigned char slave_addr;
287
288         /* Counters and things for the proc filesystem. */
289         atomic_t stats[SI_NUM_STATS];
290
291         struct task_struct *thread;
292
293         struct list_head link;
294 };
295
296 #define smi_inc_stat(smi, stat) \
297         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
301 #define SI_MAX_PARMS 4
302
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305
306 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
307 static int num_max_busy_us;
308
309 static int unload_when_empty = 1;
310
311 static int add_smi(struct smi_info *smi);
312 static int try_smi_init(struct smi_info *smi);
313 static void cleanup_one_si(struct smi_info *to_clean);
314
315 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
316 static int register_xaction_notifier(struct notifier_block *nb)
317 {
318         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
319 }
320
321 static void deliver_recv_msg(struct smi_info *smi_info,
322                              struct ipmi_smi_msg *msg)
323 {
324         /* Deliver the message to the upper layer with the lock
325            released. */
326
327         if (smi_info->run_to_completion) {
328                 ipmi_smi_msg_received(smi_info->intf, msg);
329         } else {
330                 spin_unlock(&(smi_info->si_lock));
331                 ipmi_smi_msg_received(smi_info->intf, msg);
332                 spin_lock(&(smi_info->si_lock));
333         }
334 }
335
336 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
337 {
338         struct ipmi_smi_msg *msg = smi_info->curr_msg;
339
340         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
341                 cCode = IPMI_ERR_UNSPECIFIED;
342         /* else use it as is */
343
344         /* Make it a reponse */
345         msg->rsp[0] = msg->data[0] | 4;
346         msg->rsp[1] = msg->data[1];
347         msg->rsp[2] = cCode;
348         msg->rsp_size = 3;
349
350         smi_info->curr_msg = NULL;
351         deliver_recv_msg(smi_info, msg);
352 }
353
354 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
355 {
356         int              rv;
357         struct list_head *entry = NULL;
358 #ifdef DEBUG_TIMING
359         struct timeval t;
360 #endif
361
362         /*
363          * No need to save flags, we aleady have interrupts off and we
364          * already hold the SMI lock.
365          */
366         if (!smi_info->run_to_completion)
367                 spin_lock(&(smi_info->msg_lock));
368
369         /* Pick the high priority queue first. */
370         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
371                 entry = smi_info->hp_xmit_msgs.next;
372         } else if (!list_empty(&(smi_info->xmit_msgs))) {
373                 entry = smi_info->xmit_msgs.next;
374         }
375
376         if (!entry) {
377                 smi_info->curr_msg = NULL;
378                 rv = SI_SM_IDLE;
379         } else {
380                 int err;
381
382                 list_del(entry);
383                 smi_info->curr_msg = list_entry(entry,
384                                                 struct ipmi_smi_msg,
385                                                 link);
386 #ifdef DEBUG_TIMING
387                 do_gettimeofday(&t);
388                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
389 #endif
390                 err = atomic_notifier_call_chain(&xaction_notifier_list,
391                                 0, smi_info);
392                 if (err & NOTIFY_STOP_MASK) {
393                         rv = SI_SM_CALL_WITHOUT_DELAY;
394                         goto out;
395                 }
396                 err = smi_info->handlers->start_transaction(
397                         smi_info->si_sm,
398                         smi_info->curr_msg->data,
399                         smi_info->curr_msg->data_size);
400                 if (err)
401                         return_hosed_msg(smi_info, err);
402
403                 rv = SI_SM_CALL_WITHOUT_DELAY;
404         }
405  out:
406         if (!smi_info->run_to_completion)
407                 spin_unlock(&(smi_info->msg_lock));
408
409         return rv;
410 }
411
412 static void start_enable_irq(struct smi_info *smi_info)
413 {
414         unsigned char msg[2];
415
416         /*
417          * If we are enabling interrupts, we have to tell the
418          * BMC to use them.
419          */
420         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
421         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
422
423         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
424         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
425 }
426
427 static void start_disable_irq(struct smi_info *smi_info)
428 {
429         unsigned char msg[2];
430
431         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
432         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
433
434         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
435         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
436 }
437
438 static void start_clear_flags(struct smi_info *smi_info)
439 {
440         unsigned char msg[3];
441
442         /* Make sure the watchdog pre-timeout flag is not set at startup. */
443         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
444         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
445         msg[2] = WDT_PRE_TIMEOUT_INT;
446
447         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
448         smi_info->si_state = SI_CLEARING_FLAGS;
449 }
450
451 /*
452  * When we have a situtaion where we run out of memory and cannot
453  * allocate messages, we just leave them in the BMC and run the system
454  * polled until we can allocate some memory.  Once we have some
455  * memory, we will re-enable the interrupt.
456  */
457 static inline void disable_si_irq(struct smi_info *smi_info)
458 {
459         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
460                 start_disable_irq(smi_info);
461                 smi_info->interrupt_disabled = 1;
462                 if (!atomic_read(&smi_info->stop_operation))
463                         mod_timer(&smi_info->si_timer,
464                                   jiffies + SI_TIMEOUT_JIFFIES);
465         }
466 }
467
468 static inline void enable_si_irq(struct smi_info *smi_info)
469 {
470         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
471                 start_enable_irq(smi_info);
472                 smi_info->interrupt_disabled = 0;
473         }
474 }
475
476 static void handle_flags(struct smi_info *smi_info)
477 {
478  retry:
479         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
480                 /* Watchdog pre-timeout */
481                 smi_inc_stat(smi_info, watchdog_pretimeouts);
482
483                 start_clear_flags(smi_info);
484                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
485                 spin_unlock(&(smi_info->si_lock));
486                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
487                 spin_lock(&(smi_info->si_lock));
488         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
489                 /* Messages available. */
490                 smi_info->curr_msg = ipmi_alloc_smi_msg();
491                 if (!smi_info->curr_msg) {
492                         disable_si_irq(smi_info);
493                         smi_info->si_state = SI_NORMAL;
494                         return;
495                 }
496                 enable_si_irq(smi_info);
497
498                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
499                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
500                 smi_info->curr_msg->data_size = 2;
501
502                 smi_info->handlers->start_transaction(
503                         smi_info->si_sm,
504                         smi_info->curr_msg->data,
505                         smi_info->curr_msg->data_size);
506                 smi_info->si_state = SI_GETTING_MESSAGES;
507         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
508                 /* Events available. */
509                 smi_info->curr_msg = ipmi_alloc_smi_msg();
510                 if (!smi_info->curr_msg) {
511                         disable_si_irq(smi_info);
512                         smi_info->si_state = SI_NORMAL;
513                         return;
514                 }
515                 enable_si_irq(smi_info);
516
517                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
518                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
519                 smi_info->curr_msg->data_size = 2;
520
521                 smi_info->handlers->start_transaction(
522                         smi_info->si_sm,
523                         smi_info->curr_msg->data,
524                         smi_info->curr_msg->data_size);
525                 smi_info->si_state = SI_GETTING_EVENTS;
526         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
527                    smi_info->oem_data_avail_handler) {
528                 if (smi_info->oem_data_avail_handler(smi_info))
529                         goto retry;
530         } else
531                 smi_info->si_state = SI_NORMAL;
532 }
533
534 static void handle_transaction_done(struct smi_info *smi_info)
535 {
536         struct ipmi_smi_msg *msg;
537 #ifdef DEBUG_TIMING
538         struct timeval t;
539
540         do_gettimeofday(&t);
541         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
542 #endif
543         switch (smi_info->si_state) {
544         case SI_NORMAL:
545                 if (!smi_info->curr_msg)
546                         break;
547
548                 smi_info->curr_msg->rsp_size
549                         = smi_info->handlers->get_result(
550                                 smi_info->si_sm,
551                                 smi_info->curr_msg->rsp,
552                                 IPMI_MAX_MSG_LENGTH);
553
554                 /*
555                  * Do this here becase deliver_recv_msg() releases the
556                  * lock, and a new message can be put in during the
557                  * time the lock is released.
558                  */
559                 msg = smi_info->curr_msg;
560                 smi_info->curr_msg = NULL;
561                 deliver_recv_msg(smi_info, msg);
562                 break;
563
564         case SI_GETTING_FLAGS:
565         {
566                 unsigned char msg[4];
567                 unsigned int  len;
568
569                 /* We got the flags from the SMI, now handle them. */
570                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
571                 if (msg[2] != 0) {
572                         /* Error fetching flags, just give up for now. */
573                         smi_info->si_state = SI_NORMAL;
574                 } else if (len < 4) {
575                         /*
576                          * Hmm, no flags.  That's technically illegal, but
577                          * don't use uninitialized data.
578                          */
579                         smi_info->si_state = SI_NORMAL;
580                 } else {
581                         smi_info->msg_flags = msg[3];
582                         handle_flags(smi_info);
583                 }
584                 break;
585         }
586
587         case SI_CLEARING_FLAGS:
588         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
589         {
590                 unsigned char msg[3];
591
592                 /* We cleared the flags. */
593                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
594                 if (msg[2] != 0) {
595                         /* Error clearing flags */
596                         dev_warn(smi_info->dev,
597                                  "Error clearing flags: %2.2x\n", msg[2]);
598                 }
599                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
600                         start_enable_irq(smi_info);
601                 else
602                         smi_info->si_state = SI_NORMAL;
603                 break;
604         }
605
606         case SI_GETTING_EVENTS:
607         {
608                 smi_info->curr_msg->rsp_size
609                         = smi_info->handlers->get_result(
610                                 smi_info->si_sm,
611                                 smi_info->curr_msg->rsp,
612                                 IPMI_MAX_MSG_LENGTH);
613
614                 /*
615                  * Do this here becase deliver_recv_msg() releases the
616                  * lock, and a new message can be put in during the
617                  * time the lock is released.
618                  */
619                 msg = smi_info->curr_msg;
620                 smi_info->curr_msg = NULL;
621                 if (msg->rsp[2] != 0) {
622                         /* Error getting event, probably done. */
623                         msg->done(msg);
624
625                         /* Take off the event flag. */
626                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
627                         handle_flags(smi_info);
628                 } else {
629                         smi_inc_stat(smi_info, events);
630
631                         /*
632                          * Do this before we deliver the message
633                          * because delivering the message releases the
634                          * lock and something else can mess with the
635                          * state.
636                          */
637                         handle_flags(smi_info);
638
639                         deliver_recv_msg(smi_info, msg);
640                 }
641                 break;
642         }
643
644         case SI_GETTING_MESSAGES:
645         {
646                 smi_info->curr_msg->rsp_size
647                         = smi_info->handlers->get_result(
648                                 smi_info->si_sm,
649                                 smi_info->curr_msg->rsp,
650                                 IPMI_MAX_MSG_LENGTH);
651
652                 /*
653                  * Do this here becase deliver_recv_msg() releases the
654                  * lock, and a new message can be put in during the
655                  * time the lock is released.
656                  */
657                 msg = smi_info->curr_msg;
658                 smi_info->curr_msg = NULL;
659                 if (msg->rsp[2] != 0) {
660                         /* Error getting event, probably done. */
661                         msg->done(msg);
662
663                         /* Take off the msg flag. */
664                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
665                         handle_flags(smi_info);
666                 } else {
667                         smi_inc_stat(smi_info, incoming_messages);
668
669                         /*
670                          * Do this before we deliver the message
671                          * because delivering the message releases the
672                          * lock and something else can mess with the
673                          * state.
674                          */
675                         handle_flags(smi_info);
676
677                         deliver_recv_msg(smi_info, msg);
678                 }
679                 break;
680         }
681
682         case SI_ENABLE_INTERRUPTS1:
683         {
684                 unsigned char msg[4];
685
686                 /* We got the flags from the SMI, now handle them. */
687                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
688                 if (msg[2] != 0) {
689                         dev_warn(smi_info->dev, "Could not enable interrupts"
690                                  ", failed get, using polled mode.\n");
691                         smi_info->si_state = SI_NORMAL;
692                 } else {
693                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
694                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
695                         msg[2] = (msg[3] |
696                                   IPMI_BMC_RCV_MSG_INTR |
697                                   IPMI_BMC_EVT_MSG_INTR);
698                         smi_info->handlers->start_transaction(
699                                 smi_info->si_sm, msg, 3);
700                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
701                 }
702                 break;
703         }
704
705         case SI_ENABLE_INTERRUPTS2:
706         {
707                 unsigned char msg[4];
708
709                 /* We got the flags from the SMI, now handle them. */
710                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
711                 if (msg[2] != 0)
712                         dev_warn(smi_info->dev, "Could not enable interrupts"
713                                  ", failed set, using polled mode.\n");
714                 else
715                         smi_info->interrupt_disabled = 0;
716                 smi_info->si_state = SI_NORMAL;
717                 break;
718         }
719
720         case SI_DISABLE_INTERRUPTS1:
721         {
722                 unsigned char msg[4];
723
724                 /* We got the flags from the SMI, now handle them. */
725                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726                 if (msg[2] != 0) {
727                         dev_warn(smi_info->dev, "Could not disable interrupts"
728                                  ", failed get.\n");
729                         smi_info->si_state = SI_NORMAL;
730                 } else {
731                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
732                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
733                         msg[2] = (msg[3] &
734                                   ~(IPMI_BMC_RCV_MSG_INTR |
735                                     IPMI_BMC_EVT_MSG_INTR));
736                         smi_info->handlers->start_transaction(
737                                 smi_info->si_sm, msg, 3);
738                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
739                 }
740                 break;
741         }
742
743         case SI_DISABLE_INTERRUPTS2:
744         {
745                 unsigned char msg[4];
746
747                 /* We got the flags from the SMI, now handle them. */
748                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
749                 if (msg[2] != 0) {
750                         dev_warn(smi_info->dev, "Could not disable interrupts"
751                                  ", failed set.\n");
752                 }
753                 smi_info->si_state = SI_NORMAL;
754                 break;
755         }
756         }
757 }
758
759 /*
760  * Called on timeouts and events.  Timeouts should pass the elapsed
761  * time, interrupts should pass in zero.  Must be called with
762  * si_lock held and interrupts disabled.
763  */
764 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
765                                            int time)
766 {
767         enum si_sm_result si_sm_result;
768
769  restart:
770         /*
771          * There used to be a loop here that waited a little while
772          * (around 25us) before giving up.  That turned out to be
773          * pointless, the minimum delays I was seeing were in the 300us
774          * range, which is far too long to wait in an interrupt.  So
775          * we just run until the state machine tells us something
776          * happened or it needs a delay.
777          */
778         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
779         time = 0;
780         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
781                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
782
783         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
784                 smi_inc_stat(smi_info, complete_transactions);
785
786                 handle_transaction_done(smi_info);
787                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
788         } else if (si_sm_result == SI_SM_HOSED) {
789                 smi_inc_stat(smi_info, hosed_count);
790
791                 /*
792                  * Do the before return_hosed_msg, because that
793                  * releases the lock.
794                  */
795                 smi_info->si_state = SI_NORMAL;
796                 if (smi_info->curr_msg != NULL) {
797                         /*
798                          * If we were handling a user message, format
799                          * a response to send to the upper layer to
800                          * tell it about the error.
801                          */
802                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
803                 }
804                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
805         }
806
807         /*
808          * We prefer handling attn over new messages.  But don't do
809          * this if there is not yet an upper layer to handle anything.
810          */
811         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
812                 unsigned char msg[2];
813
814                 smi_inc_stat(smi_info, attentions);
815
816                 /*
817                  * Got a attn, send down a get message flags to see
818                  * what's causing it.  It would be better to handle
819                  * this in the upper layer, but due to the way
820                  * interrupts work with the SMI, that's not really
821                  * possible.
822                  */
823                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
824                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
825
826                 smi_info->handlers->start_transaction(
827                         smi_info->si_sm, msg, 2);
828                 smi_info->si_state = SI_GETTING_FLAGS;
829                 goto restart;
830         }
831
832         /* If we are currently idle, try to start the next message. */
833         if (si_sm_result == SI_SM_IDLE) {
834                 smi_inc_stat(smi_info, idles);
835
836                 si_sm_result = start_next_msg(smi_info);
837                 if (si_sm_result != SI_SM_IDLE)
838                         goto restart;
839         }
840
841         if ((si_sm_result == SI_SM_IDLE)
842             && (atomic_read(&smi_info->req_events))) {
843                 /*
844                  * We are idle and the upper layer requested that I fetch
845                  * events, so do so.
846                  */
847                 atomic_set(&smi_info->req_events, 0);
848
849                 smi_info->curr_msg = ipmi_alloc_smi_msg();
850                 if (!smi_info->curr_msg)
851                         goto out;
852
853                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
854                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
855                 smi_info->curr_msg->data_size = 2;
856
857                 smi_info->handlers->start_transaction(
858                         smi_info->si_sm,
859                         smi_info->curr_msg->data,
860                         smi_info->curr_msg->data_size);
861                 smi_info->si_state = SI_GETTING_EVENTS;
862                 goto restart;
863         }
864  out:
865         return si_sm_result;
866 }
867
868 static void sender(void                *send_info,
869                    struct ipmi_smi_msg *msg,
870                    int                 priority)
871 {
872         struct smi_info   *smi_info = send_info;
873         enum si_sm_result result;
874         unsigned long     flags;
875 #ifdef DEBUG_TIMING
876         struct timeval    t;
877 #endif
878
879         if (atomic_read(&smi_info->stop_operation)) {
880                 msg->rsp[0] = msg->data[0] | 4;
881                 msg->rsp[1] = msg->data[1];
882                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
883                 msg->rsp_size = 3;
884                 deliver_recv_msg(smi_info, msg);
885                 return;
886         }
887
888 #ifdef DEBUG_TIMING
889         do_gettimeofday(&t);
890         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
891 #endif
892
893         mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
894
895         if (smi_info->thread)
896                 wake_up_process(smi_info->thread);
897
898         if (smi_info->run_to_completion) {
899                 /*
900                  * If we are running to completion, then throw it in
901                  * the list and run transactions until everything is
902                  * clear.  Priority doesn't matter here.
903                  */
904
905                 /*
906                  * Run to completion means we are single-threaded, no
907                  * need for locks.
908                  */
909                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
910
911                 result = smi_event_handler(smi_info, 0);
912                 while (result != SI_SM_IDLE) {
913                         udelay(SI_SHORT_TIMEOUT_USEC);
914                         result = smi_event_handler(smi_info,
915                                                    SI_SHORT_TIMEOUT_USEC);
916                 }
917                 return;
918         }
919
920         spin_lock_irqsave(&smi_info->msg_lock, flags);
921         if (priority > 0)
922                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
923         else
924                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
925         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
926
927         spin_lock_irqsave(&smi_info->si_lock, flags);
928         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
929                 start_next_msg(smi_info);
930         spin_unlock_irqrestore(&smi_info->si_lock, flags);
931 }
932
933 static void set_run_to_completion(void *send_info, int i_run_to_completion)
934 {
935         struct smi_info   *smi_info = send_info;
936         enum si_sm_result result;
937
938         smi_info->run_to_completion = i_run_to_completion;
939         if (i_run_to_completion) {
940                 result = smi_event_handler(smi_info, 0);
941                 while (result != SI_SM_IDLE) {
942                         udelay(SI_SHORT_TIMEOUT_USEC);
943                         result = smi_event_handler(smi_info,
944                                                    SI_SHORT_TIMEOUT_USEC);
945                 }
946         }
947 }
948
949 /*
950  * Use -1 in the nsec value of the busy waiting timespec to tell that
951  * we are spinning in kipmid looking for something and not delaying
952  * between checks
953  */
954 static inline void ipmi_si_set_not_busy(struct timespec *ts)
955 {
956         ts->tv_nsec = -1;
957 }
958 static inline int ipmi_si_is_busy(struct timespec *ts)
959 {
960         return ts->tv_nsec != -1;
961 }
962
963 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
964                                  const struct smi_info *smi_info,
965                                  struct timespec *busy_until)
966 {
967         unsigned int max_busy_us = 0;
968
969         if (smi_info->intf_num < num_max_busy_us)
970                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
971         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
972                 ipmi_si_set_not_busy(busy_until);
973         else if (!ipmi_si_is_busy(busy_until)) {
974                 getnstimeofday(busy_until);
975                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
976         } else {
977                 struct timespec now;
978                 getnstimeofday(&now);
979                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
980                         ipmi_si_set_not_busy(busy_until);
981                         return 0;
982                 }
983         }
984         return 1;
985 }
986
987
988 /*
989  * A busy-waiting loop for speeding up IPMI operation.
990  *
991  * Lousy hardware makes this hard.  This is only enabled for systems
992  * that are not BT and do not have interrupts.  It starts spinning
993  * when an operation is complete or until max_busy tells it to stop
994  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
995  * Documentation/IPMI.txt for details.
996  */
997 static int ipmi_thread(void *data)
998 {
999         struct smi_info *smi_info = data;
1000         unsigned long flags;
1001         enum si_sm_result smi_result;
1002         struct timespec busy_until;
1003
1004         ipmi_si_set_not_busy(&busy_until);
1005         set_user_nice(current, 19);
1006         while (!kthread_should_stop()) {
1007                 int busy_wait;
1008
1009                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1010                 smi_result = smi_event_handler(smi_info, 0);
1011                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1012                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1013                                                   &busy_until);
1014                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1015                         ; /* do nothing */
1016                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1017                         schedule();
1018                 else if (smi_result == SI_SM_IDLE)
1019                         schedule_timeout_interruptible(100);
1020                 else
1021                         schedule_timeout_interruptible(0);
1022         }
1023         return 0;
1024 }
1025
1026
1027 static void poll(void *send_info)
1028 {
1029         struct smi_info *smi_info = send_info;
1030         unsigned long flags;
1031
1032         /*
1033          * Make sure there is some delay in the poll loop so we can
1034          * drive time forward and timeout things.
1035          */
1036         udelay(10);
1037         spin_lock_irqsave(&smi_info->si_lock, flags);
1038         smi_event_handler(smi_info, 10);
1039         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1040 }
1041
1042 static void request_events(void *send_info)
1043 {
1044         struct smi_info *smi_info = send_info;
1045
1046         if (atomic_read(&smi_info->stop_operation) ||
1047                                 !smi_info->has_event_buffer)
1048                 return;
1049
1050         atomic_set(&smi_info->req_events, 1);
1051 }
1052
1053 static int initialized;
1054
1055 static void smi_timeout(unsigned long data)
1056 {
1057         struct smi_info   *smi_info = (struct smi_info *) data;
1058         enum si_sm_result smi_result;
1059         unsigned long     flags;
1060         unsigned long     jiffies_now;
1061         long              time_diff;
1062         long              timeout;
1063 #ifdef DEBUG_TIMING
1064         struct timeval    t;
1065 #endif
1066
1067         spin_lock_irqsave(&(smi_info->si_lock), flags);
1068 #ifdef DEBUG_TIMING
1069         do_gettimeofday(&t);
1070         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1071 #endif
1072         jiffies_now = jiffies;
1073         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1074                      * SI_USEC_PER_JIFFY);
1075         smi_result = smi_event_handler(smi_info, time_diff);
1076
1077         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1078
1079         smi_info->last_timeout_jiffies = jiffies_now;
1080
1081         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1082                 /* Running with interrupts, only do long timeouts. */
1083                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1084                 smi_inc_stat(smi_info, long_timeouts);
1085                 goto do_mod_timer;
1086         }
1087
1088         /*
1089          * If the state machine asks for a short delay, then shorten
1090          * the timer timeout.
1091          */
1092         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1093                 smi_inc_stat(smi_info, short_timeouts);
1094                 timeout = jiffies + 1;
1095         } else {
1096                 smi_inc_stat(smi_info, long_timeouts);
1097                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1098         }
1099
1100  do_mod_timer:
1101         if (smi_result != SI_SM_IDLE)
1102                 mod_timer(&(smi_info->si_timer), timeout);
1103 }
1104
1105 static irqreturn_t si_irq_handler(int irq, void *data)
1106 {
1107         struct smi_info *smi_info = data;
1108         unsigned long   flags;
1109 #ifdef DEBUG_TIMING
1110         struct timeval  t;
1111 #endif
1112
1113         spin_lock_irqsave(&(smi_info->si_lock), flags);
1114
1115         smi_inc_stat(smi_info, interrupts);
1116
1117 #ifdef DEBUG_TIMING
1118         do_gettimeofday(&t);
1119         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1120 #endif
1121         smi_event_handler(smi_info, 0);
1122         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1123         return IRQ_HANDLED;
1124 }
1125
1126 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1127 {
1128         struct smi_info *smi_info = data;
1129         /* We need to clear the IRQ flag for the BT interface. */
1130         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1131                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1132                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1133         return si_irq_handler(irq, data);
1134 }
1135
1136 static int smi_start_processing(void       *send_info,
1137                                 ipmi_smi_t intf)
1138 {
1139         struct smi_info *new_smi = send_info;
1140         int             enable = 0;
1141
1142         new_smi->intf = intf;
1143
1144         /* Try to claim any interrupts. */
1145         if (new_smi->irq_setup)
1146                 new_smi->irq_setup(new_smi);
1147
1148         /* Set up the timer that drives the interface. */
1149         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1150         new_smi->last_timeout_jiffies = jiffies;
1151         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1152
1153         /*
1154          * Check if the user forcefully enabled the daemon.
1155          */
1156         if (new_smi->intf_num < num_force_kipmid)
1157                 enable = force_kipmid[new_smi->intf_num];
1158         /*
1159          * The BT interface is efficient enough to not need a thread,
1160          * and there is no need for a thread if we have interrupts.
1161          */
1162         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1163                 enable = 1;
1164
1165         if (enable) {
1166                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1167                                               "kipmi%d", new_smi->intf_num);
1168                 if (IS_ERR(new_smi->thread)) {
1169                         dev_notice(new_smi->dev, "Could not start"
1170                                    " kernel thread due to error %ld, only using"
1171                                    " timers to drive the interface\n",
1172                                    PTR_ERR(new_smi->thread));
1173                         new_smi->thread = NULL;
1174                 }
1175         }
1176
1177         return 0;
1178 }
1179
1180 static void set_maintenance_mode(void *send_info, int enable)
1181 {
1182         struct smi_info   *smi_info = send_info;
1183
1184         if (!enable)
1185                 atomic_set(&smi_info->req_events, 0);
1186 }
1187
1188 static struct ipmi_smi_handlers handlers = {
1189         .owner                  = THIS_MODULE,
1190         .start_processing       = smi_start_processing,
1191         .sender                 = sender,
1192         .request_events         = request_events,
1193         .set_maintenance_mode   = set_maintenance_mode,
1194         .set_run_to_completion  = set_run_to_completion,
1195         .poll                   = poll,
1196 };
1197
1198 /*
1199  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1200  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1201  */
1202
1203 static LIST_HEAD(smi_infos);
1204 static DEFINE_MUTEX(smi_infos_lock);
1205 static int smi_num; /* Used to sequence the SMIs */
1206
1207 #define DEFAULT_REGSPACING      1
1208 #define DEFAULT_REGSIZE         1
1209
1210 static int           si_trydefaults = 1;
1211 static char          *si_type[SI_MAX_PARMS];
1212 #define MAX_SI_TYPE_STR 30
1213 static char          si_type_str[MAX_SI_TYPE_STR];
1214 static unsigned long addrs[SI_MAX_PARMS];
1215 static unsigned int num_addrs;
1216 static unsigned int  ports[SI_MAX_PARMS];
1217 static unsigned int num_ports;
1218 static int           irqs[SI_MAX_PARMS];
1219 static unsigned int num_irqs;
1220 static int           regspacings[SI_MAX_PARMS];
1221 static unsigned int num_regspacings;
1222 static int           regsizes[SI_MAX_PARMS];
1223 static unsigned int num_regsizes;
1224 static int           regshifts[SI_MAX_PARMS];
1225 static unsigned int num_regshifts;
1226 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1227 static unsigned int num_slave_addrs;
1228
1229 #define IPMI_IO_ADDR_SPACE  0
1230 #define IPMI_MEM_ADDR_SPACE 1
1231 static char *addr_space_to_str[] = { "i/o", "mem" };
1232
1233 static int hotmod_handler(const char *val, struct kernel_param *kp);
1234
1235 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1236 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1237                  " Documentation/IPMI.txt in the kernel sources for the"
1238                  " gory details.");
1239
1240 module_param_named(trydefaults, si_trydefaults, bool, 0);
1241 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1242                  " default scan of the KCS and SMIC interface at the standard"
1243                  " address");
1244 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1245 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1246                  " interface separated by commas.  The types are 'kcs',"
1247                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1248                  " the first interface to kcs and the second to bt");
1249 module_param_array(addrs, ulong, &num_addrs, 0);
1250 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1251                  " addresses separated by commas.  Only use if an interface"
1252                  " is in memory.  Otherwise, set it to zero or leave"
1253                  " it blank.");
1254 module_param_array(ports, uint, &num_ports, 0);
1255 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1256                  " addresses separated by commas.  Only use if an interface"
1257                  " is a port.  Otherwise, set it to zero or leave"
1258                  " it blank.");
1259 module_param_array(irqs, int, &num_irqs, 0);
1260 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1261                  " addresses separated by commas.  Only use if an interface"
1262                  " has an interrupt.  Otherwise, set it to zero or leave"
1263                  " it blank.");
1264 module_param_array(regspacings, int, &num_regspacings, 0);
1265 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1266                  " and each successive register used by the interface.  For"
1267                  " instance, if the start address is 0xca2 and the spacing"
1268                  " is 2, then the second address is at 0xca4.  Defaults"
1269                  " to 1.");
1270 module_param_array(regsizes, int, &num_regsizes, 0);
1271 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1272                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1273                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1274                  " the 8-bit IPMI register has to be read from a larger"
1275                  " register.");
1276 module_param_array(regshifts, int, &num_regshifts, 0);
1277 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1278                  " IPMI register, in bits.  For instance, if the data"
1279                  " is read from a 32-bit word and the IPMI data is in"
1280                  " bit 8-15, then the shift would be 8");
1281 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1282 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1283                  " the controller.  Normally this is 0x20, but can be"
1284                  " overridden by this parm.  This is an array indexed"
1285                  " by interface number.");
1286 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1287 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1288                  " disabled(0).  Normally the IPMI driver auto-detects"
1289                  " this, but the value may be overridden by this parm.");
1290 module_param(unload_when_empty, int, 0);
1291 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1292                  " specified or found, default is 1.  Setting to 0"
1293                  " is useful for hot add of devices using hotmod.");
1294 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1295 MODULE_PARM_DESC(kipmid_max_busy_us,
1296                  "Max time (in microseconds) to busy-wait for IPMI data before"
1297                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1298                  " if kipmid is using up a lot of CPU time.");
1299
1300
1301 static void std_irq_cleanup(struct smi_info *info)
1302 {
1303         if (info->si_type == SI_BT)
1304                 /* Disable the interrupt in the BT interface. */
1305                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1306         free_irq(info->irq, info);
1307 }
1308
1309 static int std_irq_setup(struct smi_info *info)
1310 {
1311         int rv;
1312
1313         if (!info->irq)
1314                 return 0;
1315
1316         if (info->si_type == SI_BT) {
1317                 rv = request_irq(info->irq,
1318                                  si_bt_irq_handler,
1319                                  IRQF_SHARED | IRQF_DISABLED,
1320                                  DEVICE_NAME,
1321                                  info);
1322                 if (!rv)
1323                         /* Enable the interrupt in the BT interface. */
1324                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1325                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1326         } else
1327                 rv = request_irq(info->irq,
1328                                  si_irq_handler,
1329                                  IRQF_SHARED | IRQF_DISABLED,
1330                                  DEVICE_NAME,
1331                                  info);
1332         if (rv) {
1333                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1334                          " running polled\n",
1335                          DEVICE_NAME, info->irq);
1336                 info->irq = 0;
1337         } else {
1338                 info->irq_cleanup = std_irq_cleanup;
1339                 dev_info(info->dev, "Using irq %d\n", info->irq);
1340         }
1341
1342         return rv;
1343 }
1344
1345 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1346 {
1347         unsigned int addr = io->addr_data;
1348
1349         return inb(addr + (offset * io->regspacing));
1350 }
1351
1352 static void port_outb(struct si_sm_io *io, unsigned int offset,
1353                       unsigned char b)
1354 {
1355         unsigned int addr = io->addr_data;
1356
1357         outb(b, addr + (offset * io->regspacing));
1358 }
1359
1360 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1361 {
1362         unsigned int addr = io->addr_data;
1363
1364         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1365 }
1366
1367 static void port_outw(struct si_sm_io *io, unsigned int offset,
1368                       unsigned char b)
1369 {
1370         unsigned int addr = io->addr_data;
1371
1372         outw(b << io->regshift, addr + (offset * io->regspacing));
1373 }
1374
1375 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1376 {
1377         unsigned int addr = io->addr_data;
1378
1379         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1380 }
1381
1382 static void port_outl(struct si_sm_io *io, unsigned int offset,
1383                       unsigned char b)
1384 {
1385         unsigned int addr = io->addr_data;
1386
1387         outl(b << io->regshift, addr+(offset * io->regspacing));
1388 }
1389
1390 static void port_cleanup(struct smi_info *info)
1391 {
1392         unsigned int addr = info->io.addr_data;
1393         int          idx;
1394
1395         if (addr) {
1396                 for (idx = 0; idx < info->io_size; idx++)
1397                         release_region(addr + idx * info->io.regspacing,
1398                                        info->io.regsize);
1399         }
1400 }
1401
1402 static int port_setup(struct smi_info *info)
1403 {
1404         unsigned int addr = info->io.addr_data;
1405         int          idx;
1406
1407         if (!addr)
1408                 return -ENODEV;
1409
1410         info->io_cleanup = port_cleanup;
1411
1412         /*
1413          * Figure out the actual inb/inw/inl/etc routine to use based
1414          * upon the register size.
1415          */
1416         switch (info->io.regsize) {
1417         case 1:
1418                 info->io.inputb = port_inb;
1419                 info->io.outputb = port_outb;
1420                 break;
1421         case 2:
1422                 info->io.inputb = port_inw;
1423                 info->io.outputb = port_outw;
1424                 break;
1425         case 4:
1426                 info->io.inputb = port_inl;
1427                 info->io.outputb = port_outl;
1428                 break;
1429         default:
1430                 dev_warn(info->dev, "Invalid register size: %d\n",
1431                          info->io.regsize);
1432                 return -EINVAL;
1433         }
1434
1435         /*
1436          * Some BIOSes reserve disjoint I/O regions in their ACPI
1437          * tables.  This causes problems when trying to register the
1438          * entire I/O region.  Therefore we must register each I/O
1439          * port separately.
1440          */
1441         for (idx = 0; idx < info->io_size; idx++) {
1442                 if (request_region(addr + idx * info->io.regspacing,
1443                                    info->io.regsize, DEVICE_NAME) == NULL) {
1444                         /* Undo allocations */
1445                         while (idx--) {
1446                                 release_region(addr + idx * info->io.regspacing,
1447                                                info->io.regsize);
1448                         }
1449                         return -EIO;
1450                 }
1451         }
1452         return 0;
1453 }
1454
1455 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1456 {
1457         return readb((io->addr)+(offset * io->regspacing));
1458 }
1459
1460 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1461                      unsigned char b)
1462 {
1463         writeb(b, (io->addr)+(offset * io->regspacing));
1464 }
1465
1466 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1467 {
1468         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1469                 & 0xff;
1470 }
1471
1472 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1473                      unsigned char b)
1474 {
1475         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1476 }
1477
1478 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1479 {
1480         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1481                 & 0xff;
1482 }
1483
1484 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1485                      unsigned char b)
1486 {
1487         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1488 }
1489
1490 #ifdef readq
1491 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1492 {
1493         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1494                 & 0xff;
1495 }
1496
1497 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1498                      unsigned char b)
1499 {
1500         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1501 }
1502 #endif
1503
1504 static void mem_cleanup(struct smi_info *info)
1505 {
1506         unsigned long addr = info->io.addr_data;
1507         int           mapsize;
1508
1509         if (info->io.addr) {
1510                 iounmap(info->io.addr);
1511
1512                 mapsize = ((info->io_size * info->io.regspacing)
1513                            - (info->io.regspacing - info->io.regsize));
1514
1515                 release_mem_region(addr, mapsize);
1516         }
1517 }
1518
1519 static int mem_setup(struct smi_info *info)
1520 {
1521         unsigned long addr = info->io.addr_data;
1522         int           mapsize;
1523
1524         if (!addr)
1525                 return -ENODEV;
1526
1527         info->io_cleanup = mem_cleanup;
1528
1529         /*
1530          * Figure out the actual readb/readw/readl/etc routine to use based
1531          * upon the register size.
1532          */
1533         switch (info->io.regsize) {
1534         case 1:
1535                 info->io.inputb = intf_mem_inb;
1536                 info->io.outputb = intf_mem_outb;
1537                 break;
1538         case 2:
1539                 info->io.inputb = intf_mem_inw;
1540                 info->io.outputb = intf_mem_outw;
1541                 break;
1542         case 4:
1543                 info->io.inputb = intf_mem_inl;
1544                 info->io.outputb = intf_mem_outl;
1545                 break;
1546 #ifdef readq
1547         case 8:
1548                 info->io.inputb = mem_inq;
1549                 info->io.outputb = mem_outq;
1550                 break;
1551 #endif
1552         default:
1553                 dev_warn(info->dev, "Invalid register size: %d\n",
1554                          info->io.regsize);
1555                 return -EINVAL;
1556         }
1557
1558         /*
1559          * Calculate the total amount of memory to claim.  This is an
1560          * unusual looking calculation, but it avoids claiming any
1561          * more memory than it has to.  It will claim everything
1562          * between the first address to the end of the last full
1563          * register.
1564          */
1565         mapsize = ((info->io_size * info->io.regspacing)
1566                    - (info->io.regspacing - info->io.regsize));
1567
1568         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1569                 return -EIO;
1570
1571         info->io.addr = ioremap(addr, mapsize);
1572         if (info->io.addr == NULL) {
1573                 release_mem_region(addr, mapsize);
1574                 return -EIO;
1575         }
1576         return 0;
1577 }
1578
1579 /*
1580  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1581  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1582  * Options are:
1583  *   rsp=<regspacing>
1584  *   rsi=<regsize>
1585  *   rsh=<regshift>
1586  *   irq=<irq>
1587  *   ipmb=<ipmb addr>
1588  */
1589 enum hotmod_op { HM_ADD, HM_REMOVE };
1590 struct hotmod_vals {
1591         char *name;
1592         int  val;
1593 };
1594 static struct hotmod_vals hotmod_ops[] = {
1595         { "add",        HM_ADD },
1596         { "remove",     HM_REMOVE },
1597         { NULL }
1598 };
1599 static struct hotmod_vals hotmod_si[] = {
1600         { "kcs",        SI_KCS },
1601         { "smic",       SI_SMIC },
1602         { "bt",         SI_BT },
1603         { NULL }
1604 };
1605 static struct hotmod_vals hotmod_as[] = {
1606         { "mem",        IPMI_MEM_ADDR_SPACE },
1607         { "i/o",        IPMI_IO_ADDR_SPACE },
1608         { NULL }
1609 };
1610
1611 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1612 {
1613         char *s;
1614         int  i;
1615
1616         s = strchr(*curr, ',');
1617         if (!s) {
1618                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1619                 return -EINVAL;
1620         }
1621         *s = '\0';
1622         s++;
1623         for (i = 0; hotmod_ops[i].name; i++) {
1624                 if (strcmp(*curr, v[i].name) == 0) {
1625                         *val = v[i].val;
1626                         *curr = s;
1627                         return 0;
1628                 }
1629         }
1630
1631         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1632         return -EINVAL;
1633 }
1634
1635 static int check_hotmod_int_op(const char *curr, const char *option,
1636                                const char *name, int *val)
1637 {
1638         char *n;
1639
1640         if (strcmp(curr, name) == 0) {
1641                 if (!option) {
1642                         printk(KERN_WARNING PFX
1643                                "No option given for '%s'\n",
1644                                curr);
1645                         return -EINVAL;
1646                 }
1647                 *val = simple_strtoul(option, &n, 0);
1648                 if ((*n != '\0') || (*option == '\0')) {
1649                         printk(KERN_WARNING PFX
1650                                "Bad option given for '%s'\n",
1651                                curr);
1652                         return -EINVAL;
1653                 }
1654                 return 1;
1655         }
1656         return 0;
1657 }
1658
1659 static int hotmod_handler(const char *val, struct kernel_param *kp)
1660 {
1661         char *str = kstrdup(val, GFP_KERNEL);
1662         int  rv;
1663         char *next, *curr, *s, *n, *o;
1664         enum hotmod_op op;
1665         enum si_type si_type;
1666         int  addr_space;
1667         unsigned long addr;
1668         int regspacing;
1669         int regsize;
1670         int regshift;
1671         int irq;
1672         int ipmb;
1673         int ival;
1674         int len;
1675         struct smi_info *info;
1676
1677         if (!str)
1678                 return -ENOMEM;
1679
1680         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1681         len = strlen(str);
1682         ival = len - 1;
1683         while ((ival >= 0) && isspace(str[ival])) {
1684                 str[ival] = '\0';
1685                 ival--;
1686         }
1687
1688         for (curr = str; curr; curr = next) {
1689                 regspacing = 1;
1690                 regsize = 1;
1691                 regshift = 0;
1692                 irq = 0;
1693                 ipmb = 0; /* Choose the default if not specified */
1694
1695                 next = strchr(curr, ':');
1696                 if (next) {
1697                         *next = '\0';
1698                         next++;
1699                 }
1700
1701                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1702                 if (rv)
1703                         break;
1704                 op = ival;
1705
1706                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1707                 if (rv)
1708                         break;
1709                 si_type = ival;
1710
1711                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1712                 if (rv)
1713                         break;
1714
1715                 s = strchr(curr, ',');
1716                 if (s) {
1717                         *s = '\0';
1718                         s++;
1719                 }
1720                 addr = simple_strtoul(curr, &n, 0);
1721                 if ((*n != '\0') || (*curr == '\0')) {
1722                         printk(KERN_WARNING PFX "Invalid hotmod address"
1723                                " '%s'\n", curr);
1724                         break;
1725                 }
1726
1727                 while (s) {
1728                         curr = s;
1729                         s = strchr(curr, ',');
1730                         if (s) {
1731                                 *s = '\0';
1732                                 s++;
1733                         }
1734                         o = strchr(curr, '=');
1735                         if (o) {
1736                                 *o = '\0';
1737                                 o++;
1738                         }
1739                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1740                         if (rv < 0)
1741                                 goto out;
1742                         else if (rv)
1743                                 continue;
1744                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1745                         if (rv < 0)
1746                                 goto out;
1747                         else if (rv)
1748                                 continue;
1749                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1750                         if (rv < 0)
1751                                 goto out;
1752                         else if (rv)
1753                                 continue;
1754                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1755                         if (rv < 0)
1756                                 goto out;
1757                         else if (rv)
1758                                 continue;
1759                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1760                         if (rv < 0)
1761                                 goto out;
1762                         else if (rv)
1763                                 continue;
1764
1765                         rv = -EINVAL;
1766                         printk(KERN_WARNING PFX
1767                                "Invalid hotmod option '%s'\n",
1768                                curr);
1769                         goto out;
1770                 }
1771
1772                 if (op == HM_ADD) {
1773                         info = kzalloc(sizeof(*info), GFP_KERNEL);
1774                         if (!info) {
1775                                 rv = -ENOMEM;
1776                                 goto out;
1777                         }
1778
1779                         info->addr_source = SI_HOTMOD;
1780                         info->si_type = si_type;
1781                         info->io.addr_data = addr;
1782                         info->io.addr_type = addr_space;
1783                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1784                                 info->io_setup = mem_setup;
1785                         else
1786                                 info->io_setup = port_setup;
1787
1788                         info->io.addr = NULL;
1789                         info->io.regspacing = regspacing;
1790                         if (!info->io.regspacing)
1791                                 info->io.regspacing = DEFAULT_REGSPACING;
1792                         info->io.regsize = regsize;
1793                         if (!info->io.regsize)
1794                                 info->io.regsize = DEFAULT_REGSPACING;
1795                         info->io.regshift = regshift;
1796                         info->irq = irq;
1797                         if (info->irq)
1798                                 info->irq_setup = std_irq_setup;
1799                         info->slave_addr = ipmb;
1800
1801                         if (!add_smi(info))
1802                                 if (try_smi_init(info))
1803                                         cleanup_one_si(info);
1804                 } else {
1805                         /* remove */
1806                         struct smi_info *e, *tmp_e;
1807
1808                         mutex_lock(&smi_infos_lock);
1809                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1810                                 if (e->io.addr_type != addr_space)
1811                                         continue;
1812                                 if (e->si_type != si_type)
1813                                         continue;
1814                                 if (e->io.addr_data == addr)
1815                                         cleanup_one_si(e);
1816                         }
1817                         mutex_unlock(&smi_infos_lock);
1818                 }
1819         }
1820         rv = len;
1821  out:
1822         kfree(str);
1823         return rv;
1824 }
1825
1826 static __devinit void hardcode_find_bmc(void)
1827 {
1828         int             i;
1829         struct smi_info *info;
1830
1831         for (i = 0; i < SI_MAX_PARMS; i++) {
1832                 if (!ports[i] && !addrs[i])
1833                         continue;
1834
1835                 info = kzalloc(sizeof(*info), GFP_KERNEL);
1836                 if (!info)
1837                         return;
1838
1839                 info->addr_source = SI_HARDCODED;
1840                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1841
1842                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1843                         info->si_type = SI_KCS;
1844                 } else if (strcmp(si_type[i], "smic") == 0) {
1845                         info->si_type = SI_SMIC;
1846                 } else if (strcmp(si_type[i], "bt") == 0) {
1847                         info->si_type = SI_BT;
1848                 } else {
1849                         printk(KERN_WARNING PFX "Interface type specified "
1850                                "for interface %d, was invalid: %s\n",
1851                                i, si_type[i]);
1852                         kfree(info);
1853                         continue;
1854                 }
1855
1856                 if (ports[i]) {
1857                         /* An I/O port */
1858                         info->io_setup = port_setup;
1859                         info->io.addr_data = ports[i];
1860                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1861                 } else if (addrs[i]) {
1862                         /* A memory port */
1863                         info->io_setup = mem_setup;
1864                         info->io.addr_data = addrs[i];
1865                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1866                 } else {
1867                         printk(KERN_WARNING PFX "Interface type specified "
1868                                "for interface %d, but port and address were "
1869                                "not set or set to zero.\n", i);
1870                         kfree(info);
1871                         continue;
1872                 }
1873
1874                 info->io.addr = NULL;
1875                 info->io.regspacing = regspacings[i];
1876                 if (!info->io.regspacing)
1877                         info->io.regspacing = DEFAULT_REGSPACING;
1878                 info->io.regsize = regsizes[i];
1879                 if (!info->io.regsize)
1880                         info->io.regsize = DEFAULT_REGSPACING;
1881                 info->io.regshift = regshifts[i];
1882                 info->irq = irqs[i];
1883                 if (info->irq)
1884                         info->irq_setup = std_irq_setup;
1885                 info->slave_addr = slave_addrs[i];
1886
1887                 if (!add_smi(info))
1888                         if (try_smi_init(info))
1889                                 cleanup_one_si(info);
1890         }
1891 }
1892
1893 #ifdef CONFIG_ACPI
1894
1895 #include <linux/acpi.h>
1896
1897 /*
1898  * Once we get an ACPI failure, we don't try any more, because we go
1899  * through the tables sequentially.  Once we don't find a table, there
1900  * are no more.
1901  */
1902 static int acpi_failure;
1903
1904 /* For GPE-type interrupts. */
1905 static u32 ipmi_acpi_gpe(void *context)
1906 {
1907         struct smi_info *smi_info = context;
1908         unsigned long   flags;
1909 #ifdef DEBUG_TIMING
1910         struct timeval t;
1911 #endif
1912
1913         spin_lock_irqsave(&(smi_info->si_lock), flags);
1914
1915         smi_inc_stat(smi_info, interrupts);
1916
1917 #ifdef DEBUG_TIMING
1918         do_gettimeofday(&t);
1919         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1920 #endif
1921         smi_event_handler(smi_info, 0);
1922         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1923
1924         return ACPI_INTERRUPT_HANDLED;
1925 }
1926
1927 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1928 {
1929         if (!info->irq)
1930                 return;
1931
1932         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1933 }
1934
1935 static int acpi_gpe_irq_setup(struct smi_info *info)
1936 {
1937         acpi_status status;
1938
1939         if (!info->irq)
1940                 return 0;
1941
1942         /* FIXME - is level triggered right? */
1943         status = acpi_install_gpe_handler(NULL,
1944                                           info->irq,
1945                                           ACPI_GPE_LEVEL_TRIGGERED,
1946                                           &ipmi_acpi_gpe,
1947                                           info);
1948         if (status != AE_OK) {
1949                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1950                          " running polled\n", DEVICE_NAME, info->irq);
1951                 info->irq = 0;
1952                 return -EINVAL;
1953         } else {
1954                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1955                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1956                 return 0;
1957         }
1958 }
1959
1960 /*
1961  * Defined at
1962  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1963  * Docs/TechPapers/IA64/hpspmi.pdf
1964  */
1965 struct SPMITable {
1966         s8      Signature[4];
1967         u32     Length;
1968         u8      Revision;
1969         u8      Checksum;
1970         s8      OEMID[6];
1971         s8      OEMTableID[8];
1972         s8      OEMRevision[4];
1973         s8      CreatorID[4];
1974         s8      CreatorRevision[4];
1975         u8      InterfaceType;
1976         u8      IPMIlegacy;
1977         s16     SpecificationRevision;
1978
1979         /*
1980          * Bit 0 - SCI interrupt supported
1981          * Bit 1 - I/O APIC/SAPIC
1982          */
1983         u8      InterruptType;
1984
1985         /*
1986          * If bit 0 of InterruptType is set, then this is the SCI
1987          * interrupt in the GPEx_STS register.
1988          */
1989         u8      GPE;
1990
1991         s16     Reserved;
1992
1993         /*
1994          * If bit 1 of InterruptType is set, then this is the I/O
1995          * APIC/SAPIC interrupt.
1996          */
1997         u32     GlobalSystemInterrupt;
1998
1999         /* The actual register address. */
2000         struct acpi_generic_address addr;
2001
2002         u8      UID[4];
2003
2004         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2005 };
2006
2007 static __devinit int try_init_spmi(struct SPMITable *spmi)
2008 {
2009         struct smi_info  *info;
2010         u8               addr_space;
2011
2012         if (spmi->IPMIlegacy != 1) {
2013                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2014                 return -ENODEV;
2015         }
2016
2017         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
2018                 addr_space = IPMI_MEM_ADDR_SPACE;
2019         else
2020                 addr_space = IPMI_IO_ADDR_SPACE;
2021
2022         info = kzalloc(sizeof(*info), GFP_KERNEL);
2023         if (!info) {
2024                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2025                 return -ENOMEM;
2026         }
2027
2028         info->addr_source = SI_SPMI;
2029         printk(KERN_INFO PFX "probing via SPMI\n");
2030
2031         /* Figure out the interface type. */
2032         switch (spmi->InterfaceType) {
2033         case 1: /* KCS */
2034                 info->si_type = SI_KCS;
2035                 break;
2036         case 2: /* SMIC */
2037                 info->si_type = SI_SMIC;
2038                 break;
2039         case 3: /* BT */
2040                 info->si_type = SI_BT;
2041                 break;
2042         default:
2043                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2044                        spmi->InterfaceType);
2045                 kfree(info);
2046                 return -EIO;
2047         }
2048
2049         if (spmi->InterruptType & 1) {
2050                 /* We've got a GPE interrupt. */
2051                 info->irq = spmi->GPE;
2052                 info->irq_setup = acpi_gpe_irq_setup;
2053         } else if (spmi->InterruptType & 2) {
2054                 /* We've got an APIC/SAPIC interrupt. */
2055                 info->irq = spmi->GlobalSystemInterrupt;
2056                 info->irq_setup = std_irq_setup;
2057         } else {
2058                 /* Use the default interrupt setting. */
2059                 info->irq = 0;
2060                 info->irq_setup = NULL;
2061         }
2062
2063         if (spmi->addr.bit_width) {
2064                 /* A (hopefully) properly formed register bit width. */
2065                 info->io.regspacing = spmi->addr.bit_width / 8;
2066         } else {
2067                 info->io.regspacing = DEFAULT_REGSPACING;
2068         }
2069         info->io.regsize = info->io.regspacing;
2070         info->io.regshift = spmi->addr.bit_offset;
2071
2072         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2073                 info->io_setup = mem_setup;
2074                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2075         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2076                 info->io_setup = port_setup;
2077                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2078         } else {
2079                 kfree(info);
2080                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2081                 return -EIO;
2082         }
2083         info->io.addr_data = spmi->addr.address;
2084
2085         add_smi(info);
2086
2087         return 0;
2088 }
2089
2090 static __devinit void spmi_find_bmc(void)
2091 {
2092         acpi_status      status;
2093         struct SPMITable *spmi;
2094         int              i;
2095
2096         if (acpi_disabled)
2097                 return;
2098
2099         if (acpi_failure)
2100                 return;
2101
2102         for (i = 0; ; i++) {
2103                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2104                                         (struct acpi_table_header **)&spmi);
2105                 if (status != AE_OK)
2106                         return;
2107
2108                 try_init_spmi(spmi);
2109         }
2110 }
2111
2112 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2113                                     const struct pnp_device_id *dev_id)
2114 {
2115         struct acpi_device *acpi_dev;
2116         struct smi_info *info;
2117         struct resource *res;
2118         acpi_handle handle;
2119         acpi_status status;
2120         unsigned long long tmp;
2121
2122         acpi_dev = pnp_acpi_device(dev);
2123         if (!acpi_dev)
2124                 return -ENODEV;
2125
2126         info = kzalloc(sizeof(*info), GFP_KERNEL);
2127         if (!info)
2128                 return -ENOMEM;
2129
2130         info->addr_source = SI_ACPI;
2131         printk(KERN_INFO PFX "probing via ACPI\n");
2132
2133         handle = acpi_dev->handle;
2134
2135         /* _IFT tells us the interface type: KCS, BT, etc */
2136         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2137         if (ACPI_FAILURE(status))
2138                 goto err_free;
2139
2140         switch (tmp) {
2141         case 1:
2142                 info->si_type = SI_KCS;
2143                 break;
2144         case 2:
2145                 info->si_type = SI_SMIC;
2146                 break;
2147         case 3:
2148                 info->si_type = SI_BT;
2149                 break;
2150         default:
2151                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2152                 goto err_free;
2153         }
2154
2155         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2156         if (res) {
2157                 info->io_setup = port_setup;
2158                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2159         } else {
2160                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2161                 if (res) {
2162                         info->io_setup = mem_setup;
2163                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2164                 }
2165         }
2166         if (!res) {
2167                 dev_err(&dev->dev, "no I/O or memory address\n");
2168                 goto err_free;
2169         }
2170         info->io.addr_data = res->start;
2171
2172         info->io.regspacing = DEFAULT_REGSPACING;
2173         info->io.regsize = DEFAULT_REGSPACING;
2174         info->io.regshift = 0;
2175
2176         /* If _GPE exists, use it; otherwise use standard interrupts */
2177         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2178         if (ACPI_SUCCESS(status)) {
2179                 info->irq = tmp;
2180                 info->irq_setup = acpi_gpe_irq_setup;
2181         } else if (pnp_irq_valid(dev, 0)) {
2182                 info->irq = pnp_irq(dev, 0);
2183                 info->irq_setup = std_irq_setup;
2184         }
2185
2186         info->dev = &dev->dev;
2187         pnp_set_drvdata(dev, info);
2188
2189         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2190                  res, info->io.regsize, info->io.regspacing,
2191                  info->irq);
2192
2193         return add_smi(info);
2194
2195 err_free:
2196         kfree(info);
2197         return -EINVAL;
2198 }
2199
2200 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2201 {
2202         struct smi_info *info = pnp_get_drvdata(dev);
2203
2204         cleanup_one_si(info);
2205 }
2206
2207 static const struct pnp_device_id pnp_dev_table[] = {
2208         {"IPI0001", 0},
2209         {"", 0},
2210 };
2211
2212 static struct pnp_driver ipmi_pnp_driver = {
2213         .name           = DEVICE_NAME,
2214         .probe          = ipmi_pnp_probe,
2215         .remove         = __devexit_p(ipmi_pnp_remove),
2216         .id_table       = pnp_dev_table,
2217 };
2218 #endif
2219
2220 #ifdef CONFIG_DMI
2221 struct dmi_ipmi_data {
2222         u8              type;
2223         u8              addr_space;
2224         unsigned long   base_addr;
2225         u8              irq;
2226         u8              offset;
2227         u8              slave_addr;
2228 };
2229
2230 static int __devinit decode_dmi(const struct dmi_header *dm,
2231                                 struct dmi_ipmi_data *dmi)
2232 {
2233         const u8        *data = (const u8 *)dm;
2234         unsigned long   base_addr;
2235         u8              reg_spacing;
2236         u8              len = dm->length;
2237
2238         dmi->type = data[4];
2239
2240         memcpy(&base_addr, data+8, sizeof(unsigned long));
2241         if (len >= 0x11) {
2242                 if (base_addr & 1) {
2243                         /* I/O */
2244                         base_addr &= 0xFFFE;
2245                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2246                 } else
2247                         /* Memory */
2248                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2249
2250                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2251                    is odd. */
2252                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2253
2254                 dmi->irq = data[0x11];
2255
2256                 /* The top two bits of byte 0x10 hold the register spacing. */
2257                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2258                 switch (reg_spacing) {
2259                 case 0x00: /* Byte boundaries */
2260                     dmi->offset = 1;
2261                     break;
2262                 case 0x01: /* 32-bit boundaries */
2263                     dmi->offset = 4;
2264                     break;
2265                 case 0x02: /* 16-byte boundaries */
2266                     dmi->offset = 16;
2267                     break;
2268                 default:
2269                     /* Some other interface, just ignore it. */
2270                     return -EIO;
2271                 }
2272         } else {
2273                 /* Old DMI spec. */
2274                 /*
2275                  * Note that technically, the lower bit of the base
2276                  * address should be 1 if the address is I/O and 0 if
2277                  * the address is in memory.  So many systems get that
2278                  * wrong (and all that I have seen are I/O) so we just
2279                  * ignore that bit and assume I/O.  Systems that use
2280                  * memory should use the newer spec, anyway.
2281                  */
2282                 dmi->base_addr = base_addr & 0xfffe;
2283                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2284                 dmi->offset = 1;
2285         }
2286
2287         dmi->slave_addr = data[6];
2288
2289         return 0;
2290 }
2291
2292 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2293 {
2294         struct smi_info *info;
2295
2296         info = kzalloc(sizeof(*info), GFP_KERNEL);
2297         if (!info) {
2298                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2299                 return;
2300         }
2301
2302         info->addr_source = SI_SMBIOS;
2303         printk(KERN_INFO PFX "probing via SMBIOS\n");
2304
2305         switch (ipmi_data->type) {
2306         case 0x01: /* KCS */
2307                 info->si_type = SI_KCS;
2308                 break;
2309         case 0x02: /* SMIC */
2310                 info->si_type = SI_SMIC;
2311                 break;
2312         case 0x03: /* BT */
2313                 info->si_type = SI_BT;
2314                 break;
2315         default:
2316                 kfree(info);
2317                 return;
2318         }
2319
2320         switch (ipmi_data->addr_space) {
2321         case IPMI_MEM_ADDR_SPACE:
2322                 info->io_setup = mem_setup;
2323                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2324                 break;
2325
2326         case IPMI_IO_ADDR_SPACE:
2327                 info->io_setup = port_setup;
2328                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2329                 break;
2330
2331         default:
2332                 kfree(info);
2333                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2334                        ipmi_data->addr_space);
2335                 return;
2336         }
2337         info->io.addr_data = ipmi_data->base_addr;
2338
2339         info->io.regspacing = ipmi_data->offset;
2340         if (!info->io.regspacing)
2341                 info->io.regspacing = DEFAULT_REGSPACING;
2342         info->io.regsize = DEFAULT_REGSPACING;
2343         info->io.regshift = 0;
2344
2345         info->slave_addr = ipmi_data->slave_addr;
2346
2347         info->irq = ipmi_data->irq;
2348         if (info->irq)
2349                 info->irq_setup = std_irq_setup;
2350
2351         add_smi(info);
2352 }
2353
2354 static void __devinit dmi_find_bmc(void)
2355 {
2356         const struct dmi_device *dev = NULL;
2357         struct dmi_ipmi_data data;
2358         int                  rv;
2359
2360         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2361                 memset(&data, 0, sizeof(data));
2362                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2363                                 &data);
2364                 if (!rv)
2365                         try_init_dmi(&data);
2366         }
2367 }
2368 #endif /* CONFIG_DMI */
2369
2370 #ifdef CONFIG_PCI
2371
2372 #define PCI_ERMC_CLASSCODE              0x0C0700
2373 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2374 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2375 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2376 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2377 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2378
2379 #define PCI_HP_VENDOR_ID    0x103C
2380 #define PCI_MMC_DEVICE_ID   0x121A
2381 #define PCI_MMC_ADDR_CW     0x10
2382
2383 static void ipmi_pci_cleanup(struct smi_info *info)
2384 {
2385         struct pci_dev *pdev = info->addr_source_data;
2386
2387         pci_disable_device(pdev);
2388 }
2389
2390 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2391                                     const struct pci_device_id *ent)
2392 {
2393         int rv;
2394         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2395         struct smi_info *info;
2396
2397         info = kzalloc(sizeof(*info), GFP_KERNEL);
2398         if (!info)
2399                 return -ENOMEM;
2400
2401         info->addr_source = SI_PCI;
2402         dev_info(&pdev->dev, "probing via PCI");
2403
2404         switch (class_type) {
2405         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2406                 info->si_type = SI_SMIC;
2407                 break;
2408
2409         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2410                 info->si_type = SI_KCS;
2411                 break;
2412
2413         case PCI_ERMC_CLASSCODE_TYPE_BT:
2414                 info->si_type = SI_BT;
2415                 break;
2416
2417         default:
2418                 kfree(info);
2419                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2420                 return -ENOMEM;
2421         }
2422
2423         rv = pci_enable_device(pdev);
2424         if (rv) {
2425                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2426                 kfree(info);
2427                 return rv;
2428         }
2429
2430         info->addr_source_cleanup = ipmi_pci_cleanup;
2431         info->addr_source_data = pdev;
2432
2433         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2434                 info->io_setup = port_setup;
2435                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2436         } else {
2437                 info->io_setup = mem_setup;
2438                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2439         }
2440         info->io.addr_data = pci_resource_start(pdev, 0);
2441
2442         info->io.regspacing = DEFAULT_REGSPACING;
2443         info->io.regsize = DEFAULT_REGSPACING;
2444         info->io.regshift = 0;
2445
2446         info->irq = pdev->irq;
2447         if (info->irq)
2448                 info->irq_setup = std_irq_setup;
2449
2450         info->dev = &pdev->dev;
2451         pci_set_drvdata(pdev, info);
2452
2453         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2454                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2455                 info->irq);
2456
2457         return add_smi(info);
2458 }
2459
2460 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2461 {
2462         struct smi_info *info = pci_get_drvdata(pdev);
2463         cleanup_one_si(info);
2464 }
2465
2466 #ifdef CONFIG_PM
2467 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2468 {
2469         return 0;
2470 }
2471
2472 static int ipmi_pci_resume(struct pci_dev *pdev)
2473 {
2474         return 0;
2475 }
2476 #endif
2477
2478 static struct pci_device_id ipmi_pci_devices[] = {
2479         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2480         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2481         { 0, }
2482 };
2483 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2484
2485 static struct pci_driver ipmi_pci_driver = {
2486         .name =         DEVICE_NAME,
2487         .id_table =     ipmi_pci_devices,
2488         .probe =        ipmi_pci_probe,
2489         .remove =       __devexit_p(ipmi_pci_remove),
2490 #ifdef CONFIG_PM
2491         .suspend =      ipmi_pci_suspend,
2492         .resume =       ipmi_pci_resume,
2493 #endif
2494 };
2495 #endif /* CONFIG_PCI */
2496
2497
2498 #ifdef CONFIG_PPC_OF
2499 static int __devinit ipmi_of_probe(struct of_device *dev,
2500                          const struct of_device_id *match)
2501 {
2502         struct smi_info *info;
2503         struct resource resource;
2504         const int *regsize, *regspacing, *regshift;
2505         struct device_node *np = dev->dev.of_node;
2506         int ret;
2507         int proplen;
2508
2509         dev_info(&dev->dev, "probing via device tree\n");
2510
2511         ret = of_address_to_resource(np, 0, &resource);
2512         if (ret) {
2513                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2514                 return ret;
2515         }
2516
2517         regsize = of_get_property(np, "reg-size", &proplen);
2518         if (regsize && proplen != 4) {
2519                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2520                 return -EINVAL;
2521         }
2522
2523         regspacing = of_get_property(np, "reg-spacing", &proplen);
2524         if (regspacing && proplen != 4) {
2525                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2526                 return -EINVAL;
2527         }
2528
2529         regshift = of_get_property(np, "reg-shift", &proplen);
2530         if (regshift && proplen != 4) {
2531                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2532                 return -EINVAL;
2533         }
2534
2535         info = kzalloc(sizeof(*info), GFP_KERNEL);
2536
2537         if (!info) {
2538                 dev_err(&dev->dev,
2539                         "could not allocate memory for OF probe\n");
2540                 return -ENOMEM;
2541         }
2542
2543         info->si_type           = (enum si_type) match->data;
2544         info->addr_source       = SI_DEVICETREE;
2545         info->irq_setup         = std_irq_setup;
2546
2547         if (resource.flags & IORESOURCE_IO) {
2548                 info->io_setup          = port_setup;
2549                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2550         } else {
2551                 info->io_setup          = mem_setup;
2552                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2553         }
2554
2555         info->io.addr_data      = resource.start;
2556
2557         info->io.regsize        = regsize ? *regsize : DEFAULT_REGSIZE;
2558         info->io.regspacing     = regspacing ? *regspacing : DEFAULT_REGSPACING;
2559         info->io.regshift       = regshift ? *regshift : 0;
2560
2561         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2562         info->dev               = &dev->dev;
2563
2564         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2565                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2566                 info->irq);
2567
2568         dev_set_drvdata(&dev->dev, info);
2569
2570         return add_smi(info);
2571 }
2572
2573 static int __devexit ipmi_of_remove(struct of_device *dev)
2574 {
2575         cleanup_one_si(dev_get_drvdata(&dev->dev));
2576         return 0;
2577 }
2578
2579 static struct of_device_id ipmi_match[] =
2580 {
2581         { .type = "ipmi", .compatible = "ipmi-kcs",
2582           .data = (void *)(unsigned long) SI_KCS },
2583         { .type = "ipmi", .compatible = "ipmi-smic",
2584           .data = (void *)(unsigned long) SI_SMIC },
2585         { .type = "ipmi", .compatible = "ipmi-bt",
2586           .data = (void *)(unsigned long) SI_BT },
2587         {},
2588 };
2589
2590 static struct of_platform_driver ipmi_of_platform_driver = {
2591         .driver = {
2592                 .name = "ipmi",
2593                 .owner = THIS_MODULE,
2594                 .of_match_table = ipmi_match,
2595         },
2596         .probe          = ipmi_of_probe,
2597         .remove         = __devexit_p(ipmi_of_remove),
2598 };
2599 #endif /* CONFIG_PPC_OF */
2600
2601 static int wait_for_msg_done(struct smi_info *smi_info)
2602 {
2603         enum si_sm_result     smi_result;
2604
2605         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2606         for (;;) {
2607                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2608                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2609                         schedule_timeout_uninterruptible(1);
2610                         smi_result = smi_info->handlers->event(
2611                                 smi_info->si_sm, 100);
2612                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2613                         smi_result = smi_info->handlers->event(
2614                                 smi_info->si_sm, 0);
2615                 } else
2616                         break;
2617         }
2618         if (smi_result == SI_SM_HOSED)
2619                 /*
2620                  * We couldn't get the state machine to run, so whatever's at
2621                  * the port is probably not an IPMI SMI interface.
2622                  */
2623                 return -ENODEV;
2624
2625         return 0;
2626 }
2627
2628 static int try_get_dev_id(struct smi_info *smi_info)
2629 {
2630         unsigned char         msg[2];
2631         unsigned char         *resp;
2632         unsigned long         resp_len;
2633         int                   rv = 0;
2634
2635         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2636         if (!resp)
2637                 return -ENOMEM;
2638
2639         /*
2640          * Do a Get Device ID command, since it comes back with some
2641          * useful info.
2642          */
2643         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2644         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2645         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2646
2647         rv = wait_for_msg_done(smi_info);
2648         if (rv)
2649                 goto out;
2650
2651         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2652                                                   resp, IPMI_MAX_MSG_LENGTH);
2653
2654         /* Check and record info from the get device id, in case we need it. */
2655         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2656
2657  out:
2658         kfree(resp);
2659         return rv;
2660 }
2661
2662 static int try_enable_event_buffer(struct smi_info *smi_info)
2663 {
2664         unsigned char         msg[3];
2665         unsigned char         *resp;
2666         unsigned long         resp_len;
2667         int                   rv = 0;
2668
2669         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2670         if (!resp)
2671                 return -ENOMEM;
2672
2673         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2674         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2675         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2676
2677         rv = wait_for_msg_done(smi_info);
2678         if (rv) {
2679                 printk(KERN_WARNING PFX "Error getting response from get"
2680                        " global enables command, the event buffer is not"
2681                        " enabled.\n");
2682                 goto out;
2683         }
2684
2685         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2686                                                   resp, IPMI_MAX_MSG_LENGTH);
2687
2688         if (resp_len < 4 ||
2689                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2690                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2691                         resp[2] != 0) {
2692                 printk(KERN_WARNING PFX "Invalid return from get global"
2693                        " enables command, cannot enable the event buffer.\n");
2694                 rv = -EINVAL;
2695                 goto out;
2696         }
2697
2698         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2699                 /* buffer is already enabled, nothing to do. */
2700                 goto out;
2701
2702         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2703         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2704         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2705         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2706
2707         rv = wait_for_msg_done(smi_info);
2708         if (rv) {
2709                 printk(KERN_WARNING PFX "Error getting response from set"
2710                        " global, enables command, the event buffer is not"
2711                        " enabled.\n");
2712                 goto out;
2713         }
2714
2715         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2716                                                   resp, IPMI_MAX_MSG_LENGTH);
2717
2718         if (resp_len < 3 ||
2719                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2720                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2721                 printk(KERN_WARNING PFX "Invalid return from get global,"
2722                        "enables command, not enable the event buffer.\n");
2723                 rv = -EINVAL;
2724                 goto out;
2725         }
2726
2727         if (resp[2] != 0)
2728                 /*
2729                  * An error when setting the event buffer bit means
2730                  * that the event buffer is not supported.
2731                  */
2732                 rv = -ENOENT;
2733  out:
2734         kfree(resp);
2735         return rv;
2736 }
2737
2738 static int type_file_read_proc(char *page, char **start, off_t off,
2739                                int count, int *eof, void *data)
2740 {
2741         struct smi_info *smi = data;
2742
2743         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2744 }
2745
2746 static int stat_file_read_proc(char *page, char **start, off_t off,
2747                                int count, int *eof, void *data)
2748 {
2749         char            *out = (char *) page;
2750         struct smi_info *smi = data;
2751
2752         out += sprintf(out, "interrupts_enabled:    %d\n",
2753                        smi->irq && !smi->interrupt_disabled);
2754         out += sprintf(out, "short_timeouts:        %u\n",
2755                        smi_get_stat(smi, short_timeouts));
2756         out += sprintf(out, "long_timeouts:         %u\n",
2757                        smi_get_stat(smi, long_timeouts));
2758         out += sprintf(out, "idles:                 %u\n",
2759                        smi_get_stat(smi, idles));
2760         out += sprintf(out, "interrupts:            %u\n",
2761                        smi_get_stat(smi, interrupts));
2762         out += sprintf(out, "attentions:            %u\n",
2763                        smi_get_stat(smi, attentions));
2764         out += sprintf(out, "flag_fetches:          %u\n",
2765                        smi_get_stat(smi, flag_fetches));
2766         out += sprintf(out, "hosed_count:           %u\n",
2767                        smi_get_stat(smi, hosed_count));
2768         out += sprintf(out, "complete_transactions: %u\n",
2769                        smi_get_stat(smi, complete_transactions));
2770         out += sprintf(out, "events:                %u\n",
2771                        smi_get_stat(smi, events));
2772         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2773                        smi_get_stat(smi, watchdog_pretimeouts));
2774         out += sprintf(out, "incoming_messages:     %u\n",
2775                        smi_get_stat(smi, incoming_messages));
2776
2777         return out - page;
2778 }
2779
2780 static int param_read_proc(char *page, char **start, off_t off,
2781                            int count, int *eof, void *data)
2782 {
2783         struct smi_info *smi = data;
2784
2785         return sprintf(page,
2786                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2787                        si_to_str[smi->si_type],
2788                        addr_space_to_str[smi->io.addr_type],
2789                        smi->io.addr_data,
2790                        smi->io.regspacing,
2791                        smi->io.regsize,
2792                        smi->io.regshift,
2793                        smi->irq,
2794                        smi->slave_addr);
2795 }
2796
2797 /*
2798  * oem_data_avail_to_receive_msg_avail
2799  * @info - smi_info structure with msg_flags set
2800  *
2801  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2802  * Returns 1 indicating need to re-run handle_flags().
2803  */
2804 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2805 {
2806         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2807                                RECEIVE_MSG_AVAIL);
2808         return 1;
2809 }
2810
2811 /*
2812  * setup_dell_poweredge_oem_data_handler
2813  * @info - smi_info.device_id must be populated
2814  *
2815  * Systems that match, but have firmware version < 1.40 may assert
2816  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2817  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2818  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2819  * as RECEIVE_MSG_AVAIL instead.
2820  *
2821  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2822  * assert the OEM[012] bits, and if it did, the driver would have to
2823  * change to handle that properly, we don't actually check for the
2824  * firmware version.
2825  * Device ID = 0x20                BMC on PowerEdge 8G servers
2826  * Device Revision = 0x80
2827  * Firmware Revision1 = 0x01       BMC version 1.40
2828  * Firmware Revision2 = 0x40       BCD encoded
2829  * IPMI Version = 0x51             IPMI 1.5
2830  * Manufacturer ID = A2 02 00      Dell IANA
2831  *
2832  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2833  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2834  *
2835  */
2836 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2837 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2838 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2839 #define DELL_IANA_MFR_ID 0x0002a2
2840 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2841 {
2842         struct ipmi_device_id *id = &smi_info->device_id;
2843         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2844                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2845                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2846                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2847                         smi_info->oem_data_avail_handler =
2848                                 oem_data_avail_to_receive_msg_avail;
2849                 } else if (ipmi_version_major(id) < 1 ||
2850                            (ipmi_version_major(id) == 1 &&
2851                             ipmi_version_minor(id) < 5)) {
2852                         smi_info->oem_data_avail_handler =
2853                                 oem_data_avail_to_receive_msg_avail;
2854                 }
2855         }
2856 }
2857
2858 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2859 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2860 {
2861         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2862
2863         /* Make it a reponse */
2864         msg->rsp[0] = msg->data[0] | 4;
2865         msg->rsp[1] = msg->data[1];
2866         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2867         msg->rsp_size = 3;
2868         smi_info->curr_msg = NULL;
2869         deliver_recv_msg(smi_info, msg);
2870 }
2871
2872 /*
2873  * dell_poweredge_bt_xaction_handler
2874  * @info - smi_info.device_id must be populated
2875  *
2876  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2877  * not respond to a Get SDR command if the length of the data
2878  * requested is exactly 0x3A, which leads to command timeouts and no
2879  * data returned.  This intercepts such commands, and causes userspace
2880  * callers to try again with a different-sized buffer, which succeeds.
2881  */
2882
2883 #define STORAGE_NETFN 0x0A
2884 #define STORAGE_CMD_GET_SDR 0x23
2885 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2886                                              unsigned long unused,
2887                                              void *in)
2888 {
2889         struct smi_info *smi_info = in;
2890         unsigned char *data = smi_info->curr_msg->data;
2891         unsigned int size   = smi_info->curr_msg->data_size;
2892         if (size >= 8 &&
2893             (data[0]>>2) == STORAGE_NETFN &&
2894             data[1] == STORAGE_CMD_GET_SDR &&
2895             data[7] == 0x3A) {
2896                 return_hosed_msg_badsize(smi_info);
2897                 return NOTIFY_STOP;
2898         }
2899         return NOTIFY_DONE;
2900 }
2901
2902 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2903         .notifier_call  = dell_poweredge_bt_xaction_handler,
2904 };
2905
2906 /*
2907  * setup_dell_poweredge_bt_xaction_handler
2908  * @info - smi_info.device_id must be filled in already
2909  *
2910  * Fills in smi_info.device_id.start_transaction_pre_hook
2911  * when we know what function to use there.
2912  */
2913 static void
2914 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2915 {
2916         struct ipmi_device_id *id = &smi_info->device_id;
2917         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2918             smi_info->si_type == SI_BT)
2919                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2920 }
2921
2922 /*
2923  * setup_oem_data_handler
2924  * @info - smi_info.device_id must be filled in already
2925  *
2926  * Fills in smi_info.device_id.oem_data_available_handler
2927  * when we know what function to use there.
2928  */
2929
2930 static void setup_oem_data_handler(struct smi_info *smi_info)
2931 {
2932         setup_dell_poweredge_oem_data_handler(smi_info);
2933 }
2934
2935 static void setup_xaction_handlers(struct smi_info *smi_info)
2936 {
2937         setup_dell_poweredge_bt_xaction_handler(smi_info);
2938 }
2939
2940 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2941 {
2942         if (smi_info->intf) {
2943                 /*
2944                  * The timer and thread are only running if the
2945                  * interface has been started up and registered.
2946                  */
2947                 if (smi_info->thread != NULL)
2948                         kthread_stop(smi_info->thread);
2949                 del_timer_sync(&smi_info->si_timer);
2950         }
2951 }
2952
2953 static __devinitdata struct ipmi_default_vals
2954 {
2955         int type;
2956         int port;
2957 } ipmi_defaults[] =
2958 {
2959         { .type = SI_KCS, .port = 0xca2 },
2960         { .type = SI_SMIC, .port = 0xca9 },
2961         { .type = SI_BT, .port = 0xe4 },
2962         { .port = 0 }
2963 };
2964
2965 static __devinit void default_find_bmc(void)
2966 {
2967         struct smi_info *info;
2968         int             i;
2969
2970         for (i = 0; ; i++) {
2971                 if (!ipmi_defaults[i].port)
2972                         break;
2973 #ifdef CONFIG_PPC
2974                 if (check_legacy_ioport(ipmi_defaults[i].port))
2975                         continue;
2976 #endif
2977                 info = kzalloc(sizeof(*info), GFP_KERNEL);
2978                 if (!info)
2979                         return;
2980
2981                 info->addr_source = SI_DEFAULT;
2982
2983                 info->si_type = ipmi_defaults[i].type;
2984                 info->io_setup = port_setup;
2985                 info->io.addr_data = ipmi_defaults[i].port;
2986                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2987
2988                 info->io.addr = NULL;
2989                 info->io.regspacing = DEFAULT_REGSPACING;
2990                 info->io.regsize = DEFAULT_REGSPACING;
2991                 info->io.regshift = 0;
2992
2993                 if (add_smi(info) == 0) {
2994                         if ((try_smi_init(info)) == 0) {
2995                                 /* Found one... */
2996                                 printk(KERN_INFO PFX "Found default %s"
2997                                 " state machine at %s address 0x%lx\n",
2998                                 si_to_str[info->si_type],
2999                                 addr_space_to_str[info->io.addr_type],
3000                                 info->io.addr_data);
3001                         } else
3002                                 cleanup_one_si(info);
3003                 }
3004         }
3005 }
3006
3007 static int is_new_interface(struct smi_info *info)
3008 {
3009         struct smi_info *e;
3010
3011         list_for_each_entry(e, &smi_infos, link) {
3012                 if (e->io.addr_type != info->io.addr_type)
3013                         continue;
3014                 if (e->io.addr_data == info->io.addr_data)
3015                         return 0;
3016         }
3017
3018         return 1;
3019 }
3020
3021 static int add_smi(struct smi_info *new_smi)
3022 {
3023         int rv = 0;
3024
3025         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3026                         ipmi_addr_src_to_str[new_smi->addr_source],
3027                         si_to_str[new_smi->si_type]);
3028         mutex_lock(&smi_infos_lock);
3029         if (!is_new_interface(new_smi)) {
3030                 printk(KERN_CONT PFX "duplicate interface\n");
3031                 rv = -EBUSY;
3032                 goto out_err;
3033         }
3034
3035         printk(KERN_CONT "\n");
3036
3037         /* So we know not to free it unless we have allocated one. */
3038         new_smi->intf = NULL;
3039         new_smi->si_sm = NULL;
3040         new_smi->handlers = NULL;
3041
3042         list_add_tail(&new_smi->link, &smi_infos);
3043
3044 out_err:
3045         mutex_unlock(&smi_infos_lock);
3046         return rv;
3047 }
3048
3049 static int try_smi_init(struct smi_info *new_smi)
3050 {
3051         int rv = 0;
3052         int i;
3053
3054         printk(KERN_INFO PFX "Trying %s-specified %s state"
3055                " machine at %s address 0x%lx, slave address 0x%x,"
3056                " irq %d\n",
3057                ipmi_addr_src_to_str[new_smi->addr_source],
3058                si_to_str[new_smi->si_type],
3059                addr_space_to_str[new_smi->io.addr_type],
3060                new_smi->io.addr_data,
3061                new_smi->slave_addr, new_smi->irq);
3062
3063         switch (new_smi->si_type) {
3064         case SI_KCS:
3065                 new_smi->handlers = &kcs_smi_handlers;
3066                 break;
3067
3068         case SI_SMIC:
3069                 new_smi->handlers = &smic_smi_handlers;
3070                 break;
3071
3072         case SI_BT:
3073                 new_smi->handlers = &bt_smi_handlers;
3074                 break;
3075
3076         default:
3077                 /* No support for anything else yet. */
3078                 rv = -EIO;
3079                 goto out_err;
3080         }
3081
3082         /* Allocate the state machine's data and initialize it. */
3083         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3084         if (!new_smi->si_sm) {
3085                 printk(KERN_ERR PFX
3086                        "Could not allocate state machine memory\n");
3087                 rv = -ENOMEM;
3088                 goto out_err;
3089         }
3090         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3091                                                         &new_smi->io);
3092
3093         /* Now that we know the I/O size, we can set up the I/O. */
3094         rv = new_smi->io_setup(new_smi);
3095         if (rv) {
3096                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3097                 goto out_err;
3098         }
3099
3100         spin_lock_init(&(new_smi->si_lock));
3101         spin_lock_init(&(new_smi->msg_lock));
3102
3103         /* Do low-level detection first. */
3104         if (new_smi->handlers->detect(new_smi->si_sm)) {
3105                 if (new_smi->addr_source)
3106                         printk(KERN_INFO PFX "Interface detection failed\n");
3107                 rv = -ENODEV;
3108                 goto out_err;
3109         }
3110
3111         /*
3112          * Attempt a get device id command.  If it fails, we probably
3113          * don't have a BMC here.
3114          */
3115         rv = try_get_dev_id(new_smi);
3116         if (rv) {
3117                 if (new_smi->addr_source)
3118                         printk(KERN_INFO PFX "There appears to be no BMC"
3119                                " at this location\n");
3120                 goto out_err;
3121         }
3122
3123         setup_oem_data_handler(new_smi);
3124         setup_xaction_handlers(new_smi);
3125
3126         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3127         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3128         new_smi->curr_msg = NULL;
3129         atomic_set(&new_smi->req_events, 0);
3130         new_smi->run_to_completion = 0;
3131         for (i = 0; i < SI_NUM_STATS; i++)
3132                 atomic_set(&new_smi->stats[i], 0);
3133
3134         new_smi->interrupt_disabled = 1;
3135         atomic_set(&new_smi->stop_operation, 0);
3136         new_smi->intf_num = smi_num;
3137         smi_num++;
3138
3139         rv = try_enable_event_buffer(new_smi);
3140         if (rv == 0)
3141                 new_smi->has_event_buffer = 1;
3142
3143         /*
3144          * Start clearing the flags before we enable interrupts or the
3145          * timer to avoid racing with the timer.
3146          */
3147         start_clear_flags(new_smi);
3148         /* IRQ is defined to be set when non-zero. */
3149         if (new_smi->irq)
3150                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3151
3152         if (!new_smi->dev) {
3153                 /*
3154                  * If we don't already have a device from something
3155                  * else (like PCI), then register a new one.
3156                  */
3157                 new_smi->pdev = platform_device_alloc("ipmi_si",
3158                                                       new_smi->intf_num);
3159                 if (!new_smi->pdev) {
3160                         printk(KERN_ERR PFX
3161                                "Unable to allocate platform device\n");
3162                         goto out_err;
3163                 }
3164                 new_smi->dev = &new_smi->pdev->dev;
3165                 new_smi->dev->driver = &ipmi_driver.driver;
3166
3167                 rv = platform_device_add(new_smi->pdev);
3168                 if (rv) {
3169                         printk(KERN_ERR PFX
3170                                "Unable to register system interface device:"
3171                                " %d\n",
3172                                rv);
3173                         goto out_err;
3174                 }
3175                 new_smi->dev_registered = 1;
3176         }
3177
3178         rv = ipmi_register_smi(&handlers,
3179                                new_smi,
3180                                &new_smi->device_id,
3181                                new_smi->dev,
3182                                "bmc",
3183                                new_smi->slave_addr);
3184         if (rv) {
3185                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3186                         rv);
3187                 goto out_err_stop_timer;
3188         }
3189
3190         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3191                                      type_file_read_proc,
3192                                      new_smi);
3193         if (rv) {
3194                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3195                 goto out_err_stop_timer;
3196         }
3197
3198         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3199                                      stat_file_read_proc,
3200                                      new_smi);
3201         if (rv) {
3202                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3203                 goto out_err_stop_timer;
3204         }
3205
3206         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3207                                      param_read_proc,
3208                                      new_smi);
3209         if (rv) {
3210                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3211                 goto out_err_stop_timer;
3212         }
3213
3214         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3215                  si_to_str[new_smi->si_type]);
3216
3217         return 0;
3218
3219  out_err_stop_timer:
3220         atomic_inc(&new_smi->stop_operation);
3221         wait_for_timer_and_thread(new_smi);
3222
3223  out_err:
3224         new_smi->interrupt_disabled = 1;
3225
3226         if (new_smi->intf) {
3227                 ipmi_unregister_smi(new_smi->intf);
3228                 new_smi->intf = NULL;
3229         }
3230
3231         if (new_smi->irq_cleanup) {
3232                 new_smi->irq_cleanup(new_smi);
3233                 new_smi->irq_cleanup = NULL;
3234         }
3235
3236         /*
3237          * Wait until we know that we are out of any interrupt
3238          * handlers might have been running before we freed the
3239          * interrupt.
3240          */
3241         synchronize_sched();
3242
3243         if (new_smi->si_sm) {
3244                 if (new_smi->handlers)
3245                         new_smi->handlers->cleanup(new_smi->si_sm);
3246                 kfree(new_smi->si_sm);
3247                 new_smi->si_sm = NULL;
3248         }
3249         if (new_smi->addr_source_cleanup) {
3250                 new_smi->addr_source_cleanup(new_smi);
3251                 new_smi->addr_source_cleanup = NULL;
3252         }
3253         if (new_smi->io_cleanup) {
3254                 new_smi->io_cleanup(new_smi);
3255                 new_smi->io_cleanup = NULL;
3256         }
3257
3258         if (new_smi->dev_registered) {
3259                 platform_device_unregister(new_smi->pdev);
3260                 new_smi->dev_registered = 0;
3261         }
3262
3263         return rv;
3264 }
3265
3266 static __devinit int init_ipmi_si(void)
3267 {
3268         int  i;
3269         char *str;
3270         int  rv;
3271         struct smi_info *e;
3272         enum ipmi_addr_src type = SI_INVALID;
3273
3274         if (initialized)
3275                 return 0;
3276         initialized = 1;
3277
3278         /* Register the device drivers. */
3279         rv = driver_register(&ipmi_driver.driver);
3280         if (rv) {
3281                 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3282                 return rv;
3283         }
3284
3285
3286         /* Parse out the si_type string into its components. */
3287         str = si_type_str;
3288         if (*str != '\0') {
3289                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3290                         si_type[i] = str;
3291                         str = strchr(str, ',');
3292                         if (str) {
3293                                 *str = '\0';
3294                                 str++;
3295                         } else {
3296                                 break;
3297                         }
3298                 }
3299         }
3300
3301         printk(KERN_INFO "IPMI System Interface driver.\n");
3302
3303         hardcode_find_bmc();
3304
3305         /* If the user gave us a device, they presumably want us to use it */
3306         mutex_lock(&smi_infos_lock);
3307         if (!list_empty(&smi_infos)) {
3308                 mutex_unlock(&smi_infos_lock);
3309                 return 0;
3310         }
3311         mutex_unlock(&smi_infos_lock);
3312
3313 #ifdef CONFIG_PCI
3314         rv = pci_register_driver(&ipmi_pci_driver);
3315         if (rv)
3316                 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3317 #endif
3318
3319 #ifdef CONFIG_ACPI
3320         pnp_register_driver(&ipmi_pnp_driver);
3321 #endif
3322
3323 #ifdef CONFIG_DMI
3324         dmi_find_bmc();
3325 #endif
3326
3327 #ifdef CONFIG_ACPI
3328         spmi_find_bmc();
3329 #endif
3330
3331 #ifdef CONFIG_PPC_OF
3332         of_register_platform_driver(&ipmi_of_platform_driver);
3333 #endif
3334
3335         /* We prefer devices with interrupts, but in the case of a machine
3336            with multiple BMCs we assume that there will be several instances
3337            of a given type so if we succeed in registering a type then also
3338            try to register everything else of the same type */
3339
3340         mutex_lock(&smi_infos_lock);
3341         list_for_each_entry(e, &smi_infos, link) {
3342                 /* Try to register a device if it has an IRQ and we either
3343                    haven't successfully registered a device yet or this
3344                    device has the same type as one we successfully registered */
3345                 if (e->irq && (!type || e->addr_source == type)) {
3346                         if (!try_smi_init(e)) {
3347                                 type = e->addr_source;
3348                         }
3349                 }
3350         }
3351
3352         /* type will only have been set if we successfully registered an si */
3353         if (type) {
3354                 mutex_unlock(&smi_infos_lock);
3355                 return 0;
3356         }
3357
3358         /* Fall back to the preferred device */
3359
3360         list_for_each_entry(e, &smi_infos, link) {
3361                 if (!e->irq && (!type || e->addr_source == type)) {
3362                         if (!try_smi_init(e)) {
3363                                 type = e->addr_source;
3364                         }
3365                 }
3366         }
3367         mutex_unlock(&smi_infos_lock);
3368
3369         if (type)
3370                 return 0;
3371
3372         if (si_trydefaults) {
3373                 mutex_lock(&smi_infos_lock);
3374                 if (list_empty(&smi_infos)) {
3375                         /* No BMC was found, try defaults. */
3376                         mutex_unlock(&smi_infos_lock);
3377                         default_find_bmc();
3378                 } else
3379                         mutex_unlock(&smi_infos_lock);
3380         }
3381
3382         mutex_lock(&smi_infos_lock);
3383         if (unload_when_empty && list_empty(&smi_infos)) {
3384                 mutex_unlock(&smi_infos_lock);
3385 #ifdef CONFIG_PCI
3386                 pci_unregister_driver(&ipmi_pci_driver);
3387 #endif
3388
3389 #ifdef CONFIG_PPC_OF
3390                 of_unregister_platform_driver(&ipmi_of_platform_driver);
3391 #endif
3392                 driver_unregister(&ipmi_driver.driver);
3393                 printk(KERN_WARNING PFX
3394                        "Unable to find any System Interface(s)\n");
3395                 return -ENODEV;
3396         } else {
3397                 mutex_unlock(&smi_infos_lock);
3398                 return 0;
3399         }
3400 }
3401 module_init(init_ipmi_si);
3402
3403 static void cleanup_one_si(struct smi_info *to_clean)
3404 {
3405         int           rv = 0;
3406         unsigned long flags;
3407
3408         if (!to_clean)
3409                 return;
3410
3411         list_del(&to_clean->link);
3412
3413         /* Tell the driver that we are shutting down. */
3414         atomic_inc(&to_clean->stop_operation);
3415
3416         /*
3417          * Make sure the timer and thread are stopped and will not run
3418          * again.
3419          */
3420         wait_for_timer_and_thread(to_clean);
3421
3422         /*
3423          * Timeouts are stopped, now make sure the interrupts are off
3424          * for the device.  A little tricky with locks to make sure
3425          * there are no races.
3426          */
3427         spin_lock_irqsave(&to_clean->si_lock, flags);
3428         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3429                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3430                 poll(to_clean);
3431                 schedule_timeout_uninterruptible(1);
3432                 spin_lock_irqsave(&to_clean->si_lock, flags);
3433         }
3434         disable_si_irq(to_clean);
3435         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3436         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3437                 poll(to_clean);
3438                 schedule_timeout_uninterruptible(1);
3439         }
3440
3441         /* Clean up interrupts and make sure that everything is done. */
3442         if (to_clean->irq_cleanup)
3443                 to_clean->irq_cleanup(to_clean);
3444         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3445                 poll(to_clean);
3446                 schedule_timeout_uninterruptible(1);
3447         }
3448
3449         if (to_clean->intf)
3450                 rv = ipmi_unregister_smi(to_clean->intf);
3451
3452         if (rv) {
3453                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3454                        rv);
3455         }
3456
3457         if (to_clean->handlers)
3458                 to_clean->handlers->cleanup(to_clean->si_sm);
3459
3460         kfree(to_clean->si_sm);
3461
3462         if (to_clean->addr_source_cleanup)
3463                 to_clean->addr_source_cleanup(to_clean);
3464         if (to_clean->io_cleanup)
3465                 to_clean->io_cleanup(to_clean);
3466
3467         if (to_clean->dev_registered)
3468                 platform_device_unregister(to_clean->pdev);
3469
3470         kfree(to_clean);
3471 }
3472
3473 static __exit void cleanup_ipmi_si(void)
3474 {
3475         struct smi_info *e, *tmp_e;
3476
3477         if (!initialized)
3478                 return;
3479
3480 #ifdef CONFIG_PCI
3481         pci_unregister_driver(&ipmi_pci_driver);
3482 #endif
3483 #ifdef CONFIG_ACPI
3484         pnp_unregister_driver(&ipmi_pnp_driver);
3485 #endif
3486
3487 #ifdef CONFIG_PPC_OF
3488         of_unregister_platform_driver(&ipmi_of_platform_driver);
3489 #endif
3490
3491         mutex_lock(&smi_infos_lock);
3492         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3493                 cleanup_one_si(e);
3494         mutex_unlock(&smi_infos_lock);
3495
3496         driver_unregister(&ipmi_driver.driver);
3497 }
3498 module_exit(cleanup_ipmi_si);
3499
3500 MODULE_LICENSE("GPL");
3501 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3502 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3503                    " system interfaces.");