pktcdvd: Fix pkt_setup_dev() error path
[pandora-kernel.git] / drivers / block / umem.c
1 /*
2  * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3  *
4  * (C) 2001 San Mehat <nettwerk@valinux.com>
5  * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6  * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7  *
8  * This driver for the Micro Memory PCI Memory Module with Battery Backup
9  * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
10  *
11  * This driver is released to the public under the terms of the
12  *  GNU GENERAL PUBLIC LICENSE version 2
13  * See the file COPYING for details.
14  *
15  * This driver provides a standard block device interface for Micro Memory(tm)
16  * PCI based RAM boards.
17  * 10/05/01: Phap Nguyen - Rebuilt the driver
18  * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19  * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
20  *                       - use stand disk partitioning (so fdisk works).
21  * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
22  *                       - incorporate into main kernel
23  * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
24  *                       - use spin_lock_bh instead of _irq
25  *                       - Never block on make_request.  queue
26  *                         bh's instead.
27  *                       - unregister umem from devfs at mod unload
28  *                       - Change version to 2.3
29  * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30  * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
31  * 15May2002:NeilBrown   - convert to bio for 2.5
32  * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
33  *                       - a sequence of writes that cover the card, and
34  *                       - set initialised bit then.
35  */
36
37 #undef DEBUG    /* #define DEBUG if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/gfp.h>
44 #include <linux/ioctl.h>
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/timer.h>
49 #include <linux/pci.h>
50 #include <linux/dma-mapping.h>
51
52 #include <linux/fcntl.h>        /* O_ACCMODE */
53 #include <linux/hdreg.h>  /* HDIO_GETGEO */
54
55 #include "umem.h"
56
57 #include <asm/uaccess.h>
58 #include <asm/io.h>
59
60 #define MM_MAXCARDS 4
61 #define MM_RAHEAD 2      /* two sectors */
62 #define MM_BLKSIZE 1024  /* 1k blocks */
63 #define MM_HARDSECT 512  /* 512-byte hardware sectors */
64 #define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
65
66 /*
67  * Version Information
68  */
69
70 #define DRIVER_NAME     "umem"
71 #define DRIVER_VERSION  "v2.3"
72 #define DRIVER_AUTHOR   "San Mehat, Johannes Erdfelt, NeilBrown"
73 #define DRIVER_DESC     "Micro Memory(tm) PCI memory board block driver"
74
75 static int debug;
76 /* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77 #define HW_TRACE(x)
78
79 #define DEBUG_LED_ON_TRANSFER   0x01
80 #define DEBUG_BATTERY_POLLING   0x02
81
82 module_param(debug, int, 0644);
83 MODULE_PARM_DESC(debug, "Debug bitmask");
84
85 static int pci_read_cmd = 0x0C;         /* Read Multiple */
86 module_param(pci_read_cmd, int, 0);
87 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
88
89 static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
90 module_param(pci_write_cmd, int, 0);
91 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
92
93 static int pci_cmds;
94
95 static int major_nr;
96
97 #include <linux/blkdev.h>
98 #include <linux/blkpg.h>
99
100 struct cardinfo {
101         struct pci_dev  *dev;
102
103         unsigned char   __iomem *csr_remap;
104         unsigned int    mm_size;  /* size in kbytes */
105
106         unsigned int    init_size; /* initial segment, in sectors,
107                                     * that we know to
108                                     * have been written
109                                     */
110         struct bio      *bio, *currentbio, **biotail;
111         int             current_idx;
112         sector_t        current_sector;
113
114         struct request_queue *queue;
115
116         struct mm_page {
117                 dma_addr_t              page_dma;
118                 struct mm_dma_desc      *desc;
119                 int                     cnt, headcnt;
120                 struct bio              *bio, **biotail;
121                 int                     idx;
122         } mm_pages[2];
123 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
124
125         int  Active, Ready;
126
127         struct tasklet_struct   tasklet;
128         unsigned int dma_status;
129
130         struct {
131                 int             good;
132                 int             warned;
133                 unsigned long   last_change;
134         } battery[2];
135
136         spinlock_t      lock;
137         int             check_batteries;
138
139         int             flags;
140 };
141
142 static struct cardinfo cards[MM_MAXCARDS];
143 static struct timer_list battery_timer;
144
145 static int num_cards;
146
147 static struct gendisk *mm_gendisk[MM_MAXCARDS];
148
149 static void check_batteries(struct cardinfo *card);
150
151 static int get_userbit(struct cardinfo *card, int bit)
152 {
153         unsigned char led;
154
155         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
156         return led & bit;
157 }
158
159 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
160 {
161         unsigned char led;
162
163         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
164         if (state)
165                 led |= bit;
166         else
167                 led &= ~bit;
168         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
169
170         return 0;
171 }
172
173 /*
174  * NOTE: For the power LED, use the LED_POWER_* macros since they differ
175  */
176 static void set_led(struct cardinfo *card, int shift, unsigned char state)
177 {
178         unsigned char led;
179
180         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
181         if (state == LED_FLIP)
182                 led ^= (1<<shift);
183         else {
184                 led &= ~(0x03 << shift);
185                 led |= (state << shift);
186         }
187         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
188
189 }
190
191 #ifdef MM_DIAG
192 static void dump_regs(struct cardinfo *card)
193 {
194         unsigned char *p;
195         int i, i1;
196
197         p = card->csr_remap;
198         for (i = 0; i < 8; i++) {
199                 printk(KERN_DEBUG "%p   ", p);
200
201                 for (i1 = 0; i1 < 16; i1++)
202                         printk("%02x ", *p++);
203
204                 printk("\n");
205         }
206 }
207 #endif
208
209 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
210 {
211         dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
212         if (dmastat & DMASCR_ANY_ERR)
213                 printk(KERN_CONT "ANY_ERR ");
214         if (dmastat & DMASCR_MBE_ERR)
215                 printk(KERN_CONT "MBE_ERR ");
216         if (dmastat & DMASCR_PARITY_ERR_REP)
217                 printk(KERN_CONT "PARITY_ERR_REP ");
218         if (dmastat & DMASCR_PARITY_ERR_DET)
219                 printk(KERN_CONT "PARITY_ERR_DET ");
220         if (dmastat & DMASCR_SYSTEM_ERR_SIG)
221                 printk(KERN_CONT "SYSTEM_ERR_SIG ");
222         if (dmastat & DMASCR_TARGET_ABT)
223                 printk(KERN_CONT "TARGET_ABT ");
224         if (dmastat & DMASCR_MASTER_ABT)
225                 printk(KERN_CONT "MASTER_ABT ");
226         if (dmastat & DMASCR_CHAIN_COMPLETE)
227                 printk(KERN_CONT "CHAIN_COMPLETE ");
228         if (dmastat & DMASCR_DMA_COMPLETE)
229                 printk(KERN_CONT "DMA_COMPLETE ");
230         printk("\n");
231 }
232
233 /*
234  * Theory of request handling
235  *
236  * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
237  * We have two pages of mm_dma_desc, holding about 64 descriptors
238  * each.  These are allocated at init time.
239  * One page is "Ready" and is either full, or can have request added.
240  * The other page might be "Active", which DMA is happening on it.
241  *
242  * Whenever IO on the active page completes, the Ready page is activated
243  * and the ex-Active page is clean out and made Ready.
244  * Otherwise the Ready page is only activated when it becomes full.
245  *
246  * If a request arrives while both pages a full, it is queued, and b_rdev is
247  * overloaded to record whether it was a read or a write.
248  *
249  * The interrupt handler only polls the device to clear the interrupt.
250  * The processing of the result is done in a tasklet.
251  */
252
253 static void mm_start_io(struct cardinfo *card)
254 {
255         /* we have the lock, we know there is
256          * no IO active, and we know that card->Active
257          * is set
258          */
259         struct mm_dma_desc *desc;
260         struct mm_page *page;
261         int offset;
262
263         /* make the last descriptor end the chain */
264         page = &card->mm_pages[card->Active];
265         pr_debug("start_io: %d %d->%d\n",
266                 card->Active, page->headcnt, page->cnt - 1);
267         desc = &page->desc[page->cnt-1];
268
269         desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
270         desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
271         desc->sem_control_bits = desc->control_bits;
272
273
274         if (debug & DEBUG_LED_ON_TRANSFER)
275                 set_led(card, LED_REMOVE, LED_ON);
276
277         desc = &page->desc[page->headcnt];
278         writel(0, card->csr_remap + DMA_PCI_ADDR);
279         writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
280
281         writel(0, card->csr_remap + DMA_LOCAL_ADDR);
282         writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
283
284         writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
285         writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
286
287         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
288         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
289
290         offset = ((char *)desc) - ((char *)page->desc);
291         writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
292                card->csr_remap + DMA_DESCRIPTOR_ADDR);
293         /* Force the value to u64 before shifting otherwise >> 32 is undefined C
294          * and on some ports will do nothing ! */
295         writel(cpu_to_le32(((u64)page->page_dma)>>32),
296                card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
297
298         /* Go, go, go */
299         writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
300                card->csr_remap + DMA_STATUS_CTRL);
301 }
302
303 static int add_bio(struct cardinfo *card);
304
305 static void activate(struct cardinfo *card)
306 {
307         /* if No page is Active, and Ready is
308          * not empty, then switch Ready page
309          * to active and start IO.
310          * Then add any bh's that are available to Ready
311          */
312
313         do {
314                 while (add_bio(card))
315                         ;
316
317                 if (card->Active == -1 &&
318                     card->mm_pages[card->Ready].cnt > 0) {
319                         card->Active = card->Ready;
320                         card->Ready = 1-card->Ready;
321                         mm_start_io(card);
322                 }
323
324         } while (card->Active == -1 && add_bio(card));
325 }
326
327 static inline void reset_page(struct mm_page *page)
328 {
329         page->cnt = 0;
330         page->headcnt = 0;
331         page->bio = NULL;
332         page->biotail = &page->bio;
333 }
334
335 /*
336  * If there is room on Ready page, take
337  * one bh off list and add it.
338  * return 1 if there was room, else 0.
339  */
340 static int add_bio(struct cardinfo *card)
341 {
342         struct mm_page *p;
343         struct mm_dma_desc *desc;
344         dma_addr_t dma_handle;
345         int offset;
346         struct bio *bio;
347         struct bio_vec *vec;
348         int idx;
349         int rw;
350         int len;
351
352         bio = card->currentbio;
353         if (!bio && card->bio) {
354                 card->currentbio = card->bio;
355                 card->current_idx = card->bio->bi_idx;
356                 card->current_sector = card->bio->bi_sector;
357                 card->bio = card->bio->bi_next;
358                 if (card->bio == NULL)
359                         card->biotail = &card->bio;
360                 card->currentbio->bi_next = NULL;
361                 return 1;
362         }
363         if (!bio)
364                 return 0;
365         idx = card->current_idx;
366
367         rw = bio_rw(bio);
368         if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
369                 return 0;
370
371         vec = bio_iovec_idx(bio, idx);
372         len = vec->bv_len;
373         dma_handle = pci_map_page(card->dev,
374                                   vec->bv_page,
375                                   vec->bv_offset,
376                                   len,
377                                   (rw == READ) ?
378                                   PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
379
380         p = &card->mm_pages[card->Ready];
381         desc = &p->desc[p->cnt];
382         p->cnt++;
383         if (p->bio == NULL)
384                 p->idx = idx;
385         if ((p->biotail) != &bio->bi_next) {
386                 *(p->biotail) = bio;
387                 p->biotail = &(bio->bi_next);
388                 bio->bi_next = NULL;
389         }
390
391         desc->data_dma_handle = dma_handle;
392
393         desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
394         desc->local_addr = cpu_to_le64(card->current_sector << 9);
395         desc->transfer_size = cpu_to_le32(len);
396         offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
397         desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
398         desc->zero1 = desc->zero2 = 0;
399         offset = (((char *)(desc+1)) - ((char *)p->desc));
400         desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
401         desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
402                                          DMASCR_PARITY_INT_EN|
403                                          DMASCR_CHAIN_EN |
404                                          DMASCR_SEM_EN |
405                                          pci_cmds);
406         if (rw == WRITE)
407                 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
408         desc->sem_control_bits = desc->control_bits;
409
410         card->current_sector += (len >> 9);
411         idx++;
412         card->current_idx = idx;
413         if (idx >= bio->bi_vcnt)
414                 card->currentbio = NULL;
415
416         return 1;
417 }
418
419 static void process_page(unsigned long data)
420 {
421         /* check if any of the requests in the page are DMA_COMPLETE,
422          * and deal with them appropriately.
423          * If we find a descriptor without DMA_COMPLETE in the semaphore, then
424          * dma must have hit an error on that descriptor, so use dma_status
425          * instead and assume that all following descriptors must be re-tried.
426          */
427         struct mm_page *page;
428         struct bio *return_bio = NULL;
429         struct cardinfo *card = (struct cardinfo *)data;
430         unsigned int dma_status = card->dma_status;
431
432         spin_lock_bh(&card->lock);
433         if (card->Active < 0)
434                 goto out_unlock;
435         page = &card->mm_pages[card->Active];
436
437         while (page->headcnt < page->cnt) {
438                 struct bio *bio = page->bio;
439                 struct mm_dma_desc *desc = &page->desc[page->headcnt];
440                 int control = le32_to_cpu(desc->sem_control_bits);
441                 int last = 0;
442                 int idx;
443
444                 if (!(control & DMASCR_DMA_COMPLETE)) {
445                         control = dma_status;
446                         last = 1;
447                 }
448                 page->headcnt++;
449                 idx = page->idx;
450                 page->idx++;
451                 if (page->idx >= bio->bi_vcnt) {
452                         page->bio = bio->bi_next;
453                         if (page->bio)
454                                 page->idx = page->bio->bi_idx;
455                 }
456
457                 pci_unmap_page(card->dev, desc->data_dma_handle,
458                                bio_iovec_idx(bio, idx)->bv_len,
459                                  (control & DMASCR_TRANSFER_READ) ?
460                                 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
461                 if (control & DMASCR_HARD_ERROR) {
462                         /* error */
463                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
464                         dev_printk(KERN_WARNING, &card->dev->dev,
465                                 "I/O error on sector %d/%d\n",
466                                 le32_to_cpu(desc->local_addr)>>9,
467                                 le32_to_cpu(desc->transfer_size));
468                         dump_dmastat(card, control);
469                 } else if ((bio->bi_rw & REQ_WRITE) &&
470                            le32_to_cpu(desc->local_addr) >> 9 ==
471                                 card->init_size) {
472                         card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
473                         if (card->init_size >> 1 >= card->mm_size) {
474                                 dev_printk(KERN_INFO, &card->dev->dev,
475                                         "memory now initialised\n");
476                                 set_userbit(card, MEMORY_INITIALIZED, 1);
477                         }
478                 }
479                 if (bio != page->bio) {
480                         bio->bi_next = return_bio;
481                         return_bio = bio;
482                 }
483
484                 if (last)
485                         break;
486         }
487
488         if (debug & DEBUG_LED_ON_TRANSFER)
489                 set_led(card, LED_REMOVE, LED_OFF);
490
491         if (card->check_batteries) {
492                 card->check_batteries = 0;
493                 check_batteries(card);
494         }
495         if (page->headcnt >= page->cnt) {
496                 reset_page(page);
497                 card->Active = -1;
498                 activate(card);
499         } else {
500                 /* haven't finished with this one yet */
501                 pr_debug("do some more\n");
502                 mm_start_io(card);
503         }
504  out_unlock:
505         spin_unlock_bh(&card->lock);
506
507         while (return_bio) {
508                 struct bio *bio = return_bio;
509
510                 return_bio = bio->bi_next;
511                 bio->bi_next = NULL;
512                 bio_endio(bio, 0);
513         }
514 }
515
516 struct mm_plug_cb {
517         struct blk_plug_cb cb;
518         struct cardinfo *card;
519 };
520
521 static void mm_unplug(struct blk_plug_cb *cb)
522 {
523         struct mm_plug_cb *mmcb = container_of(cb, struct mm_plug_cb, cb);
524
525         spin_lock_irq(&mmcb->card->lock);
526         activate(mmcb->card);
527         spin_unlock_irq(&mmcb->card->lock);
528         kfree(mmcb);
529 }
530
531 static int mm_check_plugged(struct cardinfo *card)
532 {
533         struct blk_plug *plug = current->plug;
534         struct mm_plug_cb *mmcb;
535
536         if (!plug)
537                 return 0;
538
539         list_for_each_entry(mmcb, &plug->cb_list, cb.list) {
540                 if (mmcb->cb.callback == mm_unplug && mmcb->card == card)
541                         return 1;
542         }
543         /* Not currently on the callback list */
544         mmcb = kmalloc(sizeof(*mmcb), GFP_ATOMIC);
545         if (!mmcb)
546                 return 0;
547
548         mmcb->card = card;
549         mmcb->cb.callback = mm_unplug;
550         list_add(&mmcb->cb.list, &plug->cb_list);
551         return 1;
552 }
553
554 static void mm_make_request(struct request_queue *q, struct bio *bio)
555 {
556         struct cardinfo *card = q->queuedata;
557         pr_debug("mm_make_request %llu %u\n",
558                  (unsigned long long)bio->bi_sector, bio->bi_size);
559
560         spin_lock_irq(&card->lock);
561         *card->biotail = bio;
562         bio->bi_next = NULL;
563         card->biotail = &bio->bi_next;
564         if (bio->bi_rw & REQ_SYNC || !mm_check_plugged(card))
565                 activate(card);
566         spin_unlock_irq(&card->lock);
567
568         return;
569 }
570
571 static irqreturn_t mm_interrupt(int irq, void *__card)
572 {
573         struct cardinfo *card = (struct cardinfo *) __card;
574         unsigned int dma_status;
575         unsigned short cfg_status;
576
577 HW_TRACE(0x30);
578
579         dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
580
581         if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
582                 /* interrupt wasn't for me ... */
583                 return IRQ_NONE;
584         }
585
586         /* clear COMPLETION interrupts */
587         if (card->flags & UM_FLAG_NO_BYTE_STATUS)
588                 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
589                        card->csr_remap + DMA_STATUS_CTRL);
590         else
591                 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
592                        card->csr_remap + DMA_STATUS_CTRL + 2);
593
594         /* log errors and clear interrupt status */
595         if (dma_status & DMASCR_ANY_ERR) {
596                 unsigned int    data_log1, data_log2;
597                 unsigned int    addr_log1, addr_log2;
598                 unsigned char   stat, count, syndrome, check;
599
600                 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
601
602                 data_log1 = le32_to_cpu(readl(card->csr_remap +
603                                                 ERROR_DATA_LOG));
604                 data_log2 = le32_to_cpu(readl(card->csr_remap +
605                                                 ERROR_DATA_LOG + 4));
606                 addr_log1 = le32_to_cpu(readl(card->csr_remap +
607                                                 ERROR_ADDR_LOG));
608                 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
609
610                 count = readb(card->csr_remap + ERROR_COUNT);
611                 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
612                 check = readb(card->csr_remap + ERROR_CHECK);
613
614                 dump_dmastat(card, dma_status);
615
616                 if (stat & 0x01)
617                         dev_printk(KERN_ERR, &card->dev->dev,
618                                 "Memory access error detected (err count %d)\n",
619                                 count);
620                 if (stat & 0x02)
621                         dev_printk(KERN_ERR, &card->dev->dev,
622                                 "Multi-bit EDC error\n");
623
624                 dev_printk(KERN_ERR, &card->dev->dev,
625                         "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
626                         addr_log2, addr_log1, data_log2, data_log1);
627                 dev_printk(KERN_ERR, &card->dev->dev,
628                         "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
629                         check, syndrome);
630
631                 writeb(0, card->csr_remap + ERROR_COUNT);
632         }
633
634         if (dma_status & DMASCR_PARITY_ERR_REP) {
635                 dev_printk(KERN_ERR, &card->dev->dev,
636                         "PARITY ERROR REPORTED\n");
637                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
638                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
639         }
640
641         if (dma_status & DMASCR_PARITY_ERR_DET) {
642                 dev_printk(KERN_ERR, &card->dev->dev,
643                         "PARITY ERROR DETECTED\n");
644                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
645                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
646         }
647
648         if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
649                 dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
650                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
651                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
652         }
653
654         if (dma_status & DMASCR_TARGET_ABT) {
655                 dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
656                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
657                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
658         }
659
660         if (dma_status & DMASCR_MASTER_ABT) {
661                 dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
662                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
663                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
664         }
665
666         /* and process the DMA descriptors */
667         card->dma_status = dma_status;
668         tasklet_schedule(&card->tasklet);
669
670 HW_TRACE(0x36);
671
672         return IRQ_HANDLED;
673 }
674
675 /*
676  * If both batteries are good, no LED
677  * If either battery has been warned, solid LED
678  * If both batteries are bad, flash the LED quickly
679  * If either battery is bad, flash the LED semi quickly
680  */
681 static void set_fault_to_battery_status(struct cardinfo *card)
682 {
683         if (card->battery[0].good && card->battery[1].good)
684                 set_led(card, LED_FAULT, LED_OFF);
685         else if (card->battery[0].warned || card->battery[1].warned)
686                 set_led(card, LED_FAULT, LED_ON);
687         else if (!card->battery[0].good && !card->battery[1].good)
688                 set_led(card, LED_FAULT, LED_FLASH_7_0);
689         else
690                 set_led(card, LED_FAULT, LED_FLASH_3_5);
691 }
692
693 static void init_battery_timer(void);
694
695 static int check_battery(struct cardinfo *card, int battery, int status)
696 {
697         if (status != card->battery[battery].good) {
698                 card->battery[battery].good = !card->battery[battery].good;
699                 card->battery[battery].last_change = jiffies;
700
701                 if (card->battery[battery].good) {
702                         dev_printk(KERN_ERR, &card->dev->dev,
703                                 "Battery %d now good\n", battery + 1);
704                         card->battery[battery].warned = 0;
705                 } else
706                         dev_printk(KERN_ERR, &card->dev->dev,
707                                 "Battery %d now FAILED\n", battery + 1);
708
709                 return 1;
710         } else if (!card->battery[battery].good &&
711                    !card->battery[battery].warned &&
712                    time_after_eq(jiffies, card->battery[battery].last_change +
713                                  (HZ * 60 * 60 * 5))) {
714                 dev_printk(KERN_ERR, &card->dev->dev,
715                         "Battery %d still FAILED after 5 hours\n", battery + 1);
716                 card->battery[battery].warned = 1;
717
718                 return 1;
719         }
720
721         return 0;
722 }
723
724 static void check_batteries(struct cardinfo *card)
725 {
726         /* NOTE: this must *never* be called while the card
727          * is doing (bus-to-card) DMA, or you will need the
728          * reset switch
729          */
730         unsigned char status;
731         int ret1, ret2;
732
733         status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
734         if (debug & DEBUG_BATTERY_POLLING)
735                 dev_printk(KERN_DEBUG, &card->dev->dev,
736                         "checking battery status, 1 = %s, 2 = %s\n",
737                        (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
738                        (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
739
740         ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
741         ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
742
743         if (ret1 || ret2)
744                 set_fault_to_battery_status(card);
745 }
746
747 static void check_all_batteries(unsigned long ptr)
748 {
749         int i;
750
751         for (i = 0; i < num_cards; i++)
752                 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
753                         struct cardinfo *card = &cards[i];
754                         spin_lock_bh(&card->lock);
755                         if (card->Active >= 0)
756                                 card->check_batteries = 1;
757                         else
758                                 check_batteries(card);
759                         spin_unlock_bh(&card->lock);
760                 }
761
762         init_battery_timer();
763 }
764
765 static void init_battery_timer(void)
766 {
767         init_timer(&battery_timer);
768         battery_timer.function = check_all_batteries;
769         battery_timer.expires = jiffies + (HZ * 60);
770         add_timer(&battery_timer);
771 }
772
773 static void del_battery_timer(void)
774 {
775         del_timer(&battery_timer);
776 }
777
778 /*
779  * Note no locks taken out here.  In a worst case scenario, we could drop
780  * a chunk of system memory.  But that should never happen, since validation
781  * happens at open or mount time, when locks are held.
782  *
783  *      That's crap, since doing that while some partitions are opened
784  * or mounted will give you really nasty results.
785  */
786 static int mm_revalidate(struct gendisk *disk)
787 {
788         struct cardinfo *card = disk->private_data;
789         set_capacity(disk, card->mm_size << 1);
790         return 0;
791 }
792
793 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
794 {
795         struct cardinfo *card = bdev->bd_disk->private_data;
796         int size = card->mm_size * (1024 / MM_HARDSECT);
797
798         /*
799          * get geometry: we have to fake one...  trim the size to a
800          * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
801          * whatever cylinders.
802          */
803         geo->heads     = 64;
804         geo->sectors   = 32;
805         geo->cylinders = size / (geo->heads * geo->sectors);
806         return 0;
807 }
808
809 static const struct block_device_operations mm_fops = {
810         .owner          = THIS_MODULE,
811         .getgeo         = mm_getgeo,
812         .revalidate_disk = mm_revalidate,
813 };
814
815 static int __devinit mm_pci_probe(struct pci_dev *dev,
816                                 const struct pci_device_id *id)
817 {
818         int ret = -ENODEV;
819         struct cardinfo *card = &cards[num_cards];
820         unsigned char   mem_present;
821         unsigned char   batt_status;
822         unsigned int    saved_bar, data;
823         unsigned long   csr_base;
824         unsigned long   csr_len;
825         int             magic_number;
826         static int      printed_version;
827
828         if (!printed_version++)
829                 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
830
831         ret = pci_enable_device(dev);
832         if (ret)
833                 return ret;
834
835         pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
836         pci_set_master(dev);
837
838         card->dev         = dev;
839
840         csr_base = pci_resource_start(dev, 0);
841         csr_len  = pci_resource_len(dev, 0);
842         if (!csr_base || !csr_len)
843                 return -ENODEV;
844
845         dev_printk(KERN_INFO, &dev->dev,
846           "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
847
848         if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
849             pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
850                 dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
851                 return  -ENOMEM;
852         }
853
854         ret = pci_request_regions(dev, DRIVER_NAME);
855         if (ret) {
856                 dev_printk(KERN_ERR, &card->dev->dev,
857                         "Unable to request memory region\n");
858                 goto failed_req_csr;
859         }
860
861         card->csr_remap = ioremap_nocache(csr_base, csr_len);
862         if (!card->csr_remap) {
863                 dev_printk(KERN_ERR, &card->dev->dev,
864                         "Unable to remap memory region\n");
865                 ret = -ENOMEM;
866
867                 goto failed_remap_csr;
868         }
869
870         dev_printk(KERN_INFO, &card->dev->dev,
871                 "CSR 0x%08lx -> 0x%p (0x%lx)\n",
872                csr_base, card->csr_remap, csr_len);
873
874         switch (card->dev->device) {
875         case 0x5415:
876                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
877                 magic_number = 0x59;
878                 break;
879
880         case 0x5425:
881                 card->flags |= UM_FLAG_NO_BYTE_STATUS;
882                 magic_number = 0x5C;
883                 break;
884
885         case 0x6155:
886                 card->flags |= UM_FLAG_NO_BYTE_STATUS |
887                                 UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
888                 magic_number = 0x99;
889                 break;
890
891         default:
892                 magic_number = 0x100;
893                 break;
894         }
895
896         if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
897                 dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
898                 ret = -ENOMEM;
899                 goto failed_magic;
900         }
901
902         card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
903                                                 PAGE_SIZE * 2,
904                                                 &card->mm_pages[0].page_dma);
905         card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
906                                                 PAGE_SIZE * 2,
907                                                 &card->mm_pages[1].page_dma);
908         if (card->mm_pages[0].desc == NULL ||
909             card->mm_pages[1].desc == NULL) {
910                 dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
911                 goto failed_alloc;
912         }
913         reset_page(&card->mm_pages[0]);
914         reset_page(&card->mm_pages[1]);
915         card->Ready = 0;        /* page 0 is ready */
916         card->Active = -1;      /* no page is active */
917         card->bio = NULL;
918         card->biotail = &card->bio;
919
920         card->queue = blk_alloc_queue(GFP_KERNEL);
921         if (!card->queue)
922                 goto failed_alloc;
923
924         blk_queue_make_request(card->queue, mm_make_request);
925         card->queue->queue_lock = &card->lock;
926         card->queue->queuedata = card;
927
928         tasklet_init(&card->tasklet, process_page, (unsigned long)card);
929
930         card->check_batteries = 0;
931
932         mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
933         switch (mem_present) {
934         case MEM_128_MB:
935                 card->mm_size = 1024 * 128;
936                 break;
937         case MEM_256_MB:
938                 card->mm_size = 1024 * 256;
939                 break;
940         case MEM_512_MB:
941                 card->mm_size = 1024 * 512;
942                 break;
943         case MEM_1_GB:
944                 card->mm_size = 1024 * 1024;
945                 break;
946         case MEM_2_GB:
947                 card->mm_size = 1024 * 2048;
948                 break;
949         default:
950                 card->mm_size = 0;
951                 break;
952         }
953
954         /* Clear the LED's we control */
955         set_led(card, LED_REMOVE, LED_OFF);
956         set_led(card, LED_FAULT, LED_OFF);
957
958         batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
959
960         card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
961         card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
962         card->battery[0].last_change = card->battery[1].last_change = jiffies;
963
964         if (card->flags & UM_FLAG_NO_BATT)
965                 dev_printk(KERN_INFO, &card->dev->dev,
966                         "Size %d KB\n", card->mm_size);
967         else {
968                 dev_printk(KERN_INFO, &card->dev->dev,
969                         "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
970                        card->mm_size,
971                        batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
972                        card->battery[0].good ? "OK" : "FAILURE",
973                        batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
974                        card->battery[1].good ? "OK" : "FAILURE");
975
976                 set_fault_to_battery_status(card);
977         }
978
979         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
980         data = 0xffffffff;
981         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
982         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
983         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
984         data &= 0xfffffff0;
985         data = ~data;
986         data += 1;
987
988         if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
989                         card)) {
990                 dev_printk(KERN_ERR, &card->dev->dev,
991                         "Unable to allocate IRQ\n");
992                 ret = -ENODEV;
993                 goto failed_req_irq;
994         }
995
996         dev_printk(KERN_INFO, &card->dev->dev,
997                 "Window size %d bytes, IRQ %d\n", data, dev->irq);
998
999         spin_lock_init(&card->lock);
1000
1001         pci_set_drvdata(dev, card);
1002
1003         if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
1004                 pci_write_cmd = 0x07;   /* then Memory Write command */
1005
1006         if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1007                 unsigned short cfg_command;
1008                 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1009                 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1010                 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1011         }
1012         pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1013
1014         num_cards++;
1015
1016         if (!get_userbit(card, MEMORY_INITIALIZED)) {
1017                 dev_printk(KERN_INFO, &card->dev->dev,
1018                   "memory NOT initialized. Consider over-writing whole device.\n");
1019                 card->init_size = 0;
1020         } else {
1021                 dev_printk(KERN_INFO, &card->dev->dev,
1022                         "memory already initialized\n");
1023                 card->init_size = card->mm_size;
1024         }
1025
1026         /* Enable ECC */
1027         writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1028
1029         return 0;
1030
1031  failed_req_irq:
1032  failed_alloc:
1033         if (card->mm_pages[0].desc)
1034                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1035                                     card->mm_pages[0].desc,
1036                                     card->mm_pages[0].page_dma);
1037         if (card->mm_pages[1].desc)
1038                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1039                                     card->mm_pages[1].desc,
1040                                     card->mm_pages[1].page_dma);
1041  failed_magic:
1042         iounmap(card->csr_remap);
1043  failed_remap_csr:
1044         pci_release_regions(dev);
1045  failed_req_csr:
1046
1047         return ret;
1048 }
1049
1050 static void mm_pci_remove(struct pci_dev *dev)
1051 {
1052         struct cardinfo *card = pci_get_drvdata(dev);
1053
1054         tasklet_kill(&card->tasklet);
1055         free_irq(dev->irq, card);
1056         iounmap(card->csr_remap);
1057
1058         if (card->mm_pages[0].desc)
1059                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1060                                     card->mm_pages[0].desc,
1061                                     card->mm_pages[0].page_dma);
1062         if (card->mm_pages[1].desc)
1063                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1064                                     card->mm_pages[1].desc,
1065                                     card->mm_pages[1].page_dma);
1066         blk_cleanup_queue(card->queue);
1067
1068         pci_release_regions(dev);
1069         pci_disable_device(dev);
1070 }
1071
1072 static const struct pci_device_id mm_pci_ids[] = {
1073     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1074     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1075     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1076     {
1077         .vendor =       0x8086,
1078         .device =       0xB555,
1079         .subvendor =    0x1332,
1080         .subdevice =    0x5460,
1081         .class =        0x050000,
1082         .class_mask =   0,
1083     }, { /* end: all zeroes */ }
1084 };
1085
1086 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1087
1088 static struct pci_driver mm_pci_driver = {
1089         .name           = DRIVER_NAME,
1090         .id_table       = mm_pci_ids,
1091         .probe          = mm_pci_probe,
1092         .remove         = mm_pci_remove,
1093 };
1094
1095 static int __init mm_init(void)
1096 {
1097         int retval, i;
1098         int err;
1099
1100         retval = pci_register_driver(&mm_pci_driver);
1101         if (retval)
1102                 return -ENOMEM;
1103
1104         err = major_nr = register_blkdev(0, DRIVER_NAME);
1105         if (err < 0) {
1106                 pci_unregister_driver(&mm_pci_driver);
1107                 return -EIO;
1108         }
1109
1110         for (i = 0; i < num_cards; i++) {
1111                 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1112                 if (!mm_gendisk[i])
1113                         goto out;
1114         }
1115
1116         for (i = 0; i < num_cards; i++) {
1117                 struct gendisk *disk = mm_gendisk[i];
1118                 sprintf(disk->disk_name, "umem%c", 'a'+i);
1119                 spin_lock_init(&cards[i].lock);
1120                 disk->major = major_nr;
1121                 disk->first_minor  = i << MM_SHIFT;
1122                 disk->fops = &mm_fops;
1123                 disk->private_data = &cards[i];
1124                 disk->queue = cards[i].queue;
1125                 set_capacity(disk, cards[i].mm_size << 1);
1126                 add_disk(disk);
1127         }
1128
1129         init_battery_timer();
1130         printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1131 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1132         return 0;
1133
1134 out:
1135         pci_unregister_driver(&mm_pci_driver);
1136         unregister_blkdev(major_nr, DRIVER_NAME);
1137         while (i--)
1138                 put_disk(mm_gendisk[i]);
1139         return -ENOMEM;
1140 }
1141
1142 static void __exit mm_cleanup(void)
1143 {
1144         int i;
1145
1146         del_battery_timer();
1147
1148         for (i = 0; i < num_cards ; i++) {
1149                 del_gendisk(mm_gendisk[i]);
1150                 put_disk(mm_gendisk[i]);
1151         }
1152
1153         pci_unregister_driver(&mm_pci_driver);
1154
1155         unregister_blkdev(major_nr, DRIVER_NAME);
1156 }
1157
1158 module_init(mm_init);
1159 module_exit(mm_cleanup);
1160
1161 MODULE_AUTHOR(DRIVER_AUTHOR);
1162 MODULE_DESCRIPTION(DRIVER_DESC);
1163 MODULE_LICENSE("GPL");