Merge branch 'master' into for-next
[pandora-kernel.git] / drivers / char / ipmi / ipmi_msghandler.c
1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/sched.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48
49 #define PFX "IPMI message handler: "
50
51 #define IPMI_DRIVER_VERSION "39.2"
52
53 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
54 static int ipmi_init_msghandler(void);
55
56 static int initialized;
57
58 #ifdef CONFIG_PROC_FS
59 static struct proc_dir_entry *proc_ipmi_root;
60 #endif /* CONFIG_PROC_FS */
61
62 /* Remain in auto-maintenance mode for this amount of time (in ms). */
63 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
64
65 #define MAX_EVENTS_IN_QUEUE     25
66
67 /*
68  * Don't let a message sit in a queue forever, always time it with at lest
69  * the max message timer.  This is in milliseconds.
70  */
71 #define MAX_MSG_TIMEOUT         60000
72
73 /*
74  * The main "user" data structure.
75  */
76 struct ipmi_user {
77         struct list_head link;
78
79         /* Set to "0" when the user is destroyed. */
80         int valid;
81
82         struct kref refcount;
83
84         /* The upper layer that handles receive messages. */
85         struct ipmi_user_hndl *handler;
86         void             *handler_data;
87
88         /* The interface this user is bound to. */
89         ipmi_smi_t intf;
90
91         /* Does this interface receive IPMI events? */
92         int gets_events;
93 };
94
95 struct cmd_rcvr {
96         struct list_head link;
97
98         ipmi_user_t   user;
99         unsigned char netfn;
100         unsigned char cmd;
101         unsigned int  chans;
102
103         /*
104          * This is used to form a linked lised during mass deletion.
105          * Since this is in an RCU list, we cannot use the link above
106          * or change any data until the RCU period completes.  So we
107          * use this next variable during mass deletion so we can have
108          * a list and don't have to wait and restart the search on
109          * every individual deletion of a command.
110          */
111         struct cmd_rcvr *next;
112 };
113
114 struct seq_table {
115         unsigned int         inuse : 1;
116         unsigned int         broadcast : 1;
117
118         unsigned long        timeout;
119         unsigned long        orig_timeout;
120         unsigned int         retries_left;
121
122         /*
123          * To verify on an incoming send message response that this is
124          * the message that the response is for, we keep a sequence id
125          * and increment it every time we send a message.
126          */
127         long                 seqid;
128
129         /*
130          * This is held so we can properly respond to the message on a
131          * timeout, and it is used to hold the temporary data for
132          * retransmission, too.
133          */
134         struct ipmi_recv_msg *recv_msg;
135 };
136
137 /*
138  * Store the information in a msgid (long) to allow us to find a
139  * sequence table entry from the msgid.
140  */
141 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
142
143 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
144         do {                                                            \
145                 seq = ((msgid >> 26) & 0x3f);                           \
146                 seqid = (msgid & 0x3fffff);                             \
147         } while (0)
148
149 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
150
151 struct ipmi_channel {
152         unsigned char medium;
153         unsigned char protocol;
154
155         /*
156          * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
157          * but may be changed by the user.
158          */
159         unsigned char address;
160
161         /*
162          * My LUN.  This should generally stay the SMS LUN, but just in
163          * case...
164          */
165         unsigned char lun;
166 };
167
168 #ifdef CONFIG_PROC_FS
169 struct ipmi_proc_entry {
170         char                   *name;
171         struct ipmi_proc_entry *next;
172 };
173 #endif
174
175 struct bmc_device {
176         struct platform_device *dev;
177         struct ipmi_device_id  id;
178         unsigned char          guid[16];
179         int                    guid_set;
180
181         struct kref            refcount;
182
183         /* bmc device attributes */
184         struct device_attribute device_id_attr;
185         struct device_attribute provides_dev_sdrs_attr;
186         struct device_attribute revision_attr;
187         struct device_attribute firmware_rev_attr;
188         struct device_attribute version_attr;
189         struct device_attribute add_dev_support_attr;
190         struct device_attribute manufacturer_id_attr;
191         struct device_attribute product_id_attr;
192         struct device_attribute guid_attr;
193         struct device_attribute aux_firmware_rev_attr;
194 };
195
196 /*
197  * Various statistics for IPMI, these index stats[] in the ipmi_smi
198  * structure.
199  */
200 enum ipmi_stat_indexes {
201         /* Commands we got from the user that were invalid. */
202         IPMI_STAT_sent_invalid_commands = 0,
203
204         /* Commands we sent to the MC. */
205         IPMI_STAT_sent_local_commands,
206
207         /* Responses from the MC that were delivered to a user. */
208         IPMI_STAT_handled_local_responses,
209
210         /* Responses from the MC that were not delivered to a user. */
211         IPMI_STAT_unhandled_local_responses,
212
213         /* Commands we sent out to the IPMB bus. */
214         IPMI_STAT_sent_ipmb_commands,
215
216         /* Commands sent on the IPMB that had errors on the SEND CMD */
217         IPMI_STAT_sent_ipmb_command_errs,
218
219         /* Each retransmit increments this count. */
220         IPMI_STAT_retransmitted_ipmb_commands,
221
222         /*
223          * When a message times out (runs out of retransmits) this is
224          * incremented.
225          */
226         IPMI_STAT_timed_out_ipmb_commands,
227
228         /*
229          * This is like above, but for broadcasts.  Broadcasts are
230          * *not* included in the above count (they are expected to
231          * time out).
232          */
233         IPMI_STAT_timed_out_ipmb_broadcasts,
234
235         /* Responses I have sent to the IPMB bus. */
236         IPMI_STAT_sent_ipmb_responses,
237
238         /* The response was delivered to the user. */
239         IPMI_STAT_handled_ipmb_responses,
240
241         /* The response had invalid data in it. */
242         IPMI_STAT_invalid_ipmb_responses,
243
244         /* The response didn't have anyone waiting for it. */
245         IPMI_STAT_unhandled_ipmb_responses,
246
247         /* Commands we sent out to the IPMB bus. */
248         IPMI_STAT_sent_lan_commands,
249
250         /* Commands sent on the IPMB that had errors on the SEND CMD */
251         IPMI_STAT_sent_lan_command_errs,
252
253         /* Each retransmit increments this count. */
254         IPMI_STAT_retransmitted_lan_commands,
255
256         /*
257          * When a message times out (runs out of retransmits) this is
258          * incremented.
259          */
260         IPMI_STAT_timed_out_lan_commands,
261
262         /* Responses I have sent to the IPMB bus. */
263         IPMI_STAT_sent_lan_responses,
264
265         /* The response was delivered to the user. */
266         IPMI_STAT_handled_lan_responses,
267
268         /* The response had invalid data in it. */
269         IPMI_STAT_invalid_lan_responses,
270
271         /* The response didn't have anyone waiting for it. */
272         IPMI_STAT_unhandled_lan_responses,
273
274         /* The command was delivered to the user. */
275         IPMI_STAT_handled_commands,
276
277         /* The command had invalid data in it. */
278         IPMI_STAT_invalid_commands,
279
280         /* The command didn't have anyone waiting for it. */
281         IPMI_STAT_unhandled_commands,
282
283         /* Invalid data in an event. */
284         IPMI_STAT_invalid_events,
285
286         /* Events that were received with the proper format. */
287         IPMI_STAT_events,
288
289         /* Retransmissions on IPMB that failed. */
290         IPMI_STAT_dropped_rexmit_ipmb_commands,
291
292         /* Retransmissions on LAN that failed. */
293         IPMI_STAT_dropped_rexmit_lan_commands,
294
295         /* This *must* remain last, add new values above this. */
296         IPMI_NUM_STATS
297 };
298
299
300 #define IPMI_IPMB_NUM_SEQ       64
301 #define IPMI_MAX_CHANNELS       16
302 struct ipmi_smi {
303         /* What interface number are we? */
304         int intf_num;
305
306         struct kref refcount;
307
308         /* Used for a list of interfaces. */
309         struct list_head link;
310
311         /*
312          * The list of upper layers that are using me.  seq_lock
313          * protects this.
314          */
315         struct list_head users;
316
317         /* Information to supply to users. */
318         unsigned char ipmi_version_major;
319         unsigned char ipmi_version_minor;
320
321         /* Used for wake ups at startup. */
322         wait_queue_head_t waitq;
323
324         struct bmc_device *bmc;
325         char *my_dev_name;
326         char *sysfs_name;
327
328         /*
329          * This is the lower-layer's sender routine.  Note that you
330          * must either be holding the ipmi_interfaces_mutex or be in
331          * an umpreemptible region to use this.  You must fetch the
332          * value into a local variable and make sure it is not NULL.
333          */
334         struct ipmi_smi_handlers *handlers;
335         void                     *send_info;
336
337 #ifdef CONFIG_PROC_FS
338         /* A list of proc entries for this interface. */
339         struct mutex           proc_entry_lock;
340         struct ipmi_proc_entry *proc_entries;
341 #endif
342
343         /* Driver-model device for the system interface. */
344         struct device          *si_dev;
345
346         /*
347          * A table of sequence numbers for this interface.  We use the
348          * sequence numbers for IPMB messages that go out of the
349          * interface to match them up with their responses.  A routine
350          * is called periodically to time the items in this list.
351          */
352         spinlock_t       seq_lock;
353         struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
354         int curr_seq;
355
356         /*
357          * Messages that were delayed for some reason (out of memory,
358          * for instance), will go in here to be processed later in a
359          * periodic timer interrupt.
360          */
361         spinlock_t       waiting_msgs_lock;
362         struct list_head waiting_msgs;
363
364         /*
365          * The list of command receivers that are registered for commands
366          * on this interface.
367          */
368         struct mutex     cmd_rcvrs_mutex;
369         struct list_head cmd_rcvrs;
370
371         /*
372          * Events that were queues because no one was there to receive
373          * them.
374          */
375         spinlock_t       events_lock; /* For dealing with event stuff. */
376         struct list_head waiting_events;
377         unsigned int     waiting_events_count; /* How many events in queue? */
378         char             delivering_events;
379         char             event_msg_printed;
380
381         /*
382          * The event receiver for my BMC, only really used at panic
383          * shutdown as a place to store this.
384          */
385         unsigned char event_receiver;
386         unsigned char event_receiver_lun;
387         unsigned char local_sel_device;
388         unsigned char local_event_generator;
389
390         /* For handling of maintenance mode. */
391         int maintenance_mode;
392         int maintenance_mode_enable;
393         int auto_maintenance_timeout;
394         spinlock_t maintenance_mode_lock; /* Used in a timer... */
395
396         /*
397          * A cheap hack, if this is non-null and a message to an
398          * interface comes in with a NULL user, call this routine with
399          * it.  Note that the message will still be freed by the
400          * caller.  This only works on the system interface.
401          */
402         void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
403
404         /*
405          * When we are scanning the channels for an SMI, this will
406          * tell which channel we are scanning.
407          */
408         int curr_channel;
409
410         /* Channel information */
411         struct ipmi_channel channels[IPMI_MAX_CHANNELS];
412
413         /* Proc FS stuff. */
414         struct proc_dir_entry *proc_dir;
415         char                  proc_dir_name[10];
416
417         atomic_t stats[IPMI_NUM_STATS];
418
419         /*
420          * run_to_completion duplicate of smb_info, smi_info
421          * and ipmi_serial_info structures. Used to decrease numbers of
422          * parameters passed by "low" level IPMI code.
423          */
424         int run_to_completion;
425 };
426 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
427
428 /**
429  * The driver model view of the IPMI messaging driver.
430  */
431 static struct platform_driver ipmidriver = {
432         .driver = {
433                 .name = "ipmi",
434                 .bus = &platform_bus_type
435         }
436 };
437 static DEFINE_MUTEX(ipmidriver_mutex);
438
439 static LIST_HEAD(ipmi_interfaces);
440 static DEFINE_MUTEX(ipmi_interfaces_mutex);
441
442 /*
443  * List of watchers that want to know when smi's are added and deleted.
444  */
445 static LIST_HEAD(smi_watchers);
446 static DEFINE_MUTEX(smi_watchers_mutex);
447
448
449 #define ipmi_inc_stat(intf, stat) \
450         atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
451 #define ipmi_get_stat(intf, stat) \
452         ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
453
454 static int is_lan_addr(struct ipmi_addr *addr)
455 {
456         return addr->addr_type == IPMI_LAN_ADDR_TYPE;
457 }
458
459 static int is_ipmb_addr(struct ipmi_addr *addr)
460 {
461         return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
462 }
463
464 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
465 {
466         return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
467 }
468
469 static void free_recv_msg_list(struct list_head *q)
470 {
471         struct ipmi_recv_msg *msg, *msg2;
472
473         list_for_each_entry_safe(msg, msg2, q, link) {
474                 list_del(&msg->link);
475                 ipmi_free_recv_msg(msg);
476         }
477 }
478
479 static void free_smi_msg_list(struct list_head *q)
480 {
481         struct ipmi_smi_msg *msg, *msg2;
482
483         list_for_each_entry_safe(msg, msg2, q, link) {
484                 list_del(&msg->link);
485                 ipmi_free_smi_msg(msg);
486         }
487 }
488
489 static void clean_up_interface_data(ipmi_smi_t intf)
490 {
491         int              i;
492         struct cmd_rcvr  *rcvr, *rcvr2;
493         struct list_head list;
494
495         free_smi_msg_list(&intf->waiting_msgs);
496         free_recv_msg_list(&intf->waiting_events);
497
498         /*
499          * Wholesale remove all the entries from the list in the
500          * interface and wait for RCU to know that none are in use.
501          */
502         mutex_lock(&intf->cmd_rcvrs_mutex);
503         INIT_LIST_HEAD(&list);
504         list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
505         mutex_unlock(&intf->cmd_rcvrs_mutex);
506
507         list_for_each_entry_safe(rcvr, rcvr2, &list, link)
508                 kfree(rcvr);
509
510         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
511                 if ((intf->seq_table[i].inuse)
512                                         && (intf->seq_table[i].recv_msg))
513                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
514         }
515 }
516
517 static void intf_free(struct kref *ref)
518 {
519         ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
520
521         clean_up_interface_data(intf);
522         kfree(intf);
523 }
524
525 struct watcher_entry {
526         int              intf_num;
527         ipmi_smi_t       intf;
528         struct list_head link;
529 };
530
531 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
532 {
533         ipmi_smi_t intf;
534         LIST_HEAD(to_deliver);
535         struct watcher_entry *e, *e2;
536
537         mutex_lock(&smi_watchers_mutex);
538
539         mutex_lock(&ipmi_interfaces_mutex);
540
541         /* Build a list of things to deliver. */
542         list_for_each_entry(intf, &ipmi_interfaces, link) {
543                 if (intf->intf_num == -1)
544                         continue;
545                 e = kmalloc(sizeof(*e), GFP_KERNEL);
546                 if (!e)
547                         goto out_err;
548                 kref_get(&intf->refcount);
549                 e->intf = intf;
550                 e->intf_num = intf->intf_num;
551                 list_add_tail(&e->link, &to_deliver);
552         }
553
554         /* We will succeed, so add it to the list. */
555         list_add(&watcher->link, &smi_watchers);
556
557         mutex_unlock(&ipmi_interfaces_mutex);
558
559         list_for_each_entry_safe(e, e2, &to_deliver, link) {
560                 list_del(&e->link);
561                 watcher->new_smi(e->intf_num, e->intf->si_dev);
562                 kref_put(&e->intf->refcount, intf_free);
563                 kfree(e);
564         }
565
566         mutex_unlock(&smi_watchers_mutex);
567
568         return 0;
569
570  out_err:
571         mutex_unlock(&ipmi_interfaces_mutex);
572         mutex_unlock(&smi_watchers_mutex);
573         list_for_each_entry_safe(e, e2, &to_deliver, link) {
574                 list_del(&e->link);
575                 kref_put(&e->intf->refcount, intf_free);
576                 kfree(e);
577         }
578         return -ENOMEM;
579 }
580 EXPORT_SYMBOL(ipmi_smi_watcher_register);
581
582 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
583 {
584         mutex_lock(&smi_watchers_mutex);
585         list_del(&(watcher->link));
586         mutex_unlock(&smi_watchers_mutex);
587         return 0;
588 }
589 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
590
591 /*
592  * Must be called with smi_watchers_mutex held.
593  */
594 static void
595 call_smi_watchers(int i, struct device *dev)
596 {
597         struct ipmi_smi_watcher *w;
598
599         list_for_each_entry(w, &smi_watchers, link) {
600                 if (try_module_get(w->owner)) {
601                         w->new_smi(i, dev);
602                         module_put(w->owner);
603                 }
604         }
605 }
606
607 static int
608 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
609 {
610         if (addr1->addr_type != addr2->addr_type)
611                 return 0;
612
613         if (addr1->channel != addr2->channel)
614                 return 0;
615
616         if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
617                 struct ipmi_system_interface_addr *smi_addr1
618                     = (struct ipmi_system_interface_addr *) addr1;
619                 struct ipmi_system_interface_addr *smi_addr2
620                     = (struct ipmi_system_interface_addr *) addr2;
621                 return (smi_addr1->lun == smi_addr2->lun);
622         }
623
624         if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
625                 struct ipmi_ipmb_addr *ipmb_addr1
626                     = (struct ipmi_ipmb_addr *) addr1;
627                 struct ipmi_ipmb_addr *ipmb_addr2
628                     = (struct ipmi_ipmb_addr *) addr2;
629
630                 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
631                         && (ipmb_addr1->lun == ipmb_addr2->lun));
632         }
633
634         if (is_lan_addr(addr1)) {
635                 struct ipmi_lan_addr *lan_addr1
636                         = (struct ipmi_lan_addr *) addr1;
637                 struct ipmi_lan_addr *lan_addr2
638                     = (struct ipmi_lan_addr *) addr2;
639
640                 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
641                         && (lan_addr1->local_SWID == lan_addr2->local_SWID)
642                         && (lan_addr1->session_handle
643                             == lan_addr2->session_handle)
644                         && (lan_addr1->lun == lan_addr2->lun));
645         }
646
647         return 1;
648 }
649
650 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
651 {
652         if (len < sizeof(struct ipmi_system_interface_addr))
653                 return -EINVAL;
654
655         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
656                 if (addr->channel != IPMI_BMC_CHANNEL)
657                         return -EINVAL;
658                 return 0;
659         }
660
661         if ((addr->channel == IPMI_BMC_CHANNEL)
662             || (addr->channel >= IPMI_MAX_CHANNELS)
663             || (addr->channel < 0))
664                 return -EINVAL;
665
666         if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
667                 if (len < sizeof(struct ipmi_ipmb_addr))
668                         return -EINVAL;
669                 return 0;
670         }
671
672         if (is_lan_addr(addr)) {
673                 if (len < sizeof(struct ipmi_lan_addr))
674                         return -EINVAL;
675                 return 0;
676         }
677
678         return -EINVAL;
679 }
680 EXPORT_SYMBOL(ipmi_validate_addr);
681
682 unsigned int ipmi_addr_length(int addr_type)
683 {
684         if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
685                 return sizeof(struct ipmi_system_interface_addr);
686
687         if ((addr_type == IPMI_IPMB_ADDR_TYPE)
688                         || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
689                 return sizeof(struct ipmi_ipmb_addr);
690
691         if (addr_type == IPMI_LAN_ADDR_TYPE)
692                 return sizeof(struct ipmi_lan_addr);
693
694         return 0;
695 }
696 EXPORT_SYMBOL(ipmi_addr_length);
697
698 static void deliver_response(struct ipmi_recv_msg *msg)
699 {
700         if (!msg->user) {
701                 ipmi_smi_t    intf = msg->user_msg_data;
702
703                 /* Special handling for NULL users. */
704                 if (intf->null_user_handler) {
705                         intf->null_user_handler(intf, msg);
706                         ipmi_inc_stat(intf, handled_local_responses);
707                 } else {
708                         /* No handler, so give up. */
709                         ipmi_inc_stat(intf, unhandled_local_responses);
710                 }
711                 ipmi_free_recv_msg(msg);
712         } else {
713                 ipmi_user_t user = msg->user;
714                 user->handler->ipmi_recv_hndl(msg, user->handler_data);
715         }
716 }
717
718 static void
719 deliver_err_response(struct ipmi_recv_msg *msg, int err)
720 {
721         msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
722         msg->msg_data[0] = err;
723         msg->msg.netfn |= 1; /* Convert to a response. */
724         msg->msg.data_len = 1;
725         msg->msg.data = msg->msg_data;
726         deliver_response(msg);
727 }
728
729 /*
730  * Find the next sequence number not being used and add the given
731  * message with the given timeout to the sequence table.  This must be
732  * called with the interface's seq_lock held.
733  */
734 static int intf_next_seq(ipmi_smi_t           intf,
735                          struct ipmi_recv_msg *recv_msg,
736                          unsigned long        timeout,
737                          int                  retries,
738                          int                  broadcast,
739                          unsigned char        *seq,
740                          long                 *seqid)
741 {
742         int          rv = 0;
743         unsigned int i;
744
745         for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
746                                         i = (i+1)%IPMI_IPMB_NUM_SEQ) {
747                 if (!intf->seq_table[i].inuse)
748                         break;
749         }
750
751         if (!intf->seq_table[i].inuse) {
752                 intf->seq_table[i].recv_msg = recv_msg;
753
754                 /*
755                  * Start with the maximum timeout, when the send response
756                  * comes in we will start the real timer.
757                  */
758                 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
759                 intf->seq_table[i].orig_timeout = timeout;
760                 intf->seq_table[i].retries_left = retries;
761                 intf->seq_table[i].broadcast = broadcast;
762                 intf->seq_table[i].inuse = 1;
763                 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
764                 *seq = i;
765                 *seqid = intf->seq_table[i].seqid;
766                 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
767         } else {
768                 rv = -EAGAIN;
769         }
770
771         return rv;
772 }
773
774 /*
775  * Return the receive message for the given sequence number and
776  * release the sequence number so it can be reused.  Some other data
777  * is passed in to be sure the message matches up correctly (to help
778  * guard against message coming in after their timeout and the
779  * sequence number being reused).
780  */
781 static int intf_find_seq(ipmi_smi_t           intf,
782                          unsigned char        seq,
783                          short                channel,
784                          unsigned char        cmd,
785                          unsigned char        netfn,
786                          struct ipmi_addr     *addr,
787                          struct ipmi_recv_msg **recv_msg)
788 {
789         int           rv = -ENODEV;
790         unsigned long flags;
791
792         if (seq >= IPMI_IPMB_NUM_SEQ)
793                 return -EINVAL;
794
795         spin_lock_irqsave(&(intf->seq_lock), flags);
796         if (intf->seq_table[seq].inuse) {
797                 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
798
799                 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
800                                 && (msg->msg.netfn == netfn)
801                                 && (ipmi_addr_equal(addr, &(msg->addr)))) {
802                         *recv_msg = msg;
803                         intf->seq_table[seq].inuse = 0;
804                         rv = 0;
805                 }
806         }
807         spin_unlock_irqrestore(&(intf->seq_lock), flags);
808
809         return rv;
810 }
811
812
813 /* Start the timer for a specific sequence table entry. */
814 static int intf_start_seq_timer(ipmi_smi_t intf,
815                                 long       msgid)
816 {
817         int           rv = -ENODEV;
818         unsigned long flags;
819         unsigned char seq;
820         unsigned long seqid;
821
822
823         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
824
825         spin_lock_irqsave(&(intf->seq_lock), flags);
826         /*
827          * We do this verification because the user can be deleted
828          * while a message is outstanding.
829          */
830         if ((intf->seq_table[seq].inuse)
831                                 && (intf->seq_table[seq].seqid == seqid)) {
832                 struct seq_table *ent = &(intf->seq_table[seq]);
833                 ent->timeout = ent->orig_timeout;
834                 rv = 0;
835         }
836         spin_unlock_irqrestore(&(intf->seq_lock), flags);
837
838         return rv;
839 }
840
841 /* Got an error for the send message for a specific sequence number. */
842 static int intf_err_seq(ipmi_smi_t   intf,
843                         long         msgid,
844                         unsigned int err)
845 {
846         int                  rv = -ENODEV;
847         unsigned long        flags;
848         unsigned char        seq;
849         unsigned long        seqid;
850         struct ipmi_recv_msg *msg = NULL;
851
852
853         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
854
855         spin_lock_irqsave(&(intf->seq_lock), flags);
856         /*
857          * We do this verification because the user can be deleted
858          * while a message is outstanding.
859          */
860         if ((intf->seq_table[seq].inuse)
861                                 && (intf->seq_table[seq].seqid == seqid)) {
862                 struct seq_table *ent = &(intf->seq_table[seq]);
863
864                 ent->inuse = 0;
865                 msg = ent->recv_msg;
866                 rv = 0;
867         }
868         spin_unlock_irqrestore(&(intf->seq_lock), flags);
869
870         if (msg)
871                 deliver_err_response(msg, err);
872
873         return rv;
874 }
875
876
877 int ipmi_create_user(unsigned int          if_num,
878                      struct ipmi_user_hndl *handler,
879                      void                  *handler_data,
880                      ipmi_user_t           *user)
881 {
882         unsigned long flags;
883         ipmi_user_t   new_user;
884         int           rv = 0;
885         ipmi_smi_t    intf;
886
887         /*
888          * There is no module usecount here, because it's not
889          * required.  Since this can only be used by and called from
890          * other modules, they will implicitly use this module, and
891          * thus this can't be removed unless the other modules are
892          * removed.
893          */
894
895         if (handler == NULL)
896                 return -EINVAL;
897
898         /*
899          * Make sure the driver is actually initialized, this handles
900          * problems with initialization order.
901          */
902         if (!initialized) {
903                 rv = ipmi_init_msghandler();
904                 if (rv)
905                         return rv;
906
907                 /*
908                  * The init code doesn't return an error if it was turned
909                  * off, but it won't initialize.  Check that.
910                  */
911                 if (!initialized)
912                         return -ENODEV;
913         }
914
915         new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
916         if (!new_user)
917                 return -ENOMEM;
918
919         mutex_lock(&ipmi_interfaces_mutex);
920         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
921                 if (intf->intf_num == if_num)
922                         goto found;
923         }
924         /* Not found, return an error */
925         rv = -EINVAL;
926         goto out_kfree;
927
928  found:
929         /* Note that each existing user holds a refcount to the interface. */
930         kref_get(&intf->refcount);
931
932         kref_init(&new_user->refcount);
933         new_user->handler = handler;
934         new_user->handler_data = handler_data;
935         new_user->intf = intf;
936         new_user->gets_events = 0;
937
938         if (!try_module_get(intf->handlers->owner)) {
939                 rv = -ENODEV;
940                 goto out_kref;
941         }
942
943         if (intf->handlers->inc_usecount) {
944                 rv = intf->handlers->inc_usecount(intf->send_info);
945                 if (rv) {
946                         module_put(intf->handlers->owner);
947                         goto out_kref;
948                 }
949         }
950
951         /*
952          * Hold the lock so intf->handlers is guaranteed to be good
953          * until now
954          */
955         mutex_unlock(&ipmi_interfaces_mutex);
956
957         new_user->valid = 1;
958         spin_lock_irqsave(&intf->seq_lock, flags);
959         list_add_rcu(&new_user->link, &intf->users);
960         spin_unlock_irqrestore(&intf->seq_lock, flags);
961         *user = new_user;
962         return 0;
963
964 out_kref:
965         kref_put(&intf->refcount, intf_free);
966 out_kfree:
967         mutex_unlock(&ipmi_interfaces_mutex);
968         kfree(new_user);
969         return rv;
970 }
971 EXPORT_SYMBOL(ipmi_create_user);
972
973 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
974 {
975         int           rv = 0;
976         ipmi_smi_t    intf;
977         struct ipmi_smi_handlers *handlers;
978
979         mutex_lock(&ipmi_interfaces_mutex);
980         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
981                 if (intf->intf_num == if_num)
982                         goto found;
983         }
984         /* Not found, return an error */
985         rv = -EINVAL;
986         mutex_unlock(&ipmi_interfaces_mutex);
987         return rv;
988
989 found:
990         handlers = intf->handlers;
991         rv = -ENOSYS;
992         if (handlers->get_smi_info)
993                 rv = handlers->get_smi_info(intf->send_info, data);
994         mutex_unlock(&ipmi_interfaces_mutex);
995
996         return rv;
997 }
998 EXPORT_SYMBOL(ipmi_get_smi_info);
999
1000 static void free_user(struct kref *ref)
1001 {
1002         ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1003         kfree(user);
1004 }
1005
1006 int ipmi_destroy_user(ipmi_user_t user)
1007 {
1008         ipmi_smi_t       intf = user->intf;
1009         int              i;
1010         unsigned long    flags;
1011         struct cmd_rcvr  *rcvr;
1012         struct cmd_rcvr  *rcvrs = NULL;
1013
1014         user->valid = 0;
1015
1016         /* Remove the user from the interface's sequence table. */
1017         spin_lock_irqsave(&intf->seq_lock, flags);
1018         list_del_rcu(&user->link);
1019
1020         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1021                 if (intf->seq_table[i].inuse
1022                     && (intf->seq_table[i].recv_msg->user == user)) {
1023                         intf->seq_table[i].inuse = 0;
1024                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1025                 }
1026         }
1027         spin_unlock_irqrestore(&intf->seq_lock, flags);
1028
1029         /*
1030          * Remove the user from the command receiver's table.  First
1031          * we build a list of everything (not using the standard link,
1032          * since other things may be using it till we do
1033          * synchronize_rcu()) then free everything in that list.
1034          */
1035         mutex_lock(&intf->cmd_rcvrs_mutex);
1036         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1037                 if (rcvr->user == user) {
1038                         list_del_rcu(&rcvr->link);
1039                         rcvr->next = rcvrs;
1040                         rcvrs = rcvr;
1041                 }
1042         }
1043         mutex_unlock(&intf->cmd_rcvrs_mutex);
1044         synchronize_rcu();
1045         while (rcvrs) {
1046                 rcvr = rcvrs;
1047                 rcvrs = rcvr->next;
1048                 kfree(rcvr);
1049         }
1050
1051         mutex_lock(&ipmi_interfaces_mutex);
1052         if (intf->handlers) {
1053                 module_put(intf->handlers->owner);
1054                 if (intf->handlers->dec_usecount)
1055                         intf->handlers->dec_usecount(intf->send_info);
1056         }
1057         mutex_unlock(&ipmi_interfaces_mutex);
1058
1059         kref_put(&intf->refcount, intf_free);
1060
1061         kref_put(&user->refcount, free_user);
1062
1063         return 0;
1064 }
1065 EXPORT_SYMBOL(ipmi_destroy_user);
1066
1067 void ipmi_get_version(ipmi_user_t   user,
1068                       unsigned char *major,
1069                       unsigned char *minor)
1070 {
1071         *major = user->intf->ipmi_version_major;
1072         *minor = user->intf->ipmi_version_minor;
1073 }
1074 EXPORT_SYMBOL(ipmi_get_version);
1075
1076 int ipmi_set_my_address(ipmi_user_t   user,
1077                         unsigned int  channel,
1078                         unsigned char address)
1079 {
1080         if (channel >= IPMI_MAX_CHANNELS)
1081                 return -EINVAL;
1082         user->intf->channels[channel].address = address;
1083         return 0;
1084 }
1085 EXPORT_SYMBOL(ipmi_set_my_address);
1086
1087 int ipmi_get_my_address(ipmi_user_t   user,
1088                         unsigned int  channel,
1089                         unsigned char *address)
1090 {
1091         if (channel >= IPMI_MAX_CHANNELS)
1092                 return -EINVAL;
1093         *address = user->intf->channels[channel].address;
1094         return 0;
1095 }
1096 EXPORT_SYMBOL(ipmi_get_my_address);
1097
1098 int ipmi_set_my_LUN(ipmi_user_t   user,
1099                     unsigned int  channel,
1100                     unsigned char LUN)
1101 {
1102         if (channel >= IPMI_MAX_CHANNELS)
1103                 return -EINVAL;
1104         user->intf->channels[channel].lun = LUN & 0x3;
1105         return 0;
1106 }
1107 EXPORT_SYMBOL(ipmi_set_my_LUN);
1108
1109 int ipmi_get_my_LUN(ipmi_user_t   user,
1110                     unsigned int  channel,
1111                     unsigned char *address)
1112 {
1113         if (channel >= IPMI_MAX_CHANNELS)
1114                 return -EINVAL;
1115         *address = user->intf->channels[channel].lun;
1116         return 0;
1117 }
1118 EXPORT_SYMBOL(ipmi_get_my_LUN);
1119
1120 int ipmi_get_maintenance_mode(ipmi_user_t user)
1121 {
1122         int           mode;
1123         unsigned long flags;
1124
1125         spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1126         mode = user->intf->maintenance_mode;
1127         spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1128
1129         return mode;
1130 }
1131 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1132
1133 static void maintenance_mode_update(ipmi_smi_t intf)
1134 {
1135         if (intf->handlers->set_maintenance_mode)
1136                 intf->handlers->set_maintenance_mode(
1137                         intf->send_info, intf->maintenance_mode_enable);
1138 }
1139
1140 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1141 {
1142         int           rv = 0;
1143         unsigned long flags;
1144         ipmi_smi_t    intf = user->intf;
1145
1146         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1147         if (intf->maintenance_mode != mode) {
1148                 switch (mode) {
1149                 case IPMI_MAINTENANCE_MODE_AUTO:
1150                         intf->maintenance_mode = mode;
1151                         intf->maintenance_mode_enable
1152                                 = (intf->auto_maintenance_timeout > 0);
1153                         break;
1154
1155                 case IPMI_MAINTENANCE_MODE_OFF:
1156                         intf->maintenance_mode = mode;
1157                         intf->maintenance_mode_enable = 0;
1158                         break;
1159
1160                 case IPMI_MAINTENANCE_MODE_ON:
1161                         intf->maintenance_mode = mode;
1162                         intf->maintenance_mode_enable = 1;
1163                         break;
1164
1165                 default:
1166                         rv = -EINVAL;
1167                         goto out_unlock;
1168                 }
1169
1170                 maintenance_mode_update(intf);
1171         }
1172  out_unlock:
1173         spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1174
1175         return rv;
1176 }
1177 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1178
1179 int ipmi_set_gets_events(ipmi_user_t user, int val)
1180 {
1181         unsigned long        flags;
1182         ipmi_smi_t           intf = user->intf;
1183         struct ipmi_recv_msg *msg, *msg2;
1184         struct list_head     msgs;
1185
1186         INIT_LIST_HEAD(&msgs);
1187
1188         spin_lock_irqsave(&intf->events_lock, flags);
1189         user->gets_events = val;
1190
1191         if (intf->delivering_events)
1192                 /*
1193                  * Another thread is delivering events for this, so
1194                  * let it handle any new events.
1195                  */
1196                 goto out;
1197
1198         /* Deliver any queued events. */
1199         while (user->gets_events && !list_empty(&intf->waiting_events)) {
1200                 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1201                         list_move_tail(&msg->link, &msgs);
1202                 intf->waiting_events_count = 0;
1203                 if (intf->event_msg_printed) {
1204                         printk(KERN_WARNING PFX "Event queue no longer"
1205                                " full\n");
1206                         intf->event_msg_printed = 0;
1207                 }
1208
1209                 intf->delivering_events = 1;
1210                 spin_unlock_irqrestore(&intf->events_lock, flags);
1211
1212                 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1213                         msg->user = user;
1214                         kref_get(&user->refcount);
1215                         deliver_response(msg);
1216                 }
1217
1218                 spin_lock_irqsave(&intf->events_lock, flags);
1219                 intf->delivering_events = 0;
1220         }
1221
1222  out:
1223         spin_unlock_irqrestore(&intf->events_lock, flags);
1224
1225         return 0;
1226 }
1227 EXPORT_SYMBOL(ipmi_set_gets_events);
1228
1229 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1230                                       unsigned char netfn,
1231                                       unsigned char cmd,
1232                                       unsigned char chan)
1233 {
1234         struct cmd_rcvr *rcvr;
1235
1236         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1237                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1238                                         && (rcvr->chans & (1 << chan)))
1239                         return rcvr;
1240         }
1241         return NULL;
1242 }
1243
1244 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1245                                  unsigned char netfn,
1246                                  unsigned char cmd,
1247                                  unsigned int  chans)
1248 {
1249         struct cmd_rcvr *rcvr;
1250
1251         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1252                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1253                                         && (rcvr->chans & chans))
1254                         return 0;
1255         }
1256         return 1;
1257 }
1258
1259 int ipmi_register_for_cmd(ipmi_user_t   user,
1260                           unsigned char netfn,
1261                           unsigned char cmd,
1262                           unsigned int  chans)
1263 {
1264         ipmi_smi_t      intf = user->intf;
1265         struct cmd_rcvr *rcvr;
1266         int             rv = 0;
1267
1268
1269         rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1270         if (!rcvr)
1271                 return -ENOMEM;
1272         rcvr->cmd = cmd;
1273         rcvr->netfn = netfn;
1274         rcvr->chans = chans;
1275         rcvr->user = user;
1276
1277         mutex_lock(&intf->cmd_rcvrs_mutex);
1278         /* Make sure the command/netfn is not already registered. */
1279         if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1280                 rv = -EBUSY;
1281                 goto out_unlock;
1282         }
1283
1284         list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1285
1286  out_unlock:
1287         mutex_unlock(&intf->cmd_rcvrs_mutex);
1288         if (rv)
1289                 kfree(rcvr);
1290
1291         return rv;
1292 }
1293 EXPORT_SYMBOL(ipmi_register_for_cmd);
1294
1295 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1296                             unsigned char netfn,
1297                             unsigned char cmd,
1298                             unsigned int  chans)
1299 {
1300         ipmi_smi_t      intf = user->intf;
1301         struct cmd_rcvr *rcvr;
1302         struct cmd_rcvr *rcvrs = NULL;
1303         int i, rv = -ENOENT;
1304
1305         mutex_lock(&intf->cmd_rcvrs_mutex);
1306         for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1307                 if (((1 << i) & chans) == 0)
1308                         continue;
1309                 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1310                 if (rcvr == NULL)
1311                         continue;
1312                 if (rcvr->user == user) {
1313                         rv = 0;
1314                         rcvr->chans &= ~chans;
1315                         if (rcvr->chans == 0) {
1316                                 list_del_rcu(&rcvr->link);
1317                                 rcvr->next = rcvrs;
1318                                 rcvrs = rcvr;
1319                         }
1320                 }
1321         }
1322         mutex_unlock(&intf->cmd_rcvrs_mutex);
1323         synchronize_rcu();
1324         while (rcvrs) {
1325                 rcvr = rcvrs;
1326                 rcvrs = rcvr->next;
1327                 kfree(rcvr);
1328         }
1329         return rv;
1330 }
1331 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1332
1333 static unsigned char
1334 ipmb_checksum(unsigned char *data, int size)
1335 {
1336         unsigned char csum = 0;
1337
1338         for (; size > 0; size--, data++)
1339                 csum += *data;
1340
1341         return -csum;
1342 }
1343
1344 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1345                                    struct kernel_ipmi_msg *msg,
1346                                    struct ipmi_ipmb_addr *ipmb_addr,
1347                                    long                  msgid,
1348                                    unsigned char         ipmb_seq,
1349                                    int                   broadcast,
1350                                    unsigned char         source_address,
1351                                    unsigned char         source_lun)
1352 {
1353         int i = broadcast;
1354
1355         /* Format the IPMB header data. */
1356         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1357         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1358         smi_msg->data[2] = ipmb_addr->channel;
1359         if (broadcast)
1360                 smi_msg->data[3] = 0;
1361         smi_msg->data[i+3] = ipmb_addr->slave_addr;
1362         smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1363         smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1364         smi_msg->data[i+6] = source_address;
1365         smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1366         smi_msg->data[i+8] = msg->cmd;
1367
1368         /* Now tack on the data to the message. */
1369         if (msg->data_len > 0)
1370                 memcpy(&(smi_msg->data[i+9]), msg->data,
1371                        msg->data_len);
1372         smi_msg->data_size = msg->data_len + 9;
1373
1374         /* Now calculate the checksum and tack it on. */
1375         smi_msg->data[i+smi_msg->data_size]
1376                 = ipmb_checksum(&(smi_msg->data[i+6]),
1377                                 smi_msg->data_size-6);
1378
1379         /*
1380          * Add on the checksum size and the offset from the
1381          * broadcast.
1382          */
1383         smi_msg->data_size += 1 + i;
1384
1385         smi_msg->msgid = msgid;
1386 }
1387
1388 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1389                                   struct kernel_ipmi_msg *msg,
1390                                   struct ipmi_lan_addr  *lan_addr,
1391                                   long                  msgid,
1392                                   unsigned char         ipmb_seq,
1393                                   unsigned char         source_lun)
1394 {
1395         /* Format the IPMB header data. */
1396         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1397         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1398         smi_msg->data[2] = lan_addr->channel;
1399         smi_msg->data[3] = lan_addr->session_handle;
1400         smi_msg->data[4] = lan_addr->remote_SWID;
1401         smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1402         smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1403         smi_msg->data[7] = lan_addr->local_SWID;
1404         smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1405         smi_msg->data[9] = msg->cmd;
1406
1407         /* Now tack on the data to the message. */
1408         if (msg->data_len > 0)
1409                 memcpy(&(smi_msg->data[10]), msg->data,
1410                        msg->data_len);
1411         smi_msg->data_size = msg->data_len + 10;
1412
1413         /* Now calculate the checksum and tack it on. */
1414         smi_msg->data[smi_msg->data_size]
1415                 = ipmb_checksum(&(smi_msg->data[7]),
1416                                 smi_msg->data_size-7);
1417
1418         /*
1419          * Add on the checksum size and the offset from the
1420          * broadcast.
1421          */
1422         smi_msg->data_size += 1;
1423
1424         smi_msg->msgid = msgid;
1425 }
1426
1427 /*
1428  * Separate from ipmi_request so that the user does not have to be
1429  * supplied in certain circumstances (mainly at panic time).  If
1430  * messages are supplied, they will be freed, even if an error
1431  * occurs.
1432  */
1433 static int i_ipmi_request(ipmi_user_t          user,
1434                           ipmi_smi_t           intf,
1435                           struct ipmi_addr     *addr,
1436                           long                 msgid,
1437                           struct kernel_ipmi_msg *msg,
1438                           void                 *user_msg_data,
1439                           void                 *supplied_smi,
1440                           struct ipmi_recv_msg *supplied_recv,
1441                           int                  priority,
1442                           unsigned char        source_address,
1443                           unsigned char        source_lun,
1444                           int                  retries,
1445                           unsigned int         retry_time_ms)
1446 {
1447         int                      rv = 0;
1448         struct ipmi_smi_msg      *smi_msg;
1449         struct ipmi_recv_msg     *recv_msg;
1450         unsigned long            flags;
1451         struct ipmi_smi_handlers *handlers;
1452
1453
1454         if (supplied_recv)
1455                 recv_msg = supplied_recv;
1456         else {
1457                 recv_msg = ipmi_alloc_recv_msg();
1458                 if (recv_msg == NULL)
1459                         return -ENOMEM;
1460         }
1461         recv_msg->user_msg_data = user_msg_data;
1462
1463         if (supplied_smi)
1464                 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1465         else {
1466                 smi_msg = ipmi_alloc_smi_msg();
1467                 if (smi_msg == NULL) {
1468                         ipmi_free_recv_msg(recv_msg);
1469                         return -ENOMEM;
1470                 }
1471         }
1472
1473         rcu_read_lock();
1474         handlers = intf->handlers;
1475         if (!handlers) {
1476                 rv = -ENODEV;
1477                 goto out_err;
1478         }
1479
1480         recv_msg->user = user;
1481         if (user)
1482                 kref_get(&user->refcount);
1483         recv_msg->msgid = msgid;
1484         /*
1485          * Store the message to send in the receive message so timeout
1486          * responses can get the proper response data.
1487          */
1488         recv_msg->msg = *msg;
1489
1490         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1491                 struct ipmi_system_interface_addr *smi_addr;
1492
1493                 if (msg->netfn & 1) {
1494                         /* Responses are not allowed to the SMI. */
1495                         rv = -EINVAL;
1496                         goto out_err;
1497                 }
1498
1499                 smi_addr = (struct ipmi_system_interface_addr *) addr;
1500                 if (smi_addr->lun > 3) {
1501                         ipmi_inc_stat(intf, sent_invalid_commands);
1502                         rv = -EINVAL;
1503                         goto out_err;
1504                 }
1505
1506                 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1507
1508                 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1509                     && ((msg->cmd == IPMI_SEND_MSG_CMD)
1510                         || (msg->cmd == IPMI_GET_MSG_CMD)
1511                         || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1512                         /*
1513                          * We don't let the user do these, since we manage
1514                          * the sequence numbers.
1515                          */
1516                         ipmi_inc_stat(intf, sent_invalid_commands);
1517                         rv = -EINVAL;
1518                         goto out_err;
1519                 }
1520
1521                 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1522                       && ((msg->cmd == IPMI_COLD_RESET_CMD)
1523                           || (msg->cmd == IPMI_WARM_RESET_CMD)))
1524                      || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1525                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1526                         intf->auto_maintenance_timeout
1527                                 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1528                         if (!intf->maintenance_mode
1529                             && !intf->maintenance_mode_enable) {
1530                                 intf->maintenance_mode_enable = 1;
1531                                 maintenance_mode_update(intf);
1532                         }
1533                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1534                                                flags);
1535                 }
1536
1537                 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1538                         ipmi_inc_stat(intf, sent_invalid_commands);
1539                         rv = -EMSGSIZE;
1540                         goto out_err;
1541                 }
1542
1543                 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1544                 smi_msg->data[1] = msg->cmd;
1545                 smi_msg->msgid = msgid;
1546                 smi_msg->user_data = recv_msg;
1547                 if (msg->data_len > 0)
1548                         memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1549                 smi_msg->data_size = msg->data_len + 2;
1550                 ipmi_inc_stat(intf, sent_local_commands);
1551         } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1552                 struct ipmi_ipmb_addr *ipmb_addr;
1553                 unsigned char         ipmb_seq;
1554                 long                  seqid;
1555                 int                   broadcast = 0;
1556
1557                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1558                         ipmi_inc_stat(intf, sent_invalid_commands);
1559                         rv = -EINVAL;
1560                         goto out_err;
1561                 }
1562
1563                 if (intf->channels[addr->channel].medium
1564                                         != IPMI_CHANNEL_MEDIUM_IPMB) {
1565                         ipmi_inc_stat(intf, sent_invalid_commands);
1566                         rv = -EINVAL;
1567                         goto out_err;
1568                 }
1569
1570                 if (retries < 0) {
1571                     if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1572                         retries = 0; /* Don't retry broadcasts. */
1573                     else
1574                         retries = 4;
1575                 }
1576                 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1577                     /*
1578                      * Broadcasts add a zero at the beginning of the
1579                      * message, but otherwise is the same as an IPMB
1580                      * address.
1581                      */
1582                     addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1583                     broadcast = 1;
1584                 }
1585
1586
1587                 /* Default to 1 second retries. */
1588                 if (retry_time_ms == 0)
1589                     retry_time_ms = 1000;
1590
1591                 /*
1592                  * 9 for the header and 1 for the checksum, plus
1593                  * possibly one for the broadcast.
1594                  */
1595                 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1596                         ipmi_inc_stat(intf, sent_invalid_commands);
1597                         rv = -EMSGSIZE;
1598                         goto out_err;
1599                 }
1600
1601                 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1602                 if (ipmb_addr->lun > 3) {
1603                         ipmi_inc_stat(intf, sent_invalid_commands);
1604                         rv = -EINVAL;
1605                         goto out_err;
1606                 }
1607
1608                 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1609
1610                 if (recv_msg->msg.netfn & 0x1) {
1611                         /*
1612                          * It's a response, so use the user's sequence
1613                          * from msgid.
1614                          */
1615                         ipmi_inc_stat(intf, sent_ipmb_responses);
1616                         format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1617                                         msgid, broadcast,
1618                                         source_address, source_lun);
1619
1620                         /*
1621                          * Save the receive message so we can use it
1622                          * to deliver the response.
1623                          */
1624                         smi_msg->user_data = recv_msg;
1625                 } else {
1626                         /* It's a command, so get a sequence for it. */
1627
1628                         spin_lock_irqsave(&(intf->seq_lock), flags);
1629
1630                         /*
1631                          * Create a sequence number with a 1 second
1632                          * timeout and 4 retries.
1633                          */
1634                         rv = intf_next_seq(intf,
1635                                            recv_msg,
1636                                            retry_time_ms,
1637                                            retries,
1638                                            broadcast,
1639                                            &ipmb_seq,
1640                                            &seqid);
1641                         if (rv) {
1642                                 /*
1643                                  * We have used up all the sequence numbers,
1644                                  * probably, so abort.
1645                                  */
1646                                 spin_unlock_irqrestore(&(intf->seq_lock),
1647                                                        flags);
1648                                 goto out_err;
1649                         }
1650
1651                         ipmi_inc_stat(intf, sent_ipmb_commands);
1652
1653                         /*
1654                          * Store the sequence number in the message,
1655                          * so that when the send message response
1656                          * comes back we can start the timer.
1657                          */
1658                         format_ipmb_msg(smi_msg, msg, ipmb_addr,
1659                                         STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1660                                         ipmb_seq, broadcast,
1661                                         source_address, source_lun);
1662
1663                         /*
1664                          * Copy the message into the recv message data, so we
1665                          * can retransmit it later if necessary.
1666                          */
1667                         memcpy(recv_msg->msg_data, smi_msg->data,
1668                                smi_msg->data_size);
1669                         recv_msg->msg.data = recv_msg->msg_data;
1670                         recv_msg->msg.data_len = smi_msg->data_size;
1671
1672                         /*
1673                          * We don't unlock until here, because we need
1674                          * to copy the completed message into the
1675                          * recv_msg before we release the lock.
1676                          * Otherwise, race conditions may bite us.  I
1677                          * know that's pretty paranoid, but I prefer
1678                          * to be correct.
1679                          */
1680                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1681                 }
1682         } else if (is_lan_addr(addr)) {
1683                 struct ipmi_lan_addr  *lan_addr;
1684                 unsigned char         ipmb_seq;
1685                 long                  seqid;
1686
1687                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1688                         ipmi_inc_stat(intf, sent_invalid_commands);
1689                         rv = -EINVAL;
1690                         goto out_err;
1691                 }
1692
1693                 if ((intf->channels[addr->channel].medium
1694                                 != IPMI_CHANNEL_MEDIUM_8023LAN)
1695                     && (intf->channels[addr->channel].medium
1696                                 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1697                         ipmi_inc_stat(intf, sent_invalid_commands);
1698                         rv = -EINVAL;
1699                         goto out_err;
1700                 }
1701
1702                 retries = 4;
1703
1704                 /* Default to 1 second retries. */
1705                 if (retry_time_ms == 0)
1706                     retry_time_ms = 1000;
1707
1708                 /* 11 for the header and 1 for the checksum. */
1709                 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1710                         ipmi_inc_stat(intf, sent_invalid_commands);
1711                         rv = -EMSGSIZE;
1712                         goto out_err;
1713                 }
1714
1715                 lan_addr = (struct ipmi_lan_addr *) addr;
1716                 if (lan_addr->lun > 3) {
1717                         ipmi_inc_stat(intf, sent_invalid_commands);
1718                         rv = -EINVAL;
1719                         goto out_err;
1720                 }
1721
1722                 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1723
1724                 if (recv_msg->msg.netfn & 0x1) {
1725                         /*
1726                          * It's a response, so use the user's sequence
1727                          * from msgid.
1728                          */
1729                         ipmi_inc_stat(intf, sent_lan_responses);
1730                         format_lan_msg(smi_msg, msg, lan_addr, msgid,
1731                                        msgid, source_lun);
1732
1733                         /*
1734                          * Save the receive message so we can use it
1735                          * to deliver the response.
1736                          */
1737                         smi_msg->user_data = recv_msg;
1738                 } else {
1739                         /* It's a command, so get a sequence for it. */
1740
1741                         spin_lock_irqsave(&(intf->seq_lock), flags);
1742
1743                         /*
1744                          * Create a sequence number with a 1 second
1745                          * timeout and 4 retries.
1746                          */
1747                         rv = intf_next_seq(intf,
1748                                            recv_msg,
1749                                            retry_time_ms,
1750                                            retries,
1751                                            0,
1752                                            &ipmb_seq,
1753                                            &seqid);
1754                         if (rv) {
1755                                 /*
1756                                  * We have used up all the sequence numbers,
1757                                  * probably, so abort.
1758                                  */
1759                                 spin_unlock_irqrestore(&(intf->seq_lock),
1760                                                        flags);
1761                                 goto out_err;
1762                         }
1763
1764                         ipmi_inc_stat(intf, sent_lan_commands);
1765
1766                         /*
1767                          * Store the sequence number in the message,
1768                          * so that when the send message response
1769                          * comes back we can start the timer.
1770                          */
1771                         format_lan_msg(smi_msg, msg, lan_addr,
1772                                        STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1773                                        ipmb_seq, source_lun);
1774
1775                         /*
1776                          * Copy the message into the recv message data, so we
1777                          * can retransmit it later if necessary.
1778                          */
1779                         memcpy(recv_msg->msg_data, smi_msg->data,
1780                                smi_msg->data_size);
1781                         recv_msg->msg.data = recv_msg->msg_data;
1782                         recv_msg->msg.data_len = smi_msg->data_size;
1783
1784                         /*
1785                          * We don't unlock until here, because we need
1786                          * to copy the completed message into the
1787                          * recv_msg before we release the lock.
1788                          * Otherwise, race conditions may bite us.  I
1789                          * know that's pretty paranoid, but I prefer
1790                          * to be correct.
1791                          */
1792                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1793                 }
1794         } else {
1795             /* Unknown address type. */
1796                 ipmi_inc_stat(intf, sent_invalid_commands);
1797                 rv = -EINVAL;
1798                 goto out_err;
1799         }
1800
1801 #ifdef DEBUG_MSGING
1802         {
1803                 int m;
1804                 for (m = 0; m < smi_msg->data_size; m++)
1805                         printk(" %2.2x", smi_msg->data[m]);
1806                 printk("\n");
1807         }
1808 #endif
1809
1810         handlers->sender(intf->send_info, smi_msg, priority);
1811         rcu_read_unlock();
1812
1813         return 0;
1814
1815  out_err:
1816         rcu_read_unlock();
1817         ipmi_free_smi_msg(smi_msg);
1818         ipmi_free_recv_msg(recv_msg);
1819         return rv;
1820 }
1821
1822 static int check_addr(ipmi_smi_t       intf,
1823                       struct ipmi_addr *addr,
1824                       unsigned char    *saddr,
1825                       unsigned char    *lun)
1826 {
1827         if (addr->channel >= IPMI_MAX_CHANNELS)
1828                 return -EINVAL;
1829         *lun = intf->channels[addr->channel].lun;
1830         *saddr = intf->channels[addr->channel].address;
1831         return 0;
1832 }
1833
1834 int ipmi_request_settime(ipmi_user_t      user,
1835                          struct ipmi_addr *addr,
1836                          long             msgid,
1837                          struct kernel_ipmi_msg  *msg,
1838                          void             *user_msg_data,
1839                          int              priority,
1840                          int              retries,
1841                          unsigned int     retry_time_ms)
1842 {
1843         unsigned char saddr, lun;
1844         int           rv;
1845
1846         if (!user)
1847                 return -EINVAL;
1848         rv = check_addr(user->intf, addr, &saddr, &lun);
1849         if (rv)
1850                 return rv;
1851         return i_ipmi_request(user,
1852                               user->intf,
1853                               addr,
1854                               msgid,
1855                               msg,
1856                               user_msg_data,
1857                               NULL, NULL,
1858                               priority,
1859                               saddr,
1860                               lun,
1861                               retries,
1862                               retry_time_ms);
1863 }
1864 EXPORT_SYMBOL(ipmi_request_settime);
1865
1866 int ipmi_request_supply_msgs(ipmi_user_t          user,
1867                              struct ipmi_addr     *addr,
1868                              long                 msgid,
1869                              struct kernel_ipmi_msg *msg,
1870                              void                 *user_msg_data,
1871                              void                 *supplied_smi,
1872                              struct ipmi_recv_msg *supplied_recv,
1873                              int                  priority)
1874 {
1875         unsigned char saddr, lun;
1876         int           rv;
1877
1878         if (!user)
1879                 return -EINVAL;
1880         rv = check_addr(user->intf, addr, &saddr, &lun);
1881         if (rv)
1882                 return rv;
1883         return i_ipmi_request(user,
1884                               user->intf,
1885                               addr,
1886                               msgid,
1887                               msg,
1888                               user_msg_data,
1889                               supplied_smi,
1890                               supplied_recv,
1891                               priority,
1892                               saddr,
1893                               lun,
1894                               -1, 0);
1895 }
1896 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1897
1898 #ifdef CONFIG_PROC_FS
1899 static int ipmb_file_read_proc(char *page, char **start, off_t off,
1900                                int count, int *eof, void *data)
1901 {
1902         char       *out = (char *) page;
1903         ipmi_smi_t intf = data;
1904         int        i;
1905         int        rv = 0;
1906
1907         for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1908                 rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1909         out[rv-1] = '\n'; /* Replace the final space with a newline */
1910         out[rv] = '\0';
1911         rv++;
1912         return rv;
1913 }
1914
1915 static int version_file_read_proc(char *page, char **start, off_t off,
1916                                   int count, int *eof, void *data)
1917 {
1918         char       *out = (char *) page;
1919         ipmi_smi_t intf = data;
1920
1921         return sprintf(out, "%u.%u\n",
1922                        ipmi_version_major(&intf->bmc->id),
1923                        ipmi_version_minor(&intf->bmc->id));
1924 }
1925
1926 static int stat_file_read_proc(char *page, char **start, off_t off,
1927                                int count, int *eof, void *data)
1928 {
1929         char       *out = (char *) page;
1930         ipmi_smi_t intf = data;
1931
1932         out += sprintf(out, "sent_invalid_commands:       %u\n",
1933                        ipmi_get_stat(intf, sent_invalid_commands));
1934         out += sprintf(out, "sent_local_commands:         %u\n",
1935                        ipmi_get_stat(intf, sent_local_commands));
1936         out += sprintf(out, "handled_local_responses:     %u\n",
1937                        ipmi_get_stat(intf, handled_local_responses));
1938         out += sprintf(out, "unhandled_local_responses:   %u\n",
1939                        ipmi_get_stat(intf, unhandled_local_responses));
1940         out += sprintf(out, "sent_ipmb_commands:          %u\n",
1941                        ipmi_get_stat(intf, sent_ipmb_commands));
1942         out += sprintf(out, "sent_ipmb_command_errs:      %u\n",
1943                        ipmi_get_stat(intf, sent_ipmb_command_errs));
1944         out += sprintf(out, "retransmitted_ipmb_commands: %u\n",
1945                        ipmi_get_stat(intf, retransmitted_ipmb_commands));
1946         out += sprintf(out, "timed_out_ipmb_commands:     %u\n",
1947                        ipmi_get_stat(intf, timed_out_ipmb_commands));
1948         out += sprintf(out, "timed_out_ipmb_broadcasts:   %u\n",
1949                        ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1950         out += sprintf(out, "sent_ipmb_responses:         %u\n",
1951                        ipmi_get_stat(intf, sent_ipmb_responses));
1952         out += sprintf(out, "handled_ipmb_responses:      %u\n",
1953                        ipmi_get_stat(intf, handled_ipmb_responses));
1954         out += sprintf(out, "invalid_ipmb_responses:      %u\n",
1955                        ipmi_get_stat(intf, invalid_ipmb_responses));
1956         out += sprintf(out, "unhandled_ipmb_responses:    %u\n",
1957                        ipmi_get_stat(intf, unhandled_ipmb_responses));
1958         out += sprintf(out, "sent_lan_commands:           %u\n",
1959                        ipmi_get_stat(intf, sent_lan_commands));
1960         out += sprintf(out, "sent_lan_command_errs:       %u\n",
1961                        ipmi_get_stat(intf, sent_lan_command_errs));
1962         out += sprintf(out, "retransmitted_lan_commands:  %u\n",
1963                        ipmi_get_stat(intf, retransmitted_lan_commands));
1964         out += sprintf(out, "timed_out_lan_commands:      %u\n",
1965                        ipmi_get_stat(intf, timed_out_lan_commands));
1966         out += sprintf(out, "sent_lan_responses:          %u\n",
1967                        ipmi_get_stat(intf, sent_lan_responses));
1968         out += sprintf(out, "handled_lan_responses:       %u\n",
1969                        ipmi_get_stat(intf, handled_lan_responses));
1970         out += sprintf(out, "invalid_lan_responses:       %u\n",
1971                        ipmi_get_stat(intf, invalid_lan_responses));
1972         out += sprintf(out, "unhandled_lan_responses:     %u\n",
1973                        ipmi_get_stat(intf, unhandled_lan_responses));
1974         out += sprintf(out, "handled_commands:            %u\n",
1975                        ipmi_get_stat(intf, handled_commands));
1976         out += sprintf(out, "invalid_commands:            %u\n",
1977                        ipmi_get_stat(intf, invalid_commands));
1978         out += sprintf(out, "unhandled_commands:          %u\n",
1979                        ipmi_get_stat(intf, unhandled_commands));
1980         out += sprintf(out, "invalid_events:              %u\n",
1981                        ipmi_get_stat(intf, invalid_events));
1982         out += sprintf(out, "events:                      %u\n",
1983                        ipmi_get_stat(intf, events));
1984         out += sprintf(out, "failed rexmit LAN msgs:      %u\n",
1985                        ipmi_get_stat(intf, dropped_rexmit_lan_commands));
1986         out += sprintf(out, "failed rexmit IPMB msgs:     %u\n",
1987                        ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
1988
1989         return (out - ((char *) page));
1990 }
1991 #endif /* CONFIG_PROC_FS */
1992
1993 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1994                             read_proc_t *read_proc,
1995                             void *data)
1996 {
1997         int                    rv = 0;
1998 #ifdef CONFIG_PROC_FS
1999         struct proc_dir_entry  *file;
2000         struct ipmi_proc_entry *entry;
2001
2002         /* Create a list element. */
2003         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2004         if (!entry)
2005                 return -ENOMEM;
2006         entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
2007         if (!entry->name) {
2008                 kfree(entry);
2009                 return -ENOMEM;
2010         }
2011         strcpy(entry->name, name);
2012
2013         file = create_proc_entry(name, 0, smi->proc_dir);
2014         if (!file) {
2015                 kfree(entry->name);
2016                 kfree(entry);
2017                 rv = -ENOMEM;
2018         } else {
2019                 file->data = data;
2020                 file->read_proc = read_proc;
2021
2022                 mutex_lock(&smi->proc_entry_lock);
2023                 /* Stick it on the list. */
2024                 entry->next = smi->proc_entries;
2025                 smi->proc_entries = entry;
2026                 mutex_unlock(&smi->proc_entry_lock);
2027         }
2028 #endif /* CONFIG_PROC_FS */
2029
2030         return rv;
2031 }
2032 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2033
2034 static int add_proc_entries(ipmi_smi_t smi, int num)
2035 {
2036         int rv = 0;
2037
2038 #ifdef CONFIG_PROC_FS
2039         sprintf(smi->proc_dir_name, "%d", num);
2040         smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2041         if (!smi->proc_dir)
2042                 rv = -ENOMEM;
2043
2044         if (rv == 0)
2045                 rv = ipmi_smi_add_proc_entry(smi, "stats",
2046                                              stat_file_read_proc,
2047                                              smi);
2048
2049         if (rv == 0)
2050                 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2051                                              ipmb_file_read_proc,
2052                                              smi);
2053
2054         if (rv == 0)
2055                 rv = ipmi_smi_add_proc_entry(smi, "version",
2056                                              version_file_read_proc,
2057                                              smi);
2058 #endif /* CONFIG_PROC_FS */
2059
2060         return rv;
2061 }
2062
2063 static void remove_proc_entries(ipmi_smi_t smi)
2064 {
2065 #ifdef CONFIG_PROC_FS
2066         struct ipmi_proc_entry *entry;
2067
2068         mutex_lock(&smi->proc_entry_lock);
2069         while (smi->proc_entries) {
2070                 entry = smi->proc_entries;
2071                 smi->proc_entries = entry->next;
2072
2073                 remove_proc_entry(entry->name, smi->proc_dir);
2074                 kfree(entry->name);
2075                 kfree(entry);
2076         }
2077         mutex_unlock(&smi->proc_entry_lock);
2078         remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2079 #endif /* CONFIG_PROC_FS */
2080 }
2081
2082 static int __find_bmc_guid(struct device *dev, void *data)
2083 {
2084         unsigned char *id = data;
2085         struct bmc_device *bmc = dev_get_drvdata(dev);
2086         return memcmp(bmc->guid, id, 16) == 0;
2087 }
2088
2089 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2090                                              unsigned char *guid)
2091 {
2092         struct device *dev;
2093
2094         dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2095         if (dev)
2096                 return dev_get_drvdata(dev);
2097         else
2098                 return NULL;
2099 }
2100
2101 struct prod_dev_id {
2102         unsigned int  product_id;
2103         unsigned char device_id;
2104 };
2105
2106 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2107 {
2108         struct prod_dev_id *id = data;
2109         struct bmc_device *bmc = dev_get_drvdata(dev);
2110
2111         return (bmc->id.product_id == id->product_id
2112                 && bmc->id.device_id == id->device_id);
2113 }
2114
2115 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2116         struct device_driver *drv,
2117         unsigned int product_id, unsigned char device_id)
2118 {
2119         struct prod_dev_id id = {
2120                 .product_id = product_id,
2121                 .device_id = device_id,
2122         };
2123         struct device *dev;
2124
2125         dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2126         if (dev)
2127                 return dev_get_drvdata(dev);
2128         else
2129                 return NULL;
2130 }
2131
2132 static ssize_t device_id_show(struct device *dev,
2133                               struct device_attribute *attr,
2134                               char *buf)
2135 {
2136         struct bmc_device *bmc = dev_get_drvdata(dev);
2137
2138         return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2139 }
2140
2141 static ssize_t provides_dev_sdrs_show(struct device *dev,
2142                                       struct device_attribute *attr,
2143                                       char *buf)
2144 {
2145         struct bmc_device *bmc = dev_get_drvdata(dev);
2146
2147         return snprintf(buf, 10, "%u\n",
2148                         (bmc->id.device_revision & 0x80) >> 7);
2149 }
2150
2151 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2152                              char *buf)
2153 {
2154         struct bmc_device *bmc = dev_get_drvdata(dev);
2155
2156         return snprintf(buf, 20, "%u\n",
2157                         bmc->id.device_revision & 0x0F);
2158 }
2159
2160 static ssize_t firmware_rev_show(struct device *dev,
2161                                  struct device_attribute *attr,
2162                                  char *buf)
2163 {
2164         struct bmc_device *bmc = dev_get_drvdata(dev);
2165
2166         return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2167                         bmc->id.firmware_revision_2);
2168 }
2169
2170 static ssize_t ipmi_version_show(struct device *dev,
2171                                  struct device_attribute *attr,
2172                                  char *buf)
2173 {
2174         struct bmc_device *bmc = dev_get_drvdata(dev);
2175
2176         return snprintf(buf, 20, "%u.%u\n",
2177                         ipmi_version_major(&bmc->id),
2178                         ipmi_version_minor(&bmc->id));
2179 }
2180
2181 static ssize_t add_dev_support_show(struct device *dev,
2182                                     struct device_attribute *attr,
2183                                     char *buf)
2184 {
2185         struct bmc_device *bmc = dev_get_drvdata(dev);
2186
2187         return snprintf(buf, 10, "0x%02x\n",
2188                         bmc->id.additional_device_support);
2189 }
2190
2191 static ssize_t manufacturer_id_show(struct device *dev,
2192                                     struct device_attribute *attr,
2193                                     char *buf)
2194 {
2195         struct bmc_device *bmc = dev_get_drvdata(dev);
2196
2197         return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2198 }
2199
2200 static ssize_t product_id_show(struct device *dev,
2201                                struct device_attribute *attr,
2202                                char *buf)
2203 {
2204         struct bmc_device *bmc = dev_get_drvdata(dev);
2205
2206         return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2207 }
2208
2209 static ssize_t aux_firmware_rev_show(struct device *dev,
2210                                      struct device_attribute *attr,
2211                                      char *buf)
2212 {
2213         struct bmc_device *bmc = dev_get_drvdata(dev);
2214
2215         return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2216                         bmc->id.aux_firmware_revision[3],
2217                         bmc->id.aux_firmware_revision[2],
2218                         bmc->id.aux_firmware_revision[1],
2219                         bmc->id.aux_firmware_revision[0]);
2220 }
2221
2222 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2223                          char *buf)
2224 {
2225         struct bmc_device *bmc = dev_get_drvdata(dev);
2226
2227         return snprintf(buf, 100, "%Lx%Lx\n",
2228                         (long long) bmc->guid[0],
2229                         (long long) bmc->guid[8]);
2230 }
2231
2232 static void remove_files(struct bmc_device *bmc)
2233 {
2234         if (!bmc->dev)
2235                 return;
2236
2237         device_remove_file(&bmc->dev->dev,
2238                            &bmc->device_id_attr);
2239         device_remove_file(&bmc->dev->dev,
2240                            &bmc->provides_dev_sdrs_attr);
2241         device_remove_file(&bmc->dev->dev,
2242                            &bmc->revision_attr);
2243         device_remove_file(&bmc->dev->dev,
2244                            &bmc->firmware_rev_attr);
2245         device_remove_file(&bmc->dev->dev,
2246                            &bmc->version_attr);
2247         device_remove_file(&bmc->dev->dev,
2248                            &bmc->add_dev_support_attr);
2249         device_remove_file(&bmc->dev->dev,
2250                            &bmc->manufacturer_id_attr);
2251         device_remove_file(&bmc->dev->dev,
2252                            &bmc->product_id_attr);
2253
2254         if (bmc->id.aux_firmware_revision_set)
2255                 device_remove_file(&bmc->dev->dev,
2256                                    &bmc->aux_firmware_rev_attr);
2257         if (bmc->guid_set)
2258                 device_remove_file(&bmc->dev->dev,
2259                                    &bmc->guid_attr);
2260 }
2261
2262 static void
2263 cleanup_bmc_device(struct kref *ref)
2264 {
2265         struct bmc_device *bmc;
2266
2267         bmc = container_of(ref, struct bmc_device, refcount);
2268
2269         remove_files(bmc);
2270         platform_device_unregister(bmc->dev);
2271         kfree(bmc);
2272 }
2273
2274 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2275 {
2276         struct bmc_device *bmc = intf->bmc;
2277
2278         if (intf->sysfs_name) {
2279                 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2280                 kfree(intf->sysfs_name);
2281                 intf->sysfs_name = NULL;
2282         }
2283         if (intf->my_dev_name) {
2284                 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2285                 kfree(intf->my_dev_name);
2286                 intf->my_dev_name = NULL;
2287         }
2288
2289         mutex_lock(&ipmidriver_mutex);
2290         kref_put(&bmc->refcount, cleanup_bmc_device);
2291         intf->bmc = NULL;
2292         mutex_unlock(&ipmidriver_mutex);
2293 }
2294
2295 static int create_files(struct bmc_device *bmc)
2296 {
2297         int err;
2298
2299         bmc->device_id_attr.attr.name = "device_id";
2300         bmc->device_id_attr.attr.mode = S_IRUGO;
2301         bmc->device_id_attr.show = device_id_show;
2302         sysfs_attr_init(&bmc->device_id_attr.attr);
2303
2304         bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2305         bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2306         bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2307         sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr);
2308
2309         bmc->revision_attr.attr.name = "revision";
2310         bmc->revision_attr.attr.mode = S_IRUGO;
2311         bmc->revision_attr.show = revision_show;
2312         sysfs_attr_init(&bmc->revision_attr.attr);
2313
2314         bmc->firmware_rev_attr.attr.name = "firmware_revision";
2315         bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2316         bmc->firmware_rev_attr.show = firmware_rev_show;
2317         sysfs_attr_init(&bmc->firmware_rev_attr.attr);
2318
2319         bmc->version_attr.attr.name = "ipmi_version";
2320         bmc->version_attr.attr.mode = S_IRUGO;
2321         bmc->version_attr.show = ipmi_version_show;
2322         sysfs_attr_init(&bmc->version_attr.attr);
2323
2324         bmc->add_dev_support_attr.attr.name = "additional_device_support";
2325         bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2326         bmc->add_dev_support_attr.show = add_dev_support_show;
2327         sysfs_attr_init(&bmc->add_dev_support_attr.attr);
2328
2329         bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2330         bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2331         bmc->manufacturer_id_attr.show = manufacturer_id_show;
2332         sysfs_attr_init(&bmc->manufacturer_id_attr.attr);
2333
2334         bmc->product_id_attr.attr.name = "product_id";
2335         bmc->product_id_attr.attr.mode = S_IRUGO;
2336         bmc->product_id_attr.show = product_id_show;
2337         sysfs_attr_init(&bmc->product_id_attr.attr);
2338
2339         bmc->guid_attr.attr.name = "guid";
2340         bmc->guid_attr.attr.mode = S_IRUGO;
2341         bmc->guid_attr.show = guid_show;
2342         sysfs_attr_init(&bmc->guid_attr.attr);
2343
2344         bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2345         bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2346         bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2347         sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr);
2348
2349         err = device_create_file(&bmc->dev->dev,
2350                            &bmc->device_id_attr);
2351         if (err)
2352                 goto out;
2353         err = device_create_file(&bmc->dev->dev,
2354                            &bmc->provides_dev_sdrs_attr);
2355         if (err)
2356                 goto out_devid;
2357         err = device_create_file(&bmc->dev->dev,
2358                            &bmc->revision_attr);
2359         if (err)
2360                 goto out_sdrs;
2361         err = device_create_file(&bmc->dev->dev,
2362                            &bmc->firmware_rev_attr);
2363         if (err)
2364                 goto out_rev;
2365         err = device_create_file(&bmc->dev->dev,
2366                            &bmc->version_attr);
2367         if (err)
2368                 goto out_firm;
2369         err = device_create_file(&bmc->dev->dev,
2370                            &bmc->add_dev_support_attr);
2371         if (err)
2372                 goto out_version;
2373         err = device_create_file(&bmc->dev->dev,
2374                            &bmc->manufacturer_id_attr);
2375         if (err)
2376                 goto out_add_dev;
2377         err = device_create_file(&bmc->dev->dev,
2378                            &bmc->product_id_attr);
2379         if (err)
2380                 goto out_manu;
2381         if (bmc->id.aux_firmware_revision_set) {
2382                 err = device_create_file(&bmc->dev->dev,
2383                                    &bmc->aux_firmware_rev_attr);
2384                 if (err)
2385                         goto out_prod_id;
2386         }
2387         if (bmc->guid_set) {
2388                 err = device_create_file(&bmc->dev->dev,
2389                                    &bmc->guid_attr);
2390                 if (err)
2391                         goto out_aux_firm;
2392         }
2393
2394         return 0;
2395
2396 out_aux_firm:
2397         if (bmc->id.aux_firmware_revision_set)
2398                 device_remove_file(&bmc->dev->dev,
2399                                    &bmc->aux_firmware_rev_attr);
2400 out_prod_id:
2401         device_remove_file(&bmc->dev->dev,
2402                            &bmc->product_id_attr);
2403 out_manu:
2404         device_remove_file(&bmc->dev->dev,
2405                            &bmc->manufacturer_id_attr);
2406 out_add_dev:
2407         device_remove_file(&bmc->dev->dev,
2408                            &bmc->add_dev_support_attr);
2409 out_version:
2410         device_remove_file(&bmc->dev->dev,
2411                            &bmc->version_attr);
2412 out_firm:
2413         device_remove_file(&bmc->dev->dev,
2414                            &bmc->firmware_rev_attr);
2415 out_rev:
2416         device_remove_file(&bmc->dev->dev,
2417                            &bmc->revision_attr);
2418 out_sdrs:
2419         device_remove_file(&bmc->dev->dev,
2420                            &bmc->provides_dev_sdrs_attr);
2421 out_devid:
2422         device_remove_file(&bmc->dev->dev,
2423                            &bmc->device_id_attr);
2424 out:
2425         return err;
2426 }
2427
2428 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2429                              const char *sysfs_name)
2430 {
2431         int               rv;
2432         struct bmc_device *bmc = intf->bmc;
2433         struct bmc_device *old_bmc;
2434         int               size;
2435         char              dummy[1];
2436
2437         mutex_lock(&ipmidriver_mutex);
2438
2439         /*
2440          * Try to find if there is an bmc_device struct
2441          * representing the interfaced BMC already
2442          */
2443         if (bmc->guid_set)
2444                 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2445         else
2446                 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2447                                                     bmc->id.product_id,
2448                                                     bmc->id.device_id);
2449
2450         /*
2451          * If there is already an bmc_device, free the new one,
2452          * otherwise register the new BMC device
2453          */
2454         if (old_bmc) {
2455                 kfree(bmc);
2456                 intf->bmc = old_bmc;
2457                 bmc = old_bmc;
2458
2459                 kref_get(&bmc->refcount);
2460                 mutex_unlock(&ipmidriver_mutex);
2461
2462                 printk(KERN_INFO
2463                        "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2464                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2465                        bmc->id.manufacturer_id,
2466                        bmc->id.product_id,
2467                        bmc->id.device_id);
2468         } else {
2469                 char name[14];
2470                 unsigned char orig_dev_id = bmc->id.device_id;
2471                 int warn_printed = 0;
2472
2473                 snprintf(name, sizeof(name),
2474                          "ipmi_bmc.%4.4x", bmc->id.product_id);
2475
2476                 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2477                                                  bmc->id.product_id,
2478                                                  bmc->id.device_id)) {
2479                         if (!warn_printed) {
2480                                 printk(KERN_WARNING PFX
2481                                        "This machine has two different BMCs"
2482                                        " with the same product id and device"
2483                                        " id.  This is an error in the"
2484                                        " firmware, but incrementing the"
2485                                        " device id to work around the problem."
2486                                        " Prod ID = 0x%x, Dev ID = 0x%x\n",
2487                                        bmc->id.product_id, bmc->id.device_id);
2488                                 warn_printed = 1;
2489                         }
2490                         bmc->id.device_id++; /* Wraps at 255 */
2491                         if (bmc->id.device_id == orig_dev_id) {
2492                                 printk(KERN_ERR PFX
2493                                        "Out of device ids!\n");
2494                                 break;
2495                         }
2496                 }
2497
2498                 bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2499                 if (!bmc->dev) {
2500                         mutex_unlock(&ipmidriver_mutex);
2501                         printk(KERN_ERR
2502                                "ipmi_msghandler:"
2503                                " Unable to allocate platform device\n");
2504                         return -ENOMEM;
2505                 }
2506                 bmc->dev->dev.driver = &ipmidriver.driver;
2507                 dev_set_drvdata(&bmc->dev->dev, bmc);
2508                 kref_init(&bmc->refcount);
2509
2510                 rv = platform_device_add(bmc->dev);
2511                 mutex_unlock(&ipmidriver_mutex);
2512                 if (rv) {
2513                         platform_device_put(bmc->dev);
2514                         bmc->dev = NULL;
2515                         printk(KERN_ERR
2516                                "ipmi_msghandler:"
2517                                " Unable to register bmc device: %d\n",
2518                                rv);
2519                         /*
2520                          * Don't go to out_err, you can only do that if
2521                          * the device is registered already.
2522                          */
2523                         return rv;
2524                 }
2525
2526                 rv = create_files(bmc);
2527                 if (rv) {
2528                         mutex_lock(&ipmidriver_mutex);
2529                         platform_device_unregister(bmc->dev);
2530                         mutex_unlock(&ipmidriver_mutex);
2531
2532                         return rv;
2533                 }
2534
2535                 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2536                          "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2537                          bmc->id.manufacturer_id,
2538                          bmc->id.product_id,
2539                          bmc->id.device_id);
2540         }
2541
2542         /*
2543          * create symlink from system interface device to bmc device
2544          * and back.
2545          */
2546         intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2547         if (!intf->sysfs_name) {
2548                 rv = -ENOMEM;
2549                 printk(KERN_ERR
2550                        "ipmi_msghandler: allocate link to BMC: %d\n",
2551                        rv);
2552                 goto out_err;
2553         }
2554
2555         rv = sysfs_create_link(&intf->si_dev->kobj,
2556                                &bmc->dev->dev.kobj, intf->sysfs_name);
2557         if (rv) {
2558                 kfree(intf->sysfs_name);
2559                 intf->sysfs_name = NULL;
2560                 printk(KERN_ERR
2561                        "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2562                        rv);
2563                 goto out_err;
2564         }
2565
2566         size = snprintf(dummy, 0, "ipmi%d", ifnum);
2567         intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2568         if (!intf->my_dev_name) {
2569                 kfree(intf->sysfs_name);
2570                 intf->sysfs_name = NULL;
2571                 rv = -ENOMEM;
2572                 printk(KERN_ERR
2573                        "ipmi_msghandler: allocate link from BMC: %d\n",
2574                        rv);
2575                 goto out_err;
2576         }
2577         snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2578
2579         rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2580                                intf->my_dev_name);
2581         if (rv) {
2582                 kfree(intf->sysfs_name);
2583                 intf->sysfs_name = NULL;
2584                 kfree(intf->my_dev_name);
2585                 intf->my_dev_name = NULL;
2586                 printk(KERN_ERR
2587                        "ipmi_msghandler:"
2588                        " Unable to create symlink to bmc: %d\n",
2589                        rv);
2590                 goto out_err;
2591         }
2592
2593         return 0;
2594
2595 out_err:
2596         ipmi_bmc_unregister(intf);
2597         return rv;
2598 }
2599
2600 static int
2601 send_guid_cmd(ipmi_smi_t intf, int chan)
2602 {
2603         struct kernel_ipmi_msg            msg;
2604         struct ipmi_system_interface_addr si;
2605
2606         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2607         si.channel = IPMI_BMC_CHANNEL;
2608         si.lun = 0;
2609
2610         msg.netfn = IPMI_NETFN_APP_REQUEST;
2611         msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2612         msg.data = NULL;
2613         msg.data_len = 0;
2614         return i_ipmi_request(NULL,
2615                               intf,
2616                               (struct ipmi_addr *) &si,
2617                               0,
2618                               &msg,
2619                               intf,
2620                               NULL,
2621                               NULL,
2622                               0,
2623                               intf->channels[0].address,
2624                               intf->channels[0].lun,
2625                               -1, 0);
2626 }
2627
2628 static void
2629 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2630 {
2631         if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2632             || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2633             || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2634                 /* Not for me */
2635                 return;
2636
2637         if (msg->msg.data[0] != 0) {
2638                 /* Error from getting the GUID, the BMC doesn't have one. */
2639                 intf->bmc->guid_set = 0;
2640                 goto out;
2641         }
2642
2643         if (msg->msg.data_len < 17) {
2644                 intf->bmc->guid_set = 0;
2645                 printk(KERN_WARNING PFX
2646                        "guid_handler: The GUID response from the BMC was too"
2647                        " short, it was %d but should have been 17.  Assuming"
2648                        " GUID is not available.\n",
2649                        msg->msg.data_len);
2650                 goto out;
2651         }
2652
2653         memcpy(intf->bmc->guid, msg->msg.data, 16);
2654         intf->bmc->guid_set = 1;
2655  out:
2656         wake_up(&intf->waitq);
2657 }
2658
2659 static void
2660 get_guid(ipmi_smi_t intf)
2661 {
2662         int rv;
2663
2664         intf->bmc->guid_set = 0x2;
2665         intf->null_user_handler = guid_handler;
2666         rv = send_guid_cmd(intf, 0);
2667         if (rv)
2668                 /* Send failed, no GUID available. */
2669                 intf->bmc->guid_set = 0;
2670         wait_event(intf->waitq, intf->bmc->guid_set != 2);
2671         intf->null_user_handler = NULL;
2672 }
2673
2674 static int
2675 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2676 {
2677         struct kernel_ipmi_msg            msg;
2678         unsigned char                     data[1];
2679         struct ipmi_system_interface_addr si;
2680
2681         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2682         si.channel = IPMI_BMC_CHANNEL;
2683         si.lun = 0;
2684
2685         msg.netfn = IPMI_NETFN_APP_REQUEST;
2686         msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2687         msg.data = data;
2688         msg.data_len = 1;
2689         data[0] = chan;
2690         return i_ipmi_request(NULL,
2691                               intf,
2692                               (struct ipmi_addr *) &si,
2693                               0,
2694                               &msg,
2695                               intf,
2696                               NULL,
2697                               NULL,
2698                               0,
2699                               intf->channels[0].address,
2700                               intf->channels[0].lun,
2701                               -1, 0);
2702 }
2703
2704 static void
2705 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2706 {
2707         int rv = 0;
2708         int chan;
2709
2710         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2711             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2712             && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2713                 /* It's the one we want */
2714                 if (msg->msg.data[0] != 0) {
2715                         /* Got an error from the channel, just go on. */
2716
2717                         if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2718                                 /*
2719                                  * If the MC does not support this
2720                                  * command, that is legal.  We just
2721                                  * assume it has one IPMB at channel
2722                                  * zero.
2723                                  */
2724                                 intf->channels[0].medium
2725                                         = IPMI_CHANNEL_MEDIUM_IPMB;
2726                                 intf->channels[0].protocol
2727                                         = IPMI_CHANNEL_PROTOCOL_IPMB;
2728                                 rv = -ENOSYS;
2729
2730                                 intf->curr_channel = IPMI_MAX_CHANNELS;
2731                                 wake_up(&intf->waitq);
2732                                 goto out;
2733                         }
2734                         goto next_channel;
2735                 }
2736                 if (msg->msg.data_len < 4) {
2737                         /* Message not big enough, just go on. */
2738                         goto next_channel;
2739                 }
2740                 chan = intf->curr_channel;
2741                 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2742                 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2743
2744  next_channel:
2745                 intf->curr_channel++;
2746                 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2747                         wake_up(&intf->waitq);
2748                 else
2749                         rv = send_channel_info_cmd(intf, intf->curr_channel);
2750
2751                 if (rv) {
2752                         /* Got an error somehow, just give up. */
2753                         intf->curr_channel = IPMI_MAX_CHANNELS;
2754                         wake_up(&intf->waitq);
2755
2756                         printk(KERN_WARNING PFX
2757                                "Error sending channel information: %d\n",
2758                                rv);
2759                 }
2760         }
2761  out:
2762         return;
2763 }
2764
2765 void ipmi_poll_interface(ipmi_user_t user)
2766 {
2767         ipmi_smi_t intf = user->intf;
2768
2769         if (intf->handlers->poll)
2770                 intf->handlers->poll(intf->send_info);
2771 }
2772 EXPORT_SYMBOL(ipmi_poll_interface);
2773
2774 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2775                       void                     *send_info,
2776                       struct ipmi_device_id    *device_id,
2777                       struct device            *si_dev,
2778                       const char               *sysfs_name,
2779                       unsigned char            slave_addr)
2780 {
2781         int              i, j;
2782         int              rv;
2783         ipmi_smi_t       intf;
2784         ipmi_smi_t       tintf;
2785         struct list_head *link;
2786
2787         /*
2788          * Make sure the driver is actually initialized, this handles
2789          * problems with initialization order.
2790          */
2791         if (!initialized) {
2792                 rv = ipmi_init_msghandler();
2793                 if (rv)
2794                         return rv;
2795                 /*
2796                  * The init code doesn't return an error if it was turned
2797                  * off, but it won't initialize.  Check that.
2798                  */
2799                 if (!initialized)
2800                         return -ENODEV;
2801         }
2802
2803         intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2804         if (!intf)
2805                 return -ENOMEM;
2806
2807         intf->ipmi_version_major = ipmi_version_major(device_id);
2808         intf->ipmi_version_minor = ipmi_version_minor(device_id);
2809
2810         intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2811         if (!intf->bmc) {
2812                 kfree(intf);
2813                 return -ENOMEM;
2814         }
2815         intf->intf_num = -1; /* Mark it invalid for now. */
2816         kref_init(&intf->refcount);
2817         intf->bmc->id = *device_id;
2818         intf->si_dev = si_dev;
2819         for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2820                 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2821                 intf->channels[j].lun = 2;
2822         }
2823         if (slave_addr != 0)
2824                 intf->channels[0].address = slave_addr;
2825         INIT_LIST_HEAD(&intf->users);
2826         intf->handlers = handlers;
2827         intf->send_info = send_info;
2828         spin_lock_init(&intf->seq_lock);
2829         for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2830                 intf->seq_table[j].inuse = 0;
2831                 intf->seq_table[j].seqid = 0;
2832         }
2833         intf->curr_seq = 0;
2834 #ifdef CONFIG_PROC_FS
2835         mutex_init(&intf->proc_entry_lock);
2836 #endif
2837         spin_lock_init(&intf->waiting_msgs_lock);
2838         INIT_LIST_HEAD(&intf->waiting_msgs);
2839         spin_lock_init(&intf->events_lock);
2840         INIT_LIST_HEAD(&intf->waiting_events);
2841         intf->waiting_events_count = 0;
2842         mutex_init(&intf->cmd_rcvrs_mutex);
2843         spin_lock_init(&intf->maintenance_mode_lock);
2844         INIT_LIST_HEAD(&intf->cmd_rcvrs);
2845         init_waitqueue_head(&intf->waitq);
2846         for (i = 0; i < IPMI_NUM_STATS; i++)
2847                 atomic_set(&intf->stats[i], 0);
2848
2849         intf->proc_dir = NULL;
2850
2851         mutex_lock(&smi_watchers_mutex);
2852         mutex_lock(&ipmi_interfaces_mutex);
2853         /* Look for a hole in the numbers. */
2854         i = 0;
2855         link = &ipmi_interfaces;
2856         list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2857                 if (tintf->intf_num != i) {
2858                         link = &tintf->link;
2859                         break;
2860                 }
2861                 i++;
2862         }
2863         /* Add the new interface in numeric order. */
2864         if (i == 0)
2865                 list_add_rcu(&intf->link, &ipmi_interfaces);
2866         else
2867                 list_add_tail_rcu(&intf->link, link);
2868
2869         rv = handlers->start_processing(send_info, intf);
2870         if (rv)
2871                 goto out;
2872
2873         get_guid(intf);
2874
2875         if ((intf->ipmi_version_major > 1)
2876                         || ((intf->ipmi_version_major == 1)
2877                             && (intf->ipmi_version_minor >= 5))) {
2878                 /*
2879                  * Start scanning the channels to see what is
2880                  * available.
2881                  */
2882                 intf->null_user_handler = channel_handler;
2883                 intf->curr_channel = 0;
2884                 rv = send_channel_info_cmd(intf, 0);
2885                 if (rv)
2886                         goto out;
2887
2888                 /* Wait for the channel info to be read. */
2889                 wait_event(intf->waitq,
2890                            intf->curr_channel >= IPMI_MAX_CHANNELS);
2891                 intf->null_user_handler = NULL;
2892         } else {
2893                 /* Assume a single IPMB channel at zero. */
2894                 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2895                 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2896                 intf->curr_channel = IPMI_MAX_CHANNELS;
2897         }
2898
2899         if (rv == 0)
2900                 rv = add_proc_entries(intf, i);
2901
2902         rv = ipmi_bmc_register(intf, i, sysfs_name);
2903
2904  out:
2905         if (rv) {
2906                 if (intf->proc_dir)
2907                         remove_proc_entries(intf);
2908                 intf->handlers = NULL;
2909                 list_del_rcu(&intf->link);
2910                 mutex_unlock(&ipmi_interfaces_mutex);
2911                 mutex_unlock(&smi_watchers_mutex);
2912                 synchronize_rcu();
2913                 kref_put(&intf->refcount, intf_free);
2914         } else {
2915                 /*
2916                  * Keep memory order straight for RCU readers.  Make
2917                  * sure everything else is committed to memory before
2918                  * setting intf_num to mark the interface valid.
2919                  */
2920                 smp_wmb();
2921                 intf->intf_num = i;
2922                 mutex_unlock(&ipmi_interfaces_mutex);
2923                 /* After this point the interface is legal to use. */
2924                 call_smi_watchers(i, intf->si_dev);
2925                 mutex_unlock(&smi_watchers_mutex);
2926         }
2927
2928         return rv;
2929 }
2930 EXPORT_SYMBOL(ipmi_register_smi);
2931
2932 static void cleanup_smi_msgs(ipmi_smi_t intf)
2933 {
2934         int              i;
2935         struct seq_table *ent;
2936
2937         /* No need for locks, the interface is down. */
2938         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2939                 ent = &(intf->seq_table[i]);
2940                 if (!ent->inuse)
2941                         continue;
2942                 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2943         }
2944 }
2945
2946 int ipmi_unregister_smi(ipmi_smi_t intf)
2947 {
2948         struct ipmi_smi_watcher *w;
2949         int    intf_num = intf->intf_num;
2950
2951         ipmi_bmc_unregister(intf);
2952
2953         mutex_lock(&smi_watchers_mutex);
2954         mutex_lock(&ipmi_interfaces_mutex);
2955         intf->intf_num = -1;
2956         intf->handlers = NULL;
2957         list_del_rcu(&intf->link);
2958         mutex_unlock(&ipmi_interfaces_mutex);
2959         synchronize_rcu();
2960
2961         cleanup_smi_msgs(intf);
2962
2963         remove_proc_entries(intf);
2964
2965         /*
2966          * Call all the watcher interfaces to tell them that
2967          * an interface is gone.
2968          */
2969         list_for_each_entry(w, &smi_watchers, link)
2970                 w->smi_gone(intf_num);
2971         mutex_unlock(&smi_watchers_mutex);
2972
2973         kref_put(&intf->refcount, intf_free);
2974         return 0;
2975 }
2976 EXPORT_SYMBOL(ipmi_unregister_smi);
2977
2978 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
2979                                    struct ipmi_smi_msg *msg)
2980 {
2981         struct ipmi_ipmb_addr ipmb_addr;
2982         struct ipmi_recv_msg  *recv_msg;
2983
2984         /*
2985          * This is 11, not 10, because the response must contain a
2986          * completion code.
2987          */
2988         if (msg->rsp_size < 11) {
2989                 /* Message not big enough, just ignore it. */
2990                 ipmi_inc_stat(intf, invalid_ipmb_responses);
2991                 return 0;
2992         }
2993
2994         if (msg->rsp[2] != 0) {
2995                 /* An error getting the response, just ignore it. */
2996                 return 0;
2997         }
2998
2999         ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3000         ipmb_addr.slave_addr = msg->rsp[6];
3001         ipmb_addr.channel = msg->rsp[3] & 0x0f;
3002         ipmb_addr.lun = msg->rsp[7] & 3;
3003
3004         /*
3005          * It's a response from a remote entity.  Look up the sequence
3006          * number and handle the response.
3007          */
3008         if (intf_find_seq(intf,
3009                           msg->rsp[7] >> 2,
3010                           msg->rsp[3] & 0x0f,
3011                           msg->rsp[8],
3012                           (msg->rsp[4] >> 2) & (~1),
3013                           (struct ipmi_addr *) &(ipmb_addr),
3014                           &recv_msg)) {
3015                 /*
3016                  * We were unable to find the sequence number,
3017                  * so just nuke the message.
3018                  */
3019                 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3020                 return 0;
3021         }
3022
3023         memcpy(recv_msg->msg_data,
3024                &(msg->rsp[9]),
3025                msg->rsp_size - 9);
3026         /*
3027          * The other fields matched, so no need to set them, except
3028          * for netfn, which needs to be the response that was
3029          * returned, not the request value.
3030          */
3031         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3032         recv_msg->msg.data = recv_msg->msg_data;
3033         recv_msg->msg.data_len = msg->rsp_size - 10;
3034         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3035         ipmi_inc_stat(intf, handled_ipmb_responses);
3036         deliver_response(recv_msg);
3037
3038         return 0;
3039 }
3040
3041 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3042                                    struct ipmi_smi_msg *msg)
3043 {
3044         struct cmd_rcvr          *rcvr;
3045         int                      rv = 0;
3046         unsigned char            netfn;
3047         unsigned char            cmd;
3048         unsigned char            chan;
3049         ipmi_user_t              user = NULL;
3050         struct ipmi_ipmb_addr    *ipmb_addr;
3051         struct ipmi_recv_msg     *recv_msg;
3052         struct ipmi_smi_handlers *handlers;
3053
3054         if (msg->rsp_size < 10) {
3055                 /* Message not big enough, just ignore it. */
3056                 ipmi_inc_stat(intf, invalid_commands);
3057                 return 0;
3058         }
3059
3060         if (msg->rsp[2] != 0) {
3061                 /* An error getting the response, just ignore it. */
3062                 return 0;
3063         }
3064
3065         netfn = msg->rsp[4] >> 2;
3066         cmd = msg->rsp[8];
3067         chan = msg->rsp[3] & 0xf;
3068
3069         rcu_read_lock();
3070         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3071         if (rcvr) {
3072                 user = rcvr->user;
3073                 kref_get(&user->refcount);
3074         } else
3075                 user = NULL;
3076         rcu_read_unlock();
3077
3078         if (user == NULL) {
3079                 /* We didn't find a user, deliver an error response. */
3080                 ipmi_inc_stat(intf, unhandled_commands);
3081
3082                 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3083                 msg->data[1] = IPMI_SEND_MSG_CMD;
3084                 msg->data[2] = msg->rsp[3];
3085                 msg->data[3] = msg->rsp[6];
3086                 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3087                 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3088                 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3089                 /* rqseq/lun */
3090                 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3091                 msg->data[8] = msg->rsp[8]; /* cmd */
3092                 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3093                 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3094                 msg->data_size = 11;
3095
3096 #ifdef DEBUG_MSGING
3097         {
3098                 int m;
3099                 printk("Invalid command:");
3100                 for (m = 0; m < msg->data_size; m++)
3101                         printk(" %2.2x", msg->data[m]);
3102                 printk("\n");
3103         }
3104 #endif
3105                 rcu_read_lock();
3106                 handlers = intf->handlers;
3107                 if (handlers) {
3108                         handlers->sender(intf->send_info, msg, 0);
3109                         /*
3110                          * We used the message, so return the value
3111                          * that causes it to not be freed or
3112                          * queued.
3113                          */
3114                         rv = -1;
3115                 }
3116                 rcu_read_unlock();
3117         } else {
3118                 /* Deliver the message to the user. */
3119                 ipmi_inc_stat(intf, handled_commands);
3120
3121                 recv_msg = ipmi_alloc_recv_msg();
3122                 if (!recv_msg) {
3123                         /*
3124                          * We couldn't allocate memory for the
3125                          * message, so requeue it for handling
3126                          * later.
3127                          */
3128                         rv = 1;
3129                         kref_put(&user->refcount, free_user);
3130                 } else {
3131                         /* Extract the source address from the data. */
3132                         ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3133                         ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3134                         ipmb_addr->slave_addr = msg->rsp[6];
3135                         ipmb_addr->lun = msg->rsp[7] & 3;
3136                         ipmb_addr->channel = msg->rsp[3] & 0xf;
3137
3138                         /*
3139                          * Extract the rest of the message information
3140                          * from the IPMB header.
3141                          */
3142                         recv_msg->user = user;
3143                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3144                         recv_msg->msgid = msg->rsp[7] >> 2;
3145                         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3146                         recv_msg->msg.cmd = msg->rsp[8];
3147                         recv_msg->msg.data = recv_msg->msg_data;
3148
3149                         /*
3150                          * We chop off 10, not 9 bytes because the checksum
3151                          * at the end also needs to be removed.
3152                          */
3153                         recv_msg->msg.data_len = msg->rsp_size - 10;
3154                         memcpy(recv_msg->msg_data,
3155                                &(msg->rsp[9]),
3156                                msg->rsp_size - 10);
3157                         deliver_response(recv_msg);
3158                 }
3159         }
3160
3161         return rv;
3162 }
3163
3164 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3165                                   struct ipmi_smi_msg *msg)
3166 {
3167         struct ipmi_lan_addr  lan_addr;
3168         struct ipmi_recv_msg  *recv_msg;
3169
3170
3171         /*
3172          * This is 13, not 12, because the response must contain a
3173          * completion code.
3174          */
3175         if (msg->rsp_size < 13) {
3176                 /* Message not big enough, just ignore it. */
3177                 ipmi_inc_stat(intf, invalid_lan_responses);
3178                 return 0;
3179         }
3180
3181         if (msg->rsp[2] != 0) {
3182                 /* An error getting the response, just ignore it. */
3183                 return 0;
3184         }
3185
3186         lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3187         lan_addr.session_handle = msg->rsp[4];
3188         lan_addr.remote_SWID = msg->rsp[8];
3189         lan_addr.local_SWID = msg->rsp[5];
3190         lan_addr.channel = msg->rsp[3] & 0x0f;
3191         lan_addr.privilege = msg->rsp[3] >> 4;
3192         lan_addr.lun = msg->rsp[9] & 3;
3193
3194         /*
3195          * It's a response from a remote entity.  Look up the sequence
3196          * number and handle the response.
3197          */
3198         if (intf_find_seq(intf,
3199                           msg->rsp[9] >> 2,
3200                           msg->rsp[3] & 0x0f,
3201                           msg->rsp[10],
3202                           (msg->rsp[6] >> 2) & (~1),
3203                           (struct ipmi_addr *) &(lan_addr),
3204                           &recv_msg)) {
3205                 /*
3206                  * We were unable to find the sequence number,
3207                  * so just nuke the message.
3208                  */
3209                 ipmi_inc_stat(intf, unhandled_lan_responses);
3210                 return 0;
3211         }
3212
3213         memcpy(recv_msg->msg_data,
3214                &(msg->rsp[11]),
3215                msg->rsp_size - 11);
3216         /*
3217          * The other fields matched, so no need to set them, except
3218          * for netfn, which needs to be the response that was
3219          * returned, not the request value.
3220          */
3221         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3222         recv_msg->msg.data = recv_msg->msg_data;
3223         recv_msg->msg.data_len = msg->rsp_size - 12;
3224         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3225         ipmi_inc_stat(intf, handled_lan_responses);
3226         deliver_response(recv_msg);
3227
3228         return 0;
3229 }
3230
3231 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3232                                   struct ipmi_smi_msg *msg)
3233 {
3234         struct cmd_rcvr          *rcvr;
3235         int                      rv = 0;
3236         unsigned char            netfn;
3237         unsigned char            cmd;
3238         unsigned char            chan;
3239         ipmi_user_t              user = NULL;
3240         struct ipmi_lan_addr     *lan_addr;
3241         struct ipmi_recv_msg     *recv_msg;
3242
3243         if (msg->rsp_size < 12) {
3244                 /* Message not big enough, just ignore it. */
3245                 ipmi_inc_stat(intf, invalid_commands);
3246                 return 0;
3247         }
3248
3249         if (msg->rsp[2] != 0) {
3250                 /* An error getting the response, just ignore it. */
3251                 return 0;
3252         }
3253
3254         netfn = msg->rsp[6] >> 2;
3255         cmd = msg->rsp[10];
3256         chan = msg->rsp[3] & 0xf;
3257
3258         rcu_read_lock();
3259         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3260         if (rcvr) {
3261                 user = rcvr->user;
3262                 kref_get(&user->refcount);
3263         } else
3264                 user = NULL;
3265         rcu_read_unlock();
3266
3267         if (user == NULL) {
3268                 /* We didn't find a user, just give up. */
3269                 ipmi_inc_stat(intf, unhandled_commands);
3270
3271                 /*
3272                  * Don't do anything with these messages, just allow
3273                  * them to be freed.
3274                  */
3275                 rv = 0;
3276         } else {
3277                 /* Deliver the message to the user. */
3278                 ipmi_inc_stat(intf, handled_commands);
3279
3280                 recv_msg = ipmi_alloc_recv_msg();
3281                 if (!recv_msg) {
3282                         /*
3283                          * We couldn't allocate memory for the
3284                          * message, so requeue it for handling later.
3285                          */
3286                         rv = 1;
3287                         kref_put(&user->refcount, free_user);
3288                 } else {
3289                         /* Extract the source address from the data. */
3290                         lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3291                         lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3292                         lan_addr->session_handle = msg->rsp[4];
3293                         lan_addr->remote_SWID = msg->rsp[8];
3294                         lan_addr->local_SWID = msg->rsp[5];
3295                         lan_addr->lun = msg->rsp[9] & 3;
3296                         lan_addr->channel = msg->rsp[3] & 0xf;
3297                         lan_addr->privilege = msg->rsp[3] >> 4;
3298
3299                         /*
3300                          * Extract the rest of the message information
3301                          * from the IPMB header.
3302                          */
3303                         recv_msg->user = user;
3304                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3305                         recv_msg->msgid = msg->rsp[9] >> 2;
3306                         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3307                         recv_msg->msg.cmd = msg->rsp[10];
3308                         recv_msg->msg.data = recv_msg->msg_data;
3309
3310                         /*
3311                          * We chop off 12, not 11 bytes because the checksum
3312                          * at the end also needs to be removed.
3313                          */
3314                         recv_msg->msg.data_len = msg->rsp_size - 12;
3315                         memcpy(recv_msg->msg_data,
3316                                &(msg->rsp[11]),
3317                                msg->rsp_size - 12);
3318                         deliver_response(recv_msg);
3319                 }
3320         }
3321
3322         return rv;
3323 }
3324
3325 /*
3326  * This routine will handle "Get Message" command responses with
3327  * channels that use an OEM Medium. The message format belongs to
3328  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3329  * Chapter 22, sections 22.6 and 22.24 for more details.
3330  */
3331 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3332                                   struct ipmi_smi_msg *msg)
3333 {
3334         struct cmd_rcvr       *rcvr;
3335         int                   rv = 0;
3336         unsigned char         netfn;
3337         unsigned char         cmd;
3338         unsigned char         chan;
3339         ipmi_user_t           user = NULL;
3340         struct ipmi_system_interface_addr *smi_addr;
3341         struct ipmi_recv_msg  *recv_msg;
3342
3343         /*
3344          * We expect the OEM SW to perform error checking
3345          * so we just do some basic sanity checks
3346          */
3347         if (msg->rsp_size < 4) {
3348                 /* Message not big enough, just ignore it. */
3349                 ipmi_inc_stat(intf, invalid_commands);
3350                 return 0;
3351         }
3352
3353         if (msg->rsp[2] != 0) {
3354                 /* An error getting the response, just ignore it. */
3355                 return 0;
3356         }
3357
3358         /*
3359          * This is an OEM Message so the OEM needs to know how
3360          * handle the message. We do no interpretation.
3361          */
3362         netfn = msg->rsp[0] >> 2;
3363         cmd = msg->rsp[1];
3364         chan = msg->rsp[3] & 0xf;
3365
3366         rcu_read_lock();
3367         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3368         if (rcvr) {
3369                 user = rcvr->user;
3370                 kref_get(&user->refcount);
3371         } else
3372                 user = NULL;
3373         rcu_read_unlock();
3374
3375         if (user == NULL) {
3376                 /* We didn't find a user, just give up. */
3377                 ipmi_inc_stat(intf, unhandled_commands);
3378
3379                 /*
3380                  * Don't do anything with these messages, just allow
3381                  * them to be freed.
3382                  */
3383
3384                 rv = 0;
3385         } else {
3386                 /* Deliver the message to the user. */
3387                 ipmi_inc_stat(intf, handled_commands);
3388
3389                 recv_msg = ipmi_alloc_recv_msg();
3390                 if (!recv_msg) {
3391                         /*
3392                          * We couldn't allocate memory for the
3393                          * message, so requeue it for handling
3394                          * later.
3395                          */
3396                         rv = 1;
3397                         kref_put(&user->refcount, free_user);
3398                 } else {
3399                         /*
3400                          * OEM Messages are expected to be delivered via
3401                          * the system interface to SMS software.  We might
3402                          * need to visit this again depending on OEM
3403                          * requirements
3404                          */
3405                         smi_addr = ((struct ipmi_system_interface_addr *)
3406                                     &(recv_msg->addr));
3407                         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3408                         smi_addr->channel = IPMI_BMC_CHANNEL;
3409                         smi_addr->lun = msg->rsp[0] & 3;
3410
3411                         recv_msg->user = user;
3412                         recv_msg->user_msg_data = NULL;
3413                         recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3414                         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3415                         recv_msg->msg.cmd = msg->rsp[1];
3416                         recv_msg->msg.data = recv_msg->msg_data;
3417
3418                         /*
3419                          * The message starts at byte 4 which follows the
3420                          * the Channel Byte in the "GET MESSAGE" command
3421                          */
3422                         recv_msg->msg.data_len = msg->rsp_size - 4;
3423                         memcpy(recv_msg->msg_data,
3424                                &(msg->rsp[4]),
3425                                msg->rsp_size - 4);
3426                         deliver_response(recv_msg);
3427                 }
3428         }
3429
3430         return rv;
3431 }
3432
3433 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3434                                      struct ipmi_smi_msg  *msg)
3435 {
3436         struct ipmi_system_interface_addr *smi_addr;
3437
3438         recv_msg->msgid = 0;
3439         smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3440         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3441         smi_addr->channel = IPMI_BMC_CHANNEL;
3442         smi_addr->lun = msg->rsp[0] & 3;
3443         recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3444         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3445         recv_msg->msg.cmd = msg->rsp[1];
3446         memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3447         recv_msg->msg.data = recv_msg->msg_data;
3448         recv_msg->msg.data_len = msg->rsp_size - 3;
3449 }
3450
3451 static int handle_read_event_rsp(ipmi_smi_t          intf,
3452                                  struct ipmi_smi_msg *msg)
3453 {
3454         struct ipmi_recv_msg *recv_msg, *recv_msg2;
3455         struct list_head     msgs;
3456         ipmi_user_t          user;
3457         int                  rv = 0;
3458         int                  deliver_count = 0;
3459         unsigned long        flags;
3460
3461         if (msg->rsp_size < 19) {
3462                 /* Message is too small to be an IPMB event. */
3463                 ipmi_inc_stat(intf, invalid_events);
3464                 return 0;
3465         }
3466
3467         if (msg->rsp[2] != 0) {
3468                 /* An error getting the event, just ignore it. */
3469                 return 0;
3470         }
3471
3472         INIT_LIST_HEAD(&msgs);
3473
3474         spin_lock_irqsave(&intf->events_lock, flags);
3475
3476         ipmi_inc_stat(intf, events);
3477
3478         /*
3479          * Allocate and fill in one message for every user that is
3480          * getting events.
3481          */
3482         rcu_read_lock();
3483         list_for_each_entry_rcu(user, &intf->users, link) {
3484                 if (!user->gets_events)
3485                         continue;
3486
3487                 recv_msg = ipmi_alloc_recv_msg();
3488                 if (!recv_msg) {
3489                         rcu_read_unlock();
3490                         list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3491                                                  link) {
3492                                 list_del(&recv_msg->link);
3493                                 ipmi_free_recv_msg(recv_msg);
3494                         }
3495                         /*
3496                          * We couldn't allocate memory for the
3497                          * message, so requeue it for handling
3498                          * later.
3499                          */
3500                         rv = 1;
3501                         goto out;
3502                 }
3503
3504                 deliver_count++;
3505
3506                 copy_event_into_recv_msg(recv_msg, msg);
3507                 recv_msg->user = user;
3508                 kref_get(&user->refcount);
3509                 list_add_tail(&(recv_msg->link), &msgs);
3510         }
3511         rcu_read_unlock();
3512
3513         if (deliver_count) {
3514                 /* Now deliver all the messages. */
3515                 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3516                         list_del(&recv_msg->link);
3517                         deliver_response(recv_msg);
3518                 }
3519         } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3520                 /*
3521                  * No one to receive the message, put it in queue if there's
3522                  * not already too many things in the queue.
3523                  */
3524                 recv_msg = ipmi_alloc_recv_msg();
3525                 if (!recv_msg) {
3526                         /*
3527                          * We couldn't allocate memory for the
3528                          * message, so requeue it for handling
3529                          * later.
3530                          */
3531                         rv = 1;
3532                         goto out;
3533                 }
3534
3535                 copy_event_into_recv_msg(recv_msg, msg);
3536                 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3537                 intf->waiting_events_count++;
3538         } else if (!intf->event_msg_printed) {
3539                 /*
3540                  * There's too many things in the queue, discard this
3541                  * message.
3542                  */
3543                 printk(KERN_WARNING PFX "Event queue full, discarding"
3544                        " incoming events\n");
3545                 intf->event_msg_printed = 1;
3546         }
3547
3548  out:
3549         spin_unlock_irqrestore(&(intf->events_lock), flags);
3550
3551         return rv;
3552 }
3553
3554 static int handle_bmc_rsp(ipmi_smi_t          intf,
3555                           struct ipmi_smi_msg *msg)
3556 {
3557         struct ipmi_recv_msg *recv_msg;
3558         struct ipmi_user     *user;
3559
3560         recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3561         if (recv_msg == NULL) {
3562                 printk(KERN_WARNING
3563                        "IPMI message received with no owner. This\n"
3564                        "could be because of a malformed message, or\n"
3565                        "because of a hardware error.  Contact your\n"
3566                        "hardware vender for assistance\n");
3567                 return 0;
3568         }
3569
3570         user = recv_msg->user;
3571         /* Make sure the user still exists. */
3572         if (user && !user->valid) {
3573                 /* The user for the message went away, so give up. */
3574                 ipmi_inc_stat(intf, unhandled_local_responses);
3575                 ipmi_free_recv_msg(recv_msg);
3576         } else {
3577                 struct ipmi_system_interface_addr *smi_addr;
3578
3579                 ipmi_inc_stat(intf, handled_local_responses);
3580                 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3581                 recv_msg->msgid = msg->msgid;
3582                 smi_addr = ((struct ipmi_system_interface_addr *)
3583                             &(recv_msg->addr));
3584                 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3585                 smi_addr->channel = IPMI_BMC_CHANNEL;
3586                 smi_addr->lun = msg->rsp[0] & 3;
3587                 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3588                 recv_msg->msg.cmd = msg->rsp[1];
3589                 memcpy(recv_msg->msg_data,
3590                        &(msg->rsp[2]),
3591                        msg->rsp_size - 2);
3592                 recv_msg->msg.data = recv_msg->msg_data;
3593                 recv_msg->msg.data_len = msg->rsp_size - 2;
3594                 deliver_response(recv_msg);
3595         }
3596
3597         return 0;
3598 }
3599
3600 /*
3601  * Handle a new message.  Return 1 if the message should be requeued,
3602  * 0 if the message should be freed, or -1 if the message should not
3603  * be freed or requeued.
3604  */
3605 static int handle_new_recv_msg(ipmi_smi_t          intf,
3606                                struct ipmi_smi_msg *msg)
3607 {
3608         int requeue;
3609         int chan;
3610
3611 #ifdef DEBUG_MSGING
3612         int m;
3613         printk("Recv:");
3614         for (m = 0; m < msg->rsp_size; m++)
3615                 printk(" %2.2x", msg->rsp[m]);
3616         printk("\n");
3617 #endif
3618         if (msg->rsp_size < 2) {
3619                 /* Message is too small to be correct. */
3620                 printk(KERN_WARNING PFX "BMC returned to small a message"
3621                        " for netfn %x cmd %x, got %d bytes\n",
3622                        (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3623
3624                 /* Generate an error response for the message. */
3625                 msg->rsp[0] = msg->data[0] | (1 << 2);
3626                 msg->rsp[1] = msg->data[1];
3627                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3628                 msg->rsp_size = 3;
3629         } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3630                    || (msg->rsp[1] != msg->data[1])) {
3631                 /*
3632                  * The NetFN and Command in the response is not even
3633                  * marginally correct.
3634                  */
3635                 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3636                        " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3637                        (msg->data[0] >> 2) | 1, msg->data[1],
3638                        msg->rsp[0] >> 2, msg->rsp[1]);
3639
3640                 /* Generate an error response for the message. */
3641                 msg->rsp[0] = msg->data[0] | (1 << 2);
3642                 msg->rsp[1] = msg->data[1];
3643                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3644                 msg->rsp_size = 3;
3645         }
3646
3647         if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3648             && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3649             && (msg->user_data != NULL)) {
3650                 /*
3651                  * It's a response to a response we sent.  For this we
3652                  * deliver a send message response to the user.
3653                  */
3654                 struct ipmi_recv_msg     *recv_msg = msg->user_data;
3655
3656                 requeue = 0;
3657                 if (msg->rsp_size < 2)
3658                         /* Message is too small to be correct. */
3659                         goto out;
3660
3661                 chan = msg->data[2] & 0x0f;
3662                 if (chan >= IPMI_MAX_CHANNELS)
3663                         /* Invalid channel number */
3664                         goto out;
3665
3666                 if (!recv_msg)
3667                         goto out;
3668
3669                 /* Make sure the user still exists. */
3670                 if (!recv_msg->user || !recv_msg->user->valid)
3671                         goto out;
3672
3673                 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3674                 recv_msg->msg.data = recv_msg->msg_data;
3675                 recv_msg->msg.data_len = 1;
3676                 recv_msg->msg_data[0] = msg->rsp[2];
3677                 deliver_response(recv_msg);
3678         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3679                    && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3680                 /* It's from the receive queue. */
3681                 chan = msg->rsp[3] & 0xf;
3682                 if (chan >= IPMI_MAX_CHANNELS) {
3683                         /* Invalid channel number */
3684                         requeue = 0;
3685                         goto out;
3686                 }
3687
3688                 /*
3689                  * We need to make sure the channels have been initialized.
3690                  * The channel_handler routine will set the "curr_channel"
3691                  * equal to or greater than IPMI_MAX_CHANNELS when all the
3692                  * channels for this interface have been initialized.
3693                  */
3694                 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3695                         requeue = 0; /* Throw the message away */
3696                         goto out;
3697                 }
3698
3699                 switch (intf->channels[chan].medium) {
3700                 case IPMI_CHANNEL_MEDIUM_IPMB:
3701                         if (msg->rsp[4] & 0x04) {
3702                                 /*
3703                                  * It's a response, so find the
3704                                  * requesting message and send it up.
3705                                  */
3706                                 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3707                         } else {
3708                                 /*
3709                                  * It's a command to the SMS from some other
3710                                  * entity.  Handle that.
3711                                  */
3712                                 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3713                         }
3714                         break;
3715
3716                 case IPMI_CHANNEL_MEDIUM_8023LAN:
3717                 case IPMI_CHANNEL_MEDIUM_ASYNC:
3718                         if (msg->rsp[6] & 0x04) {
3719                                 /*
3720                                  * It's a response, so find the
3721                                  * requesting message and send it up.
3722                                  */
3723                                 requeue = handle_lan_get_msg_rsp(intf, msg);
3724                         } else {
3725                                 /*
3726                                  * It's a command to the SMS from some other
3727                                  * entity.  Handle that.
3728                                  */
3729                                 requeue = handle_lan_get_msg_cmd(intf, msg);
3730                         }
3731                         break;
3732
3733                 default:
3734                         /* Check for OEM Channels.  Clients had better
3735                            register for these commands. */
3736                         if ((intf->channels[chan].medium
3737                              >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3738                             && (intf->channels[chan].medium
3739                                 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3740                                 requeue = handle_oem_get_msg_cmd(intf, msg);
3741                         } else {
3742                                 /*
3743                                  * We don't handle the channel type, so just
3744                                  * free the message.
3745                                  */
3746                                 requeue = 0;
3747                         }
3748                 }
3749
3750         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3751                    && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3752                 /* It's an asyncronous event. */
3753                 requeue = handle_read_event_rsp(intf, msg);
3754         } else {
3755                 /* It's a response from the local BMC. */
3756                 requeue = handle_bmc_rsp(intf, msg);
3757         }
3758
3759  out:
3760         return requeue;
3761 }
3762
3763 /* Handle a new message from the lower layer. */
3764 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3765                            struct ipmi_smi_msg *msg)
3766 {
3767         unsigned long flags = 0; /* keep us warning-free. */
3768         int           rv;
3769         int           run_to_completion;
3770
3771
3772         if ((msg->data_size >= 2)
3773             && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3774             && (msg->data[1] == IPMI_SEND_MSG_CMD)
3775             && (msg->user_data == NULL)) {
3776                 /*
3777                  * This is the local response to a command send, start
3778                  * the timer for these.  The user_data will not be
3779                  * NULL if this is a response send, and we will let
3780                  * response sends just go through.
3781                  */
3782
3783                 /*
3784                  * Check for errors, if we get certain errors (ones
3785                  * that mean basically we can try again later), we
3786                  * ignore them and start the timer.  Otherwise we
3787                  * report the error immediately.
3788                  */
3789                 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3790                     && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3791                     && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3792                     && (msg->rsp[2] != IPMI_BUS_ERR)
3793                     && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3794                         int chan = msg->rsp[3] & 0xf;
3795
3796                         /* Got an error sending the message, handle it. */
3797                         if (chan >= IPMI_MAX_CHANNELS)
3798                                 ; /* This shouldn't happen */
3799                         else if ((intf->channels[chan].medium
3800                                   == IPMI_CHANNEL_MEDIUM_8023LAN)
3801                                  || (intf->channels[chan].medium
3802                                      == IPMI_CHANNEL_MEDIUM_ASYNC))
3803                                 ipmi_inc_stat(intf, sent_lan_command_errs);
3804                         else
3805                                 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3806                         intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3807                 } else
3808                         /* The message was sent, start the timer. */
3809                         intf_start_seq_timer(intf, msg->msgid);
3810
3811                 ipmi_free_smi_msg(msg);
3812                 goto out;
3813         }
3814
3815         /*
3816          * To preserve message order, if the list is not empty, we
3817          * tack this message onto the end of the list.
3818          */
3819         run_to_completion = intf->run_to_completion;
3820         if (!run_to_completion)
3821                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3822         if (!list_empty(&intf->waiting_msgs)) {
3823                 list_add_tail(&msg->link, &intf->waiting_msgs);
3824                 if (!run_to_completion)
3825                         spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3826                 goto out;
3827         }
3828         if (!run_to_completion)
3829                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3830
3831         rv = handle_new_recv_msg(intf, msg);
3832         if (rv > 0) {
3833                 /*
3834                  * Could not handle the message now, just add it to a
3835                  * list to handle later.
3836                  */
3837                 run_to_completion = intf->run_to_completion;
3838                 if (!run_to_completion)
3839                         spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3840                 list_add_tail(&msg->link, &intf->waiting_msgs);
3841                 if (!run_to_completion)
3842                         spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3843         } else if (rv == 0) {
3844                 ipmi_free_smi_msg(msg);
3845         }
3846
3847  out:
3848         return;
3849 }
3850 EXPORT_SYMBOL(ipmi_smi_msg_received);
3851
3852 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3853 {
3854         ipmi_user_t user;
3855
3856         rcu_read_lock();
3857         list_for_each_entry_rcu(user, &intf->users, link) {
3858                 if (!user->handler->ipmi_watchdog_pretimeout)
3859                         continue;
3860
3861                 user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3862         }
3863         rcu_read_unlock();
3864 }
3865 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3866
3867 static struct ipmi_smi_msg *
3868 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3869                   unsigned char seq, long seqid)
3870 {
3871         struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3872         if (!smi_msg)
3873                 /*
3874                  * If we can't allocate the message, then just return, we
3875                  * get 4 retries, so this should be ok.
3876                  */
3877                 return NULL;
3878
3879         memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3880         smi_msg->data_size = recv_msg->msg.data_len;
3881         smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3882
3883 #ifdef DEBUG_MSGING
3884         {
3885                 int m;
3886                 printk("Resend: ");
3887                 for (m = 0; m < smi_msg->data_size; m++)
3888                         printk(" %2.2x", smi_msg->data[m]);
3889                 printk("\n");
3890         }
3891 #endif
3892         return smi_msg;
3893 }
3894
3895 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3896                               struct list_head *timeouts, long timeout_period,
3897                               int slot, unsigned long *flags)
3898 {
3899         struct ipmi_recv_msg     *msg;
3900         struct ipmi_smi_handlers *handlers;
3901
3902         if (intf->intf_num == -1)
3903                 return;
3904
3905         if (!ent->inuse)
3906                 return;
3907
3908         ent->timeout -= timeout_period;
3909         if (ent->timeout > 0)
3910                 return;
3911
3912         if (ent->retries_left == 0) {
3913                 /* The message has used all its retries. */
3914                 ent->inuse = 0;
3915                 msg = ent->recv_msg;
3916                 list_add_tail(&msg->link, timeouts);
3917                 if (ent->broadcast)
3918                         ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3919                 else if (is_lan_addr(&ent->recv_msg->addr))
3920                         ipmi_inc_stat(intf, timed_out_lan_commands);
3921                 else
3922                         ipmi_inc_stat(intf, timed_out_ipmb_commands);
3923         } else {
3924                 struct ipmi_smi_msg *smi_msg;
3925                 /* More retries, send again. */
3926
3927                 /*
3928                  * Start with the max timer, set to normal timer after
3929                  * the message is sent.
3930                  */
3931                 ent->timeout = MAX_MSG_TIMEOUT;
3932                 ent->retries_left--;
3933                 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3934                                             ent->seqid);
3935                 if (!smi_msg) {
3936                         if (is_lan_addr(&ent->recv_msg->addr))
3937                                 ipmi_inc_stat(intf,
3938                                               dropped_rexmit_lan_commands);
3939                         else
3940                                 ipmi_inc_stat(intf,
3941                                               dropped_rexmit_ipmb_commands);
3942                         return;
3943                 }
3944
3945                 spin_unlock_irqrestore(&intf->seq_lock, *flags);
3946
3947                 /*
3948                  * Send the new message.  We send with a zero
3949                  * priority.  It timed out, I doubt time is that
3950                  * critical now, and high priority messages are really
3951                  * only for messages to the local MC, which don't get
3952                  * resent.
3953                  */
3954                 handlers = intf->handlers;
3955                 if (handlers) {
3956                         if (is_lan_addr(&ent->recv_msg->addr))
3957                                 ipmi_inc_stat(intf,
3958                                               retransmitted_lan_commands);
3959                         else
3960                                 ipmi_inc_stat(intf,
3961                                               retransmitted_ipmb_commands);
3962
3963                         intf->handlers->sender(intf->send_info,
3964                                                smi_msg, 0);
3965                 } else
3966                         ipmi_free_smi_msg(smi_msg);
3967
3968                 spin_lock_irqsave(&intf->seq_lock, *flags);
3969         }
3970 }
3971
3972 static void ipmi_timeout_handler(long timeout_period)
3973 {
3974         ipmi_smi_t           intf;
3975         struct list_head     timeouts;
3976         struct ipmi_recv_msg *msg, *msg2;
3977         struct ipmi_smi_msg  *smi_msg, *smi_msg2;
3978         unsigned long        flags;
3979         int                  i;
3980
3981         rcu_read_lock();
3982         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3983                 /* See if any waiting messages need to be processed. */
3984                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3985                 list_for_each_entry_safe(smi_msg, smi_msg2,
3986                                          &intf->waiting_msgs, link) {
3987                         if (!handle_new_recv_msg(intf, smi_msg)) {
3988                                 list_del(&smi_msg->link);
3989                                 ipmi_free_smi_msg(smi_msg);
3990                         } else {
3991                                 /*
3992                                  * To preserve message order, quit if we
3993                                  * can't handle a message.
3994                                  */
3995                                 break;
3996                         }
3997                 }
3998                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3999
4000                 /*
4001                  * Go through the seq table and find any messages that
4002                  * have timed out, putting them in the timeouts
4003                  * list.
4004                  */
4005                 INIT_LIST_HEAD(&timeouts);
4006                 spin_lock_irqsave(&intf->seq_lock, flags);
4007                 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4008                         check_msg_timeout(intf, &(intf->seq_table[i]),
4009                                           &timeouts, timeout_period, i,
4010                                           &flags);
4011                 spin_unlock_irqrestore(&intf->seq_lock, flags);
4012
4013                 list_for_each_entry_safe(msg, msg2, &timeouts, link)
4014                         deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4015
4016                 /*
4017                  * Maintenance mode handling.  Check the timeout
4018                  * optimistically before we claim the lock.  It may
4019                  * mean a timeout gets missed occasionally, but that
4020                  * only means the timeout gets extended by one period
4021                  * in that case.  No big deal, and it avoids the lock
4022                  * most of the time.
4023                  */
4024                 if (intf->auto_maintenance_timeout > 0) {
4025                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4026                         if (intf->auto_maintenance_timeout > 0) {
4027                                 intf->auto_maintenance_timeout
4028                                         -= timeout_period;
4029                                 if (!intf->maintenance_mode
4030                                     && (intf->auto_maintenance_timeout <= 0)) {
4031                                         intf->maintenance_mode_enable = 0;
4032                                         maintenance_mode_update(intf);
4033                                 }
4034                         }
4035                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4036                                                flags);
4037                 }
4038         }
4039         rcu_read_unlock();
4040 }
4041
4042 static void ipmi_request_event(void)
4043 {
4044         ipmi_smi_t               intf;
4045         struct ipmi_smi_handlers *handlers;
4046
4047         rcu_read_lock();
4048         /*
4049          * Called from the timer, no need to check if handlers is
4050          * valid.
4051          */
4052         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4053                 /* No event requests when in maintenance mode. */
4054                 if (intf->maintenance_mode_enable)
4055                         continue;
4056
4057                 handlers = intf->handlers;
4058                 if (handlers)
4059                         handlers->request_events(intf->send_info);
4060         }
4061         rcu_read_unlock();
4062 }
4063
4064 static struct timer_list ipmi_timer;
4065
4066 /* Call every ~1000 ms. */
4067 #define IPMI_TIMEOUT_TIME       1000
4068
4069 /* How many jiffies does it take to get to the timeout time. */
4070 #define IPMI_TIMEOUT_JIFFIES    ((IPMI_TIMEOUT_TIME * HZ) / 1000)
4071
4072 /*
4073  * Request events from the queue every second (this is the number of
4074  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
4075  * future, IPMI will add a way to know immediately if an event is in
4076  * the queue and this silliness can go away.
4077  */
4078 #define IPMI_REQUEST_EV_TIME    (1000 / (IPMI_TIMEOUT_TIME))
4079
4080 static atomic_t stop_operation;
4081 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4082
4083 static void ipmi_timeout(unsigned long data)
4084 {
4085         if (atomic_read(&stop_operation))
4086                 return;
4087
4088         ticks_to_req_ev--;
4089         if (ticks_to_req_ev == 0) {
4090                 ipmi_request_event();
4091                 ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4092         }
4093
4094         ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
4095
4096         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4097 }
4098
4099
4100 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4101 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4102
4103 /* FIXME - convert these to slabs. */
4104 static void free_smi_msg(struct ipmi_smi_msg *msg)
4105 {
4106         atomic_dec(&smi_msg_inuse_count);
4107         kfree(msg);
4108 }
4109
4110 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4111 {
4112         struct ipmi_smi_msg *rv;
4113         rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4114         if (rv) {
4115                 rv->done = free_smi_msg;
4116                 rv->user_data = NULL;
4117                 atomic_inc(&smi_msg_inuse_count);
4118         }
4119         return rv;
4120 }
4121 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4122
4123 static void free_recv_msg(struct ipmi_recv_msg *msg)
4124 {
4125         atomic_dec(&recv_msg_inuse_count);
4126         kfree(msg);
4127 }
4128
4129 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4130 {
4131         struct ipmi_recv_msg *rv;
4132
4133         rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4134         if (rv) {
4135                 rv->user = NULL;
4136                 rv->done = free_recv_msg;
4137                 atomic_inc(&recv_msg_inuse_count);
4138         }
4139         return rv;
4140 }
4141
4142 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4143 {
4144         if (msg->user)
4145                 kref_put(&msg->user->refcount, free_user);
4146         msg->done(msg);
4147 }
4148 EXPORT_SYMBOL(ipmi_free_recv_msg);
4149
4150 #ifdef CONFIG_IPMI_PANIC_EVENT
4151
4152 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4153 {
4154 }
4155
4156 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4157 {
4158 }
4159
4160 #ifdef CONFIG_IPMI_PANIC_STRING
4161 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4162 {
4163         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4164             && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4165             && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4166             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4167                 /* A get event receiver command, save it. */
4168                 intf->event_receiver = msg->msg.data[1];
4169                 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4170         }
4171 }
4172
4173 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4174 {
4175         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4176             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4177             && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4178             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4179                 /*
4180                  * A get device id command, save if we are an event
4181                  * receiver or generator.
4182                  */
4183                 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4184                 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4185         }
4186 }
4187 #endif
4188
4189 static void send_panic_events(char *str)
4190 {
4191         struct kernel_ipmi_msg            msg;
4192         ipmi_smi_t                        intf;
4193         unsigned char                     data[16];
4194         struct ipmi_system_interface_addr *si;
4195         struct ipmi_addr                  addr;
4196         struct ipmi_smi_msg               smi_msg;
4197         struct ipmi_recv_msg              recv_msg;
4198
4199         si = (struct ipmi_system_interface_addr *) &addr;
4200         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4201         si->channel = IPMI_BMC_CHANNEL;
4202         si->lun = 0;
4203
4204         /* Fill in an event telling that we have failed. */
4205         msg.netfn = 0x04; /* Sensor or Event. */
4206         msg.cmd = 2; /* Platform event command. */
4207         msg.data = data;
4208         msg.data_len = 8;
4209         data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4210         data[1] = 0x03; /* This is for IPMI 1.0. */
4211         data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4212         data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4213         data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4214
4215         /*
4216          * Put a few breadcrumbs in.  Hopefully later we can add more things
4217          * to make the panic events more useful.
4218          */
4219         if (str) {
4220                 data[3] = str[0];
4221                 data[6] = str[1];
4222                 data[7] = str[2];
4223         }
4224
4225         smi_msg.done = dummy_smi_done_handler;
4226         recv_msg.done = dummy_recv_done_handler;
4227
4228         /* For every registered interface, send the event. */
4229         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4230                 if (!intf->handlers)
4231                         /* Interface is not ready. */
4232                         continue;
4233
4234                 intf->run_to_completion = 1;
4235                 /* Send the event announcing the panic. */
4236                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4237                 i_ipmi_request(NULL,
4238                                intf,
4239                                &addr,
4240                                0,
4241                                &msg,
4242                                intf,
4243                                &smi_msg,
4244                                &recv_msg,
4245                                0,
4246                                intf->channels[0].address,
4247                                intf->channels[0].lun,
4248                                0, 1); /* Don't retry, and don't wait. */
4249         }
4250
4251 #ifdef CONFIG_IPMI_PANIC_STRING
4252         /*
4253          * On every interface, dump a bunch of OEM event holding the
4254          * string.
4255          */
4256         if (!str)
4257                 return;
4258
4259         /* For every registered interface, send the event. */
4260         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4261                 char                  *p = str;
4262                 struct ipmi_ipmb_addr *ipmb;
4263                 int                   j;
4264
4265                 if (intf->intf_num == -1)
4266                         /* Interface was not ready yet. */
4267                         continue;
4268
4269                 /*
4270                  * intf_num is used as an marker to tell if the
4271                  * interface is valid.  Thus we need a read barrier to
4272                  * make sure data fetched before checking intf_num
4273                  * won't be used.
4274                  */
4275                 smp_rmb();
4276
4277                 /*
4278                  * First job here is to figure out where to send the
4279                  * OEM events.  There's no way in IPMI to send OEM
4280                  * events using an event send command, so we have to
4281                  * find the SEL to put them in and stick them in
4282                  * there.
4283                  */
4284
4285                 /* Get capabilities from the get device id. */
4286                 intf->local_sel_device = 0;
4287                 intf->local_event_generator = 0;
4288                 intf->event_receiver = 0;
4289
4290                 /* Request the device info from the local MC. */
4291                 msg.netfn = IPMI_NETFN_APP_REQUEST;
4292                 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4293                 msg.data = NULL;
4294                 msg.data_len = 0;
4295                 intf->null_user_handler = device_id_fetcher;
4296                 i_ipmi_request(NULL,
4297                                intf,
4298                                &addr,
4299                                0,
4300                                &msg,
4301                                intf,
4302                                &smi_msg,
4303                                &recv_msg,
4304                                0,
4305                                intf->channels[0].address,
4306                                intf->channels[0].lun,
4307                                0, 1); /* Don't retry, and don't wait. */
4308
4309                 if (intf->local_event_generator) {
4310                         /* Request the event receiver from the local MC. */
4311                         msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4312                         msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4313                         msg.data = NULL;
4314                         msg.data_len = 0;
4315                         intf->null_user_handler = event_receiver_fetcher;
4316                         i_ipmi_request(NULL,
4317                                        intf,
4318                                        &addr,
4319                                        0,
4320                                        &msg,
4321                                        intf,
4322                                        &smi_msg,
4323                                        &recv_msg,
4324                                        0,
4325                                        intf->channels[0].address,
4326                                        intf->channels[0].lun,
4327                                        0, 1); /* no retry, and no wait. */
4328                 }
4329                 intf->null_user_handler = NULL;
4330
4331                 /*
4332                  * Validate the event receiver.  The low bit must not
4333                  * be 1 (it must be a valid IPMB address), it cannot
4334                  * be zero, and it must not be my address.
4335                  */
4336                 if (((intf->event_receiver & 1) == 0)
4337                     && (intf->event_receiver != 0)
4338                     && (intf->event_receiver != intf->channels[0].address)) {
4339                         /*
4340                          * The event receiver is valid, send an IPMB
4341                          * message.
4342                          */
4343                         ipmb = (struct ipmi_ipmb_addr *) &addr;
4344                         ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4345                         ipmb->channel = 0; /* FIXME - is this right? */
4346                         ipmb->lun = intf->event_receiver_lun;
4347                         ipmb->slave_addr = intf->event_receiver;
4348                 } else if (intf->local_sel_device) {
4349                         /*
4350                          * The event receiver was not valid (or was
4351                          * me), but I am an SEL device, just dump it
4352                          * in my SEL.
4353                          */
4354                         si = (struct ipmi_system_interface_addr *) &addr;
4355                         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4356                         si->channel = IPMI_BMC_CHANNEL;
4357                         si->lun = 0;
4358                 } else
4359                         continue; /* No where to send the event. */
4360
4361                 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4362                 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4363                 msg.data = data;
4364                 msg.data_len = 16;
4365
4366                 j = 0;
4367                 while (*p) {
4368                         int size = strlen(p);
4369
4370                         if (size > 11)
4371                                 size = 11;
4372                         data[0] = 0;
4373                         data[1] = 0;
4374                         data[2] = 0xf0; /* OEM event without timestamp. */
4375                         data[3] = intf->channels[0].address;
4376                         data[4] = j++; /* sequence # */
4377                         /*
4378                          * Always give 11 bytes, so strncpy will fill
4379                          * it with zeroes for me.
4380                          */
4381                         strncpy(data+5, p, 11);
4382                         p += size;
4383
4384                         i_ipmi_request(NULL,
4385                                        intf,
4386                                        &addr,
4387                                        0,
4388                                        &msg,
4389                                        intf,
4390                                        &smi_msg,
4391                                        &recv_msg,
4392                                        0,
4393                                        intf->channels[0].address,
4394                                        intf->channels[0].lun,
4395                                        0, 1); /* no retry, and no wait. */
4396                 }
4397         }
4398 #endif /* CONFIG_IPMI_PANIC_STRING */
4399 }
4400 #endif /* CONFIG_IPMI_PANIC_EVENT */
4401
4402 static int has_panicked;
4403
4404 static int panic_event(struct notifier_block *this,
4405                        unsigned long         event,
4406                        void                  *ptr)
4407 {
4408         ipmi_smi_t intf;
4409
4410         if (has_panicked)
4411                 return NOTIFY_DONE;
4412         has_panicked = 1;
4413
4414         /* For every registered interface, set it to run to completion. */
4415         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4416                 if (!intf->handlers)
4417                         /* Interface is not ready. */
4418                         continue;
4419
4420                 intf->run_to_completion = 1;
4421                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4422         }
4423
4424 #ifdef CONFIG_IPMI_PANIC_EVENT
4425         send_panic_events(ptr);
4426 #endif
4427
4428         return NOTIFY_DONE;
4429 }
4430
4431 static struct notifier_block panic_block = {
4432         .notifier_call  = panic_event,
4433         .next           = NULL,
4434         .priority       = 200   /* priority: INT_MAX >= x >= 0 */
4435 };
4436
4437 static int ipmi_init_msghandler(void)
4438 {
4439         int rv;
4440
4441         if (initialized)
4442                 return 0;
4443
4444         rv = driver_register(&ipmidriver.driver);
4445         if (rv) {
4446                 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4447                 return rv;
4448         }
4449
4450         printk(KERN_INFO "ipmi message handler version "
4451                IPMI_DRIVER_VERSION "\n");
4452
4453 #ifdef CONFIG_PROC_FS
4454         proc_ipmi_root = proc_mkdir("ipmi", NULL);
4455         if (!proc_ipmi_root) {
4456             printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4457             return -ENOMEM;
4458         }
4459
4460 #endif /* CONFIG_PROC_FS */
4461
4462         setup_timer(&ipmi_timer, ipmi_timeout, 0);
4463         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4464
4465         atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4466
4467         initialized = 1;
4468
4469         return 0;
4470 }
4471
4472 static int __init ipmi_init_msghandler_mod(void)
4473 {
4474         ipmi_init_msghandler();
4475         return 0;
4476 }
4477
4478 static void __exit cleanup_ipmi(void)
4479 {
4480         int count;
4481
4482         if (!initialized)
4483                 return;
4484
4485         atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4486
4487         /*
4488          * This can't be called if any interfaces exist, so no worry
4489          * about shutting down the interfaces.
4490          */
4491
4492         /*
4493          * Tell the timer to stop, then wait for it to stop.  This
4494          * avoids problems with race conditions removing the timer
4495          * here.
4496          */
4497         atomic_inc(&stop_operation);
4498         del_timer_sync(&ipmi_timer);
4499
4500 #ifdef CONFIG_PROC_FS
4501         remove_proc_entry(proc_ipmi_root->name, NULL);
4502 #endif /* CONFIG_PROC_FS */
4503
4504         driver_unregister(&ipmidriver.driver);
4505
4506         initialized = 0;
4507
4508         /* Check for buffer leaks. */
4509         count = atomic_read(&smi_msg_inuse_count);
4510         if (count != 0)
4511                 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4512                        count);
4513         count = atomic_read(&recv_msg_inuse_count);
4514         if (count != 0)
4515                 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4516                        count);
4517 }
4518 module_exit(cleanup_ipmi);
4519
4520 module_init(ipmi_init_msghandler_mod);
4521 MODULE_LICENSE("GPL");
4522 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4523 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4524                    " interface.");
4525 MODULE_VERSION(IPMI_DRIVER_VERSION);