Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6
[pandora-kernel.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27  *
28  */
29
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/mm.h>
34 #include <linux/pci.h>
35 #include <linux/interrupt.h>
36 #include <linux/kmod.h>
37 #include <linux/delay.h>
38 #include <linux/workqueue.h>
39 #include <linux/nmi.h>
40 #include <linux/acpi.h>
41 #include <linux/efi.h>
42 #include <linux/ioport.h>
43 #include <linux/list.h>
44 #include <linux/jiffies.h>
45 #include <linux/semaphore.h>
46
47 #include <asm/io.h>
48 #include <asm/uaccess.h>
49
50 #include <acpi/acpi.h>
51 #include <acpi/acpi_bus.h>
52 #include <acpi/processor.h>
53
54 #define _COMPONENT              ACPI_OS_SERVICES
55 ACPI_MODULE_NAME("osl");
56 #define PREFIX          "ACPI: "
57 struct acpi_os_dpc {
58         acpi_osd_exec_callback function;
59         void *context;
60         struct work_struct work;
61         int wait;
62 };
63
64 #ifdef CONFIG_ACPI_CUSTOM_DSDT
65 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
66 #endif
67
68 #ifdef ENABLE_DEBUGGER
69 #include <linux/kdb.h>
70
71 /* stuff for debugger support */
72 int acpi_in_debugger;
73 EXPORT_SYMBOL(acpi_in_debugger);
74
75 extern char line_buf[80];
76 #endif                          /*ENABLE_DEBUGGER */
77
78 static unsigned int acpi_irq_irq;
79 static acpi_osd_handler acpi_irq_handler;
80 static void *acpi_irq_context;
81 static struct workqueue_struct *kacpid_wq;
82 static struct workqueue_struct *kacpi_notify_wq;
83 static struct workqueue_struct *kacpi_hotplug_wq;
84
85 struct acpi_res_list {
86         resource_size_t start;
87         resource_size_t end;
88         acpi_adr_space_type resource_type; /* IO port, System memory, ...*/
89         char name[5];   /* only can have a length of 4 chars, make use of this
90                            one instead of res->name, no need to kalloc then */
91         struct list_head resource_list;
92         int count;
93 };
94
95 static LIST_HEAD(resource_list_head);
96 static DEFINE_SPINLOCK(acpi_res_lock);
97
98 /*
99  * This list of permanent mappings is for memory that may be accessed from
100  * interrupt context, where we can't do the ioremap().
101  */
102 struct acpi_ioremap {
103         struct list_head list;
104         void __iomem *virt;
105         acpi_physical_address phys;
106         acpi_size size;
107         struct kref ref;
108 };
109
110 static LIST_HEAD(acpi_ioremaps);
111 static DEFINE_SPINLOCK(acpi_ioremap_lock);
112
113 #define OSI_STRING_LENGTH_MAX 64        /* arbitrary */
114 static char osi_setup_string[OSI_STRING_LENGTH_MAX];
115
116 static void __init acpi_osi_setup_late(void);
117
118 /*
119  * The story of _OSI(Linux)
120  *
121  * From pre-history through Linux-2.6.22,
122  * Linux responded TRUE upon a BIOS OSI(Linux) query.
123  *
124  * Unfortunately, reference BIOS writers got wind of this
125  * and put OSI(Linux) in their example code, quickly exposing
126  * this string as ill-conceived and opening the door to
127  * an un-bounded number of BIOS incompatibilities.
128  *
129  * For example, OSI(Linux) was used on resume to re-POST a
130  * video card on one system, because Linux at that time
131  * could not do a speedy restore in its native driver.
132  * But then upon gaining quick native restore capability,
133  * Linux has no way to tell the BIOS to skip the time-consuming
134  * POST -- putting Linux at a permanent performance disadvantage.
135  * On another system, the BIOS writer used OSI(Linux)
136  * to infer native OS support for IPMI!  On other systems,
137  * OSI(Linux) simply got in the way of Linux claiming to
138  * be compatible with other operating systems, exposing
139  * BIOS issues such as skipped device initialization.
140  *
141  * So "Linux" turned out to be a really poor chose of
142  * OSI string, and from Linux-2.6.23 onward we respond FALSE.
143  *
144  * BIOS writers should NOT query _OSI(Linux) on future systems.
145  * Linux will complain on the console when it sees it, and return FALSE.
146  * To get Linux to return TRUE for your system  will require
147  * a kernel source update to add a DMI entry,
148  * or boot with "acpi_osi=Linux"
149  */
150
151 static struct osi_linux {
152         unsigned int    enable:1;
153         unsigned int    dmi:1;
154         unsigned int    cmdline:1;
155         unsigned int    known:1;
156 } osi_linux = { 0, 0, 0, 0};
157
158 static u32 acpi_osi_handler(acpi_string interface, u32 supported)
159 {
160         if (!strcmp("Linux", interface)) {
161
162                 printk(KERN_NOTICE FW_BUG PREFIX
163                         "BIOS _OSI(Linux) query %s%s\n",
164                         osi_linux.enable ? "honored" : "ignored",
165                         osi_linux.cmdline ? " via cmdline" :
166                         osi_linux.dmi ? " via DMI" : "");
167         }
168
169         return supported;
170 }
171
172 static void __init acpi_request_region (struct acpi_generic_address *addr,
173         unsigned int length, char *desc)
174 {
175         if (!addr->address || !length)
176                 return;
177
178         /* Resources are never freed */
179         if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
180                 request_region(addr->address, length, desc);
181         else if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
182                 request_mem_region(addr->address, length, desc);
183 }
184
185 static int __init acpi_reserve_resources(void)
186 {
187         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
188                 "ACPI PM1a_EVT_BLK");
189
190         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
191                 "ACPI PM1b_EVT_BLK");
192
193         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
194                 "ACPI PM1a_CNT_BLK");
195
196         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
197                 "ACPI PM1b_CNT_BLK");
198
199         if (acpi_gbl_FADT.pm_timer_length == 4)
200                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
201
202         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
203                 "ACPI PM2_CNT_BLK");
204
205         /* Length of GPE blocks must be a non-negative multiple of 2 */
206
207         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
208                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
209                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
210
211         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
212                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
213                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
214
215         return 0;
216 }
217 device_initcall(acpi_reserve_resources);
218
219 void acpi_os_printf(const char *fmt, ...)
220 {
221         va_list args;
222         va_start(args, fmt);
223         acpi_os_vprintf(fmt, args);
224         va_end(args);
225 }
226
227 void acpi_os_vprintf(const char *fmt, va_list args)
228 {
229         static char buffer[512];
230
231         vsprintf(buffer, fmt, args);
232
233 #ifdef ENABLE_DEBUGGER
234         if (acpi_in_debugger) {
235                 kdb_printf("%s", buffer);
236         } else {
237                 printk(KERN_CONT "%s", buffer);
238         }
239 #else
240         printk(KERN_CONT "%s", buffer);
241 #endif
242 }
243
244 acpi_physical_address __init acpi_os_get_root_pointer(void)
245 {
246         if (efi_enabled) {
247                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
248                         return efi.acpi20;
249                 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
250                         return efi.acpi;
251                 else {
252                         printk(KERN_ERR PREFIX
253                                "System description tables not found\n");
254                         return 0;
255                 }
256         } else {
257                 acpi_physical_address pa = 0;
258
259                 acpi_find_root_pointer(&pa);
260                 return pa;
261         }
262 }
263
264 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
265 static struct acpi_ioremap *
266 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
267 {
268         struct acpi_ioremap *map;
269
270         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
271                 if (map->phys <= phys &&
272                     phys + size <= map->phys + map->size)
273                         return map;
274
275         return NULL;
276 }
277
278 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
279 static void __iomem *
280 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
281 {
282         struct acpi_ioremap *map;
283
284         map = acpi_map_lookup(phys, size);
285         if (map)
286                 return map->virt + (phys - map->phys);
287
288         return NULL;
289 }
290
291 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
292 static struct acpi_ioremap *
293 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
294 {
295         struct acpi_ioremap *map;
296
297         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
298                 if (map->virt <= virt &&
299                     virt + size <= map->virt + map->size)
300                         return map;
301
302         return NULL;
303 }
304
305 void __iomem *__init_refok
306 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
307 {
308         struct acpi_ioremap *map, *tmp_map;
309         unsigned long flags, pg_sz;
310         void __iomem *virt;
311         phys_addr_t pg_off;
312
313         if (phys > ULONG_MAX) {
314                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
315                 return NULL;
316         }
317
318         if (!acpi_gbl_permanent_mmap)
319                 return __acpi_map_table((unsigned long)phys, size);
320
321         map = kzalloc(sizeof(*map), GFP_KERNEL);
322         if (!map)
323                 return NULL;
324
325         pg_off = round_down(phys, PAGE_SIZE);
326         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
327         virt = ioremap(pg_off, pg_sz);
328         if (!virt) {
329                 kfree(map);
330                 return NULL;
331         }
332
333         INIT_LIST_HEAD(&map->list);
334         map->virt = virt;
335         map->phys = pg_off;
336         map->size = pg_sz;
337         kref_init(&map->ref);
338
339         spin_lock_irqsave(&acpi_ioremap_lock, flags);
340         /* Check if page has already been mapped. */
341         tmp_map = acpi_map_lookup(phys, size);
342         if (tmp_map) {
343                 kref_get(&tmp_map->ref);
344                 spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
345                 iounmap(map->virt);
346                 kfree(map);
347                 return tmp_map->virt + (phys - tmp_map->phys);
348         }
349         list_add_tail_rcu(&map->list, &acpi_ioremaps);
350         spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
351
352         return map->virt + (phys - map->phys);
353 }
354 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
355
356 static void acpi_kref_del_iomap(struct kref *ref)
357 {
358         struct acpi_ioremap *map;
359
360         map = container_of(ref, struct acpi_ioremap, ref);
361         list_del_rcu(&map->list);
362 }
363
364 void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
365 {
366         struct acpi_ioremap *map;
367         unsigned long flags;
368         int del;
369
370         if (!acpi_gbl_permanent_mmap) {
371                 __acpi_unmap_table(virt, size);
372                 return;
373         }
374
375         spin_lock_irqsave(&acpi_ioremap_lock, flags);
376         map = acpi_map_lookup_virt(virt, size);
377         if (!map) {
378                 spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
379                 printk(KERN_ERR PREFIX "%s: bad address %p\n", __func__, virt);
380                 dump_stack();
381                 return;
382         }
383
384         del = kref_put(&map->ref, acpi_kref_del_iomap);
385         spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
386
387         if (!del)
388                 return;
389
390         synchronize_rcu();
391         iounmap(map->virt);
392         kfree(map);
393 }
394 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
395
396 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
397 {
398         if (!acpi_gbl_permanent_mmap)
399                 __acpi_unmap_table(virt, size);
400 }
401
402 int acpi_os_map_generic_address(struct acpi_generic_address *addr)
403 {
404         void __iomem *virt;
405
406         if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
407                 return 0;
408
409         if (!addr->address || !addr->bit_width)
410                 return -EINVAL;
411
412         virt = acpi_os_map_memory(addr->address, addr->bit_width / 8);
413         if (!virt)
414                 return -EIO;
415
416         return 0;
417 }
418 EXPORT_SYMBOL_GPL(acpi_os_map_generic_address);
419
420 void acpi_os_unmap_generic_address(struct acpi_generic_address *addr)
421 {
422         void __iomem *virt;
423         unsigned long flags;
424         acpi_size size = addr->bit_width / 8;
425
426         if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
427                 return;
428
429         if (!addr->address || !addr->bit_width)
430                 return;
431
432         spin_lock_irqsave(&acpi_ioremap_lock, flags);
433         virt = acpi_map_vaddr_lookup(addr->address, size);
434         spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
435
436         acpi_os_unmap_memory(virt, size);
437 }
438 EXPORT_SYMBOL_GPL(acpi_os_unmap_generic_address);
439
440 #ifdef ACPI_FUTURE_USAGE
441 acpi_status
442 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
443 {
444         if (!phys || !virt)
445                 return AE_BAD_PARAMETER;
446
447         *phys = virt_to_phys(virt);
448
449         return AE_OK;
450 }
451 #endif
452
453 #define ACPI_MAX_OVERRIDE_LEN 100
454
455 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
456
457 acpi_status
458 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
459                             acpi_string * new_val)
460 {
461         if (!init_val || !new_val)
462                 return AE_BAD_PARAMETER;
463
464         *new_val = NULL;
465         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
466                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
467                        acpi_os_name);
468                 *new_val = acpi_os_name;
469         }
470
471         return AE_OK;
472 }
473
474 acpi_status
475 acpi_os_table_override(struct acpi_table_header * existing_table,
476                        struct acpi_table_header ** new_table)
477 {
478         if (!existing_table || !new_table)
479                 return AE_BAD_PARAMETER;
480
481         *new_table = NULL;
482
483 #ifdef CONFIG_ACPI_CUSTOM_DSDT
484         if (strncmp(existing_table->signature, "DSDT", 4) == 0)
485                 *new_table = (struct acpi_table_header *)AmlCode;
486 #endif
487         if (*new_table != NULL) {
488                 printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
489                            "this is unsafe: tainting kernel\n",
490                        existing_table->signature,
491                        existing_table->oem_table_id);
492                 add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
493         }
494         return AE_OK;
495 }
496
497 static irqreturn_t acpi_irq(int irq, void *dev_id)
498 {
499         u32 handled;
500
501         handled = (*acpi_irq_handler) (acpi_irq_context);
502
503         if (handled) {
504                 acpi_irq_handled++;
505                 return IRQ_HANDLED;
506         } else {
507                 acpi_irq_not_handled++;
508                 return IRQ_NONE;
509         }
510 }
511
512 acpi_status
513 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
514                                   void *context)
515 {
516         unsigned int irq;
517
518         acpi_irq_stats_init();
519
520         /*
521          * Ignore the GSI from the core, and use the value in our copy of the
522          * FADT. It may not be the same if an interrupt source override exists
523          * for the SCI.
524          */
525         gsi = acpi_gbl_FADT.sci_interrupt;
526         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
527                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
528                        gsi);
529                 return AE_OK;
530         }
531
532         acpi_irq_handler = handler;
533         acpi_irq_context = context;
534         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
535                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
536                 return AE_NOT_ACQUIRED;
537         }
538         acpi_irq_irq = irq;
539
540         return AE_OK;
541 }
542
543 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
544 {
545         if (irq) {
546                 free_irq(irq, acpi_irq);
547                 acpi_irq_handler = NULL;
548                 acpi_irq_irq = 0;
549         }
550
551         return AE_OK;
552 }
553
554 /*
555  * Running in interpreter thread context, safe to sleep
556  */
557
558 void acpi_os_sleep(u64 ms)
559 {
560         schedule_timeout_interruptible(msecs_to_jiffies(ms));
561 }
562
563 void acpi_os_stall(u32 us)
564 {
565         while (us) {
566                 u32 delay = 1000;
567
568                 if (delay > us)
569                         delay = us;
570                 udelay(delay);
571                 touch_nmi_watchdog();
572                 us -= delay;
573         }
574 }
575
576 /*
577  * Support ACPI 3.0 AML Timer operand
578  * Returns 64-bit free-running, monotonically increasing timer
579  * with 100ns granularity
580  */
581 u64 acpi_os_get_timer(void)
582 {
583         static u64 t;
584
585 #ifdef  CONFIG_HPET
586         /* TBD: use HPET if available */
587 #endif
588
589 #ifdef  CONFIG_X86_PM_TIMER
590         /* TBD: default to PM timer if HPET was not available */
591 #endif
592         if (!t)
593                 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
594
595         return ++t;
596 }
597
598 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
599 {
600         u32 dummy;
601
602         if (!value)
603                 value = &dummy;
604
605         *value = 0;
606         if (width <= 8) {
607                 *(u8 *) value = inb(port);
608         } else if (width <= 16) {
609                 *(u16 *) value = inw(port);
610         } else if (width <= 32) {
611                 *(u32 *) value = inl(port);
612         } else {
613                 BUG();
614         }
615
616         return AE_OK;
617 }
618
619 EXPORT_SYMBOL(acpi_os_read_port);
620
621 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
622 {
623         if (width <= 8) {
624                 outb(value, port);
625         } else if (width <= 16) {
626                 outw(value, port);
627         } else if (width <= 32) {
628                 outl(value, port);
629         } else {
630                 BUG();
631         }
632
633         return AE_OK;
634 }
635
636 EXPORT_SYMBOL(acpi_os_write_port);
637
638 acpi_status
639 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
640 {
641         u32 dummy;
642         void __iomem *virt_addr;
643         int size = width / 8, unmap = 0;
644
645         rcu_read_lock();
646         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
647         rcu_read_unlock();
648         if (!virt_addr) {
649                 virt_addr = ioremap(phys_addr, size);
650                 unmap = 1;
651         }
652         if (!value)
653                 value = &dummy;
654
655         switch (width) {
656         case 8:
657                 *(u8 *) value = readb(virt_addr);
658                 break;
659         case 16:
660                 *(u16 *) value = readw(virt_addr);
661                 break;
662         case 32:
663                 *(u32 *) value = readl(virt_addr);
664                 break;
665         default:
666                 BUG();
667         }
668
669         if (unmap)
670                 iounmap(virt_addr);
671
672         return AE_OK;
673 }
674
675 acpi_status
676 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
677 {
678         void __iomem *virt_addr;
679         int size = width / 8, unmap = 0;
680
681         rcu_read_lock();
682         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
683         rcu_read_unlock();
684         if (!virt_addr) {
685                 virt_addr = ioremap(phys_addr, size);
686                 unmap = 1;
687         }
688
689         switch (width) {
690         case 8:
691                 writeb(value, virt_addr);
692                 break;
693         case 16:
694                 writew(value, virt_addr);
695                 break;
696         case 32:
697                 writel(value, virt_addr);
698                 break;
699         default:
700                 BUG();
701         }
702
703         if (unmap)
704                 iounmap(virt_addr);
705
706         return AE_OK;
707 }
708
709 acpi_status
710 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
711                                u64 *value, u32 width)
712 {
713         int result, size;
714         u32 value32;
715
716         if (!value)
717                 return AE_BAD_PARAMETER;
718
719         switch (width) {
720         case 8:
721                 size = 1;
722                 break;
723         case 16:
724                 size = 2;
725                 break;
726         case 32:
727                 size = 4;
728                 break;
729         default:
730                 return AE_ERROR;
731         }
732
733         result = raw_pci_read(pci_id->segment, pci_id->bus,
734                                 PCI_DEVFN(pci_id->device, pci_id->function),
735                                 reg, size, &value32);
736         *value = value32;
737
738         return (result ? AE_ERROR : AE_OK);
739 }
740
741 acpi_status
742 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
743                                 u64 value, u32 width)
744 {
745         int result, size;
746
747         switch (width) {
748         case 8:
749                 size = 1;
750                 break;
751         case 16:
752                 size = 2;
753                 break;
754         case 32:
755                 size = 4;
756                 break;
757         default:
758                 return AE_ERROR;
759         }
760
761         result = raw_pci_write(pci_id->segment, pci_id->bus,
762                                 PCI_DEVFN(pci_id->device, pci_id->function),
763                                 reg, size, value);
764
765         return (result ? AE_ERROR : AE_OK);
766 }
767
768 static void acpi_os_execute_deferred(struct work_struct *work)
769 {
770         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
771
772         if (dpc->wait)
773                 acpi_os_wait_events_complete(NULL);
774
775         dpc->function(dpc->context);
776         kfree(dpc);
777 }
778
779 /*******************************************************************************
780  *
781  * FUNCTION:    acpi_os_execute
782  *
783  * PARAMETERS:  Type               - Type of the callback
784  *              Function           - Function to be executed
785  *              Context            - Function parameters
786  *
787  * RETURN:      Status
788  *
789  * DESCRIPTION: Depending on type, either queues function for deferred execution or
790  *              immediately executes function on a separate thread.
791  *
792  ******************************************************************************/
793
794 static acpi_status __acpi_os_execute(acpi_execute_type type,
795         acpi_osd_exec_callback function, void *context, int hp)
796 {
797         acpi_status status = AE_OK;
798         struct acpi_os_dpc *dpc;
799         struct workqueue_struct *queue;
800         int ret;
801         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
802                           "Scheduling function [%p(%p)] for deferred execution.\n",
803                           function, context));
804
805         /*
806          * Allocate/initialize DPC structure.  Note that this memory will be
807          * freed by the callee.  The kernel handles the work_struct list  in a
808          * way that allows us to also free its memory inside the callee.
809          * Because we may want to schedule several tasks with different
810          * parameters we can't use the approach some kernel code uses of
811          * having a static work_struct.
812          */
813
814         dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
815         if (!dpc)
816                 return AE_NO_MEMORY;
817
818         dpc->function = function;
819         dpc->context = context;
820
821         /*
822          * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
823          * because the hotplug code may call driver .remove() functions,
824          * which invoke flush_scheduled_work/acpi_os_wait_events_complete
825          * to flush these workqueues.
826          */
827         queue = hp ? kacpi_hotplug_wq :
828                 (type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
829         dpc->wait = hp ? 1 : 0;
830
831         if (queue == kacpi_hotplug_wq)
832                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
833         else if (queue == kacpi_notify_wq)
834                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
835         else
836                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
837
838         /*
839          * On some machines, a software-initiated SMI causes corruption unless
840          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
841          * typically it's done in GPE-related methods that are run via
842          * workqueues, so we can avoid the known corruption cases by always
843          * queueing on CPU 0.
844          */
845         ret = queue_work_on(0, queue, &dpc->work);
846
847         if (!ret) {
848                 printk(KERN_ERR PREFIX
849                           "Call to queue_work() failed.\n");
850                 status = AE_ERROR;
851                 kfree(dpc);
852         }
853         return status;
854 }
855
856 acpi_status acpi_os_execute(acpi_execute_type type,
857                             acpi_osd_exec_callback function, void *context)
858 {
859         return __acpi_os_execute(type, function, context, 0);
860 }
861 EXPORT_SYMBOL(acpi_os_execute);
862
863 acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
864         void *context)
865 {
866         return __acpi_os_execute(0, function, context, 1);
867 }
868
869 void acpi_os_wait_events_complete(void *context)
870 {
871         flush_workqueue(kacpid_wq);
872         flush_workqueue(kacpi_notify_wq);
873 }
874
875 EXPORT_SYMBOL(acpi_os_wait_events_complete);
876
877 /*
878  * Deallocate the memory for a spinlock.
879  */
880 void acpi_os_delete_lock(acpi_spinlock handle)
881 {
882         return;
883 }
884
885 acpi_status
886 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
887 {
888         struct semaphore *sem = NULL;
889
890         sem = acpi_os_allocate(sizeof(struct semaphore));
891         if (!sem)
892                 return AE_NO_MEMORY;
893         memset(sem, 0, sizeof(struct semaphore));
894
895         sema_init(sem, initial_units);
896
897         *handle = (acpi_handle *) sem;
898
899         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
900                           *handle, initial_units));
901
902         return AE_OK;
903 }
904
905 /*
906  * TODO: A better way to delete semaphores?  Linux doesn't have a
907  * 'delete_semaphore()' function -- may result in an invalid
908  * pointer dereference for non-synchronized consumers.  Should
909  * we at least check for blocked threads and signal/cancel them?
910  */
911
912 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
913 {
914         struct semaphore *sem = (struct semaphore *)handle;
915
916         if (!sem)
917                 return AE_BAD_PARAMETER;
918
919         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
920
921         BUG_ON(!list_empty(&sem->wait_list));
922         kfree(sem);
923         sem = NULL;
924
925         return AE_OK;
926 }
927
928 /*
929  * TODO: Support for units > 1?
930  */
931 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
932 {
933         acpi_status status = AE_OK;
934         struct semaphore *sem = (struct semaphore *)handle;
935         long jiffies;
936         int ret = 0;
937
938         if (!sem || (units < 1))
939                 return AE_BAD_PARAMETER;
940
941         if (units > 1)
942                 return AE_SUPPORT;
943
944         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
945                           handle, units, timeout));
946
947         if (timeout == ACPI_WAIT_FOREVER)
948                 jiffies = MAX_SCHEDULE_TIMEOUT;
949         else
950                 jiffies = msecs_to_jiffies(timeout);
951         
952         ret = down_timeout(sem, jiffies);
953         if (ret)
954                 status = AE_TIME;
955
956         if (ACPI_FAILURE(status)) {
957                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
958                                   "Failed to acquire semaphore[%p|%d|%d], %s",
959                                   handle, units, timeout,
960                                   acpi_format_exception(status)));
961         } else {
962                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
963                                   "Acquired semaphore[%p|%d|%d]", handle,
964                                   units, timeout));
965         }
966
967         return status;
968 }
969
970 /*
971  * TODO: Support for units > 1?
972  */
973 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
974 {
975         struct semaphore *sem = (struct semaphore *)handle;
976
977         if (!sem || (units < 1))
978                 return AE_BAD_PARAMETER;
979
980         if (units > 1)
981                 return AE_SUPPORT;
982
983         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
984                           units));
985
986         up(sem);
987
988         return AE_OK;
989 }
990
991 #ifdef ACPI_FUTURE_USAGE
992 u32 acpi_os_get_line(char *buffer)
993 {
994
995 #ifdef ENABLE_DEBUGGER
996         if (acpi_in_debugger) {
997                 u32 chars;
998
999                 kdb_read(buffer, sizeof(line_buf));
1000
1001                 /* remove the CR kdb includes */
1002                 chars = strlen(buffer) - 1;
1003                 buffer[chars] = '\0';
1004         }
1005 #endif
1006
1007         return 0;
1008 }
1009 #endif                          /*  ACPI_FUTURE_USAGE  */
1010
1011 acpi_status acpi_os_signal(u32 function, void *info)
1012 {
1013         switch (function) {
1014         case ACPI_SIGNAL_FATAL:
1015                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1016                 break;
1017         case ACPI_SIGNAL_BREAKPOINT:
1018                 /*
1019                  * AML Breakpoint
1020                  * ACPI spec. says to treat it as a NOP unless
1021                  * you are debugging.  So if/when we integrate
1022                  * AML debugger into the kernel debugger its
1023                  * hook will go here.  But until then it is
1024                  * not useful to print anything on breakpoints.
1025                  */
1026                 break;
1027         default:
1028                 break;
1029         }
1030
1031         return AE_OK;
1032 }
1033
1034 static int __init acpi_os_name_setup(char *str)
1035 {
1036         char *p = acpi_os_name;
1037         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1038
1039         if (!str || !*str)
1040                 return 0;
1041
1042         for (; count-- && str && *str; str++) {
1043                 if (isalnum(*str) || *str == ' ' || *str == ':')
1044                         *p++ = *str;
1045                 else if (*str == '\'' || *str == '"')
1046                         continue;
1047                 else
1048                         break;
1049         }
1050         *p = 0;
1051
1052         return 1;
1053
1054 }
1055
1056 __setup("acpi_os_name=", acpi_os_name_setup);
1057
1058 static void __init set_osi_linux(unsigned int enable)
1059 {
1060         if (osi_linux.enable != enable) {
1061                 osi_linux.enable = enable;
1062                 printk(KERN_NOTICE PREFIX "%sed _OSI(Linux)\n",
1063                         enable ? "Add": "Delet");
1064         }
1065
1066         if (osi_linux.enable)
1067                 acpi_osi_setup("Linux");
1068         else
1069                 acpi_osi_setup("!Linux");
1070
1071         return;
1072 }
1073
1074 static void __init acpi_cmdline_osi_linux(unsigned int enable)
1075 {
1076         osi_linux.cmdline = 1;  /* cmdline set the default */
1077         set_osi_linux(enable);
1078
1079         return;
1080 }
1081
1082 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1083 {
1084         osi_linux.dmi = 1;      /* DMI knows that this box asks OSI(Linux) */
1085
1086         printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1087
1088         if (enable == -1)
1089                 return;
1090
1091         osi_linux.known = 1;    /* DMI knows which OSI(Linux) default needed */
1092
1093         set_osi_linux(enable);
1094
1095         return;
1096 }
1097
1098 /*
1099  * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1100  *
1101  * empty string disables _OSI
1102  * string starting with '!' disables that string
1103  * otherwise string is added to list, augmenting built-in strings
1104  */
1105 static void __init acpi_osi_setup_late(void)
1106 {
1107         char *str = osi_setup_string;
1108
1109         if (*str == '\0')
1110                 return;
1111
1112         if (!strcmp("!Linux", str)) {
1113                 acpi_cmdline_osi_linux(0);      /* !enable */
1114         } else if (*str == '!') {
1115                 if (acpi_remove_interface(++str) == AE_OK)
1116                         printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1117         } else if (!strcmp("Linux", str)) {
1118                 acpi_cmdline_osi_linux(1);      /* enable */
1119         } else {
1120                 if (acpi_install_interface(str) == AE_OK)
1121                         printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1122         }
1123 }
1124
1125 int __init acpi_osi_setup(char *str)
1126 {
1127         if (str == NULL || *str == '\0') {
1128                 printk(KERN_INFO PREFIX "_OSI method disabled\n");
1129                 acpi_gbl_create_osi_method = FALSE;
1130         } else {
1131                 strncpy(osi_setup_string, str, OSI_STRING_LENGTH_MAX);
1132         }
1133
1134         return 1;
1135 }
1136
1137 __setup("acpi_osi=", acpi_osi_setup);
1138
1139 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1140 static int __init acpi_serialize_setup(char *str)
1141 {
1142         printk(KERN_INFO PREFIX "serialize enabled\n");
1143
1144         acpi_gbl_all_methods_serialized = TRUE;
1145
1146         return 1;
1147 }
1148
1149 __setup("acpi_serialize", acpi_serialize_setup);
1150
1151 /* Check of resource interference between native drivers and ACPI
1152  * OperationRegions (SystemIO and System Memory only).
1153  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1154  * in arbitrary AML code and can interfere with legacy drivers.
1155  * acpi_enforce_resources= can be set to:
1156  *
1157  *   - strict (default) (2)
1158  *     -> further driver trying to access the resources will not load
1159  *   - lax              (1)
1160  *     -> further driver trying to access the resources will load, but you
1161  *     get a system message that something might go wrong...
1162  *
1163  *   - no               (0)
1164  *     -> ACPI Operation Region resources will not be registered
1165  *
1166  */
1167 #define ENFORCE_RESOURCES_STRICT 2
1168 #define ENFORCE_RESOURCES_LAX    1
1169 #define ENFORCE_RESOURCES_NO     0
1170
1171 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1172
1173 static int __init acpi_enforce_resources_setup(char *str)
1174 {
1175         if (str == NULL || *str == '\0')
1176                 return 0;
1177
1178         if (!strcmp("strict", str))
1179                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1180         else if (!strcmp("lax", str))
1181                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1182         else if (!strcmp("no", str))
1183                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1184
1185         return 1;
1186 }
1187
1188 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1189
1190 /* Check for resource conflicts between ACPI OperationRegions and native
1191  * drivers */
1192 int acpi_check_resource_conflict(const struct resource *res)
1193 {
1194         struct acpi_res_list *res_list_elem;
1195         int ioport;
1196         int clash = 0;
1197
1198         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1199                 return 0;
1200         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1201                 return 0;
1202
1203         ioport = res->flags & IORESOURCE_IO;
1204
1205         spin_lock(&acpi_res_lock);
1206         list_for_each_entry(res_list_elem, &resource_list_head,
1207                             resource_list) {
1208                 if (ioport && (res_list_elem->resource_type
1209                                != ACPI_ADR_SPACE_SYSTEM_IO))
1210                         continue;
1211                 if (!ioport && (res_list_elem->resource_type
1212                                 != ACPI_ADR_SPACE_SYSTEM_MEMORY))
1213                         continue;
1214
1215                 if (res->end < res_list_elem->start
1216                     || res_list_elem->end < res->start)
1217                         continue;
1218                 clash = 1;
1219                 break;
1220         }
1221         spin_unlock(&acpi_res_lock);
1222
1223         if (clash) {
1224                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1225                         printk(KERN_WARNING "ACPI: resource %s %pR"
1226                                " conflicts with ACPI region %s %pR\n",
1227                                res->name, res, res_list_elem->name,
1228                                res_list_elem);
1229                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1230                                 printk(KERN_NOTICE "ACPI: This conflict may"
1231                                        " cause random problems and system"
1232                                        " instability\n");
1233                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1234                                " for this device, you should use it instead of"
1235                                " the native driver\n");
1236                 }
1237                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1238                         return -EBUSY;
1239         }
1240         return 0;
1241 }
1242 EXPORT_SYMBOL(acpi_check_resource_conflict);
1243
1244 int acpi_check_region(resource_size_t start, resource_size_t n,
1245                       const char *name)
1246 {
1247         struct resource res = {
1248                 .start = start,
1249                 .end   = start + n - 1,
1250                 .name  = name,
1251                 .flags = IORESOURCE_IO,
1252         };
1253
1254         return acpi_check_resource_conflict(&res);
1255 }
1256 EXPORT_SYMBOL(acpi_check_region);
1257
1258 /*
1259  * Let drivers know whether the resource checks are effective
1260  */
1261 int acpi_resources_are_enforced(void)
1262 {
1263         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1264 }
1265 EXPORT_SYMBOL(acpi_resources_are_enforced);
1266
1267 /*
1268  * Acquire a spinlock.
1269  *
1270  * handle is a pointer to the spinlock_t.
1271  */
1272
1273 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1274 {
1275         acpi_cpu_flags flags;
1276         spin_lock_irqsave(lockp, flags);
1277         return flags;
1278 }
1279
1280 /*
1281  * Release a spinlock. See above.
1282  */
1283
1284 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1285 {
1286         spin_unlock_irqrestore(lockp, flags);
1287 }
1288
1289 #ifndef ACPI_USE_LOCAL_CACHE
1290
1291 /*******************************************************************************
1292  *
1293  * FUNCTION:    acpi_os_create_cache
1294  *
1295  * PARAMETERS:  name      - Ascii name for the cache
1296  *              size      - Size of each cached object
1297  *              depth     - Maximum depth of the cache (in objects) <ignored>
1298  *              cache     - Where the new cache object is returned
1299  *
1300  * RETURN:      status
1301  *
1302  * DESCRIPTION: Create a cache object
1303  *
1304  ******************************************************************************/
1305
1306 acpi_status
1307 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1308 {
1309         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1310         if (*cache == NULL)
1311                 return AE_ERROR;
1312         else
1313                 return AE_OK;
1314 }
1315
1316 /*******************************************************************************
1317  *
1318  * FUNCTION:    acpi_os_purge_cache
1319  *
1320  * PARAMETERS:  Cache           - Handle to cache object
1321  *
1322  * RETURN:      Status
1323  *
1324  * DESCRIPTION: Free all objects within the requested cache.
1325  *
1326  ******************************************************************************/
1327
1328 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1329 {
1330         kmem_cache_shrink(cache);
1331         return (AE_OK);
1332 }
1333
1334 /*******************************************************************************
1335  *
1336  * FUNCTION:    acpi_os_delete_cache
1337  *
1338  * PARAMETERS:  Cache           - Handle to cache object
1339  *
1340  * RETURN:      Status
1341  *
1342  * DESCRIPTION: Free all objects within the requested cache and delete the
1343  *              cache object.
1344  *
1345  ******************************************************************************/
1346
1347 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1348 {
1349         kmem_cache_destroy(cache);
1350         return (AE_OK);
1351 }
1352
1353 /*******************************************************************************
1354  *
1355  * FUNCTION:    acpi_os_release_object
1356  *
1357  * PARAMETERS:  Cache       - Handle to cache object
1358  *              Object      - The object to be released
1359  *
1360  * RETURN:      None
1361  *
1362  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1363  *              the object is deleted.
1364  *
1365  ******************************************************************************/
1366
1367 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1368 {
1369         kmem_cache_free(cache, object);
1370         return (AE_OK);
1371 }
1372
1373 static inline int acpi_res_list_add(struct acpi_res_list *res)
1374 {
1375         struct acpi_res_list *res_list_elem;
1376
1377         list_for_each_entry(res_list_elem, &resource_list_head,
1378                             resource_list) {
1379
1380                 if (res->resource_type == res_list_elem->resource_type &&
1381                     res->start == res_list_elem->start &&
1382                     res->end == res_list_elem->end) {
1383
1384                         /*
1385                          * The Region(addr,len) already exist in the list,
1386                          * just increase the count
1387                          */
1388
1389                         res_list_elem->count++;
1390                         return 0;
1391                 }
1392         }
1393
1394         res->count = 1;
1395         list_add(&res->resource_list, &resource_list_head);
1396         return 1;
1397 }
1398
1399 static inline void acpi_res_list_del(struct acpi_res_list *res)
1400 {
1401         struct acpi_res_list *res_list_elem;
1402
1403         list_for_each_entry(res_list_elem, &resource_list_head,
1404                             resource_list) {
1405
1406                 if (res->resource_type == res_list_elem->resource_type &&
1407                     res->start == res_list_elem->start &&
1408                     res->end == res_list_elem->end) {
1409
1410                         /*
1411                          * If the res count is decreased to 0,
1412                          * remove and free it
1413                          */
1414
1415                         if (--res_list_elem->count == 0) {
1416                                 list_del(&res_list_elem->resource_list);
1417                                 kfree(res_list_elem);
1418                         }
1419                         return;
1420                 }
1421         }
1422 }
1423
1424 acpi_status
1425 acpi_os_invalidate_address(
1426     u8                   space_id,
1427     acpi_physical_address   address,
1428     acpi_size               length)
1429 {
1430         struct acpi_res_list res;
1431
1432         switch (space_id) {
1433         case ACPI_ADR_SPACE_SYSTEM_IO:
1434         case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1435                 /* Only interference checks against SystemIO and SystemMemory
1436                    are needed */
1437                 res.start = address;
1438                 res.end = address + length - 1;
1439                 res.resource_type = space_id;
1440                 spin_lock(&acpi_res_lock);
1441                 acpi_res_list_del(&res);
1442                 spin_unlock(&acpi_res_lock);
1443                 break;
1444         case ACPI_ADR_SPACE_PCI_CONFIG:
1445         case ACPI_ADR_SPACE_EC:
1446         case ACPI_ADR_SPACE_SMBUS:
1447         case ACPI_ADR_SPACE_CMOS:
1448         case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1449         case ACPI_ADR_SPACE_DATA_TABLE:
1450         case ACPI_ADR_SPACE_FIXED_HARDWARE:
1451                 break;
1452         }
1453         return AE_OK;
1454 }
1455
1456 /******************************************************************************
1457  *
1458  * FUNCTION:    acpi_os_validate_address
1459  *
1460  * PARAMETERS:  space_id             - ACPI space ID
1461  *              address             - Physical address
1462  *              length              - Address length
1463  *
1464  * RETURN:      AE_OK if address/length is valid for the space_id. Otherwise,
1465  *              should return AE_AML_ILLEGAL_ADDRESS.
1466  *
1467  * DESCRIPTION: Validate a system address via the host OS. Used to validate
1468  *              the addresses accessed by AML operation regions.
1469  *
1470  *****************************************************************************/
1471
1472 acpi_status
1473 acpi_os_validate_address (
1474     u8                   space_id,
1475     acpi_physical_address   address,
1476     acpi_size               length,
1477     char *name)
1478 {
1479         struct acpi_res_list *res;
1480         int added;
1481         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1482                 return AE_OK;
1483
1484         switch (space_id) {
1485         case ACPI_ADR_SPACE_SYSTEM_IO:
1486         case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1487                 /* Only interference checks against SystemIO and SystemMemory
1488                    are needed */
1489                 res = kzalloc(sizeof(struct acpi_res_list), GFP_KERNEL);
1490                 if (!res)
1491                         return AE_OK;
1492                 /* ACPI names are fixed to 4 bytes, still better use strlcpy */
1493                 strlcpy(res->name, name, 5);
1494                 res->start = address;
1495                 res->end = address + length - 1;
1496                 res->resource_type = space_id;
1497                 spin_lock(&acpi_res_lock);
1498                 added = acpi_res_list_add(res);
1499                 spin_unlock(&acpi_res_lock);
1500                 pr_debug("%s %s resource: start: 0x%llx, end: 0x%llx, "
1501                          "name: %s\n", added ? "Added" : "Already exist",
1502                          (space_id == ACPI_ADR_SPACE_SYSTEM_IO)
1503                          ? "SystemIO" : "System Memory",
1504                          (unsigned long long)res->start,
1505                          (unsigned long long)res->end,
1506                          res->name);
1507                 if (!added)
1508                         kfree(res);
1509                 break;
1510         case ACPI_ADR_SPACE_PCI_CONFIG:
1511         case ACPI_ADR_SPACE_EC:
1512         case ACPI_ADR_SPACE_SMBUS:
1513         case ACPI_ADR_SPACE_CMOS:
1514         case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1515         case ACPI_ADR_SPACE_DATA_TABLE:
1516         case ACPI_ADR_SPACE_FIXED_HARDWARE:
1517                 break;
1518         }
1519         return AE_OK;
1520 }
1521 #endif
1522
1523 acpi_status __init acpi_os_initialize(void)
1524 {
1525         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1526         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1527         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1528         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1529
1530         return AE_OK;
1531 }
1532
1533 acpi_status acpi_os_initialize1(void)
1534 {
1535         kacpid_wq = create_workqueue("kacpid");
1536         kacpi_notify_wq = create_workqueue("kacpi_notify");
1537         kacpi_hotplug_wq = create_workqueue("kacpi_hotplug");
1538         BUG_ON(!kacpid_wq);
1539         BUG_ON(!kacpi_notify_wq);
1540         BUG_ON(!kacpi_hotplug_wq);
1541         acpi_install_interface_handler(acpi_osi_handler);
1542         acpi_osi_setup_late();
1543         return AE_OK;
1544 }
1545
1546 acpi_status acpi_os_terminate(void)
1547 {
1548         if (acpi_irq_handler) {
1549                 acpi_os_remove_interrupt_handler(acpi_irq_irq,
1550                                                  acpi_irq_handler);
1551         }
1552
1553         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1554         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1555         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1556         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1557
1558         destroy_workqueue(kacpid_wq);
1559         destroy_workqueue(kacpi_notify_wq);
1560         destroy_workqueue(kacpi_hotplug_wq);
1561
1562         return AE_OK;
1563 }