0c4c121d2e7962bf798958ad2cee2df0e907527c
[pandora-kernel.git] / drivers / block / umem.c
1 /*
2  * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3  *
4  * (C) 2001 San Mehat <nettwerk@valinux.com>
5  * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6  * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7  *
8  * This driver for the Micro Memory PCI Memory Module with Battery Backup
9  * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
10  *
11  * This driver is released to the public under the terms of the
12  *  GNU GENERAL PUBLIC LICENSE version 2
13  * See the file COPYING for details.
14  *
15  * This driver provides a standard block device interface for Micro Memory(tm)
16  * PCI based RAM boards.
17  * 10/05/01: Phap Nguyen - Rebuilt the driver
18  * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19  * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
20  *                       - use stand disk partitioning (so fdisk works).
21  * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
22  *                       - incorporate into main kernel
23  * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
24  *                       - use spin_lock_bh instead of _irq
25  *                       - Never block on make_request.  queue
26  *                         bh's instead.
27  *                       - unregister umem from devfs at mod unload
28  *                       - Change version to 2.3
29  * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30  * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
31  * 15May2002:NeilBrown   - convert to bio for 2.5
32  * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
33  *                       - a sequence of writes that cover the card, and
34  *                       - set initialised bit then.
35  */
36
37 #include <linux/config.h>
38 #include <linux/sched.h>
39 #include <linux/fs.h>
40 #include <linux/bio.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/mman.h>
44 #include <linux/ioctl.h>
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/smp_lock.h>
49 #include <linux/timer.h>
50 #include <linux/pci.h>
51 #include <linux/slab.h>
52
53 #include <linux/fcntl.h>        /* O_ACCMODE */
54 #include <linux/hdreg.h>  /* HDIO_GETGEO */
55
56 #include <linux/umem.h>
57
58 #include <asm/uaccess.h>
59 #include <asm/io.h>
60
61 #define PRINTK(x...) do {} while (0)
62 #define dprintk(x...) do {} while (0)
63 /*#define dprintk(x...) printk(x) */
64
65 #define MM_MAXCARDS 4
66 #define MM_RAHEAD 2      /* two sectors */
67 #define MM_BLKSIZE 1024  /* 1k blocks */
68 #define MM_HARDSECT 512  /* 512-byte hardware sectors */
69 #define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
70
71 /*
72  * Version Information
73  */
74
75 #define DRIVER_VERSION "v2.3"
76 #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
77 #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
78
79 static int debug;
80 /* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
81 #define HW_TRACE(x)
82
83 #define DEBUG_LED_ON_TRANSFER   0x01
84 #define DEBUG_BATTERY_POLLING   0x02
85
86 module_param(debug, int, 0644);
87 MODULE_PARM_DESC(debug, "Debug bitmask");
88
89 static int pci_read_cmd = 0x0C;         /* Read Multiple */
90 module_param(pci_read_cmd, int, 0);
91 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
92
93 static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
94 module_param(pci_write_cmd, int, 0);
95 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
96
97 static int pci_cmds;
98
99 static int major_nr;
100
101 #include <linux/blkdev.h>
102 #include <linux/blkpg.h>
103
104 struct cardinfo {
105         int             card_number;
106         struct pci_dev  *dev;
107
108         int             irq;
109
110         unsigned long   csr_base;
111         unsigned char   __iomem *csr_remap;
112         unsigned long   csr_len;
113 #ifdef CONFIG_MM_MAP_MEMORY
114         unsigned long   mem_base;
115         unsigned char   __iomem *mem_remap;
116         unsigned long   mem_len;
117 #endif
118
119         unsigned int    win_size; /* PCI window size */
120         unsigned int    mm_size;  /* size in kbytes */
121
122         unsigned int    init_size; /* initial segment, in sectors,
123                                     * that we know to
124                                     * have been written
125                                     */
126         struct bio      *bio, *currentbio, **biotail;
127
128         request_queue_t *queue;
129
130         struct mm_page {
131                 dma_addr_t              page_dma;
132                 struct mm_dma_desc      *desc;
133                 int                     cnt, headcnt;
134                 struct bio              *bio, **biotail;
135         } mm_pages[2];
136 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
137
138         int  Active, Ready;
139
140         struct tasklet_struct   tasklet;
141         unsigned int dma_status;
142
143         struct {
144                 int             good;
145                 int             warned;
146                 unsigned long   last_change;
147         } battery[2];
148
149         spinlock_t      lock;
150         int             check_batteries;
151
152         int             flags;
153 };
154
155 static struct cardinfo cards[MM_MAXCARDS];
156 static struct block_device_operations mm_fops;
157 static struct timer_list battery_timer;
158
159 static int num_cards = 0;
160
161 static struct gendisk *mm_gendisk[MM_MAXCARDS];
162
163 static void check_batteries(struct cardinfo *card);
164
165 /*
166 -----------------------------------------------------------------------------------
167 --                           get_userbit
168 -----------------------------------------------------------------------------------
169 */
170 static int get_userbit(struct cardinfo *card, int bit)
171 {
172         unsigned char led;
173
174         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
175         return led & bit;
176 }
177 /*
178 -----------------------------------------------------------------------------------
179 --                            set_userbit
180 -----------------------------------------------------------------------------------
181 */
182 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
183 {
184         unsigned char led;
185
186         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
187         if (state)
188                 led |= bit;
189         else
190                 led &= ~bit;
191         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
192
193         return 0;
194 }
195 /*
196 -----------------------------------------------------------------------------------
197 --                             set_led
198 -----------------------------------------------------------------------------------
199 */
200 /*
201  * NOTE: For the power LED, use the LED_POWER_* macros since they differ
202  */
203 static void set_led(struct cardinfo *card, int shift, unsigned char state)
204 {
205         unsigned char led;
206
207         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
208         if (state == LED_FLIP)
209                 led ^= (1<<shift);
210         else {
211                 led &= ~(0x03 << shift);
212                 led |= (state << shift);
213         }
214         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
215
216 }
217
218 #ifdef MM_DIAG
219 /*
220 -----------------------------------------------------------------------------------
221 --                              dump_regs
222 -----------------------------------------------------------------------------------
223 */
224 static void dump_regs(struct cardinfo *card)
225 {
226         unsigned char *p;
227         int i, i1;
228
229         p = card->csr_remap;
230         for (i = 0; i < 8; i++) {
231                 printk(KERN_DEBUG "%p   ", p);
232
233                 for (i1 = 0; i1 < 16; i1++)
234                         printk("%02x ", *p++);
235
236                 printk("\n");
237         }
238 }
239 #endif
240 /*
241 -----------------------------------------------------------------------------------
242 --                            dump_dmastat
243 -----------------------------------------------------------------------------------
244 */
245 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
246 {
247         printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
248         if (dmastat & DMASCR_ANY_ERR)
249                 printk("ANY_ERR ");
250         if (dmastat & DMASCR_MBE_ERR)
251                 printk("MBE_ERR ");
252         if (dmastat & DMASCR_PARITY_ERR_REP)
253                 printk("PARITY_ERR_REP ");
254         if (dmastat & DMASCR_PARITY_ERR_DET)
255                 printk("PARITY_ERR_DET ");
256         if (dmastat & DMASCR_SYSTEM_ERR_SIG)
257                 printk("SYSTEM_ERR_SIG ");
258         if (dmastat & DMASCR_TARGET_ABT)
259                 printk("TARGET_ABT ");
260         if (dmastat & DMASCR_MASTER_ABT)
261                 printk("MASTER_ABT ");
262         if (dmastat & DMASCR_CHAIN_COMPLETE)
263                 printk("CHAIN_COMPLETE ");
264         if (dmastat & DMASCR_DMA_COMPLETE)
265                 printk("DMA_COMPLETE ");
266         printk("\n");
267 }
268
269 /*
270  * Theory of request handling
271  *
272  * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
273  * We have two pages of mm_dma_desc, holding about 64 descriptors
274  * each.  These are allocated at init time.
275  * One page is "Ready" and is either full, or can have request added.
276  * The other page might be "Active", which DMA is happening on it.
277  *
278  * Whenever IO on the active page completes, the Ready page is activated
279  * and the ex-Active page is clean out and made Ready.
280  * Otherwise the Ready page is only activated when it becomes full, or
281  * when mm_unplug_device is called via the unplug_io_fn.
282  *
283  * If a request arrives while both pages a full, it is queued, and b_rdev is
284  * overloaded to record whether it was a read or a write.
285  *
286  * The interrupt handler only polls the device to clear the interrupt.
287  * The processing of the result is done in a tasklet.
288  */
289
290 static void mm_start_io(struct cardinfo *card)
291 {
292         /* we have the lock, we know there is
293          * no IO active, and we know that card->Active
294          * is set
295          */
296         struct mm_dma_desc *desc;
297         struct mm_page *page;
298         int offset;
299
300         /* make the last descriptor end the chain */
301         page = &card->mm_pages[card->Active];
302         PRINTK("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
303         desc = &page->desc[page->cnt-1];
304
305         desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
306         desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
307         desc->sem_control_bits = desc->control_bits;
308
309                                
310         if (debug & DEBUG_LED_ON_TRANSFER)
311                 set_led(card, LED_REMOVE, LED_ON);
312
313         desc = &page->desc[page->headcnt];
314         writel(0, card->csr_remap + DMA_PCI_ADDR);
315         writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
316
317         writel(0, card->csr_remap + DMA_LOCAL_ADDR);
318         writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
319
320         writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
321         writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
322
323         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
324         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
325
326         offset = ((char*)desc) - ((char*)page->desc);
327         writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
328                card->csr_remap + DMA_DESCRIPTOR_ADDR);
329         /* Force the value to u64 before shifting otherwise >> 32 is undefined C
330          * and on some ports will do nothing ! */
331         writel(cpu_to_le32(((u64)page->page_dma)>>32),
332                card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
333
334         /* Go, go, go */
335         writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
336                card->csr_remap + DMA_STATUS_CTRL);
337 }
338
339 static int add_bio(struct cardinfo *card);
340
341 static void activate(struct cardinfo *card)
342 {
343         /* if No page is Active, and Ready is 
344          * not empty, then switch Ready page
345          * to active and start IO.
346          * Then add any bh's that are available to Ready
347          */
348
349         do {
350                 while (add_bio(card))
351                         ;
352
353                 if (card->Active == -1 &&
354                     card->mm_pages[card->Ready].cnt > 0) {
355                         card->Active = card->Ready;
356                         card->Ready = 1-card->Ready;
357                         mm_start_io(card);
358                 }
359
360         } while (card->Active == -1 && add_bio(card));
361 }
362
363 static inline void reset_page(struct mm_page *page)
364 {
365         page->cnt = 0;
366         page->headcnt = 0;
367         page->bio = NULL;
368         page->biotail = & page->bio;
369 }
370
371 static void mm_unplug_device(request_queue_t *q)
372 {
373         struct cardinfo *card = q->queuedata;
374         unsigned long flags;
375
376         spin_lock_irqsave(&card->lock, flags);
377         if (blk_remove_plug(q))
378                 activate(card);
379         spin_unlock_irqrestore(&card->lock, flags);
380 }
381
382 /* 
383  * If there is room on Ready page, take
384  * one bh off list and add it.
385  * return 1 if there was room, else 0.
386  */
387 static int add_bio(struct cardinfo *card)
388 {
389         struct mm_page *p;
390         struct mm_dma_desc *desc;
391         dma_addr_t dma_handle;
392         int offset;
393         struct bio *bio;
394         int rw;
395         int len;
396
397         bio = card->currentbio;
398         if (!bio && card->bio) {
399                 card->currentbio = card->bio;
400                 card->bio = card->bio->bi_next;
401                 if (card->bio == NULL)
402                         card->biotail = &card->bio;
403                 card->currentbio->bi_next = NULL;
404                 return 1;
405         }
406         if (!bio)
407                 return 0;
408
409         rw = bio_rw(bio);
410         if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
411                 return 0;
412
413         len = bio_iovec(bio)->bv_len;
414         dma_handle = pci_map_page(card->dev, 
415                                   bio_page(bio),
416                                   bio_offset(bio),
417                                   len,
418                                   (rw==READ) ?
419                                   PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
420
421         p = &card->mm_pages[card->Ready];
422         desc = &p->desc[p->cnt];
423         p->cnt++;
424         if ((p->biotail) != &bio->bi_next) {
425                 *(p->biotail) = bio;
426                 p->biotail = &(bio->bi_next);
427                 bio->bi_next = NULL;
428         }
429
430         desc->data_dma_handle = dma_handle;
431
432         desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
433         desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
434         desc->transfer_size = cpu_to_le32(len);
435         offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
436         desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
437         desc->zero1 = desc->zero2 = 0;
438         offset = ( ((char*)(desc+1)) - ((char*)p->desc));
439         desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
440         desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
441                                          DMASCR_PARITY_INT_EN|
442                                          DMASCR_CHAIN_EN |
443                                          DMASCR_SEM_EN |
444                                          pci_cmds);
445         if (rw == WRITE)
446                 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
447         desc->sem_control_bits = desc->control_bits;
448
449         bio->bi_sector += (len>>9);
450         bio->bi_size -= len;
451         bio->bi_idx++;
452         if (bio->bi_idx >= bio->bi_vcnt) 
453                 card->currentbio = NULL;
454
455         return 1;
456 }
457
458 static void process_page(unsigned long data)
459 {
460         /* check if any of the requests in the page are DMA_COMPLETE,
461          * and deal with them appropriately.
462          * If we find a descriptor without DMA_COMPLETE in the semaphore, then
463          * dma must have hit an error on that descriptor, so use dma_status instead
464          * and assume that all following descriptors must be re-tried.
465          */
466         struct mm_page *page;
467         struct bio *return_bio=NULL;
468         struct cardinfo *card = (struct cardinfo *)data;
469         unsigned int dma_status = card->dma_status;
470
471         spin_lock_bh(&card->lock);
472         if (card->Active < 0)
473                 goto out_unlock;
474         page = &card->mm_pages[card->Active];
475         
476         while (page->headcnt < page->cnt) {
477                 struct bio *bio = page->bio;
478                 struct mm_dma_desc *desc = &page->desc[page->headcnt];
479                 int control = le32_to_cpu(desc->sem_control_bits);
480                 int last=0;
481                 int idx;
482
483                 if (!(control & DMASCR_DMA_COMPLETE)) {
484                         control = dma_status;
485                         last=1; 
486                 }
487                 page->headcnt++;
488                 idx = bio->bi_phys_segments;
489                 bio->bi_phys_segments++;
490                 if (bio->bi_phys_segments >= bio->bi_vcnt)
491                         page->bio = bio->bi_next;
492
493                 pci_unmap_page(card->dev, desc->data_dma_handle, 
494                                bio_iovec_idx(bio,idx)->bv_len,
495                                  (control& DMASCR_TRANSFER_READ) ?
496                                 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
497                 if (control & DMASCR_HARD_ERROR) {
498                         /* error */
499                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
500                         printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
501                                card->card_number, 
502                                le32_to_cpu(desc->local_addr)>>9,
503                                le32_to_cpu(desc->transfer_size));
504                         dump_dmastat(card, control);
505                 } else if (test_bit(BIO_RW, &bio->bi_rw) &&
506                            le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
507                         card->init_size += le32_to_cpu(desc->transfer_size)>>9;
508                         if (card->init_size>>1 >= card->mm_size) {
509                                 printk(KERN_INFO "MM%d: memory now initialised\n",
510                                        card->card_number);
511                                 set_userbit(card, MEMORY_INITIALIZED, 1);
512                         }
513                 }
514                 if (bio != page->bio) {
515                         bio->bi_next = return_bio;
516                         return_bio = bio;
517                 }
518
519                 if (last) break;
520         }
521
522         if (debug & DEBUG_LED_ON_TRANSFER)
523                 set_led(card, LED_REMOVE, LED_OFF);
524
525         if (card->check_batteries) {
526                 card->check_batteries = 0;
527                 check_batteries(card);
528         }
529         if (page->headcnt >= page->cnt) {
530                 reset_page(page);
531                 card->Active = -1;
532                 activate(card);
533         } else {
534                 /* haven't finished with this one yet */
535                 PRINTK("do some more\n");
536                 mm_start_io(card);
537         }
538  out_unlock:
539         spin_unlock_bh(&card->lock);
540
541         while(return_bio) {
542                 struct bio *bio = return_bio;
543
544                 return_bio = bio->bi_next;
545                 bio->bi_next = NULL;
546                 bio_endio(bio, bio->bi_size, 0);
547         }
548 }
549
550 /*
551 -----------------------------------------------------------------------------------
552 --                              mm_make_request
553 -----------------------------------------------------------------------------------
554 */
555 static int mm_make_request(request_queue_t *q, struct bio *bio)
556 {
557         struct cardinfo *card = q->queuedata;
558         PRINTK("mm_make_request %ld %d\n", bh->b_rsector, bh->b_size);
559
560         bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
561         spin_lock_irq(&card->lock);
562         *card->biotail = bio;
563         bio->bi_next = NULL;
564         card->biotail = &bio->bi_next;
565         blk_plug_device(q);
566         spin_unlock_irq(&card->lock);
567
568         return 0;
569 }
570
571 /*
572 -----------------------------------------------------------------------------------
573 --                              mm_interrupt
574 -----------------------------------------------------------------------------------
575 */
576 static irqreturn_t mm_interrupt(int irq, void *__card, struct pt_regs *regs)
577 {
578         struct cardinfo *card = (struct cardinfo *) __card;
579         unsigned int dma_status;
580         unsigned short cfg_status;
581
582 HW_TRACE(0x30);
583
584         dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
585
586         if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
587                 /* interrupt wasn't for me ... */
588                 return IRQ_NONE;
589         }
590
591         /* clear COMPLETION interrupts */
592         if (card->flags & UM_FLAG_NO_BYTE_STATUS)
593                 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
594                        card->csr_remap+ DMA_STATUS_CTRL);
595         else
596                 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
597                        card->csr_remap+ DMA_STATUS_CTRL + 2);
598         
599         /* log errors and clear interrupt status */
600         if (dma_status & DMASCR_ANY_ERR) {
601                 unsigned int    data_log1, data_log2;
602                 unsigned int    addr_log1, addr_log2;
603                 unsigned char   stat, count, syndrome, check;
604
605                 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
606
607                 data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
608                 data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
609                 addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
610                 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
611
612                 count = readb(card->csr_remap + ERROR_COUNT);
613                 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
614                 check = readb(card->csr_remap + ERROR_CHECK);
615
616                 dump_dmastat(card, dma_status);
617
618                 if (stat & 0x01)
619                         printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
620                                 card->card_number, count);
621                 if (stat & 0x02)
622                         printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
623                                 card->card_number);
624
625                 printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
626                         card->card_number, addr_log2, addr_log1, data_log2, data_log1);
627                 printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
628                         card->card_number, check, syndrome);
629
630                 writeb(0, card->csr_remap + ERROR_COUNT);
631         }
632
633         if (dma_status & DMASCR_PARITY_ERR_REP) {
634                 printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
635                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
636                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
637         }
638
639         if (dma_status & DMASCR_PARITY_ERR_DET) {
640                 printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number); 
641                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
642                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
643         }
644
645         if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
646                 printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number); 
647                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
648                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
649         }
650
651         if (dma_status & DMASCR_TARGET_ABT) {
652                 printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number); 
653                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
654                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
655         }
656
657         if (dma_status & DMASCR_MASTER_ABT) {
658                 printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number); 
659                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
660                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
661         }
662
663         /* and process the DMA descriptors */
664         card->dma_status = dma_status;
665         tasklet_schedule(&card->tasklet);
666
667 HW_TRACE(0x36);
668
669         return IRQ_HANDLED; 
670 }
671 /*
672 -----------------------------------------------------------------------------------
673 --                         set_fault_to_battery_status
674 -----------------------------------------------------------------------------------
675 */
676 /*
677  * If both batteries are good, no LED
678  * If either battery has been warned, solid LED
679  * If both batteries are bad, flash the LED quickly
680  * If either battery is bad, flash the LED semi quickly
681  */
682 static void set_fault_to_battery_status(struct cardinfo *card)
683 {
684         if (card->battery[0].good && card->battery[1].good)
685                 set_led(card, LED_FAULT, LED_OFF);
686         else if (card->battery[0].warned || card->battery[1].warned)
687                 set_led(card, LED_FAULT, LED_ON);
688         else if (!card->battery[0].good && !card->battery[1].good)
689                 set_led(card, LED_FAULT, LED_FLASH_7_0);
690         else
691                 set_led(card, LED_FAULT, LED_FLASH_3_5);
692 }
693
694 static void init_battery_timer(void);
695
696
697 /*
698 -----------------------------------------------------------------------------------
699 --                            check_battery
700 -----------------------------------------------------------------------------------
701 */
702 static int check_battery(struct cardinfo *card, int battery, int status)
703 {
704         if (status != card->battery[battery].good) {
705                 card->battery[battery].good = !card->battery[battery].good;
706                 card->battery[battery].last_change = jiffies;
707
708                 if (card->battery[battery].good) {
709                         printk(KERN_ERR "MM%d: Battery %d now good\n",
710                                 card->card_number, battery + 1);
711                         card->battery[battery].warned = 0;
712                 } else
713                         printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
714                                 card->card_number, battery + 1);
715
716                 return 1;
717         } else if (!card->battery[battery].good &&
718                    !card->battery[battery].warned &&
719                    time_after_eq(jiffies, card->battery[battery].last_change +
720                                  (HZ * 60 * 60 * 5))) {
721                 printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
722                         card->card_number, battery + 1);
723                 card->battery[battery].warned = 1;
724
725                 return 1;
726         }
727
728         return 0;
729 }
730 /*
731 -----------------------------------------------------------------------------------
732 --                              check_batteries
733 -----------------------------------------------------------------------------------
734 */
735 static void check_batteries(struct cardinfo *card)
736 {
737         /* NOTE: this must *never* be called while the card
738          * is doing (bus-to-card) DMA, or you will need the
739          * reset switch
740          */
741         unsigned char status;
742         int ret1, ret2;
743
744         status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
745         if (debug & DEBUG_BATTERY_POLLING)
746                 printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
747                        card->card_number,
748                        (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
749                        (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
750
751         ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
752         ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
753
754         if (ret1 || ret2)
755                 set_fault_to_battery_status(card);
756 }
757
758 static void check_all_batteries(unsigned long ptr)
759 {
760         int i;
761
762         for (i = 0; i < num_cards; i++) 
763                 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
764                         struct cardinfo *card = &cards[i];
765                         spin_lock_bh(&card->lock);
766                         if (card->Active >= 0)
767                                 card->check_batteries = 1;
768                         else
769                                 check_batteries(card);
770                         spin_unlock_bh(&card->lock);
771                 }
772
773         init_battery_timer();
774 }
775 /*
776 -----------------------------------------------------------------------------------
777 --                            init_battery_timer
778 -----------------------------------------------------------------------------------
779 */
780 static void init_battery_timer(void)
781 {
782         init_timer(&battery_timer);
783         battery_timer.function = check_all_batteries;
784         battery_timer.expires = jiffies + (HZ * 60);
785         add_timer(&battery_timer);
786 }
787 /*
788 -----------------------------------------------------------------------------------
789 --                              del_battery_timer
790 -----------------------------------------------------------------------------------
791 */
792 static void del_battery_timer(void)
793 {
794         del_timer(&battery_timer);
795 }
796 /*
797 -----------------------------------------------------------------------------------
798 --                                mm_revalidate
799 -----------------------------------------------------------------------------------
800 */
801 /*
802  * Note no locks taken out here.  In a worst case scenario, we could drop
803  * a chunk of system memory.  But that should never happen, since validation
804  * happens at open or mount time, when locks are held.
805  *
806  *      That's crap, since doing that while some partitions are opened
807  * or mounted will give you really nasty results.
808  */
809 static int mm_revalidate(struct gendisk *disk)
810 {
811         struct cardinfo *card = disk->private_data;
812         set_capacity(disk, card->mm_size << 1);
813         return 0;
814 }
815 /*
816 -----------------------------------------------------------------------------------
817 --                            mm_ioctl
818 -----------------------------------------------------------------------------------
819 */
820 static int mm_ioctl(struct inode *i, struct file *f, unsigned int cmd, unsigned long arg)
821 {
822         if (cmd == HDIO_GETGEO) {
823                 struct cardinfo *card = i->i_bdev->bd_disk->private_data;
824                 int size = card->mm_size * (1024 / MM_HARDSECT);
825                 struct hd_geometry geo;
826                 /*
827                  * get geometry: we have to fake one...  trim the size to a
828                  * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
829                  * whatever cylinders.
830                  */
831                 geo.heads     = 64;
832                 geo.sectors   = 32;
833                 geo.start     = get_start_sect(i->i_bdev);
834                 geo.cylinders = size / (geo.heads * geo.sectors);
835
836                 if (copy_to_user((void __user *) arg, &geo, sizeof(geo)))
837                         return -EFAULT;
838                 return 0;
839         }
840
841         return -EINVAL;
842 }
843 /*
844 -----------------------------------------------------------------------------------
845 --                                mm_check_change
846 -----------------------------------------------------------------------------------
847   Future support for removable devices
848 */
849 static int mm_check_change(struct gendisk *disk)
850 {
851 /*  struct cardinfo *dev = disk->private_data; */
852         return 0;
853 }
854 /*
855 -----------------------------------------------------------------------------------
856 --                             mm_fops
857 -----------------------------------------------------------------------------------
858 */
859 static struct block_device_operations mm_fops = {
860         .owner          = THIS_MODULE,
861         .ioctl          = mm_ioctl,
862         .revalidate_disk= mm_revalidate,
863         .media_changed  = mm_check_change,
864 };
865 /*
866 -----------------------------------------------------------------------------------
867 --                                mm_pci_probe
868 -----------------------------------------------------------------------------------
869 */
870 static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
871 {
872         int ret = -ENODEV;
873         struct cardinfo *card = &cards[num_cards];
874         unsigned char   mem_present;
875         unsigned char   batt_status;
876         unsigned int    saved_bar, data;
877         int             magic_number;
878
879         if (pci_enable_device(dev) < 0)
880                 return -ENODEV;
881
882         pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
883         pci_set_master(dev);
884
885         card->dev         = dev;
886         card->card_number = num_cards;
887
888         card->csr_base = pci_resource_start(dev, 0);
889         card->csr_len  = pci_resource_len(dev, 0);
890 #ifdef CONFIG_MM_MAP_MEMORY
891         card->mem_base = pci_resource_start(dev, 1);
892         card->mem_len  = pci_resource_len(dev, 1);
893 #endif
894
895         printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
896                card->card_number, dev->bus->number, dev->devfn);
897
898         if (pci_set_dma_mask(dev, 0xffffffffffffffffLL) &&
899             !pci_set_dma_mask(dev, 0xffffffffLL)) {
900                 printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
901                 return  -ENOMEM;
902         }
903         if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
904                 printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
905                 ret = -ENOMEM;
906
907                 goto failed_req_csr;
908         }
909
910         card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
911         if (!card->csr_remap) {
912                 printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
913                 ret = -ENOMEM;
914
915                 goto failed_remap_csr;
916         }
917
918         printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
919                card->csr_base, card->csr_remap, card->csr_len);
920
921 #ifdef CONFIG_MM_MAP_MEMORY
922         if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) {
923                 printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
924                 ret = -ENOMEM;
925
926                 goto failed_req_mem;
927         }
928
929         if (!(card->mem_remap = ioremap(card->mem_base, cards->mem_len))) {
930                 printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
931                 ret = -ENOMEM;
932
933                 goto failed_remap_mem;
934         }
935
936         printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number,
937                card->mem_base, card->mem_remap, card->mem_len);
938 #else
939         printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n",
940                card->card_number);
941 #endif
942         switch(card->dev->device) {
943         case 0x5415:
944                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
945                 magic_number = 0x59;
946                 break;
947
948         case 0x5425:
949                 card->flags |= UM_FLAG_NO_BYTE_STATUS;
950                 magic_number = 0x5C;
951                 break;
952
953         case 0x6155:
954                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
955                 magic_number = 0x99;
956                 break;
957
958         default:
959                 magic_number = 0x100;
960                 break;
961         }
962
963         if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
964                 printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
965                 ret = -ENOMEM;
966                 goto failed_magic;
967         }
968
969         card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
970                                                       PAGE_SIZE*2,
971                                                       &card->mm_pages[0].page_dma);
972         card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
973                                                       PAGE_SIZE*2,
974                                                       &card->mm_pages[1].page_dma);
975         if (card->mm_pages[0].desc == NULL ||
976             card->mm_pages[1].desc == NULL) {
977                 printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
978                 goto failed_alloc;
979         }
980         reset_page(&card->mm_pages[0]);
981         reset_page(&card->mm_pages[1]);
982         card->Ready = 0;        /* page 0 is ready */
983         card->Active = -1;      /* no page is active */
984         card->bio = NULL;
985         card->biotail = &card->bio;
986
987         card->queue = blk_alloc_queue(GFP_KERNEL);
988         if (!card->queue)
989                 goto failed_alloc;
990
991         blk_queue_make_request(card->queue, mm_make_request);
992         card->queue->queuedata = card;
993         card->queue->unplug_fn = mm_unplug_device;
994
995         tasklet_init(&card->tasklet, process_page, (unsigned long)card);
996
997         card->check_batteries = 0;
998         
999         mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
1000         switch (mem_present) {
1001         case MEM_128_MB:
1002                 card->mm_size = 1024 * 128;
1003                 break;
1004         case MEM_256_MB:
1005                 card->mm_size = 1024 * 256;
1006                 break;
1007         case MEM_512_MB:
1008                 card->mm_size = 1024 * 512;
1009                 break;
1010         case MEM_1_GB:
1011                 card->mm_size = 1024 * 1024;
1012                 break;
1013         case MEM_2_GB:
1014                 card->mm_size = 1024 * 2048;
1015                 break;
1016         default:
1017                 card->mm_size = 0;
1018                 break;
1019         }
1020
1021         /* Clear the LED's we control */
1022         set_led(card, LED_REMOVE, LED_OFF);
1023         set_led(card, LED_FAULT, LED_OFF);
1024
1025         batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
1026
1027         card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
1028         card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
1029         card->battery[0].last_change = card->battery[1].last_change = jiffies;
1030
1031         if (card->flags & UM_FLAG_NO_BATT) 
1032                 printk(KERN_INFO "MM%d: Size %d KB\n",
1033                        card->card_number, card->mm_size);
1034         else {
1035                 printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
1036                        card->card_number, card->mm_size,
1037                        (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
1038                        card->battery[0].good ? "OK" : "FAILURE",
1039                        (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
1040                        card->battery[1].good ? "OK" : "FAILURE");
1041
1042                 set_fault_to_battery_status(card);
1043         }
1044
1045         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
1046         data = 0xffffffff;
1047         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
1048         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
1049         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
1050         data &= 0xfffffff0;
1051         data = ~data;
1052         data += 1;
1053
1054         card->win_size = data;
1055
1056
1057         if (request_irq(dev->irq, mm_interrupt, SA_SHIRQ, "pci-umem", card)) {
1058                 printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
1059                 ret = -ENODEV;
1060
1061                 goto failed_req_irq;
1062         }
1063
1064         card->irq = dev->irq;
1065         printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
1066                card->win_size, card->irq);
1067
1068         spin_lock_init(&card->lock);
1069
1070         pci_set_drvdata(dev, card);
1071
1072         if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
1073                 pci_write_cmd = 0x07;   /* then Memory Write command */
1074
1075         if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1076                 unsigned short cfg_command;
1077                 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1078                 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1079                 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1080         }
1081         pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1082
1083         num_cards++;
1084
1085         if (!get_userbit(card, MEMORY_INITIALIZED)) {
1086                 printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
1087                 card->init_size = 0;
1088         } else {
1089                 printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
1090                 card->init_size = card->mm_size;
1091         }
1092
1093         /* Enable ECC */
1094         writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1095
1096         return 0;
1097
1098  failed_req_irq:
1099  failed_alloc:
1100         if (card->mm_pages[0].desc)
1101                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1102                                     card->mm_pages[0].desc,
1103                                     card->mm_pages[0].page_dma);
1104         if (card->mm_pages[1].desc)
1105                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1106                                     card->mm_pages[1].desc,
1107                                     card->mm_pages[1].page_dma);
1108  failed_magic:
1109 #ifdef CONFIG_MM_MAP_MEMORY
1110         iounmap(card->mem_remap);
1111  failed_remap_mem:
1112         release_mem_region(card->mem_base, card->mem_len);
1113  failed_req_mem:
1114 #endif
1115         iounmap(card->csr_remap);
1116  failed_remap_csr:
1117         release_mem_region(card->csr_base, card->csr_len);
1118  failed_req_csr:
1119
1120         return ret;
1121 }
1122 /*
1123 -----------------------------------------------------------------------------------
1124 --                              mm_pci_remove
1125 -----------------------------------------------------------------------------------
1126 */
1127 static void mm_pci_remove(struct pci_dev *dev)
1128 {
1129         struct cardinfo *card = pci_get_drvdata(dev);
1130
1131         tasklet_kill(&card->tasklet);
1132         iounmap(card->csr_remap);
1133         release_mem_region(card->csr_base, card->csr_len);
1134 #ifdef CONFIG_MM_MAP_MEMORY
1135         iounmap(card->mem_remap);
1136         release_mem_region(card->mem_base, card->mem_len);
1137 #endif
1138         free_irq(card->irq, card);
1139
1140         if (card->mm_pages[0].desc)
1141                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1142                                     card->mm_pages[0].desc,
1143                                     card->mm_pages[0].page_dma);
1144         if (card->mm_pages[1].desc)
1145                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1146                                     card->mm_pages[1].desc,
1147                                     card->mm_pages[1].page_dma);
1148         blk_put_queue(card->queue);
1149 }
1150
1151 static const struct pci_device_id mm_pci_ids[] = { {
1152         .vendor =       PCI_VENDOR_ID_MICRO_MEMORY,
1153         .device =       PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
1154         }, {
1155         .vendor =       PCI_VENDOR_ID_MICRO_MEMORY,
1156         .device =       PCI_DEVICE_ID_MICRO_MEMORY_5425CN,
1157         }, {
1158         .vendor =       PCI_VENDOR_ID_MICRO_MEMORY,
1159         .device =       PCI_DEVICE_ID_MICRO_MEMORY_6155,
1160         }, {
1161         .vendor =       0x8086,
1162         .device =       0xB555,
1163         .subvendor=     0x1332,
1164         .subdevice=     0x5460,
1165         .class  =       0x050000,
1166         .class_mask=    0,
1167         }, { /* end: all zeroes */ }
1168 };
1169
1170 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1171
1172 static struct pci_driver mm_pci_driver = {
1173         .name =         "umem",
1174         .id_table =     mm_pci_ids,
1175         .probe =        mm_pci_probe,
1176         .remove =       mm_pci_remove,
1177 };
1178 /*
1179 -----------------------------------------------------------------------------------
1180 --                               mm_init
1181 -----------------------------------------------------------------------------------
1182 */
1183
1184 static int __init mm_init(void)
1185 {
1186         int retval, i;
1187         int err;
1188
1189         printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
1190
1191         retval = pci_module_init(&mm_pci_driver);
1192         if (retval)
1193                 return -ENOMEM;
1194
1195         err = major_nr = register_blkdev(0, "umem");
1196         if (err < 0)
1197                 return -EIO;
1198
1199         for (i = 0; i < num_cards; i++) {
1200                 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1201                 if (!mm_gendisk[i])
1202                         goto out;
1203         }
1204
1205         for (i = 0; i < num_cards; i++) {
1206                 struct gendisk *disk = mm_gendisk[i];
1207                 sprintf(disk->disk_name, "umem%c", 'a'+i);
1208                 sprintf(disk->devfs_name, "umem/card%d", i);
1209                 spin_lock_init(&cards[i].lock);
1210                 disk->major = major_nr;
1211                 disk->first_minor  = i << MM_SHIFT;
1212                 disk->fops = &mm_fops;
1213                 disk->private_data = &cards[i];
1214                 disk->queue = cards[i].queue;
1215                 set_capacity(disk, cards[i].mm_size << 1);
1216                 add_disk(disk);
1217         }
1218
1219         init_battery_timer();
1220         printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1221 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1222         return 0;
1223
1224 out:
1225         unregister_blkdev(major_nr, "umem");
1226         while (i--)
1227                 put_disk(mm_gendisk[i]);
1228         return -ENOMEM;
1229 }
1230 /*
1231 -----------------------------------------------------------------------------------
1232 --                             mm_cleanup
1233 -----------------------------------------------------------------------------------
1234 */
1235 static void __exit mm_cleanup(void)
1236 {
1237         int i;
1238
1239         del_battery_timer();
1240
1241         for (i=0; i < num_cards ; i++) {
1242                 del_gendisk(mm_gendisk[i]);
1243                 put_disk(mm_gendisk[i]);
1244         }
1245
1246         pci_unregister_driver(&mm_pci_driver);
1247
1248         unregister_blkdev(major_nr, "umem");
1249 }
1250
1251 module_init(mm_init);
1252 module_exit(mm_cleanup);
1253
1254 MODULE_AUTHOR(DRIVER_AUTHOR);
1255 MODULE_DESCRIPTION(DRIVER_DESC);
1256 MODULE_LICENSE("GPL");