Merge branch 'topic/oss' into for-linus
[pandora-kernel.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45
46 /*
47  * Include the apic definitions for x86 to have the APIC timer related defines
48  * available also for UP (on SMP it gets magically included via linux/smp.h).
49  * asm/acpi.h is not an option, as it would require more include magic. Also
50  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51  */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62
63 #define ACPI_PROCESSOR_CLASS            "processor"
64 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
65 ACPI_MODULE_NAME("processor_idle");
66 #define ACPI_PROCESSOR_FILE_POWER       "power"
67 #define PM_TIMER_TICK_NS                (1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD                     1       /* 1us */
69 #define C3_OVERHEAD                     1       /* 1us */
70 #define PM_TIMER_TICKS_TO_US(p)         (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
71
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
76
77 static unsigned int latency_factor __read_mostly = 2;
78 module_param(latency_factor, uint, 0644);
79
80 static s64 us_to_pm_timer_ticks(s64 t)
81 {
82         return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
83 }
84 /*
85  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
86  * For now disable this. Probably a bug somewhere else.
87  *
88  * To skip this limit, boot/load with a large max_cstate limit.
89  */
90 static int set_max_cstate(const struct dmi_system_id *id)
91 {
92         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
93                 return 0;
94
95         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
96                " Override with \"processor.max_cstate=%d\"\n", id->ident,
97                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
98
99         max_cstate = (long)id->driver_data;
100
101         return 0;
102 }
103
104 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
105    callers to only run once -AK */
106 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
107         { set_max_cstate, "Clevo 5600D", {
108           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
109           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
110          (void *)2},
111         {},
112 };
113
114
115 /*
116  * Callers should disable interrupts before the call and enable
117  * interrupts after return.
118  */
119 static void acpi_safe_halt(void)
120 {
121         current_thread_info()->status &= ~TS_POLLING;
122         /*
123          * TS_POLLING-cleared state must be visible before we
124          * test NEED_RESCHED:
125          */
126         smp_mb();
127         if (!need_resched()) {
128                 safe_halt();
129                 local_irq_disable();
130         }
131         current_thread_info()->status |= TS_POLLING;
132 }
133
134 #ifdef ARCH_APICTIMER_STOPS_ON_C3
135
136 /*
137  * Some BIOS implementations switch to C3 in the published C2 state.
138  * This seems to be a common problem on AMD boxen, but other vendors
139  * are affected too. We pick the most conservative approach: we assume
140  * that the local APIC stops in both C2 and C3.
141  */
142 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
143                                    struct acpi_processor_cx *cx)
144 {
145         struct acpi_processor_power *pwr = &pr->power;
146         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
147
148         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
149                 return;
150
151         if (boot_cpu_has(X86_FEATURE_AMDC1E))
152                 type = ACPI_STATE_C1;
153
154         /*
155          * Check, if one of the previous states already marked the lapic
156          * unstable
157          */
158         if (pwr->timer_broadcast_on_state < state)
159                 return;
160
161         if (cx->type >= type)
162                 pr->power.timer_broadcast_on_state = state;
163 }
164
165 static void lapic_timer_propagate_broadcast(void *arg)
166 {
167         struct acpi_processor *pr = (struct acpi_processor *) arg;
168         unsigned long reason;
169
170         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
171                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
172
173         clockevents_notify(reason, &pr->id);
174 }
175
176 /* Power(C) State timer broadcast control */
177 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
178                                        struct acpi_processor_cx *cx,
179                                        int broadcast)
180 {
181         int state = cx - pr->power.states;
182
183         if (state >= pr->power.timer_broadcast_on_state) {
184                 unsigned long reason;
185
186                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
187                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
188                 clockevents_notify(reason, &pr->id);
189         }
190 }
191
192 #else
193
194 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
195                                    struct acpi_processor_cx *cstate) { }
196 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
197 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
198                                        struct acpi_processor_cx *cx,
199                                        int broadcast)
200 {
201 }
202
203 #endif
204
205 /*
206  * Suspend / resume control
207  */
208 static int acpi_idle_suspend;
209 static u32 saved_bm_rld;
210
211 static void acpi_idle_bm_rld_save(void)
212 {
213         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
214 }
215 static void acpi_idle_bm_rld_restore(void)
216 {
217         u32 resumed_bm_rld;
218
219         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
220
221         if (resumed_bm_rld != saved_bm_rld)
222                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
223 }
224
225 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
226 {
227         if (acpi_idle_suspend == 1)
228                 return 0;
229
230         acpi_idle_bm_rld_save();
231         acpi_idle_suspend = 1;
232         return 0;
233 }
234
235 int acpi_processor_resume(struct acpi_device * device)
236 {
237         if (acpi_idle_suspend == 0)
238                 return 0;
239
240         acpi_idle_bm_rld_restore();
241         acpi_idle_suspend = 0;
242         return 0;
243 }
244
245 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
246 static void tsc_check_state(int state)
247 {
248         switch (boot_cpu_data.x86_vendor) {
249         case X86_VENDOR_AMD:
250         case X86_VENDOR_INTEL:
251                 /*
252                  * AMD Fam10h TSC will tick in all
253                  * C/P/S0/S1 states when this bit is set.
254                  */
255                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
256                         return;
257
258                 /*FALL THROUGH*/
259         default:
260                 /* TSC could halt in idle, so notify users */
261                 if (state > ACPI_STATE_C1)
262                         mark_tsc_unstable("TSC halts in idle");
263         }
264 }
265 #else
266 static void tsc_check_state(int state) { return; }
267 #endif
268
269 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
270 {
271
272         if (!pr)
273                 return -EINVAL;
274
275         if (!pr->pblk)
276                 return -ENODEV;
277
278         /* if info is obtained from pblk/fadt, type equals state */
279         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
280         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
281
282 #ifndef CONFIG_HOTPLUG_CPU
283         /*
284          * Check for P_LVL2_UP flag before entering C2 and above on
285          * an SMP system.
286          */
287         if ((num_online_cpus() > 1) &&
288             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
289                 return -ENODEV;
290 #endif
291
292         /* determine C2 and C3 address from pblk */
293         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
294         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
295
296         /* determine latencies from FADT */
297         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
298         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
299
300         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
301                           "lvl2[0x%08x] lvl3[0x%08x]\n",
302                           pr->power.states[ACPI_STATE_C2].address,
303                           pr->power.states[ACPI_STATE_C3].address));
304
305         return 0;
306 }
307
308 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
309 {
310         if (!pr->power.states[ACPI_STATE_C1].valid) {
311                 /* set the first C-State to C1 */
312                 /* all processors need to support C1 */
313                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
314                 pr->power.states[ACPI_STATE_C1].valid = 1;
315                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
316         }
317         /* the C0 state only exists as a filler in our array */
318         pr->power.states[ACPI_STATE_C0].valid = 1;
319         return 0;
320 }
321
322 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
323 {
324         acpi_status status = 0;
325         acpi_integer count;
326         int current_count;
327         int i;
328         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
329         union acpi_object *cst;
330
331
332         if (nocst)
333                 return -ENODEV;
334
335         current_count = 0;
336
337         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
338         if (ACPI_FAILURE(status)) {
339                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
340                 return -ENODEV;
341         }
342
343         cst = buffer.pointer;
344
345         /* There must be at least 2 elements */
346         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
347                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
348                 status = -EFAULT;
349                 goto end;
350         }
351
352         count = cst->package.elements[0].integer.value;
353
354         /* Validate number of power states. */
355         if (count < 1 || count != cst->package.count - 1) {
356                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
357                 status = -EFAULT;
358                 goto end;
359         }
360
361         /* Tell driver that at least _CST is supported. */
362         pr->flags.has_cst = 1;
363
364         for (i = 1; i <= count; i++) {
365                 union acpi_object *element;
366                 union acpi_object *obj;
367                 struct acpi_power_register *reg;
368                 struct acpi_processor_cx cx;
369
370                 memset(&cx, 0, sizeof(cx));
371
372                 element = &(cst->package.elements[i]);
373                 if (element->type != ACPI_TYPE_PACKAGE)
374                         continue;
375
376                 if (element->package.count != 4)
377                         continue;
378
379                 obj = &(element->package.elements[0]);
380
381                 if (obj->type != ACPI_TYPE_BUFFER)
382                         continue;
383
384                 reg = (struct acpi_power_register *)obj->buffer.pointer;
385
386                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
387                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
388                         continue;
389
390                 /* There should be an easy way to extract an integer... */
391                 obj = &(element->package.elements[1]);
392                 if (obj->type != ACPI_TYPE_INTEGER)
393                         continue;
394
395                 cx.type = obj->integer.value;
396                 /*
397                  * Some buggy BIOSes won't list C1 in _CST -
398                  * Let acpi_processor_get_power_info_default() handle them later
399                  */
400                 if (i == 1 && cx.type != ACPI_STATE_C1)
401                         current_count++;
402
403                 cx.address = reg->address;
404                 cx.index = current_count + 1;
405
406                 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
407                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
408                         if (acpi_processor_ffh_cstate_probe
409                                         (pr->id, &cx, reg) == 0) {
410                                 cx.entry_method = ACPI_CSTATE_FFH;
411                         } else if (cx.type == ACPI_STATE_C1) {
412                                 /*
413                                  * C1 is a special case where FIXED_HARDWARE
414                                  * can be handled in non-MWAIT way as well.
415                                  * In that case, save this _CST entry info.
416                                  * Otherwise, ignore this info and continue.
417                                  */
418                                 cx.entry_method = ACPI_CSTATE_HALT;
419                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
420                         } else {
421                                 continue;
422                         }
423                         if (cx.type == ACPI_STATE_C1 &&
424                                         (idle_halt || idle_nomwait)) {
425                                 /*
426                                  * In most cases the C1 space_id obtained from
427                                  * _CST object is FIXED_HARDWARE access mode.
428                                  * But when the option of idle=halt is added,
429                                  * the entry_method type should be changed from
430                                  * CSTATE_FFH to CSTATE_HALT.
431                                  * When the option of idle=nomwait is added,
432                                  * the C1 entry_method type should be
433                                  * CSTATE_HALT.
434                                  */
435                                 cx.entry_method = ACPI_CSTATE_HALT;
436                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
437                         }
438                 } else {
439                         snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
440                                  cx.address);
441                 }
442
443                 if (cx.type == ACPI_STATE_C1) {
444                         cx.valid = 1;
445                 }
446
447                 obj = &(element->package.elements[2]);
448                 if (obj->type != ACPI_TYPE_INTEGER)
449                         continue;
450
451                 cx.latency = obj->integer.value;
452
453                 obj = &(element->package.elements[3]);
454                 if (obj->type != ACPI_TYPE_INTEGER)
455                         continue;
456
457                 cx.power = obj->integer.value;
458
459                 current_count++;
460                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
461
462                 /*
463                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
464                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
465                  */
466                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
467                         printk(KERN_WARNING
468                                "Limiting number of power states to max (%d)\n",
469                                ACPI_PROCESSOR_MAX_POWER);
470                         printk(KERN_WARNING
471                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
472                         break;
473                 }
474         }
475
476         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
477                           current_count));
478
479         /* Validate number of power states discovered */
480         if (current_count < 2)
481                 status = -EFAULT;
482
483       end:
484         kfree(buffer.pointer);
485
486         return status;
487 }
488
489 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
490 {
491
492         if (!cx->address)
493                 return;
494
495         /*
496          * C2 latency must be less than or equal to 100
497          * microseconds.
498          */
499         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
500                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
501                                   "latency too large [%d]\n", cx->latency));
502                 return;
503         }
504
505         /*
506          * Otherwise we've met all of our C2 requirements.
507          * Normalize the C2 latency to expidite policy
508          */
509         cx->valid = 1;
510
511         cx->latency_ticks = cx->latency;
512
513         return;
514 }
515
516 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
517                                            struct acpi_processor_cx *cx)
518 {
519         static int bm_check_flag = -1;
520         static int bm_control_flag = -1;
521
522
523         if (!cx->address)
524                 return;
525
526         /*
527          * C3 latency must be less than or equal to 1000
528          * microseconds.
529          */
530         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
531                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
532                                   "latency too large [%d]\n", cx->latency));
533                 return;
534         }
535
536         /*
537          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
538          * DMA transfers are used by any ISA device to avoid livelock.
539          * Note that we could disable Type-F DMA (as recommended by
540          * the erratum), but this is known to disrupt certain ISA
541          * devices thus we take the conservative approach.
542          */
543         else if (errata.piix4.fdma) {
544                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
545                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
546                 return;
547         }
548
549         /* All the logic here assumes flags.bm_check is same across all CPUs */
550         if (bm_check_flag == -1) {
551                 /* Determine whether bm_check is needed based on CPU  */
552                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
553                 bm_check_flag = pr->flags.bm_check;
554                 bm_control_flag = pr->flags.bm_control;
555         } else {
556                 pr->flags.bm_check = bm_check_flag;
557                 pr->flags.bm_control = bm_control_flag;
558         }
559
560         if (pr->flags.bm_check) {
561                 if (!pr->flags.bm_control) {
562                         if (pr->flags.has_cst != 1) {
563                                 /* bus mastering control is necessary */
564                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
565                                         "C3 support requires BM control\n"));
566                                 return;
567                         } else {
568                                 /* Here we enter C3 without bus mastering */
569                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
570                                         "C3 support without BM control\n"));
571                         }
572                 }
573         } else {
574                 /*
575                  * WBINVD should be set in fadt, for C3 state to be
576                  * supported on when bm_check is not required.
577                  */
578                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
579                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
580                                           "Cache invalidation should work properly"
581                                           " for C3 to be enabled on SMP systems\n"));
582                         return;
583                 }
584         }
585
586         /*
587          * Otherwise we've met all of our C3 requirements.
588          * Normalize the C3 latency to expidite policy.  Enable
589          * checking of bus mastering status (bm_check) so we can
590          * use this in our C3 policy
591          */
592         cx->valid = 1;
593
594         cx->latency_ticks = cx->latency;
595         /*
596          * On older chipsets, BM_RLD needs to be set
597          * in order for Bus Master activity to wake the
598          * system from C3.  Newer chipsets handle DMA
599          * during C3 automatically and BM_RLD is a NOP.
600          * In either case, the proper way to
601          * handle BM_RLD is to set it and leave it set.
602          */
603         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
604
605         return;
606 }
607
608 static int acpi_processor_power_verify(struct acpi_processor *pr)
609 {
610         unsigned int i;
611         unsigned int working = 0;
612
613         pr->power.timer_broadcast_on_state = INT_MAX;
614
615         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
616                 struct acpi_processor_cx *cx = &pr->power.states[i];
617
618                 switch (cx->type) {
619                 case ACPI_STATE_C1:
620                         cx->valid = 1;
621                         break;
622
623                 case ACPI_STATE_C2:
624                         acpi_processor_power_verify_c2(cx);
625                         break;
626
627                 case ACPI_STATE_C3:
628                         acpi_processor_power_verify_c3(pr, cx);
629                         break;
630                 }
631                 if (!cx->valid)
632                         continue;
633
634                 lapic_timer_check_state(i, pr, cx);
635                 tsc_check_state(cx->type);
636                 working++;
637         }
638
639         smp_call_function_single(pr->id, lapic_timer_propagate_broadcast,
640                                  pr, 1);
641
642         return (working);
643 }
644
645 static int acpi_processor_get_power_info(struct acpi_processor *pr)
646 {
647         unsigned int i;
648         int result;
649
650
651         /* NOTE: the idle thread may not be running while calling
652          * this function */
653
654         /* Zero initialize all the C-states info. */
655         memset(pr->power.states, 0, sizeof(pr->power.states));
656
657         result = acpi_processor_get_power_info_cst(pr);
658         if (result == -ENODEV)
659                 result = acpi_processor_get_power_info_fadt(pr);
660
661         if (result)
662                 return result;
663
664         acpi_processor_get_power_info_default(pr);
665
666         pr->power.count = acpi_processor_power_verify(pr);
667
668         /*
669          * if one state of type C2 or C3 is available, mark this
670          * CPU as being "idle manageable"
671          */
672         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
673                 if (pr->power.states[i].valid) {
674                         pr->power.count = i;
675                         if (pr->power.states[i].type >= ACPI_STATE_C2)
676                                 pr->flags.power = 1;
677                 }
678         }
679
680         return 0;
681 }
682
683 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
684 {
685         struct acpi_processor *pr = seq->private;
686         unsigned int i;
687
688
689         if (!pr)
690                 goto end;
691
692         seq_printf(seq, "active state:            C%zd\n"
693                    "max_cstate:              C%d\n"
694                    "maximum allowed latency: %d usec\n",
695                    pr->power.state ? pr->power.state - pr->power.states : 0,
696                    max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
697
698         seq_puts(seq, "states:\n");
699
700         for (i = 1; i <= pr->power.count; i++) {
701                 seq_printf(seq, "   %cC%d:                  ",
702                            (&pr->power.states[i] ==
703                             pr->power.state ? '*' : ' '), i);
704
705                 if (!pr->power.states[i].valid) {
706                         seq_puts(seq, "<not supported>\n");
707                         continue;
708                 }
709
710                 switch (pr->power.states[i].type) {
711                 case ACPI_STATE_C1:
712                         seq_printf(seq, "type[C1] ");
713                         break;
714                 case ACPI_STATE_C2:
715                         seq_printf(seq, "type[C2] ");
716                         break;
717                 case ACPI_STATE_C3:
718                         seq_printf(seq, "type[C3] ");
719                         break;
720                 default:
721                         seq_printf(seq, "type[--] ");
722                         break;
723                 }
724
725                 if (pr->power.states[i].promotion.state)
726                         seq_printf(seq, "promotion[C%zd] ",
727                                    (pr->power.states[i].promotion.state -
728                                     pr->power.states));
729                 else
730                         seq_puts(seq, "promotion[--] ");
731
732                 if (pr->power.states[i].demotion.state)
733                         seq_printf(seq, "demotion[C%zd] ",
734                                    (pr->power.states[i].demotion.state -
735                                     pr->power.states));
736                 else
737                         seq_puts(seq, "demotion[--] ");
738
739                 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
740                            pr->power.states[i].latency,
741                            pr->power.states[i].usage,
742                            (unsigned long long)pr->power.states[i].time);
743         }
744
745       end:
746         return 0;
747 }
748
749 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
750 {
751         return single_open(file, acpi_processor_power_seq_show,
752                            PDE(inode)->data);
753 }
754
755 static const struct file_operations acpi_processor_power_fops = {
756         .owner = THIS_MODULE,
757         .open = acpi_processor_power_open_fs,
758         .read = seq_read,
759         .llseek = seq_lseek,
760         .release = single_release,
761 };
762
763
764 /**
765  * acpi_idle_bm_check - checks if bus master activity was detected
766  */
767 static int acpi_idle_bm_check(void)
768 {
769         u32 bm_status = 0;
770
771         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
772         if (bm_status)
773                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
774         /*
775          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
776          * the true state of bus mastering activity; forcing us to
777          * manually check the BMIDEA bit of each IDE channel.
778          */
779         else if (errata.piix4.bmisx) {
780                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
781                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
782                         bm_status = 1;
783         }
784         return bm_status;
785 }
786
787 /**
788  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
789  * @cx: cstate data
790  *
791  * Caller disables interrupt before call and enables interrupt after return.
792  */
793 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
794 {
795         /* Don't trace irqs off for idle */
796         stop_critical_timings();
797         if (cx->entry_method == ACPI_CSTATE_FFH) {
798                 /* Call into architectural FFH based C-state */
799                 acpi_processor_ffh_cstate_enter(cx);
800         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
801                 acpi_safe_halt();
802         } else {
803                 int unused;
804                 /* IO port based C-state */
805                 inb(cx->address);
806                 /* Dummy wait op - must do something useless after P_LVL2 read
807                    because chipsets cannot guarantee that STPCLK# signal
808                    gets asserted in time to freeze execution properly. */
809                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
810         }
811         start_critical_timings();
812 }
813
814 /**
815  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
816  * @dev: the target CPU
817  * @state: the state data
818  *
819  * This is equivalent to the HALT instruction.
820  */
821 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
822                               struct cpuidle_state *state)
823 {
824         ktime_t  kt1, kt2;
825         s64 idle_time;
826         struct acpi_processor *pr;
827         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
828
829         pr = __get_cpu_var(processors);
830
831         if (unlikely(!pr))
832                 return 0;
833
834         local_irq_disable();
835
836         /* Do not access any ACPI IO ports in suspend path */
837         if (acpi_idle_suspend) {
838                 local_irq_enable();
839                 cpu_relax();
840                 return 0;
841         }
842
843         lapic_timer_state_broadcast(pr, cx, 1);
844         kt1 = ktime_get_real();
845         acpi_idle_do_entry(cx);
846         kt2 = ktime_get_real();
847         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
848
849         local_irq_enable();
850         cx->usage++;
851         lapic_timer_state_broadcast(pr, cx, 0);
852
853         return idle_time;
854 }
855
856 /**
857  * acpi_idle_enter_simple - enters an ACPI state without BM handling
858  * @dev: the target CPU
859  * @state: the state data
860  */
861 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
862                                   struct cpuidle_state *state)
863 {
864         struct acpi_processor *pr;
865         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
866         ktime_t  kt1, kt2;
867         s64 idle_time;
868         s64 sleep_ticks = 0;
869
870         pr = __get_cpu_var(processors);
871
872         if (unlikely(!pr))
873                 return 0;
874
875         if (acpi_idle_suspend)
876                 return(acpi_idle_enter_c1(dev, state));
877
878         local_irq_disable();
879         current_thread_info()->status &= ~TS_POLLING;
880         /*
881          * TS_POLLING-cleared state must be visible before we test
882          * NEED_RESCHED:
883          */
884         smp_mb();
885
886         if (unlikely(need_resched())) {
887                 current_thread_info()->status |= TS_POLLING;
888                 local_irq_enable();
889                 return 0;
890         }
891
892         /*
893          * Must be done before busmaster disable as we might need to
894          * access HPET !
895          */
896         lapic_timer_state_broadcast(pr, cx, 1);
897
898         if (cx->type == ACPI_STATE_C3)
899                 ACPI_FLUSH_CPU_CACHE();
900
901         kt1 = ktime_get_real();
902         /* Tell the scheduler that we are going deep-idle: */
903         sched_clock_idle_sleep_event();
904         acpi_idle_do_entry(cx);
905         kt2 = ktime_get_real();
906         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
907
908         sleep_ticks = us_to_pm_timer_ticks(idle_time);
909
910         /* Tell the scheduler how much we idled: */
911         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
912
913         local_irq_enable();
914         current_thread_info()->status |= TS_POLLING;
915
916         cx->usage++;
917
918         lapic_timer_state_broadcast(pr, cx, 0);
919         cx->time += sleep_ticks;
920         return idle_time;
921 }
922
923 static int c3_cpu_count;
924 static DEFINE_SPINLOCK(c3_lock);
925
926 /**
927  * acpi_idle_enter_bm - enters C3 with proper BM handling
928  * @dev: the target CPU
929  * @state: the state data
930  *
931  * If BM is detected, the deepest non-C3 idle state is entered instead.
932  */
933 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
934                               struct cpuidle_state *state)
935 {
936         struct acpi_processor *pr;
937         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
938         ktime_t  kt1, kt2;
939         s64 idle_time;
940         s64 sleep_ticks = 0;
941
942
943         pr = __get_cpu_var(processors);
944
945         if (unlikely(!pr))
946                 return 0;
947
948         if (acpi_idle_suspend)
949                 return(acpi_idle_enter_c1(dev, state));
950
951         if (acpi_idle_bm_check()) {
952                 if (dev->safe_state) {
953                         dev->last_state = dev->safe_state;
954                         return dev->safe_state->enter(dev, dev->safe_state);
955                 } else {
956                         local_irq_disable();
957                         acpi_safe_halt();
958                         local_irq_enable();
959                         return 0;
960                 }
961         }
962
963         local_irq_disable();
964         current_thread_info()->status &= ~TS_POLLING;
965         /*
966          * TS_POLLING-cleared state must be visible before we test
967          * NEED_RESCHED:
968          */
969         smp_mb();
970
971         if (unlikely(need_resched())) {
972                 current_thread_info()->status |= TS_POLLING;
973                 local_irq_enable();
974                 return 0;
975         }
976
977         acpi_unlazy_tlb(smp_processor_id());
978
979         /* Tell the scheduler that we are going deep-idle: */
980         sched_clock_idle_sleep_event();
981         /*
982          * Must be done before busmaster disable as we might need to
983          * access HPET !
984          */
985         lapic_timer_state_broadcast(pr, cx, 1);
986
987         kt1 = ktime_get_real();
988         /*
989          * disable bus master
990          * bm_check implies we need ARB_DIS
991          * !bm_check implies we need cache flush
992          * bm_control implies whether we can do ARB_DIS
993          *
994          * That leaves a case where bm_check is set and bm_control is
995          * not set. In that case we cannot do much, we enter C3
996          * without doing anything.
997          */
998         if (pr->flags.bm_check && pr->flags.bm_control) {
999                 spin_lock(&c3_lock);
1000                 c3_cpu_count++;
1001                 /* Disable bus master arbitration when all CPUs are in C3 */
1002                 if (c3_cpu_count == num_online_cpus())
1003                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
1004                 spin_unlock(&c3_lock);
1005         } else if (!pr->flags.bm_check) {
1006                 ACPI_FLUSH_CPU_CACHE();
1007         }
1008
1009         acpi_idle_do_entry(cx);
1010
1011         /* Re-enable bus master arbitration */
1012         if (pr->flags.bm_check && pr->flags.bm_control) {
1013                 spin_lock(&c3_lock);
1014                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1015                 c3_cpu_count--;
1016                 spin_unlock(&c3_lock);
1017         }
1018         kt2 = ktime_get_real();
1019         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
1020
1021         sleep_ticks = us_to_pm_timer_ticks(idle_time);
1022         /* Tell the scheduler how much we idled: */
1023         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1024
1025         local_irq_enable();
1026         current_thread_info()->status |= TS_POLLING;
1027
1028         cx->usage++;
1029
1030         lapic_timer_state_broadcast(pr, cx, 0);
1031         cx->time += sleep_ticks;
1032         return idle_time;
1033 }
1034
1035 struct cpuidle_driver acpi_idle_driver = {
1036         .name =         "acpi_idle",
1037         .owner =        THIS_MODULE,
1038 };
1039
1040 /**
1041  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1042  * @pr: the ACPI processor
1043  */
1044 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1045 {
1046         int i, count = CPUIDLE_DRIVER_STATE_START;
1047         struct acpi_processor_cx *cx;
1048         struct cpuidle_state *state;
1049         struct cpuidle_device *dev = &pr->power.dev;
1050
1051         if (!pr->flags.power_setup_done)
1052                 return -EINVAL;
1053
1054         if (pr->flags.power == 0) {
1055                 return -EINVAL;
1056         }
1057
1058         dev->cpu = pr->id;
1059         for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1060                 dev->states[i].name[0] = '\0';
1061                 dev->states[i].desc[0] = '\0';
1062         }
1063
1064         if (max_cstate == 0)
1065                 max_cstate = 1;
1066
1067         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1068                 cx = &pr->power.states[i];
1069                 state = &dev->states[count];
1070
1071                 if (!cx->valid)
1072                         continue;
1073
1074 #ifdef CONFIG_HOTPLUG_CPU
1075                 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1076                     !pr->flags.has_cst &&
1077                     !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1078                         continue;
1079 #endif
1080                 cpuidle_set_statedata(state, cx);
1081
1082                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1083                 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1084                 state->exit_latency = cx->latency;
1085                 state->target_residency = cx->latency * latency_factor;
1086                 state->power_usage = cx->power;
1087
1088                 state->flags = 0;
1089                 switch (cx->type) {
1090                         case ACPI_STATE_C1:
1091                         state->flags |= CPUIDLE_FLAG_SHALLOW;
1092                         if (cx->entry_method == ACPI_CSTATE_FFH)
1093                                 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1094
1095                         state->enter = acpi_idle_enter_c1;
1096                         dev->safe_state = state;
1097                         break;
1098
1099                         case ACPI_STATE_C2:
1100                         state->flags |= CPUIDLE_FLAG_BALANCED;
1101                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1102                         state->enter = acpi_idle_enter_simple;
1103                         dev->safe_state = state;
1104                         break;
1105
1106                         case ACPI_STATE_C3:
1107                         state->flags |= CPUIDLE_FLAG_DEEP;
1108                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1109                         state->flags |= CPUIDLE_FLAG_CHECK_BM;
1110                         state->enter = pr->flags.bm_check ?
1111                                         acpi_idle_enter_bm :
1112                                         acpi_idle_enter_simple;
1113                         break;
1114                 }
1115
1116                 count++;
1117                 if (count == CPUIDLE_STATE_MAX)
1118                         break;
1119         }
1120
1121         dev->state_count = count;
1122
1123         if (!count)
1124                 return -EINVAL;
1125
1126         return 0;
1127 }
1128
1129 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1130 {
1131         int ret = 0;
1132
1133         if (boot_option_idle_override)
1134                 return 0;
1135
1136         if (!pr)
1137                 return -EINVAL;
1138
1139         if (nocst) {
1140                 return -ENODEV;
1141         }
1142
1143         if (!pr->flags.power_setup_done)
1144                 return -ENODEV;
1145
1146         cpuidle_pause_and_lock();
1147         cpuidle_disable_device(&pr->power.dev);
1148         acpi_processor_get_power_info(pr);
1149         if (pr->flags.power) {
1150                 acpi_processor_setup_cpuidle(pr);
1151                 ret = cpuidle_enable_device(&pr->power.dev);
1152         }
1153         cpuidle_resume_and_unlock();
1154
1155         return ret;
1156 }
1157
1158 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1159                               struct acpi_device *device)
1160 {
1161         acpi_status status = 0;
1162         static int first_run;
1163         struct proc_dir_entry *entry = NULL;
1164         unsigned int i;
1165
1166         if (boot_option_idle_override)
1167                 return 0;
1168
1169         if (!first_run) {
1170                 if (idle_halt) {
1171                         /*
1172                          * When the boot option of "idle=halt" is added, halt
1173                          * is used for CPU IDLE.
1174                          * In such case C2/C3 is meaningless. So the max_cstate
1175                          * is set to one.
1176                          */
1177                         max_cstate = 1;
1178                 }
1179                 dmi_check_system(processor_power_dmi_table);
1180                 max_cstate = acpi_processor_cstate_check(max_cstate);
1181                 if (max_cstate < ACPI_C_STATES_MAX)
1182                         printk(KERN_NOTICE
1183                                "ACPI: processor limited to max C-state %d\n",
1184                                max_cstate);
1185                 first_run++;
1186         }
1187
1188         if (!pr)
1189                 return -EINVAL;
1190
1191         if (acpi_gbl_FADT.cst_control && !nocst) {
1192                 status =
1193                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1194                 if (ACPI_FAILURE(status)) {
1195                         ACPI_EXCEPTION((AE_INFO, status,
1196                                         "Notifying BIOS of _CST ability failed"));
1197                 }
1198         }
1199
1200         acpi_processor_get_power_info(pr);
1201         pr->flags.power_setup_done = 1;
1202
1203         /*
1204          * Install the idle handler if processor power management is supported.
1205          * Note that we use previously set idle handler will be used on
1206          * platforms that only support C1.
1207          */
1208         if (pr->flags.power) {
1209                 acpi_processor_setup_cpuidle(pr);
1210                 if (cpuidle_register_device(&pr->power.dev))
1211                         return -EIO;
1212
1213                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1214                 for (i = 1; i <= pr->power.count; i++)
1215                         if (pr->power.states[i].valid)
1216                                 printk(" C%d[C%d]", i,
1217                                        pr->power.states[i].type);
1218                 printk(")\n");
1219         }
1220
1221         /* 'power' [R] */
1222         entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1223                                  S_IRUGO, acpi_device_dir(device),
1224                                  &acpi_processor_power_fops,
1225                                  acpi_driver_data(device));
1226         if (!entry)
1227                 return -EIO;
1228         return 0;
1229 }
1230
1231 int acpi_processor_power_exit(struct acpi_processor *pr,
1232                               struct acpi_device *device)
1233 {
1234         if (boot_option_idle_override)
1235                 return 0;
1236
1237         cpuidle_unregister_device(&pr->power.dev);
1238         pr->flags.power_setup_done = 0;
1239
1240         if (acpi_device_dir(device))
1241                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1242                                   acpi_device_dir(device));
1243
1244         return 0;
1245 }