cfq-iosched: fix bug with aliased request and cooperation detection
[pandora-kernel.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17  * tunables
18  */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32  * offset from end of service tree
33  */
34 #define CFQ_IDLE_DELAY          (HZ / 5)
35
36 /*
37  * below this threshold, we consider thinktime immediate
38  */
39 #define CFQ_MIN_TT              (2)
40
41 #define CFQ_SLICE_SCALE         (5)
42 #define CFQ_HW_QUEUE_MIN        (5)
43
44 #define RQ_CIC(rq)              \
45         ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define sample_valid(samples)   ((samples) > 80)
60
61 /*
62  * Most of our rbtree usage is for sorting with min extraction, so
63  * if we cache the leftmost node we don't have to walk down the tree
64  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65  * move this into the elevator for the rq sorting as well.
66  */
67 struct cfq_rb_root {
68         struct rb_root rb;
69         struct rb_node *left;
70 };
71 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
72
73 /*
74  * Per block device queue structure
75  */
76 struct cfq_data {
77         struct request_queue *queue;
78
79         /*
80          * rr list of queues with requests and the count of them
81          */
82         struct cfq_rb_root service_tree;
83
84         /*
85          * Each priority tree is sorted by next_request position.  These
86          * trees are used when determining if two or more queues are
87          * interleaving requests (see cfq_close_cooperator).
88          */
89         struct rb_root prio_trees[CFQ_PRIO_LISTS];
90
91         unsigned int busy_queues;
92         /*
93          * Used to track any pending rt requests so we can pre-empt current
94          * non-RT cfqq in service when this value is non-zero.
95          */
96         unsigned int busy_rt_queues;
97
98         int rq_in_driver;
99         int sync_flight;
100
101         /*
102          * queue-depth detection
103          */
104         int rq_queued;
105         int hw_tag;
106         int hw_tag_samples;
107         int rq_in_driver_peak;
108
109         /*
110          * idle window management
111          */
112         struct timer_list idle_slice_timer;
113         struct work_struct unplug_work;
114
115         struct cfq_queue *active_queue;
116         struct cfq_io_context *active_cic;
117
118         /*
119          * async queue for each priority case
120          */
121         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
122         struct cfq_queue *async_idle_cfqq;
123
124         sector_t last_position;
125         unsigned long last_end_request;
126
127         /*
128          * tunables, see top of file
129          */
130         unsigned int cfq_quantum;
131         unsigned int cfq_fifo_expire[2];
132         unsigned int cfq_back_penalty;
133         unsigned int cfq_back_max;
134         unsigned int cfq_slice[2];
135         unsigned int cfq_slice_async_rq;
136         unsigned int cfq_slice_idle;
137
138         struct list_head cic_list;
139 };
140
141 /*
142  * Per process-grouping structure
143  */
144 struct cfq_queue {
145         /* reference count */
146         atomic_t ref;
147         /* various state flags, see below */
148         unsigned int flags;
149         /* parent cfq_data */
150         struct cfq_data *cfqd;
151         /* service_tree member */
152         struct rb_node rb_node;
153         /* service_tree key */
154         unsigned long rb_key;
155         /* prio tree member */
156         struct rb_node p_node;
157         /* sorted list of pending requests */
158         struct rb_root sort_list;
159         /* if fifo isn't expired, next request to serve */
160         struct request *next_rq;
161         /* requests queued in sort_list */
162         int queued[2];
163         /* currently allocated requests */
164         int allocated[2];
165         /* fifo list of requests in sort_list */
166         struct list_head fifo;
167
168         unsigned long slice_end;
169         long slice_resid;
170         unsigned int slice_dispatch;
171
172         /* pending metadata requests */
173         int meta_pending;
174         /* number of requests that are on the dispatch list or inside driver */
175         int dispatched;
176
177         /* io prio of this group */
178         unsigned short ioprio, org_ioprio;
179         unsigned short ioprio_class, org_ioprio_class;
180
181         pid_t pid;
182 };
183
184 enum cfqq_state_flags {
185         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
186         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
187         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
188         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
189         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
190         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
191         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
192         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
193         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
194         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
195         CFQ_CFQQ_FLAG_coop,             /* has done a coop jump of the queue */
196 };
197
198 #define CFQ_CFQQ_FNS(name)                                              \
199 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
200 {                                                                       \
201         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
202 }                                                                       \
203 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
204 {                                                                       \
205         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
206 }                                                                       \
207 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
208 {                                                                       \
209         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
210 }
211
212 CFQ_CFQQ_FNS(on_rr);
213 CFQ_CFQQ_FNS(wait_request);
214 CFQ_CFQQ_FNS(must_dispatch);
215 CFQ_CFQQ_FNS(must_alloc);
216 CFQ_CFQQ_FNS(must_alloc_slice);
217 CFQ_CFQQ_FNS(fifo_expire);
218 CFQ_CFQQ_FNS(idle_window);
219 CFQ_CFQQ_FNS(prio_changed);
220 CFQ_CFQQ_FNS(slice_new);
221 CFQ_CFQQ_FNS(sync);
222 CFQ_CFQQ_FNS(coop);
223 #undef CFQ_CFQQ_FNS
224
225 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
226         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
227 #define cfq_log(cfqd, fmt, args...)     \
228         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
229
230 static void cfq_dispatch_insert(struct request_queue *, struct request *);
231 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
232                                        struct io_context *, gfp_t);
233 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
234                                                 struct io_context *);
235
236 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
237                                             int is_sync)
238 {
239         return cic->cfqq[!!is_sync];
240 }
241
242 static inline void cic_set_cfqq(struct cfq_io_context *cic,
243                                 struct cfq_queue *cfqq, int is_sync)
244 {
245         cic->cfqq[!!is_sync] = cfqq;
246 }
247
248 /*
249  * We regard a request as SYNC, if it's either a read or has the SYNC bit
250  * set (in which case it could also be direct WRITE).
251  */
252 static inline int cfq_bio_sync(struct bio *bio)
253 {
254         if (bio_data_dir(bio) == READ || bio_sync(bio))
255                 return 1;
256
257         return 0;
258 }
259
260 /*
261  * scheduler run of queue, if there are requests pending and no one in the
262  * driver that will restart queueing
263  */
264 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
265 {
266         if (cfqd->busy_queues) {
267                 cfq_log(cfqd, "schedule dispatch");
268                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
269         }
270 }
271
272 static int cfq_queue_empty(struct request_queue *q)
273 {
274         struct cfq_data *cfqd = q->elevator->elevator_data;
275
276         return !cfqd->busy_queues;
277 }
278
279 /*
280  * Scale schedule slice based on io priority. Use the sync time slice only
281  * if a queue is marked sync and has sync io queued. A sync queue with async
282  * io only, should not get full sync slice length.
283  */
284 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
285                                  unsigned short prio)
286 {
287         const int base_slice = cfqd->cfq_slice[sync];
288
289         WARN_ON(prio >= IOPRIO_BE_NR);
290
291         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
292 }
293
294 static inline int
295 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
296 {
297         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
298 }
299
300 static inline void
301 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
302 {
303         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
304         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
305 }
306
307 /*
308  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
309  * isn't valid until the first request from the dispatch is activated
310  * and the slice time set.
311  */
312 static inline int cfq_slice_used(struct cfq_queue *cfqq)
313 {
314         if (cfq_cfqq_slice_new(cfqq))
315                 return 0;
316         if (time_before(jiffies, cfqq->slice_end))
317                 return 0;
318
319         return 1;
320 }
321
322 /*
323  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
324  * We choose the request that is closest to the head right now. Distance
325  * behind the head is penalized and only allowed to a certain extent.
326  */
327 static struct request *
328 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
329 {
330         sector_t last, s1, s2, d1 = 0, d2 = 0;
331         unsigned long back_max;
332 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
333 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
334         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
335
336         if (rq1 == NULL || rq1 == rq2)
337                 return rq2;
338         if (rq2 == NULL)
339                 return rq1;
340
341         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
342                 return rq1;
343         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
344                 return rq2;
345         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
346                 return rq1;
347         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
348                 return rq2;
349
350         s1 = rq1->sector;
351         s2 = rq2->sector;
352
353         last = cfqd->last_position;
354
355         /*
356          * by definition, 1KiB is 2 sectors
357          */
358         back_max = cfqd->cfq_back_max * 2;
359
360         /*
361          * Strict one way elevator _except_ in the case where we allow
362          * short backward seeks which are biased as twice the cost of a
363          * similar forward seek.
364          */
365         if (s1 >= last)
366                 d1 = s1 - last;
367         else if (s1 + back_max >= last)
368                 d1 = (last - s1) * cfqd->cfq_back_penalty;
369         else
370                 wrap |= CFQ_RQ1_WRAP;
371
372         if (s2 >= last)
373                 d2 = s2 - last;
374         else if (s2 + back_max >= last)
375                 d2 = (last - s2) * cfqd->cfq_back_penalty;
376         else
377                 wrap |= CFQ_RQ2_WRAP;
378
379         /* Found required data */
380
381         /*
382          * By doing switch() on the bit mask "wrap" we avoid having to
383          * check two variables for all permutations: --> faster!
384          */
385         switch (wrap) {
386         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
387                 if (d1 < d2)
388                         return rq1;
389                 else if (d2 < d1)
390                         return rq2;
391                 else {
392                         if (s1 >= s2)
393                                 return rq1;
394                         else
395                                 return rq2;
396                 }
397
398         case CFQ_RQ2_WRAP:
399                 return rq1;
400         case CFQ_RQ1_WRAP:
401                 return rq2;
402         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
403         default:
404                 /*
405                  * Since both rqs are wrapped,
406                  * start with the one that's further behind head
407                  * (--> only *one* back seek required),
408                  * since back seek takes more time than forward.
409                  */
410                 if (s1 <= s2)
411                         return rq1;
412                 else
413                         return rq2;
414         }
415 }
416
417 /*
418  * The below is leftmost cache rbtree addon
419  */
420 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
421 {
422         if (!root->left)
423                 root->left = rb_first(&root->rb);
424
425         if (root->left)
426                 return rb_entry(root->left, struct cfq_queue, rb_node);
427
428         return NULL;
429 }
430
431 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
432 {
433         rb_erase(n, root);
434         RB_CLEAR_NODE(n);
435 }
436
437 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
438 {
439         if (root->left == n)
440                 root->left = NULL;
441         rb_erase_init(n, &root->rb);
442 }
443
444 /*
445  * would be nice to take fifo expire time into account as well
446  */
447 static struct request *
448 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
449                   struct request *last)
450 {
451         struct rb_node *rbnext = rb_next(&last->rb_node);
452         struct rb_node *rbprev = rb_prev(&last->rb_node);
453         struct request *next = NULL, *prev = NULL;
454
455         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
456
457         if (rbprev)
458                 prev = rb_entry_rq(rbprev);
459
460         if (rbnext)
461                 next = rb_entry_rq(rbnext);
462         else {
463                 rbnext = rb_first(&cfqq->sort_list);
464                 if (rbnext && rbnext != &last->rb_node)
465                         next = rb_entry_rq(rbnext);
466         }
467
468         return cfq_choose_req(cfqd, next, prev);
469 }
470
471 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
472                                       struct cfq_queue *cfqq)
473 {
474         /*
475          * just an approximation, should be ok.
476          */
477         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
478                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
479 }
480
481 /*
482  * The cfqd->service_tree holds all pending cfq_queue's that have
483  * requests waiting to be processed. It is sorted in the order that
484  * we will service the queues.
485  */
486 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
487                                  int add_front)
488 {
489         struct rb_node **p, *parent;
490         struct cfq_queue *__cfqq;
491         unsigned long rb_key;
492         int left;
493
494         if (cfq_class_idle(cfqq)) {
495                 rb_key = CFQ_IDLE_DELAY;
496                 parent = rb_last(&cfqd->service_tree.rb);
497                 if (parent && parent != &cfqq->rb_node) {
498                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
499                         rb_key += __cfqq->rb_key;
500                 } else
501                         rb_key += jiffies;
502         } else if (!add_front) {
503                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
504                 rb_key += cfqq->slice_resid;
505                 cfqq->slice_resid = 0;
506         } else
507                 rb_key = 0;
508
509         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
510                 /*
511                  * same position, nothing more to do
512                  */
513                 if (rb_key == cfqq->rb_key)
514                         return;
515
516                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
517         }
518
519         left = 1;
520         parent = NULL;
521         p = &cfqd->service_tree.rb.rb_node;
522         while (*p) {
523                 struct rb_node **n;
524
525                 parent = *p;
526                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
527
528                 /*
529                  * sort RT queues first, we always want to give
530                  * preference to them. IDLE queues goes to the back.
531                  * after that, sort on the next service time.
532                  */
533                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
534                         n = &(*p)->rb_left;
535                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
536                         n = &(*p)->rb_right;
537                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
538                         n = &(*p)->rb_left;
539                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
540                         n = &(*p)->rb_right;
541                 else if (rb_key < __cfqq->rb_key)
542                         n = &(*p)->rb_left;
543                 else
544                         n = &(*p)->rb_right;
545
546                 if (n == &(*p)->rb_right)
547                         left = 0;
548
549                 p = n;
550         }
551
552         if (left)
553                 cfqd->service_tree.left = &cfqq->rb_node;
554
555         cfqq->rb_key = rb_key;
556         rb_link_node(&cfqq->rb_node, parent, p);
557         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
558 }
559
560 static struct cfq_queue *
561 cfq_prio_tree_lookup(struct cfq_data *cfqd, int ioprio, sector_t sector,
562                      struct rb_node **ret_parent, struct rb_node ***rb_link)
563 {
564         struct rb_root *root = &cfqd->prio_trees[ioprio];
565         struct rb_node **p, *parent;
566         struct cfq_queue *cfqq = NULL;
567
568         parent = NULL;
569         p = &root->rb_node;
570         while (*p) {
571                 struct rb_node **n;
572
573                 parent = *p;
574                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
575
576                 /*
577                  * Sort strictly based on sector.  Smallest to the left,
578                  * largest to the right.
579                  */
580                 if (sector > cfqq->next_rq->sector)
581                         n = &(*p)->rb_right;
582                 else if (sector < cfqq->next_rq->sector)
583                         n = &(*p)->rb_left;
584                 else
585                         break;
586                 p = n;
587                 cfqq = NULL;
588         }
589
590         *ret_parent = parent;
591         if (rb_link)
592                 *rb_link = p;
593         return cfqq;
594 }
595
596 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
597 {
598         struct rb_root *root = &cfqd->prio_trees[cfqq->ioprio];
599         struct rb_node **p, *parent;
600         struct cfq_queue *__cfqq;
601
602         if (!RB_EMPTY_NODE(&cfqq->p_node))
603                 rb_erase_init(&cfqq->p_node, root);
604
605         if (cfq_class_idle(cfqq))
606                 return;
607         if (!cfqq->next_rq)
608                 return;
609
610         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->ioprio, cfqq->next_rq->sector,
611                                          &parent, &p);
612         if (!__cfqq) {
613                 rb_link_node(&cfqq->p_node, parent, p);
614                 rb_insert_color(&cfqq->p_node, root);
615         }
616 }
617
618 /*
619  * Update cfqq's position in the service tree.
620  */
621 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
622 {
623         /*
624          * Resorting requires the cfqq to be on the RR list already.
625          */
626         if (cfq_cfqq_on_rr(cfqq)) {
627                 cfq_service_tree_add(cfqd, cfqq, 0);
628                 cfq_prio_tree_add(cfqd, cfqq);
629         }
630 }
631
632 /*
633  * add to busy list of queues for service, trying to be fair in ordering
634  * the pending list according to last request service
635  */
636 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
637 {
638         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
639         BUG_ON(cfq_cfqq_on_rr(cfqq));
640         cfq_mark_cfqq_on_rr(cfqq);
641         cfqd->busy_queues++;
642         if (cfq_class_rt(cfqq))
643                 cfqd->busy_rt_queues++;
644
645         cfq_resort_rr_list(cfqd, cfqq);
646 }
647
648 /*
649  * Called when the cfqq no longer has requests pending, remove it from
650  * the service tree.
651  */
652 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
653 {
654         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
655         BUG_ON(!cfq_cfqq_on_rr(cfqq));
656         cfq_clear_cfqq_on_rr(cfqq);
657
658         if (!RB_EMPTY_NODE(&cfqq->rb_node))
659                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
660         if (!RB_EMPTY_NODE(&cfqq->p_node))
661                 rb_erase_init(&cfqq->p_node, &cfqd->prio_trees[cfqq->ioprio]);
662
663         BUG_ON(!cfqd->busy_queues);
664         cfqd->busy_queues--;
665         if (cfq_class_rt(cfqq))
666                 cfqd->busy_rt_queues--;
667 }
668
669 /*
670  * rb tree support functions
671  */
672 static void cfq_del_rq_rb(struct request *rq)
673 {
674         struct cfq_queue *cfqq = RQ_CFQQ(rq);
675         struct cfq_data *cfqd = cfqq->cfqd;
676         const int sync = rq_is_sync(rq);
677
678         BUG_ON(!cfqq->queued[sync]);
679         cfqq->queued[sync]--;
680
681         elv_rb_del(&cfqq->sort_list, rq);
682
683         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
684                 cfq_del_cfqq_rr(cfqd, cfqq);
685 }
686
687 static void cfq_add_rq_rb(struct request *rq)
688 {
689         struct cfq_queue *cfqq = RQ_CFQQ(rq);
690         struct cfq_data *cfqd = cfqq->cfqd;
691         struct request *__alias, *prev;
692
693         cfqq->queued[rq_is_sync(rq)]++;
694
695         /*
696          * looks a little odd, but the first insert might return an alias.
697          * if that happens, put the alias on the dispatch list
698          */
699         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
700                 cfq_dispatch_insert(cfqd->queue, __alias);
701
702         if (!cfq_cfqq_on_rr(cfqq))
703                 cfq_add_cfqq_rr(cfqd, cfqq);
704
705         /*
706          * check if this request is a better next-serve candidate
707          */
708         prev = cfqq->next_rq;
709         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
710
711         /*
712          * adjust priority tree position, if ->next_rq changes
713          */
714         if (prev != cfqq->next_rq)
715                 cfq_prio_tree_add(cfqd, cfqq);
716
717         BUG_ON(!cfqq->next_rq);
718 }
719
720 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
721 {
722         elv_rb_del(&cfqq->sort_list, rq);
723         cfqq->queued[rq_is_sync(rq)]--;
724         cfq_add_rq_rb(rq);
725 }
726
727 static struct request *
728 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
729 {
730         struct task_struct *tsk = current;
731         struct cfq_io_context *cic;
732         struct cfq_queue *cfqq;
733
734         cic = cfq_cic_lookup(cfqd, tsk->io_context);
735         if (!cic)
736                 return NULL;
737
738         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
739         if (cfqq) {
740                 sector_t sector = bio->bi_sector + bio_sectors(bio);
741
742                 return elv_rb_find(&cfqq->sort_list, sector);
743         }
744
745         return NULL;
746 }
747
748 static void cfq_activate_request(struct request_queue *q, struct request *rq)
749 {
750         struct cfq_data *cfqd = q->elevator->elevator_data;
751
752         cfqd->rq_in_driver++;
753         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
754                                                 cfqd->rq_in_driver);
755
756         cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
757 }
758
759 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
760 {
761         struct cfq_data *cfqd = q->elevator->elevator_data;
762
763         WARN_ON(!cfqd->rq_in_driver);
764         cfqd->rq_in_driver--;
765         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
766                                                 cfqd->rq_in_driver);
767 }
768
769 static void cfq_remove_request(struct request *rq)
770 {
771         struct cfq_queue *cfqq = RQ_CFQQ(rq);
772
773         if (cfqq->next_rq == rq)
774                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
775
776         list_del_init(&rq->queuelist);
777         cfq_del_rq_rb(rq);
778
779         cfqq->cfqd->rq_queued--;
780         if (rq_is_meta(rq)) {
781                 WARN_ON(!cfqq->meta_pending);
782                 cfqq->meta_pending--;
783         }
784 }
785
786 static int cfq_merge(struct request_queue *q, struct request **req,
787                      struct bio *bio)
788 {
789         struct cfq_data *cfqd = q->elevator->elevator_data;
790         struct request *__rq;
791
792         __rq = cfq_find_rq_fmerge(cfqd, bio);
793         if (__rq && elv_rq_merge_ok(__rq, bio)) {
794                 *req = __rq;
795                 return ELEVATOR_FRONT_MERGE;
796         }
797
798         return ELEVATOR_NO_MERGE;
799 }
800
801 static void cfq_merged_request(struct request_queue *q, struct request *req,
802                                int type)
803 {
804         if (type == ELEVATOR_FRONT_MERGE) {
805                 struct cfq_queue *cfqq = RQ_CFQQ(req);
806
807                 cfq_reposition_rq_rb(cfqq, req);
808         }
809 }
810
811 static void
812 cfq_merged_requests(struct request_queue *q, struct request *rq,
813                     struct request *next)
814 {
815         /*
816          * reposition in fifo if next is older than rq
817          */
818         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
819             time_before(next->start_time, rq->start_time))
820                 list_move(&rq->queuelist, &next->queuelist);
821
822         cfq_remove_request(next);
823 }
824
825 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
826                            struct bio *bio)
827 {
828         struct cfq_data *cfqd = q->elevator->elevator_data;
829         struct cfq_io_context *cic;
830         struct cfq_queue *cfqq;
831
832         /*
833          * Disallow merge of a sync bio into an async request.
834          */
835         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
836                 return 0;
837
838         /*
839          * Lookup the cfqq that this bio will be queued with. Allow
840          * merge only if rq is queued there.
841          */
842         cic = cfq_cic_lookup(cfqd, current->io_context);
843         if (!cic)
844                 return 0;
845
846         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
847         if (cfqq == RQ_CFQQ(rq))
848                 return 1;
849
850         return 0;
851 }
852
853 static void __cfq_set_active_queue(struct cfq_data *cfqd,
854                                    struct cfq_queue *cfqq)
855 {
856         if (cfqq) {
857                 cfq_log_cfqq(cfqd, cfqq, "set_active");
858                 cfqq->slice_end = 0;
859                 cfqq->slice_dispatch = 0;
860
861                 cfq_clear_cfqq_wait_request(cfqq);
862                 cfq_clear_cfqq_must_dispatch(cfqq);
863                 cfq_clear_cfqq_must_alloc_slice(cfqq);
864                 cfq_clear_cfqq_fifo_expire(cfqq);
865                 cfq_mark_cfqq_slice_new(cfqq);
866
867                 del_timer(&cfqd->idle_slice_timer);
868         }
869
870         cfqd->active_queue = cfqq;
871 }
872
873 /*
874  * current cfqq expired its slice (or was too idle), select new one
875  */
876 static void
877 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
878                     int timed_out)
879 {
880         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
881
882         if (cfq_cfqq_wait_request(cfqq))
883                 del_timer(&cfqd->idle_slice_timer);
884
885         cfq_clear_cfqq_wait_request(cfqq);
886
887         /*
888          * store what was left of this slice, if the queue idled/timed out
889          */
890         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
891                 cfqq->slice_resid = cfqq->slice_end - jiffies;
892                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
893         }
894
895         cfq_resort_rr_list(cfqd, cfqq);
896
897         if (cfqq == cfqd->active_queue)
898                 cfqd->active_queue = NULL;
899
900         if (cfqd->active_cic) {
901                 put_io_context(cfqd->active_cic->ioc);
902                 cfqd->active_cic = NULL;
903         }
904 }
905
906 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
907 {
908         struct cfq_queue *cfqq = cfqd->active_queue;
909
910         if (cfqq)
911                 __cfq_slice_expired(cfqd, cfqq, timed_out);
912 }
913
914 /*
915  * Get next queue for service. Unless we have a queue preemption,
916  * we'll simply select the first cfqq in the service tree.
917  */
918 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
919 {
920         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
921                 return NULL;
922
923         return cfq_rb_first(&cfqd->service_tree);
924 }
925
926 /*
927  * Get and set a new active queue for service.
928  */
929 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
930                                               struct cfq_queue *cfqq)
931 {
932         if (!cfqq) {
933                 cfqq = cfq_get_next_queue(cfqd);
934                 if (cfqq)
935                         cfq_clear_cfqq_coop(cfqq);
936         }
937
938         __cfq_set_active_queue(cfqd, cfqq);
939         return cfqq;
940 }
941
942 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
943                                           struct request *rq)
944 {
945         if (rq->sector >= cfqd->last_position)
946                 return rq->sector - cfqd->last_position;
947         else
948                 return cfqd->last_position - rq->sector;
949 }
950
951 #define CIC_SEEK_THR    8 * 1024
952 #define CIC_SEEKY(cic)  ((cic)->seek_mean > CIC_SEEK_THR)
953
954 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
955 {
956         struct cfq_io_context *cic = cfqd->active_cic;
957         sector_t sdist = cic->seek_mean;
958
959         if (!sample_valid(cic->seek_samples))
960                 sdist = CIC_SEEK_THR;
961
962         return cfq_dist_from_last(cfqd, rq) <= sdist;
963 }
964
965 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
966                                     struct cfq_queue *cur_cfqq)
967 {
968         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->ioprio];
969         struct rb_node *parent, *node;
970         struct cfq_queue *__cfqq;
971         sector_t sector = cfqd->last_position;
972
973         if (RB_EMPTY_ROOT(root))
974                 return NULL;
975
976         /*
977          * First, if we find a request starting at the end of the last
978          * request, choose it.
979          */
980         __cfqq = cfq_prio_tree_lookup(cfqd, cur_cfqq->ioprio,
981                                       sector, &parent, NULL);
982         if (__cfqq)
983                 return __cfqq;
984
985         /*
986          * If the exact sector wasn't found, the parent of the NULL leaf
987          * will contain the closest sector.
988          */
989         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
990         if (cfq_rq_close(cfqd, __cfqq->next_rq))
991                 return __cfqq;
992
993         if (__cfqq->next_rq->sector < sector)
994                 node = rb_next(&__cfqq->p_node);
995         else
996                 node = rb_prev(&__cfqq->p_node);
997         if (!node)
998                 return NULL;
999
1000         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1001         if (cfq_rq_close(cfqd, __cfqq->next_rq))
1002                 return __cfqq;
1003
1004         return NULL;
1005 }
1006
1007 /*
1008  * cfqd - obvious
1009  * cur_cfqq - passed in so that we don't decide that the current queue is
1010  *            closely cooperating with itself.
1011  *
1012  * So, basically we're assuming that that cur_cfqq has dispatched at least
1013  * one request, and that cfqd->last_position reflects a position on the disk
1014  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1015  * assumption.
1016  */
1017 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1018                                               struct cfq_queue *cur_cfqq,
1019                                               int probe)
1020 {
1021         struct cfq_queue *cfqq;
1022
1023         /*
1024          * A valid cfq_io_context is necessary to compare requests against
1025          * the seek_mean of the current cfqq.
1026          */
1027         if (!cfqd->active_cic)
1028                 return NULL;
1029
1030         /*
1031          * We should notice if some of the queues are cooperating, eg
1032          * working closely on the same area of the disk. In that case,
1033          * we can group them together and don't waste time idling.
1034          */
1035         cfqq = cfqq_close(cfqd, cur_cfqq);
1036         if (!cfqq)
1037                 return NULL;
1038
1039         if (cfq_cfqq_coop(cfqq))
1040                 return NULL;
1041
1042         if (!probe)
1043                 cfq_mark_cfqq_coop(cfqq);
1044         return cfqq;
1045 }
1046
1047 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1048 {
1049         struct cfq_queue *cfqq = cfqd->active_queue;
1050         struct cfq_io_context *cic;
1051         unsigned long sl;
1052
1053         /*
1054          * SSD device without seek penalty, disable idling. But only do so
1055          * for devices that support queuing, otherwise we still have a problem
1056          * with sync vs async workloads.
1057          */
1058         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1059                 return;
1060
1061         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1062         WARN_ON(cfq_cfqq_slice_new(cfqq));
1063
1064         /*
1065          * idle is disabled, either manually or by past process history
1066          */
1067         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1068                 return;
1069
1070         /*
1071          * still requests with the driver, don't idle
1072          */
1073         if (cfqd->rq_in_driver)
1074                 return;
1075
1076         /*
1077          * task has exited, don't wait
1078          */
1079         cic = cfqd->active_cic;
1080         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1081                 return;
1082
1083         cfq_mark_cfqq_wait_request(cfqq);
1084
1085         /*
1086          * we don't want to idle for seeks, but we do want to allow
1087          * fair distribution of slice time for a process doing back-to-back
1088          * seeks. so allow a little bit of time for him to submit a new rq
1089          */
1090         sl = cfqd->cfq_slice_idle;
1091         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1092                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1093
1094         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1095         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1096 }
1097
1098 /*
1099  * Move request from internal lists to the request queue dispatch list.
1100  */
1101 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1102 {
1103         struct cfq_data *cfqd = q->elevator->elevator_data;
1104         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1105
1106         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1107
1108         cfq_remove_request(rq);
1109         cfqq->dispatched++;
1110         elv_dispatch_sort(q, rq);
1111
1112         if (cfq_cfqq_sync(cfqq))
1113                 cfqd->sync_flight++;
1114 }
1115
1116 /*
1117  * return expired entry, or NULL to just start from scratch in rbtree
1118  */
1119 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1120 {
1121         struct cfq_data *cfqd = cfqq->cfqd;
1122         struct request *rq;
1123         int fifo;
1124
1125         if (cfq_cfqq_fifo_expire(cfqq))
1126                 return NULL;
1127
1128         cfq_mark_cfqq_fifo_expire(cfqq);
1129
1130         if (list_empty(&cfqq->fifo))
1131                 return NULL;
1132
1133         fifo = cfq_cfqq_sync(cfqq);
1134         rq = rq_entry_fifo(cfqq->fifo.next);
1135
1136         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1137                 rq = NULL;
1138
1139         cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1140         return rq;
1141 }
1142
1143 static inline int
1144 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1145 {
1146         const int base_rq = cfqd->cfq_slice_async_rq;
1147
1148         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1149
1150         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1151 }
1152
1153 /*
1154  * Select a queue for service. If we have a current active queue,
1155  * check whether to continue servicing it, or retrieve and set a new one.
1156  */
1157 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1158 {
1159         struct cfq_queue *cfqq, *new_cfqq = NULL;
1160
1161         cfqq = cfqd->active_queue;
1162         if (!cfqq)
1163                 goto new_queue;
1164
1165         /*
1166          * The active queue has run out of time, expire it and select new.
1167          */
1168         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1169                 goto expire;
1170
1171         /*
1172          * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1173          * cfqq.
1174          */
1175         if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1176                 /*
1177                  * We simulate this as cfqq timed out so that it gets to bank
1178                  * the remaining of its time slice.
1179                  */
1180                 cfq_log_cfqq(cfqd, cfqq, "preempt");
1181                 cfq_slice_expired(cfqd, 1);
1182                 goto new_queue;
1183         }
1184
1185         /*
1186          * The active queue has requests and isn't expired, allow it to
1187          * dispatch.
1188          */
1189         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1190                 goto keep_queue;
1191
1192         /*
1193          * If another queue has a request waiting within our mean seek
1194          * distance, let it run.  The expire code will check for close
1195          * cooperators and put the close queue at the front of the service
1196          * tree.
1197          */
1198         new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1199         if (new_cfqq)
1200                 goto expire;
1201
1202         /*
1203          * No requests pending. If the active queue still has requests in
1204          * flight or is idling for a new request, allow either of these
1205          * conditions to happen (or time out) before selecting a new queue.
1206          */
1207         if (timer_pending(&cfqd->idle_slice_timer) ||
1208             (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1209                 cfqq = NULL;
1210                 goto keep_queue;
1211         }
1212
1213 expire:
1214         cfq_slice_expired(cfqd, 0);
1215 new_queue:
1216         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1217 keep_queue:
1218         return cfqq;
1219 }
1220
1221 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1222 {
1223         int dispatched = 0;
1224
1225         while (cfqq->next_rq) {
1226                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1227                 dispatched++;
1228         }
1229
1230         BUG_ON(!list_empty(&cfqq->fifo));
1231         return dispatched;
1232 }
1233
1234 /*
1235  * Drain our current requests. Used for barriers and when switching
1236  * io schedulers on-the-fly.
1237  */
1238 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1239 {
1240         struct cfq_queue *cfqq;
1241         int dispatched = 0;
1242
1243         while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1244                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1245
1246         cfq_slice_expired(cfqd, 0);
1247
1248         BUG_ON(cfqd->busy_queues);
1249
1250         cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1251         return dispatched;
1252 }
1253
1254 /*
1255  * Dispatch a request from cfqq, moving them to the request queue
1256  * dispatch list.
1257  */
1258 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1259 {
1260         struct request *rq;
1261
1262         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1263
1264         /*
1265          * follow expired path, else get first next available
1266          */
1267         rq = cfq_check_fifo(cfqq);
1268         if (!rq)
1269                 rq = cfqq->next_rq;
1270
1271         /*
1272          * insert request into driver dispatch list
1273          */
1274         cfq_dispatch_insert(cfqd->queue, rq);
1275
1276         if (!cfqd->active_cic) {
1277                 struct cfq_io_context *cic = RQ_CIC(rq);
1278
1279                 atomic_inc(&cic->ioc->refcount);
1280                 cfqd->active_cic = cic;
1281         }
1282 }
1283
1284 /*
1285  * Find the cfqq that we need to service and move a request from that to the
1286  * dispatch list
1287  */
1288 static int cfq_dispatch_requests(struct request_queue *q, int force)
1289 {
1290         struct cfq_data *cfqd = q->elevator->elevator_data;
1291         struct cfq_queue *cfqq;
1292         unsigned int max_dispatch;
1293
1294         if (!cfqd->busy_queues)
1295                 return 0;
1296
1297         if (unlikely(force))
1298                 return cfq_forced_dispatch(cfqd);
1299
1300         cfqq = cfq_select_queue(cfqd);
1301         if (!cfqq)
1302                 return 0;
1303
1304         /*
1305          * If this is an async queue and we have sync IO in flight, let it wait
1306          */
1307         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1308                 return 0;
1309
1310         max_dispatch = cfqd->cfq_quantum;
1311         if (cfq_class_idle(cfqq))
1312                 max_dispatch = 1;
1313
1314         /*
1315          * Does this cfqq already have too much IO in flight?
1316          */
1317         if (cfqq->dispatched >= max_dispatch) {
1318                 /*
1319                  * idle queue must always only have a single IO in flight
1320                  */
1321                 if (cfq_class_idle(cfqq))
1322                         return 0;
1323
1324                 /*
1325                  * We have other queues, don't allow more IO from this one
1326                  */
1327                 if (cfqd->busy_queues > 1)
1328                         return 0;
1329
1330                 /*
1331                  * we are the only queue, allow up to 4 times of 'quantum'
1332                  */
1333                 if (cfqq->dispatched >= 4 * max_dispatch)
1334                         return 0;
1335         }
1336
1337         /*
1338          * Dispatch a request from this cfqq
1339          */
1340         cfq_dispatch_request(cfqd, cfqq);
1341         cfqq->slice_dispatch++;
1342         cfq_clear_cfqq_must_dispatch(cfqq);
1343
1344         /*
1345          * expire an async queue immediately if it has used up its slice. idle
1346          * queue always expire after 1 dispatch round.
1347          */
1348         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1349             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1350             cfq_class_idle(cfqq))) {
1351                 cfqq->slice_end = jiffies + 1;
1352                 cfq_slice_expired(cfqd, 0);
1353         }
1354
1355         cfq_log(cfqd, "dispatched a request");
1356         return 1;
1357 }
1358
1359 /*
1360  * task holds one reference to the queue, dropped when task exits. each rq
1361  * in-flight on this queue also holds a reference, dropped when rq is freed.
1362  *
1363  * queue lock must be held here.
1364  */
1365 static void cfq_put_queue(struct cfq_queue *cfqq)
1366 {
1367         struct cfq_data *cfqd = cfqq->cfqd;
1368
1369         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1370
1371         if (!atomic_dec_and_test(&cfqq->ref))
1372                 return;
1373
1374         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1375         BUG_ON(rb_first(&cfqq->sort_list));
1376         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1377         BUG_ON(cfq_cfqq_on_rr(cfqq));
1378
1379         if (unlikely(cfqd->active_queue == cfqq)) {
1380                 __cfq_slice_expired(cfqd, cfqq, 0);
1381                 cfq_schedule_dispatch(cfqd);
1382         }
1383
1384         kmem_cache_free(cfq_pool, cfqq);
1385 }
1386
1387 /*
1388  * Must always be called with the rcu_read_lock() held
1389  */
1390 static void
1391 __call_for_each_cic(struct io_context *ioc,
1392                     void (*func)(struct io_context *, struct cfq_io_context *))
1393 {
1394         struct cfq_io_context *cic;
1395         struct hlist_node *n;
1396
1397         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1398                 func(ioc, cic);
1399 }
1400
1401 /*
1402  * Call func for each cic attached to this ioc.
1403  */
1404 static void
1405 call_for_each_cic(struct io_context *ioc,
1406                   void (*func)(struct io_context *, struct cfq_io_context *))
1407 {
1408         rcu_read_lock();
1409         __call_for_each_cic(ioc, func);
1410         rcu_read_unlock();
1411 }
1412
1413 static void cfq_cic_free_rcu(struct rcu_head *head)
1414 {
1415         struct cfq_io_context *cic;
1416
1417         cic = container_of(head, struct cfq_io_context, rcu_head);
1418
1419         kmem_cache_free(cfq_ioc_pool, cic);
1420         elv_ioc_count_dec(ioc_count);
1421
1422         if (ioc_gone) {
1423                 /*
1424                  * CFQ scheduler is exiting, grab exit lock and check
1425                  * the pending io context count. If it hits zero,
1426                  * complete ioc_gone and set it back to NULL
1427                  */
1428                 spin_lock(&ioc_gone_lock);
1429                 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1430                         complete(ioc_gone);
1431                         ioc_gone = NULL;
1432                 }
1433                 spin_unlock(&ioc_gone_lock);
1434         }
1435 }
1436
1437 static void cfq_cic_free(struct cfq_io_context *cic)
1438 {
1439         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1440 }
1441
1442 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1443 {
1444         unsigned long flags;
1445
1446         BUG_ON(!cic->dead_key);
1447
1448         spin_lock_irqsave(&ioc->lock, flags);
1449         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1450         hlist_del_rcu(&cic->cic_list);
1451         spin_unlock_irqrestore(&ioc->lock, flags);
1452
1453         cfq_cic_free(cic);
1454 }
1455
1456 /*
1457  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1458  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1459  * and ->trim() which is called with the task lock held
1460  */
1461 static void cfq_free_io_context(struct io_context *ioc)
1462 {
1463         /*
1464          * ioc->refcount is zero here, or we are called from elv_unregister(),
1465          * so no more cic's are allowed to be linked into this ioc.  So it
1466          * should be ok to iterate over the known list, we will see all cic's
1467          * since no new ones are added.
1468          */
1469         __call_for_each_cic(ioc, cic_free_func);
1470 }
1471
1472 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1473 {
1474         if (unlikely(cfqq == cfqd->active_queue)) {
1475                 __cfq_slice_expired(cfqd, cfqq, 0);
1476                 cfq_schedule_dispatch(cfqd);
1477         }
1478
1479         cfq_put_queue(cfqq);
1480 }
1481
1482 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1483                                          struct cfq_io_context *cic)
1484 {
1485         struct io_context *ioc = cic->ioc;
1486
1487         list_del_init(&cic->queue_list);
1488
1489         /*
1490          * Make sure key == NULL is seen for dead queues
1491          */
1492         smp_wmb();
1493         cic->dead_key = (unsigned long) cic->key;
1494         cic->key = NULL;
1495
1496         if (ioc->ioc_data == cic)
1497                 rcu_assign_pointer(ioc->ioc_data, NULL);
1498
1499         if (cic->cfqq[BLK_RW_ASYNC]) {
1500                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1501                 cic->cfqq[BLK_RW_ASYNC] = NULL;
1502         }
1503
1504         if (cic->cfqq[BLK_RW_SYNC]) {
1505                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1506                 cic->cfqq[BLK_RW_SYNC] = NULL;
1507         }
1508 }
1509
1510 static void cfq_exit_single_io_context(struct io_context *ioc,
1511                                        struct cfq_io_context *cic)
1512 {
1513         struct cfq_data *cfqd = cic->key;
1514
1515         if (cfqd) {
1516                 struct request_queue *q = cfqd->queue;
1517                 unsigned long flags;
1518
1519                 spin_lock_irqsave(q->queue_lock, flags);
1520
1521                 /*
1522                  * Ensure we get a fresh copy of the ->key to prevent
1523                  * race between exiting task and queue
1524                  */
1525                 smp_read_barrier_depends();
1526                 if (cic->key)
1527                         __cfq_exit_single_io_context(cfqd, cic);
1528
1529                 spin_unlock_irqrestore(q->queue_lock, flags);
1530         }
1531 }
1532
1533 /*
1534  * The process that ioc belongs to has exited, we need to clean up
1535  * and put the internal structures we have that belongs to that process.
1536  */
1537 static void cfq_exit_io_context(struct io_context *ioc)
1538 {
1539         call_for_each_cic(ioc, cfq_exit_single_io_context);
1540 }
1541
1542 static struct cfq_io_context *
1543 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1544 {
1545         struct cfq_io_context *cic;
1546
1547         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1548                                                         cfqd->queue->node);
1549         if (cic) {
1550                 cic->last_end_request = jiffies;
1551                 INIT_LIST_HEAD(&cic->queue_list);
1552                 INIT_HLIST_NODE(&cic->cic_list);
1553                 cic->dtor = cfq_free_io_context;
1554                 cic->exit = cfq_exit_io_context;
1555                 elv_ioc_count_inc(ioc_count);
1556         }
1557
1558         return cic;
1559 }
1560
1561 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1562 {
1563         struct task_struct *tsk = current;
1564         int ioprio_class;
1565
1566         if (!cfq_cfqq_prio_changed(cfqq))
1567                 return;
1568
1569         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1570         switch (ioprio_class) {
1571         default:
1572                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1573         case IOPRIO_CLASS_NONE:
1574                 /*
1575                  * no prio set, inherit CPU scheduling settings
1576                  */
1577                 cfqq->ioprio = task_nice_ioprio(tsk);
1578                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1579                 break;
1580         case IOPRIO_CLASS_RT:
1581                 cfqq->ioprio = task_ioprio(ioc);
1582                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1583                 break;
1584         case IOPRIO_CLASS_BE:
1585                 cfqq->ioprio = task_ioprio(ioc);
1586                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1587                 break;
1588         case IOPRIO_CLASS_IDLE:
1589                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1590                 cfqq->ioprio = 7;
1591                 cfq_clear_cfqq_idle_window(cfqq);
1592                 break;
1593         }
1594
1595         /*
1596          * keep track of original prio settings in case we have to temporarily
1597          * elevate the priority of this queue
1598          */
1599         cfqq->org_ioprio = cfqq->ioprio;
1600         cfqq->org_ioprio_class = cfqq->ioprio_class;
1601         cfq_clear_cfqq_prio_changed(cfqq);
1602 }
1603
1604 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1605 {
1606         struct cfq_data *cfqd = cic->key;
1607         struct cfq_queue *cfqq;
1608         unsigned long flags;
1609
1610         if (unlikely(!cfqd))
1611                 return;
1612
1613         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1614
1615         cfqq = cic->cfqq[BLK_RW_ASYNC];
1616         if (cfqq) {
1617                 struct cfq_queue *new_cfqq;
1618                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1619                                                 GFP_ATOMIC);
1620                 if (new_cfqq) {
1621                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1622                         cfq_put_queue(cfqq);
1623                 }
1624         }
1625
1626         cfqq = cic->cfqq[BLK_RW_SYNC];
1627         if (cfqq)
1628                 cfq_mark_cfqq_prio_changed(cfqq);
1629
1630         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1631 }
1632
1633 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1634 {
1635         call_for_each_cic(ioc, changed_ioprio);
1636         ioc->ioprio_changed = 0;
1637 }
1638
1639 static struct cfq_queue *
1640 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1641                      struct io_context *ioc, gfp_t gfp_mask)
1642 {
1643         struct cfq_queue *cfqq, *new_cfqq = NULL;
1644         struct cfq_io_context *cic;
1645
1646 retry:
1647         cic = cfq_cic_lookup(cfqd, ioc);
1648         /* cic always exists here */
1649         cfqq = cic_to_cfqq(cic, is_sync);
1650
1651         if (!cfqq) {
1652                 if (new_cfqq) {
1653                         cfqq = new_cfqq;
1654                         new_cfqq = NULL;
1655                 } else if (gfp_mask & __GFP_WAIT) {
1656                         /*
1657                          * Inform the allocator of the fact that we will
1658                          * just repeat this allocation if it fails, to allow
1659                          * the allocator to do whatever it needs to attempt to
1660                          * free memory.
1661                          */
1662                         spin_unlock_irq(cfqd->queue->queue_lock);
1663                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1664                                         gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1665                                         cfqd->queue->node);
1666                         spin_lock_irq(cfqd->queue->queue_lock);
1667                         goto retry;
1668                 } else {
1669                         cfqq = kmem_cache_alloc_node(cfq_pool,
1670                                         gfp_mask | __GFP_ZERO,
1671                                         cfqd->queue->node);
1672                         if (!cfqq)
1673                                 goto out;
1674                 }
1675
1676                 RB_CLEAR_NODE(&cfqq->rb_node);
1677                 RB_CLEAR_NODE(&cfqq->p_node);
1678                 INIT_LIST_HEAD(&cfqq->fifo);
1679
1680                 atomic_set(&cfqq->ref, 0);
1681                 cfqq->cfqd = cfqd;
1682
1683                 cfq_mark_cfqq_prio_changed(cfqq);
1684
1685                 cfq_init_prio_data(cfqq, ioc);
1686
1687                 if (is_sync) {
1688                         if (!cfq_class_idle(cfqq))
1689                                 cfq_mark_cfqq_idle_window(cfqq);
1690                         cfq_mark_cfqq_sync(cfqq);
1691                 }
1692                 cfqq->pid = current->pid;
1693                 cfq_log_cfqq(cfqd, cfqq, "alloced");
1694         }
1695
1696         if (new_cfqq)
1697                 kmem_cache_free(cfq_pool, new_cfqq);
1698
1699 out:
1700         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1701         return cfqq;
1702 }
1703
1704 static struct cfq_queue **
1705 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1706 {
1707         switch (ioprio_class) {
1708         case IOPRIO_CLASS_RT:
1709                 return &cfqd->async_cfqq[0][ioprio];
1710         case IOPRIO_CLASS_BE:
1711                 return &cfqd->async_cfqq[1][ioprio];
1712         case IOPRIO_CLASS_IDLE:
1713                 return &cfqd->async_idle_cfqq;
1714         default:
1715                 BUG();
1716         }
1717 }
1718
1719 static struct cfq_queue *
1720 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1721               gfp_t gfp_mask)
1722 {
1723         const int ioprio = task_ioprio(ioc);
1724         const int ioprio_class = task_ioprio_class(ioc);
1725         struct cfq_queue **async_cfqq = NULL;
1726         struct cfq_queue *cfqq = NULL;
1727
1728         if (!is_sync) {
1729                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1730                 cfqq = *async_cfqq;
1731         }
1732
1733         if (!cfqq) {
1734                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1735                 if (!cfqq)
1736                         return NULL;
1737         }
1738
1739         /*
1740          * pin the queue now that it's allocated, scheduler exit will prune it
1741          */
1742         if (!is_sync && !(*async_cfqq)) {
1743                 atomic_inc(&cfqq->ref);
1744                 *async_cfqq = cfqq;
1745         }
1746
1747         atomic_inc(&cfqq->ref);
1748         return cfqq;
1749 }
1750
1751 /*
1752  * We drop cfq io contexts lazily, so we may find a dead one.
1753  */
1754 static void
1755 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1756                   struct cfq_io_context *cic)
1757 {
1758         unsigned long flags;
1759
1760         WARN_ON(!list_empty(&cic->queue_list));
1761
1762         spin_lock_irqsave(&ioc->lock, flags);
1763
1764         BUG_ON(ioc->ioc_data == cic);
1765
1766         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1767         hlist_del_rcu(&cic->cic_list);
1768         spin_unlock_irqrestore(&ioc->lock, flags);
1769
1770         cfq_cic_free(cic);
1771 }
1772
1773 static struct cfq_io_context *
1774 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1775 {
1776         struct cfq_io_context *cic;
1777         unsigned long flags;
1778         void *k;
1779
1780         if (unlikely(!ioc))
1781                 return NULL;
1782
1783         rcu_read_lock();
1784
1785         /*
1786          * we maintain a last-hit cache, to avoid browsing over the tree
1787          */
1788         cic = rcu_dereference(ioc->ioc_data);
1789         if (cic && cic->key == cfqd) {
1790                 rcu_read_unlock();
1791                 return cic;
1792         }
1793
1794         do {
1795                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1796                 rcu_read_unlock();
1797                 if (!cic)
1798                         break;
1799                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1800                 k = cic->key;
1801                 if (unlikely(!k)) {
1802                         cfq_drop_dead_cic(cfqd, ioc, cic);
1803                         rcu_read_lock();
1804                         continue;
1805                 }
1806
1807                 spin_lock_irqsave(&ioc->lock, flags);
1808                 rcu_assign_pointer(ioc->ioc_data, cic);
1809                 spin_unlock_irqrestore(&ioc->lock, flags);
1810                 break;
1811         } while (1);
1812
1813         return cic;
1814 }
1815
1816 /*
1817  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1818  * the process specific cfq io context when entered from the block layer.
1819  * Also adds the cic to a per-cfqd list, used when this queue is removed.
1820  */
1821 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1822                         struct cfq_io_context *cic, gfp_t gfp_mask)
1823 {
1824         unsigned long flags;
1825         int ret;
1826
1827         ret = radix_tree_preload(gfp_mask);
1828         if (!ret) {
1829                 cic->ioc = ioc;
1830                 cic->key = cfqd;
1831
1832                 spin_lock_irqsave(&ioc->lock, flags);
1833                 ret = radix_tree_insert(&ioc->radix_root,
1834                                                 (unsigned long) cfqd, cic);
1835                 if (!ret)
1836                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1837                 spin_unlock_irqrestore(&ioc->lock, flags);
1838
1839                 radix_tree_preload_end();
1840
1841                 if (!ret) {
1842                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1843                         list_add(&cic->queue_list, &cfqd->cic_list);
1844                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1845                 }
1846         }
1847
1848         if (ret)
1849                 printk(KERN_ERR "cfq: cic link failed!\n");
1850
1851         return ret;
1852 }
1853
1854 /*
1855  * Setup general io context and cfq io context. There can be several cfq
1856  * io contexts per general io context, if this process is doing io to more
1857  * than one device managed by cfq.
1858  */
1859 static struct cfq_io_context *
1860 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1861 {
1862         struct io_context *ioc = NULL;
1863         struct cfq_io_context *cic;
1864
1865         might_sleep_if(gfp_mask & __GFP_WAIT);
1866
1867         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1868         if (!ioc)
1869                 return NULL;
1870
1871         cic = cfq_cic_lookup(cfqd, ioc);
1872         if (cic)
1873                 goto out;
1874
1875         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1876         if (cic == NULL)
1877                 goto err;
1878
1879         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1880                 goto err_free;
1881
1882 out:
1883         smp_read_barrier_depends();
1884         if (unlikely(ioc->ioprio_changed))
1885                 cfq_ioc_set_ioprio(ioc);
1886
1887         return cic;
1888 err_free:
1889         cfq_cic_free(cic);
1890 err:
1891         put_io_context(ioc);
1892         return NULL;
1893 }
1894
1895 static void
1896 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1897 {
1898         unsigned long elapsed = jiffies - cic->last_end_request;
1899         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1900
1901         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1902         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1903         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1904 }
1905
1906 static void
1907 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1908                        struct request *rq)
1909 {
1910         sector_t sdist;
1911         u64 total;
1912
1913         if (!cic->last_request_pos)
1914                 sdist = 0;
1915         else if (cic->last_request_pos < rq->sector)
1916                 sdist = rq->sector - cic->last_request_pos;
1917         else
1918                 sdist = cic->last_request_pos - rq->sector;
1919
1920         /*
1921          * Don't allow the seek distance to get too large from the
1922          * odd fragment, pagein, etc
1923          */
1924         if (cic->seek_samples <= 60) /* second&third seek */
1925                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1926         else
1927                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1928
1929         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1930         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1931         total = cic->seek_total + (cic->seek_samples/2);
1932         do_div(total, cic->seek_samples);
1933         cic->seek_mean = (sector_t)total;
1934 }
1935
1936 /*
1937  * Disable idle window if the process thinks too long or seeks so much that
1938  * it doesn't matter
1939  */
1940 static void
1941 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1942                        struct cfq_io_context *cic)
1943 {
1944         int old_idle, enable_idle;
1945
1946         /*
1947          * Don't idle for async or idle io prio class
1948          */
1949         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1950                 return;
1951
1952         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1953
1954         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1955             (cfqd->hw_tag && CIC_SEEKY(cic)))
1956                 enable_idle = 0;
1957         else if (sample_valid(cic->ttime_samples)) {
1958                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1959                         enable_idle = 0;
1960                 else
1961                         enable_idle = 1;
1962         }
1963
1964         if (old_idle != enable_idle) {
1965                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1966                 if (enable_idle)
1967                         cfq_mark_cfqq_idle_window(cfqq);
1968                 else
1969                         cfq_clear_cfqq_idle_window(cfqq);
1970         }
1971 }
1972
1973 /*
1974  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1975  * no or if we aren't sure, a 1 will cause a preempt.
1976  */
1977 static int
1978 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1979                    struct request *rq)
1980 {
1981         struct cfq_queue *cfqq;
1982
1983         cfqq = cfqd->active_queue;
1984         if (!cfqq)
1985                 return 0;
1986
1987         if (cfq_slice_used(cfqq))
1988                 return 1;
1989
1990         if (cfq_class_idle(new_cfqq))
1991                 return 0;
1992
1993         if (cfq_class_idle(cfqq))
1994                 return 1;
1995
1996         /*
1997          * if the new request is sync, but the currently running queue is
1998          * not, let the sync request have priority.
1999          */
2000         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2001                 return 1;
2002
2003         /*
2004          * So both queues are sync. Let the new request get disk time if
2005          * it's a metadata request and the current queue is doing regular IO.
2006          */
2007         if (rq_is_meta(rq) && !cfqq->meta_pending)
2008                 return 1;
2009
2010         /*
2011          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2012          */
2013         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2014                 return 1;
2015
2016         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2017                 return 0;
2018
2019         /*
2020          * if this request is as-good as one we would expect from the
2021          * current cfqq, let it preempt
2022          */
2023         if (cfq_rq_close(cfqd, rq))
2024                 return 1;
2025
2026         return 0;
2027 }
2028
2029 /*
2030  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2031  * let it have half of its nominal slice.
2032  */
2033 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2034 {
2035         cfq_log_cfqq(cfqd, cfqq, "preempt");
2036         cfq_slice_expired(cfqd, 1);
2037
2038         /*
2039          * Put the new queue at the front of the of the current list,
2040          * so we know that it will be selected next.
2041          */
2042         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2043
2044         cfq_service_tree_add(cfqd, cfqq, 1);
2045
2046         cfqq->slice_end = 0;
2047         cfq_mark_cfqq_slice_new(cfqq);
2048 }
2049
2050 /*
2051  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2052  * something we should do about it
2053  */
2054 static void
2055 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2056                 struct request *rq)
2057 {
2058         struct cfq_io_context *cic = RQ_CIC(rq);
2059
2060         cfqd->rq_queued++;
2061         if (rq_is_meta(rq))
2062                 cfqq->meta_pending++;
2063
2064         cfq_update_io_thinktime(cfqd, cic);
2065         cfq_update_io_seektime(cfqd, cic, rq);
2066         cfq_update_idle_window(cfqd, cfqq, cic);
2067
2068         cic->last_request_pos = rq->sector + rq->nr_sectors;
2069
2070         if (cfqq == cfqd->active_queue) {
2071                 /*
2072                  * Remember that we saw a request from this process, but
2073                  * don't start queuing just yet. Otherwise we risk seeing lots
2074                  * of tiny requests, because we disrupt the normal plugging
2075                  * and merging. If the request is already larger than a single
2076                  * page, let it rip immediately. For that case we assume that
2077                  * merging is already done. Ditto for a busy system that
2078                  * has other work pending, don't risk delaying until the
2079                  * idle timer unplug to continue working.
2080                  */
2081                 if (cfq_cfqq_wait_request(cfqq)) {
2082                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2083                             cfqd->busy_queues > 1) {
2084                                 del_timer(&cfqd->idle_slice_timer);
2085                                 blk_start_queueing(cfqd->queue);
2086                         }
2087                         cfq_mark_cfqq_must_dispatch(cfqq);
2088                 }
2089         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2090                 /*
2091                  * not the active queue - expire current slice if it is
2092                  * idle and has expired it's mean thinktime or this new queue
2093                  * has some old slice time left and is of higher priority or
2094                  * this new queue is RT and the current one is BE
2095                  */
2096                 cfq_preempt_queue(cfqd, cfqq);
2097                 blk_start_queueing(cfqd->queue);
2098         }
2099 }
2100
2101 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2102 {
2103         struct cfq_data *cfqd = q->elevator->elevator_data;
2104         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2105
2106         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2107         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2108
2109         cfq_add_rq_rb(rq);
2110
2111         list_add_tail(&rq->queuelist, &cfqq->fifo);
2112
2113         cfq_rq_enqueued(cfqd, cfqq, rq);
2114 }
2115
2116 /*
2117  * Update hw_tag based on peak queue depth over 50 samples under
2118  * sufficient load.
2119  */
2120 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2121 {
2122         if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
2123                 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
2124
2125         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2126             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
2127                 return;
2128
2129         if (cfqd->hw_tag_samples++ < 50)
2130                 return;
2131
2132         if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2133                 cfqd->hw_tag = 1;
2134         else
2135                 cfqd->hw_tag = 0;
2136
2137         cfqd->hw_tag_samples = 0;
2138         cfqd->rq_in_driver_peak = 0;
2139 }
2140
2141 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2142 {
2143         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2144         struct cfq_data *cfqd = cfqq->cfqd;
2145         const int sync = rq_is_sync(rq);
2146         unsigned long now;
2147
2148         now = jiffies;
2149         cfq_log_cfqq(cfqd, cfqq, "complete");
2150
2151         cfq_update_hw_tag(cfqd);
2152
2153         WARN_ON(!cfqd->rq_in_driver);
2154         WARN_ON(!cfqq->dispatched);
2155         cfqd->rq_in_driver--;
2156         cfqq->dispatched--;
2157
2158         if (cfq_cfqq_sync(cfqq))
2159                 cfqd->sync_flight--;
2160
2161         if (!cfq_class_idle(cfqq))
2162                 cfqd->last_end_request = now;
2163
2164         if (sync)
2165                 RQ_CIC(rq)->last_end_request = now;
2166
2167         /*
2168          * If this is the active queue, check if it needs to be expired,
2169          * or if we want to idle in case it has no pending requests.
2170          */
2171         if (cfqd->active_queue == cfqq) {
2172                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2173
2174                 if (cfq_cfqq_slice_new(cfqq)) {
2175                         cfq_set_prio_slice(cfqd, cfqq);
2176                         cfq_clear_cfqq_slice_new(cfqq);
2177                 }
2178                 /*
2179                  * If there are no requests waiting in this queue, and
2180                  * there are other queues ready to issue requests, AND
2181                  * those other queues are issuing requests within our
2182                  * mean seek distance, give them a chance to run instead
2183                  * of idling.
2184                  */
2185                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2186                         cfq_slice_expired(cfqd, 1);
2187                 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2188                          sync && !rq_noidle(rq))
2189                         cfq_arm_slice_timer(cfqd);
2190         }
2191
2192         if (!cfqd->rq_in_driver)
2193                 cfq_schedule_dispatch(cfqd);
2194 }
2195
2196 /*
2197  * we temporarily boost lower priority queues if they are holding fs exclusive
2198  * resources. they are boosted to normal prio (CLASS_BE/4)
2199  */
2200 static void cfq_prio_boost(struct cfq_queue *cfqq)
2201 {
2202         if (has_fs_excl()) {
2203                 /*
2204                  * boost idle prio on transactions that would lock out other
2205                  * users of the filesystem
2206                  */
2207                 if (cfq_class_idle(cfqq))
2208                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2209                 if (cfqq->ioprio > IOPRIO_NORM)
2210                         cfqq->ioprio = IOPRIO_NORM;
2211         } else {
2212                 /*
2213                  * check if we need to unboost the queue
2214                  */
2215                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2216                         cfqq->ioprio_class = cfqq->org_ioprio_class;
2217                 if (cfqq->ioprio != cfqq->org_ioprio)
2218                         cfqq->ioprio = cfqq->org_ioprio;
2219         }
2220 }
2221
2222 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2223 {
2224         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2225             !cfq_cfqq_must_alloc_slice(cfqq)) {
2226                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2227                 return ELV_MQUEUE_MUST;
2228         }
2229
2230         return ELV_MQUEUE_MAY;
2231 }
2232
2233 static int cfq_may_queue(struct request_queue *q, int rw)
2234 {
2235         struct cfq_data *cfqd = q->elevator->elevator_data;
2236         struct task_struct *tsk = current;
2237         struct cfq_io_context *cic;
2238         struct cfq_queue *cfqq;
2239
2240         /*
2241          * don't force setup of a queue from here, as a call to may_queue
2242          * does not necessarily imply that a request actually will be queued.
2243          * so just lookup a possibly existing queue, or return 'may queue'
2244          * if that fails
2245          */
2246         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2247         if (!cic)
2248                 return ELV_MQUEUE_MAY;
2249
2250         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2251         if (cfqq) {
2252                 cfq_init_prio_data(cfqq, cic->ioc);
2253                 cfq_prio_boost(cfqq);
2254
2255                 return __cfq_may_queue(cfqq);
2256         }
2257
2258         return ELV_MQUEUE_MAY;
2259 }
2260
2261 /*
2262  * queue lock held here
2263  */
2264 static void cfq_put_request(struct request *rq)
2265 {
2266         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2267
2268         if (cfqq) {
2269                 const int rw = rq_data_dir(rq);
2270
2271                 BUG_ON(!cfqq->allocated[rw]);
2272                 cfqq->allocated[rw]--;
2273
2274                 put_io_context(RQ_CIC(rq)->ioc);
2275
2276                 rq->elevator_private = NULL;
2277                 rq->elevator_private2 = NULL;
2278
2279                 cfq_put_queue(cfqq);
2280         }
2281 }
2282
2283 /*
2284  * Allocate cfq data structures associated with this request.
2285  */
2286 static int
2287 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2288 {
2289         struct cfq_data *cfqd = q->elevator->elevator_data;
2290         struct cfq_io_context *cic;
2291         const int rw = rq_data_dir(rq);
2292         const int is_sync = rq_is_sync(rq);
2293         struct cfq_queue *cfqq;
2294         unsigned long flags;
2295
2296         might_sleep_if(gfp_mask & __GFP_WAIT);
2297
2298         cic = cfq_get_io_context(cfqd, gfp_mask);
2299
2300         spin_lock_irqsave(q->queue_lock, flags);
2301
2302         if (!cic)
2303                 goto queue_fail;
2304
2305         cfqq = cic_to_cfqq(cic, is_sync);
2306         if (!cfqq) {
2307                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2308
2309                 if (!cfqq)
2310                         goto queue_fail;
2311
2312                 cic_set_cfqq(cic, cfqq, is_sync);
2313         }
2314
2315         cfqq->allocated[rw]++;
2316         cfq_clear_cfqq_must_alloc(cfqq);
2317         atomic_inc(&cfqq->ref);
2318
2319         spin_unlock_irqrestore(q->queue_lock, flags);
2320
2321         rq->elevator_private = cic;
2322         rq->elevator_private2 = cfqq;
2323         return 0;
2324
2325 queue_fail:
2326         if (cic)
2327                 put_io_context(cic->ioc);
2328
2329         cfq_schedule_dispatch(cfqd);
2330         spin_unlock_irqrestore(q->queue_lock, flags);
2331         cfq_log(cfqd, "set_request fail");
2332         return 1;
2333 }
2334
2335 static void cfq_kick_queue(struct work_struct *work)
2336 {
2337         struct cfq_data *cfqd =
2338                 container_of(work, struct cfq_data, unplug_work);
2339         struct request_queue *q = cfqd->queue;
2340
2341         spin_lock_irq(q->queue_lock);
2342         blk_start_queueing(q);
2343         spin_unlock_irq(q->queue_lock);
2344 }
2345
2346 /*
2347  * Timer running if the active_queue is currently idling inside its time slice
2348  */
2349 static void cfq_idle_slice_timer(unsigned long data)
2350 {
2351         struct cfq_data *cfqd = (struct cfq_data *) data;
2352         struct cfq_queue *cfqq;
2353         unsigned long flags;
2354         int timed_out = 1;
2355
2356         cfq_log(cfqd, "idle timer fired");
2357
2358         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2359
2360         cfqq = cfqd->active_queue;
2361         if (cfqq) {
2362                 timed_out = 0;
2363
2364                 /*
2365                  * We saw a request before the queue expired, let it through
2366                  */
2367                 if (cfq_cfqq_must_dispatch(cfqq))
2368                         goto out_kick;
2369
2370                 /*
2371                  * expired
2372                  */
2373                 if (cfq_slice_used(cfqq))
2374                         goto expire;
2375
2376                 /*
2377                  * only expire and reinvoke request handler, if there are
2378                  * other queues with pending requests
2379                  */
2380                 if (!cfqd->busy_queues)
2381                         goto out_cont;
2382
2383                 /*
2384                  * not expired and it has a request pending, let it dispatch
2385                  */
2386                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2387                         goto out_kick;
2388         }
2389 expire:
2390         cfq_slice_expired(cfqd, timed_out);
2391 out_kick:
2392         cfq_schedule_dispatch(cfqd);
2393 out_cont:
2394         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2395 }
2396
2397 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2398 {
2399         del_timer_sync(&cfqd->idle_slice_timer);
2400         cancel_work_sync(&cfqd->unplug_work);
2401 }
2402
2403 static void cfq_put_async_queues(struct cfq_data *cfqd)
2404 {
2405         int i;
2406
2407         for (i = 0; i < IOPRIO_BE_NR; i++) {
2408                 if (cfqd->async_cfqq[0][i])
2409                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2410                 if (cfqd->async_cfqq[1][i])
2411                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2412         }
2413
2414         if (cfqd->async_idle_cfqq)
2415                 cfq_put_queue(cfqd->async_idle_cfqq);
2416 }
2417
2418 static void cfq_exit_queue(struct elevator_queue *e)
2419 {
2420         struct cfq_data *cfqd = e->elevator_data;
2421         struct request_queue *q = cfqd->queue;
2422
2423         cfq_shutdown_timer_wq(cfqd);
2424
2425         spin_lock_irq(q->queue_lock);
2426
2427         if (cfqd->active_queue)
2428                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2429
2430         while (!list_empty(&cfqd->cic_list)) {
2431                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2432                                                         struct cfq_io_context,
2433                                                         queue_list);
2434
2435                 __cfq_exit_single_io_context(cfqd, cic);
2436         }
2437
2438         cfq_put_async_queues(cfqd);
2439
2440         spin_unlock_irq(q->queue_lock);
2441
2442         cfq_shutdown_timer_wq(cfqd);
2443
2444         kfree(cfqd);
2445 }
2446
2447 static void *cfq_init_queue(struct request_queue *q)
2448 {
2449         struct cfq_data *cfqd;
2450         int i;
2451
2452         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2453         if (!cfqd)
2454                 return NULL;
2455
2456         cfqd->service_tree = CFQ_RB_ROOT;
2457
2458         /*
2459          * Not strictly needed (since RB_ROOT just clears the node and we
2460          * zeroed cfqd on alloc), but better be safe in case someone decides
2461          * to add magic to the rb code
2462          */
2463         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2464                 cfqd->prio_trees[i] = RB_ROOT;
2465
2466         INIT_LIST_HEAD(&cfqd->cic_list);
2467
2468         cfqd->queue = q;
2469
2470         init_timer(&cfqd->idle_slice_timer);
2471         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2472         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2473
2474         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2475
2476         cfqd->last_end_request = jiffies;
2477         cfqd->cfq_quantum = cfq_quantum;
2478         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2479         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2480         cfqd->cfq_back_max = cfq_back_max;
2481         cfqd->cfq_back_penalty = cfq_back_penalty;
2482         cfqd->cfq_slice[0] = cfq_slice_async;
2483         cfqd->cfq_slice[1] = cfq_slice_sync;
2484         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2485         cfqd->cfq_slice_idle = cfq_slice_idle;
2486         cfqd->hw_tag = 1;
2487
2488         return cfqd;
2489 }
2490
2491 static void cfq_slab_kill(void)
2492 {
2493         /*
2494          * Caller already ensured that pending RCU callbacks are completed,
2495          * so we should have no busy allocations at this point.
2496          */
2497         if (cfq_pool)
2498                 kmem_cache_destroy(cfq_pool);
2499         if (cfq_ioc_pool)
2500                 kmem_cache_destroy(cfq_ioc_pool);
2501 }
2502
2503 static int __init cfq_slab_setup(void)
2504 {
2505         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2506         if (!cfq_pool)
2507                 goto fail;
2508
2509         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2510         if (!cfq_ioc_pool)
2511                 goto fail;
2512
2513         return 0;
2514 fail:
2515         cfq_slab_kill();
2516         return -ENOMEM;
2517 }
2518
2519 /*
2520  * sysfs parts below -->
2521  */
2522 static ssize_t
2523 cfq_var_show(unsigned int var, char *page)
2524 {
2525         return sprintf(page, "%d\n", var);
2526 }
2527
2528 static ssize_t
2529 cfq_var_store(unsigned int *var, const char *page, size_t count)
2530 {
2531         char *p = (char *) page;
2532
2533         *var = simple_strtoul(p, &p, 10);
2534         return count;
2535 }
2536
2537 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2538 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
2539 {                                                                       \
2540         struct cfq_data *cfqd = e->elevator_data;                       \
2541         unsigned int __data = __VAR;                                    \
2542         if (__CONV)                                                     \
2543                 __data = jiffies_to_msecs(__data);                      \
2544         return cfq_var_show(__data, (page));                            \
2545 }
2546 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2547 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2548 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2549 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2550 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2551 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2552 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2553 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2554 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2555 #undef SHOW_FUNCTION
2556
2557 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2558 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2559 {                                                                       \
2560         struct cfq_data *cfqd = e->elevator_data;                       \
2561         unsigned int __data;                                            \
2562         int ret = cfq_var_store(&__data, (page), count);                \
2563         if (__data < (MIN))                                             \
2564                 __data = (MIN);                                         \
2565         else if (__data > (MAX))                                        \
2566                 __data = (MAX);                                         \
2567         if (__CONV)                                                     \
2568                 *(__PTR) = msecs_to_jiffies(__data);                    \
2569         else                                                            \
2570                 *(__PTR) = __data;                                      \
2571         return ret;                                                     \
2572 }
2573 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2574 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2575                 UINT_MAX, 1);
2576 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2577                 UINT_MAX, 1);
2578 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2579 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2580                 UINT_MAX, 0);
2581 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2582 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2583 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2584 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2585                 UINT_MAX, 0);
2586 #undef STORE_FUNCTION
2587
2588 #define CFQ_ATTR(name) \
2589         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2590
2591 static struct elv_fs_entry cfq_attrs[] = {
2592         CFQ_ATTR(quantum),
2593         CFQ_ATTR(fifo_expire_sync),
2594         CFQ_ATTR(fifo_expire_async),
2595         CFQ_ATTR(back_seek_max),
2596         CFQ_ATTR(back_seek_penalty),
2597         CFQ_ATTR(slice_sync),
2598         CFQ_ATTR(slice_async),
2599         CFQ_ATTR(slice_async_rq),
2600         CFQ_ATTR(slice_idle),
2601         __ATTR_NULL
2602 };
2603
2604 static struct elevator_type iosched_cfq = {
2605         .ops = {
2606                 .elevator_merge_fn =            cfq_merge,
2607                 .elevator_merged_fn =           cfq_merged_request,
2608                 .elevator_merge_req_fn =        cfq_merged_requests,
2609                 .elevator_allow_merge_fn =      cfq_allow_merge,
2610                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2611                 .elevator_add_req_fn =          cfq_insert_request,
2612                 .elevator_activate_req_fn =     cfq_activate_request,
2613                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2614                 .elevator_queue_empty_fn =      cfq_queue_empty,
2615                 .elevator_completed_req_fn =    cfq_completed_request,
2616                 .elevator_former_req_fn =       elv_rb_former_request,
2617                 .elevator_latter_req_fn =       elv_rb_latter_request,
2618                 .elevator_set_req_fn =          cfq_set_request,
2619                 .elevator_put_req_fn =          cfq_put_request,
2620                 .elevator_may_queue_fn =        cfq_may_queue,
2621                 .elevator_init_fn =             cfq_init_queue,
2622                 .elevator_exit_fn =             cfq_exit_queue,
2623                 .trim =                         cfq_free_io_context,
2624         },
2625         .elevator_attrs =       cfq_attrs,
2626         .elevator_name =        "cfq",
2627         .elevator_owner =       THIS_MODULE,
2628 };
2629
2630 static int __init cfq_init(void)
2631 {
2632         /*
2633          * could be 0 on HZ < 1000 setups
2634          */
2635         if (!cfq_slice_async)
2636                 cfq_slice_async = 1;
2637         if (!cfq_slice_idle)
2638                 cfq_slice_idle = 1;
2639
2640         if (cfq_slab_setup())
2641                 return -ENOMEM;
2642
2643         elv_register(&iosched_cfq);
2644
2645         return 0;
2646 }
2647
2648 static void __exit cfq_exit(void)
2649 {
2650         DECLARE_COMPLETION_ONSTACK(all_gone);
2651         elv_unregister(&iosched_cfq);
2652         ioc_gone = &all_gone;
2653         /* ioc_gone's update must be visible before reading ioc_count */
2654         smp_wmb();
2655
2656         /*
2657          * this also protects us from entering cfq_slab_kill() with
2658          * pending RCU callbacks
2659          */
2660         if (elv_ioc_count_read(ioc_count))
2661                 wait_for_completion(&all_gone);
2662         cfq_slab_kill();
2663 }
2664
2665 module_init(cfq_init);
2666 module_exit(cfq_exit);
2667
2668 MODULE_AUTHOR("Jens Axboe");
2669 MODULE_LICENSE("GPL");
2670 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");