Merge branch 'fixes' of master.kernel.org:/home/rmk/linux-2.6-arm
[pandora-kernel.git] / block / blk-settings.c
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>      /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14
15 #include "blk.h"
16
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19
20 unsigned long blk_max_pfn;
21
22 /**
23  * blk_queue_prep_rq - set a prepare_request function for queue
24  * @q:          queue
25  * @pfn:        prepare_request function
26  *
27  * It's possible for a queue to register a prepare_request callback which
28  * is invoked before the request is handed to the request_fn. The goal of
29  * the function is to prepare a request for I/O, it can be used to build a
30  * cdb from the request data for instance.
31  *
32  */
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35         q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38
39 /**
40  * blk_queue_unprep_rq - set an unprepare_request function for queue
41  * @q:          queue
42  * @ufn:        unprepare_request function
43  *
44  * It's possible for a queue to register an unprepare_request callback
45  * which is invoked before the request is finally completed. The goal
46  * of the function is to deallocate any data that was allocated in the
47  * prepare_request callback.
48  *
49  */
50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51 {
52         q->unprep_rq_fn = ufn;
53 }
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
55
56 /**
57  * blk_queue_merge_bvec - set a merge_bvec function for queue
58  * @q:          queue
59  * @mbfn:       merge_bvec_fn
60  *
61  * Usually queues have static limitations on the max sectors or segments that
62  * we can put in a request. Stacking drivers may have some settings that
63  * are dynamic, and thus we have to query the queue whether it is ok to
64  * add a new bio_vec to a bio at a given offset or not. If the block device
65  * has such limitations, it needs to register a merge_bvec_fn to control
66  * the size of bio's sent to it. Note that a block device *must* allow a
67  * single page to be added to an empty bio. The block device driver may want
68  * to use the bio_split() function to deal with these bio's. By default
69  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70  * honored.
71  */
72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73 {
74         q->merge_bvec_fn = mbfn;
75 }
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
77
78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79 {
80         q->softirq_done_fn = fn;
81 }
82 EXPORT_SYMBOL(blk_queue_softirq_done);
83
84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85 {
86         q->rq_timeout = timeout;
87 }
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89
90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91 {
92         q->rq_timed_out_fn = fn;
93 }
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95
96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97 {
98         q->lld_busy_fn = fn;
99 }
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101
102 /**
103  * blk_set_default_limits - reset limits to default values
104  * @lim:  the queue_limits structure to reset
105  *
106  * Description:
107  *   Returns a queue_limit struct to its default state.  Can be used by
108  *   stacking drivers like DM that stage table swaps and reuse an
109  *   existing device queue.
110  */
111 void blk_set_default_limits(struct queue_limits *lim)
112 {
113         lim->max_segments = BLK_MAX_SEGMENTS;
114         lim->max_integrity_segments = 0;
115         lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
116         lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
117         lim->max_sectors = BLK_DEF_MAX_SECTORS;
118         lim->max_hw_sectors = INT_MAX;
119         lim->max_discard_sectors = 0;
120         lim->discard_granularity = 0;
121         lim->discard_alignment = 0;
122         lim->discard_misaligned = 0;
123         lim->discard_zeroes_data = -1;
124         lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
125         lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
126         lim->alignment_offset = 0;
127         lim->io_opt = 0;
128         lim->misaligned = 0;
129         lim->cluster = 1;
130 }
131 EXPORT_SYMBOL(blk_set_default_limits);
132
133 /**
134  * blk_queue_make_request - define an alternate make_request function for a device
135  * @q:  the request queue for the device to be affected
136  * @mfn: the alternate make_request function
137  *
138  * Description:
139  *    The normal way for &struct bios to be passed to a device
140  *    driver is for them to be collected into requests on a request
141  *    queue, and then to allow the device driver to select requests
142  *    off that queue when it is ready.  This works well for many block
143  *    devices. However some block devices (typically virtual devices
144  *    such as md or lvm) do not benefit from the processing on the
145  *    request queue, and are served best by having the requests passed
146  *    directly to them.  This can be achieved by providing a function
147  *    to blk_queue_make_request().
148  *
149  * Caveat:
150  *    The driver that does this *must* be able to deal appropriately
151  *    with buffers in "highmemory". This can be accomplished by either calling
152  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
153  *    blk_queue_bounce() to create a buffer in normal memory.
154  **/
155 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
156 {
157         /*
158          * set defaults
159          */
160         q->nr_requests = BLKDEV_MAX_RQ;
161
162         q->make_request_fn = mfn;
163         blk_queue_dma_alignment(q, 511);
164         blk_queue_congestion_threshold(q);
165         q->nr_batching = BLK_BATCH_REQ;
166
167         blk_set_default_limits(&q->limits);
168         blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
169
170         /*
171          * by default assume old behaviour and bounce for any highmem page
172          */
173         blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
174 }
175 EXPORT_SYMBOL(blk_queue_make_request);
176
177 /**
178  * blk_queue_bounce_limit - set bounce buffer limit for queue
179  * @q: the request queue for the device
180  * @dma_mask: the maximum address the device can handle
181  *
182  * Description:
183  *    Different hardware can have different requirements as to what pages
184  *    it can do I/O directly to. A low level driver can call
185  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
186  *    buffers for doing I/O to pages residing above @dma_mask.
187  **/
188 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
189 {
190         unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
191         int dma = 0;
192
193         q->bounce_gfp = GFP_NOIO;
194 #if BITS_PER_LONG == 64
195         /*
196          * Assume anything <= 4GB can be handled by IOMMU.  Actually
197          * some IOMMUs can handle everything, but I don't know of a
198          * way to test this here.
199          */
200         if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
201                 dma = 1;
202         q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
203 #else
204         if (b_pfn < blk_max_low_pfn)
205                 dma = 1;
206         q->limits.bounce_pfn = b_pfn;
207 #endif
208         if (dma) {
209                 init_emergency_isa_pool();
210                 q->bounce_gfp = GFP_NOIO | GFP_DMA;
211                 q->limits.bounce_pfn = b_pfn;
212         }
213 }
214 EXPORT_SYMBOL(blk_queue_bounce_limit);
215
216 /**
217  * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
218  * @limits: the queue limits
219  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
220  *
221  * Description:
222  *    Enables a low level driver to set a hard upper limit,
223  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
224  *    the device driver based upon the combined capabilities of I/O
225  *    controller and storage device.
226  *
227  *    max_sectors is a soft limit imposed by the block layer for
228  *    filesystem type requests.  This value can be overridden on a
229  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
230  *    The soft limit can not exceed max_hw_sectors.
231  **/
232 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
233 {
234         if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
235                 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
236                 printk(KERN_INFO "%s: set to minimum %d\n",
237                        __func__, max_hw_sectors);
238         }
239
240         limits->max_hw_sectors = max_hw_sectors;
241         limits->max_sectors = min_t(unsigned int, max_hw_sectors,
242                                     BLK_DEF_MAX_SECTORS);
243 }
244 EXPORT_SYMBOL(blk_limits_max_hw_sectors);
245
246 /**
247  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
248  * @q:  the request queue for the device
249  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
250  *
251  * Description:
252  *    See description for blk_limits_max_hw_sectors().
253  **/
254 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
255 {
256         blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
257 }
258 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
259
260 /**
261  * blk_queue_max_discard_sectors - set max sectors for a single discard
262  * @q:  the request queue for the device
263  * @max_discard_sectors: maximum number of sectors to discard
264  **/
265 void blk_queue_max_discard_sectors(struct request_queue *q,
266                 unsigned int max_discard_sectors)
267 {
268         q->limits.max_discard_sectors = max_discard_sectors;
269 }
270 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
271
272 /**
273  * blk_queue_max_segments - set max hw segments for a request for this queue
274  * @q:  the request queue for the device
275  * @max_segments:  max number of segments
276  *
277  * Description:
278  *    Enables a low level driver to set an upper limit on the number of
279  *    hw data segments in a request.
280  **/
281 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
282 {
283         if (!max_segments) {
284                 max_segments = 1;
285                 printk(KERN_INFO "%s: set to minimum %d\n",
286                        __func__, max_segments);
287         }
288
289         q->limits.max_segments = max_segments;
290 }
291 EXPORT_SYMBOL(blk_queue_max_segments);
292
293 /**
294  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
295  * @q:  the request queue for the device
296  * @max_size:  max size of segment in bytes
297  *
298  * Description:
299  *    Enables a low level driver to set an upper limit on the size of a
300  *    coalesced segment
301  **/
302 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
303 {
304         if (max_size < PAGE_CACHE_SIZE) {
305                 max_size = PAGE_CACHE_SIZE;
306                 printk(KERN_INFO "%s: set to minimum %d\n",
307                        __func__, max_size);
308         }
309
310         q->limits.max_segment_size = max_size;
311 }
312 EXPORT_SYMBOL(blk_queue_max_segment_size);
313
314 /**
315  * blk_queue_logical_block_size - set logical block size for the queue
316  * @q:  the request queue for the device
317  * @size:  the logical block size, in bytes
318  *
319  * Description:
320  *   This should be set to the lowest possible block size that the
321  *   storage device can address.  The default of 512 covers most
322  *   hardware.
323  **/
324 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
325 {
326         q->limits.logical_block_size = size;
327
328         if (q->limits.physical_block_size < size)
329                 q->limits.physical_block_size = size;
330
331         if (q->limits.io_min < q->limits.physical_block_size)
332                 q->limits.io_min = q->limits.physical_block_size;
333 }
334 EXPORT_SYMBOL(blk_queue_logical_block_size);
335
336 /**
337  * blk_queue_physical_block_size - set physical block size for the queue
338  * @q:  the request queue for the device
339  * @size:  the physical block size, in bytes
340  *
341  * Description:
342  *   This should be set to the lowest possible sector size that the
343  *   hardware can operate on without reverting to read-modify-write
344  *   operations.
345  */
346 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
347 {
348         q->limits.physical_block_size = size;
349
350         if (q->limits.physical_block_size < q->limits.logical_block_size)
351                 q->limits.physical_block_size = q->limits.logical_block_size;
352
353         if (q->limits.io_min < q->limits.physical_block_size)
354                 q->limits.io_min = q->limits.physical_block_size;
355 }
356 EXPORT_SYMBOL(blk_queue_physical_block_size);
357
358 /**
359  * blk_queue_alignment_offset - set physical block alignment offset
360  * @q:  the request queue for the device
361  * @offset: alignment offset in bytes
362  *
363  * Description:
364  *   Some devices are naturally misaligned to compensate for things like
365  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
366  *   should call this function for devices whose first sector is not
367  *   naturally aligned.
368  */
369 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
370 {
371         q->limits.alignment_offset =
372                 offset & (q->limits.physical_block_size - 1);
373         q->limits.misaligned = 0;
374 }
375 EXPORT_SYMBOL(blk_queue_alignment_offset);
376
377 /**
378  * blk_limits_io_min - set minimum request size for a device
379  * @limits: the queue limits
380  * @min:  smallest I/O size in bytes
381  *
382  * Description:
383  *   Some devices have an internal block size bigger than the reported
384  *   hardware sector size.  This function can be used to signal the
385  *   smallest I/O the device can perform without incurring a performance
386  *   penalty.
387  */
388 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
389 {
390         limits->io_min = min;
391
392         if (limits->io_min < limits->logical_block_size)
393                 limits->io_min = limits->logical_block_size;
394
395         if (limits->io_min < limits->physical_block_size)
396                 limits->io_min = limits->physical_block_size;
397 }
398 EXPORT_SYMBOL(blk_limits_io_min);
399
400 /**
401  * blk_queue_io_min - set minimum request size for the queue
402  * @q:  the request queue for the device
403  * @min:  smallest I/O size in bytes
404  *
405  * Description:
406  *   Storage devices may report a granularity or preferred minimum I/O
407  *   size which is the smallest request the device can perform without
408  *   incurring a performance penalty.  For disk drives this is often the
409  *   physical block size.  For RAID arrays it is often the stripe chunk
410  *   size.  A properly aligned multiple of minimum_io_size is the
411  *   preferred request size for workloads where a high number of I/O
412  *   operations is desired.
413  */
414 void blk_queue_io_min(struct request_queue *q, unsigned int min)
415 {
416         blk_limits_io_min(&q->limits, min);
417 }
418 EXPORT_SYMBOL(blk_queue_io_min);
419
420 /**
421  * blk_limits_io_opt - set optimal request size for a device
422  * @limits: the queue limits
423  * @opt:  smallest I/O size in bytes
424  *
425  * Description:
426  *   Storage devices may report an optimal I/O size, which is the
427  *   device's preferred unit for sustained I/O.  This is rarely reported
428  *   for disk drives.  For RAID arrays it is usually the stripe width or
429  *   the internal track size.  A properly aligned multiple of
430  *   optimal_io_size is the preferred request size for workloads where
431  *   sustained throughput is desired.
432  */
433 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
434 {
435         limits->io_opt = opt;
436 }
437 EXPORT_SYMBOL(blk_limits_io_opt);
438
439 /**
440  * blk_queue_io_opt - set optimal request size for the queue
441  * @q:  the request queue for the device
442  * @opt:  optimal request size in bytes
443  *
444  * Description:
445  *   Storage devices may report an optimal I/O size, which is the
446  *   device's preferred unit for sustained I/O.  This is rarely reported
447  *   for disk drives.  For RAID arrays it is usually the stripe width or
448  *   the internal track size.  A properly aligned multiple of
449  *   optimal_io_size is the preferred request size for workloads where
450  *   sustained throughput is desired.
451  */
452 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
453 {
454         blk_limits_io_opt(&q->limits, opt);
455 }
456 EXPORT_SYMBOL(blk_queue_io_opt);
457
458 /**
459  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
460  * @t:  the stacking driver (top)
461  * @b:  the underlying device (bottom)
462  **/
463 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
464 {
465         blk_stack_limits(&t->limits, &b->limits, 0);
466 }
467 EXPORT_SYMBOL(blk_queue_stack_limits);
468
469 /**
470  * blk_stack_limits - adjust queue_limits for stacked devices
471  * @t:  the stacking driver limits (top device)
472  * @b:  the underlying queue limits (bottom, component device)
473  * @start:  first data sector within component device
474  *
475  * Description:
476  *    This function is used by stacking drivers like MD and DM to ensure
477  *    that all component devices have compatible block sizes and
478  *    alignments.  The stacking driver must provide a queue_limits
479  *    struct (top) and then iteratively call the stacking function for
480  *    all component (bottom) devices.  The stacking function will
481  *    attempt to combine the values and ensure proper alignment.
482  *
483  *    Returns 0 if the top and bottom queue_limits are compatible.  The
484  *    top device's block sizes and alignment offsets may be adjusted to
485  *    ensure alignment with the bottom device. If no compatible sizes
486  *    and alignments exist, -1 is returned and the resulting top
487  *    queue_limits will have the misaligned flag set to indicate that
488  *    the alignment_offset is undefined.
489  */
490 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
491                      sector_t start)
492 {
493         unsigned int top, bottom, alignment, ret = 0;
494
495         t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
496         t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
497         t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
498
499         t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
500                                             b->seg_boundary_mask);
501
502         t->max_segments = min_not_zero(t->max_segments, b->max_segments);
503         t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
504                                                  b->max_integrity_segments);
505
506         t->max_segment_size = min_not_zero(t->max_segment_size,
507                                            b->max_segment_size);
508
509         t->misaligned |= b->misaligned;
510
511         alignment = queue_limit_alignment_offset(b, start);
512
513         /* Bottom device has different alignment.  Check that it is
514          * compatible with the current top alignment.
515          */
516         if (t->alignment_offset != alignment) {
517
518                 top = max(t->physical_block_size, t->io_min)
519                         + t->alignment_offset;
520                 bottom = max(b->physical_block_size, b->io_min) + alignment;
521
522                 /* Verify that top and bottom intervals line up */
523                 if (max(top, bottom) & (min(top, bottom) - 1)) {
524                         t->misaligned = 1;
525                         ret = -1;
526                 }
527         }
528
529         t->logical_block_size = max(t->logical_block_size,
530                                     b->logical_block_size);
531
532         t->physical_block_size = max(t->physical_block_size,
533                                      b->physical_block_size);
534
535         t->io_min = max(t->io_min, b->io_min);
536         t->io_opt = lcm(t->io_opt, b->io_opt);
537
538         t->cluster &= b->cluster;
539         t->discard_zeroes_data &= b->discard_zeroes_data;
540
541         /* Physical block size a multiple of the logical block size? */
542         if (t->physical_block_size & (t->logical_block_size - 1)) {
543                 t->physical_block_size = t->logical_block_size;
544                 t->misaligned = 1;
545                 ret = -1;
546         }
547
548         /* Minimum I/O a multiple of the physical block size? */
549         if (t->io_min & (t->physical_block_size - 1)) {
550                 t->io_min = t->physical_block_size;
551                 t->misaligned = 1;
552                 ret = -1;
553         }
554
555         /* Optimal I/O a multiple of the physical block size? */
556         if (t->io_opt & (t->physical_block_size - 1)) {
557                 t->io_opt = 0;
558                 t->misaligned = 1;
559                 ret = -1;
560         }
561
562         /* Find lowest common alignment_offset */
563         t->alignment_offset = lcm(t->alignment_offset, alignment)
564                 & (max(t->physical_block_size, t->io_min) - 1);
565
566         /* Verify that new alignment_offset is on a logical block boundary */
567         if (t->alignment_offset & (t->logical_block_size - 1)) {
568                 t->misaligned = 1;
569                 ret = -1;
570         }
571
572         /* Discard alignment and granularity */
573         if (b->discard_granularity) {
574                 alignment = queue_limit_discard_alignment(b, start);
575
576                 if (t->discard_granularity != 0 &&
577                     t->discard_alignment != alignment) {
578                         top = t->discard_granularity + t->discard_alignment;
579                         bottom = b->discard_granularity + alignment;
580
581                         /* Verify that top and bottom intervals line up */
582                         if (max(top, bottom) & (min(top, bottom) - 1))
583                                 t->discard_misaligned = 1;
584                 }
585
586                 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
587                                                       b->max_discard_sectors);
588                 t->discard_granularity = max(t->discard_granularity,
589                                              b->discard_granularity);
590                 t->discard_alignment = lcm(t->discard_alignment, alignment) &
591                         (t->discard_granularity - 1);
592         }
593
594         return ret;
595 }
596 EXPORT_SYMBOL(blk_stack_limits);
597
598 /**
599  * bdev_stack_limits - adjust queue limits for stacked drivers
600  * @t:  the stacking driver limits (top device)
601  * @bdev:  the component block_device (bottom)
602  * @start:  first data sector within component device
603  *
604  * Description:
605  *    Merges queue limits for a top device and a block_device.  Returns
606  *    0 if alignment didn't change.  Returns -1 if adding the bottom
607  *    device caused misalignment.
608  */
609 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
610                       sector_t start)
611 {
612         struct request_queue *bq = bdev_get_queue(bdev);
613
614         start += get_start_sect(bdev);
615
616         return blk_stack_limits(t, &bq->limits, start);
617 }
618 EXPORT_SYMBOL(bdev_stack_limits);
619
620 /**
621  * disk_stack_limits - adjust queue limits for stacked drivers
622  * @disk:  MD/DM gendisk (top)
623  * @bdev:  the underlying block device (bottom)
624  * @offset:  offset to beginning of data within component device
625  *
626  * Description:
627  *    Merges the limits for a top level gendisk and a bottom level
628  *    block_device.
629  */
630 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
631                        sector_t offset)
632 {
633         struct request_queue *t = disk->queue;
634
635         if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
636                 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
637
638                 disk_name(disk, 0, top);
639                 bdevname(bdev, bottom);
640
641                 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
642                        top, bottom);
643         }
644 }
645 EXPORT_SYMBOL(disk_stack_limits);
646
647 /**
648  * blk_queue_dma_pad - set pad mask
649  * @q:     the request queue for the device
650  * @mask:  pad mask
651  *
652  * Set dma pad mask.
653  *
654  * Appending pad buffer to a request modifies the last entry of a
655  * scatter list such that it includes the pad buffer.
656  **/
657 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
658 {
659         q->dma_pad_mask = mask;
660 }
661 EXPORT_SYMBOL(blk_queue_dma_pad);
662
663 /**
664  * blk_queue_update_dma_pad - update pad mask
665  * @q:     the request queue for the device
666  * @mask:  pad mask
667  *
668  * Update dma pad mask.
669  *
670  * Appending pad buffer to a request modifies the last entry of a
671  * scatter list such that it includes the pad buffer.
672  **/
673 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
674 {
675         if (mask > q->dma_pad_mask)
676                 q->dma_pad_mask = mask;
677 }
678 EXPORT_SYMBOL(blk_queue_update_dma_pad);
679
680 /**
681  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
682  * @q:  the request queue for the device
683  * @dma_drain_needed: fn which returns non-zero if drain is necessary
684  * @buf:        physically contiguous buffer
685  * @size:       size of the buffer in bytes
686  *
687  * Some devices have excess DMA problems and can't simply discard (or
688  * zero fill) the unwanted piece of the transfer.  They have to have a
689  * real area of memory to transfer it into.  The use case for this is
690  * ATAPI devices in DMA mode.  If the packet command causes a transfer
691  * bigger than the transfer size some HBAs will lock up if there
692  * aren't DMA elements to contain the excess transfer.  What this API
693  * does is adjust the queue so that the buf is always appended
694  * silently to the scatterlist.
695  *
696  * Note: This routine adjusts max_hw_segments to make room for appending
697  * the drain buffer.  If you call blk_queue_max_segments() after calling
698  * this routine, you must set the limit to one fewer than your device
699  * can support otherwise there won't be room for the drain buffer.
700  */
701 int blk_queue_dma_drain(struct request_queue *q,
702                                dma_drain_needed_fn *dma_drain_needed,
703                                void *buf, unsigned int size)
704 {
705         if (queue_max_segments(q) < 2)
706                 return -EINVAL;
707         /* make room for appending the drain */
708         blk_queue_max_segments(q, queue_max_segments(q) - 1);
709         q->dma_drain_needed = dma_drain_needed;
710         q->dma_drain_buffer = buf;
711         q->dma_drain_size = size;
712
713         return 0;
714 }
715 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
716
717 /**
718  * blk_queue_segment_boundary - set boundary rules for segment merging
719  * @q:  the request queue for the device
720  * @mask:  the memory boundary mask
721  **/
722 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
723 {
724         if (mask < PAGE_CACHE_SIZE - 1) {
725                 mask = PAGE_CACHE_SIZE - 1;
726                 printk(KERN_INFO "%s: set to minimum %lx\n",
727                        __func__, mask);
728         }
729
730         q->limits.seg_boundary_mask = mask;
731 }
732 EXPORT_SYMBOL(blk_queue_segment_boundary);
733
734 /**
735  * blk_queue_dma_alignment - set dma length and memory alignment
736  * @q:     the request queue for the device
737  * @mask:  alignment mask
738  *
739  * description:
740  *    set required memory and length alignment for direct dma transactions.
741  *    this is used when building direct io requests for the queue.
742  *
743  **/
744 void blk_queue_dma_alignment(struct request_queue *q, int mask)
745 {
746         q->dma_alignment = mask;
747 }
748 EXPORT_SYMBOL(blk_queue_dma_alignment);
749
750 /**
751  * blk_queue_update_dma_alignment - update dma length and memory alignment
752  * @q:     the request queue for the device
753  * @mask:  alignment mask
754  *
755  * description:
756  *    update required memory and length alignment for direct dma transactions.
757  *    If the requested alignment is larger than the current alignment, then
758  *    the current queue alignment is updated to the new value, otherwise it
759  *    is left alone.  The design of this is to allow multiple objects
760  *    (driver, device, transport etc) to set their respective
761  *    alignments without having them interfere.
762  *
763  **/
764 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
765 {
766         BUG_ON(mask > PAGE_SIZE);
767
768         if (mask > q->dma_alignment)
769                 q->dma_alignment = mask;
770 }
771 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
772
773 /**
774  * blk_queue_flush - configure queue's cache flush capability
775  * @q:          the request queue for the device
776  * @flush:      0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
777  *
778  * Tell block layer cache flush capability of @q.  If it supports
779  * flushing, REQ_FLUSH should be set.  If it supports bypassing
780  * write cache for individual writes, REQ_FUA should be set.
781  */
782 void blk_queue_flush(struct request_queue *q, unsigned int flush)
783 {
784         WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
785
786         if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
787                 flush &= ~REQ_FUA;
788
789         q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
790 }
791 EXPORT_SYMBOL_GPL(blk_queue_flush);
792
793 /**
794  * blk_queue_unplugged - register a callback for an unplug event
795  * @q:          the request queue for the device
796  * @fn:         the function to call
797  *
798  * Some stacked drivers may need to know when IO is dispatched on an
799  * unplug event. By registrering a callback here, they will be notified
800  * when someone flushes their on-stack queue plug. The function will be
801  * called with the queue lock held.
802  */
803 void blk_queue_unplugged(struct request_queue *q, unplugged_fn *fn)
804 {
805         q->unplugged_fn = fn;
806 }
807 EXPORT_SYMBOL(blk_queue_unplugged);
808
809 static int __init blk_settings_init(void)
810 {
811         blk_max_low_pfn = max_low_pfn - 1;
812         blk_max_pfn = max_pfn - 1;
813         return 0;
814 }
815 subsys_initcall(blk_settings_init);