Merge branch 'misc' of master.kernel.org:/pub/scm/linux/kernel/git/galak/powerpc...
[pandora-kernel.git] / block / elevator.c
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@suse.de> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/config.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/compiler.h>
35 #include <linux/delay.h>
36 #include <linux/blktrace_api.h>
37
38 #include <asm/uaccess.h>
39
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
42
43 /*
44  * can we safely merge with this request?
45  */
46 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
47 {
48         if (!rq_mergeable(rq))
49                 return 0;
50
51         /*
52          * different data direction or already started, don't merge
53          */
54         if (bio_data_dir(bio) != rq_data_dir(rq))
55                 return 0;
56
57         /*
58          * same device and no special stuff set, merge is ok
59          */
60         if (rq->rq_disk == bio->bi_bdev->bd_disk &&
61             !rq->waiting && !rq->special)
62                 return 1;
63
64         return 0;
65 }
66 EXPORT_SYMBOL(elv_rq_merge_ok);
67
68 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
69 {
70         int ret = ELEVATOR_NO_MERGE;
71
72         /*
73          * we can merge and sequence is ok, check if it's possible
74          */
75         if (elv_rq_merge_ok(__rq, bio)) {
76                 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
77                         ret = ELEVATOR_BACK_MERGE;
78                 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
79                         ret = ELEVATOR_FRONT_MERGE;
80         }
81
82         return ret;
83 }
84
85 static struct elevator_type *elevator_find(const char *name)
86 {
87         struct elevator_type *e = NULL;
88         struct list_head *entry;
89
90         list_for_each(entry, &elv_list) {
91                 struct elevator_type *__e;
92
93                 __e = list_entry(entry, struct elevator_type, list);
94
95                 if (!strcmp(__e->elevator_name, name)) {
96                         e = __e;
97                         break;
98                 }
99         }
100
101         return e;
102 }
103
104 static void elevator_put(struct elevator_type *e)
105 {
106         module_put(e->elevator_owner);
107 }
108
109 static struct elevator_type *elevator_get(const char *name)
110 {
111         struct elevator_type *e;
112
113         spin_lock_irq(&elv_list_lock);
114
115         e = elevator_find(name);
116         if (e && !try_module_get(e->elevator_owner))
117                 e = NULL;
118
119         spin_unlock_irq(&elv_list_lock);
120
121         return e;
122 }
123
124 static int elevator_attach(request_queue_t *q, struct elevator_queue *eq)
125 {
126         int ret = 0;
127
128         q->elevator = eq;
129
130         if (eq->ops->elevator_init_fn)
131                 ret = eq->ops->elevator_init_fn(q, eq);
132
133         return ret;
134 }
135
136 static char chosen_elevator[16];
137
138 static int __init elevator_setup(char *str)
139 {
140         /*
141          * Be backwards-compatible with previous kernels, so users
142          * won't get the wrong elevator.
143          */
144         if (!strcmp(str, "as"))
145                 strcpy(chosen_elevator, "anticipatory");
146         else
147                 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
148         return 1;
149 }
150
151 __setup("elevator=", elevator_setup);
152
153 static struct kobj_type elv_ktype;
154
155 static elevator_t *elevator_alloc(struct elevator_type *e)
156 {
157         elevator_t *eq = kmalloc(sizeof(elevator_t), GFP_KERNEL);
158         if (eq) {
159                 memset(eq, 0, sizeof(*eq));
160                 eq->ops = &e->ops;
161                 eq->elevator_type = e;
162                 kobject_init(&eq->kobj);
163                 snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
164                 eq->kobj.ktype = &elv_ktype;
165                 mutex_init(&eq->sysfs_lock);
166         } else {
167                 elevator_put(e);
168         }
169         return eq;
170 }
171
172 static void elevator_release(struct kobject *kobj)
173 {
174         elevator_t *e = container_of(kobj, elevator_t, kobj);
175         elevator_put(e->elevator_type);
176         kfree(e);
177 }
178
179 int elevator_init(request_queue_t *q, char *name)
180 {
181         struct elevator_type *e = NULL;
182         struct elevator_queue *eq;
183         int ret = 0;
184
185         INIT_LIST_HEAD(&q->queue_head);
186         q->last_merge = NULL;
187         q->end_sector = 0;
188         q->boundary_rq = NULL;
189
190         if (name && !(e = elevator_get(name)))
191                 return -EINVAL;
192
193         if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
194                 printk("I/O scheduler %s not found\n", chosen_elevator);
195
196         if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
197                 printk("Default I/O scheduler not found, using no-op\n");
198                 e = elevator_get("noop");
199         }
200
201         eq = elevator_alloc(e);
202         if (!eq)
203                 return -ENOMEM;
204
205         ret = elevator_attach(q, eq);
206         if (ret)
207                 kobject_put(&eq->kobj);
208
209         return ret;
210 }
211
212 void elevator_exit(elevator_t *e)
213 {
214         mutex_lock(&e->sysfs_lock);
215         if (e->ops->elevator_exit_fn)
216                 e->ops->elevator_exit_fn(e);
217         e->ops = NULL;
218         mutex_unlock(&e->sysfs_lock);
219
220         kobject_put(&e->kobj);
221 }
222
223 /*
224  * Insert rq into dispatch queue of q.  Queue lock must be held on
225  * entry.  If sort != 0, rq is sort-inserted; otherwise, rq will be
226  * appended to the dispatch queue.  To be used by specific elevators.
227  */
228 void elv_dispatch_sort(request_queue_t *q, struct request *rq)
229 {
230         sector_t boundary;
231         struct list_head *entry;
232
233         if (q->last_merge == rq)
234                 q->last_merge = NULL;
235         q->nr_sorted--;
236
237         boundary = q->end_sector;
238
239         list_for_each_prev(entry, &q->queue_head) {
240                 struct request *pos = list_entry_rq(entry);
241
242                 if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
243                         break;
244                 if (rq->sector >= boundary) {
245                         if (pos->sector < boundary)
246                                 continue;
247                 } else {
248                         if (pos->sector >= boundary)
249                                 break;
250                 }
251                 if (rq->sector >= pos->sector)
252                         break;
253         }
254
255         list_add(&rq->queuelist, entry);
256 }
257
258 int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
259 {
260         elevator_t *e = q->elevator;
261         int ret;
262
263         if (q->last_merge) {
264                 ret = elv_try_merge(q->last_merge, bio);
265                 if (ret != ELEVATOR_NO_MERGE) {
266                         *req = q->last_merge;
267                         return ret;
268                 }
269         }
270
271         if (e->ops->elevator_merge_fn)
272                 return e->ops->elevator_merge_fn(q, req, bio);
273
274         return ELEVATOR_NO_MERGE;
275 }
276
277 void elv_merged_request(request_queue_t *q, struct request *rq)
278 {
279         elevator_t *e = q->elevator;
280
281         if (e->ops->elevator_merged_fn)
282                 e->ops->elevator_merged_fn(q, rq);
283
284         q->last_merge = rq;
285 }
286
287 void elv_merge_requests(request_queue_t *q, struct request *rq,
288                              struct request *next)
289 {
290         elevator_t *e = q->elevator;
291
292         if (e->ops->elevator_merge_req_fn)
293                 e->ops->elevator_merge_req_fn(q, rq, next);
294         q->nr_sorted--;
295
296         q->last_merge = rq;
297 }
298
299 void elv_requeue_request(request_queue_t *q, struct request *rq)
300 {
301         elevator_t *e = q->elevator;
302
303         /*
304          * it already went through dequeue, we need to decrement the
305          * in_flight count again
306          */
307         if (blk_account_rq(rq)) {
308                 q->in_flight--;
309                 if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
310                         e->ops->elevator_deactivate_req_fn(q, rq);
311         }
312
313         rq->flags &= ~REQ_STARTED;
314
315         elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
316 }
317
318 static void elv_drain_elevator(request_queue_t *q)
319 {
320         static int printed;
321         while (q->elevator->ops->elevator_dispatch_fn(q, 1))
322                 ;
323         if (q->nr_sorted == 0)
324                 return;
325         if (printed++ < 10) {
326                 printk(KERN_ERR "%s: forced dispatching is broken "
327                        "(nr_sorted=%u), please report this\n",
328                        q->elevator->elevator_type->elevator_name, q->nr_sorted);
329         }
330 }
331
332 void elv_insert(request_queue_t *q, struct request *rq, int where)
333 {
334         struct list_head *pos;
335         unsigned ordseq;
336
337         blk_add_trace_rq(q, rq, BLK_TA_INSERT);
338
339         rq->q = q;
340
341         switch (where) {
342         case ELEVATOR_INSERT_FRONT:
343                 rq->flags |= REQ_SOFTBARRIER;
344
345                 list_add(&rq->queuelist, &q->queue_head);
346                 break;
347
348         case ELEVATOR_INSERT_BACK:
349                 rq->flags |= REQ_SOFTBARRIER;
350                 elv_drain_elevator(q);
351                 list_add_tail(&rq->queuelist, &q->queue_head);
352                 /*
353                  * We kick the queue here for the following reasons.
354                  * - The elevator might have returned NULL previously
355                  *   to delay requests and returned them now.  As the
356                  *   queue wasn't empty before this request, ll_rw_blk
357                  *   won't run the queue on return, resulting in hang.
358                  * - Usually, back inserted requests won't be merged
359                  *   with anything.  There's no point in delaying queue
360                  *   processing.
361                  */
362                 blk_remove_plug(q);
363                 q->request_fn(q);
364                 break;
365
366         case ELEVATOR_INSERT_SORT:
367                 BUG_ON(!blk_fs_request(rq));
368                 rq->flags |= REQ_SORTED;
369                 q->nr_sorted++;
370                 if (q->last_merge == NULL && rq_mergeable(rq))
371                         q->last_merge = rq;
372                 /*
373                  * Some ioscheds (cfq) run q->request_fn directly, so
374                  * rq cannot be accessed after calling
375                  * elevator_add_req_fn.
376                  */
377                 q->elevator->ops->elevator_add_req_fn(q, rq);
378                 break;
379
380         case ELEVATOR_INSERT_REQUEUE:
381                 /*
382                  * If ordered flush isn't in progress, we do front
383                  * insertion; otherwise, requests should be requeued
384                  * in ordseq order.
385                  */
386                 rq->flags |= REQ_SOFTBARRIER;
387
388                 if (q->ordseq == 0) {
389                         list_add(&rq->queuelist, &q->queue_head);
390                         break;
391                 }
392
393                 ordseq = blk_ordered_req_seq(rq);
394
395                 list_for_each(pos, &q->queue_head) {
396                         struct request *pos_rq = list_entry_rq(pos);
397                         if (ordseq <= blk_ordered_req_seq(pos_rq))
398                                 break;
399                 }
400
401                 list_add_tail(&rq->queuelist, pos);
402                 break;
403
404         default:
405                 printk(KERN_ERR "%s: bad insertion point %d\n",
406                        __FUNCTION__, where);
407                 BUG();
408         }
409
410         if (blk_queue_plugged(q)) {
411                 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
412                         - q->in_flight;
413
414                 if (nrq >= q->unplug_thresh)
415                         __generic_unplug_device(q);
416         }
417 }
418
419 void __elv_add_request(request_queue_t *q, struct request *rq, int where,
420                        int plug)
421 {
422         if (q->ordcolor)
423                 rq->flags |= REQ_ORDERED_COLOR;
424
425         if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
426                 /*
427                  * toggle ordered color
428                  */
429                 if (blk_barrier_rq(rq))
430                         q->ordcolor ^= 1;
431
432                 /*
433                  * barriers implicitly indicate back insertion
434                  */
435                 if (where == ELEVATOR_INSERT_SORT)
436                         where = ELEVATOR_INSERT_BACK;
437
438                 /*
439                  * this request is scheduling boundary, update
440                  * end_sector
441                  */
442                 if (blk_fs_request(rq)) {
443                         q->end_sector = rq_end_sector(rq);
444                         q->boundary_rq = rq;
445                 }
446         } else if (!(rq->flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
447                 where = ELEVATOR_INSERT_BACK;
448
449         if (plug)
450                 blk_plug_device(q);
451
452         elv_insert(q, rq, where);
453 }
454
455 void elv_add_request(request_queue_t *q, struct request *rq, int where,
456                      int plug)
457 {
458         unsigned long flags;
459
460         spin_lock_irqsave(q->queue_lock, flags);
461         __elv_add_request(q, rq, where, plug);
462         spin_unlock_irqrestore(q->queue_lock, flags);
463 }
464
465 static inline struct request *__elv_next_request(request_queue_t *q)
466 {
467         struct request *rq;
468
469         while (1) {
470                 while (!list_empty(&q->queue_head)) {
471                         rq = list_entry_rq(q->queue_head.next);
472                         if (blk_do_ordered(q, &rq))
473                                 return rq;
474                 }
475
476                 if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
477                         return NULL;
478         }
479 }
480
481 struct request *elv_next_request(request_queue_t *q)
482 {
483         struct request *rq;
484         int ret;
485
486         while ((rq = __elv_next_request(q)) != NULL) {
487                 if (!(rq->flags & REQ_STARTED)) {
488                         elevator_t *e = q->elevator;
489
490                         /*
491                          * This is the first time the device driver
492                          * sees this request (possibly after
493                          * requeueing).  Notify IO scheduler.
494                          */
495                         if (blk_sorted_rq(rq) &&
496                             e->ops->elevator_activate_req_fn)
497                                 e->ops->elevator_activate_req_fn(q, rq);
498
499                         /*
500                          * just mark as started even if we don't start
501                          * it, a request that has been delayed should
502                          * not be passed by new incoming requests
503                          */
504                         rq->flags |= REQ_STARTED;
505                         blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
506                 }
507
508                 if (!q->boundary_rq || q->boundary_rq == rq) {
509                         q->end_sector = rq_end_sector(rq);
510                         q->boundary_rq = NULL;
511                 }
512
513                 if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn)
514                         break;
515
516                 ret = q->prep_rq_fn(q, rq);
517                 if (ret == BLKPREP_OK) {
518                         break;
519                 } else if (ret == BLKPREP_DEFER) {
520                         /*
521                          * the request may have been (partially) prepped.
522                          * we need to keep this request in the front to
523                          * avoid resource deadlock.  REQ_STARTED will
524                          * prevent other fs requests from passing this one.
525                          */
526                         rq = NULL;
527                         break;
528                 } else if (ret == BLKPREP_KILL) {
529                         int nr_bytes = rq->hard_nr_sectors << 9;
530
531                         if (!nr_bytes)
532                                 nr_bytes = rq->data_len;
533
534                         blkdev_dequeue_request(rq);
535                         rq->flags |= REQ_QUIET;
536                         end_that_request_chunk(rq, 0, nr_bytes);
537                         end_that_request_last(rq, 0);
538                 } else {
539                         printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
540                                                                 ret);
541                         break;
542                 }
543         }
544
545         return rq;
546 }
547
548 void elv_dequeue_request(request_queue_t *q, struct request *rq)
549 {
550         BUG_ON(list_empty(&rq->queuelist));
551
552         list_del_init(&rq->queuelist);
553
554         /*
555          * the time frame between a request being removed from the lists
556          * and to it is freed is accounted as io that is in progress at
557          * the driver side.
558          */
559         if (blk_account_rq(rq))
560                 q->in_flight++;
561 }
562
563 int elv_queue_empty(request_queue_t *q)
564 {
565         elevator_t *e = q->elevator;
566
567         if (!list_empty(&q->queue_head))
568                 return 0;
569
570         if (e->ops->elevator_queue_empty_fn)
571                 return e->ops->elevator_queue_empty_fn(q);
572
573         return 1;
574 }
575
576 struct request *elv_latter_request(request_queue_t *q, struct request *rq)
577 {
578         elevator_t *e = q->elevator;
579
580         if (e->ops->elevator_latter_req_fn)
581                 return e->ops->elevator_latter_req_fn(q, rq);
582         return NULL;
583 }
584
585 struct request *elv_former_request(request_queue_t *q, struct request *rq)
586 {
587         elevator_t *e = q->elevator;
588
589         if (e->ops->elevator_former_req_fn)
590                 return e->ops->elevator_former_req_fn(q, rq);
591         return NULL;
592 }
593
594 int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
595                     gfp_t gfp_mask)
596 {
597         elevator_t *e = q->elevator;
598
599         if (e->ops->elevator_set_req_fn)
600                 return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
601
602         rq->elevator_private = NULL;
603         return 0;
604 }
605
606 void elv_put_request(request_queue_t *q, struct request *rq)
607 {
608         elevator_t *e = q->elevator;
609
610         if (e->ops->elevator_put_req_fn)
611                 e->ops->elevator_put_req_fn(q, rq);
612 }
613
614 int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
615 {
616         elevator_t *e = q->elevator;
617
618         if (e->ops->elevator_may_queue_fn)
619                 return e->ops->elevator_may_queue_fn(q, rw, bio);
620
621         return ELV_MQUEUE_MAY;
622 }
623
624 void elv_completed_request(request_queue_t *q, struct request *rq)
625 {
626         elevator_t *e = q->elevator;
627
628         /*
629          * request is released from the driver, io must be done
630          */
631         if (blk_account_rq(rq)) {
632                 q->in_flight--;
633                 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
634                         e->ops->elevator_completed_req_fn(q, rq);
635         }
636
637         /*
638          * Check if the queue is waiting for fs requests to be
639          * drained for flush sequence.
640          */
641         if (unlikely(q->ordseq)) {
642                 struct request *first_rq = list_entry_rq(q->queue_head.next);
643                 if (q->in_flight == 0 &&
644                     blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
645                     blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
646                         blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
647                         q->request_fn(q);
648                 }
649         }
650 }
651
652 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
653
654 static ssize_t
655 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
656 {
657         elevator_t *e = container_of(kobj, elevator_t, kobj);
658         struct elv_fs_entry *entry = to_elv(attr);
659         ssize_t error;
660
661         if (!entry->show)
662                 return -EIO;
663
664         mutex_lock(&e->sysfs_lock);
665         error = e->ops ? entry->show(e, page) : -ENOENT;
666         mutex_unlock(&e->sysfs_lock);
667         return error;
668 }
669
670 static ssize_t
671 elv_attr_store(struct kobject *kobj, struct attribute *attr,
672                const char *page, size_t length)
673 {
674         elevator_t *e = container_of(kobj, elevator_t, kobj);
675         struct elv_fs_entry *entry = to_elv(attr);
676         ssize_t error;
677
678         if (!entry->store)
679                 return -EIO;
680
681         mutex_lock(&e->sysfs_lock);
682         error = e->ops ? entry->store(e, page, length) : -ENOENT;
683         mutex_unlock(&e->sysfs_lock);
684         return error;
685 }
686
687 static struct sysfs_ops elv_sysfs_ops = {
688         .show   = elv_attr_show,
689         .store  = elv_attr_store,
690 };
691
692 static struct kobj_type elv_ktype = {
693         .sysfs_ops      = &elv_sysfs_ops,
694         .release        = elevator_release,
695 };
696
697 int elv_register_queue(struct request_queue *q)
698 {
699         elevator_t *e = q->elevator;
700         int error;
701
702         e->kobj.parent = &q->kobj;
703
704         error = kobject_add(&e->kobj);
705         if (!error) {
706                 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
707                 if (attr) {
708                         while (attr->attr.name) {
709                                 if (sysfs_create_file(&e->kobj, &attr->attr))
710                                         break;
711                                 attr++;
712                         }
713                 }
714                 kobject_uevent(&e->kobj, KOBJ_ADD);
715         }
716         return error;
717 }
718
719 void elv_unregister_queue(struct request_queue *q)
720 {
721         if (q) {
722                 elevator_t *e = q->elevator;
723                 kobject_uevent(&e->kobj, KOBJ_REMOVE);
724                 kobject_del(&e->kobj);
725         }
726 }
727
728 int elv_register(struct elevator_type *e)
729 {
730         spin_lock_irq(&elv_list_lock);
731         BUG_ON(elevator_find(e->elevator_name));
732         list_add_tail(&e->list, &elv_list);
733         spin_unlock_irq(&elv_list_lock);
734
735         printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
736         if (!strcmp(e->elevator_name, chosen_elevator) ||
737                         (!*chosen_elevator &&
738                          !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
739                                 printk(" (default)");
740         printk("\n");
741         return 0;
742 }
743 EXPORT_SYMBOL_GPL(elv_register);
744
745 void elv_unregister(struct elevator_type *e)
746 {
747         struct task_struct *g, *p;
748
749         /*
750          * Iterate every thread in the process to remove the io contexts.
751          */
752         if (e->ops.trim) {
753                 read_lock(&tasklist_lock);
754                 do_each_thread(g, p) {
755                         task_lock(p);
756                         e->ops.trim(p->io_context);
757                         task_unlock(p);
758                 } while_each_thread(g, p);
759                 read_unlock(&tasklist_lock);
760         }
761
762         spin_lock_irq(&elv_list_lock);
763         list_del_init(&e->list);
764         spin_unlock_irq(&elv_list_lock);
765 }
766 EXPORT_SYMBOL_GPL(elv_unregister);
767
768 /*
769  * switch to new_e io scheduler. be careful not to introduce deadlocks -
770  * we don't free the old io scheduler, before we have allocated what we
771  * need for the new one. this way we have a chance of going back to the old
772  * one, if the new one fails init for some reason.
773  */
774 static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
775 {
776         elevator_t *old_elevator, *e;
777
778         /*
779          * Allocate new elevator
780          */
781         e = elevator_alloc(new_e);
782         if (!e)
783                 return 0;
784
785         /*
786          * Turn on BYPASS and drain all requests w/ elevator private data
787          */
788         spin_lock_irq(q->queue_lock);
789
790         set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
791
792         elv_drain_elevator(q);
793
794         while (q->rq.elvpriv) {
795                 blk_remove_plug(q);
796                 q->request_fn(q);
797                 spin_unlock_irq(q->queue_lock);
798                 msleep(10);
799                 spin_lock_irq(q->queue_lock);
800                 elv_drain_elevator(q);
801         }
802
803         spin_unlock_irq(q->queue_lock);
804
805         /*
806          * unregister old elevator data
807          */
808         elv_unregister_queue(q);
809         old_elevator = q->elevator;
810
811         /*
812          * attach and start new elevator
813          */
814         if (elevator_attach(q, e))
815                 goto fail;
816
817         if (elv_register_queue(q))
818                 goto fail_register;
819
820         /*
821          * finally exit old elevator and turn off BYPASS.
822          */
823         elevator_exit(old_elevator);
824         clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
825         return 1;
826
827 fail_register:
828         /*
829          * switch failed, exit the new io scheduler and reattach the old
830          * one again (along with re-adding the sysfs dir)
831          */
832         elevator_exit(e);
833         e = NULL;
834 fail:
835         q->elevator = old_elevator;
836         elv_register_queue(q);
837         clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
838         if (e)
839                 kobject_put(&e->kobj);
840         return 0;
841 }
842
843 ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
844 {
845         char elevator_name[ELV_NAME_MAX];
846         size_t len;
847         struct elevator_type *e;
848
849         elevator_name[sizeof(elevator_name) - 1] = '\0';
850         strncpy(elevator_name, name, sizeof(elevator_name) - 1);
851         len = strlen(elevator_name);
852
853         if (len && elevator_name[len - 1] == '\n')
854                 elevator_name[len - 1] = '\0';
855
856         e = elevator_get(elevator_name);
857         if (!e) {
858                 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
859                 return -EINVAL;
860         }
861
862         if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
863                 elevator_put(e);
864                 return count;
865         }
866
867         if (!elevator_switch(q, e))
868                 printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
869         return count;
870 }
871
872 ssize_t elv_iosched_show(request_queue_t *q, char *name)
873 {
874         elevator_t *e = q->elevator;
875         struct elevator_type *elv = e->elevator_type;
876         struct list_head *entry;
877         int len = 0;
878
879         spin_lock_irq(q->queue_lock);
880         list_for_each(entry, &elv_list) {
881                 struct elevator_type *__e;
882
883                 __e = list_entry(entry, struct elevator_type, list);
884                 if (!strcmp(elv->elevator_name, __e->elevator_name))
885                         len += sprintf(name+len, "[%s] ", elv->elevator_name);
886                 else
887                         len += sprintf(name+len, "%s ", __e->elevator_name);
888         }
889         spin_unlock_irq(q->queue_lock);
890
891         len += sprintf(len+name, "\n");
892         return len;
893 }
894
895 EXPORT_SYMBOL(elv_dispatch_sort);
896 EXPORT_SYMBOL(elv_add_request);
897 EXPORT_SYMBOL(__elv_add_request);
898 EXPORT_SYMBOL(elv_next_request);
899 EXPORT_SYMBOL(elv_dequeue_request);
900 EXPORT_SYMBOL(elv_queue_empty);
901 EXPORT_SYMBOL(elevator_exit);
902 EXPORT_SYMBOL(elevator_init);