Merge branch 'fix/asoc' into for-linus
[pandora-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/pci.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/fixmap.h>
53 #include <asm/processor.h>
54 #include <asm/proto.h>
55 #include <asm/msr-index.h>
56 #include <asm/traps.h>
57 #include <asm/setup.h>
58 #include <asm/desc.h>
59 #include <asm/pgalloc.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/reboot.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65
66 #include "xen-ops.h"
67 #include "mmu.h"
68 #include "multicalls.h"
69
70 EXPORT_SYMBOL_GPL(hypercall_page);
71
72 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
73 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
74
75 enum xen_domain_type xen_domain_type = XEN_NATIVE;
76 EXPORT_SYMBOL_GPL(xen_domain_type);
77
78 struct start_info *xen_start_info;
79 EXPORT_SYMBOL_GPL(xen_start_info);
80
81 struct shared_info xen_dummy_shared_info;
82
83 void *xen_initial_gdt;
84
85 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
86 __read_mostly int xen_have_vector_callback;
87 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
88
89 /*
90  * Point at some empty memory to start with. We map the real shared_info
91  * page as soon as fixmap is up and running.
92  */
93 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
94
95 /*
96  * Flag to determine whether vcpu info placement is available on all
97  * VCPUs.  We assume it is to start with, and then set it to zero on
98  * the first failure.  This is because it can succeed on some VCPUs
99  * and not others, since it can involve hypervisor memory allocation,
100  * or because the guest failed to guarantee all the appropriate
101  * constraints on all VCPUs (ie buffer can't cross a page boundary).
102  *
103  * Note that any particular CPU may be using a placed vcpu structure,
104  * but we can only optimise if the all are.
105  *
106  * 0: not available, 1: available
107  */
108 static int have_vcpu_info_placement = 1;
109
110 static void clamp_max_cpus(void)
111 {
112 #ifdef CONFIG_SMP
113         if (setup_max_cpus > MAX_VIRT_CPUS)
114                 setup_max_cpus = MAX_VIRT_CPUS;
115 #endif
116 }
117
118 static void xen_vcpu_setup(int cpu)
119 {
120         struct vcpu_register_vcpu_info info;
121         int err;
122         struct vcpu_info *vcpup;
123
124         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
125
126         if (cpu < MAX_VIRT_CPUS)
127                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
128
129         if (!have_vcpu_info_placement) {
130                 if (cpu >= MAX_VIRT_CPUS)
131                         clamp_max_cpus();
132                 return;
133         }
134
135         vcpup = &per_cpu(xen_vcpu_info, cpu);
136         info.mfn = arbitrary_virt_to_mfn(vcpup);
137         info.offset = offset_in_page(vcpup);
138
139         /* Check to see if the hypervisor will put the vcpu_info
140            structure where we want it, which allows direct access via
141            a percpu-variable. */
142         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
143
144         if (err) {
145                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
146                 have_vcpu_info_placement = 0;
147                 clamp_max_cpus();
148         } else {
149                 /* This cpu is using the registered vcpu info, even if
150                    later ones fail to. */
151                 per_cpu(xen_vcpu, cpu) = vcpup;
152         }
153 }
154
155 /*
156  * On restore, set the vcpu placement up again.
157  * If it fails, then we're in a bad state, since
158  * we can't back out from using it...
159  */
160 void xen_vcpu_restore(void)
161 {
162         int cpu;
163
164         for_each_online_cpu(cpu) {
165                 bool other_cpu = (cpu != smp_processor_id());
166
167                 if (other_cpu &&
168                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
169                         BUG();
170
171                 xen_setup_runstate_info(cpu);
172
173                 if (have_vcpu_info_placement)
174                         xen_vcpu_setup(cpu);
175
176                 if (other_cpu &&
177                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
178                         BUG();
179         }
180 }
181
182 static void __init xen_banner(void)
183 {
184         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
185         struct xen_extraversion extra;
186         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
187
188         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
189                pv_info.name);
190         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
191                version >> 16, version & 0xffff, extra.extraversion,
192                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
193 }
194
195 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
196 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
197
198 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
199                       unsigned int *cx, unsigned int *dx)
200 {
201         unsigned maskebx = ~0;
202         unsigned maskecx = ~0;
203         unsigned maskedx = ~0;
204
205         /*
206          * Mask out inconvenient features, to try and disable as many
207          * unsupported kernel subsystems as possible.
208          */
209         switch (*ax) {
210         case 1:
211                 maskecx = cpuid_leaf1_ecx_mask;
212                 maskedx = cpuid_leaf1_edx_mask;
213                 break;
214
215         case 0xb:
216                 /* Suppress extended topology stuff */
217                 maskebx = 0;
218                 break;
219         }
220
221         asm(XEN_EMULATE_PREFIX "cpuid"
222                 : "=a" (*ax),
223                   "=b" (*bx),
224                   "=c" (*cx),
225                   "=d" (*dx)
226                 : "0" (*ax), "2" (*cx));
227
228         *bx &= maskebx;
229         *cx &= maskecx;
230         *dx &= maskedx;
231 }
232
233 static __init void xen_init_cpuid_mask(void)
234 {
235         unsigned int ax, bx, cx, dx;
236
237         cpuid_leaf1_edx_mask =
238                 ~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
239                   (1 << X86_FEATURE_MCA)  |  /* disable MCA */
240                   (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
241                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
242
243         if (!xen_initial_domain())
244                 cpuid_leaf1_edx_mask &=
245                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
246                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
247
248         ax = 1;
249         cx = 0;
250         xen_cpuid(&ax, &bx, &cx, &dx);
251
252         /* cpuid claims we support xsave; try enabling it to see what happens */
253         if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
254                 unsigned long cr4;
255
256                 set_in_cr4(X86_CR4_OSXSAVE);
257                 
258                 cr4 = read_cr4();
259
260                 if ((cr4 & X86_CR4_OSXSAVE) == 0)
261                         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
262
263                 clear_in_cr4(X86_CR4_OSXSAVE);
264         }
265 }
266
267 static void xen_set_debugreg(int reg, unsigned long val)
268 {
269         HYPERVISOR_set_debugreg(reg, val);
270 }
271
272 static unsigned long xen_get_debugreg(int reg)
273 {
274         return HYPERVISOR_get_debugreg(reg);
275 }
276
277 static void xen_end_context_switch(struct task_struct *next)
278 {
279         xen_mc_flush();
280         paravirt_end_context_switch(next);
281 }
282
283 static unsigned long xen_store_tr(void)
284 {
285         return 0;
286 }
287
288 /*
289  * Set the page permissions for a particular virtual address.  If the
290  * address is a vmalloc mapping (or other non-linear mapping), then
291  * find the linear mapping of the page and also set its protections to
292  * match.
293  */
294 static void set_aliased_prot(void *v, pgprot_t prot)
295 {
296         int level;
297         pte_t *ptep;
298         pte_t pte;
299         unsigned long pfn;
300         struct page *page;
301
302         ptep = lookup_address((unsigned long)v, &level);
303         BUG_ON(ptep == NULL);
304
305         pfn = pte_pfn(*ptep);
306         page = pfn_to_page(pfn);
307
308         pte = pfn_pte(pfn, prot);
309
310         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
311                 BUG();
312
313         if (!PageHighMem(page)) {
314                 void *av = __va(PFN_PHYS(pfn));
315
316                 if (av != v)
317                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
318                                 BUG();
319         } else
320                 kmap_flush_unused();
321 }
322
323 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
324 {
325         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
326         int i;
327
328         for(i = 0; i < entries; i += entries_per_page)
329                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
330 }
331
332 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
333 {
334         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
335         int i;
336
337         for(i = 0; i < entries; i += entries_per_page)
338                 set_aliased_prot(ldt + i, PAGE_KERNEL);
339 }
340
341 static void xen_set_ldt(const void *addr, unsigned entries)
342 {
343         struct mmuext_op *op;
344         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
345
346         op = mcs.args;
347         op->cmd = MMUEXT_SET_LDT;
348         op->arg1.linear_addr = (unsigned long)addr;
349         op->arg2.nr_ents = entries;
350
351         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
352
353         xen_mc_issue(PARAVIRT_LAZY_CPU);
354 }
355
356 static void xen_load_gdt(const struct desc_ptr *dtr)
357 {
358         unsigned long va = dtr->address;
359         unsigned int size = dtr->size + 1;
360         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
361         unsigned long frames[pages];
362         int f;
363
364         /*
365          * A GDT can be up to 64k in size, which corresponds to 8192
366          * 8-byte entries, or 16 4k pages..
367          */
368
369         BUG_ON(size > 65536);
370         BUG_ON(va & ~PAGE_MASK);
371
372         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
373                 int level;
374                 pte_t *ptep;
375                 unsigned long pfn, mfn;
376                 void *virt;
377
378                 /*
379                  * The GDT is per-cpu and is in the percpu data area.
380                  * That can be virtually mapped, so we need to do a
381                  * page-walk to get the underlying MFN for the
382                  * hypercall.  The page can also be in the kernel's
383                  * linear range, so we need to RO that mapping too.
384                  */
385                 ptep = lookup_address(va, &level);
386                 BUG_ON(ptep == NULL);
387
388                 pfn = pte_pfn(*ptep);
389                 mfn = pfn_to_mfn(pfn);
390                 virt = __va(PFN_PHYS(pfn));
391
392                 frames[f] = mfn;
393
394                 make_lowmem_page_readonly((void *)va);
395                 make_lowmem_page_readonly(virt);
396         }
397
398         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
399                 BUG();
400 }
401
402 /*
403  * load_gdt for early boot, when the gdt is only mapped once
404  */
405 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
406 {
407         unsigned long va = dtr->address;
408         unsigned int size = dtr->size + 1;
409         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
410         unsigned long frames[pages];
411         int f;
412
413         /*
414          * A GDT can be up to 64k in size, which corresponds to 8192
415          * 8-byte entries, or 16 4k pages..
416          */
417
418         BUG_ON(size > 65536);
419         BUG_ON(va & ~PAGE_MASK);
420
421         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
422                 pte_t pte;
423                 unsigned long pfn, mfn;
424
425                 pfn = virt_to_pfn(va);
426                 mfn = pfn_to_mfn(pfn);
427
428                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
429
430                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
431                         BUG();
432
433                 frames[f] = mfn;
434         }
435
436         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
437                 BUG();
438 }
439
440 static void load_TLS_descriptor(struct thread_struct *t,
441                                 unsigned int cpu, unsigned int i)
442 {
443         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
444         xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
445         struct multicall_space mc = __xen_mc_entry(0);
446
447         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
448 }
449
450 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
451 {
452         /*
453          * XXX sleazy hack: If we're being called in a lazy-cpu zone
454          * and lazy gs handling is enabled, it means we're in a
455          * context switch, and %gs has just been saved.  This means we
456          * can zero it out to prevent faults on exit from the
457          * hypervisor if the next process has no %gs.  Either way, it
458          * has been saved, and the new value will get loaded properly.
459          * This will go away as soon as Xen has been modified to not
460          * save/restore %gs for normal hypercalls.
461          *
462          * On x86_64, this hack is not used for %gs, because gs points
463          * to KERNEL_GS_BASE (and uses it for PDA references), so we
464          * must not zero %gs on x86_64
465          *
466          * For x86_64, we need to zero %fs, otherwise we may get an
467          * exception between the new %fs descriptor being loaded and
468          * %fs being effectively cleared at __switch_to().
469          */
470         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
471 #ifdef CONFIG_X86_32
472                 lazy_load_gs(0);
473 #else
474                 loadsegment(fs, 0);
475 #endif
476         }
477
478         xen_mc_batch();
479
480         load_TLS_descriptor(t, cpu, 0);
481         load_TLS_descriptor(t, cpu, 1);
482         load_TLS_descriptor(t, cpu, 2);
483
484         xen_mc_issue(PARAVIRT_LAZY_CPU);
485 }
486
487 #ifdef CONFIG_X86_64
488 static void xen_load_gs_index(unsigned int idx)
489 {
490         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
491                 BUG();
492 }
493 #endif
494
495 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
496                                 const void *ptr)
497 {
498         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
499         u64 entry = *(u64 *)ptr;
500
501         preempt_disable();
502
503         xen_mc_flush();
504         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
505                 BUG();
506
507         preempt_enable();
508 }
509
510 static int cvt_gate_to_trap(int vector, const gate_desc *val,
511                             struct trap_info *info)
512 {
513         unsigned long addr;
514
515         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
516                 return 0;
517
518         info->vector = vector;
519
520         addr = gate_offset(*val);
521 #ifdef CONFIG_X86_64
522         /*
523          * Look for known traps using IST, and substitute them
524          * appropriately.  The debugger ones are the only ones we care
525          * about.  Xen will handle faults like double_fault and
526          * machine_check, so we should never see them.  Warn if
527          * there's an unexpected IST-using fault handler.
528          */
529         if (addr == (unsigned long)debug)
530                 addr = (unsigned long)xen_debug;
531         else if (addr == (unsigned long)int3)
532                 addr = (unsigned long)xen_int3;
533         else if (addr == (unsigned long)stack_segment)
534                 addr = (unsigned long)xen_stack_segment;
535         else if (addr == (unsigned long)double_fault ||
536                  addr == (unsigned long)nmi) {
537                 /* Don't need to handle these */
538                 return 0;
539 #ifdef CONFIG_X86_MCE
540         } else if (addr == (unsigned long)machine_check) {
541                 return 0;
542 #endif
543         } else {
544                 /* Some other trap using IST? */
545                 if (WARN_ON(val->ist != 0))
546                         return 0;
547         }
548 #endif  /* CONFIG_X86_64 */
549         info->address = addr;
550
551         info->cs = gate_segment(*val);
552         info->flags = val->dpl;
553         /* interrupt gates clear IF */
554         if (val->type == GATE_INTERRUPT)
555                 info->flags |= 1 << 2;
556
557         return 1;
558 }
559
560 /* Locations of each CPU's IDT */
561 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
562
563 /* Set an IDT entry.  If the entry is part of the current IDT, then
564    also update Xen. */
565 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
566 {
567         unsigned long p = (unsigned long)&dt[entrynum];
568         unsigned long start, end;
569
570         preempt_disable();
571
572         start = __get_cpu_var(idt_desc).address;
573         end = start + __get_cpu_var(idt_desc).size + 1;
574
575         xen_mc_flush();
576
577         native_write_idt_entry(dt, entrynum, g);
578
579         if (p >= start && (p + 8) <= end) {
580                 struct trap_info info[2];
581
582                 info[1].address = 0;
583
584                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
585                         if (HYPERVISOR_set_trap_table(info))
586                                 BUG();
587         }
588
589         preempt_enable();
590 }
591
592 static void xen_convert_trap_info(const struct desc_ptr *desc,
593                                   struct trap_info *traps)
594 {
595         unsigned in, out, count;
596
597         count = (desc->size+1) / sizeof(gate_desc);
598         BUG_ON(count > 256);
599
600         for (in = out = 0; in < count; in++) {
601                 gate_desc *entry = (gate_desc*)(desc->address) + in;
602
603                 if (cvt_gate_to_trap(in, entry, &traps[out]))
604                         out++;
605         }
606         traps[out].address = 0;
607 }
608
609 void xen_copy_trap_info(struct trap_info *traps)
610 {
611         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
612
613         xen_convert_trap_info(desc, traps);
614 }
615
616 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
617    hold a spinlock to protect the static traps[] array (static because
618    it avoids allocation, and saves stack space). */
619 static void xen_load_idt(const struct desc_ptr *desc)
620 {
621         static DEFINE_SPINLOCK(lock);
622         static struct trap_info traps[257];
623
624         spin_lock(&lock);
625
626         __get_cpu_var(idt_desc) = *desc;
627
628         xen_convert_trap_info(desc, traps);
629
630         xen_mc_flush();
631         if (HYPERVISOR_set_trap_table(traps))
632                 BUG();
633
634         spin_unlock(&lock);
635 }
636
637 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
638    they're handled differently. */
639 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
640                                 const void *desc, int type)
641 {
642         preempt_disable();
643
644         switch (type) {
645         case DESC_LDT:
646         case DESC_TSS:
647                 /* ignore */
648                 break;
649
650         default: {
651                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
652
653                 xen_mc_flush();
654                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
655                         BUG();
656         }
657
658         }
659
660         preempt_enable();
661 }
662
663 /*
664  * Version of write_gdt_entry for use at early boot-time needed to
665  * update an entry as simply as possible.
666  */
667 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
668                                             const void *desc, int type)
669 {
670         switch (type) {
671         case DESC_LDT:
672         case DESC_TSS:
673                 /* ignore */
674                 break;
675
676         default: {
677                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
678
679                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
680                         dt[entry] = *(struct desc_struct *)desc;
681         }
682
683         }
684 }
685
686 static void xen_load_sp0(struct tss_struct *tss,
687                          struct thread_struct *thread)
688 {
689         struct multicall_space mcs = xen_mc_entry(0);
690         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
691         xen_mc_issue(PARAVIRT_LAZY_CPU);
692 }
693
694 static void xen_set_iopl_mask(unsigned mask)
695 {
696         struct physdev_set_iopl set_iopl;
697
698         /* Force the change at ring 0. */
699         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
700         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
701 }
702
703 static void xen_io_delay(void)
704 {
705 }
706
707 #ifdef CONFIG_X86_LOCAL_APIC
708 static u32 xen_apic_read(u32 reg)
709 {
710         return 0;
711 }
712
713 static void xen_apic_write(u32 reg, u32 val)
714 {
715         /* Warn to see if there's any stray references */
716         WARN_ON(1);
717 }
718
719 static u64 xen_apic_icr_read(void)
720 {
721         return 0;
722 }
723
724 static void xen_apic_icr_write(u32 low, u32 id)
725 {
726         /* Warn to see if there's any stray references */
727         WARN_ON(1);
728 }
729
730 static void xen_apic_wait_icr_idle(void)
731 {
732         return;
733 }
734
735 static u32 xen_safe_apic_wait_icr_idle(void)
736 {
737         return 0;
738 }
739
740 static void set_xen_basic_apic_ops(void)
741 {
742         apic->read = xen_apic_read;
743         apic->write = xen_apic_write;
744         apic->icr_read = xen_apic_icr_read;
745         apic->icr_write = xen_apic_icr_write;
746         apic->wait_icr_idle = xen_apic_wait_icr_idle;
747         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
748 }
749
750 #endif
751
752 static void xen_clts(void)
753 {
754         struct multicall_space mcs;
755
756         mcs = xen_mc_entry(0);
757
758         MULTI_fpu_taskswitch(mcs.mc, 0);
759
760         xen_mc_issue(PARAVIRT_LAZY_CPU);
761 }
762
763 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
764
765 static unsigned long xen_read_cr0(void)
766 {
767         unsigned long cr0 = percpu_read(xen_cr0_value);
768
769         if (unlikely(cr0 == 0)) {
770                 cr0 = native_read_cr0();
771                 percpu_write(xen_cr0_value, cr0);
772         }
773
774         return cr0;
775 }
776
777 static void xen_write_cr0(unsigned long cr0)
778 {
779         struct multicall_space mcs;
780
781         percpu_write(xen_cr0_value, cr0);
782
783         /* Only pay attention to cr0.TS; everything else is
784            ignored. */
785         mcs = xen_mc_entry(0);
786
787         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
788
789         xen_mc_issue(PARAVIRT_LAZY_CPU);
790 }
791
792 static void xen_write_cr4(unsigned long cr4)
793 {
794         cr4 &= ~X86_CR4_PGE;
795         cr4 &= ~X86_CR4_PSE;
796
797         native_write_cr4(cr4);
798 }
799
800 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
801 {
802         int ret;
803
804         ret = 0;
805
806         switch (msr) {
807 #ifdef CONFIG_X86_64
808                 unsigned which;
809                 u64 base;
810
811         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
812         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
813         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
814
815         set:
816                 base = ((u64)high << 32) | low;
817                 if (HYPERVISOR_set_segment_base(which, base) != 0)
818                         ret = -EIO;
819                 break;
820 #endif
821
822         case MSR_STAR:
823         case MSR_CSTAR:
824         case MSR_LSTAR:
825         case MSR_SYSCALL_MASK:
826         case MSR_IA32_SYSENTER_CS:
827         case MSR_IA32_SYSENTER_ESP:
828         case MSR_IA32_SYSENTER_EIP:
829                 /* Fast syscall setup is all done in hypercalls, so
830                    these are all ignored.  Stub them out here to stop
831                    Xen console noise. */
832                 break;
833
834         case MSR_IA32_CR_PAT:
835                 if (smp_processor_id() == 0)
836                         xen_set_pat(((u64)high << 32) | low);
837                 break;
838
839         default:
840                 ret = native_write_msr_safe(msr, low, high);
841         }
842
843         return ret;
844 }
845
846 void xen_setup_shared_info(void)
847 {
848         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
849                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
850                            xen_start_info->shared_info);
851
852                 HYPERVISOR_shared_info =
853                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
854         } else
855                 HYPERVISOR_shared_info =
856                         (struct shared_info *)__va(xen_start_info->shared_info);
857
858 #ifndef CONFIG_SMP
859         /* In UP this is as good a place as any to set up shared info */
860         xen_setup_vcpu_info_placement();
861 #endif
862
863         xen_setup_mfn_list_list();
864 }
865
866 /* This is called once we have the cpu_possible_map */
867 void xen_setup_vcpu_info_placement(void)
868 {
869         int cpu;
870
871         for_each_possible_cpu(cpu)
872                 xen_vcpu_setup(cpu);
873
874         /* xen_vcpu_setup managed to place the vcpu_info within the
875            percpu area for all cpus, so make use of it */
876         if (have_vcpu_info_placement) {
877                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
878                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
879                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
880                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
881                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
882         }
883 }
884
885 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
886                           unsigned long addr, unsigned len)
887 {
888         char *start, *end, *reloc;
889         unsigned ret;
890
891         start = end = reloc = NULL;
892
893 #define SITE(op, x)                                                     \
894         case PARAVIRT_PATCH(op.x):                                      \
895         if (have_vcpu_info_placement) {                                 \
896                 start = (char *)xen_##x##_direct;                       \
897                 end = xen_##x##_direct_end;                             \
898                 reloc = xen_##x##_direct_reloc;                         \
899         }                                                               \
900         goto patch_site
901
902         switch (type) {
903                 SITE(pv_irq_ops, irq_enable);
904                 SITE(pv_irq_ops, irq_disable);
905                 SITE(pv_irq_ops, save_fl);
906                 SITE(pv_irq_ops, restore_fl);
907 #undef SITE
908
909         patch_site:
910                 if (start == NULL || (end-start) > len)
911                         goto default_patch;
912
913                 ret = paravirt_patch_insns(insnbuf, len, start, end);
914
915                 /* Note: because reloc is assigned from something that
916                    appears to be an array, gcc assumes it's non-null,
917                    but doesn't know its relationship with start and
918                    end. */
919                 if (reloc > start && reloc < end) {
920                         int reloc_off = reloc - start;
921                         long *relocp = (long *)(insnbuf + reloc_off);
922                         long delta = start - (char *)addr;
923
924                         *relocp += delta;
925                 }
926                 break;
927
928         default_patch:
929         default:
930                 ret = paravirt_patch_default(type, clobbers, insnbuf,
931                                              addr, len);
932                 break;
933         }
934
935         return ret;
936 }
937
938 static const struct pv_info xen_info __initdata = {
939         .paravirt_enabled = 1,
940         .shared_kernel_pmd = 0,
941
942         .name = "Xen",
943 };
944
945 static const struct pv_init_ops xen_init_ops __initdata = {
946         .patch = xen_patch,
947 };
948
949 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
950         .cpuid = xen_cpuid,
951
952         .set_debugreg = xen_set_debugreg,
953         .get_debugreg = xen_get_debugreg,
954
955         .clts = xen_clts,
956
957         .read_cr0 = xen_read_cr0,
958         .write_cr0 = xen_write_cr0,
959
960         .read_cr4 = native_read_cr4,
961         .read_cr4_safe = native_read_cr4_safe,
962         .write_cr4 = xen_write_cr4,
963
964         .wbinvd = native_wbinvd,
965
966         .read_msr = native_read_msr_safe,
967         .write_msr = xen_write_msr_safe,
968         .read_tsc = native_read_tsc,
969         .read_pmc = native_read_pmc,
970
971         .iret = xen_iret,
972         .irq_enable_sysexit = xen_sysexit,
973 #ifdef CONFIG_X86_64
974         .usergs_sysret32 = xen_sysret32,
975         .usergs_sysret64 = xen_sysret64,
976 #endif
977
978         .load_tr_desc = paravirt_nop,
979         .set_ldt = xen_set_ldt,
980         .load_gdt = xen_load_gdt,
981         .load_idt = xen_load_idt,
982         .load_tls = xen_load_tls,
983 #ifdef CONFIG_X86_64
984         .load_gs_index = xen_load_gs_index,
985 #endif
986
987         .alloc_ldt = xen_alloc_ldt,
988         .free_ldt = xen_free_ldt,
989
990         .store_gdt = native_store_gdt,
991         .store_idt = native_store_idt,
992         .store_tr = xen_store_tr,
993
994         .write_ldt_entry = xen_write_ldt_entry,
995         .write_gdt_entry = xen_write_gdt_entry,
996         .write_idt_entry = xen_write_idt_entry,
997         .load_sp0 = xen_load_sp0,
998
999         .set_iopl_mask = xen_set_iopl_mask,
1000         .io_delay = xen_io_delay,
1001
1002         /* Xen takes care of %gs when switching to usermode for us */
1003         .swapgs = paravirt_nop,
1004
1005         .start_context_switch = paravirt_start_context_switch,
1006         .end_context_switch = xen_end_context_switch,
1007 };
1008
1009 static const struct pv_apic_ops xen_apic_ops __initdata = {
1010 #ifdef CONFIG_X86_LOCAL_APIC
1011         .startup_ipi_hook = paravirt_nop,
1012 #endif
1013 };
1014
1015 static void xen_reboot(int reason)
1016 {
1017         struct sched_shutdown r = { .reason = reason };
1018
1019 #ifdef CONFIG_SMP
1020         stop_other_cpus();
1021 #endif
1022
1023         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1024                 BUG();
1025 }
1026
1027 static void xen_restart(char *msg)
1028 {
1029         xen_reboot(SHUTDOWN_reboot);
1030 }
1031
1032 static void xen_emergency_restart(void)
1033 {
1034         xen_reboot(SHUTDOWN_reboot);
1035 }
1036
1037 static void xen_machine_halt(void)
1038 {
1039         xen_reboot(SHUTDOWN_poweroff);
1040 }
1041
1042 static void xen_crash_shutdown(struct pt_regs *regs)
1043 {
1044         xen_reboot(SHUTDOWN_crash);
1045 }
1046
1047 static int
1048 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1049 {
1050         xen_reboot(SHUTDOWN_crash);
1051         return NOTIFY_DONE;
1052 }
1053
1054 static struct notifier_block xen_panic_block = {
1055         .notifier_call= xen_panic_event,
1056 };
1057
1058 int xen_panic_handler_init(void)
1059 {
1060         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1061         return 0;
1062 }
1063
1064 static const struct machine_ops __initdata xen_machine_ops = {
1065         .restart = xen_restart,
1066         .halt = xen_machine_halt,
1067         .power_off = xen_machine_halt,
1068         .shutdown = xen_machine_halt,
1069         .crash_shutdown = xen_crash_shutdown,
1070         .emergency_restart = xen_emergency_restart,
1071 };
1072
1073 /*
1074  * Set up the GDT and segment registers for -fstack-protector.  Until
1075  * we do this, we have to be careful not to call any stack-protected
1076  * function, which is most of the kernel.
1077  */
1078 static void __init xen_setup_stackprotector(void)
1079 {
1080         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1081         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1082
1083         setup_stack_canary_segment(0);
1084         switch_to_new_gdt(0);
1085
1086         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1087         pv_cpu_ops.load_gdt = xen_load_gdt;
1088 }
1089
1090 /* First C function to be called on Xen boot */
1091 asmlinkage void __init xen_start_kernel(void)
1092 {
1093         pgd_t *pgd;
1094
1095         if (!xen_start_info)
1096                 return;
1097
1098         xen_domain_type = XEN_PV_DOMAIN;
1099
1100         /* Install Xen paravirt ops */
1101         pv_info = xen_info;
1102         pv_init_ops = xen_init_ops;
1103         pv_cpu_ops = xen_cpu_ops;
1104         pv_apic_ops = xen_apic_ops;
1105
1106         x86_init.resources.memory_setup = xen_memory_setup;
1107         x86_init.oem.arch_setup = xen_arch_setup;
1108         x86_init.oem.banner = xen_banner;
1109
1110         xen_init_time_ops();
1111
1112         /*
1113          * Set up some pagetable state before starting to set any ptes.
1114          */
1115
1116         xen_init_mmu_ops();
1117
1118         /* Prevent unwanted bits from being set in PTEs. */
1119         __supported_pte_mask &= ~_PAGE_GLOBAL;
1120         if (!xen_initial_domain())
1121                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1122
1123         __supported_pte_mask |= _PAGE_IOMAP;
1124
1125         /*
1126          * Prevent page tables from being allocated in highmem, even
1127          * if CONFIG_HIGHPTE is enabled.
1128          */
1129         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1130
1131         /* Work out if we support NX */
1132         x86_configure_nx();
1133
1134         xen_setup_features();
1135
1136         /* Get mfn list */
1137         if (!xen_feature(XENFEAT_auto_translated_physmap))
1138                 xen_build_dynamic_phys_to_machine();
1139
1140         /*
1141          * Set up kernel GDT and segment registers, mainly so that
1142          * -fstack-protector code can be executed.
1143          */
1144         xen_setup_stackprotector();
1145
1146         xen_init_irq_ops();
1147         xen_init_cpuid_mask();
1148
1149 #ifdef CONFIG_X86_LOCAL_APIC
1150         /*
1151          * set up the basic apic ops.
1152          */
1153         set_xen_basic_apic_ops();
1154 #endif
1155
1156         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1157                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1158                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1159         }
1160
1161         machine_ops = xen_machine_ops;
1162
1163         /*
1164          * The only reliable way to retain the initial address of the
1165          * percpu gdt_page is to remember it here, so we can go and
1166          * mark it RW later, when the initial percpu area is freed.
1167          */
1168         xen_initial_gdt = &per_cpu(gdt_page, 0);
1169
1170         xen_smp_init();
1171
1172         pgd = (pgd_t *)xen_start_info->pt_base;
1173
1174         if (!xen_initial_domain())
1175                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1176
1177         __supported_pte_mask |= _PAGE_IOMAP;
1178         /* Don't do the full vcpu_info placement stuff until we have a
1179            possible map and a non-dummy shared_info. */
1180         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1181
1182         local_irq_disable();
1183         early_boot_irqs_off();
1184
1185         memblock_init();
1186
1187         xen_raw_console_write("mapping kernel into physical memory\n");
1188         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1189         xen_ident_map_ISA();
1190
1191         /* Allocate and initialize top and mid mfn levels for p2m structure */
1192         xen_build_mfn_list_list();
1193
1194         init_mm.pgd = pgd;
1195
1196         /* keep using Xen gdt for now; no urgent need to change it */
1197
1198 #ifdef CONFIG_X86_32
1199         pv_info.kernel_rpl = 1;
1200         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1201                 pv_info.kernel_rpl = 0;
1202 #else
1203         pv_info.kernel_rpl = 0;
1204 #endif
1205
1206         /* set the limit of our address space */
1207         xen_reserve_top();
1208
1209 #ifdef CONFIG_X86_32
1210         /* set up basic CPUID stuff */
1211         cpu_detect(&new_cpu_data);
1212         new_cpu_data.hard_math = 1;
1213         new_cpu_data.wp_works_ok = 1;
1214         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1215 #endif
1216
1217         /* Poke various useful things into boot_params */
1218         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1219         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1220                 ? __pa(xen_start_info->mod_start) : 0;
1221         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1222         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1223
1224         if (!xen_initial_domain()) {
1225                 add_preferred_console("xenboot", 0, NULL);
1226                 add_preferred_console("tty", 0, NULL);
1227                 add_preferred_console("hvc", 0, NULL);
1228                 if (pci_xen)
1229                         x86_init.pci.arch_init = pci_xen_init;
1230         } else {
1231                 /* Make sure ACS will be enabled */
1232                 pci_request_acs();
1233         }
1234                 
1235
1236         xen_raw_console_write("about to get started...\n");
1237
1238         xen_setup_runstate_info(0);
1239
1240         /* Start the world */
1241 #ifdef CONFIG_X86_32
1242         i386_start_kernel();
1243 #else
1244         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1245 #endif
1246 }
1247
1248 static uint32_t xen_cpuid_base(void)
1249 {
1250         uint32_t base, eax, ebx, ecx, edx;
1251         char signature[13];
1252
1253         for (base = 0x40000000; base < 0x40010000; base += 0x100) {
1254                 cpuid(base, &eax, &ebx, &ecx, &edx);
1255                 *(uint32_t *)(signature + 0) = ebx;
1256                 *(uint32_t *)(signature + 4) = ecx;
1257                 *(uint32_t *)(signature + 8) = edx;
1258                 signature[12] = 0;
1259
1260                 if (!strcmp("XenVMMXenVMM", signature) && ((eax - base) >= 2))
1261                         return base;
1262         }
1263
1264         return 0;
1265 }
1266
1267 static int init_hvm_pv_info(int *major, int *minor)
1268 {
1269         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1270         u64 pfn;
1271
1272         base = xen_cpuid_base();
1273         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1274
1275         *major = eax >> 16;
1276         *minor = eax & 0xffff;
1277         printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1278
1279         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1280
1281         pfn = __pa(hypercall_page);
1282         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1283
1284         xen_setup_features();
1285
1286         pv_info = xen_info;
1287         pv_info.kernel_rpl = 0;
1288
1289         xen_domain_type = XEN_HVM_DOMAIN;
1290
1291         return 0;
1292 }
1293
1294 void xen_hvm_init_shared_info(void)
1295 {
1296         int cpu;
1297         struct xen_add_to_physmap xatp;
1298         static struct shared_info *shared_info_page = 0;
1299
1300         if (!shared_info_page)
1301                 shared_info_page = (struct shared_info *)
1302                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1303         xatp.domid = DOMID_SELF;
1304         xatp.idx = 0;
1305         xatp.space = XENMAPSPACE_shared_info;
1306         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1307         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1308                 BUG();
1309
1310         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1311
1312         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1313          * page, we use it in the event channel upcall and in some pvclock
1314          * related functions. We don't need the vcpu_info placement
1315          * optimizations because we don't use any pv_mmu or pv_irq op on
1316          * HVM.
1317          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1318          * online but xen_hvm_init_shared_info is run at resume time too and
1319          * in that case multiple vcpus might be online. */
1320         for_each_online_cpu(cpu) {
1321                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1322         }
1323 }
1324
1325 #ifdef CONFIG_XEN_PVHVM
1326 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1327                                     unsigned long action, void *hcpu)
1328 {
1329         int cpu = (long)hcpu;
1330         switch (action) {
1331         case CPU_UP_PREPARE:
1332                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1333                 break;
1334         default:
1335                 break;
1336         }
1337         return NOTIFY_OK;
1338 }
1339
1340 static struct notifier_block __cpuinitdata xen_hvm_cpu_notifier = {
1341         .notifier_call  = xen_hvm_cpu_notify,
1342 };
1343
1344 static void __init xen_hvm_guest_init(void)
1345 {
1346         int r;
1347         int major, minor;
1348
1349         r = init_hvm_pv_info(&major, &minor);
1350         if (r < 0)
1351                 return;
1352
1353         xen_hvm_init_shared_info();
1354
1355         if (xen_feature(XENFEAT_hvm_callback_vector))
1356                 xen_have_vector_callback = 1;
1357         register_cpu_notifier(&xen_hvm_cpu_notifier);
1358         xen_unplug_emulated_devices();
1359         have_vcpu_info_placement = 0;
1360         x86_init.irqs.intr_init = xen_init_IRQ;
1361         xen_hvm_init_time_ops();
1362         xen_hvm_init_mmu_ops();
1363 }
1364
1365 static bool __init xen_hvm_platform(void)
1366 {
1367         if (xen_pv_domain())
1368                 return false;
1369
1370         if (!xen_cpuid_base())
1371                 return false;
1372
1373         return true;
1374 }
1375
1376 const __refconst struct hypervisor_x86 x86_hyper_xen_hvm = {
1377         .name                   = "Xen HVM",
1378         .detect                 = xen_hvm_platform,
1379         .init_platform          = xen_hvm_guest_init,
1380 };
1381 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1382 #endif