cfq-iosched: clear ->prio_trees[] on cfqd alloc
[pandora-kernel.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17  * tunables
18  */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32  * offset from end of service tree
33  */
34 #define CFQ_IDLE_DELAY          (HZ / 5)
35
36 /*
37  * below this threshold, we consider thinktime immediate
38  */
39 #define CFQ_MIN_TT              (2)
40
41 #define CFQ_SLICE_SCALE         (5)
42 #define CFQ_HW_QUEUE_MIN        (5)
43
44 #define RQ_CIC(rq)              \
45         ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define sample_valid(samples)   ((samples) > 80)
60
61 /*
62  * Most of our rbtree usage is for sorting with min extraction, so
63  * if we cache the leftmost node we don't have to walk down the tree
64  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65  * move this into the elevator for the rq sorting as well.
66  */
67 struct cfq_rb_root {
68         struct rb_root rb;
69         struct rb_node *left;
70 };
71 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
72
73 /*
74  * Per block device queue structure
75  */
76 struct cfq_data {
77         struct request_queue *queue;
78
79         /*
80          * rr list of queues with requests and the count of them
81          */
82         struct cfq_rb_root service_tree;
83
84         /*
85          * Each priority tree is sorted by next_request position.  These
86          * trees are used when determining if two or more queues are
87          * interleaving requests (see cfq_close_cooperator).
88          */
89         struct rb_root prio_trees[CFQ_PRIO_LISTS];
90
91         unsigned int busy_queues;
92         /*
93          * Used to track any pending rt requests so we can pre-empt current
94          * non-RT cfqq in service when this value is non-zero.
95          */
96         unsigned int busy_rt_queues;
97
98         int rq_in_driver;
99         int sync_flight;
100
101         /*
102          * queue-depth detection
103          */
104         int rq_queued;
105         int hw_tag;
106         int hw_tag_samples;
107         int rq_in_driver_peak;
108
109         /*
110          * idle window management
111          */
112         struct timer_list idle_slice_timer;
113         struct work_struct unplug_work;
114
115         struct cfq_queue *active_queue;
116         struct cfq_io_context *active_cic;
117
118         /*
119          * async queue for each priority case
120          */
121         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
122         struct cfq_queue *async_idle_cfqq;
123
124         sector_t last_position;
125         unsigned long last_end_request;
126
127         /*
128          * tunables, see top of file
129          */
130         unsigned int cfq_quantum;
131         unsigned int cfq_fifo_expire[2];
132         unsigned int cfq_back_penalty;
133         unsigned int cfq_back_max;
134         unsigned int cfq_slice[2];
135         unsigned int cfq_slice_async_rq;
136         unsigned int cfq_slice_idle;
137
138         struct list_head cic_list;
139 };
140
141 /*
142  * Per process-grouping structure
143  */
144 struct cfq_queue {
145         /* reference count */
146         atomic_t ref;
147         /* various state flags, see below */
148         unsigned int flags;
149         /* parent cfq_data */
150         struct cfq_data *cfqd;
151         /* service_tree member */
152         struct rb_node rb_node;
153         /* service_tree key */
154         unsigned long rb_key;
155         /* prio tree member */
156         struct rb_node p_node;
157         /* sorted list of pending requests */
158         struct rb_root sort_list;
159         /* if fifo isn't expired, next request to serve */
160         struct request *next_rq;
161         /* requests queued in sort_list */
162         int queued[2];
163         /* currently allocated requests */
164         int allocated[2];
165         /* fifo list of requests in sort_list */
166         struct list_head fifo;
167
168         unsigned long slice_end;
169         long slice_resid;
170         unsigned int slice_dispatch;
171
172         /* pending metadata requests */
173         int meta_pending;
174         /* number of requests that are on the dispatch list or inside driver */
175         int dispatched;
176
177         /* io prio of this group */
178         unsigned short ioprio, org_ioprio;
179         unsigned short ioprio_class, org_ioprio_class;
180
181         pid_t pid;
182 };
183
184 enum cfqq_state_flags {
185         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
186         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
187         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
188         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
189         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
190         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
191         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
192         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
193         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
194         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
195         CFQ_CFQQ_FLAG_coop,             /* has done a coop jump of the queue */
196 };
197
198 #define CFQ_CFQQ_FNS(name)                                              \
199 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
200 {                                                                       \
201         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
202 }                                                                       \
203 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
204 {                                                                       \
205         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
206 }                                                                       \
207 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
208 {                                                                       \
209         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
210 }
211
212 CFQ_CFQQ_FNS(on_rr);
213 CFQ_CFQQ_FNS(wait_request);
214 CFQ_CFQQ_FNS(must_dispatch);
215 CFQ_CFQQ_FNS(must_alloc);
216 CFQ_CFQQ_FNS(must_alloc_slice);
217 CFQ_CFQQ_FNS(fifo_expire);
218 CFQ_CFQQ_FNS(idle_window);
219 CFQ_CFQQ_FNS(prio_changed);
220 CFQ_CFQQ_FNS(slice_new);
221 CFQ_CFQQ_FNS(sync);
222 CFQ_CFQQ_FNS(coop);
223 #undef CFQ_CFQQ_FNS
224
225 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
226         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
227 #define cfq_log(cfqd, fmt, args...)     \
228         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
229
230 static void cfq_dispatch_insert(struct request_queue *, struct request *);
231 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
232                                        struct io_context *, gfp_t);
233 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
234                                                 struct io_context *);
235
236 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
237                                             int is_sync)
238 {
239         return cic->cfqq[!!is_sync];
240 }
241
242 static inline void cic_set_cfqq(struct cfq_io_context *cic,
243                                 struct cfq_queue *cfqq, int is_sync)
244 {
245         cic->cfqq[!!is_sync] = cfqq;
246 }
247
248 /*
249  * We regard a request as SYNC, if it's either a read or has the SYNC bit
250  * set (in which case it could also be direct WRITE).
251  */
252 static inline int cfq_bio_sync(struct bio *bio)
253 {
254         if (bio_data_dir(bio) == READ || bio_sync(bio))
255                 return 1;
256
257         return 0;
258 }
259
260 /*
261  * scheduler run of queue, if there are requests pending and no one in the
262  * driver that will restart queueing
263  */
264 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
265 {
266         if (cfqd->busy_queues) {
267                 cfq_log(cfqd, "schedule dispatch");
268                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
269         }
270 }
271
272 static int cfq_queue_empty(struct request_queue *q)
273 {
274         struct cfq_data *cfqd = q->elevator->elevator_data;
275
276         return !cfqd->busy_queues;
277 }
278
279 /*
280  * Scale schedule slice based on io priority. Use the sync time slice only
281  * if a queue is marked sync and has sync io queued. A sync queue with async
282  * io only, should not get full sync slice length.
283  */
284 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
285                                  unsigned short prio)
286 {
287         const int base_slice = cfqd->cfq_slice[sync];
288
289         WARN_ON(prio >= IOPRIO_BE_NR);
290
291         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
292 }
293
294 static inline int
295 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
296 {
297         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
298 }
299
300 static inline void
301 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
302 {
303         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
304         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
305 }
306
307 /*
308  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
309  * isn't valid until the first request from the dispatch is activated
310  * and the slice time set.
311  */
312 static inline int cfq_slice_used(struct cfq_queue *cfqq)
313 {
314         if (cfq_cfqq_slice_new(cfqq))
315                 return 0;
316         if (time_before(jiffies, cfqq->slice_end))
317                 return 0;
318
319         return 1;
320 }
321
322 /*
323  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
324  * We choose the request that is closest to the head right now. Distance
325  * behind the head is penalized and only allowed to a certain extent.
326  */
327 static struct request *
328 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
329 {
330         sector_t last, s1, s2, d1 = 0, d2 = 0;
331         unsigned long back_max;
332 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
333 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
334         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
335
336         if (rq1 == NULL || rq1 == rq2)
337                 return rq2;
338         if (rq2 == NULL)
339                 return rq1;
340
341         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
342                 return rq1;
343         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
344                 return rq2;
345         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
346                 return rq1;
347         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
348                 return rq2;
349
350         s1 = rq1->sector;
351         s2 = rq2->sector;
352
353         last = cfqd->last_position;
354
355         /*
356          * by definition, 1KiB is 2 sectors
357          */
358         back_max = cfqd->cfq_back_max * 2;
359
360         /*
361          * Strict one way elevator _except_ in the case where we allow
362          * short backward seeks which are biased as twice the cost of a
363          * similar forward seek.
364          */
365         if (s1 >= last)
366                 d1 = s1 - last;
367         else if (s1 + back_max >= last)
368                 d1 = (last - s1) * cfqd->cfq_back_penalty;
369         else
370                 wrap |= CFQ_RQ1_WRAP;
371
372         if (s2 >= last)
373                 d2 = s2 - last;
374         else if (s2 + back_max >= last)
375                 d2 = (last - s2) * cfqd->cfq_back_penalty;
376         else
377                 wrap |= CFQ_RQ2_WRAP;
378
379         /* Found required data */
380
381         /*
382          * By doing switch() on the bit mask "wrap" we avoid having to
383          * check two variables for all permutations: --> faster!
384          */
385         switch (wrap) {
386         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
387                 if (d1 < d2)
388                         return rq1;
389                 else if (d2 < d1)
390                         return rq2;
391                 else {
392                         if (s1 >= s2)
393                                 return rq1;
394                         else
395                                 return rq2;
396                 }
397
398         case CFQ_RQ2_WRAP:
399                 return rq1;
400         case CFQ_RQ1_WRAP:
401                 return rq2;
402         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
403         default:
404                 /*
405                  * Since both rqs are wrapped,
406                  * start with the one that's further behind head
407                  * (--> only *one* back seek required),
408                  * since back seek takes more time than forward.
409                  */
410                 if (s1 <= s2)
411                         return rq1;
412                 else
413                         return rq2;
414         }
415 }
416
417 /*
418  * The below is leftmost cache rbtree addon
419  */
420 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
421 {
422         if (!root->left)
423                 root->left = rb_first(&root->rb);
424
425         if (root->left)
426                 return rb_entry(root->left, struct cfq_queue, rb_node);
427
428         return NULL;
429 }
430
431 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
432 {
433         rb_erase(n, root);
434         RB_CLEAR_NODE(n);
435 }
436
437 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
438 {
439         if (root->left == n)
440                 root->left = NULL;
441         rb_erase_init(n, &root->rb);
442 }
443
444 /*
445  * would be nice to take fifo expire time into account as well
446  */
447 static struct request *
448 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
449                   struct request *last)
450 {
451         struct rb_node *rbnext = rb_next(&last->rb_node);
452         struct rb_node *rbprev = rb_prev(&last->rb_node);
453         struct request *next = NULL, *prev = NULL;
454
455         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
456
457         if (rbprev)
458                 prev = rb_entry_rq(rbprev);
459
460         if (rbnext)
461                 next = rb_entry_rq(rbnext);
462         else {
463                 rbnext = rb_first(&cfqq->sort_list);
464                 if (rbnext && rbnext != &last->rb_node)
465                         next = rb_entry_rq(rbnext);
466         }
467
468         return cfq_choose_req(cfqd, next, prev);
469 }
470
471 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
472                                       struct cfq_queue *cfqq)
473 {
474         /*
475          * just an approximation, should be ok.
476          */
477         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
478                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
479 }
480
481 /*
482  * The cfqd->service_tree holds all pending cfq_queue's that have
483  * requests waiting to be processed. It is sorted in the order that
484  * we will service the queues.
485  */
486 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
487                                  int add_front)
488 {
489         struct rb_node **p, *parent;
490         struct cfq_queue *__cfqq;
491         unsigned long rb_key;
492         int left;
493
494         if (cfq_class_idle(cfqq)) {
495                 rb_key = CFQ_IDLE_DELAY;
496                 parent = rb_last(&cfqd->service_tree.rb);
497                 if (parent && parent != &cfqq->rb_node) {
498                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
499                         rb_key += __cfqq->rb_key;
500                 } else
501                         rb_key += jiffies;
502         } else if (!add_front) {
503                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
504                 rb_key += cfqq->slice_resid;
505                 cfqq->slice_resid = 0;
506         } else
507                 rb_key = 0;
508
509         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
510                 /*
511                  * same position, nothing more to do
512                  */
513                 if (rb_key == cfqq->rb_key)
514                         return;
515
516                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
517         }
518
519         left = 1;
520         parent = NULL;
521         p = &cfqd->service_tree.rb.rb_node;
522         while (*p) {
523                 struct rb_node **n;
524
525                 parent = *p;
526                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
527
528                 /*
529                  * sort RT queues first, we always want to give
530                  * preference to them. IDLE queues goes to the back.
531                  * after that, sort on the next service time.
532                  */
533                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
534                         n = &(*p)->rb_left;
535                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
536                         n = &(*p)->rb_right;
537                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
538                         n = &(*p)->rb_left;
539                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
540                         n = &(*p)->rb_right;
541                 else if (rb_key < __cfqq->rb_key)
542                         n = &(*p)->rb_left;
543                 else
544                         n = &(*p)->rb_right;
545
546                 if (n == &(*p)->rb_right)
547                         left = 0;
548
549                 p = n;
550         }
551
552         if (left)
553                 cfqd->service_tree.left = &cfqq->rb_node;
554
555         cfqq->rb_key = rb_key;
556         rb_link_node(&cfqq->rb_node, parent, p);
557         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
558 }
559
560 static struct cfq_queue *
561 cfq_prio_tree_lookup(struct cfq_data *cfqd, int ioprio, sector_t sector,
562                      struct rb_node **ret_parent, struct rb_node ***rb_link)
563 {
564         struct rb_root *root = &cfqd->prio_trees[ioprio];
565         struct rb_node **p, *parent;
566         struct cfq_queue *cfqq = NULL;
567
568         parent = NULL;
569         p = &root->rb_node;
570         while (*p) {
571                 struct rb_node **n;
572
573                 parent = *p;
574                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
575
576                 /*
577                  * Sort strictly based on sector.  Smallest to the left,
578                  * largest to the right.
579                  */
580                 if (sector > cfqq->next_rq->sector)
581                         n = &(*p)->rb_right;
582                 else if (sector < cfqq->next_rq->sector)
583                         n = &(*p)->rb_left;
584                 else
585                         break;
586                 p = n;
587         }
588
589         *ret_parent = parent;
590         if (rb_link)
591                 *rb_link = p;
592         return NULL;
593 }
594
595 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
596 {
597         struct rb_root *root = &cfqd->prio_trees[cfqq->ioprio];
598         struct rb_node **p, *parent;
599         struct cfq_queue *__cfqq;
600
601         if (!RB_EMPTY_NODE(&cfqq->p_node))
602                 rb_erase_init(&cfqq->p_node, root);
603
604         if (cfq_class_idle(cfqq))
605                 return;
606         if (!cfqq->next_rq)
607                 return;
608
609         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->ioprio, cfqq->next_rq->sector,
610                                          &parent, &p);
611         BUG_ON(__cfqq);
612
613         rb_link_node(&cfqq->p_node, parent, p);
614         rb_insert_color(&cfqq->p_node, root);
615 }
616
617 /*
618  * Update cfqq's position in the service tree.
619  */
620 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
621 {
622         /*
623          * Resorting requires the cfqq to be on the RR list already.
624          */
625         if (cfq_cfqq_on_rr(cfqq)) {
626                 cfq_service_tree_add(cfqd, cfqq, 0);
627                 cfq_prio_tree_add(cfqd, cfqq);
628         }
629 }
630
631 /*
632  * add to busy list of queues for service, trying to be fair in ordering
633  * the pending list according to last request service
634  */
635 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
636 {
637         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
638         BUG_ON(cfq_cfqq_on_rr(cfqq));
639         cfq_mark_cfqq_on_rr(cfqq);
640         cfqd->busy_queues++;
641         if (cfq_class_rt(cfqq))
642                 cfqd->busy_rt_queues++;
643
644         cfq_resort_rr_list(cfqd, cfqq);
645 }
646
647 /*
648  * Called when the cfqq no longer has requests pending, remove it from
649  * the service tree.
650  */
651 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
652 {
653         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
654         BUG_ON(!cfq_cfqq_on_rr(cfqq));
655         cfq_clear_cfqq_on_rr(cfqq);
656
657         if (!RB_EMPTY_NODE(&cfqq->rb_node))
658                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
659         if (!RB_EMPTY_NODE(&cfqq->p_node))
660                 rb_erase_init(&cfqq->p_node, &cfqd->prio_trees[cfqq->ioprio]);
661
662         BUG_ON(!cfqd->busy_queues);
663         cfqd->busy_queues--;
664         if (cfq_class_rt(cfqq))
665                 cfqd->busy_rt_queues--;
666 }
667
668 /*
669  * rb tree support functions
670  */
671 static void cfq_del_rq_rb(struct request *rq)
672 {
673         struct cfq_queue *cfqq = RQ_CFQQ(rq);
674         struct cfq_data *cfqd = cfqq->cfqd;
675         const int sync = rq_is_sync(rq);
676
677         BUG_ON(!cfqq->queued[sync]);
678         cfqq->queued[sync]--;
679
680         elv_rb_del(&cfqq->sort_list, rq);
681
682         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
683                 cfq_del_cfqq_rr(cfqd, cfqq);
684 }
685
686 static void cfq_add_rq_rb(struct request *rq)
687 {
688         struct cfq_queue *cfqq = RQ_CFQQ(rq);
689         struct cfq_data *cfqd = cfqq->cfqd;
690         struct request *__alias, *prev;
691
692         cfqq->queued[rq_is_sync(rq)]++;
693
694         /*
695          * looks a little odd, but the first insert might return an alias.
696          * if that happens, put the alias on the dispatch list
697          */
698         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
699                 cfq_dispatch_insert(cfqd->queue, __alias);
700
701         if (!cfq_cfqq_on_rr(cfqq))
702                 cfq_add_cfqq_rr(cfqd, cfqq);
703
704         /*
705          * check if this request is a better next-serve candidate
706          */
707         prev = cfqq->next_rq;
708         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
709
710         /*
711          * adjust priority tree position, if ->next_rq changes
712          */
713         if (prev != cfqq->next_rq)
714                 cfq_prio_tree_add(cfqd, cfqq);
715
716         BUG_ON(!cfqq->next_rq);
717 }
718
719 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
720 {
721         elv_rb_del(&cfqq->sort_list, rq);
722         cfqq->queued[rq_is_sync(rq)]--;
723         cfq_add_rq_rb(rq);
724 }
725
726 static struct request *
727 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
728 {
729         struct task_struct *tsk = current;
730         struct cfq_io_context *cic;
731         struct cfq_queue *cfqq;
732
733         cic = cfq_cic_lookup(cfqd, tsk->io_context);
734         if (!cic)
735                 return NULL;
736
737         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
738         if (cfqq) {
739                 sector_t sector = bio->bi_sector + bio_sectors(bio);
740
741                 return elv_rb_find(&cfqq->sort_list, sector);
742         }
743
744         return NULL;
745 }
746
747 static void cfq_activate_request(struct request_queue *q, struct request *rq)
748 {
749         struct cfq_data *cfqd = q->elevator->elevator_data;
750
751         cfqd->rq_in_driver++;
752         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
753                                                 cfqd->rq_in_driver);
754
755         cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
756 }
757
758 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
759 {
760         struct cfq_data *cfqd = q->elevator->elevator_data;
761
762         WARN_ON(!cfqd->rq_in_driver);
763         cfqd->rq_in_driver--;
764         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
765                                                 cfqd->rq_in_driver);
766 }
767
768 static void cfq_remove_request(struct request *rq)
769 {
770         struct cfq_queue *cfqq = RQ_CFQQ(rq);
771
772         if (cfqq->next_rq == rq)
773                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
774
775         list_del_init(&rq->queuelist);
776         cfq_del_rq_rb(rq);
777
778         cfqq->cfqd->rq_queued--;
779         if (rq_is_meta(rq)) {
780                 WARN_ON(!cfqq->meta_pending);
781                 cfqq->meta_pending--;
782         }
783 }
784
785 static int cfq_merge(struct request_queue *q, struct request **req,
786                      struct bio *bio)
787 {
788         struct cfq_data *cfqd = q->elevator->elevator_data;
789         struct request *__rq;
790
791         __rq = cfq_find_rq_fmerge(cfqd, bio);
792         if (__rq && elv_rq_merge_ok(__rq, bio)) {
793                 *req = __rq;
794                 return ELEVATOR_FRONT_MERGE;
795         }
796
797         return ELEVATOR_NO_MERGE;
798 }
799
800 static void cfq_merged_request(struct request_queue *q, struct request *req,
801                                int type)
802 {
803         if (type == ELEVATOR_FRONT_MERGE) {
804                 struct cfq_queue *cfqq = RQ_CFQQ(req);
805
806                 cfq_reposition_rq_rb(cfqq, req);
807         }
808 }
809
810 static void
811 cfq_merged_requests(struct request_queue *q, struct request *rq,
812                     struct request *next)
813 {
814         /*
815          * reposition in fifo if next is older than rq
816          */
817         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
818             time_before(next->start_time, rq->start_time))
819                 list_move(&rq->queuelist, &next->queuelist);
820
821         cfq_remove_request(next);
822 }
823
824 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
825                            struct bio *bio)
826 {
827         struct cfq_data *cfqd = q->elevator->elevator_data;
828         struct cfq_io_context *cic;
829         struct cfq_queue *cfqq;
830
831         /*
832          * Disallow merge of a sync bio into an async request.
833          */
834         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
835                 return 0;
836
837         /*
838          * Lookup the cfqq that this bio will be queued with. Allow
839          * merge only if rq is queued there.
840          */
841         cic = cfq_cic_lookup(cfqd, current->io_context);
842         if (!cic)
843                 return 0;
844
845         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
846         if (cfqq == RQ_CFQQ(rq))
847                 return 1;
848
849         return 0;
850 }
851
852 static void __cfq_set_active_queue(struct cfq_data *cfqd,
853                                    struct cfq_queue *cfqq)
854 {
855         if (cfqq) {
856                 cfq_log_cfqq(cfqd, cfqq, "set_active");
857                 cfqq->slice_end = 0;
858                 cfqq->slice_dispatch = 0;
859
860                 cfq_clear_cfqq_wait_request(cfqq);
861                 cfq_clear_cfqq_must_dispatch(cfqq);
862                 cfq_clear_cfqq_must_alloc_slice(cfqq);
863                 cfq_clear_cfqq_fifo_expire(cfqq);
864                 cfq_mark_cfqq_slice_new(cfqq);
865
866                 del_timer(&cfqd->idle_slice_timer);
867         }
868
869         cfqd->active_queue = cfqq;
870 }
871
872 /*
873  * current cfqq expired its slice (or was too idle), select new one
874  */
875 static void
876 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
877                     int timed_out)
878 {
879         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
880
881         if (cfq_cfqq_wait_request(cfqq))
882                 del_timer(&cfqd->idle_slice_timer);
883
884         cfq_clear_cfqq_wait_request(cfqq);
885
886         /*
887          * store what was left of this slice, if the queue idled/timed out
888          */
889         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
890                 cfqq->slice_resid = cfqq->slice_end - jiffies;
891                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
892         }
893
894         cfq_resort_rr_list(cfqd, cfqq);
895
896         if (cfqq == cfqd->active_queue)
897                 cfqd->active_queue = NULL;
898
899         if (cfqd->active_cic) {
900                 put_io_context(cfqd->active_cic->ioc);
901                 cfqd->active_cic = NULL;
902         }
903 }
904
905 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
906 {
907         struct cfq_queue *cfqq = cfqd->active_queue;
908
909         if (cfqq)
910                 __cfq_slice_expired(cfqd, cfqq, timed_out);
911 }
912
913 /*
914  * Get next queue for service. Unless we have a queue preemption,
915  * we'll simply select the first cfqq in the service tree.
916  */
917 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
918 {
919         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
920                 return NULL;
921
922         return cfq_rb_first(&cfqd->service_tree);
923 }
924
925 /*
926  * Get and set a new active queue for service.
927  */
928 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
929                                               struct cfq_queue *cfqq)
930 {
931         if (!cfqq) {
932                 cfqq = cfq_get_next_queue(cfqd);
933                 if (cfqq)
934                         cfq_clear_cfqq_coop(cfqq);
935         }
936
937         __cfq_set_active_queue(cfqd, cfqq);
938         return cfqq;
939 }
940
941 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
942                                           struct request *rq)
943 {
944         if (rq->sector >= cfqd->last_position)
945                 return rq->sector - cfqd->last_position;
946         else
947                 return cfqd->last_position - rq->sector;
948 }
949
950 #define CIC_SEEK_THR    8 * 1024
951 #define CIC_SEEKY(cic)  ((cic)->seek_mean > CIC_SEEK_THR)
952
953 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
954 {
955         struct cfq_io_context *cic = cfqd->active_cic;
956         sector_t sdist = cic->seek_mean;
957
958         if (!sample_valid(cic->seek_samples))
959                 sdist = CIC_SEEK_THR;
960
961         return cfq_dist_from_last(cfqd, rq) <= sdist;
962 }
963
964 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
965                                     struct cfq_queue *cur_cfqq)
966 {
967         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->ioprio];
968         struct rb_node *parent, *node;
969         struct cfq_queue *__cfqq;
970         sector_t sector = cfqd->last_position;
971
972         if (RB_EMPTY_ROOT(root))
973                 return NULL;
974
975         /*
976          * First, if we find a request starting at the end of the last
977          * request, choose it.
978          */
979         __cfqq = cfq_prio_tree_lookup(cfqd, cur_cfqq->ioprio,
980                                       sector, &parent, NULL);
981         if (__cfqq)
982                 return __cfqq;
983
984         /*
985          * If the exact sector wasn't found, the parent of the NULL leaf
986          * will contain the closest sector.
987          */
988         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
989         if (cfq_rq_close(cfqd, __cfqq->next_rq))
990                 return __cfqq;
991
992         if (__cfqq->next_rq->sector < sector)
993                 node = rb_next(&__cfqq->p_node);
994         else
995                 node = rb_prev(&__cfqq->p_node);
996         if (!node)
997                 return NULL;
998
999         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1000         if (cfq_rq_close(cfqd, __cfqq->next_rq))
1001                 return __cfqq;
1002
1003         return NULL;
1004 }
1005
1006 /*
1007  * cfqd - obvious
1008  * cur_cfqq - passed in so that we don't decide that the current queue is
1009  *            closely cooperating with itself.
1010  *
1011  * So, basically we're assuming that that cur_cfqq has dispatched at least
1012  * one request, and that cfqd->last_position reflects a position on the disk
1013  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1014  * assumption.
1015  */
1016 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1017                                               struct cfq_queue *cur_cfqq,
1018                                               int probe)
1019 {
1020         struct cfq_queue *cfqq;
1021
1022         /*
1023          * A valid cfq_io_context is necessary to compare requests against
1024          * the seek_mean of the current cfqq.
1025          */
1026         if (!cfqd->active_cic)
1027                 return NULL;
1028
1029         /*
1030          * We should notice if some of the queues are cooperating, eg
1031          * working closely on the same area of the disk. In that case,
1032          * we can group them together and don't waste time idling.
1033          */
1034         cfqq = cfqq_close(cfqd, cur_cfqq);
1035         if (!cfqq)
1036                 return NULL;
1037
1038         if (cfq_cfqq_coop(cfqq))
1039                 return NULL;
1040
1041         if (!probe)
1042                 cfq_mark_cfqq_coop(cfqq);
1043         return cfqq;
1044 }
1045
1046 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1047 {
1048         struct cfq_queue *cfqq = cfqd->active_queue;
1049         struct cfq_io_context *cic;
1050         unsigned long sl;
1051
1052         /*
1053          * SSD device without seek penalty, disable idling. But only do so
1054          * for devices that support queuing, otherwise we still have a problem
1055          * with sync vs async workloads.
1056          */
1057         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1058                 return;
1059
1060         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1061         WARN_ON(cfq_cfqq_slice_new(cfqq));
1062
1063         /*
1064          * idle is disabled, either manually or by past process history
1065          */
1066         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1067                 return;
1068
1069         /*
1070          * still requests with the driver, don't idle
1071          */
1072         if (cfqd->rq_in_driver)
1073                 return;
1074
1075         /*
1076          * task has exited, don't wait
1077          */
1078         cic = cfqd->active_cic;
1079         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1080                 return;
1081
1082         cfq_mark_cfqq_wait_request(cfqq);
1083
1084         /*
1085          * we don't want to idle for seeks, but we do want to allow
1086          * fair distribution of slice time for a process doing back-to-back
1087          * seeks. so allow a little bit of time for him to submit a new rq
1088          */
1089         sl = cfqd->cfq_slice_idle;
1090         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1091                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1092
1093         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1094         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1095 }
1096
1097 /*
1098  * Move request from internal lists to the request queue dispatch list.
1099  */
1100 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1101 {
1102         struct cfq_data *cfqd = q->elevator->elevator_data;
1103         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1104
1105         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1106
1107         cfq_remove_request(rq);
1108         cfqq->dispatched++;
1109         elv_dispatch_sort(q, rq);
1110
1111         if (cfq_cfqq_sync(cfqq))
1112                 cfqd->sync_flight++;
1113 }
1114
1115 /*
1116  * return expired entry, or NULL to just start from scratch in rbtree
1117  */
1118 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1119 {
1120         struct cfq_data *cfqd = cfqq->cfqd;
1121         struct request *rq;
1122         int fifo;
1123
1124         if (cfq_cfqq_fifo_expire(cfqq))
1125                 return NULL;
1126
1127         cfq_mark_cfqq_fifo_expire(cfqq);
1128
1129         if (list_empty(&cfqq->fifo))
1130                 return NULL;
1131
1132         fifo = cfq_cfqq_sync(cfqq);
1133         rq = rq_entry_fifo(cfqq->fifo.next);
1134
1135         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1136                 rq = NULL;
1137
1138         cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1139         return rq;
1140 }
1141
1142 static inline int
1143 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1144 {
1145         const int base_rq = cfqd->cfq_slice_async_rq;
1146
1147         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1148
1149         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1150 }
1151
1152 /*
1153  * Select a queue for service. If we have a current active queue,
1154  * check whether to continue servicing it, or retrieve and set a new one.
1155  */
1156 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1157 {
1158         struct cfq_queue *cfqq, *new_cfqq = NULL;
1159
1160         cfqq = cfqd->active_queue;
1161         if (!cfqq)
1162                 goto new_queue;
1163
1164         /*
1165          * The active queue has run out of time, expire it and select new.
1166          */
1167         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1168                 goto expire;
1169
1170         /*
1171          * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1172          * cfqq.
1173          */
1174         if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1175                 /*
1176                  * We simulate this as cfqq timed out so that it gets to bank
1177                  * the remaining of its time slice.
1178                  */
1179                 cfq_log_cfqq(cfqd, cfqq, "preempt");
1180                 cfq_slice_expired(cfqd, 1);
1181                 goto new_queue;
1182         }
1183
1184         /*
1185          * The active queue has requests and isn't expired, allow it to
1186          * dispatch.
1187          */
1188         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1189                 goto keep_queue;
1190
1191         /*
1192          * If another queue has a request waiting within our mean seek
1193          * distance, let it run.  The expire code will check for close
1194          * cooperators and put the close queue at the front of the service
1195          * tree.
1196          */
1197         new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1198         if (new_cfqq)
1199                 goto expire;
1200
1201         /*
1202          * No requests pending. If the active queue still has requests in
1203          * flight or is idling for a new request, allow either of these
1204          * conditions to happen (or time out) before selecting a new queue.
1205          */
1206         if (timer_pending(&cfqd->idle_slice_timer) ||
1207             (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1208                 cfqq = NULL;
1209                 goto keep_queue;
1210         }
1211
1212 expire:
1213         cfq_slice_expired(cfqd, 0);
1214 new_queue:
1215         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1216 keep_queue:
1217         return cfqq;
1218 }
1219
1220 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1221 {
1222         int dispatched = 0;
1223
1224         while (cfqq->next_rq) {
1225                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1226                 dispatched++;
1227         }
1228
1229         BUG_ON(!list_empty(&cfqq->fifo));
1230         return dispatched;
1231 }
1232
1233 /*
1234  * Drain our current requests. Used for barriers and when switching
1235  * io schedulers on-the-fly.
1236  */
1237 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1238 {
1239         struct cfq_queue *cfqq;
1240         int dispatched = 0;
1241
1242         while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1243                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1244
1245         cfq_slice_expired(cfqd, 0);
1246
1247         BUG_ON(cfqd->busy_queues);
1248
1249         cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1250         return dispatched;
1251 }
1252
1253 /*
1254  * Dispatch a request from cfqq, moving them to the request queue
1255  * dispatch list.
1256  */
1257 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1258 {
1259         struct request *rq;
1260
1261         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1262
1263         /*
1264          * follow expired path, else get first next available
1265          */
1266         rq = cfq_check_fifo(cfqq);
1267         if (!rq)
1268                 rq = cfqq->next_rq;
1269
1270         /*
1271          * insert request into driver dispatch list
1272          */
1273         cfq_dispatch_insert(cfqd->queue, rq);
1274
1275         if (!cfqd->active_cic) {
1276                 struct cfq_io_context *cic = RQ_CIC(rq);
1277
1278                 atomic_inc(&cic->ioc->refcount);
1279                 cfqd->active_cic = cic;
1280         }
1281 }
1282
1283 /*
1284  * Find the cfqq that we need to service and move a request from that to the
1285  * dispatch list
1286  */
1287 static int cfq_dispatch_requests(struct request_queue *q, int force)
1288 {
1289         struct cfq_data *cfqd = q->elevator->elevator_data;
1290         struct cfq_queue *cfqq;
1291         unsigned int max_dispatch;
1292
1293         if (!cfqd->busy_queues)
1294                 return 0;
1295
1296         if (unlikely(force))
1297                 return cfq_forced_dispatch(cfqd);
1298
1299         cfqq = cfq_select_queue(cfqd);
1300         if (!cfqq)
1301                 return 0;
1302
1303         /*
1304          * If this is an async queue and we have sync IO in flight, let it wait
1305          */
1306         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1307                 return 0;
1308
1309         max_dispatch = cfqd->cfq_quantum;
1310         if (cfq_class_idle(cfqq))
1311                 max_dispatch = 1;
1312
1313         /*
1314          * Does this cfqq already have too much IO in flight?
1315          */
1316         if (cfqq->dispatched >= max_dispatch) {
1317                 /*
1318                  * idle queue must always only have a single IO in flight
1319                  */
1320                 if (cfq_class_idle(cfqq))
1321                         return 0;
1322
1323                 /*
1324                  * We have other queues, don't allow more IO from this one
1325                  */
1326                 if (cfqd->busy_queues > 1)
1327                         return 0;
1328
1329                 /*
1330                  * we are the only queue, allow up to 4 times of 'quantum'
1331                  */
1332                 if (cfqq->dispatched >= 4 * max_dispatch)
1333                         return 0;
1334         }
1335
1336         /*
1337          * Dispatch a request from this cfqq
1338          */
1339         cfq_dispatch_request(cfqd, cfqq);
1340         cfqq->slice_dispatch++;
1341         cfq_clear_cfqq_must_dispatch(cfqq);
1342
1343         /*
1344          * expire an async queue immediately if it has used up its slice. idle
1345          * queue always expire after 1 dispatch round.
1346          */
1347         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1348             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1349             cfq_class_idle(cfqq))) {
1350                 cfqq->slice_end = jiffies + 1;
1351                 cfq_slice_expired(cfqd, 0);
1352         }
1353
1354         cfq_log(cfqd, "dispatched a request");
1355         return 1;
1356 }
1357
1358 /*
1359  * task holds one reference to the queue, dropped when task exits. each rq
1360  * in-flight on this queue also holds a reference, dropped when rq is freed.
1361  *
1362  * queue lock must be held here.
1363  */
1364 static void cfq_put_queue(struct cfq_queue *cfqq)
1365 {
1366         struct cfq_data *cfqd = cfqq->cfqd;
1367
1368         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1369
1370         if (!atomic_dec_and_test(&cfqq->ref))
1371                 return;
1372
1373         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1374         BUG_ON(rb_first(&cfqq->sort_list));
1375         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1376         BUG_ON(cfq_cfqq_on_rr(cfqq));
1377
1378         if (unlikely(cfqd->active_queue == cfqq)) {
1379                 __cfq_slice_expired(cfqd, cfqq, 0);
1380                 cfq_schedule_dispatch(cfqd);
1381         }
1382
1383         kmem_cache_free(cfq_pool, cfqq);
1384 }
1385
1386 /*
1387  * Must always be called with the rcu_read_lock() held
1388  */
1389 static void
1390 __call_for_each_cic(struct io_context *ioc,
1391                     void (*func)(struct io_context *, struct cfq_io_context *))
1392 {
1393         struct cfq_io_context *cic;
1394         struct hlist_node *n;
1395
1396         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1397                 func(ioc, cic);
1398 }
1399
1400 /*
1401  * Call func for each cic attached to this ioc.
1402  */
1403 static void
1404 call_for_each_cic(struct io_context *ioc,
1405                   void (*func)(struct io_context *, struct cfq_io_context *))
1406 {
1407         rcu_read_lock();
1408         __call_for_each_cic(ioc, func);
1409         rcu_read_unlock();
1410 }
1411
1412 static void cfq_cic_free_rcu(struct rcu_head *head)
1413 {
1414         struct cfq_io_context *cic;
1415
1416         cic = container_of(head, struct cfq_io_context, rcu_head);
1417
1418         kmem_cache_free(cfq_ioc_pool, cic);
1419         elv_ioc_count_dec(ioc_count);
1420
1421         if (ioc_gone) {
1422                 /*
1423                  * CFQ scheduler is exiting, grab exit lock and check
1424                  * the pending io context count. If it hits zero,
1425                  * complete ioc_gone and set it back to NULL
1426                  */
1427                 spin_lock(&ioc_gone_lock);
1428                 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1429                         complete(ioc_gone);
1430                         ioc_gone = NULL;
1431                 }
1432                 spin_unlock(&ioc_gone_lock);
1433         }
1434 }
1435
1436 static void cfq_cic_free(struct cfq_io_context *cic)
1437 {
1438         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1439 }
1440
1441 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1442 {
1443         unsigned long flags;
1444
1445         BUG_ON(!cic->dead_key);
1446
1447         spin_lock_irqsave(&ioc->lock, flags);
1448         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1449         hlist_del_rcu(&cic->cic_list);
1450         spin_unlock_irqrestore(&ioc->lock, flags);
1451
1452         cfq_cic_free(cic);
1453 }
1454
1455 /*
1456  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1457  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1458  * and ->trim() which is called with the task lock held
1459  */
1460 static void cfq_free_io_context(struct io_context *ioc)
1461 {
1462         /*
1463          * ioc->refcount is zero here, or we are called from elv_unregister(),
1464          * so no more cic's are allowed to be linked into this ioc.  So it
1465          * should be ok to iterate over the known list, we will see all cic's
1466          * since no new ones are added.
1467          */
1468         __call_for_each_cic(ioc, cic_free_func);
1469 }
1470
1471 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1472 {
1473         if (unlikely(cfqq == cfqd->active_queue)) {
1474                 __cfq_slice_expired(cfqd, cfqq, 0);
1475                 cfq_schedule_dispatch(cfqd);
1476         }
1477
1478         cfq_put_queue(cfqq);
1479 }
1480
1481 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1482                                          struct cfq_io_context *cic)
1483 {
1484         struct io_context *ioc = cic->ioc;
1485
1486         list_del_init(&cic->queue_list);
1487
1488         /*
1489          * Make sure key == NULL is seen for dead queues
1490          */
1491         smp_wmb();
1492         cic->dead_key = (unsigned long) cic->key;
1493         cic->key = NULL;
1494
1495         if (ioc->ioc_data == cic)
1496                 rcu_assign_pointer(ioc->ioc_data, NULL);
1497
1498         if (cic->cfqq[BLK_RW_ASYNC]) {
1499                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1500                 cic->cfqq[BLK_RW_ASYNC] = NULL;
1501         }
1502
1503         if (cic->cfqq[BLK_RW_SYNC]) {
1504                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1505                 cic->cfqq[BLK_RW_SYNC] = NULL;
1506         }
1507 }
1508
1509 static void cfq_exit_single_io_context(struct io_context *ioc,
1510                                        struct cfq_io_context *cic)
1511 {
1512         struct cfq_data *cfqd = cic->key;
1513
1514         if (cfqd) {
1515                 struct request_queue *q = cfqd->queue;
1516                 unsigned long flags;
1517
1518                 spin_lock_irqsave(q->queue_lock, flags);
1519
1520                 /*
1521                  * Ensure we get a fresh copy of the ->key to prevent
1522                  * race between exiting task and queue
1523                  */
1524                 smp_read_barrier_depends();
1525                 if (cic->key)
1526                         __cfq_exit_single_io_context(cfqd, cic);
1527
1528                 spin_unlock_irqrestore(q->queue_lock, flags);
1529         }
1530 }
1531
1532 /*
1533  * The process that ioc belongs to has exited, we need to clean up
1534  * and put the internal structures we have that belongs to that process.
1535  */
1536 static void cfq_exit_io_context(struct io_context *ioc)
1537 {
1538         call_for_each_cic(ioc, cfq_exit_single_io_context);
1539 }
1540
1541 static struct cfq_io_context *
1542 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1543 {
1544         struct cfq_io_context *cic;
1545
1546         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1547                                                         cfqd->queue->node);
1548         if (cic) {
1549                 cic->last_end_request = jiffies;
1550                 INIT_LIST_HEAD(&cic->queue_list);
1551                 INIT_HLIST_NODE(&cic->cic_list);
1552                 cic->dtor = cfq_free_io_context;
1553                 cic->exit = cfq_exit_io_context;
1554                 elv_ioc_count_inc(ioc_count);
1555         }
1556
1557         return cic;
1558 }
1559
1560 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1561 {
1562         struct task_struct *tsk = current;
1563         int ioprio_class;
1564
1565         if (!cfq_cfqq_prio_changed(cfqq))
1566                 return;
1567
1568         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1569         switch (ioprio_class) {
1570         default:
1571                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1572         case IOPRIO_CLASS_NONE:
1573                 /*
1574                  * no prio set, inherit CPU scheduling settings
1575                  */
1576                 cfqq->ioprio = task_nice_ioprio(tsk);
1577                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1578                 break;
1579         case IOPRIO_CLASS_RT:
1580                 cfqq->ioprio = task_ioprio(ioc);
1581                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1582                 break;
1583         case IOPRIO_CLASS_BE:
1584                 cfqq->ioprio = task_ioprio(ioc);
1585                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1586                 break;
1587         case IOPRIO_CLASS_IDLE:
1588                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1589                 cfqq->ioprio = 7;
1590                 cfq_clear_cfqq_idle_window(cfqq);
1591                 break;
1592         }
1593
1594         /*
1595          * keep track of original prio settings in case we have to temporarily
1596          * elevate the priority of this queue
1597          */
1598         cfqq->org_ioprio = cfqq->ioprio;
1599         cfqq->org_ioprio_class = cfqq->ioprio_class;
1600         cfq_clear_cfqq_prio_changed(cfqq);
1601 }
1602
1603 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1604 {
1605         struct cfq_data *cfqd = cic->key;
1606         struct cfq_queue *cfqq;
1607         unsigned long flags;
1608
1609         if (unlikely(!cfqd))
1610                 return;
1611
1612         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1613
1614         cfqq = cic->cfqq[BLK_RW_ASYNC];
1615         if (cfqq) {
1616                 struct cfq_queue *new_cfqq;
1617                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1618                                                 GFP_ATOMIC);
1619                 if (new_cfqq) {
1620                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1621                         cfq_put_queue(cfqq);
1622                 }
1623         }
1624
1625         cfqq = cic->cfqq[BLK_RW_SYNC];
1626         if (cfqq)
1627                 cfq_mark_cfqq_prio_changed(cfqq);
1628
1629         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1630 }
1631
1632 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1633 {
1634         call_for_each_cic(ioc, changed_ioprio);
1635         ioc->ioprio_changed = 0;
1636 }
1637
1638 static struct cfq_queue *
1639 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1640                      struct io_context *ioc, gfp_t gfp_mask)
1641 {
1642         struct cfq_queue *cfqq, *new_cfqq = NULL;
1643         struct cfq_io_context *cic;
1644
1645 retry:
1646         cic = cfq_cic_lookup(cfqd, ioc);
1647         /* cic always exists here */
1648         cfqq = cic_to_cfqq(cic, is_sync);
1649
1650         if (!cfqq) {
1651                 if (new_cfqq) {
1652                         cfqq = new_cfqq;
1653                         new_cfqq = NULL;
1654                 } else if (gfp_mask & __GFP_WAIT) {
1655                         /*
1656                          * Inform the allocator of the fact that we will
1657                          * just repeat this allocation if it fails, to allow
1658                          * the allocator to do whatever it needs to attempt to
1659                          * free memory.
1660                          */
1661                         spin_unlock_irq(cfqd->queue->queue_lock);
1662                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1663                                         gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1664                                         cfqd->queue->node);
1665                         spin_lock_irq(cfqd->queue->queue_lock);
1666                         goto retry;
1667                 } else {
1668                         cfqq = kmem_cache_alloc_node(cfq_pool,
1669                                         gfp_mask | __GFP_ZERO,
1670                                         cfqd->queue->node);
1671                         if (!cfqq)
1672                                 goto out;
1673                 }
1674
1675                 RB_CLEAR_NODE(&cfqq->rb_node);
1676                 RB_CLEAR_NODE(&cfqq->p_node);
1677                 INIT_LIST_HEAD(&cfqq->fifo);
1678
1679                 atomic_set(&cfqq->ref, 0);
1680                 cfqq->cfqd = cfqd;
1681
1682                 cfq_mark_cfqq_prio_changed(cfqq);
1683
1684                 cfq_init_prio_data(cfqq, ioc);
1685
1686                 if (is_sync) {
1687                         if (!cfq_class_idle(cfqq))
1688                                 cfq_mark_cfqq_idle_window(cfqq);
1689                         cfq_mark_cfqq_sync(cfqq);
1690                 }
1691                 cfqq->pid = current->pid;
1692                 cfq_log_cfqq(cfqd, cfqq, "alloced");
1693         }
1694
1695         if (new_cfqq)
1696                 kmem_cache_free(cfq_pool, new_cfqq);
1697
1698 out:
1699         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1700         return cfqq;
1701 }
1702
1703 static struct cfq_queue **
1704 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1705 {
1706         switch (ioprio_class) {
1707         case IOPRIO_CLASS_RT:
1708                 return &cfqd->async_cfqq[0][ioprio];
1709         case IOPRIO_CLASS_BE:
1710                 return &cfqd->async_cfqq[1][ioprio];
1711         case IOPRIO_CLASS_IDLE:
1712                 return &cfqd->async_idle_cfqq;
1713         default:
1714                 BUG();
1715         }
1716 }
1717
1718 static struct cfq_queue *
1719 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1720               gfp_t gfp_mask)
1721 {
1722         const int ioprio = task_ioprio(ioc);
1723         const int ioprio_class = task_ioprio_class(ioc);
1724         struct cfq_queue **async_cfqq = NULL;
1725         struct cfq_queue *cfqq = NULL;
1726
1727         if (!is_sync) {
1728                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1729                 cfqq = *async_cfqq;
1730         }
1731
1732         if (!cfqq) {
1733                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1734                 if (!cfqq)
1735                         return NULL;
1736         }
1737
1738         /*
1739          * pin the queue now that it's allocated, scheduler exit will prune it
1740          */
1741         if (!is_sync && !(*async_cfqq)) {
1742                 atomic_inc(&cfqq->ref);
1743                 *async_cfqq = cfqq;
1744         }
1745
1746         atomic_inc(&cfqq->ref);
1747         return cfqq;
1748 }
1749
1750 /*
1751  * We drop cfq io contexts lazily, so we may find a dead one.
1752  */
1753 static void
1754 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1755                   struct cfq_io_context *cic)
1756 {
1757         unsigned long flags;
1758
1759         WARN_ON(!list_empty(&cic->queue_list));
1760
1761         spin_lock_irqsave(&ioc->lock, flags);
1762
1763         BUG_ON(ioc->ioc_data == cic);
1764
1765         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1766         hlist_del_rcu(&cic->cic_list);
1767         spin_unlock_irqrestore(&ioc->lock, flags);
1768
1769         cfq_cic_free(cic);
1770 }
1771
1772 static struct cfq_io_context *
1773 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1774 {
1775         struct cfq_io_context *cic;
1776         unsigned long flags;
1777         void *k;
1778
1779         if (unlikely(!ioc))
1780                 return NULL;
1781
1782         rcu_read_lock();
1783
1784         /*
1785          * we maintain a last-hit cache, to avoid browsing over the tree
1786          */
1787         cic = rcu_dereference(ioc->ioc_data);
1788         if (cic && cic->key == cfqd) {
1789                 rcu_read_unlock();
1790                 return cic;
1791         }
1792
1793         do {
1794                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1795                 rcu_read_unlock();
1796                 if (!cic)
1797                         break;
1798                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1799                 k = cic->key;
1800                 if (unlikely(!k)) {
1801                         cfq_drop_dead_cic(cfqd, ioc, cic);
1802                         rcu_read_lock();
1803                         continue;
1804                 }
1805
1806                 spin_lock_irqsave(&ioc->lock, flags);
1807                 rcu_assign_pointer(ioc->ioc_data, cic);
1808                 spin_unlock_irqrestore(&ioc->lock, flags);
1809                 break;
1810         } while (1);
1811
1812         return cic;
1813 }
1814
1815 /*
1816  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1817  * the process specific cfq io context when entered from the block layer.
1818  * Also adds the cic to a per-cfqd list, used when this queue is removed.
1819  */
1820 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1821                         struct cfq_io_context *cic, gfp_t gfp_mask)
1822 {
1823         unsigned long flags;
1824         int ret;
1825
1826         ret = radix_tree_preload(gfp_mask);
1827         if (!ret) {
1828                 cic->ioc = ioc;
1829                 cic->key = cfqd;
1830
1831                 spin_lock_irqsave(&ioc->lock, flags);
1832                 ret = radix_tree_insert(&ioc->radix_root,
1833                                                 (unsigned long) cfqd, cic);
1834                 if (!ret)
1835                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1836                 spin_unlock_irqrestore(&ioc->lock, flags);
1837
1838                 radix_tree_preload_end();
1839
1840                 if (!ret) {
1841                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1842                         list_add(&cic->queue_list, &cfqd->cic_list);
1843                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1844                 }
1845         }
1846
1847         if (ret)
1848                 printk(KERN_ERR "cfq: cic link failed!\n");
1849
1850         return ret;
1851 }
1852
1853 /*
1854  * Setup general io context and cfq io context. There can be several cfq
1855  * io contexts per general io context, if this process is doing io to more
1856  * than one device managed by cfq.
1857  */
1858 static struct cfq_io_context *
1859 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1860 {
1861         struct io_context *ioc = NULL;
1862         struct cfq_io_context *cic;
1863
1864         might_sleep_if(gfp_mask & __GFP_WAIT);
1865
1866         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1867         if (!ioc)
1868                 return NULL;
1869
1870         cic = cfq_cic_lookup(cfqd, ioc);
1871         if (cic)
1872                 goto out;
1873
1874         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1875         if (cic == NULL)
1876                 goto err;
1877
1878         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1879                 goto err_free;
1880
1881 out:
1882         smp_read_barrier_depends();
1883         if (unlikely(ioc->ioprio_changed))
1884                 cfq_ioc_set_ioprio(ioc);
1885
1886         return cic;
1887 err_free:
1888         cfq_cic_free(cic);
1889 err:
1890         put_io_context(ioc);
1891         return NULL;
1892 }
1893
1894 static void
1895 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1896 {
1897         unsigned long elapsed = jiffies - cic->last_end_request;
1898         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1899
1900         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1901         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1902         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1903 }
1904
1905 static void
1906 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1907                        struct request *rq)
1908 {
1909         sector_t sdist;
1910         u64 total;
1911
1912         if (!cic->last_request_pos)
1913                 sdist = 0;
1914         else if (cic->last_request_pos < rq->sector)
1915                 sdist = rq->sector - cic->last_request_pos;
1916         else
1917                 sdist = cic->last_request_pos - rq->sector;
1918
1919         /*
1920          * Don't allow the seek distance to get too large from the
1921          * odd fragment, pagein, etc
1922          */
1923         if (cic->seek_samples <= 60) /* second&third seek */
1924                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1925         else
1926                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1927
1928         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1929         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1930         total = cic->seek_total + (cic->seek_samples/2);
1931         do_div(total, cic->seek_samples);
1932         cic->seek_mean = (sector_t)total;
1933 }
1934
1935 /*
1936  * Disable idle window if the process thinks too long or seeks so much that
1937  * it doesn't matter
1938  */
1939 static void
1940 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1941                        struct cfq_io_context *cic)
1942 {
1943         int old_idle, enable_idle;
1944
1945         /*
1946          * Don't idle for async or idle io prio class
1947          */
1948         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1949                 return;
1950
1951         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1952
1953         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1954             (cfqd->hw_tag && CIC_SEEKY(cic)))
1955                 enable_idle = 0;
1956         else if (sample_valid(cic->ttime_samples)) {
1957                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1958                         enable_idle = 0;
1959                 else
1960                         enable_idle = 1;
1961         }
1962
1963         if (old_idle != enable_idle) {
1964                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1965                 if (enable_idle)
1966                         cfq_mark_cfqq_idle_window(cfqq);
1967                 else
1968                         cfq_clear_cfqq_idle_window(cfqq);
1969         }
1970 }
1971
1972 /*
1973  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1974  * no or if we aren't sure, a 1 will cause a preempt.
1975  */
1976 static int
1977 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1978                    struct request *rq)
1979 {
1980         struct cfq_queue *cfqq;
1981
1982         cfqq = cfqd->active_queue;
1983         if (!cfqq)
1984                 return 0;
1985
1986         if (cfq_slice_used(cfqq))
1987                 return 1;
1988
1989         if (cfq_class_idle(new_cfqq))
1990                 return 0;
1991
1992         if (cfq_class_idle(cfqq))
1993                 return 1;
1994
1995         /*
1996          * if the new request is sync, but the currently running queue is
1997          * not, let the sync request have priority.
1998          */
1999         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2000                 return 1;
2001
2002         /*
2003          * So both queues are sync. Let the new request get disk time if
2004          * it's a metadata request and the current queue is doing regular IO.
2005          */
2006         if (rq_is_meta(rq) && !cfqq->meta_pending)
2007                 return 1;
2008
2009         /*
2010          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2011          */
2012         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2013                 return 1;
2014
2015         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2016                 return 0;
2017
2018         /*
2019          * if this request is as-good as one we would expect from the
2020          * current cfqq, let it preempt
2021          */
2022         if (cfq_rq_close(cfqd, rq))
2023                 return 1;
2024
2025         return 0;
2026 }
2027
2028 /*
2029  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2030  * let it have half of its nominal slice.
2031  */
2032 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2033 {
2034         cfq_log_cfqq(cfqd, cfqq, "preempt");
2035         cfq_slice_expired(cfqd, 1);
2036
2037         /*
2038          * Put the new queue at the front of the of the current list,
2039          * so we know that it will be selected next.
2040          */
2041         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2042
2043         cfq_service_tree_add(cfqd, cfqq, 1);
2044
2045         cfqq->slice_end = 0;
2046         cfq_mark_cfqq_slice_new(cfqq);
2047 }
2048
2049 /*
2050  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2051  * something we should do about it
2052  */
2053 static void
2054 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2055                 struct request *rq)
2056 {
2057         struct cfq_io_context *cic = RQ_CIC(rq);
2058
2059         cfqd->rq_queued++;
2060         if (rq_is_meta(rq))
2061                 cfqq->meta_pending++;
2062
2063         cfq_update_io_thinktime(cfqd, cic);
2064         cfq_update_io_seektime(cfqd, cic, rq);
2065         cfq_update_idle_window(cfqd, cfqq, cic);
2066
2067         cic->last_request_pos = rq->sector + rq->nr_sectors;
2068
2069         if (cfqq == cfqd->active_queue) {
2070                 /*
2071                  * Remember that we saw a request from this process, but
2072                  * don't start queuing just yet. Otherwise we risk seeing lots
2073                  * of tiny requests, because we disrupt the normal plugging
2074                  * and merging. If the request is already larger than a single
2075                  * page, let it rip immediately. For that case we assume that
2076                  * merging is already done. Ditto for a busy system that
2077                  * has other work pending, don't risk delaying until the
2078                  * idle timer unplug to continue working.
2079                  */
2080                 if (cfq_cfqq_wait_request(cfqq)) {
2081                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2082                             cfqd->busy_queues > 1) {
2083                                 del_timer(&cfqd->idle_slice_timer);
2084                                 blk_start_queueing(cfqd->queue);
2085                         }
2086                         cfq_mark_cfqq_must_dispatch(cfqq);
2087                 }
2088         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2089                 /*
2090                  * not the active queue - expire current slice if it is
2091                  * idle and has expired it's mean thinktime or this new queue
2092                  * has some old slice time left and is of higher priority or
2093                  * this new queue is RT and the current one is BE
2094                  */
2095                 cfq_preempt_queue(cfqd, cfqq);
2096                 blk_start_queueing(cfqd->queue);
2097         }
2098 }
2099
2100 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2101 {
2102         struct cfq_data *cfqd = q->elevator->elevator_data;
2103         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2104
2105         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2106         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2107
2108         cfq_add_rq_rb(rq);
2109
2110         list_add_tail(&rq->queuelist, &cfqq->fifo);
2111
2112         cfq_rq_enqueued(cfqd, cfqq, rq);
2113 }
2114
2115 /*
2116  * Update hw_tag based on peak queue depth over 50 samples under
2117  * sufficient load.
2118  */
2119 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2120 {
2121         if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
2122                 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
2123
2124         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2125             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
2126                 return;
2127
2128         if (cfqd->hw_tag_samples++ < 50)
2129                 return;
2130
2131         if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2132                 cfqd->hw_tag = 1;
2133         else
2134                 cfqd->hw_tag = 0;
2135
2136         cfqd->hw_tag_samples = 0;
2137         cfqd->rq_in_driver_peak = 0;
2138 }
2139
2140 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2141 {
2142         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2143         struct cfq_data *cfqd = cfqq->cfqd;
2144         const int sync = rq_is_sync(rq);
2145         unsigned long now;
2146
2147         now = jiffies;
2148         cfq_log_cfqq(cfqd, cfqq, "complete");
2149
2150         cfq_update_hw_tag(cfqd);
2151
2152         WARN_ON(!cfqd->rq_in_driver);
2153         WARN_ON(!cfqq->dispatched);
2154         cfqd->rq_in_driver--;
2155         cfqq->dispatched--;
2156
2157         if (cfq_cfqq_sync(cfqq))
2158                 cfqd->sync_flight--;
2159
2160         if (!cfq_class_idle(cfqq))
2161                 cfqd->last_end_request = now;
2162
2163         if (sync)
2164                 RQ_CIC(rq)->last_end_request = now;
2165
2166         /*
2167          * If this is the active queue, check if it needs to be expired,
2168          * or if we want to idle in case it has no pending requests.
2169          */
2170         if (cfqd->active_queue == cfqq) {
2171                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2172
2173                 if (cfq_cfqq_slice_new(cfqq)) {
2174                         cfq_set_prio_slice(cfqd, cfqq);
2175                         cfq_clear_cfqq_slice_new(cfqq);
2176                 }
2177                 /*
2178                  * If there are no requests waiting in this queue, and
2179                  * there are other queues ready to issue requests, AND
2180                  * those other queues are issuing requests within our
2181                  * mean seek distance, give them a chance to run instead
2182                  * of idling.
2183                  */
2184                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2185                         cfq_slice_expired(cfqd, 1);
2186                 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2187                          sync && !rq_noidle(rq))
2188                         cfq_arm_slice_timer(cfqd);
2189         }
2190
2191         if (!cfqd->rq_in_driver)
2192                 cfq_schedule_dispatch(cfqd);
2193 }
2194
2195 /*
2196  * we temporarily boost lower priority queues if they are holding fs exclusive
2197  * resources. they are boosted to normal prio (CLASS_BE/4)
2198  */
2199 static void cfq_prio_boost(struct cfq_queue *cfqq)
2200 {
2201         if (has_fs_excl()) {
2202                 /*
2203                  * boost idle prio on transactions that would lock out other
2204                  * users of the filesystem
2205                  */
2206                 if (cfq_class_idle(cfqq))
2207                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2208                 if (cfqq->ioprio > IOPRIO_NORM)
2209                         cfqq->ioprio = IOPRIO_NORM;
2210         } else {
2211                 /*
2212                  * check if we need to unboost the queue
2213                  */
2214                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2215                         cfqq->ioprio_class = cfqq->org_ioprio_class;
2216                 if (cfqq->ioprio != cfqq->org_ioprio)
2217                         cfqq->ioprio = cfqq->org_ioprio;
2218         }
2219 }
2220
2221 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2222 {
2223         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2224             !cfq_cfqq_must_alloc_slice(cfqq)) {
2225                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2226                 return ELV_MQUEUE_MUST;
2227         }
2228
2229         return ELV_MQUEUE_MAY;
2230 }
2231
2232 static int cfq_may_queue(struct request_queue *q, int rw)
2233 {
2234         struct cfq_data *cfqd = q->elevator->elevator_data;
2235         struct task_struct *tsk = current;
2236         struct cfq_io_context *cic;
2237         struct cfq_queue *cfqq;
2238
2239         /*
2240          * don't force setup of a queue from here, as a call to may_queue
2241          * does not necessarily imply that a request actually will be queued.
2242          * so just lookup a possibly existing queue, or return 'may queue'
2243          * if that fails
2244          */
2245         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2246         if (!cic)
2247                 return ELV_MQUEUE_MAY;
2248
2249         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2250         if (cfqq) {
2251                 cfq_init_prio_data(cfqq, cic->ioc);
2252                 cfq_prio_boost(cfqq);
2253
2254                 return __cfq_may_queue(cfqq);
2255         }
2256
2257         return ELV_MQUEUE_MAY;
2258 }
2259
2260 /*
2261  * queue lock held here
2262  */
2263 static void cfq_put_request(struct request *rq)
2264 {
2265         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2266
2267         if (cfqq) {
2268                 const int rw = rq_data_dir(rq);
2269
2270                 BUG_ON(!cfqq->allocated[rw]);
2271                 cfqq->allocated[rw]--;
2272
2273                 put_io_context(RQ_CIC(rq)->ioc);
2274
2275                 rq->elevator_private = NULL;
2276                 rq->elevator_private2 = NULL;
2277
2278                 cfq_put_queue(cfqq);
2279         }
2280 }
2281
2282 /*
2283  * Allocate cfq data structures associated with this request.
2284  */
2285 static int
2286 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2287 {
2288         struct cfq_data *cfqd = q->elevator->elevator_data;
2289         struct cfq_io_context *cic;
2290         const int rw = rq_data_dir(rq);
2291         const int is_sync = rq_is_sync(rq);
2292         struct cfq_queue *cfqq;
2293         unsigned long flags;
2294
2295         might_sleep_if(gfp_mask & __GFP_WAIT);
2296
2297         cic = cfq_get_io_context(cfqd, gfp_mask);
2298
2299         spin_lock_irqsave(q->queue_lock, flags);
2300
2301         if (!cic)
2302                 goto queue_fail;
2303
2304         cfqq = cic_to_cfqq(cic, is_sync);
2305         if (!cfqq) {
2306                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2307
2308                 if (!cfqq)
2309                         goto queue_fail;
2310
2311                 cic_set_cfqq(cic, cfqq, is_sync);
2312         }
2313
2314         cfqq->allocated[rw]++;
2315         cfq_clear_cfqq_must_alloc(cfqq);
2316         atomic_inc(&cfqq->ref);
2317
2318         spin_unlock_irqrestore(q->queue_lock, flags);
2319
2320         rq->elevator_private = cic;
2321         rq->elevator_private2 = cfqq;
2322         return 0;
2323
2324 queue_fail:
2325         if (cic)
2326                 put_io_context(cic->ioc);
2327
2328         cfq_schedule_dispatch(cfqd);
2329         spin_unlock_irqrestore(q->queue_lock, flags);
2330         cfq_log(cfqd, "set_request fail");
2331         return 1;
2332 }
2333
2334 static void cfq_kick_queue(struct work_struct *work)
2335 {
2336         struct cfq_data *cfqd =
2337                 container_of(work, struct cfq_data, unplug_work);
2338         struct request_queue *q = cfqd->queue;
2339
2340         spin_lock_irq(q->queue_lock);
2341         blk_start_queueing(q);
2342         spin_unlock_irq(q->queue_lock);
2343 }
2344
2345 /*
2346  * Timer running if the active_queue is currently idling inside its time slice
2347  */
2348 static void cfq_idle_slice_timer(unsigned long data)
2349 {
2350         struct cfq_data *cfqd = (struct cfq_data *) data;
2351         struct cfq_queue *cfqq;
2352         unsigned long flags;
2353         int timed_out = 1;
2354
2355         cfq_log(cfqd, "idle timer fired");
2356
2357         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2358
2359         cfqq = cfqd->active_queue;
2360         if (cfqq) {
2361                 timed_out = 0;
2362
2363                 /*
2364                  * We saw a request before the queue expired, let it through
2365                  */
2366                 if (cfq_cfqq_must_dispatch(cfqq))
2367                         goto out_kick;
2368
2369                 /*
2370                  * expired
2371                  */
2372                 if (cfq_slice_used(cfqq))
2373                         goto expire;
2374
2375                 /*
2376                  * only expire and reinvoke request handler, if there are
2377                  * other queues with pending requests
2378                  */
2379                 if (!cfqd->busy_queues)
2380                         goto out_cont;
2381
2382                 /*
2383                  * not expired and it has a request pending, let it dispatch
2384                  */
2385                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2386                         goto out_kick;
2387         }
2388 expire:
2389         cfq_slice_expired(cfqd, timed_out);
2390 out_kick:
2391         cfq_schedule_dispatch(cfqd);
2392 out_cont:
2393         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2394 }
2395
2396 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2397 {
2398         del_timer_sync(&cfqd->idle_slice_timer);
2399         cancel_work_sync(&cfqd->unplug_work);
2400 }
2401
2402 static void cfq_put_async_queues(struct cfq_data *cfqd)
2403 {
2404         int i;
2405
2406         for (i = 0; i < IOPRIO_BE_NR; i++) {
2407                 if (cfqd->async_cfqq[0][i])
2408                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2409                 if (cfqd->async_cfqq[1][i])
2410                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2411         }
2412
2413         if (cfqd->async_idle_cfqq)
2414                 cfq_put_queue(cfqd->async_idle_cfqq);
2415 }
2416
2417 static void cfq_exit_queue(struct elevator_queue *e)
2418 {
2419         struct cfq_data *cfqd = e->elevator_data;
2420         struct request_queue *q = cfqd->queue;
2421
2422         cfq_shutdown_timer_wq(cfqd);
2423
2424         spin_lock_irq(q->queue_lock);
2425
2426         if (cfqd->active_queue)
2427                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2428
2429         while (!list_empty(&cfqd->cic_list)) {
2430                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2431                                                         struct cfq_io_context,
2432                                                         queue_list);
2433
2434                 __cfq_exit_single_io_context(cfqd, cic);
2435         }
2436
2437         cfq_put_async_queues(cfqd);
2438
2439         spin_unlock_irq(q->queue_lock);
2440
2441         cfq_shutdown_timer_wq(cfqd);
2442
2443         kfree(cfqd);
2444 }
2445
2446 static void *cfq_init_queue(struct request_queue *q)
2447 {
2448         struct cfq_data *cfqd;
2449         int i;
2450
2451         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2452         if (!cfqd)
2453                 return NULL;
2454
2455         cfqd->service_tree = CFQ_RB_ROOT;
2456
2457         /*
2458          * Not strictly needed (since RB_ROOT just clears the node and we
2459          * zeroed cfqd on alloc), but better be safe in case someone decides
2460          * to add magic to the rb code
2461          */
2462         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2463                 cfqd->prio_trees[i] = RB_ROOT;
2464
2465         INIT_LIST_HEAD(&cfqd->cic_list);
2466
2467         cfqd->queue = q;
2468
2469         init_timer(&cfqd->idle_slice_timer);
2470         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2471         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2472
2473         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2474
2475         cfqd->last_end_request = jiffies;
2476         cfqd->cfq_quantum = cfq_quantum;
2477         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2478         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2479         cfqd->cfq_back_max = cfq_back_max;
2480         cfqd->cfq_back_penalty = cfq_back_penalty;
2481         cfqd->cfq_slice[0] = cfq_slice_async;
2482         cfqd->cfq_slice[1] = cfq_slice_sync;
2483         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2484         cfqd->cfq_slice_idle = cfq_slice_idle;
2485         cfqd->hw_tag = 1;
2486
2487         return cfqd;
2488 }
2489
2490 static void cfq_slab_kill(void)
2491 {
2492         /*
2493          * Caller already ensured that pending RCU callbacks are completed,
2494          * so we should have no busy allocations at this point.
2495          */
2496         if (cfq_pool)
2497                 kmem_cache_destroy(cfq_pool);
2498         if (cfq_ioc_pool)
2499                 kmem_cache_destroy(cfq_ioc_pool);
2500 }
2501
2502 static int __init cfq_slab_setup(void)
2503 {
2504         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2505         if (!cfq_pool)
2506                 goto fail;
2507
2508         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2509         if (!cfq_ioc_pool)
2510                 goto fail;
2511
2512         return 0;
2513 fail:
2514         cfq_slab_kill();
2515         return -ENOMEM;
2516 }
2517
2518 /*
2519  * sysfs parts below -->
2520  */
2521 static ssize_t
2522 cfq_var_show(unsigned int var, char *page)
2523 {
2524         return sprintf(page, "%d\n", var);
2525 }
2526
2527 static ssize_t
2528 cfq_var_store(unsigned int *var, const char *page, size_t count)
2529 {
2530         char *p = (char *) page;
2531
2532         *var = simple_strtoul(p, &p, 10);
2533         return count;
2534 }
2535
2536 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2537 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
2538 {                                                                       \
2539         struct cfq_data *cfqd = e->elevator_data;                       \
2540         unsigned int __data = __VAR;                                    \
2541         if (__CONV)                                                     \
2542                 __data = jiffies_to_msecs(__data);                      \
2543         return cfq_var_show(__data, (page));                            \
2544 }
2545 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2546 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2547 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2548 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2549 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2550 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2551 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2552 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2553 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2554 #undef SHOW_FUNCTION
2555
2556 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2557 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2558 {                                                                       \
2559         struct cfq_data *cfqd = e->elevator_data;                       \
2560         unsigned int __data;                                            \
2561         int ret = cfq_var_store(&__data, (page), count);                \
2562         if (__data < (MIN))                                             \
2563                 __data = (MIN);                                         \
2564         else if (__data > (MAX))                                        \
2565                 __data = (MAX);                                         \
2566         if (__CONV)                                                     \
2567                 *(__PTR) = msecs_to_jiffies(__data);                    \
2568         else                                                            \
2569                 *(__PTR) = __data;                                      \
2570         return ret;                                                     \
2571 }
2572 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2573 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2574                 UINT_MAX, 1);
2575 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2576                 UINT_MAX, 1);
2577 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2578 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2579                 UINT_MAX, 0);
2580 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2581 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2582 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2583 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2584                 UINT_MAX, 0);
2585 #undef STORE_FUNCTION
2586
2587 #define CFQ_ATTR(name) \
2588         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2589
2590 static struct elv_fs_entry cfq_attrs[] = {
2591         CFQ_ATTR(quantum),
2592         CFQ_ATTR(fifo_expire_sync),
2593         CFQ_ATTR(fifo_expire_async),
2594         CFQ_ATTR(back_seek_max),
2595         CFQ_ATTR(back_seek_penalty),
2596         CFQ_ATTR(slice_sync),
2597         CFQ_ATTR(slice_async),
2598         CFQ_ATTR(slice_async_rq),
2599         CFQ_ATTR(slice_idle),
2600         __ATTR_NULL
2601 };
2602
2603 static struct elevator_type iosched_cfq = {
2604         .ops = {
2605                 .elevator_merge_fn =            cfq_merge,
2606                 .elevator_merged_fn =           cfq_merged_request,
2607                 .elevator_merge_req_fn =        cfq_merged_requests,
2608                 .elevator_allow_merge_fn =      cfq_allow_merge,
2609                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2610                 .elevator_add_req_fn =          cfq_insert_request,
2611                 .elevator_activate_req_fn =     cfq_activate_request,
2612                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2613                 .elevator_queue_empty_fn =      cfq_queue_empty,
2614                 .elevator_completed_req_fn =    cfq_completed_request,
2615                 .elevator_former_req_fn =       elv_rb_former_request,
2616                 .elevator_latter_req_fn =       elv_rb_latter_request,
2617                 .elevator_set_req_fn =          cfq_set_request,
2618                 .elevator_put_req_fn =          cfq_put_request,
2619                 .elevator_may_queue_fn =        cfq_may_queue,
2620                 .elevator_init_fn =             cfq_init_queue,
2621                 .elevator_exit_fn =             cfq_exit_queue,
2622                 .trim =                         cfq_free_io_context,
2623         },
2624         .elevator_attrs =       cfq_attrs,
2625         .elevator_name =        "cfq",
2626         .elevator_owner =       THIS_MODULE,
2627 };
2628
2629 static int __init cfq_init(void)
2630 {
2631         /*
2632          * could be 0 on HZ < 1000 setups
2633          */
2634         if (!cfq_slice_async)
2635                 cfq_slice_async = 1;
2636         if (!cfq_slice_idle)
2637                 cfq_slice_idle = 1;
2638
2639         if (cfq_slab_setup())
2640                 return -ENOMEM;
2641
2642         elv_register(&iosched_cfq);
2643
2644         return 0;
2645 }
2646
2647 static void __exit cfq_exit(void)
2648 {
2649         DECLARE_COMPLETION_ONSTACK(all_gone);
2650         elv_unregister(&iosched_cfq);
2651         ioc_gone = &all_gone;
2652         /* ioc_gone's update must be visible before reading ioc_count */
2653         smp_wmb();
2654
2655         /*
2656          * this also protects us from entering cfq_slab_kill() with
2657          * pending RCU callbacks
2658          */
2659         if (elv_ioc_count_read(ioc_count))
2660                 wait_for_completion(&all_gone);
2661         cfq_slab_kill();
2662 }
2663
2664 module_init(cfq_init);
2665 module_exit(cfq_exit);
2666
2667 MODULE_AUTHOR("Jens Axboe");
2668 MODULE_LICENSE("GPL");
2669 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");