mm: thp: set the accessed flag for old pages on access fault
[pandora-kernel.git] / drivers / atm / horizon.c
1 /*
2   Madge Horizon ATM Adapter driver.
3   Copyright (C) 1995-1999  Madge Networks Ltd.
4   
5   This program is free software; you can redistribute it and/or modify
6   it under the terms of the GNU General Public License as published by
7   the Free Software Foundation; either version 2 of the License, or
8   (at your option) any later version.
9   
10   This program is distributed in the hope that it will be useful,
11   but WITHOUT ANY WARRANTY; without even the implied warranty of
12   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13   GNU General Public License for more details.
14   
15   You should have received a copy of the GNU General Public License
16   along with this program; if not, write to the Free Software
17   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18   
19   The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20   system and in the file COPYING in the Linux kernel source.
21 */
22
23 /*
24   IMPORTANT NOTE: Madge Networks no longer makes the adapters
25   supported by this driver and makes no commitment to maintain it.
26 */
27
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/errno.h>
33 #include <linux/atm.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/skbuff.h>
37 #include <linux/time.h>
38 #include <linux/delay.h>
39 #include <linux/uio.h>
40 #include <linux/init.h>
41 #include <linux/interrupt.h>
42 #include <linux/ioport.h>
43 #include <linux/wait.h>
44 #include <linux/slab.h>
45
46 #include <asm/system.h>
47 #include <asm/io.h>
48 #include <linux/atomic.h>
49 #include <asm/uaccess.h>
50 #include <asm/string.h>
51 #include <asm/byteorder.h>
52
53 #include "horizon.h"
54
55 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
56 #define description_string "Madge ATM Horizon [Ultra] driver"
57 #define version_string "1.2.1"
58
59 static inline void __init show_version (void) {
60   printk ("%s version %s\n", description_string, version_string);
61 }
62
63 /*
64   
65   CREDITS
66   
67   Driver and documentation by:
68   
69   Chris Aston        Madge Networks
70   Giuliano Procida   Madge Networks
71   Simon Benham       Madge Networks
72   Simon Johnson      Madge Networks
73   Various Others     Madge Networks
74   
75   Some inspiration taken from other drivers by:
76   
77   Alexandru Cucos    UTBv
78   Kari Mettinen      University of Helsinki
79   Werner Almesberger EPFL LRC
80   
81   Theory of Operation
82   
83   I Hardware, detection, initialisation and shutdown.
84   
85   1. Supported Hardware
86   
87   This driver should handle all variants of the PCI Madge ATM adapters
88   with the Horizon chipset. These are all PCI cards supporting PIO, BM
89   DMA and a form of MMIO (registers only, not internal RAM).
90   
91   The driver is only known to work with SONET and UTP Horizon Ultra
92   cards at 155Mb/s. However, code is in place to deal with both the
93   original Horizon and 25Mb/s operation.
94   
95   There are two revisions of the Horizon ASIC: the original and the
96   Ultra. Details of hardware bugs are in section III.
97   
98   The ASIC version can be distinguished by chip markings but is NOT
99   indicated by the PCI revision (all adapters seem to have PCI rev 1).
100   
101   I believe that:
102   
103   Horizon       => Collage  25 PCI Adapter (UTP and STP)
104   Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
105   Ambassador x  => Collage 155 PCI Server (completely different)
106   
107   Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
108   have a Madge B154 plus glue logic serializer. I have also found a
109   really ancient version of this with slightly different glue. It
110   comes with the revision 0 (140-025-01) ASIC.
111   
112   Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
113   output (UTP) or an HP HFBR 5205 output (SONET). It has either
114   Madge's SAMBA framer or a SUNI-lite device (early versions). It
115   comes with the revision 1 (140-027-01) ASIC.
116   
117   2. Detection
118   
119   All Horizon-based cards present with the same PCI Vendor and Device
120   IDs. The standard Linux 2.2 PCI API is used to locate any cards and
121   to enable bus-mastering (with appropriate latency).
122   
123   ATM_LAYER_STATUS in the control register distinguishes between the
124   two possible physical layers (25 and 155). It is not clear whether
125   the 155 cards can also operate at 25Mbps. We rely on the fact that a
126   card operates at 155 if and only if it has the newer Horizon Ultra
127   ASIC.
128   
129   For 155 cards the two possible framers are probed for and then set
130   up for loop-timing.
131   
132   3. Initialisation
133   
134   The card is reset and then put into a known state. The physical
135   layer is configured for normal operation at the appropriate speed;
136   in the case of the 155 cards, the framer is initialised with
137   line-based timing; the internal RAM is zeroed and the allocation of
138   buffers for RX and TX is made; the Burnt In Address is read and
139   copied to the ATM ESI; various policy settings for RX (VPI bits,
140   unknown VCs, oam cells) are made. Ideally all policy items should be
141   configurable at module load (if not actually on-demand), however,
142   only the vpi vs vci bit allocation can be specified at insmod.
143   
144   4. Shutdown
145   
146   This is in response to module_cleaup. No VCs are in use and the card
147   should be idle; it is reset.
148   
149   II Driver software (as it should be)
150   
151   0. Traffic Parameters
152   
153   The traffic classes (not an enumeration) are currently: ATM_NONE (no
154   traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
155   (compatible with everything). Together with (perhaps only some of)
156   the following items they make up the traffic specification.
157   
158   struct atm_trafprm {
159     unsigned char traffic_class; traffic class (ATM_UBR, ...)
160     int           max_pcr;       maximum PCR in cells per second
161     int           pcr;           desired PCR in cells per second
162     int           min_pcr;       minimum PCR in cells per second
163     int           max_cdv;       maximum CDV in microseconds
164     int           max_sdu;       maximum SDU in bytes
165   };
166   
167   Note that these denote bandwidth available not bandwidth used; the
168   possibilities according to ATMF are:
169   
170   Real Time (cdv and max CDT given)
171   
172   CBR(pcr)             pcr bandwidth always available
173   rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
174   
175   Non Real Time
176   
177   nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
178   UBR()
179   ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
180   
181   mbs is max burst size (bucket)
182   pcr and scr have associated cdvt values
183   mcr is like scr but has no cdtv
184   cdtv may differ at each hop
185   
186   Some of the above items are qos items (as opposed to traffic
187   parameters). We have nothing to do with qos. All except ABR can have
188   their traffic parameters converted to GCRA parameters. The GCRA may
189   be implemented as a (real-number) leaky bucket. The GCRA can be used
190   in complicated ways by switches and in simpler ways by end-stations.
191   It can be used both to filter incoming cells and shape out-going
192   cells.
193   
194   ATM Linux actually supports:
195   
196   ATM_NONE() (no traffic in this direction)
197   ATM_UBR(max_frame_size)
198   ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
199   
200   0 or ATM_MAX_PCR are used to indicate maximum available PCR
201   
202   A traffic specification consists of the AAL type and separate
203   traffic specifications for either direction. In ATM Linux it is:
204   
205   struct atm_qos {
206   struct atm_trafprm txtp;
207   struct atm_trafprm rxtp;
208   unsigned char aal;
209   };
210   
211   AAL types are:
212   
213   ATM_NO_AAL    AAL not specified
214   ATM_AAL0      "raw" ATM cells
215   ATM_AAL1      AAL1 (CBR)
216   ATM_AAL2      AAL2 (VBR)
217   ATM_AAL34     AAL3/4 (data)
218   ATM_AAL5      AAL5 (data)
219   ATM_SAAL      signaling AAL
220   
221   The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
222   it does not implement AAL 3/4 SAR and it has a different notion of
223   "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
224   supported by this driver.
225   
226   The Horizon has limited support for ABR (including UBR), VBR and
227   CBR. Each TX channel has a bucket (containing up to 31 cell units)
228   and two timers (PCR and SCR) associated with it that can be used to
229   govern cell emissions and host notification (in the case of ABR this
230   is presumably so that RM cells may be emitted at appropriate times).
231   The timers may either be disabled or may be set to any of 240 values
232   (determined by the clock crystal, a fixed (?) per-device divider, a
233   configurable divider and a configurable timer preload value).
234   
235   At the moment only UBR and CBR are supported by the driver. VBR will
236   be supported as soon as ATM for Linux supports it. ABR support is
237   very unlikely as RM cell handling is completely up to the driver.
238   
239   1. TX (TX channel setup and TX transfer)
240   
241   The TX half of the driver owns the TX Horizon registers. The TX
242   component in the IRQ handler is the BM completion handler. This can
243   only be entered when tx_busy is true (enforced by hardware). The
244   other TX component can only be entered when tx_busy is false
245   (enforced by driver). So TX is single-threaded.
246   
247   Apart from a minor optimisation to not re-select the last channel,
248   the TX send component works as follows:
249   
250   Atomic test and set tx_busy until we succeed; we should implement
251   some sort of timeout so that tx_busy will never be stuck at true.
252   
253   If no TX channel is set up for this VC we wait for an idle one (if
254   necessary) and set it up.
255   
256   At this point we have a TX channel ready for use. We wait for enough
257   buffers to become available then start a TX transmit (set the TX
258   descriptor, schedule transfer, exit).
259   
260   The IRQ component handles TX completion (stats, free buffer, tx_busy
261   unset, exit). We also re-schedule further transfers for the same
262   frame if needed.
263   
264   TX setup in more detail:
265   
266   TX open is a nop, the relevant information is held in the hrz_vcc
267   (vcc->dev_data) structure and is "cached" on the card.
268   
269   TX close gets the TX lock and clears the channel from the "cache".
270   
271   2. RX (Data Available and RX transfer)
272   
273   The RX half of the driver owns the RX registers. There are two RX
274   components in the IRQ handler: the data available handler deals with
275   fresh data that has arrived on the card, the BM completion handler
276   is very similar to the TX completion handler. The data available
277   handler grabs the rx_lock and it is only released once the data has
278   been discarded or completely transferred to the host. The BM
279   completion handler only runs when the lock is held; the data
280   available handler is locked out over the same period.
281   
282   Data available on the card triggers an interrupt. If the data is not
283   suitable for our existing RX channels or we cannot allocate a buffer
284   it is flushed. Otherwise an RX receive is scheduled. Multiple RX
285   transfers may be scheduled for the same frame.
286   
287   RX setup in more detail:
288   
289   RX open...
290   RX close...
291   
292   III Hardware Bugs
293   
294   0. Byte vs Word addressing of adapter RAM.
295   
296   A design feature; see the .h file (especially the memory map).
297   
298   1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
299   
300   The host must not start a transmit direction transfer at a
301   non-four-byte boundary in host memory. Instead the host should
302   perform a byte, or a two byte, or one byte followed by two byte
303   transfer in order to start the rest of the transfer on a four byte
304   boundary. RX is OK.
305   
306   Simultaneous transmit and receive direction bus master transfers are
307   not allowed.
308   
309   The simplest solution to these two is to always do PIO (never DMA)
310   in the TX direction on the original Horizon. More complicated
311   solutions are likely to hurt my brain.
312   
313   2. Loss of buffer on close VC
314   
315   When a VC is being closed, the buffer associated with it is not
316   returned to the pool. The host must store the reference to this
317   buffer and when opening a new VC then give it to that new VC.
318   
319   The host intervention currently consists of stacking such a buffer
320   pointer at VC close and checking the stack at VC open.
321   
322   3. Failure to close a VC
323   
324   If a VC is currently receiving a frame then closing the VC may fail
325   and the frame continues to be received.
326   
327   The solution is to make sure any received frames are flushed when
328   ready. This is currently done just before the solution to 2.
329   
330   4. PCI bus (original Horizon only, fixed in Ultra)
331   
332   Reading from the data port prior to initialisation will hang the PCI
333   bus. Just don't do that then! We don't.
334   
335   IV To Do List
336   
337   . Timer code may be broken.
338   
339   . Allow users to specify buffer allocation split for TX and RX.
340   
341   . Deal once and for all with buggy VC close.
342   
343   . Handle interrupted and/or non-blocking operations.
344   
345   . Change some macros to functions and move from .h to .c.
346   
347   . Try to limit the number of TX frames each VC may have queued, in
348     order to reduce the chances of TX buffer exhaustion.
349   
350   . Implement VBR (bucket and timers not understood) and ABR (need to
351     do RM cells manually); also no Linux support for either.
352   
353   . Implement QoS changes on open VCs (involves extracting parts of VC open
354     and close into separate functions and using them to make changes).
355   
356 */
357
358 /********** globals **********/
359
360 static void do_housekeeping (unsigned long arg);
361
362 static unsigned short debug = 0;
363 static unsigned short vpi_bits = 0;
364 static int max_tx_size = 9000;
365 static int max_rx_size = 9000;
366 static unsigned char pci_lat = 0;
367
368 /********** access functions **********/
369
370 /* Read / Write Horizon registers */
371 static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
372   outl (cpu_to_le32 (data), dev->iobase + reg);
373 }
374
375 static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
376   return le32_to_cpu (inl (dev->iobase + reg));
377 }
378
379 static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
380   outw (cpu_to_le16 (data), dev->iobase + reg);
381 }
382
383 static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
384   return le16_to_cpu (inw (dev->iobase + reg));
385 }
386
387 static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
388   outsb (dev->iobase + reg, addr, len);
389 }
390
391 static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
392   insb (dev->iobase + reg, addr, len);
393 }
394
395 /* Read / Write to a given address in Horizon buffer memory.
396    Interrupts must be disabled between the address register and data
397    port accesses as these must form an atomic operation. */
398 static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
399   // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
400   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
401   wr_regl (dev, MEMORY_PORT_OFF, data);
402 }
403
404 static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
405   // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
406   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
407   return rd_regl (dev, MEMORY_PORT_OFF);
408 }
409
410 static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
411   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
412   wr_regl (dev, MEMORY_PORT_OFF, data);
413 }
414
415 static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
416   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
417   return rd_regl (dev, MEMORY_PORT_OFF);
418 }
419
420 /********** specialised access functions **********/
421
422 /* RX */
423
424 static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
425   wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
426   return;
427 }
428
429 static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
430   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
431     ;
432   return;
433 }
434
435 static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
436   wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
437   return;
438 }
439
440 static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
441   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
442     ;
443   return;
444 }
445
446 /* TX */
447
448 static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
449   wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
450   return;
451 }
452
453 /* Update or query one configuration parameter of a particular channel. */
454
455 static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
456   wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
457            chan * TX_CHANNEL_CONFIG_MULT | mode);
458     wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
459     return;
460 }
461
462 static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
463   wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
464            chan * TX_CHANNEL_CONFIG_MULT | mode);
465     return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
466 }
467
468 /********** dump functions **********/
469
470 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
471 #ifdef DEBUG_HORIZON
472   unsigned int i;
473   unsigned char * data = skb->data;
474   PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
475   for (i=0; i<skb->len && i < 256;i++)
476     PRINTDM (DBG_DATA, "%02x ", data[i]);
477   PRINTDE (DBG_DATA,"");
478 #else
479   (void) prefix;
480   (void) vc;
481   (void) skb;
482 #endif
483   return;
484 }
485
486 static inline void dump_regs (hrz_dev * dev) {
487 #ifdef DEBUG_HORIZON
488   PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
489   PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
490   PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
491   PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
492   PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
493   PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
494 #else
495   (void) dev;
496 #endif
497   return;
498 }
499
500 static inline void dump_framer (hrz_dev * dev) {
501 #ifdef DEBUG_HORIZON
502   unsigned int i;
503   PRINTDB (DBG_REGS, "framer registers:");
504   for (i = 0; i < 0x10; ++i)
505     PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
506   PRINTDE (DBG_REGS,"");
507 #else
508   (void) dev;
509 #endif
510   return;
511 }
512
513 /********** VPI/VCI <-> (RX) channel conversions **********/
514
515 /* RX channels are 10 bit integers, these fns are quite paranoid */
516
517 static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
518   unsigned short vci_bits = 10 - vpi_bits;
519   if ((channel & RX_CHANNEL_MASK) == channel) {
520     *vci = channel & ((~0)<<vci_bits);
521     *vpi = channel >> vci_bits;
522     return channel ? 0 : -EINVAL;
523   }
524   return -EINVAL;
525 }
526
527 static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
528   unsigned short vci_bits = 10 - vpi_bits;
529   if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
530     *channel = vpi<<vci_bits | vci;
531     return *channel ? 0 : -EINVAL;
532   }
533   return -EINVAL;
534 }
535
536 /********** decode RX queue entries **********/
537
538 static inline u16 rx_q_entry_to_length (u32 x) {
539   return x & RX_Q_ENTRY_LENGTH_MASK;
540 }
541
542 static inline u16 rx_q_entry_to_rx_channel (u32 x) {
543   return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
544 }
545
546 /* Cell Transmit Rate Values
547  *
548  * the cell transmit rate (cells per sec) can be set to a variety of
549  * different values by specifying two parameters: a timer preload from
550  * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
551  * an exponent from 0 to 14; the special value 15 disables the timer).
552  *
553  * cellrate = baserate / (preload * 2^divider)
554  *
555  * The maximum cell rate that can be specified is therefore just the
556  * base rate. Halving the preload is equivalent to adding 1 to the
557  * divider and so values 1 to 8 of the preload are redundant except
558  * in the case of a maximal divider (14).
559  *
560  * Given a desired cell rate, an algorithm to determine the preload
561  * and divider is:
562  * 
563  * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
564  * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
565  *    if x <= 16 then set p = x, d = 0 (high rates), done
566  * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
567  *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
568  *    we find the range (n will be between 1 and 14), set d = n
569  * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
570  *
571  * The algorithm used below is a minor variant of the above.
572  *
573  * The base rate is derived from the oscillator frequency (Hz) using a
574  * fixed divider:
575  *
576  * baserate = freq / 32 in the case of some Unknown Card
577  * baserate = freq / 8  in the case of the Horizon        25
578  * baserate = freq / 8  in the case of the Horizon Ultra 155
579  *
580  * The Horizon cards have oscillators and base rates as follows:
581  *
582  * Card               Oscillator  Base Rate
583  * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
584  * Horizon        25  32 MHz      4       MHz
585  * Horizon Ultra 155  40 MHz      5       MHz
586  *
587  * The following defines give the base rates in Hz. These were
588  * previously a factor of 100 larger, no doubt someone was using
589  * cps*100.
590  */
591
592 #define BR_UKN 1031250l
593 #define BR_HRZ 4000000l
594 #define BR_ULT 5000000l
595
596 // d is an exponent
597 #define CR_MIND 0
598 #define CR_MAXD 14
599
600 // p ranges from 1 to a power of 2
601 #define CR_MAXPEXP 4
602  
603 static int make_rate (const hrz_dev * dev, u32 c, rounding r,
604                       u16 * bits, unsigned int * actual)
605 {
606         // note: rounding the rate down means rounding 'p' up
607         const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
608   
609         u32 div = CR_MIND;
610         u32 pre;
611   
612         // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
613         // the tests below. We could think harder about exact possibilities
614         // of failure...
615   
616         unsigned long br_man = br;
617         unsigned int br_exp = 0;
618   
619         PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
620                 r == round_up ? "up" : r == round_down ? "down" : "nearest");
621   
622         // avoid div by zero
623         if (!c) {
624                 PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
625                 return -EINVAL;
626         }
627   
628         while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
629                 br_man = br_man >> 1;
630                 ++br_exp;
631         }
632         // (br >>br_exp) <<br_exp == br and
633         // br_exp <= CR_MAXPEXP+CR_MIND
634   
635         if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
636                 // Equivalent to: B <= (c << (MAXPEXP+MIND))
637                 // take care of rounding
638                 switch (r) {
639                         case round_down:
640                                 pre = DIV_ROUND_UP(br, c<<div);
641                                 // but p must be non-zero
642                                 if (!pre)
643                                         pre = 1;
644                                 break;
645                         case round_nearest:
646                                 pre = DIV_ROUND_CLOSEST(br, c<<div);
647                                 // but p must be non-zero
648                                 if (!pre)
649                                         pre = 1;
650                                 break;
651                         default:        /* round_up */
652                                 pre = br/(c<<div);
653                                 // but p must be non-zero
654                                 if (!pre)
655                                         return -EINVAL;
656                 }
657                 PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
658                 goto got_it;
659         }
660   
661         // at this point we have
662         // d == MIND and (c << (MAXPEXP+MIND)) < B
663         while (div < CR_MAXD) {
664                 div++;
665                 if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
666                         // Equivalent to: B <= (c << (MAXPEXP+d))
667                         // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
668                         // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
669                         // MAXP/2 < B/c2^d <= MAXP
670                         // take care of rounding
671                         switch (r) {
672                                 case round_down:
673                                         pre = DIV_ROUND_UP(br, c<<div);
674                                         break;
675                                 case round_nearest:
676                                         pre = DIV_ROUND_CLOSEST(br, c<<div);
677                                         break;
678                                 default: /* round_up */
679                                         pre = br/(c<<div);
680                         }
681                         PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
682                         goto got_it;
683                 }
684         }
685         // at this point we have
686         // d == MAXD and (c << (MAXPEXP+MAXD)) < B
687         // but we cannot go any higher
688         // take care of rounding
689         if (r == round_down)
690                 return -EINVAL;
691         pre = 1 << CR_MAXPEXP;
692         PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
693 got_it:
694         // paranoia
695         if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
696                 PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
697                         div, pre);
698                 return -EINVAL;
699         } else {
700                 if (bits)
701                         *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
702                 if (actual) {
703                         *actual = DIV_ROUND_UP(br, pre<<div);
704                         PRINTD (DBG_QOS, "actual rate: %u", *actual);
705                 }
706                 return 0;
707         }
708 }
709
710 static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
711                                      u16 * bit_pattern, unsigned int * actual) {
712   unsigned int my_actual;
713   
714   PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
715           c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
716   
717   if (!actual)
718     // actual rate is not returned
719     actual = &my_actual;
720   
721   if (make_rate (dev, c, round_nearest, bit_pattern, actual))
722     // should never happen as round_nearest always succeeds
723     return -1;
724   
725   if (c - tol <= *actual && *actual <= c + tol)
726     // within tolerance
727     return 0;
728   else
729     // intolerant, try rounding instead
730     return make_rate (dev, c, r, bit_pattern, actual);
731 }
732
733 /********** Listen on a VC **********/
734
735 static int hrz_open_rx (hrz_dev * dev, u16 channel) {
736   // is there any guarantee that we don't get two simulataneous
737   // identical calls of this function from different processes? yes
738   // rate_lock
739   unsigned long flags;
740   u32 channel_type; // u16?
741   
742   u16 buf_ptr = RX_CHANNEL_IDLE;
743   
744   rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
745   
746   PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
747   
748   spin_lock_irqsave (&dev->mem_lock, flags);
749   channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
750   spin_unlock_irqrestore (&dev->mem_lock, flags);
751   
752   // very serious error, should never occur
753   if (channel_type != RX_CHANNEL_DISABLED) {
754     PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
755     return -EBUSY; // clean up?
756   }
757   
758   // Give back spare buffer
759   if (dev->noof_spare_buffers) {
760     buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
761     PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
762     // should never occur
763     if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
764       // but easy to recover from
765       PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
766       buf_ptr = RX_CHANNEL_IDLE;
767     }
768   } else {
769     PRINTD (DBG_VCC, "using IDLE buffer pointer");
770   }
771   
772   // Channel is currently disabled so change its status to idle
773   
774   // do we really need to save the flags again?
775   spin_lock_irqsave (&dev->mem_lock, flags);
776   
777   wr_mem (dev, &rx_desc->wr_buf_type,
778           buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
779   if (buf_ptr != RX_CHANNEL_IDLE)
780     wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
781   
782   spin_unlock_irqrestore (&dev->mem_lock, flags);
783   
784   // rxer->rate = make_rate (qos->peak_cells);
785   
786   PRINTD (DBG_FLOW, "hrz_open_rx ok");
787   
788   return 0;
789 }
790
791 #if 0
792 /********** change vc rate for a given vc **********/
793
794 static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
795   rxer->rate = make_rate (qos->peak_cells);
796 }
797 #endif
798
799 /********** free an skb (as per ATM device driver documentation) **********/
800
801 static void hrz_kfree_skb (struct sk_buff * skb) {
802   if (ATM_SKB(skb)->vcc->pop) {
803     ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
804   } else {
805     dev_kfree_skb_any (skb);
806   }
807 }
808
809 /********** cancel listen on a VC **********/
810
811 static void hrz_close_rx (hrz_dev * dev, u16 vc) {
812   unsigned long flags;
813   
814   u32 value;
815   
816   u32 r1, r2;
817   
818   rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
819   
820   int was_idle = 0;
821   
822   spin_lock_irqsave (&dev->mem_lock, flags);
823   value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
824   spin_unlock_irqrestore (&dev->mem_lock, flags);
825   
826   if (value == RX_CHANNEL_DISABLED) {
827     // I suppose this could happen once we deal with _NONE traffic properly
828     PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
829     return;
830   }
831   if (value == RX_CHANNEL_IDLE)
832     was_idle = 1;
833   
834   spin_lock_irqsave (&dev->mem_lock, flags);
835   
836   for (;;) {
837     wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
838     
839     if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
840       break;
841     
842     was_idle = 0;
843   }
844   
845   if (was_idle) {
846     spin_unlock_irqrestore (&dev->mem_lock, flags);
847     return;
848   }
849   
850   WAIT_FLUSH_RX_COMPLETE(dev);
851   
852   // XXX Is this all really necessary? We can rely on the rx_data_av
853   // handler to discard frames that remain queued for delivery. If the
854   // worry is that immediately reopening the channel (perhaps by a
855   // different process) may cause some data to be mis-delivered then
856   // there may still be a simpler solution (such as busy-waiting on
857   // rx_busy once the channel is disabled or before a new one is
858   // opened - does this leave any holes?). Arguably setting up and
859   // tearing down the TX and RX halves of each virtual circuit could
860   // most safely be done within ?x_busy protected regions.
861   
862   // OK, current changes are that Simon's marker is disabled and we DO
863   // look for NULL rxer elsewhere. The code here seems flush frames
864   // and then remember the last dead cell belonging to the channel
865   // just disabled - the cell gets relinked at the next vc_open.
866   // However, when all VCs are closed or only a few opened there are a
867   // handful of buffers that are unusable.
868   
869   // Does anyone feel like documenting spare_buffers properly?
870   // Does anyone feel like fixing this in a nicer way?
871   
872   // Flush any data which is left in the channel
873   for (;;) {
874     // Change the rx channel port to something different to the RX
875     // channel we are trying to close to force Horizon to flush the rx
876     // channel read and write pointers.
877     
878     u16 other = vc^(RX_CHANS/2);
879     
880     SELECT_RX_CHANNEL (dev, other);
881     WAIT_UPDATE_COMPLETE (dev);
882     
883     r1 = rd_mem (dev, &rx_desc->rd_buf_type);
884     
885     // Select this RX channel. Flush doesn't seem to work unless we
886     // select an RX channel before hand
887     
888     SELECT_RX_CHANNEL (dev, vc);
889     WAIT_UPDATE_COMPLETE (dev);
890     
891     // Attempt to flush a frame on this RX channel
892     
893     FLUSH_RX_CHANNEL (dev, vc);
894     WAIT_FLUSH_RX_COMPLETE (dev);
895     
896     // Force Horizon to flush rx channel read and write pointers as before
897     
898     SELECT_RX_CHANNEL (dev, other);
899     WAIT_UPDATE_COMPLETE (dev);
900     
901     r2 = rd_mem (dev, &rx_desc->rd_buf_type);
902     
903     PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
904     
905     if (r1 == r2) {
906       dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
907       break;
908     }
909   }
910   
911 #if 0
912   {
913     rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
914     rx_q_entry * rd_ptr = dev->rx_q_entry;
915     
916     PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
917     
918     while (rd_ptr != wr_ptr) {
919       u32 x = rd_mem (dev, (HDW *) rd_ptr);
920       
921       if (vc == rx_q_entry_to_rx_channel (x)) {
922         x |= SIMONS_DODGEY_MARKER;
923         
924         PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
925         
926         wr_mem (dev, (HDW *) rd_ptr, x);
927       }
928       
929       if (rd_ptr == dev->rx_q_wrap)
930         rd_ptr = dev->rx_q_reset;
931       else
932         rd_ptr++;
933     }
934   }
935 #endif
936   
937   spin_unlock_irqrestore (&dev->mem_lock, flags);
938   
939   return;
940 }
941
942 /********** schedule RX transfers **********/
943
944 // Note on tail recursion: a GCC developer said that it is not likely
945 // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
946 // are sure it does as you may otherwise overflow the kernel stack.
947
948 // giving this fn a return value would help GCC, allegedly
949
950 static void rx_schedule (hrz_dev * dev, int irq) {
951   unsigned int rx_bytes;
952   
953   int pio_instead = 0;
954 #ifndef TAILRECURSIONWORKS
955   pio_instead = 1;
956   while (pio_instead) {
957 #endif
958     // bytes waiting for RX transfer
959     rx_bytes = dev->rx_bytes;
960     
961 #if 0
962     spin_count = 0;
963     while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
964       PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
965       if (++spin_count > 10) {
966         PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
967         wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
968         clear_bit (rx_busy, &dev->flags);
969         hrz_kfree_skb (dev->rx_skb);
970         return;
971       }
972     }
973 #endif
974     
975     // this code follows the TX code but (at the moment) there is only
976     // one region - the skb itself. I don't know if this will change,
977     // but it doesn't hurt to have the code here, disabled.
978     
979     if (rx_bytes) {
980       // start next transfer within same region
981       if (rx_bytes <= MAX_PIO_COUNT) {
982         PRINTD (DBG_RX|DBG_BUS, "(pio)");
983         pio_instead = 1;
984       }
985       if (rx_bytes <= MAX_TRANSFER_COUNT) {
986         PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
987         dev->rx_bytes = 0;
988       } else {
989         PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
990         dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
991         rx_bytes = MAX_TRANSFER_COUNT;
992       }
993     } else {
994       // rx_bytes == 0 -- we're between regions
995       // regions remaining to transfer
996 #if 0
997       unsigned int rx_regions = dev->rx_regions;
998 #else
999       unsigned int rx_regions = 0;
1000 #endif
1001       
1002       if (rx_regions) {
1003 #if 0
1004         // start a new region
1005         dev->rx_addr = dev->rx_iovec->iov_base;
1006         rx_bytes = dev->rx_iovec->iov_len;
1007         ++dev->rx_iovec;
1008         dev->rx_regions = rx_regions - 1;
1009         
1010         if (rx_bytes <= MAX_PIO_COUNT) {
1011           PRINTD (DBG_RX|DBG_BUS, "(pio)");
1012           pio_instead = 1;
1013         }
1014         if (rx_bytes <= MAX_TRANSFER_COUNT) {
1015           PRINTD (DBG_RX|DBG_BUS, "(full region)");
1016           dev->rx_bytes = 0;
1017         } else {
1018           PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1019           dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1020           rx_bytes = MAX_TRANSFER_COUNT;
1021         }
1022 #endif
1023       } else {
1024         // rx_regions == 0
1025         // that's all folks - end of frame
1026         struct sk_buff * skb = dev->rx_skb;
1027         // dev->rx_iovec = 0;
1028         
1029         FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1030         
1031         dump_skb ("<<<", dev->rx_channel, skb);
1032         
1033         PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1034         
1035         {
1036           struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1037           // VC layer stats
1038           atomic_inc(&vcc->stats->rx);
1039           __net_timestamp(skb);
1040           // end of our responsibility
1041           vcc->push (vcc, skb);
1042         }
1043       }
1044     }
1045     
1046     // note: writing RX_COUNT clears any interrupt condition
1047     if (rx_bytes) {
1048       if (pio_instead) {
1049         if (irq)
1050           wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1051         rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1052       } else {
1053         wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1054         wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1055       }
1056       dev->rx_addr += rx_bytes;
1057     } else {
1058       if (irq)
1059         wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1060       // allow another RX thread to start
1061       YELLOW_LED_ON(dev);
1062       clear_bit (rx_busy, &dev->flags);
1063       PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1064     }
1065     
1066 #ifdef TAILRECURSIONWORKS
1067     // and we all bless optimised tail calls
1068     if (pio_instead)
1069       return rx_schedule (dev, 0);
1070     return;
1071 #else
1072     // grrrrrrr!
1073     irq = 0;
1074   }
1075   return;
1076 #endif
1077 }
1078
1079 /********** handle RX bus master complete events **********/
1080
1081 static void rx_bus_master_complete_handler (hrz_dev * dev) {
1082   if (test_bit (rx_busy, &dev->flags)) {
1083     rx_schedule (dev, 1);
1084   } else {
1085     PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1086     // clear interrupt condition on adapter
1087     wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1088   }
1089   return;
1090 }
1091
1092 /********** (queue to) become the next TX thread **********/
1093
1094 static int tx_hold (hrz_dev * dev) {
1095   PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1096   wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1097   PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1098   if (signal_pending (current))
1099     return -1;
1100   PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1101   return 0;
1102 }
1103
1104 /********** allow another TX thread to start **********/
1105
1106 static inline void tx_release (hrz_dev * dev) {
1107   clear_bit (tx_busy, &dev->flags);
1108   PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1109   wake_up_interruptible (&dev->tx_queue);
1110 }
1111
1112 /********** schedule TX transfers **********/
1113
1114 static void tx_schedule (hrz_dev * const dev, int irq) {
1115   unsigned int tx_bytes;
1116   
1117   int append_desc = 0;
1118   
1119   int pio_instead = 0;
1120 #ifndef TAILRECURSIONWORKS
1121   pio_instead = 1;
1122   while (pio_instead) {
1123 #endif
1124     // bytes in current region waiting for TX transfer
1125     tx_bytes = dev->tx_bytes;
1126     
1127 #if 0
1128     spin_count = 0;
1129     while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1130       PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1131       if (++spin_count > 10) {
1132         PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1133         wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1134         tx_release (dev);
1135         hrz_kfree_skb (dev->tx_skb);
1136         return;
1137       }
1138     }
1139 #endif
1140     
1141     if (tx_bytes) {
1142       // start next transfer within same region
1143       if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1144         PRINTD (DBG_TX|DBG_BUS, "(pio)");
1145         pio_instead = 1;
1146       }
1147       if (tx_bytes <= MAX_TRANSFER_COUNT) {
1148         PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1149         if (!dev->tx_iovec) {
1150           // end of last region
1151           append_desc = 1;
1152         }
1153         dev->tx_bytes = 0;
1154       } else {
1155         PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1156         dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1157         tx_bytes = MAX_TRANSFER_COUNT;
1158       }
1159     } else {
1160       // tx_bytes == 0 -- we're between regions
1161       // regions remaining to transfer
1162       unsigned int tx_regions = dev->tx_regions;
1163       
1164       if (tx_regions) {
1165         // start a new region
1166         dev->tx_addr = dev->tx_iovec->iov_base;
1167         tx_bytes = dev->tx_iovec->iov_len;
1168         ++dev->tx_iovec;
1169         dev->tx_regions = tx_regions - 1;
1170         
1171         if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1172           PRINTD (DBG_TX|DBG_BUS, "(pio)");
1173           pio_instead = 1;
1174         }
1175         if (tx_bytes <= MAX_TRANSFER_COUNT) {
1176           PRINTD (DBG_TX|DBG_BUS, "(full region)");
1177           dev->tx_bytes = 0;
1178         } else {
1179           PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1180           dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1181           tx_bytes = MAX_TRANSFER_COUNT;
1182         }
1183       } else {
1184         // tx_regions == 0
1185         // that's all folks - end of frame
1186         struct sk_buff * skb = dev->tx_skb;
1187         dev->tx_iovec = NULL;
1188         
1189         // VC layer stats
1190         atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1191         
1192         // free the skb
1193         hrz_kfree_skb (skb);
1194       }
1195     }
1196     
1197     // note: writing TX_COUNT clears any interrupt condition
1198     if (tx_bytes) {
1199       if (pio_instead) {
1200         if (irq)
1201           wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1202         wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1203         if (append_desc)
1204           wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1205       } else {
1206         wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1207         if (append_desc)
1208           wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1209         wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1210                  append_desc
1211                  ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1212                  : tx_bytes);
1213       }
1214       dev->tx_addr += tx_bytes;
1215     } else {
1216       if (irq)
1217         wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1218       YELLOW_LED_ON(dev);
1219       tx_release (dev);
1220     }
1221     
1222 #ifdef TAILRECURSIONWORKS
1223     // and we all bless optimised tail calls
1224     if (pio_instead)
1225       return tx_schedule (dev, 0);
1226     return;
1227 #else
1228     // grrrrrrr!
1229     irq = 0;
1230   }
1231   return;
1232 #endif
1233 }
1234
1235 /********** handle TX bus master complete events **********/
1236
1237 static void tx_bus_master_complete_handler (hrz_dev * dev) {
1238   if (test_bit (tx_busy, &dev->flags)) {
1239     tx_schedule (dev, 1);
1240   } else {
1241     PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1242     // clear interrupt condition on adapter
1243     wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1244   }
1245   return;
1246 }
1247
1248 /********** move RX Q pointer to next item in circular buffer **********/
1249
1250 // called only from IRQ sub-handler
1251 static u32 rx_queue_entry_next (hrz_dev * dev) {
1252   u32 rx_queue_entry;
1253   spin_lock (&dev->mem_lock);
1254   rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1255   if (dev->rx_q_entry == dev->rx_q_wrap)
1256     dev->rx_q_entry = dev->rx_q_reset;
1257   else
1258     dev->rx_q_entry++;
1259   wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1260   spin_unlock (&dev->mem_lock);
1261   return rx_queue_entry;
1262 }
1263
1264 /********** handle RX disabled by device **********/
1265
1266 static inline void rx_disabled_handler (hrz_dev * dev) {
1267   wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1268   // count me please
1269   PRINTK (KERN_WARNING, "RX was disabled!");
1270 }
1271
1272 /********** handle RX data received by device **********/
1273
1274 // called from IRQ handler
1275 static void rx_data_av_handler (hrz_dev * dev) {
1276   u32 rx_queue_entry;
1277   u32 rx_queue_entry_flags;
1278   u16 rx_len;
1279   u16 rx_channel;
1280   
1281   PRINTD (DBG_FLOW, "hrz_data_av_handler");
1282   
1283   // try to grab rx lock (not possible during RX bus mastering)
1284   if (test_and_set_bit (rx_busy, &dev->flags)) {
1285     PRINTD (DBG_RX, "locked out of rx lock");
1286     return;
1287   }
1288   PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1289   // lock is cleared if we fail now, o/w after bus master completion
1290   
1291   YELLOW_LED_OFF(dev);
1292   
1293   rx_queue_entry = rx_queue_entry_next (dev);
1294   
1295   rx_len = rx_q_entry_to_length (rx_queue_entry);
1296   rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1297   
1298   WAIT_FLUSH_RX_COMPLETE (dev);
1299   
1300   SELECT_RX_CHANNEL (dev, rx_channel);
1301   
1302   PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1303   rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1304   
1305   if (!rx_len) {
1306     // (at least) bus-mastering breaks if we try to handle a
1307     // zero-length frame, besides AAL5 does not support them
1308     PRINTK (KERN_ERR, "zero-length frame!");
1309     rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1310   }
1311   
1312   if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1313     PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1314   }
1315   if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1316     struct atm_vcc * atm_vcc;
1317     
1318     PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1319     
1320     atm_vcc = dev->rxer[rx_channel];
1321     // if no vcc is assigned to this channel, we should drop the frame
1322     // (is this what SIMONS etc. was trying to achieve?)
1323     
1324     if (atm_vcc) {
1325       
1326       if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1327         
1328         if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1329             
1330           struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1331           if (skb) {
1332             // remember this so we can push it later
1333             dev->rx_skb = skb;
1334             // remember this so we can flush it later
1335             dev->rx_channel = rx_channel;
1336             
1337             // prepare socket buffer
1338             skb_put (skb, rx_len);
1339             ATM_SKB(skb)->vcc = atm_vcc;
1340             
1341             // simple transfer
1342             // dev->rx_regions = 0;
1343             // dev->rx_iovec = 0;
1344             dev->rx_bytes = rx_len;
1345             dev->rx_addr = skb->data;
1346             PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1347                     skb->data, rx_len);
1348             
1349             // do the business
1350             rx_schedule (dev, 0);
1351             return;
1352             
1353           } else {
1354             PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1355           }
1356           
1357         } else {
1358           PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1359           // do we count this?
1360         }
1361         
1362       } else {
1363         PRINTK (KERN_WARNING, "dropped over-size frame");
1364         // do we count this?
1365       }
1366       
1367     } else {
1368       PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1369       // do we count this?
1370     }
1371     
1372   } else {
1373     // Wait update complete ? SPONG
1374   }
1375   
1376   // RX was aborted
1377   YELLOW_LED_ON(dev);
1378   
1379   FLUSH_RX_CHANNEL (dev,rx_channel);
1380   clear_bit (rx_busy, &dev->flags);
1381   
1382   return;
1383 }
1384
1385 /********** interrupt handler **********/
1386
1387 static irqreturn_t interrupt_handler(int irq, void *dev_id)
1388 {
1389   hrz_dev *dev = dev_id;
1390   u32 int_source;
1391   unsigned int irq_ok;
1392   
1393   PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1394   
1395   // definitely for us
1396   irq_ok = 0;
1397   while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1398           & INTERESTING_INTERRUPTS)) {
1399     // In the interests of fairness, the handlers below are
1400     // called in sequence and without immediate return to the head of
1401     // the while loop. This is only of issue for slow hosts (or when
1402     // debugging messages are on). Really slow hosts may find a fast
1403     // sender keeps them permanently in the IRQ handler. :(
1404     
1405     // (only an issue for slow hosts) RX completion goes before
1406     // rx_data_av as the former implies rx_busy and so the latter
1407     // would just abort. If it reschedules another transfer
1408     // (continuing the same frame) then it will not clear rx_busy.
1409     
1410     // (only an issue for slow hosts) TX completion goes before RX
1411     // data available as it is a much shorter routine - there is the
1412     // chance that any further transfers it schedules will be complete
1413     // by the time of the return to the head of the while loop
1414     
1415     if (int_source & RX_BUS_MASTER_COMPLETE) {
1416       ++irq_ok;
1417       PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1418       rx_bus_master_complete_handler (dev);
1419     }
1420     if (int_source & TX_BUS_MASTER_COMPLETE) {
1421       ++irq_ok;
1422       PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1423       tx_bus_master_complete_handler (dev);
1424     }
1425     if (int_source & RX_DATA_AV) {
1426       ++irq_ok;
1427       PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1428       rx_data_av_handler (dev);
1429     }
1430   }
1431   if (irq_ok) {
1432     PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1433   } else {
1434     PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1435   }
1436   
1437   PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1438   if (irq_ok)
1439         return IRQ_HANDLED;
1440   return IRQ_NONE;
1441 }
1442
1443 /********** housekeeping **********/
1444
1445 static void do_housekeeping (unsigned long arg) {
1446   // just stats at the moment
1447   hrz_dev * dev = (hrz_dev *) arg;
1448
1449   // collect device-specific (not driver/atm-linux) stats here
1450   dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1451   dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1452   dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1453   dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1454
1455   mod_timer (&dev->housekeeping, jiffies + HZ/10);
1456
1457   return;
1458 }
1459
1460 /********** find an idle channel for TX and set it up **********/
1461
1462 // called with tx_busy set
1463 static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1464   unsigned short idle_channels;
1465   short tx_channel = -1;
1466   unsigned int spin_count;
1467   PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1468   
1469   // better would be to fail immediately, the caller can then decide whether
1470   // to wait or drop (depending on whether this is UBR etc.)
1471   spin_count = 0;
1472   while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1473     PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1474     // delay a bit here
1475     if (++spin_count > 100) {
1476       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1477       return -EBUSY;
1478     }
1479   }
1480   
1481   // got an idle channel
1482   {
1483     // tx_idle ensures we look for idle channels in RR order
1484     int chan = dev->tx_idle;
1485     
1486     int keep_going = 1;
1487     while (keep_going) {
1488       if (idle_channels & (1<<chan)) {
1489         tx_channel = chan;
1490         keep_going = 0;
1491       }
1492       ++chan;
1493       if (chan == TX_CHANS)
1494         chan = 0;
1495     }
1496     
1497     dev->tx_idle = chan;
1498   }
1499   
1500   // set up the channel we found
1501   {
1502     // Initialise the cell header in the transmit channel descriptor
1503     // a.k.a. prepare the channel and remember that we have done so.
1504     
1505     tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1506     u32 rd_ptr;
1507     u32 wr_ptr;
1508     u16 channel = vcc->channel;
1509     
1510     unsigned long flags;
1511     spin_lock_irqsave (&dev->mem_lock, flags);
1512     
1513     // Update the transmit channel record.
1514     dev->tx_channel_record[tx_channel] = channel;
1515     
1516     // xBR channel
1517     update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1518                               vcc->tx_xbr_bits);
1519     
1520     // Update the PCR counter preload value etc.
1521     update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1522                               vcc->tx_pcr_bits);
1523
1524 #if 0
1525     if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1526       // SCR timer
1527       update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1528                                 vcc->tx_scr_bits);
1529       
1530       // Bucket size...
1531       update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1532                                 vcc->tx_bucket_bits);
1533       
1534       // ... and fullness
1535       update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1536                                 vcc->tx_bucket_bits);
1537     }
1538 #endif
1539
1540     // Initialise the read and write buffer pointers
1541     rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1542     wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1543     
1544     // idle TX channels should have identical pointers
1545     if (rd_ptr != wr_ptr) {
1546       PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1547       // spin_unlock... return -E...
1548       // I wonder if gcc would get rid of one of the pointer aliases
1549     }
1550     PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1551             rd_ptr, wr_ptr);
1552     
1553     switch (vcc->aal) {
1554       case aal0:
1555         PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1556         rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1557         wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1558         break;
1559       case aal34:
1560         PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1561         rd_ptr |= CHANNEL_TYPE_AAL3_4;
1562         wr_ptr |= CHANNEL_TYPE_AAL3_4;
1563         break;
1564       case aal5:
1565         rd_ptr |= CHANNEL_TYPE_AAL5;
1566         wr_ptr |= CHANNEL_TYPE_AAL5;
1567         // Initialise the CRC
1568         wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1569         break;
1570     }
1571     
1572     wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1573     wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1574     
1575     // Write the Cell Header
1576     // Payload Type, CLP and GFC would go here if non-zero
1577     wr_mem (dev, &tx_desc->cell_header, channel);
1578     
1579     spin_unlock_irqrestore (&dev->mem_lock, flags);
1580   }
1581   
1582   return tx_channel;
1583 }
1584
1585 /********** send a frame **********/
1586
1587 static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1588   unsigned int spin_count;
1589   int free_buffers;
1590   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1591   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1592   u16 channel = vcc->channel;
1593   
1594   u32 buffers_required;
1595   
1596   /* signed for error return */
1597   short tx_channel;
1598   
1599   PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1600           channel, skb->data, skb->len);
1601   
1602   dump_skb (">>>", channel, skb);
1603   
1604   if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1605     PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1606     hrz_kfree_skb (skb);
1607     return -EIO;
1608   }
1609   
1610   // don't understand this
1611   ATM_SKB(skb)->vcc = atm_vcc;
1612   
1613   if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1614     PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1615     hrz_kfree_skb (skb);
1616     return -EIO;
1617   }
1618   
1619   if (!channel) {
1620     PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1621     hrz_kfree_skb (skb);
1622     return -EIO;
1623   }
1624   
1625 #if 0
1626   {
1627     // where would be a better place for this? housekeeping?
1628     u16 status;
1629     pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1630     if (status & PCI_STATUS_REC_MASTER_ABORT) {
1631       PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1632       status &= ~PCI_STATUS_REC_MASTER_ABORT;
1633       pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1634       if (test_bit (tx_busy, &dev->flags)) {
1635         hrz_kfree_skb (dev->tx_skb);
1636         tx_release (dev);
1637       }
1638     }
1639   }
1640 #endif
1641   
1642 #ifdef DEBUG_HORIZON
1643   /* wey-hey! */
1644   if (channel == 1023) {
1645     unsigned int i;
1646     unsigned short d = 0;
1647     char * s = skb->data;
1648     if (*s++ == 'D') {
1649         for (i = 0; i < 4; ++i)
1650                 d = (d << 4) | hex_to_bin(*s++);
1651       PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1652     }
1653   }
1654 #endif
1655   
1656   // wait until TX is free and grab lock
1657   if (tx_hold (dev)) {
1658     hrz_kfree_skb (skb);
1659     return -ERESTARTSYS;
1660   }
1661  
1662   // Wait for enough space to be available in transmit buffer memory.
1663   
1664   // should be number of cells needed + 2 (according to hardware docs)
1665   // = ((framelen+8)+47) / 48 + 2
1666   // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1667   buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1668   
1669   // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1670   spin_count = 0;
1671   while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1672     PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1673             free_buffers, buffers_required);
1674     // what is the appropriate delay? implement a timeout? (depending on line speed?)
1675     // mdelay (1);
1676     // what happens if we kill (current_pid, SIGKILL) ?
1677     schedule();
1678     if (++spin_count > 1000) {
1679       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1680               free_buffers, buffers_required);
1681       tx_release (dev);
1682       hrz_kfree_skb (skb);
1683       return -ERESTARTSYS;
1684     }
1685   }
1686   
1687   // Select a channel to transmit the frame on.
1688   if (channel == dev->last_vc) {
1689     PRINTD (DBG_TX, "last vc hack: hit");
1690     tx_channel = dev->tx_last;
1691   } else {
1692     PRINTD (DBG_TX, "last vc hack: miss");
1693     // Are we currently transmitting this VC on one of the channels?
1694     for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1695       if (dev->tx_channel_record[tx_channel] == channel) {
1696         PRINTD (DBG_TX, "vc already on channel: hit");
1697         break;
1698       }
1699     if (tx_channel == TX_CHANS) { 
1700       PRINTD (DBG_TX, "vc already on channel: miss");
1701       // Find and set up an idle channel.
1702       tx_channel = setup_idle_tx_channel (dev, vcc);
1703       if (tx_channel < 0) {
1704         PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1705         tx_release (dev);
1706         return tx_channel;
1707       }
1708     }
1709     
1710     PRINTD (DBG_TX, "got channel");
1711     SELECT_TX_CHANNEL(dev, tx_channel);
1712     
1713     dev->last_vc = channel;
1714     dev->tx_last = tx_channel;
1715   }
1716   
1717   PRINTD (DBG_TX, "using channel %u", tx_channel);
1718   
1719   YELLOW_LED_OFF(dev);
1720   
1721   // TX start transfer
1722   
1723   {
1724     unsigned int tx_len = skb->len;
1725     unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1726     // remember this so we can free it later
1727     dev->tx_skb = skb;
1728     
1729     if (tx_iovcnt) {
1730       // scatter gather transfer
1731       dev->tx_regions = tx_iovcnt;
1732       dev->tx_iovec = NULL;             /* @@@ needs rewritten */
1733       dev->tx_bytes = 0;
1734       PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1735               skb->data, tx_len);
1736       tx_release (dev);
1737       hrz_kfree_skb (skb);
1738       return -EIO;
1739     } else {
1740       // simple transfer
1741       dev->tx_regions = 0;
1742       dev->tx_iovec = NULL;
1743       dev->tx_bytes = tx_len;
1744       dev->tx_addr = skb->data;
1745       PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1746               skb->data, tx_len);
1747     }
1748     
1749     // and do the business
1750     tx_schedule (dev, 0);
1751     
1752   }
1753   
1754   return 0;
1755 }
1756
1757 /********** reset a card **********/
1758
1759 static void hrz_reset (const hrz_dev * dev) {
1760   u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1761   
1762   // why not set RESET_HORIZON to one and wait for the card to
1763   // reassert that bit as zero? Like so:
1764   control_0_reg = control_0_reg & RESET_HORIZON;
1765   wr_regl (dev, CONTROL_0_REG, control_0_reg);
1766   while (control_0_reg & RESET_HORIZON)
1767     control_0_reg = rd_regl (dev, CONTROL_0_REG);
1768   
1769   // old reset code retained:
1770   wr_regl (dev, CONTROL_0_REG, control_0_reg |
1771            RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1772   // just guessing here
1773   udelay (1000);
1774   
1775   wr_regl (dev, CONTROL_0_REG, control_0_reg);
1776 }
1777
1778 /********** read the burnt in address **********/
1779
1780 static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1781 {
1782         wr_regl (dev, CONTROL_0_REG, ctrl);
1783         udelay (5);
1784 }
1785   
1786 static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1787 {
1788         // DI must be valid around rising SK edge
1789         WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1790         WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1791 }
1792
1793 static u16 __devinit read_bia (const hrz_dev * dev, u16 addr)
1794 {
1795   u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1796   
1797   const unsigned int addr_bits = 6;
1798   const unsigned int data_bits = 16;
1799   
1800   unsigned int i;
1801   
1802   u16 res;
1803   
1804   ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1805   WRITE_IT_WAIT(dev, ctrl);
1806   
1807   // wake Serial EEPROM and send 110 (READ) command
1808   ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1809   CLOCK_IT(dev, ctrl);
1810   
1811   ctrl |= SEEPROM_DI;
1812   CLOCK_IT(dev, ctrl);
1813   
1814   ctrl &= ~SEEPROM_DI;
1815   CLOCK_IT(dev, ctrl);
1816   
1817   for (i=0; i<addr_bits; i++) {
1818     if (addr & (1 << (addr_bits-1)))
1819       ctrl |= SEEPROM_DI;
1820     else
1821       ctrl &= ~SEEPROM_DI;
1822     
1823     CLOCK_IT(dev, ctrl);
1824     
1825     addr = addr << 1;
1826   }
1827   
1828   // we could check that we have DO = 0 here
1829   ctrl &= ~SEEPROM_DI;
1830   
1831   res = 0;
1832   for (i=0;i<data_bits;i++) {
1833     res = res >> 1;
1834     
1835     CLOCK_IT(dev, ctrl);
1836     
1837     if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1838       res |= (1 << (data_bits-1));
1839   }
1840   
1841   ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1842   WRITE_IT_WAIT(dev, ctrl);
1843   
1844   return res;
1845 }
1846
1847 /********** initialise a card **********/
1848
1849 static int __devinit hrz_init (hrz_dev * dev) {
1850   int onefivefive;
1851   
1852   u16 chan;
1853   
1854   int buff_count;
1855   
1856   HDW * mem;
1857   
1858   cell_buf * tx_desc;
1859   cell_buf * rx_desc;
1860   
1861   u32 ctrl;
1862   
1863   ctrl = rd_regl (dev, CONTROL_0_REG);
1864   PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1865   onefivefive = ctrl & ATM_LAYER_STATUS;
1866   
1867   if (onefivefive)
1868     printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1869   else
1870     printk (DEV_LABEL ": Horizon (at 25 MBps)");
1871   
1872   printk (":");
1873   // Reset the card to get everything in a known state
1874   
1875   printk (" reset");
1876   hrz_reset (dev);
1877   
1878   // Clear all the buffer memory
1879   
1880   printk (" clearing memory");
1881   
1882   for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1883     wr_mem (dev, mem, 0);
1884   
1885   printk (" tx channels");
1886   
1887   // All transmit eight channels are set up as AAL5 ABR channels with
1888   // a 16us cell spacing. Why?
1889   
1890   // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1891   // buffer at 110h etc.
1892   
1893   for (chan = 0; chan < TX_CHANS; ++chan) {
1894     tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1895     cell_buf * buf = &memmap->inittxbufs[chan];
1896     
1897     // initialise the read and write buffer pointers
1898     wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1899     wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1900     
1901     // set the status of the initial buffers to empty
1902     wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1903   }
1904   
1905   // Use space bufn3 at the moment for tx buffers
1906   
1907   printk (" tx buffers");
1908   
1909   tx_desc = memmap->bufn3;
1910   
1911   wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1912   
1913   for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1914     wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1915     tx_desc++;
1916   }
1917   
1918   wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1919   
1920   // Initialise the transmit free buffer count
1921   wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1922   
1923   printk (" rx channels");
1924   
1925   // Initialise all of the receive channels to be AAL5 disabled with
1926   // an interrupt threshold of 0
1927   
1928   for (chan = 0; chan < RX_CHANS; ++chan) {
1929     rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1930     
1931     wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1932   }
1933   
1934   printk (" rx buffers");
1935   
1936   // Use space bufn4 at the moment for rx buffers
1937   
1938   rx_desc = memmap->bufn4;
1939   
1940   wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1941   
1942   for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1943     wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1944     
1945     rx_desc++;
1946   }
1947   
1948   wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1949   
1950   // Initialise the receive free buffer count
1951   wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1952   
1953   // Initialize Horizons registers
1954   
1955   // TX config
1956   wr_regw (dev, TX_CONFIG_OFF,
1957            ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1958   
1959   // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1960   wr_regw (dev, RX_CONFIG_OFF,
1961            DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1962   
1963   // RX line config
1964   wr_regw (dev, RX_LINE_CONFIG_OFF,
1965            LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1966   
1967   // Set the max AAL5 cell count to be just enough to contain the
1968   // largest AAL5 frame that the user wants to receive
1969   wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1970            DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1971   
1972   // Enable receive
1973   wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1974   
1975   printk (" control");
1976   
1977   // Drive the OE of the LEDs then turn the green LED on
1978   ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1979   wr_regl (dev, CONTROL_0_REG, ctrl);
1980   
1981   // Test for a 155-capable card
1982   
1983   if (onefivefive) {
1984     // Select 155 mode... make this a choice (or: how do we detect
1985     // external line speed and switch?)
1986     ctrl |= ATM_LAYER_SELECT;
1987     wr_regl (dev, CONTROL_0_REG, ctrl);
1988     
1989     // test SUNI-lite vs SAMBA
1990     
1991     // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1992     // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1993     // engineers.  It'll never work.
1994     
1995     if (rd_framer (dev, 0) & 0x00f0) {
1996       // SUNI
1997       printk (" SUNI");
1998       
1999       // Reset, just in case
2000       wr_framer (dev, 0x00, 0x0080);
2001       wr_framer (dev, 0x00, 0x0000);
2002       
2003       // Configure transmit FIFO
2004       wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2005       
2006       // Set line timed mode
2007       wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2008     } else {
2009       // SAMBA
2010       printk (" SAMBA");
2011       
2012       // Reset, just in case
2013       wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2014       wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2015       
2016       // Turn off diagnostic loopback and enable line-timed mode
2017       wr_framer (dev, 0, 0x0002);
2018       
2019       // Turn on transmit outputs
2020       wr_framer (dev, 2, 0x0B80);
2021     }
2022   } else {
2023     // Select 25 mode
2024     ctrl &= ~ATM_LAYER_SELECT;
2025     
2026     // Madge B154 setup
2027     // none required?
2028   }
2029   
2030   printk (" LEDs");
2031   
2032   GREEN_LED_ON(dev);
2033   YELLOW_LED_ON(dev);
2034   
2035   printk (" ESI=");
2036   
2037   {
2038     u16 b = 0;
2039     int i;
2040     u8 * esi = dev->atm_dev->esi;
2041     
2042     // in the card I have, EEPROM
2043     // addresses 0, 1, 2 contain 0
2044     // addresess 5, 6 etc. contain ffff
2045     // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2046     // the read_bia routine gets the BIA in Ethernet bit order
2047     
2048     for (i=0; i < ESI_LEN; ++i) {
2049       if (i % 2 == 0)
2050         b = read_bia (dev, i/2 + 2);
2051       else
2052         b = b >> 8;
2053       esi[i] = b & 0xFF;
2054       printk ("%02x", esi[i]);
2055     }
2056   }
2057   
2058   // Enable RX_Q and ?X_COMPLETE interrupts only
2059   wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2060   printk (" IRQ on");
2061   
2062   printk (".\n");
2063   
2064   return onefivefive;
2065 }
2066
2067 /********** check max_sdu **********/
2068
2069 static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2070   PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2071   
2072   switch (aal) {
2073     case aal0:
2074       if (!(tp->max_sdu)) {
2075         PRINTD (DBG_QOS, "defaulting max_sdu");
2076         tp->max_sdu = ATM_AAL0_SDU;
2077       } else if (tp->max_sdu != ATM_AAL0_SDU) {
2078         PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2079         return -EINVAL;
2080       }
2081       break;
2082     case aal34:
2083       if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2084         PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2085         tp->max_sdu = ATM_MAX_AAL34_PDU;
2086       }
2087       break;
2088     case aal5:
2089       if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2090         PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2091         tp->max_sdu = max_frame_size;
2092       }
2093       break;
2094   }
2095   return 0;
2096 }
2097
2098 /********** check pcr **********/
2099
2100 // something like this should be part of ATM Linux
2101 static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2102   // we are assuming non-UBR, and non-special values of pcr
2103   if (tp->min_pcr == ATM_MAX_PCR)
2104     PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2105   else if (tp->min_pcr < 0)
2106     PRINTD (DBG_QOS, "luser gave negative min_pcr");
2107   else if (tp->min_pcr && tp->min_pcr > pcr)
2108     PRINTD (DBG_QOS, "pcr less than min_pcr");
2109   else
2110     // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2111     // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2112     // [this would get rid of next two conditionals]
2113     if ((0) && tp->max_pcr == ATM_MAX_PCR)
2114       PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2115     else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2116       PRINTD (DBG_QOS, "luser gave negative max_pcr");
2117     else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2118       PRINTD (DBG_QOS, "pcr greater than max_pcr");
2119     else {
2120       // each limit unspecified or not violated
2121       PRINTD (DBG_QOS, "xBR(pcr) OK");
2122       return 0;
2123     }
2124   PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2125           pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2126   return -EINVAL;
2127 }
2128
2129 /********** open VC **********/
2130
2131 static int hrz_open (struct atm_vcc *atm_vcc)
2132 {
2133   int error;
2134   u16 channel;
2135   
2136   struct atm_qos * qos;
2137   struct atm_trafprm * txtp;
2138   struct atm_trafprm * rxtp;
2139   
2140   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2141   hrz_vcc vcc;
2142   hrz_vcc * vccp; // allocated late
2143   short vpi = atm_vcc->vpi;
2144   int vci = atm_vcc->vci;
2145   PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2146   
2147 #ifdef ATM_VPI_UNSPEC
2148   // UNSPEC is deprecated, remove this code eventually
2149   if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2150     PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2151     return -EINVAL;
2152   }
2153 #endif
2154   
2155   error = vpivci_to_channel (&channel, vpi, vci);
2156   if (error) {
2157     PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2158     return error;
2159   }
2160   
2161   vcc.channel = channel;
2162   // max speed for the moment
2163   vcc.tx_rate = 0x0;
2164   
2165   qos = &atm_vcc->qos;
2166   
2167   // check AAL and remember it
2168   switch (qos->aal) {
2169     case ATM_AAL0:
2170       // we would if it were 48 bytes and not 52!
2171       PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2172       vcc.aal = aal0;
2173       break;
2174     case ATM_AAL34:
2175       // we would if I knew how do the SAR!
2176       PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2177       vcc.aal = aal34;
2178       break;
2179     case ATM_AAL5:
2180       PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2181       vcc.aal = aal5;
2182       break;
2183     default:
2184       PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2185       return -EINVAL;
2186       break;
2187   }
2188   
2189   // TX traffic parameters
2190   
2191   // there are two, interrelated problems here: 1. the reservation of
2192   // PCR is not a binary choice, we are given bounds and/or a
2193   // desirable value; 2. the device is only capable of certain values,
2194   // most of which are not integers. It is almost certainly acceptable
2195   // to be off by a maximum of 1 to 10 cps.
2196   
2197   // Pragmatic choice: always store an integral PCR as that which has
2198   // been allocated, even if we allocate a little (or a lot) less,
2199   // after rounding. The actual allocation depends on what we can
2200   // manage with our rate selection algorithm. The rate selection
2201   // algorithm is given an integral PCR and a tolerance and told
2202   // whether it should round the value up or down if the tolerance is
2203   // exceeded; it returns: a) the actual rate selected (rounded up to
2204   // the nearest integer), b) a bit pattern to feed to the timer
2205   // register, and c) a failure value if no applicable rate exists.
2206   
2207   // Part of the job is done by atm_pcr_goal which gives us a PCR
2208   // specification which says: EITHER grab the maximum available PCR
2209   // (and perhaps a lower bound which we musn't pass), OR grab this
2210   // amount, rounding down if you have to (and perhaps a lower bound
2211   // which we musn't pass) OR grab this amount, rounding up if you
2212   // have to (and perhaps an upper bound which we musn't pass). If any
2213   // bounds ARE passed we fail. Note that rounding is only rounding to
2214   // match device limitations, we do not round down to satisfy
2215   // bandwidth availability even if this would not violate any given
2216   // lower bound.
2217   
2218   // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2219   // (say) so this is not even a binary fixpoint cell rate (but this
2220   // device can do it). To avoid this sort of hassle we use a
2221   // tolerance parameter (currently fixed at 10 cps).
2222   
2223   PRINTD (DBG_QOS, "TX:");
2224   
2225   txtp = &qos->txtp;
2226   
2227   // set up defaults for no traffic
2228   vcc.tx_rate = 0;
2229   // who knows what would actually happen if you try and send on this?
2230   vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2231   vcc.tx_pcr_bits = CLOCK_DISABLE;
2232 #if 0
2233   vcc.tx_scr_bits = CLOCK_DISABLE;
2234   vcc.tx_bucket_bits = 0;
2235 #endif
2236   
2237   if (txtp->traffic_class != ATM_NONE) {
2238     error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2239     if (error) {
2240       PRINTD (DBG_QOS, "TX max_sdu check failed");
2241       return error;
2242     }
2243     
2244     switch (txtp->traffic_class) {
2245       case ATM_UBR: {
2246         // we take "the PCR" as a rate-cap
2247         // not reserved
2248         vcc.tx_rate = 0;
2249         make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2250         vcc.tx_xbr_bits = ABR_RATE_TYPE;
2251         break;
2252       }
2253 #if 0
2254       case ATM_ABR: {
2255         // reserve min, allow up to max
2256         vcc.tx_rate = 0; // ?
2257         make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2258         vcc.tx_xbr_bits = ABR_RATE_TYPE;
2259         break;
2260       }
2261 #endif
2262       case ATM_CBR: {
2263         int pcr = atm_pcr_goal (txtp);
2264         rounding r;
2265         if (!pcr) {
2266           // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2267           // should really have: once someone gets unlimited bandwidth
2268           // that no more non-UBR channels can be opened until the
2269           // unlimited one closes?? For the moment, round_down means
2270           // greedy people actually get something and not nothing
2271           r = round_down;
2272           // slight race (no locking) here so we may get -EAGAIN
2273           // later; the greedy bastards would deserve it :)
2274           PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2275           pcr = dev->tx_avail;
2276         } else if (pcr < 0) {
2277           r = round_down;
2278           pcr = -pcr;
2279         } else {
2280           r = round_up;
2281         }
2282         error = make_rate_with_tolerance (dev, pcr, r, 10,
2283                                           &vcc.tx_pcr_bits, &vcc.tx_rate);
2284         if (error) {
2285           PRINTD (DBG_QOS, "could not make rate from TX PCR");
2286           return error;
2287         }
2288         // not really clear what further checking is needed
2289         error = atm_pcr_check (txtp, vcc.tx_rate);
2290         if (error) {
2291           PRINTD (DBG_QOS, "TX PCR failed consistency check");
2292           return error;
2293         }
2294         vcc.tx_xbr_bits = CBR_RATE_TYPE;
2295         break;
2296       }
2297 #if 0
2298       case ATM_VBR: {
2299         int pcr = atm_pcr_goal (txtp);
2300         // int scr = atm_scr_goal (txtp);
2301         int scr = pcr/2; // just for fun
2302         unsigned int mbs = 60; // just for fun
2303         rounding pr;
2304         rounding sr;
2305         unsigned int bucket;
2306         if (!pcr) {
2307           pr = round_nearest;
2308           pcr = 1<<30;
2309         } else if (pcr < 0) {
2310           pr = round_down;
2311           pcr = -pcr;
2312         } else {
2313           pr = round_up;
2314         }
2315         error = make_rate_with_tolerance (dev, pcr, pr, 10,
2316                                           &vcc.tx_pcr_bits, 0);
2317         if (!scr) {
2318           // see comments for PCR with CBR above
2319           sr = round_down;
2320           // slight race (no locking) here so we may get -EAGAIN
2321           // later; the greedy bastards would deserve it :)
2322           PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2323           scr = dev->tx_avail;
2324         } else if (scr < 0) {
2325           sr = round_down;
2326           scr = -scr;
2327         } else {
2328           sr = round_up;
2329         }
2330         error = make_rate_with_tolerance (dev, scr, sr, 10,
2331                                           &vcc.tx_scr_bits, &vcc.tx_rate);
2332         if (error) {
2333           PRINTD (DBG_QOS, "could not make rate from TX SCR");
2334           return error;
2335         }
2336         // not really clear what further checking is needed
2337         // error = atm_scr_check (txtp, vcc.tx_rate);
2338         if (error) {
2339           PRINTD (DBG_QOS, "TX SCR failed consistency check");
2340           return error;
2341         }
2342         // bucket calculations (from a piece of paper...) cell bucket
2343         // capacity must be largest integer smaller than m(p-s)/p + 1
2344         // where m = max burst size, p = pcr, s = scr
2345         bucket = mbs*(pcr-scr)/pcr;
2346         if (bucket*pcr != mbs*(pcr-scr))
2347           bucket += 1;
2348         if (bucket > BUCKET_MAX_SIZE) {
2349           PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2350                   bucket, BUCKET_MAX_SIZE);
2351           bucket = BUCKET_MAX_SIZE;
2352         }
2353         vcc.tx_xbr_bits = VBR_RATE_TYPE;
2354         vcc.tx_bucket_bits = bucket;
2355         break;
2356       }
2357 #endif
2358       default: {
2359         PRINTD (DBG_QOS, "unsupported TX traffic class");
2360         return -EINVAL;
2361         break;
2362       }
2363     }
2364   }
2365   
2366   // RX traffic parameters
2367   
2368   PRINTD (DBG_QOS, "RX:");
2369   
2370   rxtp = &qos->rxtp;
2371   
2372   // set up defaults for no traffic
2373   vcc.rx_rate = 0;
2374   
2375   if (rxtp->traffic_class != ATM_NONE) {
2376     error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2377     if (error) {
2378       PRINTD (DBG_QOS, "RX max_sdu check failed");
2379       return error;
2380     }
2381     switch (rxtp->traffic_class) {
2382       case ATM_UBR: {
2383         // not reserved
2384         break;
2385       }
2386 #if 0
2387       case ATM_ABR: {
2388         // reserve min
2389         vcc.rx_rate = 0; // ?
2390         break;
2391       }
2392 #endif
2393       case ATM_CBR: {
2394         int pcr = atm_pcr_goal (rxtp);
2395         if (!pcr) {
2396           // slight race (no locking) here so we may get -EAGAIN
2397           // later; the greedy bastards would deserve it :)
2398           PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2399           pcr = dev->rx_avail;
2400         } else if (pcr < 0) {
2401           pcr = -pcr;
2402         }
2403         vcc.rx_rate = pcr;
2404         // not really clear what further checking is needed
2405         error = atm_pcr_check (rxtp, vcc.rx_rate);
2406         if (error) {
2407           PRINTD (DBG_QOS, "RX PCR failed consistency check");
2408           return error;
2409         }
2410         break;
2411       }
2412 #if 0
2413       case ATM_VBR: {
2414         // int scr = atm_scr_goal (rxtp);
2415         int scr = 1<<16; // just for fun
2416         if (!scr) {
2417           // slight race (no locking) here so we may get -EAGAIN
2418           // later; the greedy bastards would deserve it :)
2419           PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2420           scr = dev->rx_avail;
2421         } else if (scr < 0) {
2422           scr = -scr;
2423         }
2424         vcc.rx_rate = scr;
2425         // not really clear what further checking is needed
2426         // error = atm_scr_check (rxtp, vcc.rx_rate);
2427         if (error) {
2428           PRINTD (DBG_QOS, "RX SCR failed consistency check");
2429           return error;
2430         }
2431         break;
2432       }
2433 #endif
2434       default: {
2435         PRINTD (DBG_QOS, "unsupported RX traffic class");
2436         return -EINVAL;
2437         break;
2438       }
2439     }
2440   }
2441   
2442   
2443   // late abort useful for diagnostics
2444   if (vcc.aal != aal5) {
2445     PRINTD (DBG_QOS, "AAL not supported");
2446     return -EINVAL;
2447   }
2448   
2449   // get space for our vcc stuff and copy parameters into it
2450   vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2451   if (!vccp) {
2452     PRINTK (KERN_ERR, "out of memory!");
2453     return -ENOMEM;
2454   }
2455   *vccp = vcc;
2456   
2457   // clear error and grab cell rate resource lock
2458   error = 0;
2459   spin_lock (&dev->rate_lock);
2460   
2461   if (vcc.tx_rate > dev->tx_avail) {
2462     PRINTD (DBG_QOS, "not enough TX PCR left");
2463     error = -EAGAIN;
2464   }
2465   
2466   if (vcc.rx_rate > dev->rx_avail) {
2467     PRINTD (DBG_QOS, "not enough RX PCR left");
2468     error = -EAGAIN;
2469   }
2470   
2471   if (!error) {
2472     // really consume cell rates
2473     dev->tx_avail -= vcc.tx_rate;
2474     dev->rx_avail -= vcc.rx_rate;
2475     PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2476             vcc.tx_rate, vcc.rx_rate);
2477   }
2478   
2479   // release lock and exit on error
2480   spin_unlock (&dev->rate_lock);
2481   if (error) {
2482     PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2483     kfree (vccp);
2484     return error;
2485   }
2486   
2487   // this is "immediately before allocating the connection identifier
2488   // in hardware" - so long as the next call does not fail :)
2489   set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2490   
2491   // any errors here are very serious and should never occur
2492   
2493   if (rxtp->traffic_class != ATM_NONE) {
2494     if (dev->rxer[channel]) {
2495       PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2496       error = -EBUSY;
2497     }
2498     if (!error)
2499       error = hrz_open_rx (dev, channel);
2500     if (error) {
2501       kfree (vccp);
2502       return error;
2503     }
2504     // this link allows RX frames through
2505     dev->rxer[channel] = atm_vcc;
2506   }
2507   
2508   // success, set elements of atm_vcc
2509   atm_vcc->dev_data = (void *) vccp;
2510   
2511   // indicate readiness
2512   set_bit(ATM_VF_READY,&atm_vcc->flags);
2513   
2514   return 0;
2515 }
2516
2517 /********** close VC **********/
2518
2519 static void hrz_close (struct atm_vcc * atm_vcc) {
2520   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2521   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2522   u16 channel = vcc->channel;
2523   PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2524   
2525   // indicate unreadiness
2526   clear_bit(ATM_VF_READY,&atm_vcc->flags);
2527
2528   if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2529     unsigned int i;
2530     
2531     // let any TX on this channel that has started complete
2532     // no restart, just keep trying
2533     while (tx_hold (dev))
2534       ;
2535     // remove record of any tx_channel having been setup for this channel
2536     for (i = 0; i < TX_CHANS; ++i)
2537       if (dev->tx_channel_record[i] == channel) {
2538         dev->tx_channel_record[i] = -1;
2539         break;
2540       }
2541     if (dev->last_vc == channel)
2542       dev->tx_last = -1;
2543     tx_release (dev);
2544   }
2545
2546   if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2547     // disable RXing - it tries quite hard
2548     hrz_close_rx (dev, channel);
2549     // forget the vcc - no more skbs will be pushed
2550     if (atm_vcc != dev->rxer[channel])
2551       PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2552               "arghhh! we're going to die!",
2553               atm_vcc, dev->rxer[channel]);
2554     dev->rxer[channel] = NULL;
2555   }
2556   
2557   // atomically release our rate reservation
2558   spin_lock (&dev->rate_lock);
2559   PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2560           vcc->tx_rate, vcc->rx_rate);
2561   dev->tx_avail += vcc->tx_rate;
2562   dev->rx_avail += vcc->rx_rate;
2563   spin_unlock (&dev->rate_lock);
2564   
2565   // free our structure
2566   kfree (vcc);
2567   // say the VPI/VCI is free again
2568   clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2569 }
2570
2571 #if 0
2572 static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2573                            void *optval, int optlen) {
2574   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2575   PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2576   switch (level) {
2577     case SOL_SOCKET:
2578       switch (optname) {
2579 //      case SO_BCTXOPT:
2580 //        break;
2581 //      case SO_BCRXOPT:
2582 //        break;
2583         default:
2584           return -ENOPROTOOPT;
2585           break;
2586       };
2587       break;
2588   }
2589   return -EINVAL;
2590 }
2591
2592 static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2593                            void *optval, unsigned int optlen) {
2594   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2595   PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2596   switch (level) {
2597     case SOL_SOCKET:
2598       switch (optname) {
2599 //      case SO_BCTXOPT:
2600 //        break;
2601 //      case SO_BCRXOPT:
2602 //        break;
2603         default:
2604           return -ENOPROTOOPT;
2605           break;
2606       };
2607       break;
2608   }
2609   return -EINVAL;
2610 }
2611 #endif
2612
2613 #if 0
2614 static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2615   hrz_dev * dev = HRZ_DEV(atm_dev);
2616   PRINTD (DBG_FLOW, "hrz_ioctl");
2617   return -1;
2618 }
2619
2620 unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2621   hrz_dev * dev = HRZ_DEV(atm_dev);
2622   PRINTD (DBG_FLOW, "hrz_phy_get");
2623   return 0;
2624 }
2625
2626 static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2627                          unsigned long addr) {
2628   hrz_dev * dev = HRZ_DEV(atm_dev);
2629   PRINTD (DBG_FLOW, "hrz_phy_put");
2630 }
2631
2632 static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2633   hrz_dev * dev = HRZ_DEV(vcc->dev);
2634   PRINTD (DBG_FLOW, "hrz_change_qos");
2635   return -1;
2636 }
2637 #endif
2638
2639 /********** proc file contents **********/
2640
2641 static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2642   hrz_dev * dev = HRZ_DEV(atm_dev);
2643   int left = *pos;
2644   PRINTD (DBG_FLOW, "hrz_proc_read");
2645   
2646   /* more diagnostics here? */
2647   
2648 #if 0
2649   if (!left--) {
2650     unsigned int count = sprintf (page, "vbr buckets:");
2651     unsigned int i;
2652     for (i = 0; i < TX_CHANS; ++i)
2653       count += sprintf (page, " %u/%u",
2654                         query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2655                         query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2656     count += sprintf (page+count, ".\n");
2657     return count;
2658   }
2659 #endif
2660   
2661   if (!left--)
2662     return sprintf (page,
2663                     "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2664                     dev->tx_cell_count, dev->rx_cell_count,
2665                     dev->hec_error_count, dev->unassigned_cell_count);
2666   
2667   if (!left--)
2668     return sprintf (page,
2669                     "free cell buffers: TX %hu, RX %hu+%hu.\n",
2670                     rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2671                     rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2672                     dev->noof_spare_buffers);
2673   
2674   if (!left--)
2675     return sprintf (page,
2676                     "cps remaining: TX %u, RX %u\n",
2677                     dev->tx_avail, dev->rx_avail);
2678   
2679   return 0;
2680 }
2681
2682 static const struct atmdev_ops hrz_ops = {
2683   .open = hrz_open,
2684   .close        = hrz_close,
2685   .send = hrz_send,
2686   .proc_read    = hrz_proc_read,
2687   .owner        = THIS_MODULE,
2688 };
2689
2690 static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2691 {
2692         hrz_dev * dev;
2693         int err = 0;
2694
2695         // adapter slot free, read resources from PCI configuration space
2696         u32 iobase = pci_resource_start (pci_dev, 0);
2697         u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2698         unsigned int irq;
2699         unsigned char lat;
2700
2701         PRINTD (DBG_FLOW, "hrz_probe");
2702
2703         if (pci_enable_device(pci_dev))
2704                 return -EINVAL;
2705
2706         /* XXX DEV_LABEL is a guess */
2707         if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2708                 err = -EINVAL;
2709                 goto out_disable;
2710         }
2711
2712         dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2713         if (!dev) {
2714                 // perhaps we should be nice: deregister all adapters and abort?
2715                 PRINTD(DBG_ERR, "out of memory");
2716                 err = -ENOMEM;
2717                 goto out_release;
2718         }
2719
2720         pci_set_drvdata(pci_dev, dev);
2721
2722         // grab IRQ and install handler - move this someplace more sensible
2723         irq = pci_dev->irq;
2724         if (request_irq(irq,
2725                         interrupt_handler,
2726                         IRQF_SHARED, /* irqflags guess */
2727                         DEV_LABEL, /* name guess */
2728                         dev)) {
2729                 PRINTD(DBG_WARN, "request IRQ failed!");
2730                 err = -EINVAL;
2731                 goto out_free;
2732         }
2733
2734         PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2735                iobase, irq, membase);
2736
2737         dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2738                                         NULL);
2739         if (!(dev->atm_dev)) {
2740                 PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2741                 err = -EINVAL;
2742                 goto out_free_irq;
2743         }
2744
2745         PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2746                dev->atm_dev->number, dev, dev->atm_dev);
2747         dev->atm_dev->dev_data = (void *) dev;
2748         dev->pci_dev = pci_dev; 
2749
2750         // enable bus master accesses
2751         pci_set_master(pci_dev);
2752
2753         // frobnicate latency (upwards, usually)
2754         pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2755         if (pci_lat) {
2756                 PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2757                        "changing", lat, pci_lat);
2758                 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2759         } else if (lat < MIN_PCI_LATENCY) {
2760                 PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2761                        "increasing", lat, MIN_PCI_LATENCY);
2762                 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2763         }
2764
2765         dev->iobase = iobase;
2766         dev->irq = irq; 
2767         dev->membase = membase; 
2768
2769         dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2770         dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2771
2772         // these next three are performance hacks
2773         dev->last_vc = -1;
2774         dev->tx_last = -1;
2775         dev->tx_idle = 0;
2776
2777         dev->tx_regions = 0;
2778         dev->tx_bytes = 0;
2779         dev->tx_skb = NULL;
2780         dev->tx_iovec = NULL;
2781
2782         dev->tx_cell_count = 0;
2783         dev->rx_cell_count = 0;
2784         dev->hec_error_count = 0;
2785         dev->unassigned_cell_count = 0;
2786
2787         dev->noof_spare_buffers = 0;
2788
2789         {
2790                 unsigned int i;
2791                 for (i = 0; i < TX_CHANS; ++i)
2792                         dev->tx_channel_record[i] = -1;
2793         }
2794
2795         dev->flags = 0;
2796
2797         // Allocate cell rates and remember ASIC version
2798         // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2799         // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2800         // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2801
2802         if (hrz_init(dev)) {
2803                 // to be really pedantic, this should be ATM_OC3c_PCR
2804                 dev->tx_avail = ATM_OC3_PCR;
2805                 dev->rx_avail = ATM_OC3_PCR;
2806                 set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2807         } else {
2808                 dev->tx_avail = ((25600000/8)*26)/(27*53);
2809                 dev->rx_avail = ((25600000/8)*26)/(27*53);
2810                 PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2811         }
2812
2813         // rate changes spinlock
2814         spin_lock_init(&dev->rate_lock);
2815
2816         // on-board memory access spinlock; we want atomic reads and
2817         // writes to adapter memory (handles IRQ and SMP)
2818         spin_lock_init(&dev->mem_lock);
2819
2820         init_waitqueue_head(&dev->tx_queue);
2821
2822         // vpi in 0..4, vci in 6..10
2823         dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2824         dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2825
2826         init_timer(&dev->housekeeping);
2827         dev->housekeeping.function = do_housekeeping;
2828         dev->housekeeping.data = (unsigned long) dev;
2829         mod_timer(&dev->housekeeping, jiffies);
2830
2831 out:
2832         return err;
2833
2834 out_free_irq:
2835         free_irq(dev->irq, dev);
2836 out_free:
2837         kfree(dev);
2838 out_release:
2839         release_region(iobase, HRZ_IO_EXTENT);
2840 out_disable:
2841         pci_disable_device(pci_dev);
2842         goto out;
2843 }
2844
2845 static void __devexit hrz_remove_one(struct pci_dev *pci_dev)
2846 {
2847         hrz_dev *dev;
2848
2849         dev = pci_get_drvdata(pci_dev);
2850
2851         PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2852         del_timer_sync(&dev->housekeeping);
2853         hrz_reset(dev);
2854         atm_dev_deregister(dev->atm_dev);
2855         free_irq(dev->irq, dev);
2856         release_region(dev->iobase, HRZ_IO_EXTENT);
2857         kfree(dev);
2858
2859         pci_disable_device(pci_dev);
2860 }
2861
2862 static void __init hrz_check_args (void) {
2863 #ifdef DEBUG_HORIZON
2864   PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2865 #else
2866   if (debug)
2867     PRINTK (KERN_NOTICE, "no debug support in this image");
2868 #endif
2869   
2870   if (vpi_bits > HRZ_MAX_VPI)
2871     PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2872             vpi_bits = HRZ_MAX_VPI);
2873   
2874   if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2875     PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2876             max_tx_size = TX_AAL5_LIMIT);
2877   
2878   if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2879     PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2880             max_rx_size = RX_AAL5_LIMIT);
2881   
2882   return;
2883 }
2884
2885 MODULE_AUTHOR(maintainer_string);
2886 MODULE_DESCRIPTION(description_string);
2887 MODULE_LICENSE("GPL");
2888 module_param(debug, ushort, 0644);
2889 module_param(vpi_bits, ushort, 0);
2890 module_param(max_tx_size, int, 0);
2891 module_param(max_rx_size, int, 0);
2892 module_param(pci_lat, byte, 0);
2893 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2894 MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2895 MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2896 MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2897 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2898
2899 static struct pci_device_id hrz_pci_tbl[] = {
2900         { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2901           0, 0, 0 },
2902         { 0, }
2903 };
2904
2905 MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2906
2907 static struct pci_driver hrz_driver = {
2908         .name =         "horizon",
2909         .probe =        hrz_probe,
2910         .remove =       __devexit_p(hrz_remove_one),
2911         .id_table =     hrz_pci_tbl,
2912 };
2913
2914 /********** module entry **********/
2915
2916 static int __init hrz_module_init (void) {
2917   // sanity check - cast is needed since printk does not support %Zu
2918   if (sizeof(struct MEMMAP) != 128*1024/4) {
2919     PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2920             (unsigned long) sizeof(struct MEMMAP));
2921     return -ENOMEM;
2922   }
2923   
2924   show_version();
2925   
2926   // check arguments
2927   hrz_check_args();
2928   
2929   // get the juice
2930   return pci_register_driver(&hrz_driver);
2931 }
2932
2933 /********** module exit **********/
2934
2935 static void __exit hrz_module_exit (void) {
2936   PRINTD (DBG_FLOW, "cleanup_module");
2937
2938   pci_unregister_driver(&hrz_driver);
2939 }
2940
2941 module_init(hrz_module_init);
2942 module_exit(hrz_module_exit);