Merge remote branch 'nouveau/for-airlied' of /ssd/git/drm-nouveau-next into drm-fixes
[pandora-kernel.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/acpi.h>
37 #include <linux/dmi.h>
38 #include <linux/moduleparam.h>
39 #include <linux/sched.h>        /* need_resched() */
40 #include <linux/pm_qos_params.h>
41 #include <linux/clockchips.h>
42 #include <linux/cpuidle.h>
43 #include <linux/irqflags.h>
44
45 /*
46  * Include the apic definitions for x86 to have the APIC timer related defines
47  * available also for UP (on SMP it gets magically included via linux/smp.h).
48  * asm/acpi.h is not an option, as it would require more include magic. Also
49  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50  */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 #include <asm/processor.h>
61
62 #define PREFIX "ACPI: "
63
64 #define ACPI_PROCESSOR_CLASS            "processor"
65 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
66 ACPI_MODULE_NAME("processor_idle");
67 #define ACPI_PROCESSOR_FILE_POWER       "power"
68 #define PM_TIMER_TICK_NS                (1000000000ULL/PM_TIMER_FREQUENCY)
69 #define C2_OVERHEAD                     1       /* 1us */
70 #define C3_OVERHEAD                     1       /* 1us */
71 #define PM_TIMER_TICKS_TO_US(p)         (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
72
73 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
74 module_param(max_cstate, uint, 0000);
75 static unsigned int nocst __read_mostly;
76 module_param(nocst, uint, 0000);
77 static int bm_check_disable __read_mostly;
78 module_param(bm_check_disable, uint, 0000);
79
80 static unsigned int latency_factor __read_mostly = 2;
81 module_param(latency_factor, uint, 0644);
82
83 /*
84  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
85  * For now disable this. Probably a bug somewhere else.
86  *
87  * To skip this limit, boot/load with a large max_cstate limit.
88  */
89 static int set_max_cstate(const struct dmi_system_id *id)
90 {
91         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
92                 return 0;
93
94         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
95                " Override with \"processor.max_cstate=%d\"\n", id->ident,
96                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
97
98         max_cstate = (long)id->driver_data;
99
100         return 0;
101 }
102
103 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
104    callers to only run once -AK */
105 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
106         { set_max_cstate, "Clevo 5600D", {
107           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
108           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
109          (void *)2},
110         { set_max_cstate, "Pavilion zv5000", {
111           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
112           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
113          (void *)1},
114         { set_max_cstate, "Asus L8400B", {
115           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
116           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
117          (void *)1},
118         {},
119 };
120
121
122 /*
123  * Callers should disable interrupts before the call and enable
124  * interrupts after return.
125  */
126 static void acpi_safe_halt(void)
127 {
128         current_thread_info()->status &= ~TS_POLLING;
129         /*
130          * TS_POLLING-cleared state must be visible before we
131          * test NEED_RESCHED:
132          */
133         smp_mb();
134         if (!need_resched()) {
135                 safe_halt();
136                 local_irq_disable();
137         }
138         current_thread_info()->status |= TS_POLLING;
139 }
140
141 #ifdef ARCH_APICTIMER_STOPS_ON_C3
142
143 /*
144  * Some BIOS implementations switch to C3 in the published C2 state.
145  * This seems to be a common problem on AMD boxen, but other vendors
146  * are affected too. We pick the most conservative approach: we assume
147  * that the local APIC stops in both C2 and C3.
148  */
149 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
150                                    struct acpi_processor_cx *cx)
151 {
152         struct acpi_processor_power *pwr = &pr->power;
153         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
154
155         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
156                 return;
157
158         if (c1e_detected)
159                 type = ACPI_STATE_C1;
160
161         /*
162          * Check, if one of the previous states already marked the lapic
163          * unstable
164          */
165         if (pwr->timer_broadcast_on_state < state)
166                 return;
167
168         if (cx->type >= type)
169                 pr->power.timer_broadcast_on_state = state;
170 }
171
172 static void __lapic_timer_propagate_broadcast(void *arg)
173 {
174         struct acpi_processor *pr = (struct acpi_processor *) arg;
175         unsigned long reason;
176
177         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
178                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
179
180         clockevents_notify(reason, &pr->id);
181 }
182
183 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
184 {
185         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
186                                  (void *)pr, 1);
187 }
188
189 /* Power(C) State timer broadcast control */
190 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
191                                        struct acpi_processor_cx *cx,
192                                        int broadcast)
193 {
194         int state = cx - pr->power.states;
195
196         if (state >= pr->power.timer_broadcast_on_state) {
197                 unsigned long reason;
198
199                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
200                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
201                 clockevents_notify(reason, &pr->id);
202         }
203 }
204
205 #else
206
207 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
208                                    struct acpi_processor_cx *cstate) { }
209 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
210 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
211                                        struct acpi_processor_cx *cx,
212                                        int broadcast)
213 {
214 }
215
216 #endif
217
218 /*
219  * Suspend / resume control
220  */
221 static int acpi_idle_suspend;
222 static u32 saved_bm_rld;
223
224 static void acpi_idle_bm_rld_save(void)
225 {
226         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
227 }
228 static void acpi_idle_bm_rld_restore(void)
229 {
230         u32 resumed_bm_rld;
231
232         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
233
234         if (resumed_bm_rld != saved_bm_rld)
235                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
236 }
237
238 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
239 {
240         if (acpi_idle_suspend == 1)
241                 return 0;
242
243         acpi_idle_bm_rld_save();
244         acpi_idle_suspend = 1;
245         return 0;
246 }
247
248 int acpi_processor_resume(struct acpi_device * device)
249 {
250         if (acpi_idle_suspend == 0)
251                 return 0;
252
253         acpi_idle_bm_rld_restore();
254         acpi_idle_suspend = 0;
255         return 0;
256 }
257
258 #if defined(CONFIG_X86)
259 static void tsc_check_state(int state)
260 {
261         switch (boot_cpu_data.x86_vendor) {
262         case X86_VENDOR_AMD:
263         case X86_VENDOR_INTEL:
264                 /*
265                  * AMD Fam10h TSC will tick in all
266                  * C/P/S0/S1 states when this bit is set.
267                  */
268                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
269                         return;
270
271                 /*FALL THROUGH*/
272         default:
273                 /* TSC could halt in idle, so notify users */
274                 if (state > ACPI_STATE_C1)
275                         mark_tsc_unstable("TSC halts in idle");
276         }
277 }
278 #else
279 static void tsc_check_state(int state) { return; }
280 #endif
281
282 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
283 {
284
285         if (!pr)
286                 return -EINVAL;
287
288         if (!pr->pblk)
289                 return -ENODEV;
290
291         /* if info is obtained from pblk/fadt, type equals state */
292         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
293         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
294
295 #ifndef CONFIG_HOTPLUG_CPU
296         /*
297          * Check for P_LVL2_UP flag before entering C2 and above on
298          * an SMP system.
299          */
300         if ((num_online_cpus() > 1) &&
301             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
302                 return -ENODEV;
303 #endif
304
305         /* determine C2 and C3 address from pblk */
306         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
307         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
308
309         /* determine latencies from FADT */
310         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
311         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
312
313         /*
314          * FADT specified C2 latency must be less than or equal to
315          * 100 microseconds.
316          */
317         if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
318                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
319                         "C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
320                 /* invalidate C2 */
321                 pr->power.states[ACPI_STATE_C2].address = 0;
322         }
323
324         /*
325          * FADT supplied C3 latency must be less than or equal to
326          * 1000 microseconds.
327          */
328         if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
329                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
330                         "C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
331                 /* invalidate C3 */
332                 pr->power.states[ACPI_STATE_C3].address = 0;
333         }
334
335         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
336                           "lvl2[0x%08x] lvl3[0x%08x]\n",
337                           pr->power.states[ACPI_STATE_C2].address,
338                           pr->power.states[ACPI_STATE_C3].address));
339
340         return 0;
341 }
342
343 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
344 {
345         if (!pr->power.states[ACPI_STATE_C1].valid) {
346                 /* set the first C-State to C1 */
347                 /* all processors need to support C1 */
348                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
349                 pr->power.states[ACPI_STATE_C1].valid = 1;
350                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
351         }
352         /* the C0 state only exists as a filler in our array */
353         pr->power.states[ACPI_STATE_C0].valid = 1;
354         return 0;
355 }
356
357 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
358 {
359         acpi_status status = 0;
360         u64 count;
361         int current_count;
362         int i;
363         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
364         union acpi_object *cst;
365
366
367         if (nocst)
368                 return -ENODEV;
369
370         current_count = 0;
371
372         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
373         if (ACPI_FAILURE(status)) {
374                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
375                 return -ENODEV;
376         }
377
378         cst = buffer.pointer;
379
380         /* There must be at least 2 elements */
381         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
382                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
383                 status = -EFAULT;
384                 goto end;
385         }
386
387         count = cst->package.elements[0].integer.value;
388
389         /* Validate number of power states. */
390         if (count < 1 || count != cst->package.count - 1) {
391                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
392                 status = -EFAULT;
393                 goto end;
394         }
395
396         /* Tell driver that at least _CST is supported. */
397         pr->flags.has_cst = 1;
398
399         for (i = 1; i <= count; i++) {
400                 union acpi_object *element;
401                 union acpi_object *obj;
402                 struct acpi_power_register *reg;
403                 struct acpi_processor_cx cx;
404
405                 memset(&cx, 0, sizeof(cx));
406
407                 element = &(cst->package.elements[i]);
408                 if (element->type != ACPI_TYPE_PACKAGE)
409                         continue;
410
411                 if (element->package.count != 4)
412                         continue;
413
414                 obj = &(element->package.elements[0]);
415
416                 if (obj->type != ACPI_TYPE_BUFFER)
417                         continue;
418
419                 reg = (struct acpi_power_register *)obj->buffer.pointer;
420
421                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
422                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
423                         continue;
424
425                 /* There should be an easy way to extract an integer... */
426                 obj = &(element->package.elements[1]);
427                 if (obj->type != ACPI_TYPE_INTEGER)
428                         continue;
429
430                 cx.type = obj->integer.value;
431                 /*
432                  * Some buggy BIOSes won't list C1 in _CST -
433                  * Let acpi_processor_get_power_info_default() handle them later
434                  */
435                 if (i == 1 && cx.type != ACPI_STATE_C1)
436                         current_count++;
437
438                 cx.address = reg->address;
439                 cx.index = current_count + 1;
440
441                 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
442                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
443                         if (acpi_processor_ffh_cstate_probe
444                                         (pr->id, &cx, reg) == 0) {
445                                 cx.entry_method = ACPI_CSTATE_FFH;
446                         } else if (cx.type == ACPI_STATE_C1) {
447                                 /*
448                                  * C1 is a special case where FIXED_HARDWARE
449                                  * can be handled in non-MWAIT way as well.
450                                  * In that case, save this _CST entry info.
451                                  * Otherwise, ignore this info and continue.
452                                  */
453                                 cx.entry_method = ACPI_CSTATE_HALT;
454                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
455                         } else {
456                                 continue;
457                         }
458                         if (cx.type == ACPI_STATE_C1 &&
459                                         (idle_halt || idle_nomwait)) {
460                                 /*
461                                  * In most cases the C1 space_id obtained from
462                                  * _CST object is FIXED_HARDWARE access mode.
463                                  * But when the option of idle=halt is added,
464                                  * the entry_method type should be changed from
465                                  * CSTATE_FFH to CSTATE_HALT.
466                                  * When the option of idle=nomwait is added,
467                                  * the C1 entry_method type should be
468                                  * CSTATE_HALT.
469                                  */
470                                 cx.entry_method = ACPI_CSTATE_HALT;
471                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
472                         }
473                 } else {
474                         snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
475                                  cx.address);
476                 }
477
478                 if (cx.type == ACPI_STATE_C1) {
479                         cx.valid = 1;
480                 }
481
482                 obj = &(element->package.elements[2]);
483                 if (obj->type != ACPI_TYPE_INTEGER)
484                         continue;
485
486                 cx.latency = obj->integer.value;
487
488                 obj = &(element->package.elements[3]);
489                 if (obj->type != ACPI_TYPE_INTEGER)
490                         continue;
491
492                 cx.power = obj->integer.value;
493
494                 current_count++;
495                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
496
497                 /*
498                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
499                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
500                  */
501                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
502                         printk(KERN_WARNING
503                                "Limiting number of power states to max (%d)\n",
504                                ACPI_PROCESSOR_MAX_POWER);
505                         printk(KERN_WARNING
506                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
507                         break;
508                 }
509         }
510
511         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
512                           current_count));
513
514         /* Validate number of power states discovered */
515         if (current_count < 2)
516                 status = -EFAULT;
517
518       end:
519         kfree(buffer.pointer);
520
521         return status;
522 }
523
524 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
525                                            struct acpi_processor_cx *cx)
526 {
527         static int bm_check_flag = -1;
528         static int bm_control_flag = -1;
529
530
531         if (!cx->address)
532                 return;
533
534         /*
535          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
536          * DMA transfers are used by any ISA device to avoid livelock.
537          * Note that we could disable Type-F DMA (as recommended by
538          * the erratum), but this is known to disrupt certain ISA
539          * devices thus we take the conservative approach.
540          */
541         else if (errata.piix4.fdma) {
542                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
543                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
544                 return;
545         }
546
547         /* All the logic here assumes flags.bm_check is same across all CPUs */
548         if (bm_check_flag == -1) {
549                 /* Determine whether bm_check is needed based on CPU  */
550                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
551                 bm_check_flag = pr->flags.bm_check;
552                 bm_control_flag = pr->flags.bm_control;
553         } else {
554                 pr->flags.bm_check = bm_check_flag;
555                 pr->flags.bm_control = bm_control_flag;
556         }
557
558         if (pr->flags.bm_check) {
559                 if (!pr->flags.bm_control) {
560                         if (pr->flags.has_cst != 1) {
561                                 /* bus mastering control is necessary */
562                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
563                                         "C3 support requires BM control\n"));
564                                 return;
565                         } else {
566                                 /* Here we enter C3 without bus mastering */
567                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
568                                         "C3 support without BM control\n"));
569                         }
570                 }
571         } else {
572                 /*
573                  * WBINVD should be set in fadt, for C3 state to be
574                  * supported on when bm_check is not required.
575                  */
576                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
577                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
578                                           "Cache invalidation should work properly"
579                                           " for C3 to be enabled on SMP systems\n"));
580                         return;
581                 }
582         }
583
584         /*
585          * Otherwise we've met all of our C3 requirements.
586          * Normalize the C3 latency to expidite policy.  Enable
587          * checking of bus mastering status (bm_check) so we can
588          * use this in our C3 policy
589          */
590         cx->valid = 1;
591
592         cx->latency_ticks = cx->latency;
593         /*
594          * On older chipsets, BM_RLD needs to be set
595          * in order for Bus Master activity to wake the
596          * system from C3.  Newer chipsets handle DMA
597          * during C3 automatically and BM_RLD is a NOP.
598          * In either case, the proper way to
599          * handle BM_RLD is to set it and leave it set.
600          */
601         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
602
603         return;
604 }
605
606 static int acpi_processor_power_verify(struct acpi_processor *pr)
607 {
608         unsigned int i;
609         unsigned int working = 0;
610
611         pr->power.timer_broadcast_on_state = INT_MAX;
612
613         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
614                 struct acpi_processor_cx *cx = &pr->power.states[i];
615
616                 switch (cx->type) {
617                 case ACPI_STATE_C1:
618                         cx->valid = 1;
619                         break;
620
621                 case ACPI_STATE_C2:
622                         if (!cx->address)
623                                 break;
624                         cx->valid = 1; 
625                         cx->latency_ticks = cx->latency; /* Normalize latency */
626                         break;
627
628                 case ACPI_STATE_C3:
629                         acpi_processor_power_verify_c3(pr, cx);
630                         break;
631                 }
632                 if (!cx->valid)
633                         continue;
634
635                 lapic_timer_check_state(i, pr, cx);
636                 tsc_check_state(cx->type);
637                 working++;
638         }
639
640         lapic_timer_propagate_broadcast(pr);
641
642         return (working);
643 }
644
645 static int acpi_processor_get_power_info(struct acpi_processor *pr)
646 {
647         unsigned int i;
648         int result;
649
650
651         /* NOTE: the idle thread may not be running while calling
652          * this function */
653
654         /* Zero initialize all the C-states info. */
655         memset(pr->power.states, 0, sizeof(pr->power.states));
656
657         result = acpi_processor_get_power_info_cst(pr);
658         if (result == -ENODEV)
659                 result = acpi_processor_get_power_info_fadt(pr);
660
661         if (result)
662                 return result;
663
664         acpi_processor_get_power_info_default(pr);
665
666         pr->power.count = acpi_processor_power_verify(pr);
667
668         /*
669          * if one state of type C2 or C3 is available, mark this
670          * CPU as being "idle manageable"
671          */
672         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
673                 if (pr->power.states[i].valid) {
674                         pr->power.count = i;
675                         if (pr->power.states[i].type >= ACPI_STATE_C2)
676                                 pr->flags.power = 1;
677                 }
678         }
679
680         return 0;
681 }
682
683 /**
684  * acpi_idle_bm_check - checks if bus master activity was detected
685  */
686 static int acpi_idle_bm_check(void)
687 {
688         u32 bm_status = 0;
689
690         if (bm_check_disable)
691                 return 0;
692
693         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
694         if (bm_status)
695                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
696         /*
697          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
698          * the true state of bus mastering activity; forcing us to
699          * manually check the BMIDEA bit of each IDE channel.
700          */
701         else if (errata.piix4.bmisx) {
702                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
703                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
704                         bm_status = 1;
705         }
706         return bm_status;
707 }
708
709 /**
710  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
711  * @cx: cstate data
712  *
713  * Caller disables interrupt before call and enables interrupt after return.
714  */
715 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
716 {
717         /* Don't trace irqs off for idle */
718         stop_critical_timings();
719         if (cx->entry_method == ACPI_CSTATE_FFH) {
720                 /* Call into architectural FFH based C-state */
721                 acpi_processor_ffh_cstate_enter(cx);
722         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
723                 acpi_safe_halt();
724         } else {
725                 /* IO port based C-state */
726                 inb(cx->address);
727                 /* Dummy wait op - must do something useless after P_LVL2 read
728                    because chipsets cannot guarantee that STPCLK# signal
729                    gets asserted in time to freeze execution properly. */
730                 inl(acpi_gbl_FADT.xpm_timer_block.address);
731         }
732         start_critical_timings();
733 }
734
735 /**
736  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
737  * @dev: the target CPU
738  * @state: the state data
739  *
740  * This is equivalent to the HALT instruction.
741  */
742 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
743                               struct cpuidle_state *state)
744 {
745         ktime_t  kt1, kt2;
746         s64 idle_time;
747         struct acpi_processor *pr;
748         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
749
750         pr = __get_cpu_var(processors);
751
752         if (unlikely(!pr))
753                 return 0;
754
755         local_irq_disable();
756
757         /* Do not access any ACPI IO ports in suspend path */
758         if (acpi_idle_suspend) {
759                 local_irq_enable();
760                 cpu_relax();
761                 return 0;
762         }
763
764         lapic_timer_state_broadcast(pr, cx, 1);
765         kt1 = ktime_get_real();
766         acpi_idle_do_entry(cx);
767         kt2 = ktime_get_real();
768         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
769
770         local_irq_enable();
771         cx->usage++;
772         lapic_timer_state_broadcast(pr, cx, 0);
773
774         return idle_time;
775 }
776
777 /**
778  * acpi_idle_enter_simple - enters an ACPI state without BM handling
779  * @dev: the target CPU
780  * @state: the state data
781  */
782 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
783                                   struct cpuidle_state *state)
784 {
785         struct acpi_processor *pr;
786         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
787         ktime_t  kt1, kt2;
788         s64 idle_time_ns;
789         s64 idle_time;
790
791         pr = __get_cpu_var(processors);
792
793         if (unlikely(!pr))
794                 return 0;
795
796         if (acpi_idle_suspend)
797                 return(acpi_idle_enter_c1(dev, state));
798
799         local_irq_disable();
800
801         if (cx->entry_method != ACPI_CSTATE_FFH) {
802                 current_thread_info()->status &= ~TS_POLLING;
803                 /*
804                  * TS_POLLING-cleared state must be visible before we test
805                  * NEED_RESCHED:
806                  */
807                 smp_mb();
808
809                 if (unlikely(need_resched())) {
810                         current_thread_info()->status |= TS_POLLING;
811                         local_irq_enable();
812                         return 0;
813                 }
814         }
815
816         /*
817          * Must be done before busmaster disable as we might need to
818          * access HPET !
819          */
820         lapic_timer_state_broadcast(pr, cx, 1);
821
822         if (cx->type == ACPI_STATE_C3)
823                 ACPI_FLUSH_CPU_CACHE();
824
825         kt1 = ktime_get_real();
826         /* Tell the scheduler that we are going deep-idle: */
827         sched_clock_idle_sleep_event();
828         acpi_idle_do_entry(cx);
829         kt2 = ktime_get_real();
830         idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
831         idle_time = idle_time_ns;
832         do_div(idle_time, NSEC_PER_USEC);
833
834         /* Tell the scheduler how much we idled: */
835         sched_clock_idle_wakeup_event(idle_time_ns);
836
837         local_irq_enable();
838         if (cx->entry_method != ACPI_CSTATE_FFH)
839                 current_thread_info()->status |= TS_POLLING;
840
841         cx->usage++;
842
843         lapic_timer_state_broadcast(pr, cx, 0);
844         cx->time += idle_time;
845         return idle_time;
846 }
847
848 static int c3_cpu_count;
849 static DEFINE_SPINLOCK(c3_lock);
850
851 /**
852  * acpi_idle_enter_bm - enters C3 with proper BM handling
853  * @dev: the target CPU
854  * @state: the state data
855  *
856  * If BM is detected, the deepest non-C3 idle state is entered instead.
857  */
858 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
859                               struct cpuidle_state *state)
860 {
861         struct acpi_processor *pr;
862         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
863         ktime_t  kt1, kt2;
864         s64 idle_time_ns;
865         s64 idle_time;
866
867
868         pr = __get_cpu_var(processors);
869
870         if (unlikely(!pr))
871                 return 0;
872
873         if (acpi_idle_suspend)
874                 return(acpi_idle_enter_c1(dev, state));
875
876         if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
877                 if (dev->safe_state) {
878                         dev->last_state = dev->safe_state;
879                         return dev->safe_state->enter(dev, dev->safe_state);
880                 } else {
881                         local_irq_disable();
882                         acpi_safe_halt();
883                         local_irq_enable();
884                         return 0;
885                 }
886         }
887
888         local_irq_disable();
889
890         if (cx->entry_method != ACPI_CSTATE_FFH) {
891                 current_thread_info()->status &= ~TS_POLLING;
892                 /*
893                  * TS_POLLING-cleared state must be visible before we test
894                  * NEED_RESCHED:
895                  */
896                 smp_mb();
897
898                 if (unlikely(need_resched())) {
899                         current_thread_info()->status |= TS_POLLING;
900                         local_irq_enable();
901                         return 0;
902                 }
903         }
904
905         acpi_unlazy_tlb(smp_processor_id());
906
907         /* Tell the scheduler that we are going deep-idle: */
908         sched_clock_idle_sleep_event();
909         /*
910          * Must be done before busmaster disable as we might need to
911          * access HPET !
912          */
913         lapic_timer_state_broadcast(pr, cx, 1);
914
915         kt1 = ktime_get_real();
916         /*
917          * disable bus master
918          * bm_check implies we need ARB_DIS
919          * !bm_check implies we need cache flush
920          * bm_control implies whether we can do ARB_DIS
921          *
922          * That leaves a case where bm_check is set and bm_control is
923          * not set. In that case we cannot do much, we enter C3
924          * without doing anything.
925          */
926         if (pr->flags.bm_check && pr->flags.bm_control) {
927                 spin_lock(&c3_lock);
928                 c3_cpu_count++;
929                 /* Disable bus master arbitration when all CPUs are in C3 */
930                 if (c3_cpu_count == num_online_cpus())
931                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
932                 spin_unlock(&c3_lock);
933         } else if (!pr->flags.bm_check) {
934                 ACPI_FLUSH_CPU_CACHE();
935         }
936
937         acpi_idle_do_entry(cx);
938
939         /* Re-enable bus master arbitration */
940         if (pr->flags.bm_check && pr->flags.bm_control) {
941                 spin_lock(&c3_lock);
942                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
943                 c3_cpu_count--;
944                 spin_unlock(&c3_lock);
945         }
946         kt2 = ktime_get_real();
947         idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
948         idle_time = idle_time_ns;
949         do_div(idle_time, NSEC_PER_USEC);
950
951         /* Tell the scheduler how much we idled: */
952         sched_clock_idle_wakeup_event(idle_time_ns);
953
954         local_irq_enable();
955         if (cx->entry_method != ACPI_CSTATE_FFH)
956                 current_thread_info()->status |= TS_POLLING;
957
958         cx->usage++;
959
960         lapic_timer_state_broadcast(pr, cx, 0);
961         cx->time += idle_time;
962         return idle_time;
963 }
964
965 struct cpuidle_driver acpi_idle_driver = {
966         .name =         "acpi_idle",
967         .owner =        THIS_MODULE,
968 };
969
970 /**
971  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
972  * @pr: the ACPI processor
973  */
974 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
975 {
976         int i, count = CPUIDLE_DRIVER_STATE_START;
977         struct acpi_processor_cx *cx;
978         struct cpuidle_state *state;
979         struct cpuidle_device *dev = &pr->power.dev;
980
981         if (!pr->flags.power_setup_done)
982                 return -EINVAL;
983
984         if (pr->flags.power == 0) {
985                 return -EINVAL;
986         }
987
988         dev->cpu = pr->id;
989         for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
990                 dev->states[i].name[0] = '\0';
991                 dev->states[i].desc[0] = '\0';
992         }
993
994         if (max_cstate == 0)
995                 max_cstate = 1;
996
997         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
998                 cx = &pr->power.states[i];
999                 state = &dev->states[count];
1000
1001                 if (!cx->valid)
1002                         continue;
1003
1004 #ifdef CONFIG_HOTPLUG_CPU
1005                 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1006                     !pr->flags.has_cst &&
1007                     !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1008                         continue;
1009 #endif
1010                 cpuidle_set_statedata(state, cx);
1011
1012                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1013                 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1014                 state->exit_latency = cx->latency;
1015                 state->target_residency = cx->latency * latency_factor;
1016                 state->power_usage = cx->power;
1017
1018                 state->flags = 0;
1019                 switch (cx->type) {
1020                         case ACPI_STATE_C1:
1021                         state->flags |= CPUIDLE_FLAG_SHALLOW;
1022                         if (cx->entry_method == ACPI_CSTATE_FFH)
1023                                 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1024
1025                         state->enter = acpi_idle_enter_c1;
1026                         dev->safe_state = state;
1027                         break;
1028
1029                         case ACPI_STATE_C2:
1030                         state->flags |= CPUIDLE_FLAG_BALANCED;
1031                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1032                         state->enter = acpi_idle_enter_simple;
1033                         dev->safe_state = state;
1034                         break;
1035
1036                         case ACPI_STATE_C3:
1037                         state->flags |= CPUIDLE_FLAG_DEEP;
1038                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1039                         state->flags |= CPUIDLE_FLAG_CHECK_BM;
1040                         state->enter = pr->flags.bm_check ?
1041                                         acpi_idle_enter_bm :
1042                                         acpi_idle_enter_simple;
1043                         break;
1044                 }
1045
1046                 count++;
1047                 if (count == CPUIDLE_STATE_MAX)
1048                         break;
1049         }
1050
1051         dev->state_count = count;
1052
1053         if (!count)
1054                 return -EINVAL;
1055
1056         return 0;
1057 }
1058
1059 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1060 {
1061         int ret = 0;
1062
1063         if (boot_option_idle_override)
1064                 return 0;
1065
1066         if (!pr)
1067                 return -EINVAL;
1068
1069         if (nocst) {
1070                 return -ENODEV;
1071         }
1072
1073         if (!pr->flags.power_setup_done)
1074                 return -ENODEV;
1075
1076         cpuidle_pause_and_lock();
1077         cpuidle_disable_device(&pr->power.dev);
1078         acpi_processor_get_power_info(pr);
1079         if (pr->flags.power) {
1080                 acpi_processor_setup_cpuidle(pr);
1081                 ret = cpuidle_enable_device(&pr->power.dev);
1082         }
1083         cpuidle_resume_and_unlock();
1084
1085         return ret;
1086 }
1087
1088 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1089                               struct acpi_device *device)
1090 {
1091         acpi_status status = 0;
1092         static int first_run;
1093
1094         if (boot_option_idle_override)
1095                 return 0;
1096
1097         if (!first_run) {
1098                 if (idle_halt) {
1099                         /*
1100                          * When the boot option of "idle=halt" is added, halt
1101                          * is used for CPU IDLE.
1102                          * In such case C2/C3 is meaningless. So the max_cstate
1103                          * is set to one.
1104                          */
1105                         max_cstate = 1;
1106                 }
1107                 dmi_check_system(processor_power_dmi_table);
1108                 max_cstate = acpi_processor_cstate_check(max_cstate);
1109                 if (max_cstate < ACPI_C_STATES_MAX)
1110                         printk(KERN_NOTICE
1111                                "ACPI: processor limited to max C-state %d\n",
1112                                max_cstate);
1113                 first_run++;
1114         }
1115
1116         if (!pr)
1117                 return -EINVAL;
1118
1119         if (acpi_gbl_FADT.cst_control && !nocst) {
1120                 status =
1121                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1122                 if (ACPI_FAILURE(status)) {
1123                         ACPI_EXCEPTION((AE_INFO, status,
1124                                         "Notifying BIOS of _CST ability failed"));
1125                 }
1126         }
1127
1128         acpi_processor_get_power_info(pr);
1129         pr->flags.power_setup_done = 1;
1130
1131         /*
1132          * Install the idle handler if processor power management is supported.
1133          * Note that we use previously set idle handler will be used on
1134          * platforms that only support C1.
1135          */
1136         if (pr->flags.power) {
1137                 acpi_processor_setup_cpuidle(pr);
1138                 if (cpuidle_register_device(&pr->power.dev))
1139                         return -EIO;
1140         }
1141         return 0;
1142 }
1143
1144 int acpi_processor_power_exit(struct acpi_processor *pr,
1145                               struct acpi_device *device)
1146 {
1147         if (boot_option_idle_override)
1148                 return 0;
1149
1150         cpuidle_unregister_device(&pr->power.dev);
1151         pr->flags.power_setup_done = 0;
1152
1153         return 0;
1154 }