Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / drivers / base / memory.c
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
25
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
28
29 static DEFINE_MUTEX(mem_sysfs_mutex);
30
31 #define MEMORY_CLASS_NAME       "memory"
32
33 static int sections_per_block;
34
35 static inline int base_memory_block_id(int section_nr)
36 {
37         return section_nr / sections_per_block;
38 }
39
40 static struct bus_type memory_subsys = {
41         .name = MEMORY_CLASS_NAME,
42         .dev_name = MEMORY_CLASS_NAME,
43 };
44
45 static BLOCKING_NOTIFIER_HEAD(memory_chain);
46
47 int register_memory_notifier(struct notifier_block *nb)
48 {
49         return blocking_notifier_chain_register(&memory_chain, nb);
50 }
51 EXPORT_SYMBOL(register_memory_notifier);
52
53 void unregister_memory_notifier(struct notifier_block *nb)
54 {
55         blocking_notifier_chain_unregister(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(unregister_memory_notifier);
58
59 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
60
61 int register_memory_isolate_notifier(struct notifier_block *nb)
62 {
63         return atomic_notifier_chain_register(&memory_isolate_chain, nb);
64 }
65 EXPORT_SYMBOL(register_memory_isolate_notifier);
66
67 void unregister_memory_isolate_notifier(struct notifier_block *nb)
68 {
69         atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
72
73 /*
74  * register_memory - Setup a sysfs device for a memory block
75  */
76 static
77 int register_memory(struct memory_block *memory)
78 {
79         int error;
80
81         memory->dev.bus = &memory_subsys;
82         memory->dev.id = memory->start_section_nr / sections_per_block;
83
84         error = device_register(&memory->dev);
85         return error;
86 }
87
88 static void
89 unregister_memory(struct memory_block *memory)
90 {
91         BUG_ON(memory->dev.bus != &memory_subsys);
92
93         /* drop the ref. we got in remove_memory_block() */
94         kobject_put(&memory->dev.kobj);
95         device_unregister(&memory->dev);
96 }
97
98 unsigned long __weak memory_block_size_bytes(void)
99 {
100         return MIN_MEMORY_BLOCK_SIZE;
101 }
102
103 static unsigned long get_memory_block_size(void)
104 {
105         unsigned long block_sz;
106
107         block_sz = memory_block_size_bytes();
108
109         /* Validate blk_sz is a power of 2 and not less than section size */
110         if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
111                 WARN_ON(1);
112                 block_sz = MIN_MEMORY_BLOCK_SIZE;
113         }
114
115         return block_sz;
116 }
117
118 /*
119  * use this as the physical section index that this memsection
120  * uses.
121  */
122
123 static ssize_t show_mem_start_phys_index(struct device *dev,
124                         struct device_attribute *attr, char *buf)
125 {
126         struct memory_block *mem =
127                 container_of(dev, struct memory_block, dev);
128         unsigned long phys_index;
129
130         phys_index = mem->start_section_nr / sections_per_block;
131         return sprintf(buf, "%08lx\n", phys_index);
132 }
133
134 static ssize_t show_mem_end_phys_index(struct device *dev,
135                         struct device_attribute *attr, char *buf)
136 {
137         struct memory_block *mem =
138                 container_of(dev, struct memory_block, dev);
139         unsigned long phys_index;
140
141         phys_index = mem->end_section_nr / sections_per_block;
142         return sprintf(buf, "%08lx\n", phys_index);
143 }
144
145 /*
146  * Show whether the section of memory is likely to be hot-removable
147  */
148 static ssize_t show_mem_removable(struct device *dev,
149                         struct device_attribute *attr, char *buf)
150 {
151         unsigned long i, pfn;
152         int ret = 1;
153         struct memory_block *mem =
154                 container_of(dev, struct memory_block, dev);
155
156         for (i = 0; i < sections_per_block; i++) {
157                 if (!present_section_nr(mem->start_section_nr + i))
158                         continue;
159                 pfn = section_nr_to_pfn(mem->start_section_nr + i);
160                 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
161         }
162
163         return sprintf(buf, "%d\n", ret);
164 }
165
166 /*
167  * online, offline, going offline, etc.
168  */
169 static ssize_t show_mem_state(struct device *dev,
170                         struct device_attribute *attr, char *buf)
171 {
172         struct memory_block *mem =
173                 container_of(dev, struct memory_block, dev);
174         ssize_t len = 0;
175
176         /*
177          * We can probably put these states in a nice little array
178          * so that they're not open-coded
179          */
180         switch (mem->state) {
181                 case MEM_ONLINE:
182                         len = sprintf(buf, "online\n");
183                         break;
184                 case MEM_OFFLINE:
185                         len = sprintf(buf, "offline\n");
186                         break;
187                 case MEM_GOING_OFFLINE:
188                         len = sprintf(buf, "going-offline\n");
189                         break;
190                 default:
191                         len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
192                                         mem->state);
193                         WARN_ON(1);
194                         break;
195         }
196
197         return len;
198 }
199
200 int memory_notify(unsigned long val, void *v)
201 {
202         return blocking_notifier_call_chain(&memory_chain, val, v);
203 }
204
205 int memory_isolate_notify(unsigned long val, void *v)
206 {
207         return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
208 }
209
210 /*
211  * The probe routines leave the pages reserved, just as the bootmem code does.
212  * Make sure they're still that way.
213  */
214 static bool pages_correctly_reserved(unsigned long start_pfn,
215                                         unsigned long nr_pages)
216 {
217         int i, j;
218         struct page *page;
219         unsigned long pfn = start_pfn;
220
221         /*
222          * memmap between sections is not contiguous except with
223          * SPARSEMEM_VMEMMAP. We lookup the page once per section
224          * and assume memmap is contiguous within each section
225          */
226         for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
227                 if (WARN_ON_ONCE(!pfn_valid(pfn)))
228                         return false;
229                 page = pfn_to_page(pfn);
230
231                 for (j = 0; j < PAGES_PER_SECTION; j++) {
232                         if (PageReserved(page + j))
233                                 continue;
234
235                         printk(KERN_WARNING "section number %ld page number %d "
236                                 "not reserved, was it already online?\n",
237                                 pfn_to_section_nr(pfn), j);
238
239                         return false;
240                 }
241         }
242
243         return true;
244 }
245
246 /*
247  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
248  * OK to have direct references to sparsemem variables in here.
249  */
250 static int
251 memory_block_action(unsigned long phys_index, unsigned long action)
252 {
253         unsigned long start_pfn, start_paddr;
254         unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
255         struct page *first_page;
256         int ret;
257
258         first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
259
260         switch (action) {
261                 case MEM_ONLINE:
262                         start_pfn = page_to_pfn(first_page);
263
264                         if (!pages_correctly_reserved(start_pfn, nr_pages))
265                                 return -EBUSY;
266
267                         ret = online_pages(start_pfn, nr_pages);
268                         break;
269                 case MEM_OFFLINE:
270                         start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
271                         ret = remove_memory(start_paddr,
272                                             nr_pages << PAGE_SHIFT);
273                         break;
274                 default:
275                         WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
276                              "%ld\n", __func__, phys_index, action, action);
277                         ret = -EINVAL;
278         }
279
280         return ret;
281 }
282
283 static int memory_block_change_state(struct memory_block *mem,
284                 unsigned long to_state, unsigned long from_state_req)
285 {
286         int ret = 0;
287
288         mutex_lock(&mem->state_mutex);
289
290         if (mem->state != from_state_req) {
291                 ret = -EINVAL;
292                 goto out;
293         }
294
295         if (to_state == MEM_OFFLINE)
296                 mem->state = MEM_GOING_OFFLINE;
297
298         ret = memory_block_action(mem->start_section_nr, to_state);
299
300         if (ret)
301                 mem->state = from_state_req;
302         else
303                 mem->state = to_state;
304
305 out:
306         mutex_unlock(&mem->state_mutex);
307         return ret;
308 }
309
310 static ssize_t
311 store_mem_state(struct device *dev,
312                 struct device_attribute *attr, const char *buf, size_t count)
313 {
314         struct memory_block *mem;
315         int ret = -EINVAL;
316
317         mem = container_of(dev, struct memory_block, dev);
318
319         if (!strncmp(buf, "online", min((int)count, 6)))
320                 ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
321         else if(!strncmp(buf, "offline", min((int)count, 7)))
322                 ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
323
324         if (ret)
325                 return ret;
326         return count;
327 }
328
329 /*
330  * phys_device is a bad name for this.  What I really want
331  * is a way to differentiate between memory ranges that
332  * are part of physical devices that constitute
333  * a complete removable unit or fru.
334  * i.e. do these ranges belong to the same physical device,
335  * s.t. if I offline all of these sections I can then
336  * remove the physical device?
337  */
338 static ssize_t show_phys_device(struct device *dev,
339                                 struct device_attribute *attr, char *buf)
340 {
341         struct memory_block *mem =
342                 container_of(dev, struct memory_block, dev);
343         return sprintf(buf, "%d\n", mem->phys_device);
344 }
345
346 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
347 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
348 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
349 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
350 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
351
352 #define mem_create_simple_file(mem, attr_name)  \
353         device_create_file(&mem->dev, &dev_attr_##attr_name)
354 #define mem_remove_simple_file(mem, attr_name)  \
355         device_remove_file(&mem->dev, &dev_attr_##attr_name)
356
357 /*
358  * Block size attribute stuff
359  */
360 static ssize_t
361 print_block_size(struct device *dev, struct device_attribute *attr,
362                  char *buf)
363 {
364         return sprintf(buf, "%lx\n", get_memory_block_size());
365 }
366
367 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
368
369 static int block_size_init(void)
370 {
371         return device_create_file(memory_subsys.dev_root,
372                                   &dev_attr_block_size_bytes);
373 }
374
375 /*
376  * Some architectures will have custom drivers to do this, and
377  * will not need to do it from userspace.  The fake hot-add code
378  * as well as ppc64 will do all of their discovery in userspace
379  * and will require this interface.
380  */
381 #ifdef CONFIG_ARCH_MEMORY_PROBE
382 static ssize_t
383 memory_probe_store(struct device *dev, struct device_attribute *attr,
384                    const char *buf, size_t count)
385 {
386         u64 phys_addr;
387         int nid;
388         int i, ret;
389         unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
390
391         phys_addr = simple_strtoull(buf, NULL, 0);
392
393         if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
394                 return -EINVAL;
395
396         for (i = 0; i < sections_per_block; i++) {
397                 nid = memory_add_physaddr_to_nid(phys_addr);
398                 ret = add_memory(nid, phys_addr,
399                                  PAGES_PER_SECTION << PAGE_SHIFT);
400                 if (ret)
401                         goto out;
402
403                 phys_addr += MIN_MEMORY_BLOCK_SIZE;
404         }
405
406         ret = count;
407 out:
408         return ret;
409 }
410 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
411
412 static int memory_probe_init(void)
413 {
414         return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
415 }
416 #else
417 static inline int memory_probe_init(void)
418 {
419         return 0;
420 }
421 #endif
422
423 #ifdef CONFIG_MEMORY_FAILURE
424 /*
425  * Support for offlining pages of memory
426  */
427
428 /* Soft offline a page */
429 static ssize_t
430 store_soft_offline_page(struct device *dev,
431                         struct device_attribute *attr,
432                         const char *buf, size_t count)
433 {
434         int ret;
435         u64 pfn;
436         if (!capable(CAP_SYS_ADMIN))
437                 return -EPERM;
438         if (strict_strtoull(buf, 0, &pfn) < 0)
439                 return -EINVAL;
440         pfn >>= PAGE_SHIFT;
441         if (!pfn_valid(pfn))
442                 return -ENXIO;
443         ret = soft_offline_page(pfn_to_page(pfn), 0);
444         return ret == 0 ? count : ret;
445 }
446
447 /* Forcibly offline a page, including killing processes. */
448 static ssize_t
449 store_hard_offline_page(struct device *dev,
450                         struct device_attribute *attr,
451                         const char *buf, size_t count)
452 {
453         int ret;
454         u64 pfn;
455         if (!capable(CAP_SYS_ADMIN))
456                 return -EPERM;
457         if (strict_strtoull(buf, 0, &pfn) < 0)
458                 return -EINVAL;
459         pfn >>= PAGE_SHIFT;
460         ret = __memory_failure(pfn, 0, 0);
461         return ret ? ret : count;
462 }
463
464 static DEVICE_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
465 static DEVICE_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
466
467 static __init int memory_fail_init(void)
468 {
469         int err;
470
471         err = device_create_file(memory_subsys.dev_root,
472                                 &dev_attr_soft_offline_page);
473         if (!err)
474                 err = device_create_file(memory_subsys.dev_root,
475                                 &dev_attr_hard_offline_page);
476         return err;
477 }
478 #else
479 static inline int memory_fail_init(void)
480 {
481         return 0;
482 }
483 #endif
484
485 /*
486  * Note that phys_device is optional.  It is here to allow for
487  * differentiation between which *physical* devices each
488  * section belongs to...
489  */
490 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
491 {
492         return 0;
493 }
494
495 /*
496  * A reference for the returned object is held and the reference for the
497  * hinted object is released.
498  */
499 struct memory_block *find_memory_block_hinted(struct mem_section *section,
500                                               struct memory_block *hint)
501 {
502         int block_id = base_memory_block_id(__section_nr(section));
503         struct device *hintdev = hint ? &hint->dev : NULL;
504         struct device *dev;
505
506         dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
507         if (hint)
508                 put_device(&hint->dev);
509         if (!dev)
510                 return NULL;
511         return container_of(dev, struct memory_block, dev);
512 }
513
514 /*
515  * For now, we have a linear search to go find the appropriate
516  * memory_block corresponding to a particular phys_index. If
517  * this gets to be a real problem, we can always use a radix
518  * tree or something here.
519  *
520  * This could be made generic for all device subsystems.
521  */
522 struct memory_block *find_memory_block(struct mem_section *section)
523 {
524         return find_memory_block_hinted(section, NULL);
525 }
526
527 static int init_memory_block(struct memory_block **memory,
528                              struct mem_section *section, unsigned long state)
529 {
530         struct memory_block *mem;
531         unsigned long start_pfn;
532         int scn_nr;
533         int ret = 0;
534
535         mem = kzalloc(sizeof(*mem), GFP_KERNEL);
536         if (!mem)
537                 return -ENOMEM;
538
539         scn_nr = __section_nr(section);
540         mem->start_section_nr =
541                         base_memory_block_id(scn_nr) * sections_per_block;
542         mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
543         mem->state = state;
544         mem->section_count++;
545         mutex_init(&mem->state_mutex);
546         start_pfn = section_nr_to_pfn(mem->start_section_nr);
547         mem->phys_device = arch_get_memory_phys_device(start_pfn);
548
549         ret = register_memory(mem);
550         if (!ret)
551                 ret = mem_create_simple_file(mem, phys_index);
552         if (!ret)
553                 ret = mem_create_simple_file(mem, end_phys_index);
554         if (!ret)
555                 ret = mem_create_simple_file(mem, state);
556         if (!ret)
557                 ret = mem_create_simple_file(mem, phys_device);
558         if (!ret)
559                 ret = mem_create_simple_file(mem, removable);
560
561         *memory = mem;
562         return ret;
563 }
564
565 static int add_memory_section(int nid, struct mem_section *section,
566                         unsigned long state, enum mem_add_context context)
567 {
568         struct memory_block *mem;
569         int ret = 0;
570
571         mutex_lock(&mem_sysfs_mutex);
572
573         mem = find_memory_block(section);
574         if (mem) {
575                 mem->section_count++;
576                 kobject_put(&mem->dev.kobj);
577         } else
578                 ret = init_memory_block(&mem, section, state);
579
580         if (!ret) {
581                 if (context == HOTPLUG &&
582                     mem->section_count == sections_per_block)
583                         ret = register_mem_sect_under_node(mem, nid);
584         }
585
586         mutex_unlock(&mem_sysfs_mutex);
587         return ret;
588 }
589
590 int remove_memory_block(unsigned long node_id, struct mem_section *section,
591                 int phys_device)
592 {
593         struct memory_block *mem;
594
595         mutex_lock(&mem_sysfs_mutex);
596         mem = find_memory_block(section);
597         unregister_mem_sect_under_nodes(mem, __section_nr(section));
598
599         mem->section_count--;
600         if (mem->section_count == 0) {
601                 mem_remove_simple_file(mem, phys_index);
602                 mem_remove_simple_file(mem, end_phys_index);
603                 mem_remove_simple_file(mem, state);
604                 mem_remove_simple_file(mem, phys_device);
605                 mem_remove_simple_file(mem, removable);
606                 unregister_memory(mem);
607                 kfree(mem);
608         } else
609                 kobject_put(&mem->dev.kobj);
610
611         mutex_unlock(&mem_sysfs_mutex);
612         return 0;
613 }
614
615 /*
616  * need an interface for the VM to add new memory regions,
617  * but without onlining it.
618  */
619 int register_new_memory(int nid, struct mem_section *section)
620 {
621         return add_memory_section(nid, section, MEM_OFFLINE, HOTPLUG);
622 }
623
624 int unregister_memory_section(struct mem_section *section)
625 {
626         if (!present_section(section))
627                 return -EINVAL;
628
629         return remove_memory_block(0, section, 0);
630 }
631
632 /*
633  * Initialize the sysfs support for memory devices...
634  */
635 int __init memory_dev_init(void)
636 {
637         unsigned int i;
638         int ret;
639         int err;
640         unsigned long block_sz;
641
642         ret = subsys_system_register(&memory_subsys, NULL);
643         if (ret)
644                 goto out;
645
646         block_sz = get_memory_block_size();
647         sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
648
649         /*
650          * Create entries for memory sections that were found
651          * during boot and have been initialized
652          */
653         for (i = 0; i < NR_MEM_SECTIONS; i++) {
654                 if (!present_section_nr(i))
655                         continue;
656                 err = add_memory_section(0, __nr_to_section(i), MEM_ONLINE,
657                                          BOOT);
658                 if (!ret)
659                         ret = err;
660         }
661
662         err = memory_probe_init();
663         if (!ret)
664                 ret = err;
665         err = memory_fail_init();
666         if (!ret)
667                 ret = err;
668         err = block_size_init();
669         if (!ret)
670                 ret = err;
671 out:
672         if (ret)
673                 printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
674         return ret;
675 }